BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1997/1998REPORT #:PAP 97-7NAME:RUPERT SEEL

BRITISH COLUMBIA

PROSPECTORS ASSISTANCE PROGRAM

REFERENCE NO. 97/98 P17

RUPERT SEEL 6660 Dunnedin Street Burnaby, B.C. V5B 1Y8

Submitted: Jan 5, 1998

MINISTRY OF EMPLOY: S. W & INVESTMEN IDN 1 & 1009 Geological Survey Dreach MEL JAN 0 6 1999 p17

محديد المعادين بالمعتد ستعتر ولأ

British Columbia Prospectors Assistance Program Reference No. 97/98 P17

TABLE OF CONTENTS

Summary of Prospecting Activity, Form A	1
Daily Reports (Diary)	2
Technical Report, Form B Project Area #1	5
Technical Report. Form B Project Area #2	6
Assay Results of Work Performed in both project areas	7
Assay Certificate # 7S-0255-RA1	20
Assay Certificate # 7S-0203-RA1	21
Current Mineral Titles Reference Map – Project Area #1	22
Current Mineral Titles Reference Map Project Area #2	
MAL SHOWING GEOCHEMICAL LINES SAMPLED	24

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

COCATION/COMMODITIES roject Area (as listed in Part A) $PROTECT$ Image: MINFILE No. if applicable cocation of Project Area NTS $33E$ Ite Lat 53 400 Long ZZ 266 bescription of Location and Access BY $Loc Geiue Asan To Hrs Is 00 THE TROTSA Hain BY Eoc T Rail< Eon 3.5KH To THE AEE Aen Asintheta Baintheta Baintheta To THE AEE Aee Aee Aee Aee To THE Aee Aee Aee Aee Aee Aee To THE Baintheta Aee Aee$	Name RUPERT SEEL	_ Reference Number _ 97	<u> 98 P17</u>	
bescription of Location and Access $Ay \ Lo \ GC in C. \ Road To \ Hm \ 15 on \ THE TRAITSA MAIN, THEN BY FOOT TRAIL FOR 3.5HM To THE AREA OF OLD DATLLIDG Aain Commodities Searched For Gu. Au. AG.inown Mineral Occurrences in Project Area Au \ /Cu.WORK PERFORMED1. Conventional Prospecting (area) 2000 HA2. Geological Mapping (hectares/scale)3. Geochemical (type and no. of samples) 31 CAREA SEDIMENTS 300 SOL 21 Rock SA4. Geophysical (type and no. of samples) 31 CAREA SEDIMENTS 300 SOL 21 Rock SA4. Geophysical (type and amount)5. Physical Work (type and amount)6. Drilling (no. holes, size, depth in m, total m)7. Other (specify)IGNIFICANT RESULTSOration (show on map) Lat 53 38.5 Long 127 04.7 Elevation 1100 mest assay/sample type Au. Cu = 5.6 E 3Accessing 7.16 area Cu. 710 area Cu. 710 area Cu. 710 area Cu. 710 area AG = 200.0 PPAescription of mineralization, host rocks, anomalies THE Host Rock is oF THE HAREA CONTREST SACCES ACCESSA AB = 200.0 PPAAB = 200.0 PPA$	LOCATION/COMMODITIES Project Area (as listed in Part A)	MINFILE	E No. if applicable	
TROITSA INDIA THEN By FOOT TRAIL FOR 3.5km To <the< td=""> THE ARE OF OLD PAILLING Main Commodities Searched For CU. PU. AG. Incommodities Searched For QU. AG. Incommodities Conventional Prospecting (area) 2000 HA 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 31 CAREAL SEpinauts 300 Soil 21 Rock SA 3. Geochemical (type and no. of samples) 31 CAREAL SEpinauts 300 Soil 21 Rock SA 4. Geophysical (type and amount) . . . 6. Drilling (no., holes, size, depth in m, total m) . . . 7. Other (specify) IGNIFICANT RESULTS ormmodities AU </the<>				
To THK AKKA OF OLD DAILLIDG Aain Commodities Searched For $GU_{}$ $Au_{}$ $AG_{}$ Ain Commodities Searched For $GU_{}$ $Au_{}$ $AG_{}$ Inown Mineral Occurrences in Project Area $AU_{}$ $AG_{}$ $AU_{}$ $AG_{}$ WORK PERFORMED 1. Conventional Prospecting (area) $200 \circ HA$ 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) $3I \ CREE_{A} \ SEpingufs$ $3oo \ Soit \ LI \ Rock \ SA_{}$ 4. Geophysical (type and no. of samples) $3I \ CREE_{A} \ SEpingufs$ $3oo \ Soit \ LI \ Rock \ SA_{}$ $4. \ Geophysical (type and amount)$ $6. \ Drilling (no. holes, size, depth in m, total m)$ $7. \ Other (specify)$ $7. \ Other (specify)$ $7. \ Other (specify)$ $7. \ Other (specify)$ IGNIFICANT RESULTS $AU_{} \ Claim Name \ SEE \ 3$ $SEE \ 3$ $Sec \ Sample \ LI \ Sample \ $				
To THK AKKA OF OLD DAILLIDG Aain Commodities Searched For $GU_{}$ $Au_{}$ $AG_{}$ Ain Commodities Searched For $GU_{}$ $Au_{}$ $AG_{}$ Inown Mineral Occurrences in Project Area $AU_{}$ $AG_{}$ $AU_{}$ $AG_{}$ WORK PERFORMED 1. Conventional Prospecting (area) $200 \circ HA$ 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) $3I \ CREE_{A} \ SEpingufs$ $3oo \ Soit \ LI \ Rock \ SA_{}$ 4. Geophysical (type and no. of samples) $3I \ CREE_{A} \ SEpingufs$ $3oo \ Soit \ LI \ Rock \ SA_{}$ $4. \ Geophysical (type and amount)$ $6. \ Drilling (no. holes, size, depth in m, total m)$ $7. \ Other (specify)$ $7. \ Other (specify)$ $7. \ Other (specify)$ $7. \ Other (specify)$ IGNIFICANT RESULTS $AU_{} \ Claim Name \ SEE \ 3$ $SEE \ 3$ $Sec \ Sample \ LI \ Sample \ $	TROITSA MAIN, THEN B	Y FOOT TRAIL	FOR 3.5K	' <u>M</u>
Cnown Mineral Occurrences in Project Area AU CU WORK PERFORMED 1. Conventional Prospecting (area) $2000 HA$ 2. Geological Mapping (hectares/scale)	TO THE AREA OF OLD DRI	Ling		
WORK PERFORMED 1. Conventional Prospecting (area) 2000 HA 2. Geological Mapping (hectares/scale) 31 CAREA SEDIMANTS 300 Soit 21 Aoch SA 4. Geophysical (type and no. of samples) 31 CAREA SEDIMANTS 300 Soit 21 Aoch SA 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify)	Main Commodities Searched ForAu.	AG.		
WORK PERFORMED 1. Conventional Prospecting (area) 2000 HA 2. Geological Mapping (hectares/scale) 31 CAREA SEDIMANTS 300 Soit 21 Aoch SA 4. Geophysical (type and no. of samples) 31 CAREA SEDIMANTS 300 Soit 21 Aoch SA 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify)				
1. Conventional Prospecting (area) 2000 HA 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 31 CAREA SEDIMANTS 300 Soit 11 Rock SA 4. Geophysical (type and line km)	Known Mineral Occurrences in Project Area _// U	/cu.		
1. Conventional Prospecting (area) 2000 HA 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 31 CAREA SEDIMANTS 300 Soit 11 Rock SA 4. Geophysical (type and line km)				
2. Geological Mapping (hectares/scale)				
3. Geochemical (type and no. of samples) <u>31 CREEL SEDIMANTS</u> <u>300 Soit 21 Rock S</u> 4. Geophysical (type and line km)				
4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify) IGNIFICANT RESULTS ommoditiesA \mathcal{U} Claim Name $\mathcal{I}_{A} \mathcal{U}$ Claim Name $\mathcal{I}_{A} \mathcal{U}_{A} \mathcal{I}_{A} \mathcal{I}_{$				
5. Physical Work (type and amount) 6. Drilling (no, holes, size, depth in m, total m) 7. Other (specify) IGNIFICANT RESULTS ommoditiesA U Claim NameSEE 3 ocation (show on map) Lat _5.3 38.5 Long _127 04.7 Elevation _//00 m est assay/sample type AU.7.99 $g_{-}/TONNA$ CU.710,000 ZN 291L PPM MG > 200.0 PPM escription of mineralization, host rocks, anomalies/HGHostAouthS OF HAZELTON GROUP CONSISTING OF A NORTHWAST $IRENDING BEDS OF PYROCLASTICS OF INTER MEDIATA GOM POSITION GRAUGITA$	3. Geochemical (type and no. of samples)31	CREEK SEPIMANTS	300 SOIL 1	<u>Ll Roch</u> SAI
6. Drilling (no., holes, size, depth in m, total m) 7. Other (specify) IGNIFICANT RESULTS ommodities Claim Name ocation (show on map) Lat _53 38.5 Long $127 04.7$ Elevation $1/09 m_{-}$ est assay/sample type $64.7.99$ $g_{-}/70 NVAC$ $CH.710,000$ $ZH 2916 PPM$ MG > 200.0 PPM escription of mineralization, host rocks, anomalies $/H_C$ $H_{05}\Gamma$ $Rock$ is of THE HAZELTON GROUP CONSISTING OF A NORTH WEST $TRENDING BEDS OF PYROCEASTICS OF INFAR MEDIATA Gomposition , GRANGER SIDE THARE IS A GRANITE$	4. Geophysical (type and line km)			
7. Other (specify) IGNIFICANT RESULTS ommoditiesA \mathcal{U}	5. Physical Work (type and amount)			
IGNIFICANT RESULTS ommodities <u>AU</u> Claim Name <u>SEE 3</u> ocation (show on map) Lat <u>53 38.5</u> Long <u>127 04.7</u> Elevation <u>1/00 m</u> est assay/sample type <u>BU.7.99</u> <u><u><u><u></u></u><u>70 NUR</u> <u>CU.710 000</u> <u>ZN 2916 PPM</u> <u>MG > 200.0 PPM</u> escription of mineralization, host rocks, anomalies <u>7/1/2</u> <u>Host</u> <u>Rock</u> <u>is of THE</u> <u>HAZELTON</u> <u>GROUP</u> <u>CONSISTING</u> <u>OF</u> <u>A</u> <u>NORTH WEST</u> <u>TRENDING</u> <u>BEDS</u> <u>OF</u> <u>PYROCLASTICS</u> <u>AF INFAR MEDIATA</u> <u>GOMPOSITION</u>, <u>GROUP</u> <u>EAST</u> <u>SIDE</u> <u>THERE</u> <u>is A</u> <u>GRAUJER</u></u></u>	6,. Drilling (no,. holes, size, depth in m, total m)			
ommodities AL Claim Name SEE 3 ocation (show on map) Lat 53 38.5 Long 127 04.7 Elevation 1100 m. est assay/sample type AU.7.99 9 TONKA CU.710,000 ZN 2916 PPM AG >200.0 PPM escription of mineralization, host rocks, anomalies TIAR Host Rock is of THE HAZELTON GROUP CONSISTING OF A NOATH WEST TRENDING BEDS OF PY ROCKASTICS OF INTAR MEDIATA GOMPOSITION GN THE EAST SIDE THERE IS A GRAUJITE	7. Other (specify)			
ommodities AL Claim Name SEE 3 ocation (show on map) Lat 53 38.5 Long 127 04.7 Elevation 1100 m. est assay/sample type AU.7.99 9 TONKA CU.710,000 ZN 2916 PPM AG >200.0 PPM escription of mineralization, host rocks, anomalies TIAR Host Rock is of THE HAZELTON GROUP CONSISTING OF A NOATH WEST TRENDING BEDS OF PY ROCKASTICS OF INTAR MEDIATA GOMPOSITION GN THE EAST SIDE THERE IS A GRAUJITE	SIGNIFICANT RESULTS			
ocation (show on map) Lat <u>53</u> <u>38.5</u> Long <u>127</u> <u>04.7</u> Elevation <u>1100 m</u> est assay/sample type <u>BU.7.99</u> <u>9-/TONNA</u> <u>CH.710,000</u> <u>ZN 2916 PPM</u> <u>MG > 200.0 PPM</u> escription of mineralization, host rocks, anomalies <u>T/17</u> <u>Host</u> <u>Rock</u> <u>is of THE</u> <u>HAZELTON</u> <u>GROUP</u> <u>CONSISTING</u> <u>OF</u> <u>A</u> <u>NOATH WRST</u> <u>TRENDING</u> <u>BEDS</u> <u>OF</u> <u>PYROCLASTICS</u> <u>SF</u> <u>INTAR MRDIATA</u> <u>GOMPOSITION</u> , <u>SN THA</u> <u>EAST</u> <u>SIDE</u> <u>THARE</u> <u>is A</u> <u>GRANITE</u>		Claim Nan	ne <u>SEE 3</u>	
est assay/sample type BU.7.99 <u>J-TONNA</u> C.H.710,000 ZN 2916 PPM MG 7200.0 PPM escription of mineralization, host rocks, anomalies <u>THE</u> HAZELTON GROUP CONSISTING OF A NORTHWRST TRENDING BEDS OF PYROCHASTICS OF INTAR MARIATA GOMPOSITION, GN THA EAST SIDE THARE IS A GRANITE-				
MG 7200.0 PPM escription of mineralization, host rocks, anomalies <u>THE</u> <u>HAZELTON GROUP CONSISTING OF A NORTHWRST</u> <u>TRENDING BEDS OF PYROCHASTICS OF INTAR MARIATA</u> <u>COMPOSITION, GN THA EAST SIDE THARE IS A GRANITE-</u>				
escription of mineralization, host rocks, anomalies <u>THE</u> HOST ROCH is OF THE HAZELTON GROUP CONSISTING OF A NORTHWEST TRENDING BEDS OF PYROCHASTICS OF INTERMEDIATE COMPOSITION, GN THE EAST SIDE THERE IS A GRANITE-				
HAZELTON GROUP CONSISTING OF A NORTHWRST TRENDING BEDS OF PYROCHASTICS OF INTAR MADIATA GOMPOSITION, ON THA EAST SIDE THARE IS A GRANITE-	•		+ is OF TH	Æ
TRENDING BEDS OF PYROCHASTICS OF INTERMEDIATE COMPOSITION, ON THE EAST SIDE THERE IS A GRANITE-	-			
COMPOSITION, ON THE EAST SIDE THREE IS A GRANITE-	TASNA WC REAL OF ANAL	clasting of	INTER ARES	
	TRENDING DAUS OF PYRC	CARSTICS OF	TO TAK TO DIA	-
GRANODIORITR PLUG				
	GRANODIORITA PLUE			

