BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES **GEOLOGICAL SURVEY BRANCH** PROGRAM YEAR: 1997/1998 REPORT #: PAP 97-19 NAME: **GARY LEE** NOV 0 5 1997 INEY Branch BaW # MINA and FEVER MINERAL CLAIMS # GEOPHYSICAL AND GEOCHEMICAL SURVEY by Gary C. Lee, P.Eng. December, 1996 July-October, 1997 | | Claim Name | Grant Numbers | |---------------------------------------|--------------------|-------------------------| | 1996 staking: | NINA 1-96 | 343848 | | | NINA 2-96 | 343850 | | | | 343849 | | | FEVER 2-96 to 7-96 | 347694 to 347699, incl. | | 1997 staking: | NINA 3 | 355241 | | | NINA 4 | 355201 | | · · · · · · · · · · · · · · · · · · · | FEVER 8 | 355202 | | | FEVER 9-16 | 355213-355220 | | | FEVER 17-22 | 355248-355253 | Omineca Mining Division, B.C. Map NTS 93N/15W Latitude 55° 57', Longitude 124° 48' # NINA and FEVER MINERAL CLAIMS # GEOPHYSICAL AND GEOCHEMICAL SURVEY by Gary C. Lee, P.Eng. December, 1996 July-October, 1997 | | <u>Claim Name</u> | Grant Numbers | |---------------|--|--| | 1996 staking: | NINA 1-96
NINA 2-96
FEVER 1-96 | 343848
343850
343849 | | | FEVER 2-96 to 7-96 | 347694 to 347699, incl. | | 1997 staking: | NINA 3
NINA 4
FEVER 8
FEVER 9-16
FEVER 17-22 | 355241
355201
355202
355213-355220
355248-355253 | Omineca Mining Division, B.C. Map NTS 93N/15W Latitude 55° 57', Longitude 124° 48' ## NINA and FEVER MINERAL CLAIMS #### GEOPHYSICAL AND GEOCHEMICAL SURVEY by Gary C. Lee, P.Eng. Report: December 1996 Fieldwork: June/September 1996 Revised Report: October 1997 Fieldwork: July 1997 | | Claim Name | Grant Numbers | |---------------|--|--| | 1996 staking: | NINA 1-96
NINA 2-96
FEVER 1-96
FEVER 2-96 to 7-96 | 343848
343850
343849
347694 to 347699, incl. | | 1997 staking: | NINA 3
NINA 4
FEVER 8
FEVER 9-16
FEVER 17-22 | 355241
355201
355202
355213-355220
355248-355253 | Omineca Mining Division, B.C. Map NTS 93N/15W Latitude 55° 57', Longitude 124° 48' UTM 6,200,000N, 388,500E Owners: Gary C. Lee and Dave Hayward Work done by: Gary C. Lee, Dave Hayward and Dave McCurdy | Date | submitted | : | | | | |------|-----------|---|--|--|--| | | | | | | | # TABLE OF CONTENTS | | | <u>Page</u> | |---|---|--------------------------------------| | • | SUMMARY | | | | INTRODUCTION General Location and access Topography Location Map Forest District Map 1:20,000 Topo Map Colour Photos History Grid and Field Procedure | 1
1
1
2
3
4
5
6 | | | ECONOMIC GEOLOGY Geology map 1:500,000 Geology map 1:50,000 Mineral Occurrence map 1:50,000 | 7
10
11
12 | | | PURPOSE | 13 | | • | RESULTS | 13 | | | INTERPRETATION AND CONCLUSIONS | 13 | | • | RECOMMENDATIONS | 14 | | • | VALUE OF ASSESSMENT WORK
1996
1997 | 1 5
16 | | • | STATEMENT OF QUALIFICATIONS | 17 | | • | APPENDIX: Table 1 (Watkins, 1985): Assays on sulphide-rich fragments Colour Contoured Geochemistry Maps: - antimony, arsenic, barium, cobalt, copper, lead, silver, zinc (8 pages) LAB-ICP Reports: 1996 (10 pages) LAB-ICP Reports: 1997 (2 pages) incl. Au | | | 1 | DIAGRAM #1. VI.F and Magnetometer Plan | In pocket | ## SUMMARY The original discovery of copper north of Nina Lake was found by the Geological Survey of Canada (G.S.C.) by Roots in the 1940s. The next discovery (northeast of the G.S.C. showing) of copper and precious metals (Au, Ag) was made on the NINA 1-96 claim as anomalous concentrations in a gossan-stained bedrock by Anaconda Canada in 1982. The discovery of another anomalous gossan was made by Rio Algom Exploration Inc. and JAM Geological Services on July Following this work, in the Report of Evaluation (Watkins, 1985) it was stated that the favourable contact extended to the southeast into the FEVER mineral claims. A program of ground geophysics and soil geochemistry was recommended at this This recommended program was finally, at least partially, carried out during the summers of 1996 and 1997. Some interesting qeophysical anomalies (VLF) were encountered. Also, the geochem soil sampling yielded some unexplained anomalies (e.g. soils running 300-400 ppm copper). Some of the longer geophysical lines when extended grid east (Brq. 48°) yielded complex conductor systems (multiple conductors) which may host economic mineralization (massive sulphides). A program of further gridding, geophysics and soil geochemistry is recommended, with emphasis on extending the coverage to at least station 1500 east, past the volcanics into the sediments. #### INTRODUCTION #### General From June 18 to July 17 and from September 5 to 9, 1996 a two or three man crew conducted a VLF, mag. and geochem survey on the NINA-FEVER claim group. Dave Hayward and Dave McCurdy, both from near Smithers, B.C., and this author, of Whitehorse, Y.T., comprised the crew. In addition, from July 13 to July 28, 1997 (excluding mobilization and demobilization) myself and Mr. Hayward extended the grid easterly. Both magnetometer and VLF surveys were completed, including some general prospecting. The claims consist of the NINA 1-96 (16 units), NINA 2-96 (15 units), NINA 3 (14 units), NINA 4 (14 units), FEVER 1-96 (16 units), FEVER 8 (4 units) and 20 two-post claims, for a total of 99 units. The claim boundaries can be seen on the 1:20,000 topo map on page 4 and partly on the 1:2,000 VLF and magnetometer plan contained in the pocket. The claims are jointly owned by myself and Mr. Dave Hayward. #### Location and Access The property is located in north-central British Columbia, 260 km northwest of Prince George at the south end of the Swannell Range in the Omineca Mountains (see map, page 2). The property is 17 km north by northwest of Germansen Landing. Germansen Landing is slightly less than 200 road km north of Fort St. James (see map, page 3). Road access is achieved by proceeding 10 km northwest of Germansen Landing on an all-weather gravel road and thence turning right (north) on an unmaintained 4x4 road for an additional 14.5 km to the property. Approximately 7.5 km up this road it is necessary to turn left and cross a small creek flowing out of Nina Lake. The road cuts through the southeast portion of the property (see map, page 4). #### Topography The property ranges in elevation from 940 metres to 1800 metres. Vegetation is typical of a relatively mature evergreen forest common to north-central B.C. with trees thinning out above the 1600 metre elevation. Most of the FEVER claims are easily traversed by foot; however, parts of the NINA claims such as the area of the main showing have steep valley walls and are traversed with difficulty. The colour photos on page 5 show the steep topography (lower two photos) versus the more easily traversed country (top two photos) of the FEVER claims. Page 3 330° T NOTE NORTH ORIENTATION OF MAP+ Rive Wolverine Lakes THUTADE LOCKING N.E. TO ROAD (PROPERTY) WHICH IS SUPPOSED TO TERMINATE AT COMMICO FLATS TO THE NORTH LOOK ING S.E. FROM LQ400N SHOWS APPROX LOCATION OF PART OF GRID, ROAD, CAMP AND BASE HINE LOOKING N-W. CLUSE-UP OF GOSSAN (RED-BROWN) LOOKING N.W. TO GOSSAN MAIN SHOWING (WATKINS, 1985) #### <u>History</u> In the 1940s, Roots (Geological Survey of Canada) found a copper showing on a south-facing ridge at an elevation of about 5,500 feet, approximately 1.25 miles due north of Nina Lake. (From: Watkins, 1985 B.C. Assessment Report no. 13,977 and from Cope, 1988 B.C. Assessment Report no. 17,940): Anomalous concentrations of copper and precious metals from gossan-stained bedrock were reported by Anaconda Canada Ltd. in 1982. Another anomalous gossan was discovered by Rio Algom Exploration Inc. and JAM Geological Services in 1985. These were both in the NINA claims at high elevations. Geological mapping in 1985 by JAM Geological Services showed these gossans to contain massive sulphide fragments containing copper, gold and silver (Watkins, 1985). Also at this time, two strataform EM anomalies were detected in a VLF survey. In 1986 Lornex Mining Corporation Ltd. took over the property, conducting geological mapping, rock sampling and soil geochemistry in the 1986 field season. In 1987, six kilometres of induced polarization survey were performed. In 1988, 224 metres of BGK wireline diamond drilling in three holes from three set-ups were performed. This was conducted in the north half of the NINA 1-96 claim (see map, page 4) in a separate valley to the northwest of the FEVER claims. Not all holes reached their targets as drilling problems were reported. There was no work done in the valley of the FEVER claims by Lornex. As seen on the mineral occurrence map, numerous Zn, Pb, Ag, Ba and one Ge showing were discovered along the east boundary and north of the area surveyed. ## Grid and Field Procedure All lines were flagged with orange and blue flagging at 20-metre stations. Four-foot pickets with metal tags were used on most of the baseline. Lines, for the most part, were run in at 100-metre intervals. The grid layout can be seen on the 1:20,000 map on page 4 and the 1:2,000 map contained in the pocket. Roughly 18 km of baseline and lines were flagged in 1996. An additional 5 km were established in 1997. A Geonics EM-16 was employed for the VLF survey, with readings being taken at 10-metre intervals. Both the in-phase and quadrature were read. All stations were read by facing the direction of the transmitting station and thence turning clockwise 90° before taking the readings. Most lines were read on Cuttler,
Maine, since Seattle, Washington was off the air for a major refit until July 11, 1996. At this time, as many lines as possible in the time remaining were read on the Seattle station. In 1997, Seattle was by far the most useful station. Magnetometer readings were taken at 10-metre intervals with a Scintrex MF-2 fluxgate magnetometer. The instrument reads the vertical component of earth's magnetic field. Readings were taken to the nearest 10 gammas in short loops and corrected for diurnal. Each loop was subsequently corrected to adjacent loops throughout the survey. In 1996, geochemical sampling was begun by soil sampling the 'B' horizon (where possible) with a split spoon auger at 20-metre intervals. It was soon realized that sampling the complete grid would be too costly, especially regarding limited resources and high costs of the lab analyses. Consequently, sampling was limited to areas of mag. and especially VLF anomalies in the hope that it might indicate the location of buried massive sulphides. These can be seen on the eight colour-contoured geochemistry maps contained in the Appendix. No geochemical sampling was done in 1997. #### ECONOMIC GEOLOGY The first known mineral occurrence on the property was found by the G.S.C. (Roots) in the 1940s. The location is shown on G.S.C. map 907A published in 1948 and has been roughly plotted on the enclosed 1:20,000 topo map and the 1:50,000 mineral occurrence map. It is described by Roots as a "mineralized zone at least eight feet wide, containing malachite, pyrite, and minor azurite. It lies in a 200 foot band of sheared, carbonatized, silicified and pyritized interbedded argillite and andesite. This mineralized zone is broken by many faults and is veined by quartz. A grab sample assayed 4.83% copper. This showing is exposed in only a few outcrops." The following was taken from B.C. Assessment Report no. 13,977 by Watkins and Atkinson, 1985 - refer also to map on page 10: # Property Geology Stratigraphic and structural relationships within the Nina Creek belt are not known. Stratigraphy in the property area appears to be part of a homoclinal succession topping and dipping westerly. The property is underlain predominantly by weakly metamorphosed massive, green to brownish green weathered, fine grained, altered basalt. The metabasalt is locally variolitic, brecciated or pillowed. Intracalated with metabasalt is a metasedimentary unit with an apparent thickness of up to 150 metres that flexes in trend from 100° to 140°, and thins markedly towards the north side of the property. The metasediments are predominantly dark brown, weakly foliated, fine grained mafic tuffs, locally argillaceous. Near the basalt contact, the sediments are distinctly layered with siliceous, cherty bands to 1 cm wide, which locally grade to massive chert. No stratigraphic top indicators were recognized. #### Hydrothermal Breccia On lines east of the main showing, within massive and pillowed metabasalt, a 50 x 150 m area is underlain by a mixed basalt and cherty breccia. Here, massive basalt and chert have been shattered to angular fragments of millimetre to 10 centimetre size to form a matrix supported breccia. The matrix is either a dense, creamy grey siliceous groundmass, or mixed lamellae of fine basalt and chert shards in a siliceous groundmass. No sulphide minerals were seen within this breccia body. The contact between mixed breccia and host massive basalt is not sharp, but grades from an in-situ shattered basalt. ## **Structure** On the property, basalt flow rocks have little or no penetrative deformation. Pillowed and brecciated basalt have retained their primary textures. However, within the sedimentary unit, a vertical foliation is developed. North of the main showing, chert bands in tuff define an open, upright synform with small amplitude shallow, north-plunging drag folds well developed. Bedding plane mullions have a shallow north plunge. It is interpreted that these small folds are geometrically similar to larger folds developed in the west dipping homoclinal succession of Nina Creek belt rocks. No major disruption of the stratigraphic package by faults is recognized. ## Sulphide Mineralization Localized areas of sulphide mineralization occur within a 100 metre interval in metabasalt on the east side of the sedimentary unit. Two styles