BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:

1997/1998

REPORT #:

PAP 97-33

NAME:

TIM TERMUENDE

GEOLOGICAL REPORT

on the

GD MINERAL PROPERTY

Fort Steele Mining Division, South-Eastern British Columbia N.T.S. 82F/16W

Latitude 49° 47' N, Longitude 116° 26' W

by

T.J. Termuende, P.Geo. 2720-17th Street South Cranbrook, B.C. V1C 4H4

January 21st, 1998

Geological Survey Branch MEI

JAN 27 1998

F83

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM **PROSPECTING REPORT FORM (continued)**

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.

 If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name Tim TERM	NUENDE	Reference Number	97198 183
LOCATION/COMMODIT	IES		
Project Area (as listed in Part	A) DEWAR CREEK	MI	NFILE No. if applicable
Location of Project Area	NTS <u>82F/16W</u>	Lat	49°47'N Long 116°26'W
			1. Road access along Denvir
			ccessed by helicopter from
Crambrook	<i>o</i>		, , , , , , , , , , , , , , , , , , , ,
	For An Pb. En	. Cu.	
			
Known Mineral Occurrences	in Project Area Great	Dane prospec	t - massive Ag, Plo, En, Cu = Co
sulphide hosted by	steeply digging (reston Fm. Qu	artzites.
	, , , , , , , , , , , , , , , , , , , 	6	
WORK PERFORMED			
1. Conventional Prospec	ting (area) 8 Km²		_
2. Geological Mapping (hectares/scale)		
3. Geochemical (type an	d no. of samples) <u>270 5</u> 44	<u>mpleo: 170 Soi</u>	1; 84 rock; 16 silt
l .			***************************************
6,. Drilling (no,. holes, s	ize, depth in m, total m)		
7. Other (specify)			
SIGNIFICANT RESULTS Commodities Ag, Pb, Z Location (show on map) Lat	n, Ca (5 showings	discovered Cla	nim Name <u>GD </u> WElevation <u>/500 - 2000</u>
Best assay/sample type 32			
	89/£ Ag , 38.50% Pb		
			contrists of late phase veining
and fracture-fil	ing within pre Con	abrian-aged	quartites of the Creston
Formation often	proximal to precame	brian Moyie sil	lls (gabbro). 5 new showing
discoveries were n	rade all within	the same stra	tigraphic package, over
a strike length of	of 3.5 Km. A prom	inest multi-	element soil acochemical
anomaly is present	on the dains and	estands one	1 2.3 km. Showings were
found within the	anomaly area.		r 2.3 km. Showings were

TABLE OF CONTENTS

SUMMARY	2
INTRODUCTION	4
LOCATION AND ACCESS	5
PROPERTY TENURE	.6
REGIONAL ECONOMIC HISTORY	7
GEOLOGY	
REGIONAL GEOLOGY	8
PROPERTY GEOLOGY	9
MINERALIZATION	10
1996 PROGRAM	13
1997 PROGRAM	13
RESULTS	14
CONCLUSIONS AND RECOMMENDATIONS	15
REFERENCES	18
<u>LIST OF FIGURES</u>	
FIGURE 1 – AREA GEOLOGY AND PROPERTY LOCATION MAPafter	page 5
FIGURE 2 - SAMPLE LOCATION MAPir	n pocket

LIST OF APPENDICES

APPENDIX I: CERTIFICATE OF QUALIFICATION

APPENDIX II: ANALYTICAL RESULTS

APPENDIX III: STATEMENT OF EXPENDITURES

SUMMARY

The GD group of mineral claims were initially staked in March, 1996 following research of the St. Mary/ Dewar Creek area. A total of 32 MGS units were staked to cover steeply-dipping Creston Formation rocks along strike with the Great Dane showing, a polymetallic, sediment-hosted massive sulphide occurrence located at the headwaters of Morris Creek, which drains into the St. Mary River. The Great Dane mineral occurrence is covered by three crowngranted titles owned by Mr. Eric Denny of Nelson, B.C., all of which are surrounded by the GD 1 and GD 2 claims.

With the aid of a Explore BC prospecting grant, a comprehensive stream-sediment and contour soil geochemical program was carried out on the property during the 1996 season and saw a total of 280 soil, 19 rock, and 10 silt-samples collected, at a total cost of \$9,000. Follow-up work was carried out between June 9th and September 26th, 1997. The 1997 program extended soil contour lines, and concentrated on intensified prospecting along a well-defined, steeply-dipping stratigraphic horizon. A total of 170 soil, 84 rock, and 16 silt samples were collected in 1997 at a total cost of \$13,525.47, representing a unit cost of \$50.09/sample.

The program was extremely successful overall. Mineralization similar to that seen at the Great Dane workings were located within the boundaries of the GD claims, and apparently along the same stratigraphic horizon. A total of 5 significant new showing discoveries were made during 1997, and previously undocumented development was located during 1996 work. In addition, a pronounced geochemical anomaly was delineated through contour soil sampling, and extends over 2.3km of strike length (parallel to stratigraphy), and over 600m vertically, from elevation 1520m (5000') to 2134m (7000').

Prior to 1996/1997 program, no work had been reported on this extremely prospective stratigraphic interval. This report will document both 1996 and 1997 work, with assessment

credits only applied to 1997 expenditures. Further work is recommended for the property. A two-phase \$295,000 is recommended to further develop the potential of the property.

INTRODUCTION

The GD group of claims were initially acquired by staking in March 1996, following research completed on the area by the author. The exploration target for the claims are stratabound massive sulphides, hosted by preCambrian Creston Formation rocks. Contained within the property boundaries are three crown-grants first surveyed in 1901, which cover the Great Dane prospect, a stratabound massive sulphide occurrence located near the turn of the century. At the Great Dane, an adit has been driven 90m along vertical, north/south-striking Creston phyllitic quartzites. Mineralization consists of pods and stringers up to 2.0m thick containing galena, chalcopyrite, sphalerite, pyrite, pyrrhotite, cobalt and siderite.

The focus of work was to explore the stratigraphic interval containing the Great Dane mineralization along strike of the workings themselves, outside the boundaries of the existing Crown Grants. During the course of the 1996 program, a previously undocumented shaft was discovered, blasted into a 2.7m-thick massive pyrrhotite/copper horizon, apparently oriented parallel to stratigraphy, and directly along-strike with the Great Dane. The workings were subsequently named the Purina Shaft, and are thought to date back to the turn of the century, based on vegetation overgrowth. Throughout the course of the 1997 program, a further four mineral showings were discovered, all within the same stratigraphic interval as the Purina/Great Dane, and serve to underscore the significant economic potential of this particular package of rocks.

Exploration work to date indicates that the property contains excellent potential for the presence of stratabound sulphide mineralization. The area's favourable location and topography make it an excellent target for more advanced work, including trenching and diamond drilling. A two-phase \$295,000 program is recommended for the property.

LOCATION AND ACCESS

The GD property is located within the Fort Steele Mining Division, within NTS mapsheet 82F/16W at 49° 30' North latitude and 116° 26' West longitude (see Location Map; Figure 1, following). It is situated 37 km west of Kimberley, B.C. and is accessed by seasonally-maintained Forest Service roads. Logging roads access lower reaches of the property.

The north-south oriented claim group consists of 40 MGS claim units which straddle the 2440m ridge which divides the Dewar Creek and St. Mary River valleys. The claims overlie the headwaters of Morris Creek, which flows northward to the St. Mary River, and an unnamed tributary to Coppery Creek, which flows south-eastward to Dewar Creek. Access is provided from both the south and the north, along the St. Mary River and Coppery Creek roads, respectively.

Elevations within the property range from 1220m (4000') to 2440m (8000'). The property is subjected to moderate precipitation, and is free of snow from June to October. The property is forested for the most part, (with the exception of ridges and escarpments) with mature stands of Hemlock, Cedar, Fir, and Spruce. Plans are currently in place by Crestbrook Fcrest Industries to harvest timber located within property boundaries in the near future-(J. Gnucci, R.P.F., personal communication).

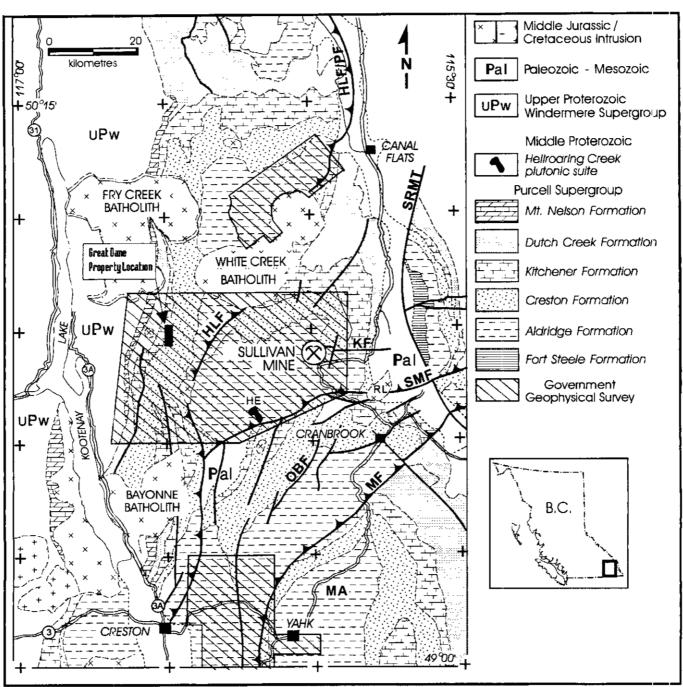


Figure 1 - Great Dane Project-Regional Geology and Property Location Map

PROPERTY TENURE

The property area consists of two 16-unit MGS claim blocks (GD 1 and GD 2), and eight 2-post claims (GD 3-10), initially located in March, 1997 by the author. Claim boundaries and post locations are shown on Figure 2, in pocket. A summary of tenure information is provided below:

<u>Type</u>	Record No.	<u>Units</u>	Location Date	Expiry Date*
MGS	354693	16	March 22, 1997	March 21, 2001
MGS	354694	16	March 22, 1997	March 21, 1999
2P	354357	1	March 6, 1997	March 6, 1999
2P	354358	1	March 6, 1997	March 6, 1999
2P	354359	1	March 6, 1997	March 6, 1999
2P	354360	1	March 6, 1997	March 6, 1999
2P	354361	1	March 6, 1997	March 6, 1999
2P	354362	1	March 6, 1997	March 6, 1999
2P	354363	1	March 6, 1997	M arch 6, 1999
2P	354364	_1	March 6, 1997	March 6, 1999
	MGS MGS 2P 2P 2P 2P 2P 2P 2P 2P	MGS 354693 MGS 354694 2P 354357 2P 354358 2P 354360 2P 354361 2P 354362 2P 354363	MGS 354693 16 MGS 354694 16 2P 354357 1 2P 354358 1 2P 354359 1 2P 354360 1 2P 354361 1 2P 354362 1 2P 354363 1	MGS 354693 16 March 22, 1997 MGS 354694 16 March 22, 1997 2P 354357 1 March 6, 1997 2P 354358 1 March 6, 1997 2P 354359 1 March 6, 1997 2P 354360 1 March 6, 1997 2P 354361 1 March 6, 1997 2P 354362 1 March 6, 1997 2P 354363 1 March 6, 1997

Total: 40 units

^{*} Upon acceptance of assessment expenditures by MEI

REGIONAL ECONOMIC HISTORY

The East Kootenay area has long been known as a mineral resource-rich area, with numerous mineral showings documented over the years. The turn of the century discovery of Comiricc's world-class Sullivan deposit near the present city of Kimberley, put the area into focus with mineral explorationists world-wide. The Sullivan massive sulphide ore body hosted 180,000,000 tons of ore averaging 6.5% zinc, 6.4% lead and 1.90 oz/t silver, with a mineable lifetime of over 100 years, and a contained metal value in present dollars estimated to be in excess of 25 billion dollars. (Over 7 years of mineable reserves still exist within the deposit).

Numerous other past-producers in the area reflect the excellent mineralogic potential of the region. These include:

- 1) St. Eugene Mine (1899-1929) 1.63 million tons grading approximately 8% lead, 1% zinc, 4.4 oz/t silver.
- 2) Estella Mine (1951-1967) 120,000 tons grading 4.8% lead, 9.0% zinc, 6.4 oz/t silver.
- 3) Kootenay King Mine (1952-1953) 14,616 tons grading 5.3% lead, 15.1% zinc, 1.94 oz/t silver.

The area is also well known for the presence of once-rich placer gold deposits, though no economic hard-rock gold concentrations have yet been located. The Perry Creek, Findlay Creek, and the Wildhorse and Moyie Rivers saw frenzied placer mining activity beginning in 1864, with over 1,500,000 ounces of gold extracted from their gravels. Placer mining is still active on the Wildhorse and Moyie Rivers.

GEOLOGY

REGIONAL GEOLOGY

(See Property Location and Regional Geology Map, Figure 1)

Regionally the area is underlain by rocks of the Purcell Supergroup on the western flank of the Purcell Anticlinorium, a broad, north-plunging arch-like structure in Helikian and Hadrynian aged rocks. The anticlinorium is allocthonous, carried eastward and onto the underlying cratonic basement by generally north trending thrusts throughout the Laramide orogeny during late Mesozoic and early Tertiary time (Price, 1981).

The oldest rocks exposed in the area are greenish, rusty weathering thin bedded siltites and quartzites of the + 4000m thick Lower Aldridge Formation, along with the facies-related, dominantly fluvial Fort Steele Formation (the base of which is unexposed). The Sullivan deposit is located some 20-30m below the upper contact of the Lower Aldridge Formation. Overlying the Lower Aldridge is a continuous section of Middle Aldridge quartz wackes, subwackes and argillites some 3000+ m thick. Within the Middle Aldridge formation, fourteen varved marker horizons can be correlated over hundreds of kilometres. These represent the only accurate stratigraphic control. A number of aerially extensive, locally thick gabbroic sills are present within the Lower and Middle Aldridge Formations. These sills and dykes; the "Moyie Sills", locally were intruded into wet, unconsolidated sediments, and have been dated to 1445 Ma, providing a minimum age for Aldridge sedimentation and formation of the Sullivan deposit. The Middle Aldridge is overlain conformably by the Upper Aldridge, 300 to 400 meters of thin, fissile, rusty weathering sillite/argillite.

Conformably overlying the Aldridge Formation is the Creston Formation, comprising approximately 1800 meters of grey, green and maroon, cross-bedded and ripple marked platformal quartizites and mudstones. The Kitchener-Siyeh Formation, which includes 1200 to 1600 meters of grey-

green and buff coloured dolomitic mudstone are shallow water sediments overlying the Creston Formation. It is this sedimentary sequence which underlies the GD 1 and GD 2 properties.

The upper portion of the Purcell Supergroup consists of the Dutch Creek and Mount Nelson Formations. The Dutch Creek formation consists of approximately 1200 meters of dark grey, calcareous dolomitic mudstones. Overlying the Dutch Creek formation is the Mount Nelson formation, 1000 meters of grey-green and maroon mudstone and calcareous mudstones. This unit marks the top of the Purcell Supergroup.

The Purcell Supergroup in the Sullivan area was deposited along an active tectonic basin margin. Dramatic thickness and facies variations record Purcell-age growth faults and contrast with gradual changes characteristic of most Purcell rocks elsewhere. These faults reflect deep crustal structures that modified incipient Purcell rifting, and led to the development of an intercratonic basin in middle Proterozoic time.

PROPERTY GEOLOGY

The GD 1-10 claims cover a steeply deeply package of phyllitic quartzites and dolomitic limestones belonging to the Proterozoic Creston and Kitchener Formations, respectively. Within the GD 1 claims, a number of thick gabbroic sills are present, and may be related to mineralization. A single 2m-wide, vertical felsic dyke was mapped during 1997 work, but was found to be barren.

Bedding throughout the property area is vertical or sub-vertical, with beds striking NNE. Beds may be overturned locally, though distinct structural relationships have not yet been ascertained. No significant folding or faulting has been recognised in the property area.

PROPERTY MINERALIZATION

Target mineralization on the GD claims are stratabound massive sulphides within Creston Formation quartzites. Such an occurrence exists at the Great Dane showing, located within three small crown-granted titles (owned by E. Denny) situated within the GD 1 property boundary. Soil samples collected within the property area outline a geochemically anomalous interval oriented parallel to stratigraphy approximately 100m in width and 2.3km in length, with a vertical continuity of over 600m. Within this anomalous trend, a further six significant mineralized polymetallic showings were located during 1996/1997, all along strike with the Great Dane, and indicate considerable potential for economic mineralization within a particular stratigraphic interval. These showings, named the Purina Shaft, Meatball, Pup, Alpo, Flea, and Milkbone, all occur within creamy coloured, fine-to medium grained quartzite, and are spaced over 3.5km, and vertically over 620m. Showing descriptions are as follows, and are listed as they occur, north-to-south. Individual sample descriptions are appended, following this report.

Meatball:

This showing consists of subcrop material exposed in boulders up to 1m in diameter. It is located at elevation 1700m, at L5000/11+20E, and occurs within a pronounced soil geochemical anomaly area. Mineralization consists of fine disseminated and "crackle" galera vein stockwork within creamy, fine grained quartzite material. Sample TTGD97R-06 returned. 72.0 g/t Ag and 6.84% lead over 1.0m.

Pup

Located at L5000/9+75E, 150m west of the Meatball showing (but within the soil geochemical anomaly area), this showing consists of sphalerite, galena, and chalcopyrite as fracture-fillings within creamy white quartzite material, both parallel and cross-cutting local bedding/foliation. Grab sample TTGD97R-13 returned 1.07% Zn, 948ppm Pb, and 446 ppm Cu.

Flea

Located at elevation 1865m, this showing consists of disseminated chalcopyrite as fracture fillings within thin-bedded, fine to medium- grained grey to white pyritic quartzite, oriented 0.19/90. Sample CDGD97R-12 returned 0.13% Cu from mineralized quartzite material.

Purina Shaft:

This showing is located at elevation 1880m (6200 feet), and was discovered during the 1996 program. It has seen limited historic development, with a 7m-deep shaft sunk into a 2.7m wide pyrrhotite lens, though no documentation has been found relating to its existence. Vegetation overgrowth suggests activity at the turn of the century (many showings in the area were discovered and worked in 1892). Chalcopyrite, sphalerite, and trace galena occur within the massive sulphide lens, with samples of dump material returning values to 2.13% Cu, 27.6 g/t Ag, and .17% Zn. Samples TTGD96-05 and TTGD96-06, continuous-chip samples taken over 2.7m returned a weighted average of .66% Cu. Mineralization appears to be oriented parallel to stratigraphy, but is sheared off along the western wall of the shaft. It is interesting to note that apparently barren footwall schist material returned .78% Cu over 1.0m (TTGD96-08).

Alpo

Located at 2000m, 120m vertically above the Purina Shaft, this showing consists of fracture coating, disseminated and stringer chalcopyrite within cream-coloured, fine-grained, well-foliated quartzites oriented 010/85E. Mineralization occurs over 5.0m, but in sub-economic grades. Sample TTGD97R-25 was taken over 2.0m, and returned 14.6g/t Ag and 1.16% Cu.