Supporting data must be submitted with this TECHNICAL REPORT Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

	II OF LOCATION AN	TURN	LAFE	FOR	24M a	N NEW	Mink F.S.R.	
Main Com	modities Search	ed For						
Known Mi	neral Occurrenc	es in Project A	irea	(A				
WORK	PERFORMED							
			10	O HA				
								
5. Phy:	sical Work (type	and amount)				· · · · · · · · · · · · · · · · · · ·		
6,. Dri	lling (no,. holes,	size, depth in	m, total m) _					
7. Othe	er (specify)							
		 0						
	ANT RESULT				Claim	Name		
Location (s	thow on man) I a	1 53	41	Long	<u> </u>	Flevation	900 m	
Dest assay,	sumple type					<u></u>		
 Description	of mineralizatio	n host rocks	anomalies	Hact	1. ale	4 A 7 A 1 T	ON GROU	
	LCANIC							· ,
					· •			

Supporting data must be submitted with this TECHNICAL REPORT Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

CHP: HR. RUPERT ROJ: SEE TTN: RUPERT SEE										M 82	IN-1 82 SHE TEL:(REROO	KE SI	T., V	NICOU	ver, (604)	B.C. 327-3	75X 4	E 8									•	• 0A	75-033 TE: 97/ (ACT:10	10/29 2 31)	
SANPLE MUMBER	AG PPN		AS PPN 28	8A PPM 40	BE PPN	BL PPN 1	CA %	CD PPN	C0 PPH 8 9	CR PPH 26	CU PPN 94	FE X .50	GA PPN 10	.03	L1 PPH 7	MG %	NN PPN 194	NC PPN	61	N1 PPH 6	PPN 1820 550	PB PPN 24 22	58 PPN 3 2	SN PPH 1	SR PPM 5 36	TH PPN 22 15	T1 X .22 .03	U PPN 14 8	PPN 107.7 59.5	ы РРМ 3	ZN PPM 80 94	DEC-01-1997
114 115 116 117 118	.1 .1 .1 .5	1.84 1.30 1.05 1.81 .67	28 22 29 20 94	40 191 33 81 65	.1 .2 .1 .3 .4	1 1 5	.05 .28 .03 .19 .33		9 4 23	26 16 12 21 47	9 4 14 2 6 4 17 3 65 6	.17	4 11 4 5	.03 .06 .03 .04 .05	8 2 11 2	.13 .57 .15	194 426 300 457 815	1 2 1 2	.02 .01 .01 .01	4 11 48	1820 550 850 600 1550	24 22 111 17 40	2214	1 1 1	56446	22 15 19 18 31	.22 .03 .11 .04 .01	12 10 21	107.7 59.5 102.1 64.9 89.2	122	80 94 48 85 171)7 Ø9:49
																															í.)
																										-						
										<u>-</u>																						
		<u>,_</u> ,		-																<u>.</u>												
																				<u>.</u>											`	
								_																								
						-,																<u> </u>										

ŧ

ļ

I

Ŧ

F

ŧ

.

J

F

5

J

J

F

ł

ONP: NR. RUPER ROJ: SEE TTN: RUPERT SEC										¥. 82	82 SI	FRANC	DOKE S	ST., 1	VAKCO	ICP IMER, : (604)	8. C.	V5X 4	EB										LE ND: DA	TE: 97	7/10/2
SAMPLE NUMBER	AG PPN	AL % 3.85	AS PPM 4	BA PPN 62	BE PPH .3	8) PPM 1	CA % 2.47	CD PPM .1	C0 PPN 23	CR PPN 92	СU РРИ 39	FE ¥ 4.80	GA PPN 9	к х .04	L1 PPN 29	NG 2 3.04	MN PPM 726	ND PPM 1	NA 2	NI PPN 66	р <u>рри</u> 1170	рв ррм 11	58 PPM 2	SM PPM 1	SR PPN 33	TH PPN 37	11 X .12	9 99 15	115.6	PPN	211 <u>PPN</u> 47
																															ŧ .
																					.										
													-																		
			-																												
																															< ,
			*																												

.

.

J

IN: RUPERT SE	AG	AL	AS	BA	BF	BI	CA.	CD	<u></u>		TEL:(CU		GA		LI	MG	MN	MO	NA	NI		PB	SB	SN	SR	тн	TI	<u> </u>	* * V	¥
IUMBER 12 13 56E 2	PPM 2.3 .7 3.5 .4	%	PPM	49 173 67	PPM 1 1	PPM	.03 .68 .35	PPM 5.4 1.3 3.7 .1	PPM 2 5 11	82 68 1	PPM 8 9 2190	97 1.84 6.19	PPM 6 12 46	20 .10 .34	PPM 2 2 2	.03 .08 .37	<u>PPM</u> 31 890 5498	PPM	.01 .03 .01 .02	47	60	78 11	PPM 10 8 30 11	SN PPM 1 1 1	PPM 5 8 9 6	РРМ 5 4 1	201 .01 .01 .01 .01	PPM 4	PPM 1.0 7.2 23.8 10.8	PPM 6 4 2 3
'C'' 600	.4	.57	30		.1	1	.85	• 1	11	50	29	4.10		.21		.45	127	4	.02		230	2		•	0		.01	د 	10.0	
						<u> </u>							<u> </u>																	
												·																		
								• • • •																<u></u>						
																					<i></i>									

PROJ: SEE

ATTN: RUPERT SEEL

MIN-EN LABS - ICP REPORT

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7S-0255-SJ1+2

DATE: 97/09/05

* * (ACT:F31)