of mineralization are recognized: - 1. clastic sulphide mineralization - 2. disseminated sulphide mineralization Fragments of massive sulphide are mixed with monolithic, fragment supported, conglomerate-like, unmineralized basalt. This style of mineralization is identified in two areas 300 metres apart at the same stratigraphic position relative to the sediment-basalt contact. The larger of the two areas (photo, page 5) is lens-shaped in plan view, measures 25 x 130 metres, and is elongated parallel to the sediment contact. The smaller zone is less defined; it measures 5 x 60 metres with its long axis conformable to the sediment contact. Sulphide fragments are composed of fine grained, granular textured pyrite with grey quartz. The chalcopyrite content of individual fragments is variable [see lab reports in the Appendix]. The total sulphide content of the two zones does not exceed 15%. Localized areas of disseminated pyrite with varying amounts of fine grained chalcopyrite and minor sphalerite are intracalated with metabasalt. These mineralized areas are small, not exceeding three metres in width and 20 metres in length. They tend to occur at a stratigraphic interval 100 metres from the sediment contact. #### <u>Alteration</u> Metamorphism in the NINA claim area appears to be of the lower greenschist facies. Metabasalt is commonly a fine grained assemblage of suspected plagioclase, amphibole and chlorite. Fine leucoxene is ubiquitous in the metabasalt. Silica replacement of basalt is widespread, occurring as distinct fracture controlled linear zones and as large strataform replacement zones. Cherty bands in sediment may be silica replacement. Fracture related siliceous zones are texturally similar to the matrix of the hydrothermal breccia, consisting of fine lamellae of creamy grey chert. Metabasalt is crosscut by a wide-spaced northeast-trending set of steeply dipping quartz-epidote veins that postdates silica alteration. On the FEVER claim to the southeast, bedrock exposures are poor. The claim appears to be underlain by predominantly massive basalt flows and tuffs, and intercalated argillites striking north-northwest and dipping moderately west. The favourable basalt and argillite can be traced southeasterly across the northeast half of the FEVER claim (Watkins, 1985). The 1:50,000 geology map (Ferri, 1990) on page 12 well documents the sediments on the eastern part of the survey area. However, the volcanics which are well documented by Watkins and noted by us are not clearly defined due to excessive overburden. As seen on the mineral occurrence map (page 13), the area to the east and north of the survey area hosts many Zn, Pb, Ag and Ba showings, with one Ge showing. Many of these are in sedimentary rocks east of the volcanic-argillite contact. It is the volcanic argillite contact which is considered favourable for a volcanic massive sulphide (V.M.S.) deposit. Figure 4. Geology of the Nina 1 claim area (from Armstrong, 1949 and Roots, 1954). Taken from B.C. assessment Report #13977 Wathins- athinson, 1985 #### PURPOSE In 1996, it was attempted to detect a buried sulphide deposit to the southeast of the main showing in the FEVER and/or south end of NINA 2-96 mineral claims. This is the basic recommendation contained in the Report of Evaluation of Fever Mineral Claims by Since there is very little outcrop, ground Watkins, 1985. geophysics and a soil geochemistry program were recommended. In 1997, the geophysical grid was extended easterly, the purpose being to detect more anomalies which may indicate buried sulphides. #### **RESULTS** The 1996 VLF results can be seen as profiles on the map contained The location of the VLF conductor axis has been in the pocket. marked on this map as well as on the geochem maps in the Appendix. This could help to determine whether any interesting correlations develop between the geochemical anomalies and the VLF conductor axis. Any interesting magnetic results have been contoured on the VLF and Magnetometer plan. The 1997 mag. and VLF results are shown on the 1:2,000 map contained in the pocket. #### INTERPRETATION AND CONCLUSIONS Even though the Zn, Pb, Ag and Ba showings to the east are interesting, the main thrust of this program is to look for buried V.M.S. deposits along the volcanic argillite contact. As can be seen on the VLF and Magnetometer plan, two conductors (A and B) were detected, having a strike length of 600 metres or more Also, on the east end of the grid, complex multiple conductors striking north by northwest need to be defined accurately with more geophysical lines. Correlation of the conductor axis and geochemical contouring (Appendix) do not result in any obvious patterns. partially on and below conductor A resulted in a lot of barium highs and some very high arsenic values east of the baseline. Conductor A was very strong (in phase values up to 142%) west of the baseline and also had some high copper values associated with it. Prospecting is difficult here due to the absence of outcrops. Anomaly A has curved around line 1700N, almost making it appear as a nose of a fold. The cause of this anomaly should be determined. A very interesting outcrop was discovered immediately north of L1300N, 450E consisting of a felsic volcanic (rhyolite?) with visible pyrite and anomalous in copper (over 100 ppm), gold (0-20.07) (ea/ton) and Ba. These rock analyses are included on the last few pages in the Appendix as sample numbers 96N L1320 445E and 451E and 97N L1320 450E. This is important since approximately 120 metres grid south there are copper soil anomalies of over 300 ppm near conductor B on line
1200N. This area should receive some more sophisticated geophysics, followed by drilling. There is suspicious "dog leg" in the creek between L1100N and 1200N. This offset (approximately 200 metres) could indicate a fault which could mean that the conductor axis on L1100N 566E, L1000N 527E, L900N 585E, L800N 566E and L700N 525E is actually conductor B which has been faulted grid east. If this is the case, conductor B has a strike length of 1.3 km. Some very high zinc anomalies (over 400 ppm) began to appear on the east side of the grid in the area of the multiple conductors. This whole area should be filled in with more geophysical lines and followed with geochemical sampling. A mag. anomaly coincident with a VLF anomaly (conductor B?) began to develop on lines 700N and 800N between 500E and 600E, the cause of which is unknown. It could be significant, since a piece of volcanic float was found at 850N, 620E running 799 ppm copper. Gold was not tested for in 1966, due to lack of funds. For the same reason, no geochemistry was done in 1997. ## RECOMMENDATIONS - 1. Sample some of the obvious gaps as seen on the geochem maps and run for ICP plus gold. Also re-run all pulps for gold. - Extend all lines between L 1000N and L 2200N to at least 1500E and conduct a geophysical and geochemical survey. - 3. All new anomalies should be prospected and any outcrops should be geologically mapped. - 4. Depending on the foregoing, any multiple conductor axes could be surveyed by a more sophisticated EM system in order to ascertain its quality. - 5. Depending on the foregoing, any one or a combination of trenching and drilling could commence, especially on L1200N near 400E. ## STATEMENT OF QUALIFICATIONS - I, GARY C. LEE, of the City of Whitehorse, Yukon Territory, HEREBY CERTIFY that: - 1. I am a self-employed Geological Engineer. - I am a graduate of the University of Toronto, Toronto, Ontario, with a degree in Applied Science - Geological Engineering (Mineral Exploration option). - 3. I am a member of the Professional Engineering Associations of the Yukon, British Columbia, and Ontario. - 4. I supervised and carried out the work described in this report. Gary C. Lee, P. Eng. Date: Oct /97 APPENDIX ALANDA AND A FROM BC ASSESSMENT REPORT# 13,977 Wathing-athuson 1985 Table 1 SEE 1: 20,000 TOPO MAP Pgf Analytical results of individual sulphide-rich fragments from clastic sulphide zones | Sample
No | Cu
Z | Pb
Z
(ppa) | Zn
Z
(ppm) | Ag
gn/T | Au
gw/T | Co
ppm | Ba
ppm | Ho
Ppm | As
Ppm | |--------------|-------------|------------------|------------------|------------|------------|-----------|-----------|-----------|-----------| | D3001 | 0.10 | 0.01 | | | | | | | | | D3002 | 1.74 | | 0.04 | 75.5 | 3.00 | 11 | | • | | | | | | 0.05 | 84.5 | 0.30 | 21 | | • | : | | D3003 | 3.15 ← | | 0.05 | 226.5 | 0.90 | 32 | | | | | D3004 | 0.41 | 0.01 | 0.01 | 26.0 | 0.60 | 18 | | | | | D3005 | 0.36 | 0.91 | 0.06 | 146.5 | 6.90 | 8 | | | | | D3006 | 0.17 | 0.01 | 0.01 | 9.5 | 0.05 | | | | | | D3007 | 0.09 | 0.01 | 0.51 | 10.0 | | 186 | | | | | D3008 | 0.46 | 0.01 | 0.01 | | 1.20 ← | | | | | | D3009 | 0.17 | 0.01 | | 3.5 | 0.05 | 10 | | | | | D3013 | 0.80 < | | 0.01 | 7.0 | 0.40 | 18 | | | | | D3014 | | 0.01 | 0.02 | 38.0 | 1.90 🗲 | 10 | | | | | | 0.21 | 0.01 | 0.01 | 10.0 | 4.70 <- | 3 | | | | | *D5459 | 0.19 | (129) | (193) | 96.8 | 1.80 | | 5 | 3 | | | *D5460 | 0.07 | (27) | (48) | 9.8 | 0.15 | | = | = | 238 | | *D3461 | 0.31 | (35) | (53) | 7.6 | 0.05 | | 9 | 7 | 67 | | *D5462 | 0.41 | (63) | (157) | 23.7 | | | 8 | 12 | 132 | | *D5464 | 14.91 ← | (47) | (1167) | | 0.40 | | 9 | 8 | 117 | | | Mark Street | ethikurana : | (110/) | 20.2 | 0.60 | | 9 | 8 | 164 | Sample collected on July 23 during initial property examination PROJ: MIN-EN LABS - ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 ATTN: Dave Hayward / Gary Lee TEL:(604)327-3436 FAX:(604)327-3423 FILE NO: 6S-0050-SJ1+2 DATE: 96/07/30 * soil * (ACT:F31) | SAMPLE
NUMBER | AG AL | AS BA | BE BI
PPM PPM | CA CC | | CR
PPM | CU FE
PPM % | GA
PPM | К
% | LI N | 1G MN
% PPM | MO
PPM | NA
% | NI
PPM PP | P PB | | SN SR TH | | V
PPM F | W (ZN) | |--|--|---|------------------------------|--|----------------------|----------------------------|--|------------------|---------------------------------|---|---|----------------------|---------------------------------|---|-----------------------------|------------------|--------------------------------------|---|---------------------------------------|--| | 96NL 500 200W
96NL 500 180W
96NL 500 160W
96NL 500 140W
96NL 500 120W | 1.5 1.76
1.9 2.29
1.9 1.82
1.9 2.06
1.9 2.06 | 12 540
1 527
1 508
1 468
3 450 | .1 1
.1 4 | .83 .1
1.09 .1
.95 .1
1.19 .1 | 18
22
19
19 | 38
51
39
44
48 | 59 3.11
64 3.73
49 3.16
49 3.18
60 3.32 | 1 1 1 1 1 | .04
.03
.03
.03
.04 | 11 1.4
11 1.4
10 1.4
8 1.4
10 1.4 | 19 1159
12 1326
16 1036
18 1208
19 1123 | 13
16
14
13 | .01
.01
.01
.01 | 38 80
44 71
34 61
38 89
37 57 | 0 1
0 1
0 8
0 3 | 1
1
1
1 | 2 21
2 24
2 22
2 19
2 25 | .10 1
.15 1
.14 1
.13 1 | 62.8
91.3
76.3
80.8
85.3 | 1 84
1 93
1 96
1 77
1 73 | | 96NL 500 100W
96NL 500 080W
96NL 500 060W
96NL 500 040W
96NL 500 020W | 1.8 1.98
1.5 1.11
1.8 2.00
1.9 2.33
1.9 2.01 | 1 376
1 295
1 546
1 444
1 239 | .1 2
.1 4
.1 5
.1 6 | .86 .1
.68 .1
.99 .1
.79 .1 | 10
19
19 | 48
28
48
63
52 | 49 3.64
18 2.24
72 3.39
75 3.58
38 3.49 | 1
1
1
1 | .03
.04
.03
.02
.02 | 5 .5
10 1.7
10 1.7 | 14 1183
51 1995
29 1224
18 1126
21 993 | 10
15
15
14 | .01
.01
.01
.01
.01 | 38 133
21 91
43 57
43 58
33 152 | 0 10
0 1
0 9 | 1
2
3 | 2 20
2 19 | .13 1 | | 1 91
2 82
1 87
1 88
2 86 | | 96NL 500 000
96NL 600 280E
96NL 600 300E
96NL 600 320E
96NL 600 340E | 1.7 1.85
1.8 1.68
2.0 1.62
1.9 1.62
1.7 1.69 | 1 318
5 545
34 479
20 732
49 511 | .1 4 .1 .1 .1 .1 .1 .1 | .82 .1
1.01 .1
.88 .1
.81 .1 | 20
17
18 | 48
39
38
38
37 | 25 3.49
58 3.13
43 2.98
61 2.96
61 2.97 | 1
1
1
1 | .03
.04
.04
.04
.02 | 10 1.1
9 1.1
10 1.1
9 1. | 75 1100
10 1921
05 1091
03 1881
13 1077 | 13
14
13
13 | .01
.01
.01
.01
.01 | 26 140
37 85
32 81
40 79
38 50 | 0 5
0 9
0 11 | 1
1 | 2 25
2 27
2 22 | .11 | 100.5
63.7
62.5
59.1
62.6 | 2 71
1 91
1 75
1 92
1 66 | | 96NL 600 360E
96NL 600 380E
96NL 600 400E
96NL 600 420E
96NL 600 440E | 1.6 1.82
1.9 1.62
1.5 1.60
1.6 1.59
1.8 1.68 | 3 629
7 538
27 543
23 333
5 442 | .1 2
.1 1
.1 2
.1 2 | .74 .1
.79 .1
.84 .1
.82 .1 | 18
16
18
17 | 42
40
36
35
39 | 99 3.13
51 3.02
51 2.94
42 2.90
44 3.00 | 1
1
1
1 | .02
.03
.03
.02
.03 | 9 1.0
9 1.0
8 1.0
9 1.0 | 13 1637
07 1400
09 1034
07 1031
04 1109 | 14
12
12
13 | .01
.01
.01
.01
.01 | 44 55
36 83
33 74
32 71
32 93 | 0 10
0 1
0 1
0 6 | 1
1
1
1 | 2 21
2 26 | 1 .10 1
1 .11 1
1 .10 1 | 70.7
61.5
62.4
69.7
70.9 | 1 79
1 70
1 68
1 61
1 80 | | 96NL 600 460E
96NL 600 480E
96NL 600 500E
96NL 600 520E
96NL 600 540E | 1.6 1.82
1.6 1.90
1.6 1.82
1.8 1.96
1.3 1.88 | 1 441
1 636
1 476
1 488
1 456 | .1 2
.1 3
.1 2
.1 3 | .77 .1
.75 .1
.66 .1
.69 .1 | 18
16
16
18 | 44
47
47
53
42 | 59 3.11
75 3.29
67 3.32
62 3.25
61 3.04 | 1
1
1
1 | .02
.03
.03
.03 | 9 .9
9 .8
10 .9
9 1.0 | 04 1182
99 2286
30 1811
99 1668
09 1198 | 14
14
15
13 | .01
.01
.01
.01 | 37 72
43 102
34 101
40 81
36 68 | 0 18
0 27
0 14
0 3 | 3 | 2 24
2 27
2 25 | 1.10 1
1.09 1
1.11 1
1.12 1 | | 1 75
1 111
2 91
2 108
1 72 | | 96NL 600 560E
96NL 600 580E
96NL 600 600E
96NL 1400 100E
96NL 1400 120E | 1.4 2.31
1.2 2.01
1.3 2.08
1.4 1.66
1.4 1.75 | 1 363 | .1 1
.1 1
.1 3
.1 4 | 1.14 .1
.87 .1
.86 .1
1.04 .1 | 13
15
15
13 | 67
41
44
49
47 | 73 4.00
22 3.76
25 3.22
107 2.75
21 3.57 | 1 1 1 | .05
.03
.03
.05 | 11
10
14 | 59 494
92 379
39 1166
78 446 | 13
13
12
13 | .01
.01
.01
.01
.01 | 41 69
24 230
24 93
39 52
26 85 | 0 17
0 5
0 13
0 7 | 3
1
1 | 2 28
2 35
2 16 | .15 1
 .12 1
 .12 1
 .09 1
 .15 1 | | 1 64
1 90
1 69
2 96
2 70 | | 96NL 1400 140E
96NL 1400 160E
96NL 1400 180E
96NL 1400 380E
96NL 1400 400E | 1.8 1.56
2.2 2.25
1.7 2.06
1.9 1.52
2.2 2.15 | 1 260 | .1 7
.1 9
.1 13 | .60 .1
1.10 .1
.94 .1
.85 .1
1.07 .1 | 19
15
15
19 | 37
53
53
74
56 | 20 3.05
23 3.18
36 3.20
9 3.23
13 3.84 | 1
1
1
1 | .03
.02
.03
.03 | 10 .1
13 .