Great Dane:

Discovered in 1892, this showing has seen limited development, including 90m of drifting, most of it within barren quartzite. Historical records indicate that development work ceased in 1903. It is located at elevation 2160m (7100 feet), and is difficult to access. A road to the showing area was attempted in 1982, but after all exploration funds were exhausted, work was

halted. The road contains 14 switchbacks and reaches 1800m elevation, 400m below the Great Dane workings.

Mineralization is apparently late-stage, and consists of massive galena, sphalerite, and chalcopyrite with lesser erytherite, argentite, and scorodite over 1.8m. Mineralization is structurally-controlled, and is abruptly truncated by a fault 3-4m into the drift. Samples taken of mineralization at the portal are reported as 0.2 g/t Au, 65 g/t Ag, 2.60 % Cu, 9.60% Zn, 14.00% Pb, and 0.10 % Co.

Related mineralization occurs 40m east of the portal, and continues downslope at orientation 010/90, where it is exposed in a number of shallow trenches. Stringers of quartz with galeria, and lesser sphalerite and chalcopyrite occur upslope and to the west, parallel to the Great Dane. Galeria occurs as irregular veinlets in quartzite roughly along strike 60m vertically upslope of the main workings, in what is described on Figure 2 as the Upper Adit. TTGD97R-14 sampled material in place at the Upper Adit, and returned 1292 ppm lead over a 2.0m continuous-chip.

Milkbone:

Located on the last field day of the 1997 program, this showing is situated at elevation 1580m along the southernmost claim boundary, within a rugged creek draw which drains northward into the St. Mary River. Mineralization consists of foliation-parallel massive galena over 15cm, and has unknown lateral continuity. Base-metals are hosted by medium to coarse-grained, creamy white quartzite, located 30m east of gabbro sill. Sample MWGD97R-06, taken across 15cm of massive galena, assayed 288.0g/t Ag and 38.5% Pb.

1996 PROGRAM

The primary focus of the 1996 exploration program on the GD 1 and GD 2 claims was to locate a possible extension of mineralization such as that seen at the Great Dane prospect. With the presence of near-vertical bedding and consistent strikes, it was determined that contour soil sampling would provide the most effective means of sample coverage. In addition, stream-sediment sampling was completed at all stream crossings.

1997 PROGRAM

Work carried out during 1997 was a continuation of the 1996 program, and saw the extension of lines 4500, 5000, and 5500, with the sampling of line 4100 also completed. A short soil line was also established on the north-facing slope at elevation 1680, near the Milkbone Showing area. Prospecting of the soil geochemical anomaly delineated in 1996 was also undertaken. Helicopter support was used to access higher elevations on the property, and a new helicopter pad was constructed at the Great Dane Adit area. A camp was established at elevation 2000m to facilitate work.

All samples were shipped to Eco-Tech Labs at Kamloops, BC. Samples were then dried, sieved to -80 mesh and analyzed for Au geochem and 30 element ICP using aqua-regia digestion. High-grade samples were further fire-assayed.

RESULTS

Results of both the 1996 and 1997 programs were extremely encouraging. Through contour soil-sampling and prospecting, a strong, continuous geochemical anomaly was followed over 2.3km of strike length with a dip component of over 600m. Soils anomalous in Ag, Cu, Pb, and Zn were located in consecutive samples over greater than 100m intervals along each of contour lines 5000, 5500, 6000, 6500, and 7000.

A total of 7 contour lines were traversed (4100', 4500, 5000', 5500', 6000', 6500', 7000'), with a total of 450 samples collected from "B" horizon soils at depths of 10-30cm (280 in 1996). Some 10.0 line-km of contour lines were sampled, with samples taken at 25m stations. In addition, 84 rock samples and 16 stream-sediment samples were collected during the course of the program. Sample locations are shown on Figure 2, in pocket.

A previously undocumented shaft and 5 individual showing areas were located, all apparently along the same stratigraphic interval. Silt samples taken within the anomaly area confirm the elevated geochemistry of the overall claim area.

CONCLUSIONS and RECOMMENDATIONS

Based on data collected from the GD 1-10 claim group, it is apparent that a potentially significant mineralized system is present within property boundaries. The discovery of previously undocumented workings and five separate significant mineral showings within a recently-defined, prominent geochemical anomaly area serves to support this conclusion.

Relatively little is known about the property geology, though it is apparent that mineralization discovered in place on the property is genetically related to that seen at the Great Dane prospect. Similar mode of occurrence, mineralogy, structure, and host rocks are present at all showing locations. The presence of the showings within a broad, prominent and continuous geochemical anomaly overlying steeply dipping rocks is encouraging. With the limited amount of outcrop exposure currently available within the soil geochemical anomaly area, it is suggested that more showings will be discovered along trend by using geophysical surveys and intensified prospecting.

A two-phase exploration program is recommended for the property. The first phase of this program should focus on detailed geologic mapping of the entire property area, in conjunction with hand and blast trenching of areas within the geochemical anomaly. Further detailed work should also be completed in and around the Purina Shaft, Meatball, and Alpo showing areas. Contour soil sample lines 4100 and 6000 should be extended eastward to extend coverage within the anomaly area. Soil-sampling should be undertaken north of Dewar Creek, within the GD 7-10 claims. Prospecting and further staking should also be completed in an area directly northward on existing property boundaries, at least to the St Mary River valley. Geophysical surveys should also be considered for the property area.

The second phase of the program should consist of a 1000m (3300') diamond-drilling program, contingent on favourable results from Phase 1 work. Pending favourable results from Phase 1 and 2 work, it is recommended that permitting for road access commence as soon as possible

REFERENCES

Hoy, T. and Carter, G. (1988): Geology of the Fernie W1/2 Map Sheet (and Part of Nelson E1/2), Open File Map No. 1988-14

Hoy, T. (1993): Geology of the Purcell Supergroup in the Fernie West-Half Map Area, Southeastern British Columbia, BCMMPR Bulletin #84.

Killin, A.F. (1947): Report on the Great Dane Prospect. Private Report- Brittania Mining and Smelting Ltd.

Leech, G.B. (1957): St, Mary Lake, Kootenay District, British Columbia; GSC Map 15-1957.

Reesor, J.E. (1958): G.S.C. Memoir 292: Dewar Creek Map Area. pp 64-65.

Rice, H.M.A. (1937): Cranbrook Map-Area, British Columbia; GSC Memoir #207.

Schofield, S.J.: G.S.C. Memoir #76

Scott, C.T. (1986): Geological Assessment Report on the Great Dane Property. AR#15309

Termuende, T.J. (1997): Geological Report on the GD 1 and GD2 properties. Private report.

APPENDIX I

Certificate of Qualification

CERTIFICATE OF QUALIFICATION

I, Tim J. Termuende, of 2720-17th St. South in the City of Cranbrook in the Province of British Columbia hereby certify that:

- 1) I am a Professional Geoscientist registered with the Association of Professional Engineers and Geoscientists of British Columbia (#19201).
- 2) I am a graduate of the University of British Columbia (1987) with a B.Sc. degree in Geology, and have practised my profession as geologist continuously since graduation.
- This report is supported by data collected under my supervision during fieldwork conducted from August 21st to October 9th, 1996 and from June 9th to September 26th, 1997.
- 4) Only expenditures incurred during 1997 fieldwork are applied toward assessment credits.
- 5) I am the sole owner of the GD Group of claims, and author of this report.

Dated this 22nd day of January, 1998 in Cranbrook, British Columbia.

Tim J. Termuende, P.Geo.

APPENDIX III

Analytical Results

11-Sep-96

10011 E. Irans Canada Hwy , R.R. #2, Kamboops, B.C. V2C 614 Phone (604) 573-5700 Fac (604) 573-4557

CERTIFICATE OF ASSAY AK-96-1014

TOKLAT RESOURCES INC.

SS1, SITE 7-95 2720-17th STREET SOUTH CRANBROOK, B.C.

V1C 4H4

ATTENTION: TIM TERMUENDE

No. of samples received:19
Sample Type:ROCK
PROJECT #:NONE GIVEN
SHIPMENT #:NONE GIVEN
Samples submitted by:TIM TERMUENDE

		Cu	
ET	#. Tag #	%	
10	TTGD96-10	1.05	

QC DATA:

Standard:

CPb-I

0.25

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B C. Certified Assayer

XLS/96 Foklat#2

29-Jun-97

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C V2C 614 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ASSAY AK 97-529

TIM TERMUENDE 2720-17th STREET SOUTH CRANBROOK, B.C. V1C 4H4

ATTENTION: TIM TERMUENDE

No. of samples received: 16 Sample Type: ROCK PROJECT #: GD97 SHIPMENT #: GD9701

Tag #

ET #.

13

15

QC DATA: Standard:

Mp-1a

Samples submitted by: T. TERMUENDE

Pb Ag Ag (g/t) (oz/t) (%) TTGD97R 06* 6.84 72.0 2.10 MBGD97R-01* 41.0 1.20 4.15 70.0 2.04

4.33

XLS/97Toklat fax@426-6899/t.termuende ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. **B.C.** Certified Assayer

29-Jun-97

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 614 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ASSAY AK 97-529

TIM TERMUENDE 2720-17th STREET SOUTH CRANBROOK, B.C. V1C 4H4

ATTENTION: TIM TERMUENDE

No. of samples received: 16 Sample Type: ROCK PROJECT #: GD97 SHIPMENT #: GD9701

Samples submitted by: T. TERMUENDE.

		Ag	Ag	Pb	
ET #.	Tag #	(g/t)	(oz/t)	(%)	
13	TTGD97R 06*	72.0	2.10	6.84	
15	MBGD97R 01*	41.0	1.20	4.15	
QC DATA Standard Mp-1a	=	70.0	2.04	4.33	

XLS/97Toklat fax@426-6899/t.termuende

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

Pb

Zn

Cu

CERTIFICATE OF ASSAY AK 97-1176

TOKLAT RESOURCES INC. 2720-17th STREET SOUTH CRANBROOK, B.C. V1C 4H4

ATTENTION: TIM TERMUENDE

No. of samples received: 49

Sample Type: Rock PROJECT #:GD97 SHIPMENT #:GD97-03

Samples submitted by: T. Termuende

ET#.	Tag #	(g/t)	(oz/t)	(%)	(%)	(%)	
6	TTGD97R 13	-	-	-	-	1.07	<u> </u>
18	TTGD97R 25	•	-	1.16	-	-	
20	TTGD97R 27	•	-	2.13	-	-	
21	CDGD97R 01	•	-	-	1.3	-	
49	MWGD97R 06	288.0	8.40	-	38.5	-	
QC DATA	<u>:</u>						

Αg

 Standard:

 Mp-la
 69.7
 2.03
 4.33

 CPB-1
 0.22
 4.42

XLS/97Toklat fax@426-6899/t.termuende

ECO-TECH LABORATORIES LTD.

Fank J. Pezzotti, A.Sc.T. B.C. Certified Assayer 30-Jun-97

ECO-TECH LABORATORIES LTD. 10041 ETC Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK97-529

TIM TERMUENDE 2720-17th STREET SOUTH CRANBROOK, B.C. V1C 4H4

ATTENTION: TIM TERMUENDE

No. of samples received: 16 Sample Type: ROCK PROJECT #: GD97 SHIPMENT #: GD9701

Samples submitted by: T. TERMUENDE

Et#	Tag#	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na %	Ni	<u> </u>	Pb	Sb	Sn	Sr Ti%	U	V	W	Υ	Zn
1	CDGD97R 01	<0.2	0.64	<5	40	<5	0.12	<1	10	110	15	2.54	<10	0.54	385	4 <0.01	23	430	4	<5	<20	2 <0 01	<10	5	<10	<1	27
2	CDGD97R 02	0.2	0.06	25	5	<5	0.01	<1	22	228	138	2.56	<10	<0.01	85	15 <0.01	12	<10	6	<5	<20	<1 <0.01	<10	1	<10	<1	12
3	CDGD97R 03	<0.2	0.03	<5	<5	<5	0.03	<1	1	290	5	0.42	<10	0.01	65	16 < 0.01	7	60	<2	<5	<20	<1 <0.01	<10	1	<10	<1	<1
4	CDGD97R 04	<0.2	0.37	<5	25	<5	1.64	<1	13	150	53	3.29	<10	0.68	481	4 < 0.01	25	510	8	<5	<20	35 < 0.01	<10	3	<10	<1	18
5	CDGD97R 05	<0.2	4.82	<5	45	<5	4.69	<1	47	246	100	8.66	<10	4.45	1452	6 0.01	62	320	10	10	<20	50 0.04	<10	228	<10	<1	120
6	CDGD97R 06	0.6	0.42	<5	35	<5	3.42	<1	8	120	282	2.37	10	1.05	1154	4 < 0.01	7	1650	4	20	<20	77 <0.01	<10	8	<10	47	13
7	CDGD97R 07	< 0.2	2.26	<5	45	5	0.37	<1	21	103	102	8.17	<10	0.63	1012	8 0.04	<1	1130	8	<5	<20	4 0.09	<10	4	<10	22	102
8	TTGD97R 01*	<0.2	1.03	90	70	<5	1.84	<1	26	292	5	4.29	10	1.57	1461	3 0.01	104	840	20	10	<20	65 0.02	<10	33	<10	4	56
9	TTGD97R 02*	0.2	0.58	<5	25	<5	0.04	<1	6	113	9	2.02	10	0.29	95	3 0.03	8	160	152	<5	<20	<1 0.02	<10	5	<10	<1	23
10	TTGD97R 03*	<0.2	0.30	<5	60	<5	5.98	<1	8	120	5	1.96	20	2 46	702	7 0.02	7	220	6	30	<20	56 <0.01	<10	2	<10	13	31
11	1TGD97R 04*	<0.2	2.91	20	65	5	5.11	<1	41	156	63	8.20	<10	3.56	1700	4 0.01	59	300	16	<5	<20	79 0 01	<10	120	<10	<1	116
12	TTGD97R 05*	0.6	0.12	<5	145	30	0.19	3	47	49	91	>10	<10	0.61	9062	26 < 0.01	31	<10	6	<5	<20	2 0.02	<10	19	<10	<1	67
13	TTGD97R 06*	>30	0.05	<5	10	130	0.02	5	2	154	96	0.94	<10	<0.01	109	3 < 0.01	4	60	>10000	25	<20	2 < 0.01	<10	<1	<10	<1	16
14	TTGD97R 07*	NO SAI	MPLE																								
15	MBGD97R 01*	>30	0.11	<5	15	85	0.09	4	4	202	70	1.17	<10	<0.01	134	10 0.01	7	110	>10000	10	<20	<1 <0.01	<10	2	<10	<1	45
16	MBGD97R 02*	0.8	0.43	<5	10	<5	0.07	<1	7	216	38	1.58	<10	0.21	133	12 <0.01	20	280	762	· <5	<20	<1 <0.01	<10	3	<10	<1	152

TIM TERMUENDE

ICP CERTIFICATE OF ANALYSIS AK97-529

ECO-TECH LABORATORIES LTD.

Et #.	Tag#	Ag	Al %	As	Ва	Bi	Ca %_	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Y	Zn
QC/DATA	A:																											
Resplit:	GD97R 01	<0.2	0.65	<5	35	<5	0.11	-1	10	120	4.4	2.44	-10	0.54	276	4 -0.04		270	-	٠,٠	-00	-4	-0.04	-10	-	-40	-4	24
I CD	GD9/K U1	\0.2	0.00	~5	33	~ 3	0.11	<1	10	120	14	2.41	<10	0.51	376	4 <0.01	22	370	6	<5	<20	~ 1	<0.01	<10	5	<10	<1	24
Repeat:																												
1 CD0	GD97R 01	<0.2	0.68	<5	30	<5	0.12	<1	10	115	15	2.60	<10	0.56	409	4 < 0.01	22	430	4	<5	<20	<1	<0.01	<10	5	<10	<1	28
10 110	GD97R 03*	<0.2	0.29	<5	50	<5	5.82	<1	7	119	5	1.93	20	2.37	685	7 0.02	7	220	8	25	<20	51	<0.01	<10	2	<10	12	31
Standard	t:																											
GEO'97		1.4	1.76	60	155	<5	1.72	<1	19	61	86	4.02	<10	1.06	683	<1 0.02	22	610	40	10	<20	59	0.12	<10	77	<10	10	69

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/523 XLS/97Toklat fax@426-6899/t.termuende 20-Oct-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada HWY KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax . 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK97-1176

TOKLAT RESOURCES INC. 2720-17th STREET SOUTH CRANBROOK, B.C. V1C 4H4

ATTENTION: TIM TERMUENDE

No. of samples received: 49
Sample Type: Rock
PROJECT # GD97
SHIPMENT # GD97-03
Samples submitted by: T. Termuende