NUMBER PPN PN PPN PPN PPN PPN PPN X PPN X PPN X PPN X PPN X PPN Y PPN PPN Y PPN PPN X PPN Y PPN PPN Y PPN PPN Y PPN PPN Y PPN Y PPN Y PPN Y PPN Y PPN Y PPN PPN Y																																		5	25	42	34		27	52)	04	δl	:(١X	F <i>F</i>)	56	4.5	54	- 5	1	52	25	4	50	:(6	L:	E	T																																																													
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	PB SB SN SR PPM PPM PPM PPM		SB SPPM PI	SN PPM	S S	3 S M PP	SB Pm f	SB Pm i	SB	SB PPM	SB PPM	SB PPM										Р																	MG %	M													Ī																							1	A %	A %	C/	Ċ	С	(1															_															ζ,	L %	۱i ۶	A	ŀ				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 32 1 39 53 31 1 22 53 28 1 19 74 18 1 27 22 9 1 43	30 53 50 53 00 74	28 18	3 1 3 1	8 8	8 8	28 18		53 53 74	53 53 74	-	0 0 0	50 50 50	030 650 800	203 65 80	20 6 8	ź		0 2 5	10	1		01 01 01	.0 .0	•	4 3 4	234	3	48 41 82	44 54 48	454		39 63 22	.3		83	-)3)4)7	 0.	1 1 1				5 0 1	05 40 91		442	>'	1	21		2	12 10 1	1		257	12 15 7	1			6 1 2	6 1 2	.6 .1 .2			1			3	1 8 4	1 1 1 8 1 4	11 08 14	1 01 1	-1 -0 -1						•	7 4 4 1 1	7 4 4 1 1	7 4 4 1 1	14	1			1 1 1		•		•	5 4 1	75 84 51	7 8 15	1	1			1 1 4	1 1 14	14				5	601	26	205	.(3. 3. 1.	3 3 1	100						
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	36 21 1 28 43 12 1 57 45 18 1 19 38 19 1 15 50 24 1 21	30 36 10 43 20 45 60 38	18 19	3 1 7 1	8 9	8 9	18 19	18 19	18 19	18 19	18 19	18 19	2 12 18 19		36 43 45 38	36 43 45 38			50 10 20 50	730 810 120 360	73 81 112 136	7 8 11 13	1	7	7396	7 13 9	1		01 02 01 01	.0 .0 .0	•	5344		225	00 82 92 76	40 98 89 87	4988	ļ. ?	48 69 56 31	.4.6.5.3		11 7 11)5)6)4)2		1	'			6 8 7 8	46 38 27 68	4	443		0 8 5 5	30 28 36 16		5	6			1558	11 15 15 8	1 1 1			1 1 1	1 1 1	.1		•				22.57	9 2 6 7	19 52 16	19 52 16 07	19 57 10	.1 .5 .1			•			 •	153	163	163	0				1 1 1		•			2377	12 13 67 77	11 11 6 7	1 1	1			4 8 5 6	24 28 25	2022			 	5 7 0 3	8903	98 49 70	9475		:	1. 1. 1.	11111	
V 28 .1 1.86 1 9 .42 .2 14 19 74 3.99 1 .10 9 .79 618 12 .02 9 1670 V 29 .1 1.80 1 97 .1 7 .60 .1 14 25 113 3.72 1 .11 8 .93 .609 11 .02 13 930 V 30 .1 2.34 3 89 .1 6 .41 .1 15 25 90 4.06 1 .08 10 .90 .625 7 .01 16 870 V 31 .1 2.03 1 93 .1 3 .19 .1 10 16 95 4.03 1 .07 9 .70 318 17 .01 11 .90 .40 .355 1 .06 9 .54 .399 4 .01 7 .120 V 33 .1 .95 16 .71 .11 .97 .11		00 165 30 94 50 88	38 21 52	3 1 1 1 2 1	B 1 2	8 1 2	38 21 52	38 21 52	38 21 52	38 21 52	38 21 52	38 21 52	38 21 57		65 74 88	165 94 88	10	0 1 0 0	50 50	800 030 950	80 103 95	8 10 9	1	5	4 0	10	1		01 01 01 01	.0	•	7757		5	65 88 21	76 68 62	7 6 6	; ; ;	25 18 49	.2 .1 .4		6 2 11			08 04 05	-0 -0 -0	1 3 1	-			3 9 1	53 19 91	4	445		5550	25 46 20 26		ŝ	6			29 B 7	32 9 8 17	3		3 5 	8 1 6 1	8	.8 .1 .6		•	 			3	8 4 9	48 14)9	48 14 09	41	.4	.4	•				;	4	4 9	49	Ş				1 1 1					0200	00 72 60	20 7 6 11	2	1		 	8 3 3 9	28 53 53 79	263	1; 1;			9 1 9 7	9197	29	2536			2. 1. 1. 4.	2114	4114
440N 2000E .1 1.95 16 76 .1 9 .17 .1 11 5 50 3.35 1 .05 8 .36 767 4 .01 10 1170 00N 2000E .1 2.44 5 56 .1 23 .08 .1 10 11 25 4.29 1 .03 10 .27 313 5 .01 5 1910 00N 2100E .1 2.20 1 113 .1 2 .09 .1 9 6 31 3.53 1 .03 8 .32 217 2 .01 9 590 .00N 2300E .1 2.25 7 85 .1 5 .11 .2 10 7 47 3.73 1 .03 8 .32 2.01 9 18 1300 .00N 2300E .1 2.67 1 .11 .13 .1 12 25 3.61 1 .04 11 .62 452 <td< td=""><td>45 16 1 45 39 13 1 49 48 18 1 35 28 11 1 25 43 18 1 35</td><td>30 39 70 48 60 28 10 43</td><td>13 18 11</td><td>5 1 3 1 1 1</td><td>3 8 1</td><td>3 8 1</td><td>13 18 11</td><td>13 18 11</td><td>13 18 11</td><td>13 18 11</td><td>13 18 11</td><td>13 18 11</td><td>13 18 11</td><td></td><td>39 48 28</td><td>39 48 28</td><td></td><td>0 0 0 0</td><td>30 70 50</td><td>930 870 360 910</td><td>93 87 136 91</td><td>9 8 13 9</td><td>1</td><td>57</td><td>3 6 7 1</td><td>12 16 7</td><td>1 1 1</td><td>2</td><td>02 01 01</td><td>.0 .0 .0</td><td></td><td>1 7 4</td><td>1</td><td>5</td><td>25 56</td><td>62 25</td><td>é</td><td></td><td>93 90 57</td><td>.9</td><td>3</td><td>8 10 6</td><td></td><td></td><td>11 08 04</td><td>-1 -0 -0</td><td>1 1 1</td><td></td><td></td><td></td><td>2 6 5</td><td>72 06 05</td><td>5. 4. 3. </td><td>343</td><td></td><td>303</td><td>113 90 23</td><td>1</td><td>5</td><td>25 20</td><td>2</td><td></td><td>5</td><td>15 9</td><td>1</td><td></td><td></td><td>1</td><td>1</td><td>.1</td><td>÷</td><td>:</td><td></td><td>_</td><td></td><td></td><td>0 1 0</td><td>50 41 50</td><td>6(41 3(</td><td>.6 4 3</td><td>.6 .4 .3</td><td>.4</td><td>•</td><td>:</td><td></td><td></td><td>5</td><td>7 5 4</td><td>7 6 4</td><td>764</td><td>6</td><td></td><td></td><td></td><td>1 1 1</td><td></td><td></td><td></td><td>,) ,</td><td>794</td><td>97 89 74</td><td>9 8 7</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>0 4 0</td><td>10 4 10</td><td>B(34 3(</td><td>833</td><td></td><td></td><td>1. 2. 1.</td><td>1 2 1</td><td>1.41</td></td<>	45 16 1 45 39 13 1 49 48 18 1 35 28 11 1 25 43 18 1 35	30 39 70 48 60 28 10 43	13 18 11	5 1 3 1 1 1	3 8 1	3 8 1	13 18 11		39 48 28	39 48 28		0 0 0 0	30 70 50	930 870 360 910	93 87 136 91	9 8 13 9	1	57	3 6 7 1	12 16 7	1 1 1	2	02 01 01	.0 .0 .0		1 7 4	1	5	25 56	62 25	é		93 90 57	.9	3	8 10 6			11 08 04	-1 -0 -0	1 1 1				2 6 5	72 06 05	5. 4. 3.	343		303	113 90 23	1	5	25 20	2		5	15 9	1			1	1	.1	÷	:		_			0 1 0	50 41 50	6(41 3(.6 4 3	.6 .4 .3	.4	•	:			5	7 5 4	7 6 4	764	6				1 1 1				,) ,	794	97 89 74	9 8 7											0 4 0	10 4 10	B(34 3(833			1. 2. 1.	1 2 1	1.41						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23 3 1 28 37 20 1 18 42 22 1 21 45 30 1 20 58 33 1 20	70 42 10 45	20 22 30) 1 2 1) 1	0 2 0	0 2 0	20 22 30	20 22 30	20 22 30	20 22 30	20 22 30	20 22 30	27 30		42 45	42 45	1	0	70 10	170 910	117 191	11 19	1	5	0 5	10	1		01 01 01	.0 .0 .0	•	445	4	7	99 67 13	39 76 31	14 - 164		54 36 27	.5) 5 1	9 8 10)6)5)3	-0	1 1 1	•			55	55 35	3.	3		0	40		5	10 5 11		_	1 1	11 11	1 1		 	1 1 1	1	.1			1			3	5 7 8	15 17 08	15 17 08	.1 1 0	.1 .1 .0		•	•				393	3 9 3	9 23	2	2			1 1 1	-				6	56 76	57					6 5	16 5	1		-		54	654	9(9! 4/	9 9 4	-9 -9 -4		1. 1. 2.	1 1 2	1 1 1 2
DON 3200E .1 1.47 1 48 .1 1.13 .4 7 8 23 3.14 1 .04 8 .45 253 1 .01 4 270 DON 3340E .1 1.40 10 44 .1 4 .09 .4 7 6 29 3.01 1 .03 7 .32 270 2 .01 4 540 JON 2450E .1 1.04 6 50 .1 1 .09 .1 6 622 2.78 1 .03 5 .23 245 2 .01 4 470 JON 2700E .1 1.18 1 50 .1 5 .11 .2 6 6 9 2.69 1 .03 5 .23 245 2 .01 4 470 JON 2800E .1 3.26 1 79 .1 1.2 12 15 22 3.57 1 .04 13 .41 351 3 .01 9 <	38 22 1 17 40 24 1 20 49 24 1 17 41 21 1 17 28 14 1 16	30 40 40 49 80 41	24 24 21	, 1 , 1 , 1	4 4 1	4 4 1	24 24 21		40 49 41	40 49 41		D D D	50 10 30	530 340 980	153 134 98	15 13 9	1	3	8 1 9	ع 11 ج	1		01 01 01	.0 .0 .0	•	222		7	37 31 52	33 33 45	394	, , ,	37 43 62	.3	•	8 9 11	1)4)5)4	0. 0.	1 1 1 1				3 0 1	73 70 61	3. 3. 3.	333		7	47 36		7	7	1)	10	1			1 2 9 1 2	12912	.1							13	11	11 11 13	1	.1 .1 .1	-1	-	:			; ;	5	5 8	5 8	į				1 1 1		•		;)	5 9 1	85 79 71	877	1	1			1	1					573	573	25 57 33	263	.2		2. 2. 2.	222	101010						
SLAN 2900F 1 2.26 1 74 .1 7 .19 .3 9 9 16 4.02 1 .04 13 .40 376 1 .01 5 1720	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	40 24 70 21 20 19	8 9	31	8 9	8 9	8 9	8 9	8 9	8 9	8 9	8	ş	,	24 21 19	24 21 19		D D D	10 70 20	540 470 820	54 47 82	5 4 8			442	4472			01 01 01	.0 .0 .0		221		5	70 45 79	27 24 17	22		32 23 23 41	.2		7 5 13)3)3)3	.0	1 1 1 1				1 8 9	01 78 69	2.0	322		2	25		5	66	1		5	766				4 1 2	12	.4		•	1				9 9 1)9)9 1	09 09 11	0	.0 .0 .1	.0.	-	:			j	1	1 5	15	5				1 1 1		•)	4 0 0	44 50 50	455	,				6	6	1				7 0 4 8	7048	41 40 04 18	4401	.4	•	1. 1. 1.	11111	
	45 23 1 16 38 23 1 21 24 14 1 15	20 38	23 23 14	, 1 , 1 , 1	\$ \$ *	3 3 4	23 23 14	23 23 14	23 23 14	23 23 14	23 23 14	23 23 14	- 23	3 2	38	- 38		0	20	720	172	17	1	;	5	ġ			01	.0		1		5	76	37	- 3		40	.4	5	13	1)4	.0					2	02	4.0	- 4		5	16		>	9			1 7 7	11 9 7	1		5	7 3 1	731	.7 .3 .1		•			+	5	1 9 3	1 9 3	11 19 13	. 1 . 19 . 13	.1 .1 .1		-					7	7	7	- 7				1 1 1					542	55 74 42	574											5	6	26	2	- 7	١.	2.	2	2
																																		 																																											-								_	 	 							 																		 									
																																																																		 	 		-					-																															-							 			-						
																																		 																																					-		 •										-			 -	 	_						 				 					_											_							
F F I I I F I I I I I																				_															_													_						_,							-	 				 						•	_													 	 						_								•																				

MIN-EN LABS - ICP REPORT COMP: MR. RUPERT SEEL 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 PROJ: SEE ×

F

FILE NO: 75-0203-SJ1+2 DATE: 97/08/22

* * (ACT:F31)

ATTN: RUPERT SEEL

TEL: (604)327-3436 FAX: (604)327-3423

ŀ	ATTN: RUPERT SEEL		ア								TEL:(604)3	527-343	6 F	FAX:(504)3	327-3	3423				ŕ	V		_			_		_	* *	(ACT:F31
	SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	F E %	GA PPM		L I PPM	%	MN PPM	NÔ PPM	NA %	NI PPM	P PPM	PB PPM	SB PPM I	SN PPM	PPM_F	TH PPM	⊺I % P	U PM	V PPM	W Z PPM PP	N Au-Wet M PPB
1	1 2 3 4 5	.12 .13 .51 .52	.12	20 53 124 14 6	122 183 40 49 65	.9 1.6 2.0 .4 .4	7 6 2 17 21	.55 .58 .04 .11 .13	1.2 .8 .1 .9 .8	21 17 24 10 9	1 1 10 12	71 31 28	5.81 13.18 12.49 3.12 3.49	41 57 15 2 2	.06 .04 .07 .03 .04	2 15 29 9 14	.25 .42 .36	4396 4135 460 312 267	11 12 4 6	.01 .01 .01 .01 .01	5 1 9	1370 2230 2370 1220 1160		15 44 23 26	1 1 1 1	52 69 21 19 23	3 4 1	.03 .02 .01 .06 .08	14333	56.0 81.1 21.0 57.7 60.0	1 5 2 14 3 80 1 8 2 11	2 5 9 60 1 10
	6 7 8 9 10	2.01 2.01 .72 .72	.58 .34 .43	9 61 1 1	93 64 65 96 85	-6 -4 -3 -4 -5	24 13 21 12 14	.12 .22 .15 .14 .12	.6 .5 1.0 .4 1.7	14 9 10 8 10	14 12 11 15 13	34 26 18 26 36	3.76 2.59 2.45 2.19 3.40	1 2 1 1	.05 .03 .03 .04 .04	9 14	.50 .46 .42 .46 .47	343 325 445 195 270	- 4	.01 .01 .01 .01 .01	13 23 7 11 20	700 470 320 480 590	607 36 54	29 37 12 26 29	1 1 1 1	24 31 22 24 18	1	.09 .06 .09 .05 .06	32223	67.6 47.6 60.5 44.8 59.0	2 12 3 37 2 11 2 7 2 22	2 95 7 5 3 10 1 5
	11 12 13 14 15	1.5 2 1.1 1 .7 1 1.2 1 1.1 2	.49 .13 .88	1 4 2 1 6	85 101 81 89 126	.5 .3 .2 .6 .7	16 17 15 15 8	.16 .20 .21 .17 .37	1.1 2.1 1.8 2.1 1.5	10 9 8 11 15	14 11 12 10	29 21 11 29 42	3.08 2.56 1.99 2.79 3.34	1 3 5 1 3	.04 .03 .03 .04 .05	19 18 12 15 21	.23 .51 .49	276 243 323 359 1216	3 4 3	.01 .01 .01 .01 .01	23 9 6 12 21	420 340 460 670 1600	49 66 25 61 127	24 20 12 21 28	1 1 1 1	19 21 23 20 43	1	.07 .07 .05 .06 .04	32333	54.7 55.2 44.3 54.1 54.5	2 28 2 24 2 9 2 15 2 20	95 95 455
	16 17 18 19 20	.1 2 .5 2 .1 1 .7 1 .1 3	.45 .01 .88	24 26 190 26 50	43 40 144 30 43	.8 .9 1.0 .8 .8	42 28 7 60 22	.09 .10 .50 .05 .05	.9 1.3 .8 1.5 1.1	13 11 14 13 12	8 9 1 6 4	20 17 19 19 20	7.74 4.61 5.99 6.57 7.09	9 30 18 9	.02 .03 .03 .03 .03	11 13 9 9 14	.36 .40 .29 .27 .33	294 303 2894 245 263	4 7 6	.01 .01 .01 .01 .01	2	350 830 1070 1110 1240	29 34 82 22 32	43 30 23 31 44	1111	18 20 27 17 19	1 1 1	.18 .12 .02 .25 .09	2322	117.9 82.5 52.2 150.3 108.6	3 7 3 10 2 19 4 6 3 10	2 5 6 5 3 5 5 5
_	21 22 23 24 L25 1+725		.38 .17 .69 .74	64 1 10 19 1	174 57 40 43 48	1.1 .4 1.1 .9 .3	2 16 41 47 5	.71 .12 .10 .07 .12	1.2 1.8 .9 1.2 .5	16 11 13 13 2	1 11 7 10 6	27 25 19 19 5	5.33 4.02 6.63 6.37 .83	14 1 7 12 1	.05 .04 .03 .03 .02	13 12 3	.51 .46 .35 .16	2009 365 342 449 87	5 5 3	.01 .01 .01 .01 .01		930 620 1280 1710 200	50 55 40 35 20	24 42 45 42 1	1 1 1 1	38 22 21 20 18	1 1 1	.01 .07 .18 .21 .03	- 2 ·	56.4 68.8 120.2 117.3 22.3	2 18 2 11 4 6 4 9 1 2	710 95
	L50 0+200 L82 2+000 L106 0+200 L150 0+045 L150 0+100	.1 1 .3 1	.70 .40 .11	3 8 14 62 8	76 49 167 112 48	.7 .5 2.7 2.2 .7	15 8 12 7 9	.16 .11 .28 .48 .09	1.3 1.5 3.9 3.0 1.7	8 4 19 17 4	12 10 4 3 8	24 12 32 30 9	1.72 1.53 5.01 4.67 2.14	1 6 3 3	.03 .03 .03 .05 .03	8 13 8	.21	296 140 691 1605 112	2 8 6	.02 .01 .01 .02 .01	7 6 10 16 5	300 320 1680 1190 630	35 26 46 59 24	9 53 25 13	1 1 1 1	22 19 42 48 17	1 1 1	.08 .04 .04 .03 .04	11422	42.7 37.7 86.3 75.0 46.1	2 6 2 3 5 16 3 17 2 3	9 10 1 5 6 15 6 5
	L150 0+200 L150 0+300 L200 0+200 L250 0+050 L250 0+100	.33 .22 .32 .81 .52	.59 .92	1 1 1 4	126 68 106 91 103	2.2 1.3 1.4 1.3 1.2	14 13 11 10 11	.10 .07 .08 .26 .18	3.1 3.2 2.6 2.4 1.4	14 10 11 9 10	16 12 14 11 14	40 26 34 16 23	4.23 3.65 3.53 2.47 3.21	1 1 1 1	-06 -03 -05 -05 -06	13 12 15	.52 .32 .51 .37 .49	504 271 289 208 354	7 6 5	.01 .01 .01 .01 .01	11 13 10	1710 1260 630 520 1200	76 52 60 46 53	64 43 45 38	1 1 1 1 1	28 22 24 33 32	1	.06 .06 .04 .04 .05	22232	66.4 62.7 59.2 44.6 55.7	5 20 4 9 4 10 2 5 4 9	6 5 2 10 9 5
	L250 0+200 L250 0+300 L325 -0+020 L325 0+000 L325 0+050	.5 2	.83 .76 .94 .06	10 7 1 4 1	55 104 82 64 90	2.0 1.6 1.3 1.4 1.2	17 14 10 10 8	.07 .07 .24 .10 .17	1.9 2.7 3.1 2.4 1.2	10 11 10 10 9	13 13 13 12 15	18 29 24 25 23	4.27 3.90 3.03 3.16 2.54	3 1 1 1 1	.03 .03 .07 .04 .04	11 11 10	.32 .37 .48 .44 .53	211 225 328 252 257	8 5 5	.01 .01 .02 .01 .02	9 11 12 14 13	1110 630 620 550 560	55 60 44 48 50	49 55 29 32 32	1 1 1 1	24 27 27 23 26	1.	.07 .06 .05 .05 .04	23212	70.3 62.9 55.5 57.6 46.3	5 9 4 8 3 8 4 7 3 7	5 5
	L350 -0+025 L375 -0+025 L400 0+000 1+600 1+800	2 1. 3 1. 6 1. 1.0 1. 1.5 1.	.21 .72 .79	13 16 4 5 2	51 51 75 143 66	1.3 1.2 1.4 1.3 1.0	7 9 10 12 26	.22 .21 .14 .21 .21 .10	1.7 3.2 3.0 2.7 1.9	10 9 10 11 8	10 12 13 8 12	22 26 29 33 19	3.14 2.85 3.33 2.37 2.29	1 1 12 8	.04 .03 .04 .03 .03	13 12	.43 .39 .47 .35 .26	557 319 278 1027 155	6 6	.02 .02 .01 .02 .02	11 10 13 13 5	650 730 1000 820 380	32 36 45 51 43	17 18 31 32 19	1 1 1 1	21 22 23 33 23	1.	.02 .03 .04 .04 .04	22353	50.8 50.7 53.6 45.5 56.9	2 7. 3 70 3 10 3 8 3 7	3 5 8 5 1 5 4 10
-	1+900 1+985 L INE -?R 0+150	.8 2. .7 2. 1.5 2.	82 79 43	1 8 2	67 111 137	1.6 1.6 1.9	14 12 13	.11 .28 .27	3.0 2.4 2.3	9 10 9	14 18 16	28 45 80	3.41 3.22 2.94	1 1 2	.03 .05 .04	9 13 8	.39 .50 .37	238 284 249	8	.01 .01 .02	12 14 11	670 1060 1270	59 63 63	51 49 43	1 1 1	26 46 48	1,	.05 .05 .05	3	54.0 56.0 49.0	5 84 4 109 4 84	> 10
Ľ							, <u></u>																									