9 .1
8 .1 | 36 272
38 376 | 12
13
13
14 | .01
.01
.01
.01 | 22
162
31 48
28 41
28 36
31 21 | 0 12
0 13
0 7
0 6 | 5
1
2 | 2 17
2 12
2 13 | | 147.8 | 2 77
2 55
3 51
4 32
2 59 | | 96NL 1400 420E
96NL 1400 440E
96NL 1500 100E
96NL 1500 120E
96NL 1500 140E | 1.5 1.25
1.1 1.35
1.3 1.92
1.5 1.37
1.4 1.75 | 1 4642
1 1616
1 1243
1 381
1 401 | .1 7
.1 3
.1 1
.1 8 | .55 .1
.75 .1
.57 .1
.82 .1 | 15
19
12
14 | 39
41
60
34
45 | 16 3.44
51 3.12
119 3.38
18 2.34
18 3.03 | 1
1
1
1 | .02
.06
.03
.03 | 16 1.0
7 .1
11 .1 | 55 493
76 594 | 11
14
9
12 | .01
.01
.01
.01 | 18 30
31 35
54 40
20 42
26 59 | 0 36
0 15
0 1
0 15 | 1
4
3 | 2 40
1 14
2 16 | 1 .17 1
1 .10 1
1 .06 1
1 .14 1
1 .14 1 | 117.4
86.8
61.8
78.0
90.6 | 3 115
3 91
1 106
2 53
2 54 | | 96NL 1500 160E
96NL 1600 180W
96NL 1600 160W
96NL 1600 140W
96NL 1600 120W | 1.6 1.85
1.6 1.61
1.4 1.96
1.4 1.83
.9 1.50 | 1 504
14 188
40 167
58 330
1 1811 | .1 1 | .80 .1
.86 .1
.71 .1
1.00 .1
.56 .1 | 15
20
20
20 | 46
71
95
81
40 | 33 3.12
20 2.78
19 3.09
24 2.80
260 3.16 | 1
1
1
1 | .03
.01
.01
.02
.03 | 9
10 1.
9 1.
12 | 34 841
78 4639 | 11
13
13
16 | .01
.01
.01
.01 | 31 58
33 37
48 32
45 49
85 91 | 0 1
0 1
0 1
0 35 | 1
1
1 | 2 16
2 19
2 65 | 1 .14 1
1 .15 1
1 .12 1
1 .13 1
1 .02 1 | 81.3
85.9
79.8
74.5
42.0 | 1 63
3 39
3 43
2 55
1 194 | | 96NL 1600 100W
96NL 1600 080W
96NL 1600 060W | 1.4 1.90
1.0 1.81
1.3 1.19 | 12 275
1 895
1 845 | .1 1
.2 1
.1 8 | .74 .1
.85 .1
.59 .1 | 19 | 85
49
41 | 29 3.46
139 3.26
23 2.99 | 1
1
1 | .03
.04
.06 | 13 1.4
15 .9
8 | 45 459
95 1890
38 1464 | 15 | .01
.01
.01 | 49 37
52 45
23 47 | 0 16 | 1 1 3 | | 1 .11 1
1 .06 1
1 .15 1 | 86.1
59.0
92.7 | 1 87
1 114
3 110 | <u></u> | | | | | | - | | | | | | | | | ATIN: Dave Hayward / Gary Lee PROJ: MIN-EN LABS - ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 DATE: 96/07/30 * * (ACT:F31) FILE NO: 68-0050-SJ3+4 | SAMPLE
NUMBER | | L A | | BE
PPM | BI C | A CD
% PPM | CO | CR
PPM | CU FE
PPM % | GA
PPM | K
% | L I
PPM | MG
% | MN
PPM | MO
PPM | NA
% | NI
PPM | Р
РР М | PB
PP M | | SN SR
PM PPM | | TI
% PP | U V
M PPM | W ZN
PPM PPM | |--|---|---------------------------|--|----------------------|--|----------------------|----------------------------|----------------------------|---|------------------|---------------------------------|----------------------------|------------------------------------|------------------------------------|----------------------------|---------------------------------|----------------------------|----------------------------------|----------------------------|--------------------------|--------------------------------------|---|---------------------------------|---|---| | 96NL 1600 040W
96NL 1600 020W
96NL 1600 000
96NL 1600 100E
96NL 1600 120E | 1.8 2.1
1.8 2.1
1.9 2.2
1.6 2.1
1.9 1.5 | 2 4
5 5
5 5 | 6 855
5 3720
2 527
4 1234
9 1804 | .1 | 7 1.0
3 .9
7 1.0
1 .6
5 .8 | 1 .1
5 .1
9 .1 | 17
21
19
17
15 | 58
63
77
68
52 | 19 3.88
50 3.34
29 3.79
39 3.55
38 2.72 | 1
1
1
1 | .03
.04
.03
.02
.04 | 14
7 | 1.17
1.00
.78 | 381
1446
466
453
838 | 14
14
14
14
11 | .01
.01
.01
.01 | 27
41
44
40
32 | 440
430
360
500
410 | 2
22
1
7 | 1
5
1
2
2 | 2 17
2 29
2 18
2 25
2 39 | 1 1 | .22
.13
.19
.14
.12 | 1 134.8
1 92.5
1 112.0
1 89.1
1 75.3 | 3 54
3 124
2 74
2 70
3 75 | | 96NL 1600 140E
96NL 1600 160E
96NL 1600 260E
96NL 1600 280E
96NL 1600 300E | 1.8 1.6
1.9 1.7
1.4 1.8
1.7 2.0
2.4 1.8 | 5 9
80 8
13 7 | 7 1207
8 1811
4 527
9 1435
0 718 | .1
.2
.2
.1 | 1 .6
2 1.0
1 .6
3 .5
11 1.0 | 6 .1
5 .1
9 .1 | 16
15
24
16
15 | 57
52
53
59
55 | 60 2.74
74 2.93
78 3.45
48 3.34
16 3.25 | 1 1 1 1 1 | .06
.04
.06
.03 | 12
11
10
12
8 | -71 | 1582
1049
1297
564
385 | 13
13
15
14
11 | .01
.01
.01
.01 | 46
43
38
39
26 | 490
510
790
320
320 | 7
21
14
4
14 | 2
5
1
3
4 | 2 46
2 43
2 55
2 24
2 13 | 1 1 | ~ | 1 55.8
1 71.9
1 87.0
1 81.7
1 118.8 | 3 99
3 86
2 108
2 65
4 42 | | 96NL 1600 320E
96NL 1600 400E
96NL 1600 420E
96NL 1600 440E
96NL 1600 460E | 1.9 1.8
1.9 2.0
2.2 3.2
1.8 2.8
2.4 3.0 | 8
8
2 4 | 4 338
1 121
1 106
9 108
1 110 | .1
.1
.1 | 9 .8
7 1.0
6 1.4
1 1.1
6 1.4 | 5 .1
0 .1
0 .1 | 14
20
28
28
25 | 55
38
85
90
96 | 15 3.12
22 5.27
31 5.55
32 4.79
37 5.97 | 1
1
1
1 | .02
.03
.02
.02 | 12 | .83
.78
1.97
1.91
1.68 | 385
388
559
598
586 | 12
17
18
16
21 | .01
.01
.01
.02 | 26
26
56
53
48 | 300
720
280
190
360 | 13
8
1
1 | 4
1
12
11
13 | 2 14
3 18
4 21
3 16
4 16 | 1 1 | .20
.26
.27
.19
.29 | 1 102.4
1 195.3
1 173.9
1 129.5
1 176.4 | 3 41
3 71
2 46
2 50
3 55 | | 96NL 1600 480E
96NL 1600 500E
96NL 1600 520E
96NL 1600 540E
96NL 1600 560E | 2.2 1.8
2.0 2.2
1.7 2.5
.5 1.6 | 3 5
20 2
37 1
66 | 9 186
1 205
1 735
1 324
1 160 | .1
.4
.1 | 10 .9
6 .7
2 .8
1 .6 | 8 .1
3 .1
0 .1 | 17
18
20
26
10 | 59
64
71
36
31 | 23 3.33
32 3.86
162 4.07
120 4.65
29 3.96 | 1
1
1
1 | .03
.03
.05
.07 | 10
13
17
14
12 | .91 | 691
1008
1134
4704
751 | 13
15
16
17
12 | .01
.01
.01
.01
.01 | 31
36
46
42
18 | 250
350
380
1600
570 | 15
18
23
48
32 | 3
5
7
1
3 | 2 11
2 13
3 27
3 26
2 16 | 1 1 | .22
.17
.11
.04
.09 | 1 126.3
1 119.6
1 114.2
1 90.5
1 111.0 | 4 78
3 87
3 79
1 110
3 89 | | 96NL 1600 580E
96NL 1600 600E
96NL 1600 620E
96NL 1600 640E
96NL 1600 660E | 1.3 1.9
1.2 2.6
1.2 2.0
1.5 2.0
1.1 1.3 | 50
17
12 | 8 182
1 206
1 292
1 230
1 242 | .1
.1
.1 | 1 .5
1 .5
1 .6
2 .5
6 .7 | 1 .1
8 .1
3 .1 | 16
16 | 58
48
50 | 72 3.87
149 4.96
41 4.17
28 4.55
15 3.07 | 1
1
1
1 | .06
.05
.05
.04
.05 | 14
19
8 | .72
1.02
.74
.79
.39 | 1098 | 14
18
15
16
9 | .01
.01
.01
.01 | 37
77
30
27
15 | 410
720
490
550
400 | 27
24
29
22
5 | 5
19
5
3 | 2 17
3 17
2 17
3 15
2 16 | 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | .08
.11
.12
.16
.17 | 1 95.2
1 97.8
1 114.2
1 126.4
1 126.8 | 2 168
1 212
2 150
2 91
3 69 | | 96NL 1600 680E
96NL 1600 700E
96NL 1600 720E
96NL 1600 740E
96NL 1600 760E | 1.3 2.2
1.5 2.2
1.4 .8
1.0 .9 | 28
31
26 | 1 500
1 551
1 180
1 268
1 293 | .3
.4
.1
.1 | 3 .7
2 .6
1 .2
1 .3 | 7 .1
4 .1
4 .1 | 5 | 51
50
20
22
26 | 63 3.93
68 3.33
20 2.24
17 1.91
18 2.49 | 1
1
1
1 | .05
.04
.04
.03 | 17
13
5
6
9 | .83
1.19
.19
.35
.46 | 644
906
167
190
441 | 15
13
10
8
10 | .01
.01
.01
.01 | 32
54
14
14
18 | 350
280
270
140
350 | 23
6
12
4
1 | 1
1
1
1 | 2 18
2 14
1 8
1 8 | 1
3 1
3 1 | .16
.12
.07
.06
.07 | 1 127.3
1 84.2
1 67.8
1 60.4
1 65.8 | 1 122
1 92
1 68
2 56
2 57 | | 96NL 1600 780E
96NL 1600 800E
96NL 1600 820E
96NL 1600 840E
96NL 1600 860E | 1.1 .9
1.4 1.3
1.3 1.4
1.3 2.0
1.1 1.6 | 0
0
00 | 1 235
1 248
1 449
1 283
1 287 | .1
.1
.1
.2 | 5 .4
10 .6
5 .5
4 .8
1 .5 | 6 .1
4 .1
8 .1 | | 33
39 | 12 1.99
10 3.02
15 3.39
42 3.64
27 3.19 | 1
1
1
1 | .03
.03
.03
.03
.03 | 4
6
7
9
11 | .26
.32
.48
.97 | 211
369
330
596
369 | 7
11
12
13
12 | .01
.01
.01
.01 | 10
13
18
30
21 | 230
490
430
500
540 | 5
1
1 | 1
1
1
1 | 1 10
1 9
2 8
2 15
2 10 | 1
3 1
5 1
7 1 | .11 | 1 88.3
1 127.3
1 115.7
1 95.7
1 84.0 | 3 39
3 68
2 55
1 41
1 61 | | 96NL 1600 880E
96NL 1600 900E
96NL 1600 920E
96NL 1600 940E
96NL 1600 960E | 1.1 1.5
1.3 1.9
1.4 1.8
1.5 2.1
2.0 1.5 | 21
30
17 | 1 363
1 501
1 548
1 766
1 879 | .2
.3
.5
.4 | 1 .7
3 .9
5 1.0
2 1.2
6 1.5 | 3 .1
7 .1
3 .1 | 14
16
20 | 87 | 23 3.02
46 3.02
63 3.09
172 3.82
121 2.98 | 1
1
1 |
.04
.03
.04
.03
.03 | 11
11
10
11
8 | .88 | 514
721
1210
2787
1635 | 11
12
11
14
12 | .01
.01
.01
.01 | 21
32
34
47
41 | 950
330
460
830
590 | 1
1
1
31 | 1 1 1 | 2 18
2 17
2 24
2 34
2 34 | 7 1 | .12
.12
.13
.10
.11 | 1 92.5
1 85.5
1 91.1
1 100.8
1 87.6 | 2 84
1 59
2 76
3 87
2 70 | | 96NL 1600 980E
96NL 1600 1000E
96NL 1600 1020E
96NL 1700 180W
96NL 1700 160W | 1.9 1.8
1.4 1.7
1.2 2.0
.6 1.1 | 32
70
97 | 1 521
1 461
1 586
1 414
1 498 | .3
.4
.2
.3 | 7 1.1
6 .9
2 .9
1 .2 | 5 .1
0 .1
8 .1 | 17
16
18
11
17 | 51
30
56 | 69 3.08
36 2.83
74 3.50
38 2.55
72 3.41 | 1 1 | .03
.02
.03
.05
.03 | 12
17 | .91
1.05
.46
1.13 | 973
711 | 13
11
14
10
15 | .01
.01
.01
.01 | 33
26
40
28
48 | 470
380
350
480
320 | 6
1
4
5
1 | 1
1
1
1 | 2 22
2 15
2 27
1 21
2 49 | 5 1
7 1
1 1
9 1 | .16
.15
.12
.04 | 1 96.5
1 89.0
1 84.0
1 51.3
1 70.9 | 2 56
1 46
1 74
2 110
1 84 | | 96NL 1700 140W
96NL 1700 120W
96NL 1700 100W | .8 1.2
.9 .9
.9 1.4 | 29
28 | 1 543
1 412
1 906 | .1 | 1 .2
1 .5
1 .4 | 0 .1 | | 26 | 69 2.43
47 2.24
168 3.11 | 1 | .04
.07
.03 | 17
12
15 | .66
.45
.79 | 743 | 12
10
18 | .01
.01
.01 | 28
33
83 | 230
640
740 | 1
4
44 | 1 1 1 | 1 164
1 56
2 60 | 21 | .01
.01
.02 | 1 42.2
1 38.6
1 42.2 | 1 81
2 132
1 199 | | | | | | <u>.</u> | * | | | | | | | | | | | | | | | | _ | | | | | ATTN: Dave Hayward / Gary Lee PROJ: MIN-EN LABS — ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 FILE NO: 6S-0050-SJ5+6 DATE: 96/07/30 * * (ACT:F31) | SAMPLE
NUMBER | AG
PPM | AL
% | AS
PPM | BA
PPM | BE
PPM | BI
PPM | CA
% | CD
PPM | CO
PPM | CR
PPM | CU FE
PPM % | GA
PPM | K
% | LI | MG
% | MN
PPM | MO
PPM | NA
% | NI
PPM | P
PPM | PB
PPM | | SN SR
PPM PPM | | TI