Values in ppm unless otherwise reported

Et #	t. Tag#	Aq	AI %	As	Ва	Bi	Ca %	Cq	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	\$n	Sr	Ti %	U	٧	W	Υ	Zn
1	TTGD97R 08	<0.2		<5	40	<5	0.10	<1	11	45	26	2 82	<10	0.56	79	3	0 01	15	210	4	<5	<20		0 02	<10	8	<10	<1	44
2	TTGD97R 09	<0.2	0.49	<5	30	<5	80.0	<1	8	106	11	1 62	20	0.18	195	1	0 02	10	130	6	<5	<20		0 03	<10	4	<10	1	41
3	TTGD97R 10	<0.2	0.09	5	20	<5	0.82	1	5	92	3	1 41	10	0.03	589	2	0.03	4	90	132	<5	<20	-	<0.01	<10	<1	<10	<1	475
4	TTGD97R 11	<0.2	0.19	5	30	<5	0.02	<1	7	70	11	2 27	20	0.01	187	2	0.02	9	140	20	<5	<20		<0.01	<10	1	<10	<1	134
5	TTGD97R 12	<0 2	0.28	10	40	<5	0.03	<1	4	74	<1	0 77	20	0.05	35	<1	0.02	6	150	8	<5	<20	<1	0.03	<10	3	<10	2	21
6	TTGD97R 13	<0.2	0.20	5	55	<5	0.45	69	6	137	446	2 55	10	0.05	75 9	<1	0.02	9	230	948	<5	<20		<0.01	<10	2	<10	-	>10000
7	TTGD97R 14	1.6	1.01	50	25	<5	0.13	<1	34	165	45	2 30	<10	1.06	336	3	<0.01	10	500	1292	<5	<20		<0.01	<10	53	<10	<1	80
8	TTGD97R 15	< 0.2	0.82	<5	5	<5	>10	<1	9	188	52	2.29	<10	0.57	1527	3	0.01	9	40	16	<5	<20	117		<10	31	<10	<1	48
9	TTGD97R 16	<0.2	2.60	<5	65	<5	2.08	<1	59	31	296	>10	<10	1.37	857	7	0.02	5	590	6	<5	<20		0.09	<10	191	<10	<1	125
10	TTGD97R 17	1.2	0 34	<5	50	<5	>10	<1	20	37	348	8.64	<10	1.25	4699	7	0.01	8	<10	150	<5	<20	90	<0.01	<10	38	<10	<1	435
11	TTGD97R 18	<0 2	1 61	<5	110	<5	1.25	<1	15	68	17	4.12	20	0.87	722	2		15	230	10	<5	<20		0.05	<10	23	<10	3 <1	44 177
12	TTGD97R 19	<0.2	4.37	<5	90	<5	0.63	<1	54	23	354	>10	<10	2.71	1104	7	0.01	27	420	40	<5	<20	10	0.06	<10	429	<10	<1	9
13	TTGD97R 20	<0.2	0.28	<5	<5	<5	80.0	<1	10	145	105	1.25	<10	0.16	206	8	0.02	9	80	10	<5	<20		0.01	<10	27	<10	8	57
14	TTGD97R 21	0.2	0 31	<5	20	<5	0.05	<1	4	74	11	0.45	<10	0.06	350	2	0.05	3	120	32	<5	<20		<0.01	<10	000	<10 <10	ە <1	317
15	TTGD97R 22	<0.2	3.85	10	55	5	0 06	<1	59	48	128	>10	<10	2.07	1401	9	0 02	35	300	20	<5	<20	<1	0 03	<10	269	<10	~1	317
16	TTGD97R 23	0.4	0 21	165	25	<5	0 04	<1	9	106	45	1 40	20		860	3		7	130	448	<5	<20		<0.01	<10	3	<10	2 3	1042 1682
17	TTGD97R 24	0.4	0.17	10	20	<5	0 03	2	6	91	11	1.05	20	<0 01	500	4	0 03	5	90	614	<5	<20	<1	0.02	<10	2	<10		364
18	TTGD97R 25	14 6	0.06	<5	70	<5	0.06	2	15	82 >	10000	>10	<10	0.54	5998	15	<0 01	15	<10	28	<5	<20	<1	0.02	<10	. 6	<10	<1	262
19	TTGD97R 26	2.0	0.23	<5	60	<5	0.12	<1	42	113	719	7 49	<10	0.16	3368	11	0 01	25	40	34	<5	<20		<0.01	<10	14	< 10	< î	306
20	TTGD97R 27	27.6	0.02	<5	110	<5	0.78	4	25	52 >	10000	>10	<10	2.15	>10000	21	0.01	14	<10	2	<5	<20	9	0.03	<10	,	10	<1	300
21	CDGD97R 01	96	0 23	40	40	<5	0.04	16	72	146	63	3 86	<10	0.02	1556	9	0.01	8		>10000	<5	<20		<0.01	<10	2	<10	<1	6003
22	CDGD97R 02	<0.2	1,11	120	25	<5	0.17	<1	107	105	27	3 38	<10	0.99	511	6	0.01	11	450	18	<5	<20		<0.01	<10	26	<10	<1	62
23	CDGD97R 03	<0.2	0.89	<5	25	<5	0.07	<1	5	127	13	161	<10	0.97	294	6	0.01	6	110	26	<5	<20	-	<0.01	<10	4	<10	<1	33
24	CDGD97R 04	<0.2	1.30	5	45	<5	0.14	<1	7	144	16	2 29	<10	1.33	432	5	0.01	14	230	4	5	<20		<0.01	<10	6	<10	<1	25
25	CDGD97R 05	<0.2	0.26	<5	5	<5	0.01	<1	3	155	4	0.77	<10	0.24	112	8	<0.01	2	30	6	<5	<20	<1	<0.01	<10	1	<10	<1	5

ECO-TECH LABORATORIES LTD.

Et #	. Tag#	Ag	A1 %	As	Ва	Bi	Ca %	Cď	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ní	Р	РЬ	Sb	Sn	Sr	Tí %	U	V	w	Y	Zn
26	CDGD97R 06	<0.2	1.24	<5	60	<5	3.29	4	52	70	179	9.15	<10	0.53	864	7	0.02	7	940	182	<5	<20	37	0.07	<10	16	<10	<1	267
27	CDGD97R 07	<0.2	1.90	<5	65	<5	3.00	<1	41	40	164	9.57	<10	0.88	1009	7	0.02	1	1180	30	<5	<20	33	0.11	<10	26	<10	<1	287
28	CDGD97R 08	<0.2	0.04	<5	20	<5	6.04	<1	35	108	167	4.98	<10	0.03	749	7	<0.01	10	<10	22	<5	<20	54	<0.01	<10	1	10	<1	10
29	CDGD97R 09	<0.2	1.40	590	65	<5	0.90	<1	56	56	168	>10	<10	0 56	782	14	0.02	<1	630	16	<5	<20	12	0.02	<10	13	<10	<1	79
30	CDGD97R 10	<0.2	0.59	<5	30	<5	1.88	<1	25	114	50	5.91	<10	0.20	979	7	0.04	2	1480	12	<5	<20	17	0.05	<10	6	<10	9	30
31	CDGD97R 11	<0.2	<0.01	<5	65	<5	3.45	1	55	64	343	>10	<10	<0.01	602	16	<0.01	3	<10	4	<5	<20	31	<0.01	<10	<1	10	<1	<1
32	CDGD97R 12	0.8	0.11	<5	15	<5	3.69	<1	2	112	1279	0.98	10	0.04	911	4	0 02	4	40	14	<5	<20	80	<0.01	<10	<1	<10	12	56
33	CDGD97R 13	<0.2	0.11	<5	40	<5	1.05	<1	3	93	165	1.44	10	D.11	612	5	0.01	3	80	6	<5	<20	10	<0.01	<10	<1	<10	<1	34
34	CDGD97R 14	<0.2	0.06	<5	15	<5	0 04	<1	1	174	36	0.74	<10	0.02	301	6	0.01	4	60	10	<5	<20	<1	< 0.01	<10	1	<10	<1	7
35	CDGD97R 15	<0.2	0.11	5	20	<5	0.08	<1	2	87	18	0.49	20	<0.01	422	4	0.03	2	90	10	<5	<20	<1	0.01	<10	<1	<10	6	7
36	CDGD97R 16	<0.2	0.18	<5	30	<5	0.34	<1	6	100	36	0.89	10	0.03	295	3	0.04	8	100	48	<5	<20	5	0.02	<10	2	<10	1	73
37	CDGD97R 17	<0.2	0.20	<5	50	<5	0.13	<1	6	103	54	1.42	20	0.01	548	4	0.03	6	170	20	<5	<20	1	<0.01	<10	2	<10	<1	42
38	CDGD97R 18	<0.2	0.16	70	30	<5	0.03	<1	3	153	9	1.15	30	0.01	371	7	0.02	3	100	6	<5	<20	<1	<0.01	<10	1	< 10	<1	16
39	CDGD97R 19	0.2	0 16	10	25	<5	0.03	<1	5	120	25	0.93	20	<0.01	215	4	0.02	5	130	92	<5	<20	<1	0.02	<10	1	<10	1	28
40	CDGD97R 20	<0.2	0 13	<5	10	<5	0.01	<1	1	101	3	0.61	10	<0.01	75	5	0.02	1	100	2	<5	<20	<1	<0.01	<10	1	<10	<1	1
41	RBGD97R 01	<0.2	3.03	<5	125	<5	6.45	<1	35	37	197	7.36	<10	2.40	1378	<1	0.03	28	360	10	<5	<20	188	0 14	<10	10	<10	1	95
42	RBGD97R 02	<0.2	4.29	<5	50	10	2.07	<1	46	43	67	9.73	<10	3.34	1005	4	0.02	33	410	<2	<5	<20	21	0.14	<10	20	<10	<1	105
43	RBGD97R 03	<0.2	0.26	55	45	<5	5.89	<1	53	29	72	7.49	<10	1.53	1630	6	0 03	53	390	<2	<5	<20	100	<0.01	<10	17	<10	<1	29
44	MWGD97R 01	<0.2	0.88	<5	55	<5	2.38	<1	20	129	38	5.25	20	0.44	860	7	0.04	18	310	4	<5	<20	5	<0.01	<10	31	<10	<1	49
45	MWGD97R 02	<0.2	0.38	<5	<5	<5	0.10	<1	7	183	3	1.68	90	0.31	69	6	0.02	15	380	2	<5	<20	6	0.02	<10	4	<10	2	9
46	MWGD97R 03	1.8	0.06	20	<5	<5	0.17	<1	19	175	371	0.84	40	0.03	172	8	0.01	9	170	450	<5	<20	<1	<0.01	<10	1	<10	2	151
47	MWGD97R 04	<0.2	2.06	<5	15	5	8.28	<1	36	215	3	4.65	10	5.48	1146	2	0.01	102	1920	2	5	<20	116	<0.01	<10	28	<10	3	40
48	MWGD97R 05	0.2	0.03	<5	10	<5	0.07	<1	6	197	7	0.96	<10	0.04	443	8	0.01	3	30	30	<5	<20	<1	<0.01	<10	1	<10	<1	<1
49	MWGD97R 06	>30	0.04	<5	15	250	0.05	36	36	98	6	3.47	<10	<0.01	115 9	6	0 01	6	50 :	×10000	25	<20	14	<0.01	<10	<1	<10	<1	<1

TOKLAT RESOURCES INC.

ICP CERTIFICATE OF ANALYSIS AK97- 1176

ECO-TECH LABORATORIES LTD.

Et#. Tag#	Ag Al%	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	ρ	Pb	56	Sn	Sr	Ti %	U	v	w	Υ	Zn
QC/DATA:																											
Resplit:																											
R/S 1 TTGD97R 08	<0.2 0.91	5	35	<5	0.11	<1	12	40	29	2.86	<10	0.58	81	2	0.01	15	210	6	<5	<20	2	0.02	<10	8	<10	<1	46
R/S 36 CDGD97R 16	<0.2 0 16	<5	25	<5	0.33	<1	6	82	33	0.83	10	0.03	292	2	0.02	6	100	54	<5	<20	3	0.02	<10	1	<10	1	73
Repeat:																											
1 TTGD97R 08	< 0.2 0.93	5	35	<5	0.11	<1	12	45	29	2 90	<10	0.57	83	3	0.01	15	220	6	<5	<20	<1	0 02	<10	9	<10	2	47
10 TTGD97R 17	1.2 0.33	<5	50	<5	>10	<1	20	36	348	8.47	<10	1.24	4606	7	0.01	8	<10	148	<5	<20	90	< 0.01	<10	37	<10	<1	423
19 TTGD97R 26	1.8 0.23	<5	60	<5	0 10	1	41	111	715	7.38	<10	0 16	3319	11	0 01	25	50	34	<5	<20	<1	<0.01	<10	13	<10	<1	254
36 CDGD97R 16	<0.2 0.19	<5	30	<5	0.37	<1	6	104	37	0.94	10	0.04	306	3	0.04	6	100	50	<5	<20	4	0.02	<10	2	<10	1	75
Standard:																											
GEO'97	1 2 1.70	65	145	<5	1.84	<1	18	66	75	3.88	<10	0 93	656	<1	0.03	21	680	18	<5	<20	53	0.10	<10	73	<10	5	70
GEO'97	1.2 1.75	70	145	<5	1.90	<1	18	65	74	3.91	<10	0.96	654	<1	0.03	22	690	20	<5	<20	56		<10	76	<10	5	70
				_		•																					

df/1176 XLS/97Toklat fax: 426-6899 ECO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

30-Jun-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada HWY KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK97-532

TIM TERMUENDE 2720-17th STREET SOUTH CRANBROOK, B.C. V1C 4H4

ATTENTION: TIM TERMUENDE

No. of samples received:16
Sample Type:SILT
PROJECT #:GD97
SHIPMENT #:GD9701
Samples submitted by:TIM TERMUENDE

Et#	Tag#	Ag	AI %	As	Ba	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na %	Ni	P	Pb	Sb	Sn	_Sr	Ti %	U	٧	w	Υ	Zn
1	CDGD97S 01	<0.2	0.48	<5	45	<5	0.26	<1	8	9	17	1.76	<10	0.36	372	<1 <0.01	11	360	10	<5	<20	5	0.02	<10	11	<10	4	32
2	CDGD97S 02	<0.2	0.57	<5	50	<5	0.26	<1	9	9	13	1.83	<10	0.40	557	1 < 0.01	11	400	12	<5	<20	3	0.02	<10	10	<10	6	41
3	CDGD97S 03	<0.2	0.53	<5	50	<5	0.23	<1	8	8	10	1.72	<10	0.37	538	1 <0.01	10	400	12	<5	<20	2	0.02	<10	9	<10	6	36
4	CDGD97S 04	<0.2	0.66	25	20	<5	0.24	<1	13	11	50	2.52	<10	0.35	477	1 < 0.01	20	380	18	<5	<20	4	0.02	<10	15	<10	4	82
5	CDGD97S 05	0.2	1.00	5	45	<5	0.37	<1	19	17	358	3.14	10	0.70	77 7	2 < 0.01	20	500	38	<5	<20	7	0.03	<10	47	<10	32	50
6	CDGD97\$ 06	<0.2	0.64	<5	25	<5	0.15	<1	13	17	29	2.32	<10	0.45	339	<1 <0.01	19	340	12	<5	<20	<1	0.03	<10	20	<10	4	23
7	MBGD97S 01	<0.2	0.97	20	30	<5	0.68	<1	17	13	58	3.11	<10	0.53	606	1 < 0.01	25	550	40	<5	<20	16	0.03	<10	42	<10	7	170
8	MBGD97S 02	<0.2	2.67	<5	125	<5	0.50	<1	34	5	114	6.97	<10	1.31	919	<1 <0.01	12	650	26	<5	<20	16	0.15	<10	167	<10	8	97
9	MBGD97S 03	<0.2	0.54	15	25	<5	0.31	1	9	6	23	1.87	10	0.27	384	<1 · <0.01	16	320	60	<5	<20	9	0.05	<10	10	<10	8	344
10	MBGD97S 04	<0.2	2.35	5	85	<5	0.53	2	35	4	153	6.80	<10	1.48	907	<1 <0.01	23	730	38	<5	<20	14	D.10	<10	243	<10	8	197
11	MBGD97S 05	0.2	0.86	5	190	<5	1.12	<1	11	12	27	2.27	<10	0.76	1210	1 < 0.01	14	750	28	10	<20	13	0.03	<10	26	<10	8	48
12	MBGD97S 06	<0.2	0.33	15	15	<5	0.33	<1	7	5	34	1.51	<10	0.16	414	<1 <0.01	11	300	14	<5	<20	6	0.01	<10	10	<10	4	78
13	TTGD97S 01	<0.2	0.52	<5	40	<5	0.20	<1	10	9	13	2.06	<10	0.38	457	1 < 0.01	13	300	10	<5	<20	<1	0.02	<10	12	<10	3	40
14	TTGD97\$ 02	< 0.2	0.47	<5	40	<5	0.22	<1	12	9	13	2.23	<10	0.35	424	1 < 0.01	11	340	12	<5	<20	<1	0.02	<10	12	<10	3	35
15	RBGD97S 01	<0.2	1.54	10	55	<5	0.41	<1	24	6	91	4.96	<10	0.99	619	1 < 0.01	22	530	38	5	<20	9	0.07	<10	158	<10	5	189
16	RBGD97\$ 02	<0.2	0.82	<5	105	<5	0.54	<1	12	12	21	2.32	<10	0.68	731	<1 <0.01	15	540	22	10	<20	4	0.04	<10	26	<10	7	47

TIM TERMUENDE

ICP CERTIFICATE OF ANALYSIS AK97-532

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	_Ag	A1 %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo i	Na %	Ni	P	Pb	Sb	Sn	Sī	Ti %	υ		W	Y	Zn
	ıt:			_																									
	CDGD97S 01 MBGD97S 04		0.45 2.50	5 <5	30 85	<5 <5	0.22 0.54	<1 1	8 37	8		1.70	<10 <10		371		<0.01	10	350	10	<5	<20	1	0.02	<10	10	<10	4	34
10	**************************************	-0.2	2.50	\ 0	65	-5	0.54	'	3/	4	158	7.20	~10	1.59	970	` '	<0.01	25	640	44	<5	<20	13	0.11	<10	251	<10	9	214
Stand GEO'9		1.2	1.77	60	165	<5	1.81	<1	20	62	84	4.21	<10	1.08	700	<1	0.02	25	670	20	10	<20	59	0.12	<10	80	<10	10	79

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/523 XLS/97Toklat fax: 426-6899 22-Jul-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATÉ OF ANALYSIS AK 97-690

Tim Termuende 2720 -17th Street Cranbrook, B.C. V1C 4H4

ATTENTION: T. Termuende

No. of samples received:15
Sample type:Silt
PROJECT #: GD97
SHIPMENT #: GD97-02
Samples submitted by. T. Termuende

Values in ppm unless otherwise reported

Et#	. Tag#			Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Şr	Ti %	U	V	W	Y	Zn
1	RBDG97S	02	Α	<0.2	1.36	<5	60	<5	0.40	<1	19	13	57	3.97	<10	0.75	493	<1	<0.01	19	520	28	<5	<20	11	0.07	<10	97	<10		76
2	RBDG97S	03		<0.2	1.24	<5	45	<5	0.44	<1	18	15	46	3.64	<10	0.71	560	1	<0.01	19	530	26	10	<20	8	0.06	<10	74	<10	13	69
3	RBDG97S	04		<0.2	1.15	10	45	<5	0.39	1	18	14	50	3.70	<10	0.64	480	3	<0.01	20	480	32	20	<20	9	0.05	<10	85	<10	13	63
4	RBDG97S	05		<0.2	1.19	5	45	<5	0.42	2	18	15	46	3.55	<10	0.68	593	` 4	<0.01	23	510	26	35	<20	9	0.05	<10	67	<10	14	62
5	RBDG97\$	06		<0.2	1.01	<5	35	<5	0.30	2	16	13	36	3.32	<10	0.57	409	5	0.01	22	500	20	35	<20	6	0.04	<10	66	<10	11	55
6	RBDG97S	07		<0.2	1.10	10	40	<5	0.37	2	18	15	42	3.54	<10	0.63	536	4	0.01	23	540	24	40	<20	8	0.04	<10	67	<10	13	60
7	RBDG97S	80		<0.2	1.07	10	40	<5	0.40	1	19	14	43	3.67	<10	0.63	562	4	0.01	22	560	26	40	<20	9	0.04	<10	71	<10	13	59
8	MBGD97S	07		<0.2	1.10	10	45	<5	0.53	2	17	16	47	3.20	<10	0.61	492	4	0.01	23	690	30	35	<20	9	0.05	<10	72	<10	26	69
9	MBGD97S	08		<0.2	1.29	<5	55	<5	0.52	2	20	17	57	3.67	<10	0.72	566	4	0.02	23	730	34	35	<20	11	0.06	<10	87	<10	27	75
10	MBGD97S	09		<0.2	1.14	15	55	<5	0.53	2	18	15	53	3.33	<10	0.63	543	4	0.01	22	660	38	45	<20	11	0.05	<10	79	<10	25	72
11	MBGD97S	10		<0.2	1.15	10	50	<5	0.54	2	20	15	55	3.38	<10	0.66	540	4	0.01	22	610	30	40	<20	11	0.05	<10	81	<10	22	70
12	MBGD97S	11		< 0.2	1.38	5	60	<5	0.70	2	21	15	68	3.81	<10	0.76	726	5	0.01	25	740	30	50	<20	15	0.05	<10	96	<10	32	72
13	MBGD97S	12		<0.2	1.59	<5	80	<5	0.63	3	23	11	88	4.28	<10	0.87	807	8	0.01	27	830	24	65	<20	17	0.05	<10	111	<10	23	76
14	MBGD97\$	13		<0.2	1.58	5	65	. <5	0.66	<1	25	11	99	4.44	<10	0.91	779	1	0.01	20	860	26	10	<20	15	0.06	<10	121	<10	24	72
15	MBGD97S	14		<0.2	1.83	<5	65	ે <5	0.73	<1	26	13	113	4.86	<10	1.07	715	<1	0.01	23	940	32	10	<20	17	0.07	<10	129	<10	31	92