F

Ē

.

.

F

T .

.

T T

MIN-EN LABS - ICP REPORT

FILE NO: 7S-0203-SJ3+4 DATE: 97/08/22

Ŧ

.

PROJ: SEE

ATTN: RUPERT SEEL

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

* * (ACT:F31)

TTN: RUPERT SEEL								16	1:(00	4)327-343	о г <i>і</i>	AX:(60	4)32(-	3423												<u> </u>	(ACT:F3
SAMPLE NUMBER	AG AL PPM %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CR PPM	CU FE PPM %	GA PPM	K %	LI N PPM		MN M PM PP		NI PPM	P PPM	PB PPM				TH PPM		U V PM PPM		N Au-Wet M PPB
1+950 R40 1900R 0+200 1900R 0+250 0+50E 1900R 0+300 0+50W 1900R 0+300	.1 2.48 .1 .96 .1 2.13 .1 1.48 .6 1.97	1 8 12 34 5	66 109 68 119 204	.7 .4 .7 1.3 1.8	9 2 1 13 15	.12 .12 .15 .16 .27	.1 .1 .1 .1	8 7 8 11 13	8 1 7 8	25 3.31 13 3.08 33 3.89 21 4.70 80 3.90	1	.03 .06 .03 .03 .04		0862	86 77 36	5.01 3.01 5.01 4.01 4.01	7 8 7 4 9	770 900 840 1160 770	44 16 38 23 43	30 7 24 18 21	1 1 1 1	19 16 20 18 32	1.	.06 .05 .05 .13 .14	1 54.4 1 62.4 1 58.1 1 80.7 1 65.9	3 8 2 7 3 9 3 15 3 10	7 5 7 5 7 5
1900R 0+350 1900R 0+350 0+50E 1900R 0+400 0+50W 1900R 0+400 1900R 0+450 0+50W	.1 1.19 .1 1.29 .1 1.21 .1 2.46 .1 1.42	11 5 33 14 28	251 135 61 178 122	.5 .5 .6 1.6 .8	4 13 5 13	.20 .26 .08 .15 .16	.1 .1 .1 .1	10 5 8 11 10	1 3 5 7 6	16 2.37 22 2.51 15 4.11 37 4.85 23 4.15		.03 .03 .03 .05 .04	1 .0 1 .2 1 .1 4 .4 1 .3	1 2 9 1 8 3	90 48 52	3 .01 3 .01 4 .01 5 .01 4 .01	33473	560 640 760 570 560	35 19 27 46 30	7 20 33 19	1111	18 26 15 23 22	1.	06 03 09 05 11	1 53.7 1 47.6 2 91.8 2 68.7 1 78.9	2 7 2 11 3 5 3 13 3 8	0 15 9 5 2 5
1900R 0+450 1900R 0+450 0+50E 1900R 0+500 0+50W 1900R 0+500 L100 0+050R	.1 2.87 .1 3.14 .1 2.46 .1 2.48 .3 3.78	2 1 19 14 1	108 93 182 80 89	1.5 1.0 1.7 1.0 1.7	9 2 1 27	.10 .13 .20 .17 .15	.1 .1 .1 .1	10 11 11 11 12	8 2 22 22	22 4.33 30 3.98 35 5.00 30 4.14 22 4.68	1	.05 .04 .10 .05 .03	4 .3 1 .4 3 .4 1 .5 2 .4	2 3 3 11 6 4	45 54 72	5 .01 6 .01 5 .01 4 .01 6 .01	10 8 9	3480 1410 1460 750 1280	54 59 49 47 60	44 43 33 28 53	11111	28 25 22 22 26	1.	04 04	1 68.0 1 61.5 2 74.3 1 69.8 1 93.5	3 12 3 14 3 17 3 12 5 12	6 5 2 5 0 5
L100 0+200R L100 0+300R L1+100 0+400R 0+000 0+050R 0+000 0+100R	.1 3.16 .1 1.53 .1 1.56 .1 1.69 .1 1.14	1 1 64 12	104 100 62 98 65	1.0 .6 .5 1.6 .7	1 1 1 1	.12 .17 .07 .20 .16	.1 .1 .1 .1	9 8 5 15 8	8 9 1 4	28 3.90 17 2.58 22 2.18 25 5.07 13 3.30	1 1 1 1	.03 .04 .03 .04 .03	1 .3 1 .4 1 .2 1 .5 1 .2	2 3 5 1 8 12	14 26 17	6 .01 3 .01 3 .01 5 .01 4 .01		710 350 630 1130 1260	52 33 34 51 28	44 14 17 23 16	1111	23 25 16 35 23	1.	05 06 05 01 03	1 56.9 1 51.3 1 45.9 1 75.7 1 67.1	3 8 2 8 2 5 2 16 2 11	8 5 6 5 0 5
0+000 0+150R 0+000 R 200 0+000 0+250R 0+000 0+350R 0+000 0+350R	.1 2.34 .1 .94 .1 1.59 .2 1.90 .1 1.92	31 6 30 7 3	56 67 70 95 91	1.5 .5 1.7 1.1	12 3 9 5	.10 .06 .26 .16 .16	.1 .1 .1 .1	11 6 12 10 8	8 6 7 10	32 4.83 10 2.44 23 4.31 19 3.61 31 3.05	3 6 1 5 1	.05 .02 .03 .03 .05	1 .3 1 .1 1 .4 1 .3 8 .4	53 96 16	43 3 32 9 01 4	5.01 3.01 5.01 4.01 2.01	2 8	3240 1180 1260 1560 500	48 27 36 47 30	35 7 23 27 15	1 1 1 1	24 15 28 24 19	1 . 1 . 1 . 1 .	05 09	1 91.4 1 58.0 1 80.7 2 67.9 1 51.8	4 15 2 6 3 14 4 14 1 7	55555155
0+000 0+400R 0+000 0+450R 0+000 0+500R L0+100 0+150R L0+100 0+250R	.8 1.24 .5 1.80 1.0 1.80 .1 3.47 .2 1.54	1 1 1 1	119 128 117 80 111	.1	9 8 24 13 8	.18 .24 .18 .12 .11	.9 .5 1.1 .2	9 8 14 9 6	4 12 13 11 11	17 1.85 24 2.19 18 2.64 16 4.13 15 2.18	1 1 1 1	.03 .05 .05 .03 .04	6.2 10.4 10.4 10.4 12.2 8.3	9 2 6 6 8 2	48 79 2 44 3	2 .02 1 .01 2 .02 3 .01 2 .02	6 7 8 7	410 450 610 2340 370	30 36 36 46 28	10 10 12 26 10	1 1 1 1	25 35 23 21 19	1 . 1 . 1 .	05 05 16 07 05	1 38.9 1 44.9 2 56.3 1 62.0 1 49.4	1 5 1 7 2 11 2 10 1 6	4 5 5 5 1 5
L0+100 0+350R L0+100 0+450R L0+100 0+500R L200 0+050R L200 0+100R	.1 1.98 .3 1.60 .9 3.98 .9 2.16 .2 2.51	6 1 1 1	113 147 227 141 61	.1 .3 .3 .1	6 6 12 6 12	.18 .22 .24 .27 .07	.1 .1 .5 1.5	8 8 16 7 6	11 9 15 14 9	30 3.07 46 1.92 62 4.99 26 1.64 18 3.36	1 1 1 1	.05 .05 .08 .04 .03	11 .5 6 .3 19 .7 10 .3 9 .2	12 49 82	73 2 68 3 14 2	2 .01 2 .01 3 .01 2 .01 3 .01 3 .01		530 630 800 1270 890	35 33 67 40 35	13 10 26 13 20	1 1 1 1	25 35 33 37 14	1 . 1 . 1 .	05 04 08 04 06	1 53.7 1 37.9 1 87.8 1 30.7 1 50.0	1 10 1 6 2 19 1 7 1 6	7 5 2 5 5 5
L200 0+150R L200 0+200R L300 0+000R L300 0+050R L300 0+100R	.4 .79 .1 2.12 .8 2.40 .3 2.20 .2 1.79	1 1 1 1 1	78 143 84 97 111	.1 .2 .1 .1	5 7 10 10 6	.14 .21 .09 .19 .20	1.0 .7 .8 1.5 .3	2 9 8 8	7 11 18 9 11	19 .56 29 3.08 24 2.47 26 2.48 24 2.34	1 1 1 1 1 1	.03 .05 .03 .03	2.0 12.5 12.4 10.3 11.4	3 3 1 1 1 1	83 2 86 2	1 .01 1 .01 2 .01 2 .01 2 .01	5 9 8 7 9	710 410 900 820 660	22 35 42 36 30	7 13 17 17 10	1 1 1 1	24 30 16 24 27	1 . 1 . 1 .	03 06 07 06 05	1 16.0 1 57.0 1 43.6 1 41.1 1 44.8	1 11 1 110 1 84 1 64 1 88	5
L300 0+150R 2+000R 050 2+000R 0+100 2+000R 0+145 2+000R 0+250	.3 .72 .2 2.18 1.3 1.99 .1 2.30 .5 .92	5 18 18 11 19	64 119 147 82 58	.1 .1 .2 .1	10 7 9 9 12	.08 .16 .32 .18 .07	.5 .5 2.0 .9 1.3	2 9 10 11 5	6 14 1 9 7	14 1.05 59 3.62 77 3.29 35 4.17 20 2.88	11611	.03 .05 .04 .04 .03	3 .0 10 .5 8 .3 9 .3 4 .1	2 2 6 19 8 4	98 3 28 4 73 4	1 .01 3 .01 4 .01 4 .01 2 .01		370 600 1370 2790 620	17 36 49 34 14	8 17 18 19 10	1 1 1 1	16 18 32 22 18	1 . 1 . 1 .	05 05 04 05 07	1 30.1 1 58.5 3 46.9 2 62.2 2 56.5	1 2 1 10 2 9 2 12 1 49	5 7 10 5 5 5
2+000R 0+300 2000R 0+350 2000R 500 050 W	.3 1.86 .1 2.64 .1 3.19	20 8 13	108 89 80	.1 .1 .1	11 12 10	.15 .12 .09	.5 1.1 .3	11 12 10	9 12 10	49 4.85 35 4.54 40 4.63	1 1 1	.05 .05 .04	9.4 14.5 12.4	2 3!	B 3 4 54 4	4 .01 4 .01 4 .01	8 9 8	760 610 900	23 37 50	16 20 24	1 1 1	21 18 18	1.	07 07	2 77.6 2 75.0 2 60.4	2 114 1 104 1 122	5
																				-							
					,					• . • · • • • • • • • • •												<u> </u>					

.