% PI | U N | / W ZN | |--|-------------------------|--------------------------------------|--------------------------|----------------------------------|----------------------|--------------------------|------------------------------------|----------------------|----------------------------|----------------------------|---|------------------|---------------------------------|--------------------------|------------------------------------|-----------------------------------|----------------------------|---------------------------------|----------------------------|----------------------------------|---------------------------------------|------------------------|--------------------------------------|------------------|---------------------------------|--|--| | 96NL 1700 080W
96NL 1700 060W
96NL 1700 040W
96NL 1700 020W
96NL 1700 000 | 1.0
1.3
.5
1.6 | 1.44
1.46
1.32
2.18
1.47 | 74
1
1 | 524
787
463
1201
695 | .1
.1
.1
.1 | 1
2
1
6
3 | .34
1.13
.35
.88
1.56 | .1
.1
.1
.1 | 14
16
11
18
13 | 39
44
42
55
52 | 68 2.89
58 2.96
23 3.13
30 3.85
254 2.42 | 1
1
1
1 | .03
.06
.04
.04
.02 | 14 | 1.05
.77 | 924
1328
784
534
1099 | 11
13
13
15
15 | .01
.01
.01
.01 | 32
34
30
35
69 | 560
420
440
320
590 | 22
11
6
2
1 | 1
1
2
1
2 | 2 21
2 37
1 13
2 27
1 47 | 1
1
1
1 | .08
.10
.03
.21
.05 | 1 59.2
1 74.3
1 59.4
1 113.3
1 47.9 | 2 2 156
3 3 111
4 2 153
7 2 79
9 2 108 | | 96NL 1700 040E
96NL 1700 060E
96NL 1700 080E
96NL 1700 100E
96NL 1700 120E | 1.9
2.0
1.6 | 1.98
2.09
1.90
2.01
1.96 | 18
1
1
25
57 | 553
303
564
676
434 | .1
.1
.1
.1 | 7
7
7 | 1.10
.92
1.01
.91
1.02 | .1
.1
.1
.1 | 18
17
15
16
16 | 61
64
55
59
67 | 32 4.00
22 4.22
17 3.63
23 3.62
54 3.29 | 1
1
1
1 | .02
.03
.02
.02 | 13
14
11
11 | .92
.91
.75
.93 | 554
420
370
572
557 | 14
15
13
13
12 | .01
.01
.01
.01 | 33
28
26
30
33 | 350
450
330
520
410 | 4
3
11
1
1 | 1
1
2
1
2 | 3 36
3 18
2 16
2 22
2 19 | 1 1 | .18
.22
.19
.19 | 1 125.0
1 135.3
1 125.8
1 113.8
1 97.6 | 3 107
3 3 83
3 3 68 | | 96NL 1700 140E
96NL 1700 400E
96NL 1700 420E
96NL 1700 440E
96NL 1700 460E | 1.1
1.6
1.4 | 1.85
1.77
1.92
2.30
1.71 | 63
1
1
1 | 1398
150
107
110
217 | .2
.1
.1
.1 | 1
5
7
4
7 | .56
.69
.72
.85
.94 | .1
.1
.1 | 15
14
18
22
19 | 54
44
25
19
27 | 74 3.18
35 3.67
26 4.96
35 5.20
20 4.49 | 1
1
1
1 | .03
.03
.03
.03 | 13
12
10
8
6 | .99
.64
.77
1.06
.68 | 1146
366
409
578
629 | 13
13
15
15
15 | .01
.01
.01
.01 | 48
22
18
19
20 | 510
300
620
660
660 | 3
13
7
1
9 | 1
2
1
1 | 2 51
2 14
3 11
3 21
3 11 | 1 1 1 | .08
.16
.24
.23
.23 | 1 57.9
1 107.0
1 131.1
1 100.9
1 130.8 | 2 60
5 1 66
9 1 67
3 2 56 | | 96NL 1700 500E
96NL 1800 100E
96NL 1800 120E
96NL 1800 140E
96NL 1800 160E | 1.0
1.8
1.3 | 1.64
1.93
3.01
1.54
1.94 | 1
1
18
18
62 | 240
591
547
303
437 | .1
.2
.4
.1 | 4
5
5 | .94
1.17
.92
.72
1.01 | .1
.1
.1
.1 | 17
27
29
14
17 | 45
62
89
54
67 | 20 4.46
129 4.26
353 5.12
21 3.57
53 3.31 | 1
1
1
1 | .03
.03
.03
.04
.03 | 10
11 | .56
.57
1.04
.64
.89 | 658
1016
1360
466
560 | 14
16
20
13
12 | .01
.01
.01
.01 | 21
42
99
25
34 | 540
460
550
460
420 | 21
39
18
14
8 | 1
3
20
1
2 | 3 13
3 23
3 32
2 13
2 19 | 1
1
1 | .36
.11
.13
.16
.14 | 1 173.6
1 91.5
1 94.5
1 108.5
1 97.6 | 3 335
5 4 147
7 3 98
5 3 97 | | 96NL 1800 180E
96NL 1800 500E
96NL 1800 520E
96NL 1800 540E
96NL 1800 560E | 1.4
1.6
1.5 | 2.17
2.36
2.33
2.11
1.65 | 63
1
1
1
1 | 506
206
162
189
268 | .1
.1
.1
.1 | 3
7
5
12 | 1.12
.97
.77
.84
.64 | .1
.1
.1
.1 | 18
23
16
19
14 | 71
41
41
27
36 | 43 3.45
29 5.06
21 4.62
19 5.45
36 4.28 | 1
1
1
1 | .02
.03
.02
.03 | 11
11
8
10 | 1.05
.98
.72
.82
.58 | 578
648
451
721
293 | 13
17
13
17
15 | .01
.01
.01
.01 | 25 | 330
710
930
1350
460 | 1
1
18
6
29 | 2
1
3
1
2 | 2 19
3 17
3 14
3 18
2 14 | 1 | .18
.21
.23
.25
.24 | 1 108.8
1 107.5
1 114.5
1 96.5
1 132.8 | 5 1 81
7 2 97
5 1 86
3 2 66 | | 96NL 1800 580E
96NL 1800 600E
96NL 1900 240E
96NL 1900 260E
96NL 1900 280E | 1.4
1.4 | .82
2.20
1.65
1.27
1.72 | 1
1
1
1 | 276
246
327
547
269 | .1
.3
.2
.2 | 3
1
8
5
2 | .27
.47
.73
1.19
.58 | .1
.1
.1 | 9
15
13
13
16 | 19
39
48
37
50 | 26 2.04
53 5.34
22 3.45
21 2.96
68 3.58 | 1
1
1
1 | .05
.06
.04
.06 | | .75
.47
1.06 | 1395
1731
438
723
893 | 7
17
13
12
15 | .01
.01
.01
.01
.01 | 14
32
26
20
36 | 470
760
710
980
610 | 20
55
1
1
2 | 3
2
1
1
1 | 1 10
2 15
2 16
1 27
2 26 | 1 1 | .05
.12
.16
.14
.09 | 1 74.0
1 142.0
1 98.1
1 96.8
1 71.5 | 5 1 113
0 2 72
8 3 78
5 1 83 | | 96NL 1900 300E
96NL 1900 320E
96NL 1900 340E
96NL 1900 360E
96NL 1900 380E | 1.3
1.4
1.2 | 1.76
1.64
1.57
1.32
1.92 | 11111 | 264
418
517
338
658 | .2
.4
.2
.3 | 7
6
7
6
5 | .70
.72
.79
.81
.68 | .1
.1
.1 | 14
14
15
11
16 | 45
43
44
34
47 | 31 3.49
38 2.77
37 2.96
23 2.56
69 2.90 | 1
1
1
1 | .04
.04
.05
.05 | | .98
.88
.82
.65
1.20 | 545
631
773
475
893 | 13
12
12
11
13 | .01
.01
.01
.01 | 29
25
28
22
38 | 580
390
850
640
410 | 1
1
1
1 | 1
1
1
1 | 2 26
2 32
2 21
1 21
2 34 | 1 1 1 | .17
.14
.15
.12
.12 | 1 90.5
1 80.6
1 83.6
1 69.6
1 62.6 | 3 1 58
4 2 70
4 2 64 | | 96NL 1900 400E
96NL 1900 420E
96NL 1900 500E
96NL 1900 520E
96NL 1900 560E | 1.1
1.6
1.6 | 1.84
2.45
2.43
2.16
2.32 | 1
7
1
1 | 520
669
220
223
120 | .3
.6
.4
.3 | 6
2
11
11
13 | .73
.76
.86
1.00 | .1
.1
.1
.1 | 19
25
18
19
19 | 51
56
54
41
44 | 59 3.27
130 3.70
42 4.37
47 4.81
21 5.37 | 1
1
1
1 | .04
.05
.04
.03 | 18 | 1.07
1.41
1.11
.90
.88 | 1587
1015
673
491
404 | 15
14
16
16
17 | .01
.01
.01
.01 |
36
47
32
25
23 | 640
430
440
380
780 | 3
1
1
3
3 | 1
1
1
1 | 2 29
2 82
2 19
2 15
3 9 | 1
1
1 | .13
.10
.24
.27
.31 | 1 83.
1 97.
1 110.
1 156.
1 161. | 3 1 124
7 1 79
9 1 61 | | 96NL 1900 580E
96NL 1900 600E
96NL 1900 620E
96NL 2000 340E
96NL 2000 360E | 1.7
.8
1.6 | 2.28
1.64
1.66
1.46
2.15 | 1
1
1
1 | 186
347
341
233
326 | .4
.5
.6
.1 | | .84
1.00
1.34
.77
.96 | .1
.1
.1
.1 | 19
16
10
12
15 | 42
31
32
36
49 | 58 4.83
135 2.96
181 2.88
11 2.84
43 3.12 | 1
1
1
1 | .03
.03
.03
.04 | 9
8
16
8
14 | .84
.36
.33
.62
1.15 | 432
1173
2849
401
609 | 17
11
11
11 | .01
.01
.01
.01 | 31
37
37
20
30 | 500
430
710
920
370 | 6
16
22
1
1 | 1
5
1
1 | 2 16
1 27
1 40
2 15
2 18 | 1 1 | .25
.10
.02
.18
.20 | 1 132.1
1 83.1
1 91.1
1 94.4
1 92.1 | 6 2 59
9 2 49
4 2 56 | | 96NL 2000 380E
96NL 2000 400E
96NL 2000 420E | .9 | 1.75
2.40
1.58 | 1
1
1 | 215
742
576 | .2
.4
.2 | 9
9
1 | .69
.64
.32 | .1
.1
.1 | 12
19
14 | 43
58
52 | 16 3.09
69 3.64
48 3.21 | 1 1 | .04
.04
.05 | 13
15
12 | .77
1.04
.64 | 436
7492
1661 | 12
18
15 | .01
.01
.01 | 21
69
31 | 950
960
870 | 1
32
1 | 1
5
1 | 2 16
2 34
2 31 | 1 1 | .17
.13
.06 | 1 88.0
1 93.
1 75.0 | 1 2 120 | | | | | | | | | | | • | | | | ••• | | | | | | | | | | | · | | | | | | | | | | | | | | | | | * | | | | | | | | | · · · · · · · · · · · · · · · · · · · | | | | | | | PROJ: MIN-EN LABS --- ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 FILE NO: 6S-0050-SJ7 DATE: 96/07/30 | J:
N: Dave Hayward ∕ | Gary Le | e | | | | | | | T | EL:(6 | 04)327-343 | | AX:(6 | 34)327- | 3423 | | | | | | | | | | * * | (ACT: | |---|---------------------------------|--------------------------------------|-------------------------|---------------------------------|----------------------|---------------------------|------------------------------------|----------------------|----------------------------|----------------------------|---|-------------|---------------------------------|--|---|------------------------------|---|------------------------------|-------------------------------------|---------------------------|-----------------------|---|--------------------------------------|---------------------------------|--|----------------------------| | AMPLE
UMBER | AG
PPM | AL
% | AS
PPM 1 | BA
PPM | BE
PPM | B1
PPM | CA
% | CD
MAG | CO
PPM | CR
PPM | CU FE
PPM % | GA
PPM | K
%_ | PPM | % PF | M PF | | PPM | | PB
PPM | | PM PP | R TH | % PF | M PP | V W Z | | 6NL 2000 440E
6NL 2000 460E
6NL 2000 480E
6NL 2000 500E
6NL 2000 520E | 1.3
1.3
1.0
1.8
2.3 | 1.83
1.70
2.23
1.65
2.26 | 1 17
1 2
1 2
1 | 282
420
961
370
136 | .2
.1
.4
.1 | 3
4
1
14
12 | .69
.58
.25
.79 | .1
.1
.1
.1 | 16
9
28
12
19 | 48
51
31
40
65 | 74 3.24
27 2.89
218 3.62
17 3.10
26 4.61 | 1 1 1 1 | .09
.03
.06
.04
.04 | 13 .
10 .
16 1. | 87 95
82 32
84 99
56 27
09 45 | 55 1
21 1
20 1
71 1 | 5 .0°
2 .0°
5 .0°
4 .0°
7 .0° | 27
55
18
3 2 | 620
360
310
210
680 | 1
27
1
1 | 1
1
2
1
1 | 2 | 49 1
23 1
20 1 | .11
.04
.21
.28 | 1 87.3
1 93.3
1 45.9
1 121.3
1 138.0 | 3 2
9 1 1
3 3
0 2 | | 6NL 2000 540E
6NL 2000 560E
6NL 2000 580E
6NL 2000 600E
6NL 2000 620E | 2.2
1.9
2.4
1.6
1.8 | 2.90
1.96
2.22 | 1 | 213
264
209
212
146 | .1
.2
.1 | 15
13
7
12 | 1.01
1.10
1.17
.60
.78 | .1
.1
.1
.1 | 18
16
23
17
17 | 45
64
62
47
50 | 31 4.60
19 3.93
39 4.90
46 4.59
37 4.87 | 1 1 1 1 | .04
.04
.03
.04 | 11 .
16 1.
13 . | 87 4°
85 78 | 8
9
15
15
34 | 7 .01
5 .01
8 .01
6 .01
7 .01 | 27
39
37
29 | 390
480
440 | 6
16
1
5
14 | 1 1 1 | | 22 1
15 1
20 1
13 1
17 1 | .26
.26
.19
.24 | 1 152.5
1 172.5
1 131.
1 105.6
1 141.6 | 5 3
7 1
6 1
6 1 | | SNL 2000 640E
SNL 2000 660E
SNL 2000 680E
SNL 2000 700E
SNL 2300 140E | 1.2
2.0
1.7
1.3
1.8 | 2.20
1.71
3.03 | 1
1
1 | 361
195
377
526
192 | .5
.1
.2
.5 | 13
11
9 | 1.74_ | .1
.1
.1
.1 | 34
23
20
11
24 | 59
62
52
29
68 | 127 4.30
58 5.64
65 4.56
132 3.25
48 4.63 | 1 1 1 | .04
.04
.04
.06 | 17 1.