Tim Termuende									10	CP CE	RTIFIC	ATE O	F ANA	LYSIS	AK 97-	690						ECO-TECH LABORATORIES LTD.										
Et#. Tag#	 	Ag	Al %	As	Ba	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	w	Y	Zn			
OC DATA: Repeat: 1 RBDG97S 10 MBGD97S	A	<0.2 <0.2	1.42 1.15	<5 10	55 50	<5 <5		2 <1	20 19	14 16	56 51	4.08 3.31	<10 <10	-	507 534		0.02 0.01	22 20	550 690	34 34	5 15	<20 <20	10 10		<10 <10	101 78	<10 <10	10 24	7 9 70			
Standard: GEO'97		1.0	1.72	65	160	<5	1.81	<1	20	67	79	4.17	<10	0.98	690	<1	0.02	22	680	22	5	<20	52	0.12	<10	76	<10	9	74			

df/708 XLS/97 EÇO-TECH LABORATORIES LTD.

krank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

30-Oct-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada HWY KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

ICP CERTIFICATE OF ANALYSIS AK97-1178

TOKLAT RESOURCES INC. 2720-17th STREET SOUTH CRANBROOK, B.C. V1C 4H4

ATTENTION: TIM TERMUENDE

No. of samples received: 4 Sample Type: SILT PROJECT #:GD97 SHIPMENT #.GD97-03 Samples submitted by:T. TERMUENDE

Values in ppm unless otherwise reported

Et #.	Tag#	Ag	AI %	As	Ba	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na?	6 N	i P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	MWGD97S 01	<0.2	1.75	5	55	<5	0.19	<1	14	19	19	2.73	20	0.70	600	2 0.0	4 16	990	76	<5	<20	8	0.05	<10	33	<10	- 5	77
2	MWGD97S 02	<0.2	1.80	25	90	<5	0.22	<1	8	33	8	2.23	20	0.53	199	<1 0.0	4 16	520	50	<5	<20	10	80.0	10	30	<10	5	67
3	MWGD97S 03	< 0.2	2.79	10	90	<5	1.11	3	13	49	30	2.37	20	0.76	1044	2 0.0	4 20	930	44	<5	<20	31	0.07	10	39	<10	12	390
4	MWGD97S 04	0.2	2.83	5	70	<5	N 85	2	15	61	27	2.89	20	0.82	1546	3 00	4 26	1320	42	<5	<20	26	0.06	10	51	<10	15	375

QC/DATA:																												
Repeat: 1 MWGD97S 01	<0.2	1.79	10	55	<5	0.19	<1	14	19	19	2.82	20	0.73	609	2	0.04	17	1010	80	<5	<20	6	0.05	<10	34	<10	6	80
Standard: GEO'97	1.0	1.90	60	185	10	1.90	<1	24	75	89	4.10	<10	1.10	720	<1	0.04	22	790	24	<5	<20	68	0.15	<10	82	<10	8	78

df/1178B XLS/97Toklat fax: 426-6899

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

16-Sep-96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone 604-573-5700 Fax 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK96-1014

TOKLAT RESOURCES INC. SS1, SITE 7-95 2720-17th STREET SOUTH CRANBROOK, B.C. V1C 4H4

ATTENTION: TIM TERMUENDE

No of samples received:19
Sample Type ROCK
PROJECT #:NONE GIVEN
SHIPMENT # NONE GIVEN
Samples submitted by:TIM TERMUENDE

Values in ppm unless otherwise reported

Ęt #.	Tag#	Au(ppb)	Αg	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	P	Pb	Sb	5n	Sr Ti%	U	v	w	Y	Zn
1	TT6D96-01	5	<0.2	1.60	<5	50	<5	0.34	2	12	83	86	>10	<10	0.81	451	5 0.02	<1	1910	6	<5	<20	5 C17	<10	17	<10	<1	77
2	TT6D96-02	5	<0.2	3.92	<5	175	<5	0.62	1	109	1022	72	>10	<10	4.20	5338	6 < 0.01	259	1860	6	<5	<20	16 0 06	<10	381	< 10	<1	281
3	TT6D96-03	5	4.2	0 07	<5	25	<5	0.03	1	14	225	153	5.07	<10	0.18	1334	9 < 0.01	6	<10	128	<5	<20	<1 <0.01	<10	2	<10	<1	105
4	TT6D96-04	5	64	0.02	<5	95	<5	0.73	6	39	34	5338	>10	40	2.28	6958	9 < 0.01	36	<10	20	<5	<20	9 0 04	<10	4	<10	<1	140
5	TT6D96-05	10	8.8	0.01	<5	80	<5	1.74	5	19	48	6916	>10	30	2 12	6517	6 < 0.01	14	<10	16	<5	<20	20 0 04	<10	5	<10	<1	107
6	TT6D96-06	25	8.6	0.01	500	70	<5	1.01	<1	24	\$2	6191	>10	<10	0.57	6681	7 <0 01	16	<10	16	<5	<20	14 0 04	<10	3	<10	<1	114
7	TT6D96-07	5	6.6	< 0 01	<5	75	<5	0.94	8	161	36	4526	>10	30	2 12	5972	5 < 0.01	33	<10	26	<5	<20	18 G 04	<10	2	<10	<1	179
8	TT6D96-08	5	5.2	0.10	<5	60	<5	1.35	3	38	53	7791	>10	<10	0.72	7769	8 < 0.01	30	<10	10	<5	<20	12 0.04	<10	4	<10	<1	177
9	TT6D96-09	5	<0.2	2.28	<5	50	<5	0.17	<1	47	224	184	8.25	<10	1.61	533	4 0.05	96	100	22	<5	40	4 0 20	<10	123	<10	<1	259
10	TT6D96-10	310	8.4	0.06	410	60	<5	0.09	<1	111	121	>10000	>10	<10	0.34	1181	11 <0.01	25	<10	90	<5	<20	<1 0 02	<10	4	<10	<1	2 02
11	CDGD96-01	5	<0.2	0.86	<5	35	<5	0.01	<1	6	120	49	2.03	<10	0 47	170	4 0.01	8	60	<2	<5	<20	2 <0.01	<10	7	<10	<1	19
12	CDGD96-02	5	<0.2	0.69	10	40	<5	4.39	<1	32	163	126	5.74	<10	4.05	1272	2 <0.01	102	980	<2	<5	<20	126 <0.01	<10	39	<10	<1	40
13	RBGDR-01	5	<0.2	2.14	<5	25	<5	4.32	<1	22	92	191	5.15	<10	1.60	694	<1 0.01	17	130	<2	<5	<20	63 0 09	<10	186	<10	<1	38
14	RBGDR-02	5	<0.2	0.06	<5	10	<5	0.05	<1	4	345	15	1.55,	<10	0.04	240	10 <0.01	7	50	<2	< 5	<20	2 <0.01	<10	5	<10	<1	15
15	RBGDR-03	5	<0.2	2.77	<5	55	<5	0.86	<1	22	31	87	9.14	<10	1.27	610	2 0.02	<1	970	<2	<5	<20	14 0 11	<10	38	<10	<1	63
16	MBGDR-01	5	1.0	2.62	45	65	10	0.32	<1	24	329	6	6.07	20	1.94	1361	4 <0.01	82	480	36	<5	<20	11 0 02	<10	97	<10	<1	82
17	MBGDR-02	5	<0.2	0.58	<5	25	<5	0.13	<1	5	229	13	2.33	<10	0.22	367	7 <0.01	8	250	8	<5	<20	4 <0 01	<10	6	<10	<1	21
18	MBGDR-03	5	<0.2	0.03	<5	170	<5	<0.01	<1	<1	431	9	0.67	<10	0.01	82	9 <0.01	7	<10	<2	<5	<20	10 < 0.01	<10	3	<10	<1	4
19	MBGDR-04	5	<0.2	0.76	<5	25	<5	0.24	<1	7	171	24	2.98	<10	0 42	390	7 <0.01	10	50	24	<5	<20	4 0.01	<10	7	<10	<1	17

ICP CERTIFICATE OF ANALYSIS AK96-1014

ECO-TECH LABORATORIES LTD.

TOKLAT RESOURCE	S INC.										_	,		N4 - 07	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
Et#. Tag# Au	u(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	IVIII	1010	142 /0												
QC/DATA: Resplit: R/S TT6D98-01	5	<0 2	1 46	<5	45	<5	0.22	<1	9	77	77	9 43	<10	0 72	398	3	0.02	1	1820	4	<5	<20	6	0 12	<10	13	<10	<1	67
Repeat: 1 TT6D96-01 10 TT6D96-10	5 300		1 51 0.06	<5 390	45 60	<5 <5	0.30	<1 <1	10 102	76 117	92 >10000		<10 <10		439 1126		0.02 <0.01	<1 23	1820 <10	4 80	<5 <5	<20 <20	5	0 1 1 0 02	<10 <10	13 4	<10 <10	<1 <1	69 187
Standard: GEO 96	140	08	1.78	65	155	<5	1.80	<1	17	64	77	3 94	<10	0 98	710	<1	0.02	19	680	18	<5	<20	53	G 12	<10	77	<10	2	67

df/1014 XLS/96TOKLAT#2 ECO-TECH LABORATORIES LTD.
Per Frank J. Pezzotti, A Sc.T
B.C. Certified Assayer

16-Sep-96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone. 604-573-5700 Fax: 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK96-1018

TOKLAT RESOURCES INC. SS1. SITE 7-95 2720-17th STREET SOUTH CRANBROOK, B.C. V1C 4H4

ATTENTION: TIM TERMUENDE

No. of samples received.280
Sample Type SOIL
PROJECT # NONE GIVEN
SHIPMENT # NONE GIVEN
Samples submitted by TIM TERMUENDE

Values in ppm unless otherwise reported

_Et #.	Tag	#	Ag	AI %	A\$	Ва	Bi	Ca %	Cd	Со	Cr	Cu _	Fe%	La I	Mg %	Μp	Mo Na %	Ni	P	Pb	Sb	\$n	Sr	T: %	U	V	w	Y	_In
1	L4500	0+00 E	<0.2	0.71	20	25	<5	<0.01	<1	8	14	28	3.25	<10	0.30	143	4 < 0.01	15	480	22	<5	<20	2	0 02	<10	19	<10	<1	24
2	L4500	0+25 W	0.4	1.59	10	60	<5	0 04	<1	8	11	12	3 06	<10	0.25	197	<1 <0.01	11	870	20	<5	<20	4	0 08	<10	29	<10	<1	32
3	L4500	0+50 W	< 0.2	2 09	10	75	5	0.03	<1	12	13	14	3.38	<10	0.25	236	1 <0 01	10	570	20	<5	<20	3	0 08	<10	32	<10	<1	35
4	L4500	0+75 W	< 0.2	0.60	5	70	<5	0.04	<1	5	8	3	1 30	<10	0.09	595	<1 <0.01	3	330	18	<5	<20	4	0.09	<10	24	<10	<1	19
5	L4500	1+00 W	0.2	0.98	5	115	<5	0 12	<1	9	7	6	1.91	<10	0.11	1432	<1 <0 01	5	350	22	<5	<20	5	0 16	<10	33	<10	<1	37
6	L4500	1+25 W	<0.2	3.19	5	145	<5	0 16	<1	27	26	32	5.02	<10	0.81	1924	<1 <0.01	18	1360	28	<5	<20	8	0 35	<10	122	<10	<1	89
7	L4500	1+50 W	0.4	1.77	15	7.5	<5	0.08	<1	14	15	21	3.38	<10	0.45	506	2 <0 01	21	550	18	<5	<20	4	0 05	<10	22	<10	<1	56
8	L4500	1+75 W	0.4	0.33	<5	70	<5	0.06	<1	3	5	8	0 65	<10	0.03	63	<1 <0 01	3	140	14	<5	<20	4	0 09	<10	19	<10	<1	18
9	L4500	2+00 W	0.8	1.75	15	140	<5	0 44	<1	13	14	14	2.90	<10	0.32	5836	2 < 0.01	14	630	18	<5	<20	16	0 10	<10	25	<10	<1	146
10	L4500	2+25 W	0.4	1.28	<5	65	<5 ·	<0.01	<1	6	9	7	2.17	<10	0.12	593	1 <0.01	5	1350	12	<5	<20	4	0 04	<10	20	<10	<1	34
11	L4500	2+50 W	<0.2	0.27	<5	55	<5	0.03	<1	3	8	4	0.56	<10	0.03	53	<1 <0.01	3	190	22	<5	<20	7	0.05	<10	16	<10	<1	11
12	L4500	2+75 W	<0.2	0.47	<5	40	<5	0.28	<1	5	9	5	1.99	<10	0.17	125	1 <0.01	6	300	12	<5	<20	8	0.04	<10	22	<10	<1	28
13	L4500	3+00 W	0.2	0.55	5	35	<5	0.16	<1	13	12	14	2.23	<10	0.42	575	2 < 0.01	16	570	14	<5	<20	2	0.02	<10	10	<10	2	23
14	L4500	0+25 E	0.4	0.51	10	85	<5	0.35	<1	6	10	23	1.91	<10	0.22	595	2 <0 01	10	580	16	<5	<20	9	0.02	<10	18	<10	<1	37
15	L4500	0+50 E	0.2	1.21	10	55	<5	0.07	<1	15	14	61	3 55	<10	0 47	427	2 <0.01	18	410	42	<5	<20	5	0.05	<10	47	<10	<1	101
16	L4500	0+75 E	0.2	1.33	10	50	<5	0.03	<1	15	14	58	4.32	<10	0.56	277	4 < 0.01	19	380	36	<5 [*]	<20	2	0.04	<10	61	<10	<1	112
17	L4500	1+00 E	<0.2	0.98	5	45	5 -	<0.01	<1	9	15	18	3.57	<10	0 40	110	3 <0 01	13	500	12	<5	<20	<1	0.03	<10	25	< 10	< 1	42
18	L4500	1+25 E	0.2	1.03	10	50	<5	<0.01	<1	8	17	18	2.97	<10	0.32	136	3 < 0.01	14	260	16	<5	<20	2	0.04	<10	20	<10	<1	28
19	L4500	1+50 E	0.2	2.97	10	95	<5	0.04	<1	6	14	10	2.58	<10	0 12	99	2 < 0.01	7	620	24	<5	<20	3	0.04	<10	20	<10	<1	28
20	L4500	1+75 E	0.2	0.74	5	50	<5	0.03	<1	7	8	10	2.61	<10	0.17	114	2 < 0.01	8	400	16	<5	<20	4	0 05	<10	19	<10	<1	24