MIN-EN LABS - ICP REPORT

TEL:(604)327-3436 FAX:(604)327-3423

FILE NO: 7S-0209-SJ5+6

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8

* * (ACT:F31)

DATE: 97/08/11

ATTN: Rupert Seel

PROJ: SEE

C

.1 10 .02 .1 .1 12 .05 .5 .1 9 .04 .8 .4 23 .05 1.0 .1 10 .08 1.3	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 .01 7 790 46 24 2 .01 4 620 35 22 3 .01 7 1170 49 24 2 .02 9 870 37 22 3 .01 5 3090 83 33 3 .01 5 3090 83 33 2 .01 3 540 46 24 2 .01 3 540 46 24 2 .01 3 540 46 24 2 .01 9 600 41 24 3 .01 8 1470 47 37 1 .01 1 420 16 15 3 .01 7 1460 36 27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.1 2 108 1 .7 2 188
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.5 8 4 40 3.86 .7 9 4 47 4.62 .3 11 6 51 4.21 .3 14 6 54 6.16 .5 4 1 46 2.82 .7 13 1 207 6.53 .2 10 3 36 8.59 .1 5 1 22 4.50 .5 8 9 32 4.27	1 .04 8 .30 222 1 .04 9 .25 218 1 .04 7 .31 430 1 .04 13 .32 345 8 .02 2 .06 129 1 .07 11 .38 423 2 .05 9 .21 186	2 .01 3 540 46 2 2 .01 5 600 46 2 2 .01 9 600 41 24 3 .01 8 1470 47 3 1 .01 1 420 16 1 3 .01 7 1460 36 2	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.2 1 97 1 2 106 .0 2 123 1 .7 2 152 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$.7 13 1 207 6.53 .2 10 3 36 8.59 .1 5 1 22 4.50 .5 8 9 32 4.27	1 .07 11 .38 423 2 .05 9 .21 186	3.01 7 1460 36 2		
.4 23 .05 1.0 .1 10 .08 1.3		5 .04 8 .19 157	4 .01 2 1660 36 37 2 .01 1 670 9 17 3 .01 5 790 35 27	7 1 11 1.07 466. 7 1 8 1.06 488.	.3 1 144 .7 2 75 .7 2 36
.1 9 .03 1.1	1.0 14 15 48 5.65 1.3 10 9 28 4.26 .7 14 5 97 4.04	3 .04 10 .21 172 1 .05 10 .39 362 3 .06 11 .29 294 8 .04 15 .35 1223 10 .02 3 .07 97	3 .01 5 1180 41 3 4 .01 11 1540 57 44 3 .02 8 1050 43 29 3 .01 10 1210 44 29 2 .01 4 480 11 15	0 1 14 1 16 5 74. 9 1 16 1 .06 5 70. 9 1 14 1 .06 6 60.	.5 3 105 .9 3 105 .7 3 174
.2 2 .46 .6 .1 4 .44 .5 .1 5 .18 .1 .4 9 .13 .5 .1 4 .56 1.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 .04 9 .58 1919 1 .04 10 .69 1071 1 .03 14 .50 441 7 .03 5 .11 69 1 .05 13 .64 1346	3 .02 8 860 26 17 1 .02 8 700 30 19 3 .01 5 790 36 24 1 .02 3 780 39 12 2 .02 9 830 28 15	5 1 24 1 .05 4 70. 4 1 15 1 .04 5 66. 7 1 19 1 .04 6 24. 5 1 33 1 .06 2 78.	.5 1 120 .1 2 87 .8 1 31
.1 15 .13 1.1 .1 12 .16 1.5 .3 9 .09 .3 .1 7 .15 1.0 .1 13 .16 1.8	1.5 10 15 25 4.64 .3 11 9 32 5.27 1.0 10 11 34 4.49	2 .04 10 .28 217 1 .03 15 .47 485 1 .07 19 .40 489 2 .07 13 .34 519 6 .05 13 .29 394	3 .02 4 630 30 20 3 .01 6 1060 38 22 3 .01 6 950 47 22 3 .01 6 2200 40 22 3 .02 3 1660 24 20	7 1 17 1 .08 3 80. 8 1 18 1 .06 5 85. 8 1 19 1 .03 6 68.	.1 2 92 .8 3 138 .0 3 111
.1 6 .47 .6 .1 4 .39 .1 .1 7 .15 .9 .1 17 .07 .9 .1 10 .14 2.0	.1 12 6 37 3.89 .9 12 14 33 4.20 .9 12 14 31 4.90	1 .06 9 .49 1007 1 .04 14 .77 865 1 .04 15 .59 642 1 .03 18 .53 391 17 .04 9 .29 1691	2 .03 8 880 31 13 1 .02 7 570 23 10 3 .02 9 490 37 23 3 .01 8 1380 52 33 3 .02 9 990 29 10	0 1 23 1 .06 4 72. 2 1 18 1 .06 4 74. 9 1 15 1 .10 7 83.	.0 1 120 .7 2 118 .2 3 103
.2 9 .21 .9 .1 6 .49 .8 .1 6 .32 1.1 .1 7 .42 .4 .1 7 .50 1.2	.8 12 11 31 3.66 1.1 14 8 31 4.69 .4 13 12 30 3.62	1 .08 18 .73 610 1 .05 13 .64 896 1 .04 16 .58 1126 1 .06 13 .70 772 1 .05 14 .64 1008	2 .02 12 520 41 2 2 .02 8 640 29 16 3 .02 8 510 32 2 1 .02 10 1010 27 1 2 .02 9 680 28 16	6 1 30 1 .05 5 67. 1 1 26 1 .04 6 77. 3 1 26 1 .06 5 64.	.7 2 103 .3 2 110 .1 1 134
.1 7 .20 .9 .2 11 .29 1.4 .1 4 .34 .6 .1 5 .48 1.5 .1 7 .53 1.1	1.4 13 12 32 5.68 .6 12 7 22 3.52 1.5 13 2 29 3.68	1 .04 18 .55 399 1 .04 18 .47 439 1 .04 15 .74 805 11 .04 12 .49 2026 1 .05 14 .61 1283	3 .02 8 440 27 2 4 .01 5 2940 44 3 1 .02 7 520 25 1 3 .01 10 900 29 1 2 .02 9 790 31 19	2 1 25 1 .06 7 74. 1 1 21 1 .04 4 61. 5 1 25 1 .03 6 56.	.7 3 145 .9 1 110 .9 2 99
.1 6 .38 .8 .1 6 .13 .3 .2 7 .47 1.6	.3 9 8 19 3.92	1 .04 14 .60 778 2 .04 11 .40 388 7 .05 22 .64 2222	2 .02 7 700 28 17 4 .02 5 450 31 23 4 .02 11 770 31 20		.8 2 91
				_	

P	DMP: MR. RUPE Roj: See TTN: RUPERT S		L									MIN-E 282 SHERI TEL:(6	BROOKE	ST.,	VANCO	UVER,	B.C.	V5X 4											D/ * +	TE: 97	203-SJ7 7/08/22 2T:F31)
	SAMPLE NUMBER S2+100 S2+200	AG PPM .1 .1	AL % 2.31 3.52	AS PPM 17 15	BA PPM 100 95	BE PPM .1 .1	BI PPM 6 8	CA % .18 .16	.8	CO PPM 10 13	10 11	27 4 0 26 4 5	1 1	.04	11		372		NA % .02 .01	9		PB PPM 37 59 54	SB PPM 22 33 26	SN <u>PPM</u> 1 1	PPM 22 20	<u>РРМ</u> 1 1	<u>%</u> P .05 .05	U V PPM PPM 2 66.7 2 68.0	<u>PPM</u> 1 2	PPM 106 207	PPB 5 5 5
BL	\$2+300 \$2+420 0+000 0+200	.1 .1 .1	2.97 2.83 1.66 .82	34 65	113 105 95 34	.1 .2 .1	7 7 2	. 19	.7 1.3 .4	13 10 15 9 3	11 9 5	30 3.8 32 4.5 21 4.7	1 1 6 1 B 1	.05	10 12	.54	752			13	920 2800 1590 530	55 40	26 26 20 11	1 1 1	24 26 34 13	1 1	.07 .04 .02 .07	1 65.0 2 71.4 3 72.2 4 32.1	2	106 197 109 23	5 10 5 5
	5+200	• *		10	54	••		,	• 7	5	·				•		02	·		-	530	20		1		1	1		-		
-																			,												
-							.																								
-																															
F																									-						
-																															
t T	i			Ţ							I	ļ		Ţ		Ţ					J	,	Ţ		J		Ţ	· <u>-</u>	Ţ		نـــــن ا

1

MIN-EN LABS - ICP REPORT

FILE NO: 7S-0203-SJ5+6 DATE: 97/08/22

F

F

PROJ: SEE

ATTN: RUPERT SEEL

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

* * (ACT:F31)