13 .
17 .
9 . | 12 473
99 68
88 100
38 43
54 12 | 30
30
26
17 | 8 .0°
9 .0°
6 .0°
2 .0° | 33
32
23
37 | 750
670
850
380
890 | 26
10
23
1 | 1 4 1 | 2 3 3 3 | 45 1
18 1
34 1
64 1
38 1 | .21
.12
.21 | 1 221.
1 149.
1 108.
1 129. | 3 2
1 1
9 2
8 1 | | SNL 2300 160E
SNL 2300 180E
SNL 2300 200E
SNL 2300 220E
SNL 2300 240E | 1.3 | 1.50
2.56
3.08
2.15 | 1
1
1 | 221
171
175
194
323 | .4
.1
.4
.5 | 15
14
13
16
9 | .94
.48
.59
.48
.46 | .1
.1
.1
.1 | 21
12
22
25
19 | 54
30
53
64
40 | 31 3.85
18 3.21
46 4.28
143 4.67
110 3.85 | 1 1 1 1 | .07
.06
.05
.06
.10 | 17 1.
6 .
17 1.
18 1.
11 . | 11 11.
34 14.
73 21. | 46 | 6 .0°
12 .0°
15 .0°
17 .0° | 36
54
36 | 960
1210
1080
1050
1650 | 11
5
18
39
48 | 1 1 2 | 2 | 26 1 | .25
.21
.24
.26
.17 | 1 100.
1 90.
1 131.
1 170.
1 80. | 0 2
9 1
9 1
0 1 | | 6NL 2300 260E
6NL 2300 280E | 2.0
1.3 | 2.40
2.38 | 1 | 145
278 | .3
.6 | 12
7 | .84
.43 | :1
:1 | 18
27 | 50
47 | 35 4.42
105 4.38 | 1 | .04
.06 | 15 1.
15 . | 16 6;
89 2 3 ; | 26
56 | 16 .0
16 .0 | 32
34 | 1550
1480 | 1
43 | 1 | 2 2 | 23 1
26 1 | .23
.15 | 1 108.
1 84. | | | | · | | | | | | | | | | | | _ | | | | | 1 | _ | ···· | | | | | *********** | | | | | | ······ | | | | | | | | | | | | | | ************* | | | _ | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | | | | | | , | | | | **** | | | | | | | | | | | | | | *** ··· | | | - | **** | **** | | · | | | | | | | | | | | | | | | | | | | - | | | | | | | | | | | | | | | | | | | | | | _ | | | | | • | | | | | | | | | | | | | | | PROJ: MIN-EN LABS - ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 FILE NO: 68-0050-RJ1 DATE: 96/07/30 * ROCK * (ACT:F31) | ATTN: Dave Hayward / G | arv lee | | | | | | TEL:(| 604)327-3 | 436 | FAX:(| 604)327 | 7-3423 | , | | | | | | | | | | | ROCK | | (401.13 | |--|--|-----------------------------|----------------------------|--------------------------------|---|-------------------------|---|-------------------------------|-----------|----------------------------|--|---------------------------------|---------------------------|--------------------------|----------------------------|---------------------------------|---------------------|------------------------|------------------------|------------------------|-----------|----------------------------------|--|------|--------------------------------|----------------------------| | SAMPLE | AG AL | AS
PPM | BA
PPM | BE B | :: | CD CO | CR | CU FE | GA
PPM | K L
% PPI | I MG
M % | MN
PPM | MO
PPM | NA
% | N I
PPM | P
PPM | PB
PPM | SB
PPM | SN
PPM | SR
PPM F | TH
PPM | TI U
% PPM | V
PPM | | PPM | Au-fire
PPB | | NUMBER 96NL 1840 295E 96NL 2300 178E YT 96NL 3400 150E PYS 96NL 3500 050E MS 96NL 3500 050E Q | 1.5 2.11
1.4 3.79
28.8 3.15
53.8 .06
2.4 .90 | 162
1
410
1
149 | 12
31
60
18
22 | .5
.4
.4 5
.8
.3 4 | 9 1.50
1 1.88
1 1.06
1 .08
6 2.14 | .1 16
.1 22
.1 36 | 170 3
12
109 32
74 11
88 15 | 7.25
60 11.05
08 >15.00 | 1. | 01
01
02
01
01 | 8 1.39
6 2.08
8 2.50
1 .04
6 .31 | 685
1071
1171
3
557 | 15
23
36
64
5 | .02
.02
.03
.01 | 24
16
62
36
16 | 830
1460
550
10
260 | 1
643
19
9 | 2
14
5
1
8 | 2
5
7
13
1 | 5
1
1
1
48 | | .11 1
.19 1
.20 1
.01 1 | 57.3
100.3
105.2
12.6
41.0 | 7 4 | 103
69
796
568
175 | 5
1
1255
547
3 | COMP: HR DAVE HAYMARD PROJ: P. 04 | AG AL PPH & 8 1.56 1.0 2.30 1.2 2.29 1.2 2.05 .9 2.43 .9 2.17 1.0 2.57 |
AS PPN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 90
105
216 | BE
PPM | 6 . | CA C | 828 | TEL:(| ERBR(
(684)
R ((| LABS
DOKE ST.
0327-343
DU FE | VAN | COUVE
AX: (6 | R, 8 | .c. v | X 4E8 | | | | | | | | | | DATE: | 96/07/1 | |--|--|--|---|---|----------------------------------|----------------------|----------------------|-------------------------|---------------------------------------|---------|--------------------------|--|-----------------------------|-----------------------------|----------------------|--------------------------|------------------------------|---
--|---|---|---|---|---|--| | .8 1.56
1.0 2.30
1.2 2.29
1.2 2.05
.9 2.43 | AS PPN 1 | 90
105 | | 6 . | | D CC | TEL:(| (684)
R ((| 327-343 | 16 F | AX: [6 | 04)3 | .c. v:
27-342 |)X 4E8
 3 | • | | | | | | | | | DATE: | 96/07/1 | | .8 1.56
1.0 2.30
1.2 2.29
1.2 2.05
.9 2.43 | PPN 1 | 90
105 | | 6 . | | |) CR | R { C | | | uvato | 134 J.J. | 7 - 346 | ⇒ | | | | | | | | | | | /AGT -74 | | .8 1.56
1.0 2.30
1.2 2.29
1.2 2.05
.9 2.43 | PPN 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 90
105 | .1 | 6 . | | | | | | ĠŔ | K | 11 | 170 | - | | | | | | | | | * so | יוני" | (ACT:F31 | | .9 2.43
.9 2.17 | 1 | | .i | 71. | .56 .
.86 . | 1 14 | 7 28
45 | 5 2 | | PPM 1 | .03 | PPM
7
13
10 | .29
.76
.90 | 9PM
552
450 | #D
PP#
8
13 | .01
.01 | 10
22 | PPH
1538
1170 | 33
14 | (SB)
PPH F
1
6 | SN SI
PPH PPI
1 11
2 3 | H PPM
B 1. | 71 U
% PPM
12 1
12 1 | 77.1 | H (ZN)
PPM PPM
2 56
3 72 | | | 1 | 189
437
217
216 | :1 | <u>1</u> | .93
.85 .
.91 . | 1 15
1 16
1 17 | 39
53
51 | 3 3 | 7 3.26
2 4.59 | 1 | .03 | 12
15 | .69
.96 | 1142
484
448
490 | 13
11
16
15 | .02
.01
.01 | 20
33 | 1170
1350
1760
1110 | 12 2 | 5 6 1 | 2 3;
2 3;
3 28 | 1: | 17 1
11 1
13 1 | 117.0
95.6
118.5 | 3 99
1 138
2 109 | | 1.1 1.63
.8 2.62
.4 2.05 | 1. | 108
114
162 | .1
.1
.1 | 8 1.
1 .
1 . | 79
99 | 1 18 | 31
52 | 7 3
1 1
2 3 | 7 3.97
0 2.27
7 3.69 | 1 1 | .03
.03
.03 | 13
7
13 | 1.25
.47
1.04 | 549
282
486 | 15
8
12 | .01
.01 | 36
14
34 | 1020
840
960 | 1
1
17 | 2 1 4 | 2 27
3 36
1 27
2 29 | 5 1 .
7 1 .
9 1 . | 13 1
13 1
11 1 | 114.9
116.0
87.5
101.2 | 2 · 76
2 · 98
2 · 61
2 · 118 | | .5 1.65
1.3 1.42
.6 2.47
.7 2.36 | 1 | 119
396 | .1 | 11: | 27
96 | 1 10
1 12
1 18 | 35
39 | 3 | 3.66
6 2.33
8 4.39 | 1 1 1 1 | .02
.02
.03 | 12
11
8
13 |
.66
.45
.71 | 428
287
758
714 | 10
10
11
14 | .01
.01
.01
.01 | 21
17
35
32 | 1590
1350
400
1420 | 8
13
8
5 | 1 1 | 2 24
2 39
3 32 | 5 1 | 12 1
12 1
09 1 | 104.5
116.0
67.6 | 2 142
1 133
1 73
2 123
2 163 | | .8 2.13
.9 1.96
1.1 2.26
.7 2.09
.7 2.39 | 1 1 1 | 103 | .1 | 5 1.
4 1.
2 | 19 .1
25 .1
81 .1 | 18
18
16 | 41
51
64
44 | 3 6 3 | 3 3.16
8 3.40
9 3.83
1 3.44 | 1 | .03
.04
.04
.02 | 12
10
14
13 | .93
1.21
1.32
1.05 | 428
599
913
398 | 11
11
13
12 | .02
.02
.02 | 26
32
39 | 790
720
300 | 3
1
1 | 1 1 1 | 4 33
2 62
2 46
3 63 | 1 | 13 1
13 1
16 1
15 1 | 97.7
104.2
105.5 | 1 166
1 06
2 60
2 63 | | .9 1.46
.4 1.83
.7 2.19
.8 1.33
1.7 1.65 | 1 | 26 3
170 | .1 | 5
1 1.
1 | 84 .1
00 .1
60 .1 | 12
21
13
8 | 35
41
52
35 | 1
3
2 | 7 2.87
0 3.81
5 3.72
7 2.09 | 1 1 | .03
.05
.03 | 9
12
19
8 | .52
.73
.95
.62 | 317
2963
396
292 | 10
13
15 | .01
.01
.01
.01 | 18
33
43 | 580
2650
2290 | 14
18
1
10 | 3
1
1 | 2 34
2 26
2 40
2 32 | 1. | 11 1
15 1
10 1
07 1 | 94.6
100.3
91.1
85.5 | 2 137
2 66
1 240
2 240 | | 1.0 1.95
1.2 1.54
1.1 1.78
1.0 1.90
.6 1.92 | 1 | 590
673
437 | .1 | 1
6 1-1
2 1-1
8 1 | 93 .1
07 .1
01 .1 | 16
19
19 | 49
32
33
41 | 3(
7(
5) | 0 3.12
0 2.83
9 3.12
3 3.35 | 1 1 | .04
.06
.05 | 11
9
10
8 | .91
.97
1.04 | 537
 354
 104
 378 | 13
12
13
10 | .01
.01
.01 | 51
39
37
27 | 350
1060
650
680
1530 | 10
2
10
5
17 | 1
1
1
3 | 2 15
2 21
2 32
2 29 | 1 . | 14 1
13 1
13 1
12 1 | 88.4
87.6
61.9
68.3 | 2 125
2 115
2 212
1 102
1 99 | | 1.3 2.52
1.4 2.02
1.0 2.35
.8 1.77
1.4 2.57 | 1 | 97
180
136 | .1 | 3 1.1
4 .5
3 . | 04 .1
96 .1
77 .1
79 .1 | 18
14
17
12 | 62
43
51
38 | 32
24
22 | 2 4.72
4 3.81
2 3.65
3 3.88 | 1 | .02
.03
.03 | 18 1
11
13
10 | .04
.83
.73 | 651
404
543
435 | 15
12
12
11 | -01
-01
-01 | 34 2
25
27 | 660
360 | 30
1
3
11
16 | 1 4 | 4 21
2 31
2 28 | 1 .1 | 7 1 9 1 6 1 4 1 | 101.6
116.6
126.7
101.3 | 2 165
2 132
3 57
3 144 | | .8 2.35
1.0 2.18
1.0 1.98
1.3 1.98
1.1 2.30 | 1 | 197
154
109 | .1 | 1 .9
21.1
31.2 | 91 .1
15 .1
20 .1 | 15
15
15 | 48
47
41
40 | 21
26
26
20 | 3.87
5.92
5.37
3.17 | 1 1 | .03
.04
.03 | 12
13
10 | .87
.99
.88
.76 | 344
557
559
398 | 12
11 | .01
.01 | 37 1
27
28
26
23 | 970
1240
650 | 4 2 2 | 1 1 1 5 | 4 21
2 27
3 35 | 1 .2
1 .1
1 .1 | 2 1
5 1
6 1
4 1 | 136.1
122.8
125.1
106.5 | 2 93
2 56
2 63
1 60 | | 1.2 2.04
1.7 1.59
1.1 2.10
1.0 1.76
1.1 2.06 | 1 1 | 136
598
526
219 | .1 | 5 .9
4 2.1
7 1.0
5 .8 | 90 .1
14 .1
35 .1
38 .1 | 13
11
15
16 | 44
55
49
41 | 20
46
53
14 | 3.71
2.52
3.05
3.59 | 1 1 | .03
.03
.02
.03 | 13
14
9 | .72
.68
.99 | 404
496
618
550 | 12
13
11
12 | .01
.01
.01 | 22
44
39
23 | 526
936
698
280
640 | 12
12
12
1 | 2 | 2 25 | 1 .1 | 5 1
5 1
0 1
6 1 | 114.1
115.8
70.2
93.6 | 1 68
2 55
3 105
3 160
3 44 | | 1.0 1.51
1.1 1.79
1.0 1.11 | 1 4 | 81 | .1 | 11 1.1 | 8 .1
8 .1 | 15
17
12 | 38
44
33 | 19 | 2.89 | 1 | .06 | 7 | .60 2
.74 | 686
982 | 10 | .01
.61 | 31 1
28
27 | 010
860
970 | 12
21
12
25 | | | 1 .1 | 6 1
8 1
6 1 | 94.9 | 2 84
3 105
2 92
1 124
3 59 | | | 7 2.02