ICP CERTIFICATE OF ANALYSIS AK96-1018

Et #.	Tag#		Ag	Al %	As	Ba	Bi Ca %	Cd	Со	Cr	Сш	Fe %	La	Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr Ti	%	U	٧	w	Y	Zn
21	L4500	2+00 E	1.6	0.76	35	50	<5 < 0.01	<1	8	8	20	2.83	<10	0.22	82	4 <0.01	11	370	12	<5	<20	3 0.0	3 •	<10	19	<10	<1	28
22	L4500	2+25 E	0.2	1.87	35	80	<5 0.02	<1	12	14	20	3.18	<10	0.25	392	4 < 0.01	18	350	22	<5	<20	3 0.0	5 -	<10	19	<10	<1	41
23	L4500	2+50 E	0.2	1.35	10	50	<5 0.06	<1	10	24	20	2.99	<10	0.30	159	3 < 0.01	19	250	18	<5	<20	4 0.0)4 -	<10	21	<10	<1	35
24	L4500	2+75 E	0.4	1.26	5	65	<5 0.05	<1	10	23	17	2.96	<10	0.28	134	2 < 0.01	16	350	18	<5	<20	3 00)4 -	<10	17	<10	<1	36
25	L4500	3+00 E	<0.2	1.32	10	65	<5 0.08	<1	17	35	23	3.47	<10	0.33	315	3 < 0.01	27	230	24	<5	<20	6 0.0)4 -	<10	22	<10	<1	46
26	L5000	0+25 E	0.4	0.74	15	30	<5 <0.01	<1	9	21	53	3.56	<10	0.15	162	4 < 0.01	17	380	24	<5	<20	3 0.0	6 -	<10	21	<10	<1	27
27	L5000	0+50 E	<0.2	1.05	25	35	<5 0.08	<1	14	25	70	3.65	<10	0.43	211	3 < 0.01	27	290	30	<5	<20	3 0.0	6 .	<10	15	<10	<1	31
28	L5000	0+75 E		0.85	25	55	<5 0.09	<1	11	19	43	4.01	<10	0.33	204	2 < 0.01	16	720	18	<5	<20	6 0.0	9 .	<10	18	<10	<1	39
29	L5000	1+00 E		1.70	15	55	<5 0.01	<1	10	18	33	3.10	<10	0.26	281	3 < 0.01		1220	18	<5	<20	<1 0.0	٠ 70	<10	20	<10	<1	42
30	L5000	1+25 E		2.18	20	75	<5 0.02	<1	9	19	24	2.94	<10	0.26	280	1 < 0.01	12	640	20	<5	<20	2 0.0)7 ·	<10	19	<10	<1	42
-	20077							-	_		-						-			_				-				
31	L5000	1+50 E	0.4	1.90	20	95	<5 0.02	<1	18	30	59	3.97	<10	0.38	413	3 < 0.01	24	840	24	<5	<20	4 00)5 -	<10	19	<10	<1	37
32	L5000	1+75 E		0.70	<5	35	<5 <0.01	<1	4	11	9	1.84	<10		83	1 < 0.01	6	340	8	<5	<20)4	<10	16	<10	<1	12
33	L5000	2+00 E		1.35	20	50	<5 < 0.01	<1	9	13	39	2.88	<10	0.27	118	4 < 0.01	16	370	12	<5	<20	2 0.0)3 -	<10	14	<10	<1	19
34	L5000	2+25 Ē		3.07	10	50	<5 < 0.01	<1	10	12	41	3.39	<10		85	3 < 0.01	14	620	14	<5	<20	2 0.0)7 ·	<10	18	<10	<1	21
35	L5000	2+50 E		0.80	5	35	<5 <0.01	<1	6	9	19	2.34	<10		76	3 < 0.01	9	330	8	<5		2 0.0		<10	14	<10	<1	14
	20000				_																							
36	L5000	2+75 E	<0.2	2.66	10	65	<5 0.03	<1	9	10	12	2.30	<10	0.13	77	<1 <0.01	11	470	20	<5	<20	4 0.1	0	<10	21	<10	<1	21
37	L5000	3+00 E	<0.2	1.13	15	50	<5 < 0.01	<1	8	15	32	3.14	<10	0.28	132	3 < 0.01	15	300	16	<5	<20	<1 0.0)4	<10	19	<10	<1	24
38	L5000	3+25 E	<0.2	1.62	20	45	<5 0.01	<1	9	15	33	3.37	<10	0.25	96	1 < 0.01	14	470	14	<5	<20	2 0.0)6	<10	23	<10	<1	24
39	L5000	3+50 E	0.4	1.58	20	60	<5 0.01	<1	10	15	25	3.15	<10	0.29	100	4 < 0.01	16	300	16	<5	<20	2 0.0	5 -	<10	23	<10	<1	28
40	L5000	3+75 E		0.94	25	35	<5 <0.01	<1	8	11	24	3.03	<10		92	3 < 0.01	13	260	10	<5	<20	3 0.0	6	<10	18	<10	<1	21
41	L5000	4+00 E	<0.2	1.59	15	70	<5 0.02	<1	9	13	25	3.07	<10	0.27	88	3 < 0.01	14	270	16	<5	<20	4 0.0)5	<10	24	<10	<1	23
42	L5000	4+25 E	0.4	2.28	10	100	< 5 0.01	<1	11	17	22	3.00	<10	0.28	153	2 < 0.01	12	820	18	<5	<20	3 00	٠ 70	<10	27	<10	<1	32
43	L5000	4+50 E	0.4	1.08	<5	50	<5 <0.01	<1	4	10	10	1.74	<10	0.16	75	2 < 0.01	6	190	14	<5	<20	3 0.0)4	<10	20	<10	<1	16
44	L5000	4+75 E	0.6	2.00	10	90	<5 0.02	<1	8	15	14	3.34	<10	0.24	93	3 < 0.01	13	590	20	<5	<20	2 0.0	05	<10	32	<10	<1	36
45	L5000	5+00 E	<0.2	1.24	10	50	<5 <0.01	<1	9	13	27	2.71	<10	0.43	87	1 < 0.01	17	140	8	<5	<20	2 0.0	06	<10	15	<10	<1	26
-																												
46	L5000	5+25 E	<0.2	0.92	10	40	<5 <0.01	<1	8	15	36	2.98	<10	0.34	95	2 < 0.01	13	250	6	<5	<20	2 0.0)4	<10	14	<10	<1	21
47	L5000	5+50 E	< 0.2	1.31	10	75	<5 0.03	<1	10	17	26	2.94	<10	0.27	133	3 < 0.01	13	250	12	<5	<20	4 00)4	<10	21	<10	<1	27
48	L5000	5+75 E	0.2	1.35	35	50	<5 0.09	<1	14	27	76	3.01	<10	0.38	505	2 < 0.01	26	250	12	<5	<20	6 0.0)5	<10	17	<10	1	25
49	L5000	6+00 E	< 0.2	0.83	5	45	<5 0.11	<1	8	9	29	2.39	<10	0.20	183	2 < 0.01	9	190	10	<5	<20	4 00	03	<10	13	<10	<1	19
50	L5000	6+25 E	< 0.2	0.57	<5	30	<5 0.03	<1	3	5	8	0.99	<10	0.12	45	<1 <0.01	5	110	4	<5	<20	3 00)2	<10	11	<10	<1	11
													_	_				-										
51	L5000	6+50 E	<0.2	1.78	15	65	<5 0.04	<1	10	10	27	3.49	<10	0.18	210	3 < 0.01	11	520	18	<5	<20	4 0.0	06	<10	18	<10	<1	34
52	L5000	6+75 E	<0.2		5	65	<5 0.09	<1	8	9	32	2.37	<10	0.18	498	2 < 0.01	9	520	8	<5	<20	5 0.0)2	<10	13	<10	<1	25
53	L5000	7+00 E		1.74	10	55	<5 0.09	<1	7	9	32	2.37	<10	0.21	163	<1 <0.01	8	490	8	<5	<20	5 0.0	5	<10	18	<10	<1	21
54	L5000	7+25 E	<0.2		20	75	<5 0.11	<1	14	10	24	3.89	<10	0.17	495	2 < 0.01	9	440	28	<5	<20	5 0.0	9 .	<10	24	<10	<1	49
55	L5000	7+50 E		1.13	30	65	<5 0.10	<1	17	11	78	4.09	<10		497	4 < 0.01	17		38	<5		4 0.0	3 .	<10	17	<10	<1	70
								-												-				-				

Et #.	Tag #	•	Δα	A1 %	As	Ва	Bi Ca %	Cd	Co	Cr	Cu	Fe %		Ma %	Mn	Mo Na%	Ni	Р	РЬ	Sb	٥.	٠.	Ti %	U	٧	w	Y	Zn
56	L5000	7+75 E		1.09	20	55	<5 0.65		9	6	60	2.14		0.18	; ;	2 < 0.01	12	410	18	<5	<20		0.03	<10	13	<10		53
57	L5000	8+00 E		0.65	5	40	<5 0.04		7	5	41	2.14		0.10	174	2 <0.01	8	280	12	\s	<20		0 02	<10	11			26
58	L5000	0+25 W		0.34	10	45	<5 0.11		6	10	41	1.74	<10		94	1 <0.01	17	450	22	<5	<20		0.03	<10	18			24
59	L5000	0+50 W		2.11	<5	60	<5 0.16		11	12	18	3.28	<10	0.27	871	2 < 0.01	11	640	24	<5	<20	-	0 06	<10	20	<10	<1	33
60	L5000	0+75 W		0.34	<5	55	<5 0.10		4	8	17	1.49	<10	0.06	119	<1 <0.01	6	240	8	<5	<20		0 03	<10	20	<10		11
-	25500	0.75 **	0.2	0.54	-5	55	-5 0.10		7	Ū	• • • • • • • • • • • • • • • • • • • •	1.73	-10	0.00	, 13	1 10.01	0	240	Ü	-5	~20	3	0 00	~10	20	- 10	-1	••
61	L5000	1+00 W	<0.2	0.69	<5	25	5 0.07	<1	10	16	21	3.02	10	0.26	254	3 < 0.01	15	490	16	<5	<20	7	0 02	<10	14	<10	1	26
62	L5000	1+25 W		0.33	<5	115	<5 0.44		3	7	12	1.12	<10		1177	1 < 0.01	8	270	22	<5	<20		0 04	<10	20	<10	<1	48
63	L5000	1+50 W		1.65	5	70	<5 0.05		10	10	10	2.35	<10		1155	1 <0.01	_	1670	24	<5	<20		0.07	<10	19	<10		43
64	L5000	1+75 W		1.57	10	90	<5 0.09		12	11	15	3.48	<10	0.30	335	1 <0.01			22	<5	<20		0 09	<10	23			75
65	L5000	2+00 W		2.24	5	100	<5 0.06		13	12	13	3.53	<10	0.23	311	<1 <0.01		1690	24	<5	<20			<10	27	<10		69
					•	,,,,	•	•	,,,					0.20	• • •	. 0.01		1000		_		-	5 10					
66	L5000	2+25 W	<0.2	1.02	5	50	<5 < 0.01	<1	8	10	9	2.46	<10	0.24	275	1 < 0.01	10	420	14	<5	<20	3	0.03	<10	18	<10	<1	47
67	L5000	2+50 W	<0.2	1.20	20	60	<5 0.04	<1	12	12	16	3.08	<10		348	2 < 0.01	16	360	22	<5	<20	6	0.04	<10	22	<10	<1	ഒ
68	L5000	2+75 W	<0.2	1.14	15	35	10 0.03	<1	8	10	16	2.65	<10	0.23	161	3 < 0.01	14	280	16	<5	<20	3	0.03	<10	22	<10	<1	45
69	L5000	3+00 W	0.2	1.18	<5	50	<5 0.04	<1	9	10	10	2.80	<10	0.25	151	2 < 0.01	13	610	14	<5	<20	4	0.04	<10	20	<10	<1	48
70	L5000	3+25 W	<0.2	1.16	<5	55	<5 0.02	<1	7	9	12	2.58	<10	0.22	102	1 < 0.01	10	450	16	<5	<20	3	0.06	<10	24	<10	<1	35
71	L5000	3+50 W	0.2	1.74	5	80	<5 0.00	<1	10	13	8	2.59	<10	0.32	176	2 < 0.01	14	830	18	<5	<20	3	0 04	<10	19	<10	<1	45
72	L5000	3+75 W	<0.2	1.09	<5	50	<5 0.01	<1	8	12	12	2.96	<10	0.33	119	2 < 0.01	12	610	14	<5	<20	1	0.03	<10	20	<10	<1	31
73	L5000	4+00 W	0.2	1.36	<5	50	<5 < 0.01	<1	6	11	8	3.05	<10	0.19	107	2 < 0.01	6	490	10	<5	<20	<1	0 05	<10	28	<10	<1	34
74	L5500	D+25 W	04	0.70	<5	30	<5 0.02	<1	11	46	23	3.63	<10	0.28	127	3 < 0.01	18	590	14	<5	<20	5	0.04	<10	44	<10	<1	22
75	L5500	0+50 W	<0.2	0.89	<5	25	5 < 0.01	<1	7	14	19	3.69	<10	0.28	103	3 < 0.01	10	530	12	<5	<20	3	0.03	<10	24	<10	<1	28
76	L5500	0+75 W	<0.2	0.51	<5	30	<5 <0.01	<1	3	5	15	1.34	<10	0.09	50	2 < 0.01	5	330	14	<5	<20	1	0.01	<10	17	<10	<1	20
77	L5500	1+00 W	0.6	3.28	<5	50	<5 <0.01	<1	12	12	34	3.61	<10	0.26	163	1 < 0.01	12	690	24	<5	<20	3	C 09	<10	24	<10	1	34
78	L5500	1+25 W	<0.2	1.27	<5	45	<5 0.01	<1	8	16	14	3.19	<10	0.40	117	2 < 0.01	9	430	12	<\$	<20	4	0.05	<10	60	<10	<1	23
79	L5500	1+50 W	<0.2	0.37	<5	50	<5 0.10	<1	3	5	9	1.16	<10	0.08	172	<1 <0.01	4	200	10	<5	<20	5	0.02	<10	18	<10	<1	15
80	L5500	1+75 W	0.2	0.77	<5	35	<5 <0.01	<1	6	9	11	3.64	<10	0.12	212	2 <0.01	6	520	12	<5	<20	3	0.07	<10	26	<10	<1	19
81	L5500	2+00 W		0.62	_. <5	30	<5 0.06	<1	4	7	13	1.72	<10	0.13	111	2 < 0.01	7	250	10	<5	<20	4	0.02	<10	19	<10	< 1	15
82	L550 0	2+25 W	0.4		5	40	10 0.01	<1	6	10	14	3.55	<10	0.19	247	3 <0.01	10	790	16	<5	<20	2	0 02	<10	18	<10	<1	31
83	L5500	2+50 W	<0.2		<5	35	<5 <0.01	<1	4	7	5	1.93	<10	0.08	103	1 <0.01	3	460	10	<5	<20	1	0 03	<10	22	<10	<1	20
84	L5500	2+75 W	<0.2		<5	45	<5 0.02	<1	6	7	8	2.71	<10	0.17	133	<1 <0.01	8	730	16	<5	<20	4	0 06	<10	26	<10	<1	22
85	L5500	3+00 W	<0.2	1.41	<5	50	<5 0.02	<1	6	8	11	3.52	<10	0.14	138	3 <0.01	6	470	12	<5	<20	3	0 04	<10	22	<10	<1	18
					_														_									
86	L5500	3+25 W		2.75	<5	45	<5 0.03		10	10	13	3.47	<10		107	1 <0.01		1010	12	<5	<20		0 10	<10	25	<10		28
87	L5500	3+50 W		0.71	<5	25	<5 0.03		5	7	6	1.76	<10		148	2 <0.01	6	230	6	<5	<20	_	0.01	<10	15	<10		10
88	L5500	3+75 W		1.86	<5	65	<5 0.06		7	10	10	2.64	<10	0.15	111	1 < 0.01	9	550	18	<5	<20		0.07	<10	24			18
89	L5500	4+00 W	<0.2	0.85	<5	40	5 0.37	<1	6	8	6	2 74	<10	0.13	148	1 <0.01	7	180	8	<5	<20		0 08	<10	31	<10	<1	15
90	L5500	4+25 W	<0.2	0.48	<5	35	<5 0.03	<1	3	7	3	1.25	<10	0.08	37	<1 <0.01	4	150	6	<5	<20	4	0.05	<10	24	<10	<1	5

- 44	T #	ı	A- A1	4/		٠.	D: C+ 1/	C-4	C-	٠.	^	F= #/		h4 9/		Ma Na M		_	5 1.	C.	c -	C -	T: 0/			147	v	7-
Et #.	Tag #	4+50 W	Ag Al 4			3a	Si Ca% <5 0.04	Cd 	<u>Co</u> 5	Cr 10	Cu	Fe %		Mg % 0.11	Mn 73	Mo Na %	Ni	P	<u>Рь</u> 20	Sb <5	— a	- 123-	Ti %	U	- <u>V</u>	<10	Y	<u>Zn</u>
91	L5500	4+30 W	<0.2 0.5			55 35	<5 0.04	<1	11	12	10 20	2.55 3.1 6	10		372	<1 <0.01 2 <0.01	5 18	190 310	10	<5 <5			0.11	<10 <10	23	<10	1	12
92 93	L5500 L5500	5+00 W	<0.2 0.5		-	30 30	<5 0.42 <5 0.01	<1	4	11	20 5	1.88	10		147	<1 <0.01	6	470	8	<5	<20		0 04 0 04	<10	23		<1	14
93 94	L5500	5+25 W	<0.2 7.2		_	55	5 0.01	<1	11	12	13	2.57	<10		282	1 <0.01		1450	10	<5	<20		0.06	<10	23	<10		23
9 4 95	L5500	5+50 W	<0.2 2.3		-	55 45	<5 < 0.01	<1	8	14	10	3.39		0.35	194	3 < 0.01	9	750	12	<5			0 02	<10	19	<10		Z2 Z2
95	L3300	3730 VV	SU.2 1.4	45	<0 '	40	C5 CU.U1	`'	0	14	10	3.39	× 10	บ.ออ	194	3 (0.01	9	/50	12	<2	<20	2	0 02	<10	19	× 10	~1	24
96	L5500	5+75 W	0.4 4.0	na .	<5	65	<5 0.04	<1	9	11	7	2.84	<10	0.20	146	4 <0.01	9	590	14	<5	<20	A	0.05	<10	25	<10	c1	17
97	L5500	0+25 E	<0.2 0.9			35	<5 0.0 1	<1	9	10	43	2.93		0.20	703	3 < 0.01	9	550	44	<5	<20		0.03	<10	22	<10		823
98	L5500	0+50 E	0.6 1.7			75	<5 0.42	<1	13	13	94	2.85	40		1498	2 <0.01	12	730	26	<5	<20		0.05	<10	25	<10		20
99	L5500	0+75 E	<0.2 0.8			40	<5 0.05	<1	6	9	23	3.31		0.33	121	2 < 0.01	8	230	12	<5			0.03	<10	15		<1	36
100	L5500	1+00 E	<0.2 1.1			40	<5 0.54	<1	14	18	69	3.04		0.38	754	2 < 0.01	23	460	30	<5			0.05	<10	20	<10	7	225
100	E0000	1.00 L	40.2 1.1		30	70	-0 0.0-	- 1			03	0.04		0.00	104	2 -0.01	23	400	50	٠.	-20		0.00	-10	20	- 10	,	
101	L5500	1+25 E	<0.2 2.0	28	55	55	<5 0.08	<1	12	22	152	3.73	30	0.27	297	3 < 0.01	19	360	34	<5	<20	6	0.06	<10	25	<10	14	93
102	L5500	1+50 E	0.2 2.2			60	<5 0.24	<1	7	10	38	4.41		0.10	72	<1 <0.01	8	320	30	<5	<20	_	0.13	<10	29	<10		42
103	L5500	1+75 E	<0.2 2.6			85	5 0.11	1	30	57	44	9.89	<10		903	3 <0.01	27	600	34	<5	<20		0.22	<10	183		<1	26
104	L5500	2+00 E	<0.2 1.0		-	40	<5 0.03	<1	12	17	51	5,19	<10		158	5 <0.01	17	350	24	<5	<20		0.04	<10	33	<10	<1	57
105	L5500	2+25 È	0.4 1.6			50	<5 0.56	<1	20	16	45	4.43	<10		294	4 < 0.01	25	490	50	<5			0.05	<10	25	<10	2	65
.00	20000									_										-						-		
106	L5500	2+50 E	<0.2 1.2	29	20	60	<5 0.15	<1	12	16	29	3.78	<10	0.31	144	3 < 0.01	17	320	26	<5	<20	7	0 06	<10	23	<10	<1	55
107	L5500	2+75 E	< 0.2 2.4			65	<5 0.06	<1	9	21	24	4.16		0.18	123	1 < 0.01	13	390	40	<5	<20		0.10	<10	24	<10		41
108	L5500	3+00 E	0.2 0.6			60	5 0.10	<1	4	8	5	1.84	<10	0.12	100	<1 <0.01	5	250	16	<5	<20	3	0.07	<10	27	<10	<1	Z 3
109	L5500	3+25 E	<0.2 0.9			50	< 5 0.01	<1	7	16	10	3.78		0.11	84	6 < 0.01	10	340	22	<5		3	0.03	<10	25	<10	<1	19
110	L5500	3+50 E	0.4 1.2			40	<5 < 0.01	<1	10	33	24	3.97		0.25	124	3 < 0.01	17	550	22	<5			0.06	<10	42	<10	<1	49
					- -																							
111	L5500	3+75 E	<0.2 0.5	51 :	20 :	25	<5 0.02	<1	7	13	24	2.33	<10	0.16	91	2 < 0.01	13	300	14	<5	<20	<1	0.04	<10	23	<10	<1	28
. 112	L5500	4+00 E	0.2 1.0			40	<5 <0.01	<1	4	14	15	2.51	<10	0.14	66	2 < 0.01	9	170	18	<5	<20	<1	0.05	<10	27	<10	<1	30
113	L5500	4+25 E	<0.2 0.7	71	10	30	<5 <0.01	<1	11	13	47	3.00	<10	0.29	145	3 < 0.01	18	230	20	<5	<20	3	0.04	<10	18	<10	<1	45
114	L5500	4+50 E	0.2 0.9	90 10	60	35	<5 0.11	<1	23	16	180	3.63	<10	0.33	354	3 < 0.01	24	420	106	<5	<20	6	0.04	<10	13	<10	3	71
115	L5500	4+75 E	<0.2 0.7	74	25	30	<5 0.02	<1	7	12	18	2.61	<10	0.15	78	2 < 0.01	10	280	18	<5	<20	3	0 06	<10	27	<10	<1	24
116	L5500	5+00 E	<0.2 0.6	56	20 :	35	<5 0.04	<1	7	12	10	2.74	<10	0.18	69	3 < 0.01	9	510	18	<5	<20	3	0.04	<10	18	<10	<1	19
117	L5500	5+25 E	<0.2 0.7	74	10	25	<5 0.03	<1	7	13	25	2.72	<10	0.14	103	3 <0.01	12	340	10	<5	<20	2	0.03	<10	17	<10	<1	20
118	L5500	5+50 E	0.2 1.7	78	10	45	<5 <0.01	<1	9	29	18	3.58	<10	0.28	82	2 < 0.01	14	920	24	<5	<20	3	0.07	<10	23	<10	<1	32
119	L5500	5+75 E	0.2 1.5	51	<5	50	<5 0.02	<1	10	14	25	2.99	<10	0.28	103	1 <0.01	16	560	18	<5	<20	2	0 07	<10	19	<10	<1	42
120	L5500	6+00 E	<0.2 0.8	36	15	50	<5 <0.01	<1	9	19	38	3.08	<10	0.29	178	5 <0.01	15	230	16	<5	<20	3	0 03	<10	13	<10	<1	23
121	L5500	6+25 E	0.2 1.7	73 9	90 3	55	<5 <0.01	<1	14	43	63	4.43	<10	0.52	138	6 < 0.01	34	630	34	<5	<20	6	0.04	<10	20	<10	<1	51
122	L5500	6+50 E	0.4 1.2	26 2	20 4	40	<5 <0.01	<1	8	17	39	3.61	<10	0.35	96	5 < 0.01	14	560	24	<5	<20	2	0 04	<10	19	<10	<1	2 5
123	L5500	6+75 E	0.2 1.0	2 2	20 3	30	<5 <0.01	<1	7	9	23	3.65	<10	0.08	99	5 < 0.01	12	440	14	<5	<20	<1	0.03	<10	20	<10	<1	2 5
124	L5500	7+00 E	0.6 1.9	30 4	45 5	50	<5 0.04	<1	9	12	20	3.58	<10	0.21	182	4 <0.01	12	900	38	<5	<20	2	0.05	<10	29	<10	<1	45
125	L5500	7+25 E	<0.2 0.4	7	20 3	30	<5 <0.01	<1	7	3	23	2.60	<10	0.03	97	6 <0.01	15	300	10	<5	<20	2	0.02	<10	10	<10	<1	13