ATTN: RUPERT SEEL	,	,					T	EL:(60	4)327-3	430 FA/	X:(604)527-3	9423			-							<u> </u>	(ACTOR)
SAMPLE	AG AL PPN 2	AS PPM	BA PPM	BE PPM	BI PPM	CA C % PF			CÚ PPM	FE GA % PPM	K LI % PPM	MG 1 %	MN PPM P	MÖ NA PM 2	NI PPM	PPM	PPM	PPM F	SN PPM P	PM PP	<u>×M %</u>		PPM PP	
2+000R 0+500 A 0+024 SED A 0+084 R25 A 0+084 SED A 0+084 L20	.1 1.79 .1 1.20 .1 1.30 .1 1.30 .1 1.20 .7 1.40	59 28 66	60 190	.1 .2 .1 .2	3 4 1 7 4	.22 .	1 16 1 12 4 17 1 13	8 1 10	30 3. 49 4. 58 3. 48 4. 37 3.	46 1.0 80 1.0 76 4.0 79 1.0	05 7 07 6 06 8	.49 .54 .46 .46	768 1340 708 1845 592	1 .01 2 .02 1 .01 3 .02 1 .01	2 12 8 2 13 13	2 1180 3 800 5 1370 5 940	30 34 42 42 67	12 13 9 19 15	1 1	42 20	1.04 1.05 1.03 1.05 1.03	1 59.5 1 61.8 1 59.7 2 60.1 2 54.6 3 64.0	1 180 1 104 1 223 1 135	10 10 20 20
A 0+140 R10 A 0+140 SED A 0+150 L10 A 0+175 40MR A 0+175 20MR	1.7 1.7 .2 1.20 1.3 1.1 .1 2.3 .6 1.3	64 286 2 1	80	.1 .1 .3 .1	10 8 1 3 3	.57 .03 .17 .24	1 16 3 15 1 33 1 11 1 15	1 15 10	66 7. 48 4. 140 9. 58 3. 37 3.	58 1 .0 52 2 .0 48 1 .0 67 1 .0	06 6 08 5 04 10 04 8	.32 .44 .25 .54 .56	1274 976 1025 375 878	4 .01 3 .02 3 .01 1 .01 1 .02	2 12 1 73 1 12 2 14	2 1400 3 1260 2 1240 4 750	41 58	32 21 30 21 11	1 1	18 19	1 .06 1 .01 1 .04 1 .05	2 69.2 4 37.7 1 61.3 2 59.7 2 62.7	1 200 2 450 2 91	5 15 3 105 5 15 5 10
A 0+175 SED A 0+175 L10 LINE C 0+031 LINE C 0+060 CREEK C 0+088 15R	.1 1.0 .6 1.3 .2 2.1 .3 1.5 .1 1.6	5 10 1 7 1	94 126 61	.2 .1 .2 .3	5 2 7 4 8	.28	2 16 1 10 7 12 1 10 2 27	9 8 18	49 4. 56 3. 25 3. 28 3. 53 5.	45 1. 88 1. 27 1. 86 15.	04 8 03 1 06 9	49 43 .62 .33	1547 609 695 286 2301	3 .02 2 .02 1 .01 1 .02 2 .01	2 9 1 10 2 13 1 40	1010 550 2250	34 27 37 29 69	17 11 20 11 24	1 1 1	38 27 21 23 26	1 .05 1 .03 1 .06 1 .06 1 .04	1 60.0 1 74.6 1 63.9 3 66.3	1 10 2 13 1 6 2 12	5 5 5 5 0 10 5 15
CREEK C 0+088 SED CREEK C 0+180 6R CREEK C 0+180 4L CREEK C 0+300 15R CREEK C 0+300 SED	.1 1.3 .8 1.3 .4 1.5 .1 1.8 .1 1.2	73 3 114 14	86 74 61	.3 .1 .1 .1	37412	.18 .11 .16	8 20 1 14 1 19 1 11 9 16	8 5 12	51 5. 91 4. 97 7. 41 3. 33 4.	77 1. 07 1. 49 1.	06 8 04 8 04 9	.49 .41 .41 .54 .50	1342 536 623 567 1452	2 .02 4 .01 6 .01 1 .02	1 17 1 19 1 11 2 12	8 1100 7 1050 9 1300 1 870 2 1060	34 31	15 18 19 16 13	1 1 1	34 20 19 15 32	1 .04 1 .03 1 .03 1 .03 1 .03	2 61.9 2 58.4 2 60.4 1 55.3 1 55.5	1 14 2 25 1 10 1 17	40 285 0 5 5 5
CREEK C 0+300 10L CREEK C 0+400 40R CREEK C 0+400 SED CREEK C 0+400 4L CREEK C 0+500 5R	.1 1.3 .1 1.6 .1 1.4 .1 2.4 .1 1.3	7 14 5 5 5 41 5 77	227 195	.1 .2 .5 .2	2 1 2 7 2	.27 .70 1. .14	1 7 1 10 3 17 1 21 5 12	' 1 1	19 3. 40 3. 35 5. 120 9. 30 3.	47 1. 17 4. 01 1.	05 8 05 7 07 10	.32 .47 .45 .38 .38	402 615 1858 1015 885	1 .0 1 .0 2 .0 4 .0 1 .0	2 8 2 10 2 9	8 660 8 880 0 1200 9 3680 8 930	29 31 41 48 31	12 15 16 33 8	1 1 1	16 26 41 29 37	1 .03 1 .03 1 .03 1 .05 1 .04	1 52.8 1 63.2 2 59.2 3 64.6 1 61.7	1 9 2 21 1 15 1 12	2 5 2 10 3 30 2 5
CREEK C 0+500 8L CREEK C 0+600 5R CREEK C 0+600 5ED CREEK C 0+600 6L CREEK C 0+600 6L	.1 2.4 .1 1.2 .1 1.2 .1 1.2 .1 1.5 .1 1.6	0 12 3 22 3 29 7 14	103 116 181 72	.1 .1 .1 .1	5 2 3 4 1	.37 .54 .11	9 12 5 13 9 13 7 9	2	35 4. 29 3. 21 4. 25 3. 46 4.	59 1. 07 1. 41 1.	06 04 04	9 .40 5 .42 7 .43 5 .33 7 .48	433 1125 1279 289 831	3 .0 1 .0 2 .0 2 .0 2 .0	2 2 2	8 940 7 1010 5 800 7 1200	36 31 39	21 10 13 14	1 1 1	16 36 37 25 35	1 .05 1 .03 1 .03 1 .03 1 .03 1 .03	1 64.8 1 62.9 1 53.3 1 60.9 1 70.6	1 14 1 16 1 8 1 15	5 5 8 5 9 5 5 10
CREEK C 0+700 SED CREEK C 0+700 10L CREEK C 0+800 15R CREEK C 0+800 SED CREEK C 0+800 10L	.1 1.0 .1 1.4 .1 1.9 .1 1.3 .1 2.3	7 32 2 9 4 19 2 21	47 147 185	.1 .1 .2 .1	28645	.07 .28 .60 1	9 1 6 1 1 10 3 12	4 5 2 1	14 3. 14 3. 15 4. 20 3. 19 4.	29 1. 00 1. 77 1.	03 04 1 04	3.39 5.18 5.51 3.44 5.33	1087 169 376 1355 322	1 .0 1 .0 1 .0 1 .0 3 .0	1 2	7 750 3 540 7 1110 9 1110 5 830	24 31 40	8 13 18 11 22	1 1 1	27 12 39 37 15	1 .03 1 .05 1 .06 1 .03 1 .04	1 48.4 1 71.0 1 73.1 1 54.7 1 72.4	1 5 1 13 1 16 2 15	9 10 6 5 9 5 0 5
CREEK C 0+900 10R CREEK C 0+900 SED CREEK C 0+900 SED CREEK C 0+900 10L BLINE R 0+555 BL 0+590 /3Asetin	.1 3.1 .1 1.3 .1 2.6 .2 3.4	3 11 0 28 6 17 4 1	153	.1 .2 .1 .4	7 4 10 9 11	.47 1 .10 1	5 9 9 12	3 9 2 16	20 4. 16 3. 19 3. 39 4. 43 4.	55 1. 96 1. 40 1.	04 03 1 07 1	4 .47 9 .42 5 .29 7 .61 9 .29	292 956 246 436 7055	2 .0 1 .0 2 .0 2 .0 4 .0	2 (1 (2 1)	5 1850 6 890 6 1330 2 740 0 2440	39 46 53	26 10 24 26 24	1 1 1	30 29 16 23 56	1 .05 1 .03 1 .06 1 .08 1 .02	1 73.9 1 54.3 1 67.8 1 75.2 6 75.3	1 14 2 13 2 16 2 12	6 5 4 5 0 5 1 5
BL 0+650 BL 0+750 BL 0+750 BL +800 S 1+700	.1 2.5 .1 3.1 .2 1.5 .1 1.9 .1 2.2	9 6 4 1 5 1 4 1	82 78 96 103	.1 .2 .2	7 11 5 8 5	.11 2 .09 1 .13		3 11 10 10	23 4. 22 1. 23 3.	07 1. 54 1. 16 1.	03 1 03 1 04 1	5 .47) .27 1 .23 4 .44 0 .36	411 223 110 276 272	1 .0 2 .0 2 .0 1 .0 3 .0	1 0	0 1800 6 1390 6 680 8 540 7 720	45 37 34	22 26 13 17 21	1	17 16 17 18 15	1 .05 1 .06 1 .04 1 .06 1 .04	1 69.1 1 71.4 1 36.1 1 61.8 1 66.0	2 10 1 6 1 10 1 10	5 5 6 5 5 5
\$ 1+800 SED \$ 1+920 \$2+020	.1 2.4 .5 1.5 .1 1.4	2 1	457 106	1.0 .1 .3	25 8 8	.51 9 .18	4 2 6 8 1	78	46 5. 27 2. 19 2.	49 1.	.03	7.36 3.35 7.31	>10000 271 4072	9.0 2.0 3.0	2 4 2 0 1 1	5 1620 6 · 580 3 1110	32	31 12 14	1	66 26 30	1 .06 1 .06 1 .03	15 66.6 1 51.2 3 48.9	217	65
		-~												_										
														_										
Ĺ																	_							

MIN-EN LABS - ICP REPORT

FILE NO: 7S-0209-SJ1+2 DATE: 97/08/11

J

F

۲

t

T

PROJ: SEE

ATTN: Rupert Seel

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423

* * (ACT:F31)

SAMPLE NUMBER	AG PPM	AL %	AS PPM	BA PPM	BE	B I PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE %	GA PPM		LI PPM	MG %	MN PPM	MO	NA %	NI PPM	P PPM	PB PPM	SB PPM I			TH Ppm	T I % PF	U P M	V PPM	W Z PPM PPI	
CREEK A 0+249 3R CREEK A 0+249 SED CREEK A 0+349 4L CREEK A 0+300 10R CREEK A 0+300 2L	.1	.77 .97 1.27 1.75 1.03	222 82 27 202 43	34 151 57 13 77	.1 .2 .2 .1 .3	12 4 1 6 1	.11 .58 .25 .02 .34	.9	11 16 16 16 12	1 1 8 15 3	115 45 59 300 46	8.79 4.48 3.56 13.62 3.65	1 1	.04 .05 .04 .02 .04	4 10 2	.19 .41 .56 .95 .40	353 1479 853 396 818		.01 .02 .02 .01 .02	12 17	1720 1220 640 1250 820	40 29 28 56 30	20 15 9 22 11	1111	12 34 18 4 28	1 1 1 1	.02 .05 .03 .01 .03	1 1 1 1 1	38.3 58.0 56.2 30.7 51.9	1 9 1 19 1 10 2 42 1 12	5 15 1 15 5 250 5 10
CREEK A 0+336 SED CREEK A 0+387 1R CREEK A 0+387 4L CREEK A 0+421 SED CREEK A 0+461 10L	.5	.91 1.46 1.48 .87 1.14	78 54 37 58 23	142 100 99 137 75	.3 .2 .3 .2	5 1 3 4 1	.56 .46 .09 .55 .10	.6 .1 .1 .1 .1	15 12 10 14 9	1 1 7 1 8	38 27 40 33 74	4.23 3.67 4.09 3.80 3.17	1	.05 .05 .05 .05 .03	3 6 4 9	.43 .36 .39 .42	1591 807 757 1433 393	3	.02 .01 .01 .02 .01	6 9	1240 1710 1590 1260 600	28 33 35 28 24	15 28 18 15 10	1 1 1 1	35 37 14 35 12	1 1 1	.05 .04 .04 .06 .02	1 1 1	56.8 62.5 63.3 62.5 50.1	1 18 1 14 1 8 1 16 1 9	7 10 5 15 5 10 7 20
CREEK A 0+461 6R CREEK A 0+516 SED CREEK A 0+516 4L CREEK A 0+516 SED CREEK A 0+616 1L	1	3.10 1.01 5.02 .93 1.86	198 48 36 51 47	158 156 292 154 96	.7.3.6.4.2	43382	-05 -58 -13 -62 -23	.1 .1 .3 .1	15 13 14 15 23	6 1 12 1 3	58 34 144 33 149	7.40 3.74 6.49 4.01 4.74	2 1 5	.05 .05 .09 .05 .06	5 21 4	.43 .60 .41	382 1620 378 1700 1508	2 7 2 3	.01 .02 .01 .02 .02 .01	16 13 13	890 1190 3270 1300 1040	62 32 77 30 38	33 14 47 16 21	1 1 1 1	14 35 32 35 22	1 1 1	.03 .04 .02 .07 .03	1 1 2	74.6 57.5 93.3 72.2 62.8	2 36 1 16 2 25 1 17 2 13	7 10 6 10 0 5 8 10
CREEK A 0+688 5R CREEK A 0+688 5L CREEK A 0+748 8R CREEK A 0+748 SED CREEK A 0+748 10L	.1 .1 .1	1.96 1.05 1.32 .94 2.66	12 74 62 53 36	70 104 88 158 136	.1 .5 .2 .3	5 6 4 3	.06 .72 .38 .59 .42	.1 .3 .1 .1	7 13 10 14 17	8131 1	30 20 13 32 19	3.23 3.72 3.27 3.62 3.53	14	.03 .05 .03 .05 .04	3 2 4	.25 .44 .36 .42 .50	212 852 202 1652 326	2	.01 .01 .02 .02 .02	7 5 10 8	1580 2570 2400 1150 2070	37 22 20 29 45	20 31 28 15 40	11111	13 51 35 34 55	1 1 1	.04 .07 .06 .05 .05	1 1 1	57.1 76.8 73.7 59.5 61.7	1 8 1 14 1 11 1 15 1 14	7 5 2 5 5 5 5 5
CREEK A 0+798 SED CREEK A 0+878 10R CREEK A 0+878 3L CREEK A 0+948 SED CREEK A 1+053 15R	.1 .1 .1	1.04 2.86 1.01 1.05 1.57	46 9 49 38 29	146 82 131 142 96	.2.2.3.2	2 6 5 4 1	-56 -08 -53 -59 -20	.6 .1 .1 .1 .7	13 10 13 13 10	1 10 2 3 8	32 26 25 33 37	3.68 4.38 3.85 3.91 3.80	1 1 1	.05 .05 .05 .06 .05	12 3 5	.39	1395 238 1090 1404 396	22322	.02 .01 .02 .02 .02	10 9 11	1150 930 1480 1170 1270	29 50 28 29 33	13 27 19 13 17	1 1 1 1	34 16 36 36 25	1 1 1	.05 .05 .06 .06 .02	1 1 3	61.6 69.7 77.9 69.7 61.3	1 14 2 13 1 14 1 15 2 13	8 5 4 5 3 5 5 5
CREEK A 1+053 SED CREEK A 1+118 SED CREEK A 1+148 SED CREEK A 1+148 SED CREEK A 1+173 10R CREEK A 1+250 SED	.1 .1 .1 .1	. 94	57 72 50 217 61	184 193 165 103 206	.4 .4 .3 .1 .3	5 5 6 2 7	.68 .77 .67 .20 .68	.8 1.1 1.8 .1 1.1	15 16 14 21 15	1 1 1 1	35 37 34 119 34	4.10 4.29 3.88 10.89 4.18	10 12 1	.05 .05 .05 .05	4 4 5	.40 .32 .32	2106 2292 2111 634 2629	5 5 26	.02 .02 .02 .01 .01	13 12 4	1480 1620 1340 1220 1310	29 33 32 30 38	18 22 16 25 18	1 1 1 1	35 40 54 19 35	1 1 1	.06 .06 .05 .02 .04	3334	67.4 64.7 56.8 44.3 57.8	2 19 2 20 1 20 1 14 2 21	B 5 1 5 0 15 2 5
LINE X 1+025 LINE X 1+075 LINE XR 0+050 LINE XR 0+075 LINE XR 0+100	1.1 .1 .1	1.99 3.55 1.51 1.75 2.11	41 16 17 3	106 112 79 130 78	.1 .4 .1 .1	4 20 5 5 5	.17 .14 .05 .15 .13	.67.589	9 14 8 9 6	7 12 6 8 10	26 25 23 23 26	4.35 4.62 3.94 3.52 2.84	1	.04 .08 .03 .03 .03	13 7 8	.38 .44 .30 .37 .37	438 514 250 378 208	22	.01 .01 .01 .01 .01	8	2040 2380 590 640 580	29 50 24 28 38	22 34 16 17 22	1 1 1 1	19 22 13 17 18	1 1 1	.04 .15 .04 .04 .04	3323	58.3 75.7 61.3 61.6 51.3	2 9 3 19 1 6 1 10 1 6	1 5 B 5 D 5 6 5
LINE XR 0+125 LINE XR 0+200 LINE X 0+311 LINE X 0+470 LINE X 0+690	.2 .8	2.00 2.11 .94 1.86 .58	2 10 2 1 7	109 99 61 110 53	.1 .3 .1 .3	4 4 8 4 12	.14 .19 .05 .19 .06	.5 1.0 .7 .4	99494	10 11 7 9 5	42 41 11 25 10	3.00 3.42 1.77 2.71 1.63	1	.05 .05 .02 .04 .02	11 5 10	.50 .51 .13 .43 .09	427 357 87 490 110	2	.01 .01 .01 .02 .02	89472	610 670 460 600 340	37 37 22 33 16	19 20 13 16 9	1 1 1 1	19 22 12 26 10	1 1 1	.03 .04 .04 .04 .09	3 4 3	51.4 56.2 37.2 51.3 48.6	1 9 1 10 1 3 1 7 1 2	9 10 1 5 4 5 9 10
LINE X 0+735 LINE X 0+760 LINE X 0+800 LINE X 0+835 LINE X 0+860	.6 .1 .5 .3	2.35 1.71 1.51 1.13 1.61	4 37 12 8 7	71 105 93 101 76	.3 .1 .2 .1	12 10 3 6 4	.14 .06 .22 .18 .13	.3 .3 .6 .5 1.1	99658	13 4 9 6 9	28 21 28 24 32	3.47 4.98 2.56 2.07 3.40	2	.03 .02 .05 .03 .03	8 9 6	.45 .22 .40 .23 .43	275 407 286 344 266	322	.01 .01 .01 .01 .01	73546	530 1670 690 460 580	41 19 27 27 26	24 23 13 11 14	1 1 1 1	17 14 31 22 19	1 1 1	.10 .06 .03 .04 .04	322	57.6 80.0 43.5 41.1 58.3	2 9 2 9 1 9 1 6 1 8	1 5 8 10 1 5 2 10
LINE X 0+885 LINE X 0+910 LINE X 0+935	1.5	2.81 1.43 1.65	1 30 16	93 125 62	.3 .1 .1	15 9 9	.12 .17 .09	1.2 .3 .5	9 8 8	12 6 6	50 25 14	4.16 4.43 4.34	1	.03 .03 .03	8	.30 .31 .34	220 208 281	3	.01 .01 .01	7 6 5	900 1520 840	40 18 19	30 19 19	1 1 1	21 24 12	1	.10 .07 .07	3	58.5 65.9 70.7	2 8 2 6 2 8	8 5
										_			_											<u> </u>			-				