.5 1.65
1.3 1.42
.6 2.47
.7 2.36
.8 2.13
.9 1.96
1.1 2.26
.7 2.39
.9 1.46
.4 1.83
.7 2.19
.8 1.33
1.7 1.65
1.0 1.95
1.1 1.78
1.0 1.90
.6 1.92
1.3 2.52
1.4 2.57
1.6 2.35
.8 2.18
1.0 1.98
1.1 2.30
1.1 2.30 | 7 2.02 1.5 1.65 1 1.3 1.42 1 .6 2.47 1 .7 2.36 1 .8 2.13 1 .9 1.96 1 1.1 2.26 1 .7 2.39 1 .9 1.46 1 .4 1.83 1 .7 2.19 1 .8 1.33 1 1.7 1.65 1 1.0 1.95 1 1.1 1.78 1 1.0 1.90 1 1.1 1.78 1 1.0 1.90 1 1.1 1.78 1 1.0 1.90 1 1.1 2.154 1 1.1 1.78 1 1.2 1.54 1 1.1 1.78 1 1.2 1.54 1 1.1 1.78 1 1.2 1.54 1 1.1 1.78 1 1.2 1.54 1 1.1 1.78 1 1.2 1.54 1 1.1 1.78 1 1.1 1.78 1 1.1 1.78 1 1.1 1.79 1 1 | -7 2.02 1 107 -5 1.65 1 119 1.3 1.42 1 396 .6 2.47 1 256 .7 2.36 1 190 .8 2.13 1 169 .9 1.96 1 116 1.1 2.26 1 421 .7 2.09 1 103 .7 2.39 1 165 .9 1.46 1 222 .4 1.83 1 702 .7 2.19 1 263 .8 1.33 1 170 1.7 1.65 1 276 1.0 1.95 1 239 1.1 1.78 1 673 1.0 1.90 1 437 .6 1.92 1 591 1.3 2.52 1 176 1.4 2.02 1 97 1.0 2.35 1 180 .8 1.77 1 136 | -7 2.02 107 .1 -5 1.65 119 .1 1.3 1.42 1396 .1 1.6 2.47 256 .1 .7 2.36 190 .1 .8 2.13 169 .1 .9 1.96 116 .1 .7 2.09 103 .1 .7 2.39 165 .1 .7 2.39 165 .1 .9 1.46 222 .1 .4 1.83 702 .1 .7 1.65 276 .1 .8 1.33 170 .1 .7 1.65 276 .1 .8 1.33 170 .1 .7 1.65 276 .1 .8 1.33 170 .1 .7 1.65 276 .1 .8 1.33 170 .1 .9 1.46 122 .1 .8 1.33 170 .1 .9 1.46 122 .1 .8 1.33 170 .1 .9 1.46 122 .1 .9 1.46 122 .1 .9 1.46 122 .1 .9 1.46 122 .1 .9 1.46 122 .1 .9 1.46 122 .1 .9 1.4 1.5 126 .1 .9 1.5 | -7 2.02 | -7 2.02 | -7 2.02 | -7 2.02 | .7 2.02 | | .7 2.02 1 107 | .7 2.02 107 .1 1.99 .1 20 43 36 4.11 1 .06 .7 2.02 107 .1 1 .81 1 3 35 24 3.52 1 .02 1.3 1.42 1 396 .1 1 1.72 .1 10 35 21 3.66 1 .03 .6 2.47 256 .1 1.96 .1 18 45 38 4.39 1 .05 .7 2.36 1 190 .1 1 1.01 .1 19 45 39 4.09 1 .05 .8 2.13 1 169 .1 1 1.16 .1 14 41 33 3.16 1 .05 .9 1.96 1 16 .1 5 1.19 .1 18 51 38 3.40 1 .04 .7 2.39 1 103 .1 2 .81 .1 16 44 31 3.44 1 .02 .9 1.46 1 222 .1 5 .84 .1 12 35 37 2.87 1 .03 .9 1.46 1 222 .1 5 .84 .1 12 35 17 2.87 1 .03 .9 1.46 1 222 .1 5 .84 .1 12 35 17 2.87 1 .03 .7 2.19 1 263 .1 1 .60 .1 13 52 25 3.72 1 .03 .7 2.19 1 263 .1 1 .60 .1 13 52 25 3.72 1 .03 .7 2.19 1 263 .1 1 .60 .1 13 52 25 3.72 1 .03 .7 1.65 1 276 .1 6 .91 .1 10 39 16 2.30 1 .04 .1.0 1.95 1 239 .1 1 .93 .1 16 49 30 3.12 1 .04 .1.1 1.78 1 673 .1 2 1.01 .1 19 33 59 3.12 1 .05 .1.1 1.78 1 673 .1 2 1.01 .1 19 33 59 3.12 1 .05 .8 2.35 1 146 .1 3 1.04 .1 18 62 32 4 72 1 .05 .8 2.35 1 146 .1 3 1.04 .1 18 62 32 4 72 1
.05 .8 2.35 1 146 .1 3 1.04 .1 18 62 32 4 72 1 .05 .8 2.35 1 146 .1 3 1.04 .1 18 62 32 4 72 1 .05 .8 2.35 1 146 .1 3 1.04 .1 18 62 32 4 72 1 .05 .8 2.35 1 146 .1 3 1.04 .1 18 62 32 4 72 1 .05 .8 2.35 1 146 .1 3 1.04 .1 18 62 32 4 72 1 .05 .1.2 2.04 1 35 .1 3 1.20 .1 15 44 26 3.77 1 .03 .1.1 2.30 1 154 .1 3 1.20 .1 15 44 26 3.77 1 .03 .1.1 2.10 1 526 .1 7 1.05 .1 15 44 26 3.77 1 .03 .1.1 2.10 1 | | | | | | 7 2.02 1 107 1 1.94 1 1.33 35 24 3.52 1 0.02 12 666 428 10 0.01 21 13 1.42 1 13 1 1.52 1 10 13 1 1.52 1 10 13 1 1.52 1 10 1 1 1.52 1 10 1 1 1.52 1 10 1 1 1.52 1 10 1 1 1.52 1 10 1 1 1 1 1 1 1 | 7 2.02 107 1 108 1 109 1 1 108 12 108 1401 12 101 33 213 105 15 107 108 109 109 11 109 11 109 12 130 35 24 3.52 1 102 12 .66 428 10 .01 21 1590 13 145 287 10 .01 17 1350 13 145 287 10 .01 17 1350 13 145 287 10 .01 17 1350 13 145 287 10 .01 17 1350 13 145 287 10 .01 17 1350 13 145 287 10 .01 17 1350 13 145 287 10 .01 17 1350 13 145 287 10 .01 17 1350 13 145 287 10 .01 17 1350 105 13 .02 13 .01 35 400 4 | 7 2.02 1 107 1 1 181 1 13 35 243 .522 1 .02 12 .66 428 10 .01 21 1590 8 1.3 1.65 1 119 1 1 .72 1 10 35 24 3.52 1 .02 12 .66 428 10 .01 21 1590 8 1.3 1.62 1 396 1 1 1.27 1 10 35 24 3.52 1 .02 12 .66 428 10 .01 21 1590 8 1.3 1.62 1 396 1 1 1.27 1 10 35 24 3.52 1 .02 12 .66 428 10 .01 21 1590 8 1.3 1.62 1 396 1 1 1.27 1 10 35 24 3.52 1 .03 8 .71 758 11 .01 17 1350 18 6.2 47 1 256 1 1 1.07 1 12 1 18 45 38 3.62 33 1 .03 8 .71 758 11 .01 35 400 18 .62 247 1 256 1 190 1 1 1.01 1 19 45 39 4.09 1 .05 13 .89 714 14 6 .01 32 1420 5 1 .82 11 1 .01 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7 2.02 1 107 1 1.81 1 3 35 24 3.52 1 0.02 12 .66 428 10 .01 21 1590 8 1 .51 .65 1 119 1 1 .72 1 10 35 24 3.52 1 .02 12 .66 428 10 .01 21 1590 8 1 .31 .42 1396 1 1 .72 1 10 35 24 3.52 1 .02 12 .66 428 10 .01 21 1590 8 1 .31 .42 1396 1 .12 .13 .14 | 7 2.02 1 107 .1 1.81 .1 13 35 24 3.52 1 .02 12 .66 428 10 .01 21 1590 8 1 2 25 1.51 1.55 1 119 .1 1 .72 1 10 23 24 3.52 1 .02 12 .66 428 10 .01 21 1590 8 1 2 26 1.3 1.62 1 396 .1 1 1.27 1 10 35 32 3.52 1 .02 12 .66 428 10 .01 21 1590 8 1 2 26 1.3 1.62 1 396 .1 1 1.27 1 10 35 32 3.52 1 .02 11 .02 11 .02 11 .03 1 2 .00 1 17 1.35 1 31 2 2 .6 2.47 1 256 .1 1 .96 1 18 5 38 2.33 1 .03 1 8 .71 7.88 11 .01 35 400 8 1 2 .33 1 .02 1 1 1.01 1 1 19 45 38 4.09 1 .03 1 8 .71 7.88 11 .01 35 400 8 1 2 .33 1 .8 2.13 1 160 .1 1 1.16 .1 14 13 33 3.16 1 .03 12 .93 4.28 11 .01 32 4420 5 1 3 3 .8 2.13 1 160 .1 1 1.16 .1 14 13 33 3.16 1 .03 12 .93 4.28 11 .01 22 32 720 1 1 2 .4 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 | 7 2.02 1 107 .1 1 81 1 1 13 35 24 352 1 .02 12 .66 428 10 .01 22 1590 8 1 2 26 1 .55 1.65 1 119 .1 1 .72 1 10 35 24 352 1 .02 12 .66 428 10 .01 27 1590 8 1 2 26 1 .51 3 31 1 .72 1 10 35 24 352 1 .02 12 .66 428 10 .01 17 1350 13 1 2 26 1 .62 47 1 296 1 1 .02 13 20 27 1 .03 12 .03 1 1 .02 11 .60 428 11 .01 35 400 8 1 2 26 1 .62 47 1 .256 1 1 .96 1 18 45 39 4 .09 1 .03 18 .71 758 11 .01 35 400 8 1 2 39 1 .65 1 1 .96 1 18 45 39 4 .09 1 .03 18 .71 758 11 .01 35 400 8 1 2 39 1 .72 | 7 2.02 1 107 1 1 81 1 13 55 24 3.52 1 0.06 12 88 1601 12 01 33 2130 1 1 3 31 1.11 1 1.51 1.65 1 119 1 1 8.81 1 13 35 24 3.52 1 0.02 11 .66 428 10 .01 21 1550 8 1 2 26 1 .12 1 1.51 1.65 1 119 1 1 9.01 1 1.27 1 10 35 21 3.66 1 .02 11 .47 287 10 .01 17 1350 13 1 2 24 1 .12 1 1.62 1.62 1.67 1 1.65 1 119 1 1 9.01 1 1 1.05 1 1 8 45 38 4.39 1 .03 1 8 788 1 1 .01 35 400 8 1 2 29 1 .11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 7 2.02 | PROJ: ATTW: Dave Hayward # MIN-EN LABS - ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 FILE NO: 65-0045-\$33+4 DATE: 96/07/16 * * (ACT:F31) | The bott may want | | | | | | | | | | EF: (6 | 04)32 | 7-343 | 6 F | AX: (6 | 504)32 | 7-342 | 23 | | | | | | | | | | * * | (ACT:F3 | |--|---|-----------------------------|-------------------|----------------------------------|----------------------|------------------------|-----------------------------------|-----------|----------------------------|-----------------------------|---|--------------------------------------|------------|---------------------------------|----------------------------|---------------------------|--|---------------------------------|---------------------------------|------------------------------|----------------------------------|----------------------|-------------|------------------------------|--------------------------|--------------------------|--|--| | SANPLE
NUMBER | AG
PPN | AL
% | AS
PPM | BA
PPM | BE
PPN | BI
PPM | CA
% | CD
PPN | CO
PPM | ÇR
PP H | CU
PPM | FE % | GA.
PPM | K
% | LI | MG
% | NA
PPN | MO
PPM | NA
% | NI
NAd | P | PB | SB | SN S | R TH | TE | | H ZN | | 96NL 1000 380E
96NL 1000 400E
96NL 1000 420E
96NL 1000 440E
96NL 1000 460E | 1.3 1
1.5 1
1.4 2
1.2 1
1.3 1 | .78
2.05
.20 | 1 1 1 | 235
245
297
270
230 | .1 | 6
8
10
6
4 | .74
.69
.93
.88
.82 | .1 | 17
15
19
11
18 | 45
49
55
34
46 | 13
20
32
14 | 4.04
3.75
4.39
2.75
3.79 | 1 1 1 | .05
.03
.04
.07 | 10
12
12
7
7 | .53
.73
.77
.36 | 580
453
844
518 | 12
13
15 | .01
.02
.02 | 23
27
33
17 | 980
480
590
450 | PPN
1
10
10 | 1 1 1 | 2 1 2 2 2 | 5 1
6 1
3 1 | .17
.18
.22 | 1 131.1
1 125.
1 142.4
1 105.4 | 3 75
3 99 | | 96NL 1000 480E
96NL 1000 500E
96NL 1000 520E
96NL 1000 540E
96NL 1000 560E | 1.3 2
1.4 1
1.5 1
1.4 1
1.2 1 | .96
1.21
1.67
1.20 | 1 1 | 546
341
198
277
194 | .1 | | 1.69
1.03
.88
.81 | .1 | 24
17
13
17
18 | 100
64
38
47
39 | 232
45
17
24 | | 1 1 1 | .04
.04
.08
.04 | 16
19
5
9 | | 624
4660
1445
357
606
658 | 13
16
12
9
13
10 | .02
.01
.01 | 82
38
16
29 | 450
280
380
590 | 32
5
1
7 | 1 1 | 3 7 2 2 2 2 2 2 2 | 8 1
0 1
9 1 | 17 | 1 125.1
1 105.1
1 99.0
1 127.1
1
128. | 3 93
4 114
3 84
4 58 | | 96NL 1000 580E
96NL 1000 600E
96NL 1000 620E
96NL 1000 640E
96NL 1000 660E | 1.4 1
1.8 2
1.9 1
1.5 1 | .19
.90
.10 | 1
8
1
1 | 236
300
211
155
287 | .1 | 12
12 | .84
1.23
.95
.83 | .1 | 16
17
18
11 | 42
91
49
35
46 | 25 3
42 3
23 4 | 3.37 | 1 | .05
.02
.03
.03 | 6
14
11
3 | .37
.90
.71
.38 | 988
517
424
258
383 | 10
13
14
10
13 | .02
.01
.02
.02
.01 | 24
41
28
17
28 | 360
330
270
290
340 | 2
7
13
1 | 1 1 | 2 1 | 9 1
2 1
4 1
4 1 | .12
.19
.12
.25 | 1 101.
1 132.
1 90.
1 141.