ICP CERTIFICATE OF ANALYSIS AK96-1018

Et #.	Tag#		Ag	AI %	_As	Ba	Bi Ca	% C	d	Сь	Cr	Cu	Fe %	Ĺa	Mg %	Mn	Mo Na %	Ni	ρ	Pb	Sb	Sn	Sr	Tí %	<u>u</u>	v	w	Υ	Zn
126	L5500	7+50 E	0.4	0.83	60	30	<5 <0.	01 <	1	11	19	40	3.76	<10	0.25	148	4 < 0.01	23	530	18	<5	<20	1	0.02	<10	24	<10	<1	36
127	L3500	7+75 E	0.2	0.98	10	25	<5 <0.	.01 <	1	9	11	33	3.21	<10	0.29	152	3 < 0.01	14	390	10	<5	<20	<1	0.03	<10	27	<10	<1	38
128	L\$500	8+00 E	0.8	4.60	<5	45	<5 0.	.05 <	1	14	17	50	4.02	<10	0.29	170	<1 0.01	13	1610	18	<5	<20	4	0.21	<10	80	<10	<1	27
129	L6000	0+25 E	< 0.2	1.13	25	40	<5 0.	03 <	1	5	9	13	3.03	10	0.32	69	4 <0.01	6	210	10	<5	<20	4	0.02	<10	28	<10	<1	27
130	L6000	0+50 E	<0.2	1.05	15	40	<5 <0.	01 <	1	6	10	10	4.37	<10	0.20	96	3 < 0.01	5	260	10	<5	<20	2	0.04	<10	31	<10	<1	39
131	L6000	0+75 E	<0.2	0.94	10	55	5 <0.	01 <	1	7	9	12	4.33	<10	0.25	71	3 < 0.01	5	210	14	<5	<20	9	0 02	<10	20	<10	<1	43
132	L6000	1+00 E	< 0.2	1.59	10	35	10 <0.	01 <	1	7	12	14	5.39	<10	0.22	85	4 < 0.01	8	260	26	<5	<20	3	0.06	<10	48	<10	<1	55
133	L6000	1+25 E	<0.2	1.23	10	40	10 0.	02 <	1	7	10	9	4.17	<10	0.18	81	3 < 0.01	5	300	48	<5	<20	1	0.13	<10	50	<10	<1	43
134	L6000	1+50 E	< 0.2	1.80	20	55	<5 0.	06 <	1	7	14 -	13	3.44	<10	0.28	107	2 < 0.01	11	420	48	<5	<20	5	0 07	<10	34	<10	<1	59
135	L6000	1+75 E	<0.2	0.55	<5	50	<5 <0.	.01 <	1	2	8	4	0.58	<10	0.06	50	<1 <0.01	4	270	22	<5	<20	4 <	<0.01	<10	9	<10	<1	14
136	L6000	2+00 E	0.2	1.74	<5	60	<5 0.	03 <	1	13	11	15	3.05	20	0.29	1267	2 < 0.01	9	550	40	<5	<20	5	0.04	<10	23	<10	6	159
137	L6000	2+25 E	0.2	1.81	<5	50	5 0.	16 <	1	21	13	19	4.93	<10	0.41	335	4 < 0.01	16	450	32	<5	<20	5	0 03	<10	28	<10	<1	258
138	L6000	2+50 E	0.2	0.93	5	40	10 <0.	01 <	1	10	7	12	4.45	<10	0.16	104	5 < 0.01	9	290	20	<5	<20	3	0.05	<10	38	<10	<1	58
139	L6000	2+75 E	0.4	0.99	<5	55	5 0.	.12 <	1	7	8	В	3.93	<10	0.10	101	3 < 0.01	7	340	32	<5	<20	6	0 06	<10	23	<10	<1	88
140	L6000	3+00 E	0.6	1.13	<5	45	<5 <0.	.01 <	1	12	10	19	3.54	<10	0.31	261	3 < 0.01	15	330	20	<5	<20	<1	0.02	<10	20	<10	<1	134
141	L6000	3+25 €	< 0.2	0.70	5	30	<5 <0.	01 <	1	1	2	3	0 44	10	0.02	14	<1 <0.01	<1	80	12	<5	<20	4	0.02	<10	6	<10	<1	<1
142	L6000	3+50 E	0.4	1.46	10	40	<5 O.	10 <	1	25	23	47	4.31	<10	0.48	692	3 < 0.01	18	520	34	<5	<20	4	0.03	<10	45	<10	3	174
143	L6000	3+75 E	0.6	2.06	5	70	<5 0.	39	2	28	16	76	4.79	10	0.55	1724	3 < 0.01	20	1020	96	<5	<20	11	0 06	<10	88	<10	9	329
144	L6000	4+00 E	< 0.2	1.77	10	55	<5 0.	10 <	1	20	21	77	6.77	<10	0.57	402	5 < 0.01	17	350	64	<5	<20	5	0 10	<10	111	<10	<1	217
145	L6000	4+25 E	<0.2	3.84	5	60	<5 0.	85 <	1	50	41	256	8.53	<10	1.11	2102	5 < 0.01	34	1160	326	<5	<20	19	80.0	<10	201	<10	17	152
146	L6000	4+50 E	0.4	2.84	5	70	<5 0.	.10 <	1	31	17	559	6.44	<10	0.53	679	4 <0 01	22	460	62	<5	<20	5	0.10	<10	84	<10	<1	179
147	L6000	4+65 E	8.6	0.62	<5	175	<5 0.	15	7	71	3	6430	>10	<10	0.18	10000	19 < 0.01	61	1680	98	<5	<20	5	0.06	<10	26	<10	<1	406
148	L6000	4+75 E	0.6	0.92	5	25	<5 0.	03 <	1	7	5	77	4.09	<10	0.07	180	4 < 0.01	6	330	28	<5	<20	<1	0.05	<10	34	<10	<1	44
149	L6000	5+00 E	<0.2	0.83	130	30	5 0.	13 <	1	13	6	40	5.08	<10	0.07	213	5 < 0.01	18	380	62	<5	<20	3	0.02	<10	13	<10	<1	115
150	L6000	5+25 E	<0.2	4.80	50	140	<5 0.	92 <	1	50	64	1400	8.34	<10	2.92	1514	<1 <0.01	55	1260	92	<5	<20	21	0.56	<10	260	<10	5	1924
151	L6000	5+50 E	<0.2	1.34	75	55	<5 0.	22 <	1	29	60	460	5.07	<10	0.39	928	2 < 0.01	38	590	184	<5	<20	9	0.10	<10	47	<10	3	637
. 152	L6000	5+75 E	<0.2	0.69	55	30	<5 0.	10	2	6	7	41	3.24	<10	0.13	114	3 < 0.01	8	260	28	<5	<20	2	0.06	<10	21	<10	<1	118
153	L6000	6+00 E	1.2	2.05	25	45	<5 0.	36 <	1	10	6	28	3.68	<10	0.09	364	2 < 0.01	11	440	74	<5	<20	13	0.05	<10	24	<10	<1	309
154	L6000	6+25 E	0.6	0.85	25	50	<5 0.	40 <	1	7	5	64	2.18	<10	0.11	1738	3 < 0.01	7	320	28	<5	<20	11	0.02	<10	18	<10	<1	168
155	L6000	6+50 E	0.6	0.78	60	35	<5 O.	28 <	1	16	5	174	3.48	<10	0.11	853	4 < 0.01	17	290	66	<5	<20	9	0.03	<10	14	<10	<1	357
156	L6000	6+75 E	0.4	1.15	75	40	< 5 0.	24 <	1	19	10	113	3.95	<10	0.17	800	4 < 0.01	22	300	88	<5	<20	9	0.03	<10	18	<10	<1	604
157	L6000	7+00 E	0.4	1.08	55	45	<5 O.		1	18	21	111	3.50	<10	0.27	1321	3 < 0.01	21	400	76	<5	<20	12	0.03	<10	21	<10	2	423
158	L6000	7+25 E	0.8	1.05	40	30	<5 0.	30 <	1	23	6	146	3.37	<10	0.16	688	4 < 0.01	18	530	36	<5	<20	9	0 03	<10	14	<10	3	239
159	L6000	7+50 E	0.2	0.94	20	50	<5 0.	48 <	1	17	8	67	2.81	<10	0.25	1570	3 < 0.01	14	960	60	<5	<20	15	0 03	<10	21	<10	2	214
160	L6000	7+75 E		0.72	35	40	<5 0.		1	9	5	31	3.97	<10		200	3 < 0.01	10	350	26	<5	<20	3	0.03	<10	22	<10	<1	77
		·=·					•																						

ICP CERTIFICATE OF ANALYSIS AK96-1018

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	#	Ag	Al %	As	Ba	Bi Ca%	Cd	Co	Cr	Сn	Fe %_	La	Mg %	Мл	Mo Na %	Ni	P	Pb	Sb	Sn	Sr Ti%	U	٧	w	Y	Žn
161	L6000	8+00 E	0.4	1.17	30	50	<5 0.08	<1	15	11	45	3.33	<10	0.21	712	4 < 0.01	16	370	56	<5	<20	3 0.03	<10	26	<10	<1	217
162	L6000	8+25 E	0.4	1.37	25	45	<5 0.26	<1	15	13	31	3.26	<10	0.24	589	3 < 0.01	14	430	58	<5	<20	10 0 05	<10	30	<10	<1	282
163	L6000	8+50 E	8.0	1.16	45	55	<5 0.46	<1	18	12	39	2.73	10	0.19	728	2 < 0.01	16	370	84	<5	<20	19 0.03	<10	22	<10	4	667
164	L6000	8+75 E	0.2	0.48	<5	20	<5 0.01	<1	2	3	5	0.64	10	0.03	62	<1 <0.01	3	130	10	<5	<20	2 001	<10	13	<10	<1	33
165	L6000	9+00 E	0.2	2.96	20	55	<5 0.01	<1	9	10	18	2.99	<10	0.09	192	<1 <0.01	5	470	110	<5	<20	2 0.07	<10	29	<10	<1	135
166	L6000	9+25 E	0.4	1.92	35	55	<\$ <0.01	<1	10	15	34	2.95	<10	0.16	126	2 < 0.01	12	310	58	<5	<20	1 0.03	<10	22	<10	<1	138
167	L6000	9+50 E	<0.2		35	30	<5 < 0.01	<1	7	10	20	4.07	<10	0.10	106	2 < 0.01	9	310	32	<5	<20	<1 0 05	<10	28	<10	<1	116
168	L6000	9+75 E	0.4	2.18	50	55	<5 <0.01	<1	10	15	29	3.01	<10	0.18	183	2 < 0.01	13	340	82	<5	<20	2 0.04	<10	23	<10	<1	168
169	L6000	10+00 E	<0.2		50	50	<5 0.01	<1	12	25	37	3.35	<10	0.23	207	4 < 0.01	20	350	64	<5	<20	3 0.03	<10	23	<10	<1	218
170	L6000	0+25 W	0.4		35	35	<5 <0.01	<1	10	20	26	5.86	<10	0.30	120	5 < 0.01	13	420	40	<5	<20	2 0.06	<10	33	<10	<1	83
1,0	LOGOO	0.20	Ψ		-		• • • • • • • • • • • • • • • • • • • •																				
171	L6000	0+50 W	0.2	2 45	20	30	<\$ <0.01	<1	18	26	52	6.36	<10	0.55	220	7 < 0.01	35	500	66	<5	<20	<1 001	<10	21	<10	<1	214
172	L6000	0+75 W	0.2		25	40	5 < 0.01	<1	12	20	24	5.24	<10	0.46	231	4 < 0.01	17	380	42	<5	<20	2 0.02	<10	21	<10	<1	117
173	L6000	1+00 W	0.2		10	30	5 < 0.01	<1	22	9	47	5.80	<10	0.27	305	5 < 0.01	32	380	22	<5	<20	2 0.01	<10	10	<10	<1	132
174	L6000	1+25 W	<0.2		5	35	<5 0.04	<1	8	15	15	7.02	<10	0.22	124	7 < 0.01	9	270	44	<5	<20	4 0 06	<10	38	<10	<1	43
175	L6000	1+50 W	<0.2		<5	45	<5 <0.01	<1	11	12	23	5.17	<10	0.28	227	4 < 0.01	15	320	28	<5	<20	2 0.04	<10	19	<10	<1	63
175	20000	1.55 11	-0.2	2.40		-15																					
176	L6000	1+75 W	0.2	0.99	15	75	<5 0.08	<1	11	10	34	5.25	<10	0.25	433	6 < 0.01	17	390	30	<5	<20	5 0 04	<10	28	<10	<1	63
177	L6000	2+00 E		1.71	10	80	<\$ 0.02		7	13	14	5.41	<10	0.41	168	5 < 0.01	7	290	28	<5	<20	2 0.02	<10	20	<10	<1	65
178	L6500	0+25 E		1.01	10	80	<5 0.60	1	9	9	24	2.10	<10	0.34	308	3 < 0.01	12	1650	54	<5		18 < 0.01	<10	38	<10	2	75
179	L6500	0+50 E		0.98	10	55	<5 0 44	<1	6	8	14	2.40	<10	0.29	77	3 < 0.01	8	770	38	<5	<20	13 0.01	<10	27	<10	<1	171
180	L6500	0+75 E		1.21	<5	50	<5 < 0.01	<1	8	28	11	2.79		0.35	440	2 < 0.01	13	420	28	<5	<20	2 0.02	<10	31	<10	<1	70
100	L0300	0.13 E	0.2	1.21	-0	00	-0.0		Ū			2															
181	L6500	1+00 E	0.4	0.89	<5	30	<5 0.03	<1	2	5	8	0.56	10	0.08	39	1 < 0.01	2	330	22	<5	<20	1 0.01	<10	8	<10	2	28
182	L6500	1+25 E		1.16	<5	35	<5 <0.01	<1	6	8	25	2.47	<10		88	<1 <0.01	7	280	28	<5	<20	1 0 09	<10	39	<10	<1	40
183	L6500	1+50 E	<0.2		5	25	<5 0.07	<1	7	12	24	2.71	<10		55	<1 0.02	5	710	34	<5	<20	4 0.25	<10	31	<10	3	14
184	L6500	1+75 E	<0.2		<5	20	<5 <0.01	<1	2	4	6	2.01	10	0.09	37	2 < 0.01	3	160	30	<5	<20	<1 0.01	<10	15	<10	<1	25
185	L6500	2+00 E		0.71	<5	35	<5 <0.01	<1	7	5	8	1.71	20	0.12	274	1 < 0.01	3	220	126	<5	<20	2 0.03	<10	19	<10	<1	64
100	L0300	2.00 2	0.0	0.77	-0		• 5.5	•		_																	
186	L6500	2+25 E	<0.2	1 14	25	45	<5 0.02	<1	9	16	16	5.16	<10	0.32	154	4 < 0.01	11	260	230	<5	<20	<1 0.08	<10	76	<10	<1	198
187	L6500	2+50 E	<0.2		20	35	<5 0.03		4	10	.7	2.14	<10		99	<1 <0.01	5	190	126	<5	<20	3 0 06	<10	39	<10	<1	250
188	L6500	2+30 E	<0.2		20	50	<5 0.02		35	12	90	8.58	<10	0.62	942	4 < 0.01	20	390	200	<5	<20	2 0.13	<10	137	<10	<1	450
189	L6500	3+00 E		1.50	<5	35	10 <0.01	<1	9	7	13	4.09		0.14	248	4 < 0.01	6	330	106	<5	<20	2 0.06	<10	39	<10	<1	66
190	L6500	3+25 E	0.2		5	55	<5 0.05		13	6	23	2.33		0.19		3 < 0.01	6	320	40	<5		5 0.04	<10	47	<10	<1	69
190	L0300	3+25 E	0.2	0.50	3	55	J 0.00	- 1		Ü		2.00		0.15	.0.0	0 0.01	·	020	,,,			• • • • • • • • • • • • • • • • • • • •					
101	L6500	3+50 E	<0.2	1.65	30	35	5 0.03	<1	14	11	20	4.46	<10	0.37	521	3 < 0.01	11	320	74	<5	<20	4 0.07	<10	62	<10	<1	170
191		3+50 E 3+75 E	<0.2		5	50	<5 0.09		23	18	48	6.11	<10	0.60	674	<1 <0.01	12		74	<5	<20	5 0.18	<10	136	<10		143
192	L6500	_			_	100	<5 0.08		41	24	96	6.72		1.16	1914	3 < 0.01		1020	150	<5	<20	5 0.10	<10	167		<1	231
193	L6500	4+00 E	0.2		<5 -5		5 0.35	2	44	11	58	7.80	<10	1.00		5 <0.01		1570	70	<5		10 0.11	<10	171	<10	<1	240
194	L6500	4+25 E	<0.2		<5	160				15	36	6.22	<10	-		3 < 0.01	17	550	86	<5	<20	6 0.13	<10	134	<10		200
195	L6500	4+50 E	0.2	1.96	30	150	<5 0.14	<1	28	15	30	0.22	- 10	0.00	3113	D ~∪.∪1	17	550	00	~3	720	0.13	- 10	10-4	-,5		200

ICP CERTIFICATE OF ANALYSIS AK96-1018

ECO-TECH LABORATORIES LTD.