ŧ.

Ŧ

PROJ: SEE

ATTN: Rupert Seel

MIN-EN LABS — ICP REPORT

Ŧ

. . .

Ŧ

Ŧ

Ŧ

1

₹.

F

Į

.

F

T .

.

8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 DATE: 97/08/11 * * (ACT:F31)

SAMPLE	AG AL PPM %	AS PPM	BA PPM	BE PPM	BI PPM	CA %	CD PPM	CO PPM	CR PPM	CU PPM	FE X			LI I PPM	MG X	MN PPM	NO PPM	NA %	N I PPM	P PPM	PB PPM	SB PPM	SN PPM	SR PPM	TH PPM	TI %	U PPM P	V V PM PPI	N ZN I 1 PPM	Au-Wet PPB
LINE X 0+960 LINE X 0+995 LINE XR0+100 0+025W LINE X 0+100 0+100W LINE 100 X 0+150W	.1 1.59 .8 3.15 .6 1.00 .5 2.59 .4 1.99	1 1 9 3	79 208 73 78 87	.2	5 9 10 8 8	.14 .25 .08 .15 .18	.7 .7 1.2 1.1 1.0	8 11 4 10 9	10 15 6 10 10	21 32 11 33 26	2.76 2.78 2.37 4.45 3.82	1 1 6 1	.04 .07 .02 .06	9 .4 15 .0 6 . 14 .4	45 63 12 45	348 409 99 292 343	1 2 1 3	.01 .02 .01 .01 .01	5	620 1040 550 670 820	25 57 19 36 32	13 26 14 27 21	1 1 1 1	25 38 12 19 21	1 1 1 1	.05 .05 .05 .05	1 54 4 52 4 49 4 65 4 58	.0 .8 .6 .2	1 95	10 5 5 5 5
LINE 100X 0+50 LINE 100X 0+50 LINE 100X 0+50 LINE 100X 0+30E LINE 100X 0+110E LINE 100X 0+170E	.8 2.49 1.2 1.49 .7 2.83 1.5 2.75 1.5 1.98	11 1 12 1 6	77 101 79 124 73	.3 .1 .9	13 14 10 11 16	.16 .15 .09 .32 .16	1.2 1.1 1.7 1.6 1.7	10 8 9 10 7	11 13 10 22 11	45 24 32 74 60	3.95 2.66 4.63 3.75 3.32	1	.05 .03 .03 .04 .03	12 13 12 8	35 45 22	290 258 279 567 200	2 4 3	.01 .02 .01 .02 .02	8 6 7 10 5	720 380 870 1420 690	39 28 39 45 36	27 17 31 28 25		20 21 16 33 20	1	.07 .08 .04 .07 .09	5 60 4 53 5 52 6 59 5 53	.0 .0 .4 .5	2 99 2 84 2 86 3 138 2 71	5 5 10 5 5
L-100 0+100R 2+000R 0+200 2+000R 0+400 LINE 0+300 0+200R 860R 0+112	1.1 1.87 .5 1.87 1.1 1.40 1.0 2.56 3.5 3.32	1 38 35 17 1	44 70 89 113 235	.1 .2 .1 .2 1.7	15 14 21 14 9	.09 .17 .06 .16 .48	1.4 1.3 1.1 2.0 2.5	9 11 12 9 6	11 9 5 10 23	17 28 18 22 87	3.42 5.87 5.18 4.95 1.66	6 17 1	.05 .07 .03 .04 .04	10	31 22 1 36	215 354 049 216 131	4 3 3	.01 .01 .01 .01 .01	6 5 6	1530 790 1870 1090 2120	30 22 37 32 67	23 25 23 30 34	1	14 19 14 20 58	1 1 1 1	.09 .09 .13 .07 .01	5 63 5 90 5 96 5 67 7 29	8 9 1 .7	5 101 5 92 5 120 5 94 2 59	5 5 10 5 5
LINE 0+860XR 0+030 LINE 0+860XR 0+050 0+860 070L L 860XR 0+075 L 860R 0+140	1.9 2.46 2.4 1.62 1.2 1.98 1.4 .87 2.4 1.64	3 12 19 14 1	99 76 56 62 127	.2 .3 .1 .7	32 36 12 15 21	.12 .13 .15 .11 .28	2.1 1.6 1.6 .9 1.7	13 11 8 5 10	14 15 10 6 12	25 18 37 14 33	4.64 3.92 3.35 2.76 2.64	10 2 10	.04 .04 .03 .03 .04	13 12 12 7 14	30 35 15	402 256 314 179 101	4 3 2	.01 .02 .02 .01 .01	5 4 7 3 8	890 1230 740 710 850	36 31 32 16 44	33 24 25 16 20	1 1 1 1	16 14 18 13 28	1	.21 .26 .04 .07 .13	6 78 6 82 6 50 6 61 6 51	.3	4 110 5 105 2 80 2 43 2 115	5 10 5 5
L 860R 0+214 1900R 0+250 1900R 100 040E 1900R 0+100 1900R 100 050W	1.2 2.39 4.1 3.06 1.3 1.66 1.1 1.43 .4 1.78	17 1 15 1	75 206 80 61 72	.3 1.0 .3 .1 .1	15 11 8 18 9	.08 .35 .13 .06 .11	1.6 2.7 1.4 1.6	11 10 7 9 7	12 19 11 7 12	38 117 23 18 20	4.59 3.94 2.24 4.91 2.15	1 1 9	.04 .06 .05 .03 .03	15 .4 14 .4 12 .3	49 42 25	283 466 287 213 175	5 2 3	.01 .02 .02 .01 .02	13 7 5 5	1130 1410 430 1050 360	35 59 29 18 38	28 32 18 23 15	1 1 1 1	14 39 15 11 14	1	.08 .04 .03 .09 .07	5 69 6 58 5 41 6 89 2 46	6	5 131 5 149 2 94 5 81 1 63	10 5 5 5 5
1900R 160 0+50W 1900R 0+160 1900R 160 050E 1900R 200 050W 1900R 200 050E	.3 2.29 .3 1.30 .4 .82 1.9 2.42 .4 .95	3 15 12 1 31	76 64 53 183 64	.1 .1 .8 .1	9 10 8 7 13	.08 .06 .07 .26 .09	1.1 .2 .7 1.2 .1	7 7 3 5 5	11 6 4 19 6	19 15 11 66 16	3.48 3.81 2.37 1.14 3.84	3 8 1	.03 .03 .02 .04 .04	7 . 3 .0 10 .1 3 .	20 08 38 12	184 178 80 188 89	32	.01 .01 .02 .01 .01	3 2	1040 800 330 1750 470	34 18 16 58 13	26 16 13 25 15	1 1 1 1	15 12 9 34 16	1	.05 .06 .04 .03 .07	3 57 4 70 3 52 5 22 4 85	9		5 5 5 5 5 5
1900R 250 050W 1900R 0+300 050E 1900R 350 050W 1900R 400 050E 25	.1 2.51 .4 1.23 .7 1.21 .1 3.03 .1 3.27	32 42 2 38 8	88 140 171 82 65	.1 .2 .1	7 14 18 9 13	.16 .18 .26 .09 .06	1.02937	11 11 10 12 13	8 5 10 12	32 19 11 31 24	4.84 5.10 3.05 4.78 4.64	6 12 1	05 05 05 04 04	6 . 10 . 12 .	24 30 1 42	538 353 253 337 680	3 3 4	.01 .01 .01 .01 .01	5 6 10	3980 980 1480 1090 1390	34 14 36 50 49	28 20 16 31 33	1 1 1 1	21 20 14 15 14	1	.05 .11 .12 .05 .09	4 68 4 84 5 54 3 68 4 81	.2 .2	2 106 2 110 2 95 2 134 3 136	5 5 5 5 5 5
26 27 28 29 30	2.6 .96 .1 1.40 .1 1.09 .1 2.43 .3 1.30	136 49 49 29 25	147 127 98 88 142	.5 .1 .1 .2	5 1 2 7 4	.21 .57 .41 .14 .46	1.5 .6 .1 .5 1.2	12 15 11 13 12	1 1 5 9 5	18 30 23 25 24	5.66 4.49 3.55 4.07 3.34	1 1 1	.09 .06 .04 .05 .05	12 10 10	59 1 52 50		223	.01 .03 .02 .01 .02	6 10 8 8 8	1340 960 850 470 930	329 35 32 44 35	21 16 10 26 14	1 1 1 1	12 88 27 20 37	1111	.01 .02 .03 .05 .03	6 19 4 59 3 59 4 68 4 58	18 9 9	2 441 1 170 1 147 2 127 1 134	25 5 5 5 5
31 32 33 34 LINE B 0+200	.3 .55 .4 1.04 .1 .25 .5 1.31 .2 3.22	71 73 257 13 16	143 196 41 132 45	.2 .6 .1 .2 .1	5 4 1 6 10	.55 1.16 .05 .38 .06	1.9 .1 1.4 1.4	15 16 18 10 9	1 5 1 6 9	49 18 68 28 20	4.41 3.51 >15.00 3.01 5.15	1	.07 .06 .08 .04 .04	4.0	68 05 44	2152 828 154 889 267	1 4 2	.01 .02 .01 .02 .01	10 21 9	1030 2850 1820 900 1510	57 22 1 29 45	14 27 22 14 35	1 1 1 1	20 97 41 14	1	.01 .06 .01 .04 .06	5 31 3 91 3 29 4 52 5 75	.1 .9 .5	2 362 1 90 1 157 1 108 3 97	5 5 40 5 5
2000 550A 50W 2+000 550R 2000 0+550R 50E	.9 1.40 .2 1.90 .4 .94	37 22 30	158 135 42	.1 .2 .1	17 5 8	.14 .21 .04	1.0 .3 .3	9 9 5	9 10 4	24 36 16	4.02 3.97 3.37	1	.04 .04 .03	14 .!	58	303 339 150	2.	.02 .02 .01	5 6 3	700 290 420	35 34 12	21 20 14	1 1 1	17 20 10	1 1 1	.11 .04 .04	5 70 3 60 4 78	.7 2	2 91 2 174 3 103	10 20 5
																												·		