1 132. | 4 45
3 4 42
3 69 | | 96NL 1000 680E
96NL 1000 720E
96NL 1000 740E
96NL 1000 760E
96NL 1000 780E | 1.5 1
1.0 1
1.3 1 | .83
.56
.67
.99 | 10
1
1
1 | 308
510
144
248
188 | .1 | 2 1
6 1 | .74
1.94
1.04
.64
.90 | .1 | 18
8
14
13
17 | 49
38
45
46
51 | 22 4
34
25 2
22 3 | 1.60 | 1 1 1 | .03 | 10
6
6
12 | .81
.46
.86
.68 | 591
622
543
308
507 | 14
9
13
17
12 | .01
.01
.02
.01 | 28
54
28 | 540
440
408
1020
520 | 17
30
1
1 | 1 1 7 | 2 2 2 2 2 2 2 2 2 2 | 1 1 5 1 7 1 | .09 | 1 126.0
1 126.0
1 39.4
1 102.7
1 107.5 | 2 90
4 111
2 53
3 132 | | 96NL 1000 800E
96NL 1000 820E
96NL 1000 840E
96NL 1100 100E
96NL 1100 120E | 1.3 1
1.2 1
1.1 1
1.4 1 | .60
.40
.87
.73 | 44 | 438
337
245
592
375 | .1
.1
.1 | 3
3
6 1
4 | .69
.62
.12
.93 | .1 | 13
14
11
20
16 | 47
53
47
43
36 | 28 2
19 2
15 2
81 3
57 2 | 2.66
3.45 | 1 | .03
.04
.04
.04 | 9
10
7 | .79
.78
.64
1.17 | 492
518
402 | 15
16
18
14 | .01
.01
.01
.02 | 38
34
27
47
33 | 340
340
330
510
450 | 1 1 1 2 | 1 1 1 4 | 2 3 2 2 2 2 2 2 2 | 6 1
0 1
7 1
9 1 | .13
.09
.10
.11 | 1 100.5
1 80.6
1 85.5
1 99.2
1 86.2 | 2 96
3 119
4 95
1 65 | | 96NL 1100 140E
96NL 1100 160E
96NL 1100 180E
96NL 1100 200E
96NL 1100 220E | 1,0 2
.3 2
.9 1
.5 1 | .21
.55
.99
.90 | 1 | 1362
644
351
685
519 | .1 | 5
1
3 1 | .36
.95
.34
.17 | .1 | 31
20
13
24
21 | 56
50
28
48
45 | 137 4
75 3
47 3
108 3
106 3 | -88
-19
-36 | 1 | .05
.04
.08
.07 | 11
11
14
10
9 | 1.69 | 2376
2627
524
2090 | 16
13
15
13 | .02
.01
.01 | 63
41 | 560
760
1108
520
580 | 1
10
33
24 | 1 3 5 6 | 4322 | 7 1
1 1
2 1
6 1 | .14
.21
.15
.03 | 1 78.5
1 109.5
1 100.8
1 46.8
1 93.4 | 1 105
3 78
1 134
3 106 | | PANL 1100 240E
PANL 1100 260E
PANL 1100 500E
PANL 1100 520E
PANL 1100 540E | | .66
.93
.95
.66 | 1 1 1 | 338
517
238
224
174 | 1111 | 7 J
8
1 | .00
.07
.57
.54 | 111111 | 24
15
9
14
15 | 45
44
28
50
49 | 116 3
34 2
10 2
19 4
21 4 | 2.65
2.26
3.43 | 1 | .06
.04
.05
.03 | 9
6
3
15 | -71
-77
-24
-67 | | 11
10
6
13 | .01
.02
.01
.01 | 47
29
11
23 1 | 600
250
730
1750 | 30
10
17
12 | 6
2
1 | 2 3 2 2 1 1 1 1 3 1 | 8 1
9 1
3 1
7 1 | .15
.16 | 1 95.2
1 93.1
1 90.5
1 84.8
1 125.3 | 2 9
2 4
3 5
3 119 | | PANL 1100 560E
PANL 1100 580E
PANL 1100 600E
PANL 1100 620E
PANL 1100 640E | .1 1 | .02
.93
.89
.88 | | 240
180
180
244
463 | .1 | 1 1 1 1 1 | .81
.58
.37
.38
.24 | -1 | 23
18
15
14
8 | 59
58
47
44
36 | 33 5
26 4
20 5
21 3
45 1 | -46
-81
-73 | 1 | .02
.04
.03
.02
.03 | 12
10
12
14
16 | .83
.59
.45
.61 | 1708 | 15
14
14
11 | .01
.01
.01 | 35 2
27 2
26 2
24 1 | 2180
2950
1860 | 8
20
17
16 | 1 2 1 5 | 3 19
4 19
3 19
4 19 | 5 1
7 1
3 1 | | 1 121.3
1 120.6
1 122.5
1 127.7
1 96.0 | 4 86
3 116
4 109
2 173
2 115 | | 1500 660E
1500 680E
1500 700E
1500 720E
1500 740E | 1.6
1.0
.5 2
1.1 2 | .D8 | 29
1 | 725
695
693
204
202 | -1
-7
-1
-1 | | .30
.31
.36
.69 | .1 | 6
5
14
21
15 | 22
15
50
56
44 | 22 1
24 1
54 2
33 4
21 3 | .59
.39
.59 | 1 | .03
.03
.03
.03 | 10
5
8
16
13 | .33 | 695
598
937
477
364 | 9
7
17
15 | .01
.01
.01 | 33
21
85
33 | 110
120
400
560 | 3 9 6 | 1 1 4 | 1 1 1 2 40 3 2 | 5 1
2 1
6 1 | .02
.01
.01
.07 | 1 58.4
1 16.8
3 11.2
1 54.0
1 126.3 | 1 10
3 28
3 11 | | PENE 1100 760E
PENE 1200 140N
PENE 1200 120N | .5 1.
.7 1.
.7 | | 1 | 247
209
205 | :1 | 1
7
7 | .42
.42
.38 | .1 | 7
8
9 | 28
26
24 | 26 2
14 2
10 2 | - 15
- 49 | 1 | .04
.03
.03 | 9 4 3 | .60 | 288
662
909 | 7 | .01
.01
.01 | 13 | 600
650
870 | 12
25
8 | 1 1 | 3 17
1 13
2 13
1 11 | 5 1 | .16
.04
.14
.14 | 1 113.0
1 43.3
1 191.8
1 91.9 | 1 68 | | | | | | | | | - | • | | | - | | | | | | | <u> </u> | | | | | | | | | ···· | | MIN-EN LABS - ICP REPORT FILE NO: 65-0045-\$1546 DATE: 96/07/16 PROJ: 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 TEL:(604)327-3436 FAX:(604)327-3423 | ATTN: Dave Hayward | | | | | | | | | | | 04 3 3 2 i | | • | | :K, B.
504)32 | | | •·
 | | | | | | | | | <u> </u> | DAT | | 5/07/1
CT:F31 | | |--|-----------|--------------------------------------|---|---------------------------------|-----------|--------------|---------------------------|-----------|---------------------|----------------------|----------------------|------|-----------|-----|------------------|----------------------------|--------------------------|--------------------|--------------------------|----------------|----------------------------|--------------|-------------|------|---------------|------|------------|------------------------------|-----|---------------------------------------|---| | SAMPLE
NUMBER | AG
PPM | AL X | AS
PPH | 8A
PPH | 8E
PPM | 81
PPM | EA
X | CD
PPM | CO
PPM | ER
PPM | CU | FE | GA
PPM | K | · LI
PPM | NG | NN
PPM | MO
PPH | NA | NI
PPN | P | PB | \$8 | SH ! | SR | TH T | I U | ~ ~ | V 1 | Z ZN | ٦ | | 96HL 1200 100W
96HL 1200 80W
96HL 1200 60W
96HL 1200 40W
96HL 1200 20W | | 1.55
2.42
2.26
1.01
1.70 | 1 | 206
349
219
121
378 | .1 | 10
5
6 | .47
1.28
.85
.68 | 1111 | 11
23
18
9 | 32
57
64
38 | 11 3
70 3
46 5 | 2.45 | 1 | .04 | 9 | ,37
1.14
1.03
.27 | 627
869
734
615 | 9
13
16
6 | .01
.02
.03
.03 | 14
45
37 | 600
750
1110
1120 | 28
3
1 | 1
5
1 | 2 | 12
18
9 | 1.1 | 3 1
1 1 | 112.
107.
153.
115. | 2 3 | 6 PPH
2 64
3 63
5 62
6 57 | 1 | | 77 | | FFN | rn rr | n Frn | A PPH | PPM | PPM | PPH X | PPM | ス ス | PPH % | PPM | PPM | X | PPH PPM | PPM | PPM PPM PPM PI | 74 X | PPH | PPM S | PPH PPH | |--|---|--------------------|---|---|----------------------|----------------------------|-----------------------------|---|-------|--------------------------|---|-------------------------------------|----------------------------|--------------------------|---|----------------------------|---|---|-----------|--|---| | 96NL 1200 100W
96NL 1200 80W
96NL 1200 60W
96NL 1200 40W
96NL 1200 20W | .4 1.55
1.1 2.42
.9 2.26
.7 1.01
1.1 1.70 | 16 | 206 -
349 -
219 -
121 -
378 - | 1 4 4
1 10 1.2
1 5 8
1 6 6
1 10 1.2 | 8 .1
5 .1
8 .1 | 11
23
18
9 | 32
57
64
38
36 | 11 3.07
70 3.67
46 5.47
17 2.45
49 2.82 | 1 | .04
.03
.03
.03 | 9 .37
9 1.14
9 1.03
3 .27
7 1.04 | 627
869
734
615
1337 | 9
13
16
6
11 | .01
.02
.03
.01 | 14 600
45 750
37 1110
12 1120
34 630 | 28
3
1
14
2 | 1 2 12
5 3 23
1 4 18
1 7 9
4 2 22 | 1 .13
1 .21
1 .24
1 .14
1 .18 | 1 | 112.2
107.3
153.3
115.4
79.3 | 2 64
3 63
3 62
4 57
1 99 | | BL 96NL 1200
96NL 1200 20E
96ML 1200 40E
96NL 1200 60E
96NL 1200 80E | 1.4 2.09
.9 1.71
.2 1.85
.5 1.99
.4 1.36 | 8 9
1 9 | 385 .
220 .
311 .
328 . | | 8 .1
4 .1
2 .1 | 20
19
12
10
9 | 43
42
44
45
34 | 52 3.27
70 3.05
47 4.34
38 3.94
24 3.50 | 1 | .02
.03
.03
.02 | 8 1.24
12 .98
16 .81
17 .69
6 .59 | 1078
824
724
435
700 | 13
12
14
12
12 | .01
.01
.01 | 38 380
34 460
30 1300
25 1540
22 2320 | 1
7
8
13 | 4 2 21
5 2 36
1 3 26
6 3 25
1 2 23 | 1 .20
1 .12
1 .07
1 .08
1 .09 | 1 1 1 |
94.9
70.1
71.2
67.3
92.9 | 2 85
2 96
2 112
2 104
1 88 | | 96NL 1200 100E
96NL 1200 120E
96NL 1200 140E
96NL 1200 160E
96NL 1200 180E | 1.0 2.46
.9 1.73
.7 1.65
.5 1.55
.9 .96 | 1 1 | 541
235
.668
.44
207 | 1 5 .6
1 1 .6
1 6 .8 | 9 .1 | 16
12
10
18
7 | 62
43
43
42
22 | 42 4.47
25 3.20
33 3.31
34 2.99
9 1.57 | 1 1 1 | .04
.04
.04
.04 | 17 1.01
10 .67
12 .56 | 697
602 | 15
11
11 | .01
.01
.01
.01 | 35 1250
25 930
21 410
27 480
9 540 | 2
14
17
17 | 4 4 19
7 2 14
7 2 16
7 2 20
1 1 13 | 1 .16
1 .12
1 .10
1 .13
1 .13 | 1 | 115.5
98.3
112.5
90.3
70.0 | 3 99
2 72
3 46
2 60
3 37 | | 96NL 1200 200E
96NL 1200 220E
96NL 1200 240E
96NL 1200 260E
96NL 1200 280E | 1.3 2.11
.8 .89
3.7 2.80
1.3 1.59
1.3 1.69 | 1 1 | 49
57
59
155 | 1 9 5 | 3 .1
9 .1
6 .1 | 17
7
18
13
15 | 48
24
122
51
60 | 20 3.74
10 1.89
411 3.89
15 3.18
26 3.12 | 1 1 1 | .06
.03
.03
.02 | 10 .79
5 .21
9 .71
9 .60
10 .82 | 840
265
1651
364
511 | 7
14
10 | .02
.01
.01
.01 | 26 640
9 440
84 710
22 440
30 430 | 14
10
29
16
5 | 7 3 16
1 1 15
13 3 92
6 2 14
6 2 32 | 1 .22
1 .12
1 .17
1 .20
1 .18 | 1 3 | 120.9
88.5
125.5
123.1
102.9 | 4 67
3 49
7 88
5 97
5 69 | | 96HL 1200 300E
96HL 1200 320E
96HL 1200 340E
96HL 1200 360E
96HL 1200 380E | 2.0 1.76
1.3 2.14
.8 1.08
1.3 1.48
1.6 1.80 | 29 2
1 6 | 91
74
86
54
716 | 1 2 .4 | 2 .1 | 16
21
11
14
15 | 76
72
34
45
83 | 336 2.91
58 4.15
46 2.34
38 2.84
132 2.75 | 1 1 1 | .03
.03
.03
.04 | 12 1.31
9 .64 | 1092
635
508
1434
1867 | 12
15
10 | .01
.01
.01
.01 | 62 440
47 250
34 200
38 250
57 540 | 12
13
18
21 | 7 2 65
1 3 42
1 2 55
1 2 73
9 2 77 | 1 .12
1 .15
1 .06
1 .07 | 1 | 70.2
122.6
45.2
70.5
79.2 | 5 147
3 113
1 68
3 146
5 135 | | 96NL 1200 400E
96NL 1200 420E
96NL 1200 440E
96NL 1200 460E
96NL 1200 480E | 1.3 1.82
1.1 2.14
1.2 1.72
.7 2.02
1.1 1.22 | 1 6
1 6
1 6 | 20
58
25
52
52 | 1 11 1.2 | 7 .1 | 18
19
17
16
12 | 54
62
56
55
30 | 35 3.78
342 3.26
68 3.54
34 4.79
15 3.00 | 1 1 1 | .04
.03
.04
.04 | 15 .74
8 .44
16 .83 | 1079
4006
1860
872
1240 | 13
15 | :01
-01
-01
-01 | 31 590
94 430
26 460
29 1050
15 1190 | 23
38
37
17
32 | 5 2 29
11 2 79
7 2 60
1 3 24
1 2 20 | 1 .17
1 .14
1 .19
1 .15 | 1 | 120.3
99.9
131.2
111.3
91.3 | 4 132
4 164
4 125
2 124
2 97 | | 96NL 1200 500E
96NL 1200 520E
96NL 1200 540E
96NL 1200 560E
96NL 1200 580E | 1.2 1.61
1.3 .99
1.3 1.88
1.2 1.75
1.0 1.49 | 1 3 | 105
143
162
169
138 | 8.7 | 1 .1 | 16
12
18
17
11 | 48
31
54
48
35 | 19 4.06
11 2.61
23 4.51
17 3.74
25 3.50 | 1 1 | .04
.06
.04
.06 | 7 .55 | 601
1172
777
952
704 | 12
9
16
13 | .01
.01
.01
.01 | 21 1280
13 800
26 710
23 640
19 800 | 23
34
15
25
21 | 2 2 23
1 1 21
2 3 19
6 2 22
5 2 20 | 1 .17
1 .13
1 .19
1 .14 | 1 | 124.0
91.2
129.6
108.0
94.0 | 3 129
3 126
3 145
2 140
1 112 | | 96NL 1200 600E
96NL 1200 620E
96NL 1200 640E
96NL 1200 660E
96NL 1200 680E | .9 1.52
.9 .25
.9 .32
1.0 .38
.5 .56 | 76
43
4
1 | 17
58
17
65 | 1 .0 | 3 .1 | 13
2
2
2
4 | 35
8
8
9 | 39 3.95
8 .57
9 .67
16 1.86
26 2.34 | 7 9 1 | .04
.03
.03
.04 | 9 .62
1 .08
2 .11
4 .23
5 .33 | 601
194
38
135
219 | 4
5
7 | .01
.01
.01
.01 | 24 790
7 170
7 200
10 330
19 810 | 21
6
6
3
10 | 2 2 19
3 1 6
3 1 7
1 1 7 | 1 .11
3 .01
3 .01
1 .01 | 1 3 3 2 1 | 95.3
11.8
12.6
13.9
18.2 | 1 123
2 38
2 47
1 57
1 129 | | 96ML 1200 700E
96ML 1200 720E
96ML 1200 740E
96ML 1200 760E
96ML 1200 780E | 1.1 .57
1.5 .45
.8 .37
.5 .85
1.8 1.86 | 1 1 | 72
69
29
79
44 | 1 1 7 | 3 .1 | 6
2
5
16 | 14
12
8
19
84 | 32 1.85
27 1.44
19 1.12
22 2.15
51 4.22 | 7777 | .03
.03
.00
.06 | 6 .35
5 .27
4 .22
10 .44
15 1.21 | 561
610
85
145
533 | 9
8
7
11 | .01
.01
.01
.01 | 27 440
17 320
11 360
18 1270
70 2050 | 5
7
1
21 | 1 1 8
1 1 6
1 1 4
1 1 24
1 3 31 | 1 .01
1 .01
1 .01
1 .01
1 .09 | 1 1 | 13.8
13.4
11.3
29.0
84.1 | 1 139
1 77
1 67
1 134
3 215 | | 96NL 1200 800E
96NL 1300 100E
96NL 1300 120E | 1.5 1.53
1.6 1.32
1.6 2.29 | 1 3 | 32
60
33 | 18 18 | 3.1 | 9
11
18 | 66
39
52 | 31 3.75
15 2.73
42 3.39 | 1 | .06
.04
.03 | 11 _68
5 _40
11 1_01 | 224
433
565 | 22
10 | -01
-01
-01 | 41 1190
15 700
34 490 | 30
25
5 | 3 2 31
1 2 18
7 2 26 | 1 .06
1 .22
1 .21 | | 78.5
124.7
105.9 | 4 189
3 55
3 59 | | SAMPLE
Number | AĞ
PPM | AL. | AS
PPH | BA
PPH | BE
PPH | B!