196 L6500 4+75 E <0.2 1.49 65 50 <5 0.05 <1 18 6 30 4.83 <10 0.39 628 4 <0.01 15 510 74 <5 <20 3 0.03 <10	
	0 40 <10 <1 193
197 L6500 5+00 E <0.2 1.76 30 50 5 0.03 <1 12 15 14 4.26 <10 0.30 369 <1 <0.01 14 440 80 <5 <20 4 0.14 <10	0 -0 -10 -1 134
198 L6500 5+25 E 0.4 1.00 10 30 <5 <0.01 <1 6 11 14 2.52 20 0.22 163 3 <0.01 11 240 88 <5 <20 <1 0.03 <16	0 35 <10 <1 181
199 L6500 5+50 E 0.6 1.75 55 40 <5 0.02 <1 14 14 46 5.91 <10 0.53 230 5 <0.01 20 420 234 <5 <20 5 0.02 <10	0 45 <10 <1 508
200 L6500 5+75 E 0.4 1.36 30 30 <5 <0.01 <1 9 11 21 3.96 10 0.31 225 3 <0.01 13 280 104 <5 <20 <1 0.03 <10	
201 L6500 6+00 € 0.2 0.96 30 30 <5 <0.01 <1 7 7 15 3.34 <10 0.14 113 4 <0.01 9 210 42 <5 <20 3 0.04 <10	0 37 <10 <1 96
202 L6500 6+25 E	0 24 <10 <1 40
203 L6500 6+50 E 0.4 1.45 35 40 5 <0.01 <1 10 10 19 4.36 <10 0.26 222 3 <0.01 12 260 50 <5 <20 <1 0.04 <10	0 45 <10 <1 211
204 L6500 6+75 E 1.2 4.45 30 40 <5 0.02 <1 8 11 15 4.09 <10 0.13 109 1 <0.01 8 460 170 <5 <20 3 0.11 <10 0.13 109 1 <0.01 8 460 170 <5 <20 3 0.11 <10 0.13 109 1 <0.01 8 460 170 <5 <20 3 0.11 <10 0.13 109 1 <0.01 8 460 170 <5 <20 3 0.11 <10 0.13 109 1 <0.01 8 460 170 <5 <20 3 0.11 <10 0.13 109 1 <0.01 8 460 170 <5 <20 3 0.11 <10 0.13 109 1 <0.01 8 460 170 <5 <20 3 0.11 <10 0.13 109 1 <0.01 8 460 170 <5 <20 3 0.11 <10 0.13 109 1 <0.01 8 460 170 <5 <20 3 0.11 <10 0.13 109 1 <0.01 8 460 170 <5 <20 3 0.11 <10 0.13 109 1 <0.01 8 460 170 <5 <20 3 0.11 <10 0.13 109 1 <0.01 8 460 170 <5 <20 3 0.11 <10 0.13 109 1 <0.01 8 460 170 <5 <20 3 0.11 <10 0.13 109 1 <0.01 8 460 170 <5 <20 3 0.11 <10 0.13 109 1 <0.01 8 460 170 <5 <20 3 0.11 <10 0.13 109 1 <0.01 8 460 170 <5 <20 3 0.11 <10 0.13 109 1 <0.01 8 460 170 <5 <20 3 0.11 <10 0.13 109 1 <0.01 8 460 170 <5 <20 3 0.11 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 109 <10 0.13 1	0 33 <10 <1 -140
205 L6500 7+00 E <0.2 0.77 35 25 <5 <0.01 <1 7 5 16 2.54 10 0.17 163 3 <0.01 10 240 36 <5 <20 2 0.02 <11	
206 L6500 7+25 E 0.2 0.59 50 20 <5 <0.01 <1 4 4 8 1.39 10 0.08 71 2 <0.01 5 220 68 <5 <20 4 0.02 <10	0 25 <10 <1 106
207 L6500 7+50 E 0.4 1.28 80 35 5 <0.01 <1 7 24 11 4.48 <10 0.19 140 4 <0.01 10 330 58 <5 <20 2 0.04 <10	0 57 <10 <1 1215
208 L6500 7+75 E 0.4 2.54 45 45 15 0.01 <1 11 28 15 8.69 <10 0.18 255 4 <0.01 8 490 58 <5 <20 5 0.15 <10	0 82 <10 <1 49
209 L6500 8+00 E <0.2 1.29 20 35 5 <0.01 <1 9 10 14 4.64 <10 0.29 194 2 <0.01 9 240 24 <5 <20 <1 0.11 <10	
210 L6500 8+25 E <0.2 1.56 <5 35 <5 0.02 <1 12 13 12 4.43 <10 0.39 280 2 <0.01 9 260 44 <5 <20 2 0.15 <10	0 114 <10 <1 48
211 L6500 8+50 E <0.2 2.01 <5 50 <5 0.06 <1 23 8 21 7.18 <10 0.86 319 <1 <0.01 13 230 34 <5 <20 3 0.18 <1	10 202 <10 <1 6 77
212 L6500 8+75 E <0.2 0.96 10 35 <5 0.01 <1 12 9 29 5.42 <10 0.29 249 4 <0.01 14 510 30 <5 <20 <1 0.02 <10	0 37 <10 <1 12f8
213 L6500 9+00 E <0.2 0.62 <5 15 <5 <0.01 <1 6 15 6 2.27 20 0.21 70 <1 <0.01 7 260 12 <5 <20 <1 0.02 <11	0 33 <10 <1 255
214 L6500 9+25 E 0.2 0.57 <5 <5 <5 <0.01 <1 2 4 1 0.63 30 0.12 26 <1 <0.01 3 140 6 <5 <20 <1 <0.01 <11	0 16 <10 <1 9
215 L6500 9+50 E <0.2 0.72 <5 20 <5 0.02 <1 3 6 4 1.15 20 0.16 57 <1 <0.01 3 200 12 <5 <20 <1 0.02 <10	0 27 <10 <1 22
216 L6500 9+75 E <0.2 1.01 <5 20 <5 <0.01 <1 5 7 11 2.67 10 0.22 67 <1 <0.01 5 200 16 <5 <20 1 0.05 <10	0 52 <10 <1 26
217 L6500 10+00 E <0.2 1.57 25 35 <5 0.05 <1 14 12 50 5.82 <10 0.47 385 4 <0.01 14 450 46 <5 <20 <1 0.04 <10	0 106 <10 <1 145
218 L6500 0+25 W <0.2 0.96 10 30 <5 0.24 <1 5 17 8 2.21 <10 0.34 194 3 <0.01 8 900 10 <5 <20 8 0.02 <10	0 25 <10 <1 371
219 L6500 0+50 W <0.2 1.30 5 30 <5 0.11 <1 9 13 13 2.53 20 0.35 407 3 <0.01 9 540 14 <5 <20 6 0.02 <10	0 19 <10 4 299
220 L6500 0+75 W <0.2 1.05 5 25 <5 0.05 <1 6 10 7 2.44 10 0.50 295 4 <0.01 7 690 22 <5 <20 3 0.03 <10	0 31 <10 <1 438
221 L6500 1+00 W 0.2 1.58 5 35 <5 0.12 <1 11 16 14 3.39 10 0.65 825 6 <0.01 10 690 26 <5 <20 6 0.03 <10	0 27 <10 5 622
222 L6500 1+25 W 0.4 1.52 10 45 <5 0.20 <1 13 15 17 3.84 <10 0.58 1291 4 <0.01 13 960 22 <5 <20 7 0.02 <10	0 26 <10 1 859
223 L6500 1+50 W <0.2 1.43 15 40 <5 0.06 <1 14 18 12 4.40 <10 0.49 290 3 <0.01 11 580 32 <5 <20 5 0.04 <10	0 29 <10 <1 477
224 L6500 1+75 W <0.2 1.33 <5 40 <5 0.03 <1 10 11 11 3.88 10 0.39 424 4 <0.01 9 470 18 <5 <20 3 0.04 <19	0 32 <10 <1 600
225 L6500 2+00 W <0.2 1.46 5 40 <5 0.28 <1 11 13 20 3.55 <10 0.56 752 3 <0.01 12 1010 38 <5 <20 10 0.02 <10	0 19 <10 2 865
226 L7000 0+00 W <0.2 3.60 <5 140 <5 0.39 1 69 17 349 >10 <10 2.11 1372 2 <0.01 38 1030 110 <5 <20 13 0.16 <10	0 348 <10 2 2 58
227 L7000 0+25 W <0.2 3.30 <5 150 <5 0.49 1 61 19 261 >10 <10 1.85 1414 4 <0.01 41 730 84 <5 <20 7 0.15 <10	
228 L7000 0+50 W 1.4 4.39 <5 55 <5 0.36 1 131 6 949 >10 <10 2.71 3304 8 <0.01 81 580 168 <5 <20 7 0.05 <11	
229 L7000 0+75 W <0.2 3.14 <5 125 <5 0.43 1 50 70 223 9.79 <10 2.15 1134 3 <0.01 51 710 58 <5 <20 13 0.17 <11	
230 L7000 1+00 W <0.2 3.71 <5 75 <5 0.40 1 64 31 262 >10 <10 2.05 1852 6 <0.01 44 840 84 <5 <20 9 0.10 <11	-

Et #.	Tag t	‡	Ag	A1 %	As	Ba	Bi	Ca %	Cd	Co	Cr	Си	Fe %	La	Mg %	Mn	Mo Na%	Ni	P	Рb	Sb	Sn	Sr	Ti %	ย	v	w	Y	Zn
231	L7000	1+25 W	<0.2	2.63	<5	130	<5	0.48	2	40	17	138	7.63	<10	1.53	1058	1 < 0.01	33	620	86	<5	<20	16	0.21	<10	237	<10	1	137
232	L7000	1+50 W	<0.2	1.93	20	45	<5	0.18	<1	34	8	100	6.07	<10	0.87	1014	6 <0.01	27	680	40	<5	<20	7	0.03	<10	127	<10	5	88
233	L7000	1+75 W	<0.2	2.36	10	45	<5	0.26	<1	38	13	151	8.18	<10	1.10	1045	6 < 0.01	30	570	44	<5	<20	8	0.05	<10	162	<10	<1	124
234	L7000	2+00 W	<0.2	2.09	35	50	<5	0.27	<1	43	14	105	7,32	<10	1.01	1275	5 < 0.01	25	590	140	<5	<20	8	0.05	<10	149	<10	<1	121
235	L7000	2+25 W		3.37	20	45	<5	0.33	<1	72	4	244	>10	<10	1.82	1907	7 < 0.01	30	860	68	<5	<20	11	0.05	<10	331	<10	<1	140
																	..					-•							
236	L7000	2+50 W	<0.2	3.89	80	40	<5	0.88	1	89	9	237	>10	<10	2.52	2078	8 < 0.01	42	1200	194	<5	<20	25	0.03	<10	291	<10	<1	205
237	L7000	2+75 W	<0.2	2.63	25	- 55	<5	0.48	2	51	20	102	9.79	<10	1.45	2051	6 < 0.01	33	1620	152	<5	<20	13	0.03	<10	239	<10	<1	150
238	L7000	3+00 W	<0.2	3 09	<5	40	<5	0.22	1	40	13	100	>10	<10	1.55	1245	8 < 0.01	33	910	48	<5	<20	6	0.04	<10	225	<10	<1	105
239	L7000	3+25 W	<0.2	2.30	<5	95	5	0.42	2	26	13	25	6.05	<10	1.26	1862	5 < 0.01	21	450	54	<5	<20	11	0.05	<10	139	<10	<1	83
240	L7000	3+50 W	<0.2	2.08	5	30	<5	0.02	<1	7	10	26	3.44	<10	0.17	171	2 < 0.01	6	410	20	<5	<20	<1	0.07	<10	31	<10	<1	30
241	L7000	3+75 W	<0.2	1.09	<5	40	5	0.19	<1	12	8	11	3.68	<10	0.63	1088	3 < 0.01	10	500	26	<5	<20	6	0.02	<10	18	<10	<1	50
242	L7000	4+00 W	<0.2	1.33	10	40	<5	0.09	<1	14	12	17	3.84	10	0.25	561	3 < 0.01	14	660	32	<5	<20	4	0.03	<10	20	<10	2	57
243	L7000	0+25 E	<0.2	2.69	10	80	<5	0.33	1	39	17	113	7.83	<10	1.82	1431	5 < 0.01	31	890	74	<5	<20	8	0.08	<10	197	<10	<1	125
244	L7000	0+50 E	<0.2	2.02	<5	60	<5	0.31	<1	29	13	116	5.94	<10	1.39	1160	2 < 0.01	21	940	70	<5	<20	9	0 06	<10	125	<10	<1	105
245	L7000	0+75 E	<0.2	1.44	<5	60	<5	0.13	<1	18	9	31	4.72	10	0.97	706	2 < 0.01	15	660	24	<5	<20	3	0 05	<10	94	<10	<1	70
246	L7000	1+00 E	<0.2	2.59	<5	90	<5	0.33	<1	37	21	106	8.05	<10	1.85	1014	2 <0.01	31	790	40	<5	<20	7	0 11	<10	194	<10	<1	122
247	L7000	1+25 E	<0.2	3.27	30	75	<5	0.60	3	72	12	219	>10	<10	1.85	2743	9 < 0.01	52	940	192	<5	<20	6	0.07	<10	322	<10	<1	296
248	L7000	1+50 E	<0.2	3.66	25	165	<5	0.57	1	83	3	276	>10	<10	1.97	2167	6 < 0.01	35	1130	84	<5	<20	10	0 14	<10	423	<10	<1	242
249	L7000	1+75 E	<0.2	2.77	15	110	<5	0.51	1	50	25	150	9.80	<10	1.81	1507	4 < 0.01	36	1010	56	<5	<20	9	0 13	<10	241	<10	<1	178
250	L7000	2+00 E	<0.2	3.53	90	75	<5	0.37	7	77	9	209	>10	<10	1.91	2122	7 < 0.01	32	1030	368	<5	<20	4	D 10	<10	303	<10	<1	1005
251	L7000	2+25 E	<0.2	3.16	<5	100	<5	0.07	1	44	37	129	>10	<10	1.47	765	4 <0.01	26	560	5B	<5	<20	2	0.25	<10	231	<10	<1	205
252	L7000	2+50 E	<0.2	3.75	30	150	<5	0.16	<1	52	37	170	>10	<10	2.08	1614	3 <0.01	45	510	54	<5	<20	2	0.21	<10	417	<10	<1	199
253	L7000	2+75 E	<0.2	0.88	65	55	<5	0.03	<1	12	13	17	3.63	20	0.24	1054	3 < 0.01	11	360	62	<5	<20	<1	0.03	<10	44	<10	<1	105
254	L7000	3+00 E	0.4	0.99	50	25	<5	0.01	<1	5	6	10	3.16	20	0.17	130	2 < 0.01	6	230	28	<5	<20	<1	0 04	<10	39	<10	<1	50
255	L7000	3+25 E	<0.2	0.85	35	25	<5	0.01	<1	7	20	10	3.97	10	0.22	153	3 < 0.01	9	240	36	<5	<20	<1	0.07	<10	51	<10	<1	77
256	L7000	3+50 E	<0.2	1.13	25	20	<5	0.02	<1	7	15	18	2.92	20	0.22	112	2 <0.01	10	210	44	<5	<20	<1	0 04	<10	40	<10	<1	76
257	L7000	3+75 E		0.99	35	25	<5	0.02	<1	16	17	30	4.56	20	0.26	270	4 <0.01	20		46	<5	<20		0 03	<10	32	<10		137
258	L7000	4+00 E	0.6	2.40	15	30	<5	0.02	<1	5	10	9	3.18	<10	0.12	59	1 <0.01	5	450	46	<5	<20	<1	0.10	<10	54	<10	<1	33
259	L7000	4+25 E	0.4	1.30	10	20	5	0.01	<1	8	7	25	4.23	<10	0.35	104	2 < 0.01	8	190	36	<5	<20	<1	0.06	<10	91	<10	<1	48
260	L7000	4+50 E	0.2	2.35	5	40	5	0.02	<1	14	10	27	6.77	<10	0.57	210	5 < 0.01	12	410	46	<5	<20	<1	0 07	<10	130	<10	<1	70
																	•												
261	L7000	4+75 E	<0.2	1.78	<5	35	10	0.01	<1	17	10	21	7.09	<10	0.71	274	4 <0.01	14		26	<5	<20	<1	0.07	<10	139	<10	<1	94
262	L7000	5+00 E	<0.2	1.48	<5	30	<5	0.02	<1	14	14	12	5.60	<10	0.60	196	<1 <0.01	12	220	32	<5	<20	<1	0.15	<10	109	<10	<1	86
263	L7000	5+25 E	<0.2	3.54	<5	35	<5	0.02	<1	11	9	24	4.83	<10	0.48	174	2 < 0.01	9	410	50	<5	<20	<1	0.11	<10	101	<10	<1	67
264	L7000	5+50 E	<0.2	2.68	<5	145	<5	0.71	<1	47	10	105	8.26	<10	1.43	2133	3 < 0.01	25	550	52	<5	<20	13	0.11	<10	204	<10	<1	153
265	L7000	5+75 E	<0.2	3.15	<5	185	<5	0.39	1	74	5	254	>10	<10	1.54	1128	6 <0.01	18	940	66	<5	<20	9	0.16	<10	199	<10	<1	137