MINERAL •ENVIRONMENTS LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS + ASSAYERS + ANALYSTS + GEOCHEMISTS

Quality Assaying for over 25 Means

Assay Certificate

Company:	MR. RUPERT SEEL
Project:	SEE
Attn:	RUPERT SEEL

We hereby certify the following Assay of 4 ROCK samples submitted AUG-29-97 by Rupert Seel.

	Sample Number	Au-fire g/tonne	
4	112	.03	
	113	.01	
	SEE 2	.01	
-	"C " 600	.01	
-			

VANCOUVER OFFICE: 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005

Certified by

MIN-EN LABORATORIES

7S-0255-RA1

Date: SEP-05-97

1

MINERAL •ENVIRONMENTS LABORATORIES LTD.

SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS

Quality Assaying for over 25 Hears

Assay Certificate

Company: Project:	MR. RUPERT SEEL
Attn:	RUPERT SEEL

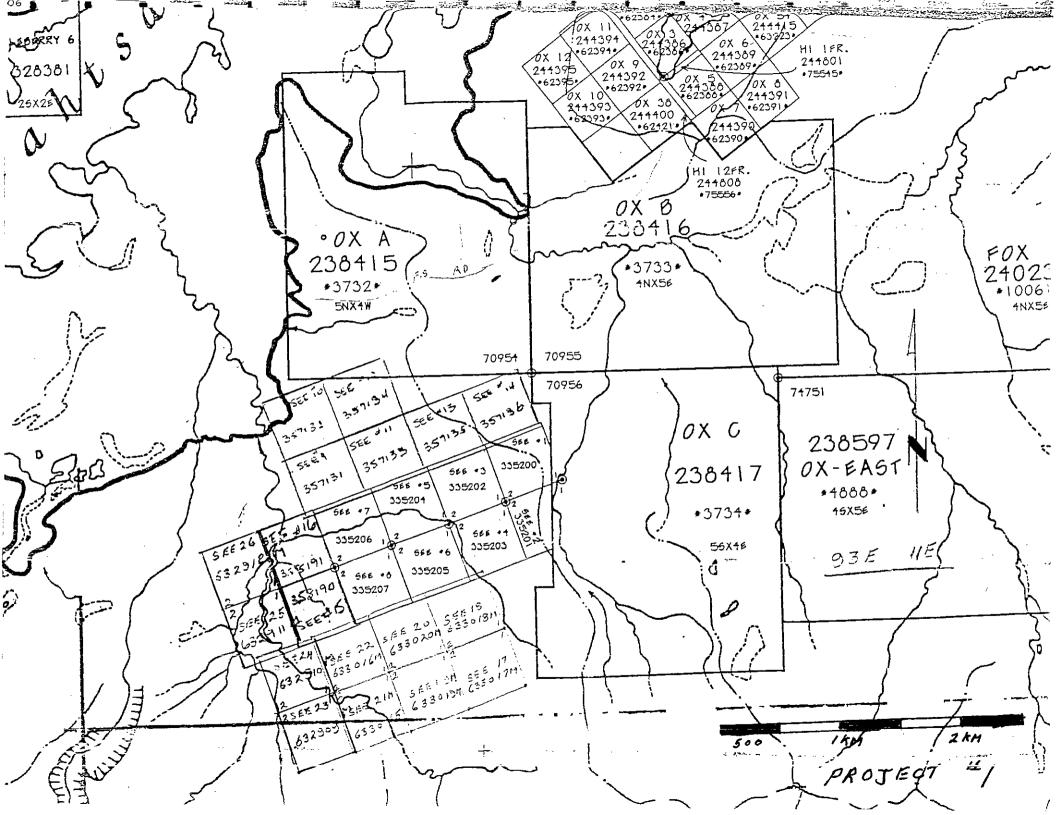
We hereby certify the following Assay of 16 ROCK samples submitted AUG-11-97 by Rupert Seel.

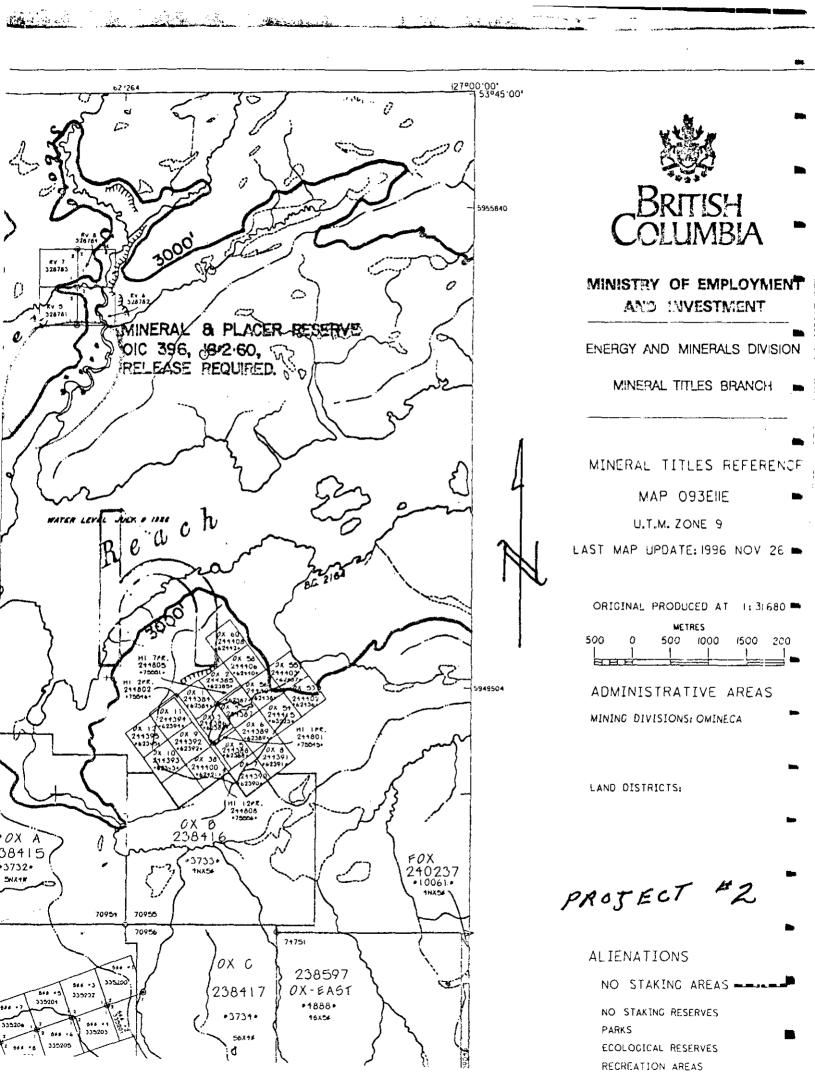
	Sample Number	AU-FIRE g/tonne	
4	SEE #1	7.99	
	NELSON #1	.80	
	24	. 02	
	CR A 0+249	. 03	
-	CR A 0+353	.10	
	CR A 0+616	.01	
	1+173	.04	
	CR A 1+173	.23	
	CR A 1+173	.05	
	1+00B	.01	
-	CREEK C 0+088	.24	
	CREEK C 0+180	.07	
	CREEK C 0+180	.14	
	CREEK C 0+560	.60	
4	CREEK C 0+600	2.36	
	CREEK C 0+600	1.63	

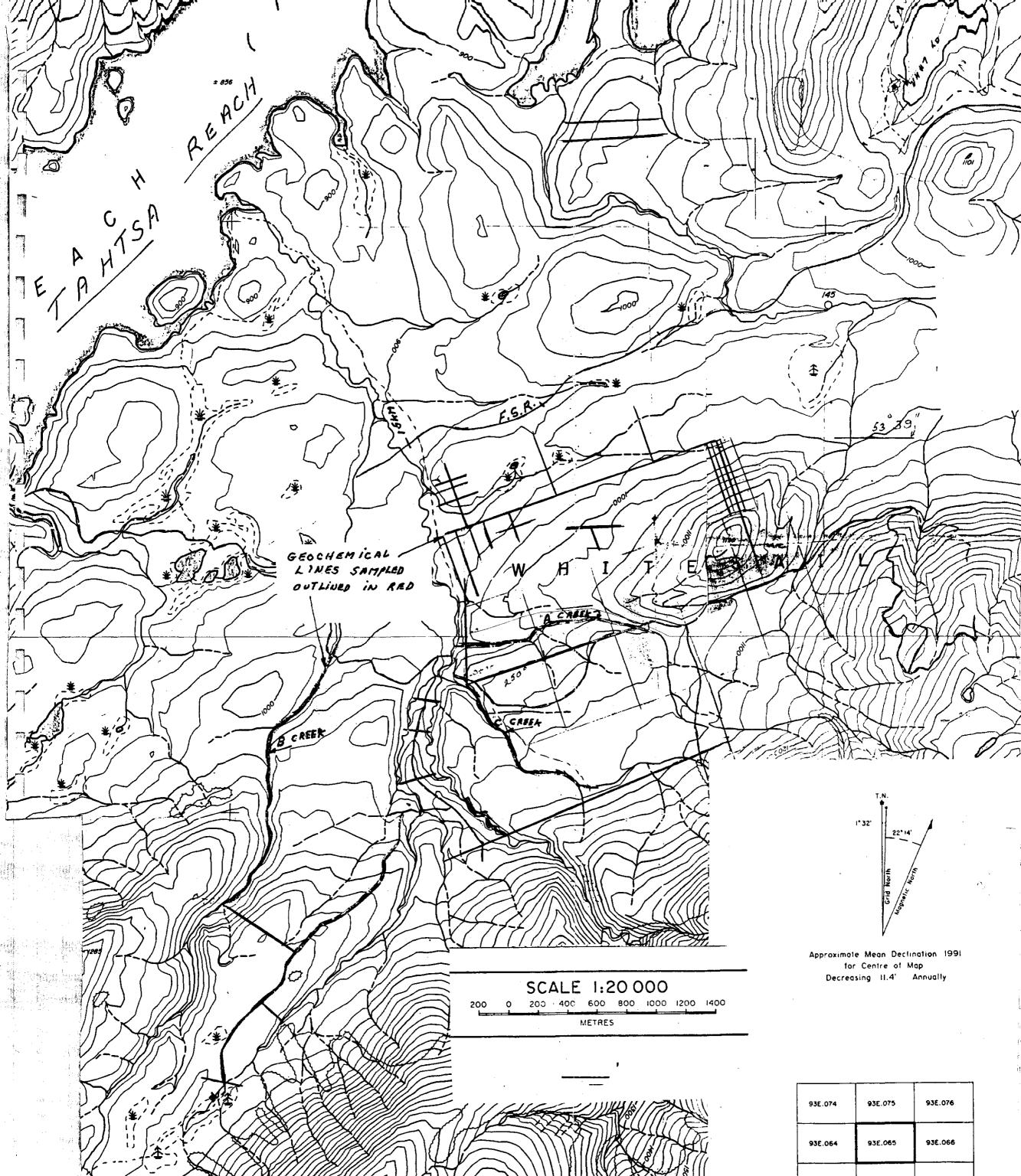
Certified by

MIN-EN LABORATORIES

7S-0203-RA1


Date: AUG-20-97


VANCOUVER OFFICE:


8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423

SMITHERS LAB: 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004

FAX (604) 847-3005

93E.074	93E.075	93E.076
93E.064	93E.065	93£.066