PPN | CA
% | CD
PPN | CO | CR
PPM | CU
PPH | FE X | GA
PPN | K | L1
PPM | MG
X | NH
PPH | MO | NA
X | NI
PPK | P | P8
PPM | SB | SN | SR
PPM PI | TH 1 | Fj (| V | 200 | |--|--------------------------|--------------------------------------|---|---------------------------------|----------------------|---------------------------|-------------------------------------|----------------|----------------------------|------------------------------|------------------------|--------------------------------------|------------------|---------------------------------|-------------------|-----------------------------------|---------------------------------|----------------------------|---------------------------------|------------------------------|----------------------------------|-----------------------|------------------|-------|----------------------------|------|----------------|---|-----------------------------| | 76NL 1300 140E
76NL 1300 160E
76NL 1300 180E
76NL 1300 200E
76NL 1300 220E | 1.2
1.4
1.3
1.7 | 2.24
1.73
2.20
2.23
2.24 | 1 1 1 | 445
459
410
279
283 | .1 | 7
12
14
10
16 | .86
.30
1.51
1.37
1.52 | .1 | 17
12
16
16
16 | 59
42
53
46
52 | 31
19
38
29 | 3.60
2.71
3.23
3.52
2.85 | 1 1 | .04
.03
.03
.03 | 17
7
8
8 | .97
.58
.77
.88 | 549 | 13
9
11
12
11 | .01
.01
.02
.02 | 32
19
27
29
28 | 610
450
460
750
330 | 1
9
3
1 | 1 1 2 1 7 | 2222 | 22
20
20
22
22 | | 18 | 105.1
123.7
126.1
119.9
108.2 | .PPH P | | 6ML 1300 240E
6ML 1300 320E
6ML 1300 340E
6ML 1300 360E
6ML 1300 380E | 1.2
1.1
1.8
1.4 | 2.19
2.61
2.26
2.15
1.79 | 1 | 214
203
184
133
184 | 111111 | 6 :
10 · | .37
 .18
 .02
 .84
 .00 | .1
.1
.1 | 18
21
19
19
16 | 48
123
99
82
67 | 30
16
18 | 3.39
3.94
4.43
4.34
3.02 | 1
1
1
1 | .04
.02
.03
.02
.02 | | 1.20
.90
.77 | 453
410
443
368
469 | 13
14
15
14
11 | .01
.02
.03
.01 | 28
54
39
32
27 | 410
249
650
330
270 | 4
1
1
8 | 5 1 1 3 | 23332 | 18
22
18
19 | 1 . | 26
19
23 | 123.9
140.7
152.6
153.8
117.1 | 3 4 4 | | 76NL 1300 400E
76NL 1300 420E
76NL 1300 440E
76NL 1300 660E
76NL 1300 680E | .5
.1
.5 | 2.13
2.14
1.73
4.05
3.59 | 1 1 | 209
270
835
668
868 | .1
.1
.1 | 15 1 | .33
1.42
.66
.82
1.43 | .1 | 18
18
19
54
57 | 66
73
49
303
347 | 22
42
143
177 | 3.18
3.20
4.01
7.01
6.47 | 1
1
1
1 | .03
.04
.05
.07 | 32 | 3.05
3.55 | 445
1194
5127
3783 | 11
12
13
24
21 | .02
.02
.01
.01
.03 | 32
34
32
178
184 | 250
250
420
400
730 | 1
1
22
1 | 3 4 2 1 1 | 22255 | 17
18
19
42
73 | 1 ,: | 12
10 | 120.4
120.1
105.3
121.4
129.4 | 4
4
3 3
7 1
8 1 | | 25HL 1300 700E
25HL 1300 720E
25HL 1300 740E
25HL 1300 760E
JACKAROO | 1.0 | 1.32
2.71
1.06
1.12
2.24 | 60
1
1 | 290
442
319
595
57 | .1
.1
.1
.1 | 1 1 1 | .48
.53
.24
.34 | .1 | 22
47
10
12
21 | 48
194
19
16
51 | 41
32
20 | 3.13
4.77
2.56
2.42
4.07 | 1
1
1
1 | .13
.06
.10
.13
.03 | 29
9
8 | .83
2.72
.44
.32
1.27 | 1653
438
1093 | 14
19
14
10
14 | .01
.01
.01
.01
.01 | 55
96
28
18
37 | 440
520
1030
860
580 | 214
1
51
231 | 1
1
1
1 | 24113 | 25
25
21
27
28 | 1 .0 | 12
31
01 | 31.6
106.4
26.0
20.9 | 1 6 | | | | | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | | | | | | | | | | | | | | , | | | | , | - | | | | ווואותא ראפה τι (Σ COMP: MR DAVE HAYHARD PROJ: MIN-EN LABS — ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 ROCK | PROJ: | | • | 8282 SHED | RDONE ET | TOP REPORT
 1001 | FILE NO: 68-0045-R | |--|--|--|--|---|--|---|--| | ATTN: Dave Hayward | | Ba | TEL: (6 | 04)327-3436 | ANCOUVER, B.C. V5X 4E8 | | DATE: 96/07/ | | SAMPLE
NUMBER | AG AL AS
PPH % PPN | Bo Be BI CA | CD CO | CR CU FE | FAX:(604)327-3423 GA K LI NG MN | MO NA NI P P8 | * * (ACT:F3 | | 96NL 850 62DE
96NL 1000 190E
96NL 1000 390E
96NL 1000 400E
96NL 1075 18DE | 2.8 3.87 1
.6 1.07 117
1.9 3.24 1
1.7 2.09 1
.8 .09 41 | 109 .1 17 1.85
1354 .1 1 .10
95 .1 7 3.76
31 .1 9 2.54
82 .1 1 .02 | .1 31
.1 6
.1 41
.1 15 | 40 799 9.29
63 23 1.85
50 52 6.67
67 46 2.49 | GA K LI MG MN X PPM X PPM 1 .06 7 3.10 1574 1 .02 18 2.97 1213 1 .02 2 .95 417 4 .04 2 .02 29 | PPM % PPM PPM PPM
25 .02 31 900 1
8 .01 25 390 1
20 .03 37 710 | SB SN SR TH TI U V W Zh
PPN PPN PPN PPM X PPM PPM PPM PPM
1 7 23 1 .40 1 224.1 1 149
1 1 49 1 .01 1 10.7 2 104
1 5 2 1 .34 1 220.0 1 54
7 2 8 1 18 1 220.0 1 54 | | 96NE 1100 8165E
96NE 1100 510E
96NE 1200 198W
96NE 1300 2108E
96NE 1300 220E | 1.7 2.63 1
1.8 2.52 1
2.1 2.75 30
1.7 3.02 1
1.4 3.46 22 | 120 .1 7 1.63
183 .1 12 2.43
86 .1 15 3.26
60 .1 7 3.04
26 .1 1 1.99 | .1 29
.1 22
.1 12 | 82 13 .34
27 62 5.04
80 46 3.38
76 84 2.10
22 59 5.30
50 64 4.74 | 1 .01 4 1.91 772
1 .01 2 1.51 517
1 .01 7 1.04 346
1 .01 3 1.33 759 | 16 .03 47 640 1
12 .07 40 460 1
11 .03 18 780 3 | 1 1 2 1 .01 1 8.4 10 1
1 4 18 1 .26 1 99.3 1 61
1 2 6 1 .24 1 99.1 2 6
15 2 9 1 .17 1 100.2 5 21 | | 96NL 1320 445E (4
96NL 1328 431E (4
96NL 1500 200E
96NL 1600 650E
96NL 1600 865E
96NL 2000 430E | 1.0 .72 31
.9 .41 1
1.9 2.9; ; | 229 .1 1 .13
10000 .2 2 .35
132 .1 5 1.07
477 .1 2 .06
50 .1 11 5.25 | .1 10 1.
.1 15 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 .1 | 35 117 3.88
75 105.1.98
79 4 .67
93 21 1.49
36 17 2.31 | 1 .04 12 3.06 867
1 .60 15 1.31 381
1 .04 2 .15 478
4 .01 2 .12 126
1 .12 4 .19 131
1 .01 3 .50 281 | 14 .01 33 330 1
9 .01 35 418 55
4 .01 7 100 7
8 .01 11 200 5 | 1 4 10 1 .16 1 96.7 1 5
1 3 31 1 .05 1 179.3 6 5
29 1 94 1 .01 1 38.1 4 6
4 1 29 1 .03 1 19.9 10 4
1 1 13 1 02 1 122 | | 96NL 2020 430E
96NL 2020 430E
JACKARDO | 1.5 1.2: 69
2.4 2.24
.9 .97 | 116 .1 8 .49
208 .1 24 1.34
39 .1 8 .72 | .1 20 10
.1 41 10
.1 13 15 | 00 54 2 70 | 1 .06 7 1.03 890
1 .11 10 1.74 1446
1 .12 5 .30 98 | 12 .01 20 380 35
11 .03 35 440 1
18 .06 67 740 1
32 .10 49 320 7 | 1 1 13 1 .02 1 12.2 5 30
25 1 1 1 1.12 1 69.8 6 30
1 2 13 1 .14 1 50.3 5 24
1 4 11 1 .30 1 93.4 2 45
1 2 40 1 .13 1 171.1 10 23 | | | | | | | | | , | | | | | | | | | · | | | 4. | | | | | | | | | | | | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | - Mary Mary Mary Mary Mary Mary Mary Mary | | | | | | | | | | <u> </u> | | | | | | | | | | | | | , | | | COMP: MR. DAVE HAYWARD PROJ: MIN-EN LABS - ICP REPORT 8282 SHERBROOKE ST., VANCOUVER, B.C. V5X 4E8 FILE NO: 7S-0190-RJ1 DATE: 97/08/13 | N: Dave Hayward / | | | | | | | | | | | | | 36 F | | | | | | | | | | | | | | | | * | | |--|-----------|--------------|-----------|-------------|-------------|-----------|---------------------------------------|-------------|-----------|------------|-----------|---------------------------------------|-----------|--------|-----------|-------------|----------------|-------------|---------|-----------|-------------|-----------|---------|-----------|-----------|----|------------|---------|---------------|----------| | SAMPLE
NUMBER | AG
PPM | AL
% | AS
PPM | BA
PPM | BE
PPM | BI
PPM | CA
% | CD
PPM | CO
PPM | CR
PPM | CU
PPM | FE
 % | GA
PPM | K
% | LI
PPM | MG
% | MN
PPM | MO
PPM | NA
% | NI
PPM | P
PPM | PB
PPM | SB | SN
PPM | SR
PPM | TH | TI
% P | U
PM | V
PPM | W
PPM | | 97N RTS
97N 1320N 450E | 2.0 | 2.33
1.89 | 16
5 | 132
6779 | 1.6 | 40
6 | 1.54
2.28 | 1.1
3.1 | 37
17 | 133
130 | 80
126 | 7.34 | 12 | .02 | 1 | 1.78
.17 | 825
2460 | 1 2 | .05 | 53
58 | 550
410 | 32
40 | 3
10 | 1 | 1
170 | 1 | .50
.01 | 1 1 | 130.5
50.2 | 7 7 | | | | | | | | | | | | | | | | | | | | | • | | | | | - | . , | | | | | | | <u> </u> | · | | | | | | | | | | | | | | | | ······································ | | | | | | | | | | | | | | | | | | . === | - | | | | | | | ÷ | • | | ···· | | | ····· | | | | | | | | •• | ····· | · · · · · · · · · · · · · · · · · · · | | | | | | | | | • | | | | | | | | | | | | | | | | | ļ | | | | | | | | | | | · · · · · · · · · · · · · · · · · · · | <u> </u> | | | | | | | | | | | | , | | • | | | | | | | | SPECIALISTS IN MINERAL ENVIRONMENTS CHEMISTS • ASSAYERS • ANALYSTS • GEOCHEMISTS **VANCOUVER OFFICE:** 8282 SHERBROOKE STREET VANCOUVER, B.C., CANADA V5X 4E8 TELEPHONE (604) 327-3436 FAX (604) 327-3423 **SMITHERS LAB:** 3176 TATLOW ROAD SMITHERS, B.C., CANADA VOJ 2NO TELEPHONE (604) 847-3004 FAX (604) 847-3005 | | | Qual | ity Assaying for over 25 Ye | ars | |---------------------|------------------------------|--------------------|-----------------------------|-----------------| | Ass | ay Certific | <u>ate</u> | | 7S-0190-RA1 | | Company: | MR. DAVE | E HAYWARD | | Date: AUG-13-97 | | Project:
Attn: | Dave Haywa | rd / Gary Lee | | | | | y certify the i
i MMM-DD- | | of 2 ROCKS samples | | | Sample
Number | | Au-fire
g/tonne | | | | 97N RTS
97N 1320 | ON 450E | .01
.02 | ROCK | | | | | | | | Certified by MIN-EN LABORATORIES