Et #.	Tag #	¥	Ag	Al%	As	Ba	Bi Ca	a %	Cď	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	P	РЬ	Sb	Sn	Sr	Ti %	υ	V	W	Y	Zn
266	L7000	6+00 E	<0.2	3.16	<5	100	<5 0	0.23	<1	39	15	105	8.67	<10	1.68	735	1 < 0.01	31	390	98	<5	<20	6	0.20	<10	241	<10	<1	207
267	L7000	6+25 E	<0.2	3.65	<5	135	<5 0	0.32	<1	71	126	199	>10	<10	2.18	1150	2 < 0.01	63	610	160	<5	<20	7	0.24	<10	326	<10	<1	385
268	L7000	6+50 E	<0.2	1.89	<5	185	<5 0	47	<1	53	33	146	7.63	<10	0.94	3737	2 < 0.01	33	690	84	<5	<20	8	0.14	< 10	200	<10	<1	238
269	L7000	6+75 E	<0.2	3.36	<5	130	<5 0	0.35	2	64	10	163	>10	<10	1.65	2157	7 < 0.01	33	1100	70	<5	<20	6	0.16	<10	248	<10	<1	556
270	L7000	7+00 E	<0.2	3.22	<5	175	<5 0	0.48	1	57	10	133	>10	<10	1.60	1990	6 < 0.01	29	1360	66	<5	<20	7	0.16	<10	243	<10	<1	472
271	L7000	7+25 E	<0.2	3.53	<5	100	<5 0	0.20	1	47	33	69	>10	<10	1.95	1151	<1 <0.01	29	320	46	<5	<20	4	0.27	<10	322	<10	<1	168
272	L7000	7+50 E	0.2	2.04	15	80	<5 0	0.20	1	52	50	119	9.52	<10	1.05	2359	6 <0 01	45	1130	116	<5	<20	2	0.10	< 10	134	<10	<1	175
273	L7000	7+75 E	<0.2	1.20	10	35	<5 0	0.03	<1	6	36	9	2.53	20	0.41	138	1 < 0.01	12	380	76	<5	<20	<1	0.02	<10	40	<10	<1	56
274	L7000	8+00 E	<0.2	3.69	<5	125	<5 0	0.23	1	53	19	171	>10	<10	1.69	909	5 < 0.01	35	630	74	<5	<20	3	0.19	<10	276	<10	<1	167
275	L7000	8+25 E	<0.2	2.61	<5	65	5 0	0.07	<1	21	69	32	7.11	<10	0.85	283	<1 <0.01	27	420	56	<5	<20	2	0.16	<10	141	<10	<1	99
276	L7000	8+50 E	<0.2	3.15	<5	90	<5 0	0.12	<1	35	14	72	9.13	<10	1.08	523	<1 <0.01	22	480	56	<5	<20	2	0.22	<10	251	<10	<1	145
277	L7000	8+75 E	<0.2	2.42	<5	70	<5 0	0.08	<1	31	18	47	9.80	<10	0.80	646	2 < 0.01	24	570	64	<5	<20	<1	0.22	<10	283	<10	<1	136
278	L7000	9+00 E	<0.2	1.60	<5	55	<5 0	0.06	<1	14	5	13	4.19	<10	0.58	338	<1 <0.01	8	370	38	<5	<20	2	0.19	<10	141	<10	<1	51
279	MPAD	Ę	0.6	1.43	35	55	<5 0	0.22	<1	10	12	29	4.04	<10	0.35	675	4 < 0.01	12	2410	60	<5	<20	4	0.03	<10	67	<10	<1	173
280	MPAD	W	<0.2	1.45	10	70	<5 0	0.34	<1	8	11	27	3.28	<10	0.46	211	2 < 0.01	11	1490	48	<5	<20	6	0.04	<10	72	<10	<1	126
QC/DA	LTA:																												
Repea		=																											
1	L4500	0+00 E	0.2	0.74	20	25	<5 <0	0.01	<1	8	14	29	3.29	<10	0.31	148	4 < 0.01	16	510	22	<5	<20	2	0.02	<10	19	<10	<1	29
10	L4500	2+25 W	0.6	1.33	 <5	60	<5 <0		<1	5	9	-6	2.36		0.13	643	2 < 0.01	-	1480	14	<5	<20	<1	0.05	<10	22	<10	<1	39
19	L4500	1+50 E	0.2	2.96	10	95		0.04	<1	6	14	10	2.56		0.12	95	2 < 0.01	7	610	22	<5	<20	4	0.04	<10	20	<10	<1	27
28	L5000	0+75 E	<0.2	0.82	10	50		0.08	<1	10	17	43	3.84	<10	0.33	185	3 < 0.01	13	690	14	<5	<20	6	0.08	<10	17	<10	<1	36
36	L5000	2+75 E	<.2	2.65	10	60		0.02	<1	8	9	12	2.24	<10	0.13	73	<1 < 0.01	12	420	18	<5	<20	3	0.10	<10	21	<10	<1	20
45	L5000	5+00 E	<0.2	1.25	5	50	<5 0	0.01	<1	9	14	29	2.79	<10	0.44	92	1 < 0.01	18	150	8	<5	<20	3	0.06	<10	15	<10	<1	28
54	L5000	7+25 E	0.2	1.61	30	85	5 0	0.12	<1	15	11	24	4.02	<10	0.16	512	2 < 0.01	9	450	30	<5	<20	7	0.10	<10	24	<10	<1	54
63	L5000	1+50 W	0.4	1.72	<5	75	5 0	0.05	<1	10	11	11	2.38	<10	0.22	1198	<1 < 0.01	8	1730	24	<5	<20	5	0.07	<10	20	<10	<1	43
71	L5000	3+50 W	<0.2	1.76	<5	80	<5 0	0.02	<1	10	13	8	2.57	<10	0.32	175	2 < 0.01	13	820	16	<5	<20	2	0.04	<10	19	<10	<1	44
80	L5500	1+75 W	0.2	0.80	<5	40	5 0	0.01	<1	6	11	12	3.72	<10	0.12	235	2 < 0.01	7	610	18	<5	<20	3	0.08	<10	27	<10	<1	24
89	L5500	4+00 W	<0.2	0.82	<5	40	<5 0	0.33	<1	6	7	6	2.40	<10	0.13	136	1 <0.01	5	160	8	<5	<20	12	0.07	<10	28	<10	<1	12
98	L5500	0+50 E	8.0	1.88	20	85	<5 0	5.53	<1	16	17	101	2.95	40	0.29	1572	2 < 0.01	17	780	42	<5	<20	18	0.06	<10	30	<10	15	96
106	L5500	2+50 E	<0.2	1.32	15	55	<5 0	0.14	<1	12	16	32	3.65	<10	0.32	142	3 < 0.01	18	300	26	<5	<20	8	0.06	<10	23	<10	<1	51
115	L5500	4+75 E	<0.2	0.78	20	30	<5 0	0.02	<1	7	13	18	2.63	<10	0.16	78	1 <0.01	10	270	14	<5	<20	1	0.06	<10	28	<10	<1	24
124	L5500	7+00 E	0.6	2.03	55	55	<5 0	0.05	<1	10	14	21	3.67	<10	0.22	202	4 < 0.01	13	1040	42	<5	<20	4	0.06	<10	33	<10	<1	48

ICP CERTIFICATE OF ANALYSIS AK96-1018

ECO-TECH LABORATORIES LTD.

Et #.	Tagi	¥ 		Ag	Al %	As	Ba	Bi C	a %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zs
QC/DA	TA: (Con	r'd)																												
Repea	t:		=																											
133	L6000	1+25	=	<0.2	1.23	10	35	<5	0.02	<1	6	10	9	4.16	<10	0.19	82	2 < 0.01	4	310	50	<5	<20	2	0 13	<10	50	<10	<1	45
141	L6000	3+25		0.4	0.74	<5	25		0.01	<1	<1	2	3	0.48	20	0.02	14	<1 <0.01	1	80	10	<5	<20	<1	0.02	<10	6	<10	<1	ব
150	L6000	5+25	Ē	<0.2	4.96	55	145	-	0.91	1	51	66	1426	8.45	<10	3.04	1508	<1 <0.01	56	1220	94	<5	<20	23	0.53	<10	265	<10	5	1915
159	L6000	7+50	_	0.2	0.94	30	50		0.50	<1	18	8	-61	2.91	<10	0.22	1661	3 <0.01	13	1020	66	<5	<20	14	0.03	<10	19	<10	2	201
168	L6000	9+75	_	0.4	2.31	40	50		0.01	<1	10	17	29	3.30	<10	0.19	184	2 <0.01	15	370	. 90	<5	<20	1	0.05	<10	24	<10	<1	1,74
176	L6000	1+75	W	0.2	0.96	10	75	<5	0.07	<1	10	9	34	4.84	<10	0.24	417	5 < 0.01	16	360	30	<5	<20	6	0.04	<10	26	<10	<1	533
185	L6500	2+00	E	0.4	0.74	5	35	<5 <	0.01	<1	8	6	10	1.88	10	0.13	284	1 <0.01	4	250	138	<5	<20	2	0.03	<10	22	<10	<1	633
194	L6500	4+25	Ε	<0.2	2.57	5	160	5	0.33	2	43	10	59	7.49	<10	0.98	3201	4 < 0.01	17	1480	66	<5	<20	10	0 10	<10	167	<10	<1	224
203	L6500	6+50	Ε	0.4	1.45	45	45	<5 <	0.01	<1	11	11	19	4.57	<10	0.25	200	4 <0.01	13	280	58	<5	<20	2	0 04	<10	46	<10	<1	277
211	L6500	8+50	E	<0.2	1.95	<5	40	10	0.05	<1	19	7	21	6.22	<10	0.82	282	<1 <0.01	13	170	28	<5	<20	2	0 16	<10	185	<10	<1	St
220	L6500	0+75	W	<0.2	1.14	10	25	<5	0.06	<1	8	11	16	2.48	<10	0.55	361	4 <0.01	9	700	24	<5	<20	2	0.03	<10	38	<10	<1	45
229	L7000	0+75	W	<0.2	3.28	10	140	<5	0.48	<1	58	79	230	>10	<10	2.24	1259	3 < 0.01	55	730	62	<5	<20	15	0 19	<10	362	<10	<1	125
238	L7000	3+00	W	<0.2	3.12	<5	45	<5	0.23	<1	40	13	100	>10	<10	. 1.57	1282	7 < 0.01	31	930	48	<5	<20	7	0.04	<10	222	<10	<1	1108
246	L7000	1+00	Ε	<0.2	2.58	<5	85		0.30	<1	36	19	108	7.64	<10	1.83	980	2 < 0.01	28	690	36	<5	<20	6	0 11	<10	189	<10	<1	1112
255	L7000	3+25	Е	<0.2	0.85	45	25	<5 <	0.01	<1	7	19	10	3.84	10	0.21	143	2 <0.01	8	230	34	<5	<20	<1	0.07	<10	50	<10	<1	772
264	L7000	5+50	Ε	<0.2	2.70	<5	140	<5	0.70	<1	48	11	110	8.49	<10	1.45	2132	3 < 0.01	30	590	54	<5	<20	14	0 11	<10	209	<10	<1	153
273	L7000	7+75	Ē	<0.2	1.15	<5	35	<5	0.03	<1	5	33	8	2.42	20	0.38	101	1 <0.01	11	340	66	<5	<20	2	0.02	<10	36	<10	<1	30
Standa	rd:																													
GEO'96	5			1.2	1.71	65	150	<5	1.76	<1	18	60	72	3.82	<10	0.83	647	<1 0.01	18	680	18	<5	<20	50	0.10	<10	73	<10	<1	653
GEO'96	5			1.2	1.87	70	155	<5	1.74	<1	18	60	71	3.96	<10	1.00	689	<1 0.02	23	660	18	<5	<20	53	0.15	<10	78	<10	2	62
GEO'96	3			1.6	1.86	65	140	<5	1.81	<1	19	62	72	4.17	<10	1.01	726	<1 0.02	24	700	18	<5	<20	51	0.13	<10	79	<10	2	65
GEO'96	3			1.4	1.61	60	155	<5	1.85	<1	18	65	79	3.83	<10	0.88	710	2 0.01	24	660	10	<5	<20	54	0.12	<10	71	<10	<1	67
GEO'96	5 ·			1.6	2.03	60	160	<5	1.90	<1	23	74	76	4.04	<10	1.10	727	1 0.02	24	750	24	<5	<20	53	0.17	<10	91	<10	2	釾
GEO'96	3			1.6	1.95	65	150	<5	1.99	<1	21	69	74	4.14	<10	1.05	783	3 0.02	24	790	22	<5	<20	61	0.14	<10	86	<10	2	72
GEO'96	3			1.6	1.94	65	155	<5	2.15	<1	23	75	74	4.03	<10	1.05	729	3 0.02	24	740	24	10	<20	54	0 13	<10	93	<10	2	83
GEO:96	3			1.2	1.96	65	155	<5	2.26	<1	24	70	74	4.19	<10	1.08	754	<1 0.02	28	730	24	<5	<20	53	0.16	<10	85	<10	3	73

df/1018/1018a/1018b XLS/96Toklat#2 ECO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A. Sc.T.
B.C. Certified Assayer

13-Sep-96

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK96-1016

TOKLAT RESOURCES INC. SS1, SITE 7-95 2720-17th STREET SOUTH CRANBROOK, B.C. V1C 4H4

ATTENTION: TIM TERMUENDE

No. of samples received:10
Sample Type:SILT
PROJECT #:NONE GIVEN
SHIPMENT #:NONE GIVEN
Samples submitted by:TIM TERMUENDE

Values in ppm unless otherwise reported

Et #.	Tag#	Au(ppb)	Ag	Ai %	As	Ba	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	₽	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1	4500SS1	<5	<0.2	0.74	10	25	<5	0.28	<1	14	13	48	3.23	<10	0.35	588	2 < 0.01	16	450	12	<5	<20	6	0.03	<10	20	<10	2	83
2	5000SS1	<5	<0.2	0.97	<5	30	<5	0.23	<1	16	18	45	3.61	<10	0 46	685	1 < 0.01	19	410	10	<5	<20	6	0.03	<10	25	<10	2	104
3	5000SS2	<5	<0.2	0.56	35	30	<5	0.66	<1	17	10	100	3.72	<10	0.22	992	2 < 0.01	21	490	26	<5	<20	14	0.02	<10	13	<10	6	181
4	55005S1	<5	<0.2	1.51	10	50	<5	0.49	<1	29	29	42	5.03	<10	0.55	1479	3 < 0.01	27	880	22	<5	<20	10	0.03	<10	36	<10	3	183
5	5500SS2	<5	<0.2	1.51	55	55	<5	0.60	<1	20	23	75	4.65	<10	0.37	899	2 < 0.01	25	430	28	<5	<20	13	0.07	<10	33	<10	9	255
6	6000SS1	<5	<0.2	1.52	<5	35	<5	0.41	<1	20	22	60	5.12	<10	0.93	949	3 < 0.01	23	640	20	<5	<20	9	0 02	<10	42	<10	<1	181
7	6000SS2	<5	0.4	1.75	25	50	<5	0.64	<1	25	16	36	4.69	<10	0.50	1809	5 < 0.01	21	1120	36	<5	<20	18	0.03	<10	27	<10	3	97
8	6000\$\$3	<5	< 0.2	1.98	<5	75	<5	0.65	<1	26	21	161	6.52	<10	0.89	1389	1 < 0.01	23	840	38	<5	<20	11	0.08	<10	126	<10	7	465
9	6500SS1	<5	<0.2	1.15	<5	60	<5	1.13	<1	14	11	44		<10	0 47	1661	2 < 0.01	12	1280	28	<5	<20	22	0.02	<10	48	<10	<1	138
10	6500SS2	<5	1.0	0.72	<5	165	<5	1.62	1	21	7	31	4.63	<10	0.32	8311	4 < 0.01	12	1950	48	<5	<20	35	0.04	<10	34	<10	<1	217
QC/D Repe 1		<5	<0.2	0.80	15	30	<5	0.32	<1	16	15	47	3.41	<10	0.38	648	2 <0 01	18	500	14	<5	<20	7	0.03	<10	20	<10	2	89
Stand GEO9		-	8.0	1.68	60	160	< 5	1.94	<1	18	65	74	4.35	<10	0.96	752	<1 0.01	20	700	20	<5	<20	59	0.13	<10	80	<10	1	66

df/1016 XLS/96Toklat#2 ECO-TECH LABORATORIES LTD.
Park J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

8-Jul-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada HWY KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax: 604-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK97-544

TIM TERMUENDE 2720-17th STREET SOUTH CRANBROOK, B.C. V1C 4H4

ATTENTION: TIM TERMUENDE

No. of samples received: 171 Sample Type: SOIL PROJECT #: GD97 SHIPMENT #: GD9701

Samples submitted by: TIM TERMUENDE

Et#. Tag#	Ag	A! %	As	Ва	Bì	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Υ	Zn
1 1275 0+25 W	<0.2	1.50	<5	90	5	0 46	<1	16	18	18	3.35	<10	0.57	570	<1 <0.01	16	250	22	<5	<20	17	0.07	<10	52	<10	<1	42
2 1275 0+50 W	<0.2	2.62	5	135	10	0.16	<1	13	11	13	2.63	<10	0.41	626	<1 0.01	17	1600	24	<5	<20	11	0.10	<10	40	<10	4	69
3 1275 0+75 W	<0.2	1.74	<5	105	5	0.22	<1	12	12	7	2.60	<10	0.36	491	<1 0.01	12	1750	20	<5	<20	12	0.06	<10	41	<10	<1	77
4 1275 1+00 W	<0.2	2.84	5	70	<5	0.22	<1	13	13	17	2.66	<10	0.39	134	<1 0.01	15	400	30	<5	<20	10	0.09	<10	37	<10	6	39
5 1275 1+25 W	0.4	1.37	<5	260	<5	0.07	<1	11	16	14	2.66	<10	0.49	2407	<1 <0.01	13	3160	20	<5	<20	12	0 06	<10	38	<10	<1	69
6 1275 1+50 W	<0.2	1.45	5	80	<5	0.08	<1	9	14	7	2 64	<10	0.34	170	<1 <0.01	11	2060	24	<5	<20	4	0.08	<10	33	<10	<1	62
7 1275 1+75 W	<0.2	1.20	<5	115	5	0.08	<1	11	15	11	2.82	<10	0.53	719	<1 <0.01	13	660	18	<5	<20	7	0.04	<10	43	<10	<1	44
8 1275 2+00 W	<0.2	1.26	<5	130	<5	0.13	<1	13	17	17	3.00	<10	0.65	554	<1 <0.01	15	930	22	<5	<20	10	0.05	<10	51	<10	<1	47
9 1275 2+25 W	<0.2	1.39	<5	85	<5	0.19	<1	13	17	20	3.02	<10	0.68	343	<1 <0.01	15	460	24	<5	<20	9	0.05	<10	49	<10	<1	39
10 1275 2+50 W	<0.2	1.25	<5	75	<5	0.09	<1	10	14	11	2.98	<10	0.51	228	<1 <0.01	12	1520	22	<5	<20	5	0.06	<10	47	<10	<1	48
11 1275 2+75 W	<0.2	1.23	<5	115	5	0.08	<1	11	16	7	3.03	<10	0.61	407	<1 <0.01	12	980	20	<5	<20	3	0 04	<10	53	<10	<1	57
12 1275 3+00 W	<0.2	1.23	<5	75	<5	0.09	<1	11	20	10	2.75	<10	0.70	160	<1 <0.01	15	230	14	<5	<20	3	0.04	<10	56	<10	<1	43
13 1275 3+25 W	<0.2	0.58	<5	75	5	0.07	<1	6	8	3	1.97	<10	0.20	228	<1 <0.01	5	710	20	<5	<20	1	0.06	<10	40	<10	<1	32
14 1275 3+50 W		1.41	<5	165	10	0.08	<1	16	17	11	3.33	<10	0.52	825	<1 <0.01	15	2050	24	<5	<20	4	0.06	<10	54	<10	<1	86
15 1275 3+75 W	<0.2	2.96	<5	90	5	0.10	<1	15	13	16	2.77	<10	0.41	513	<1 0.01	17	1360	28	<5	<20	6	0.10	<10	41	<10	3	76
16 1275 4+00 W	<0.2	1.47	<5	135	<5	0.19	<1	16	15	25	3.33	<10	0.85	473	<1 <0.01	15	890	22	<5	<20	8	0.05	<10	60	<10	<1	55
17 1275 4+25 W	<0.2	1.32	<5	45	<5	0.07	<1	14	17	28	3.11	<10	0.72	454	<1 <0.01	15	490	26	5	<20	2	0.04	<10	52	10	2	43
18 1275 4+50 W	<0.2	1.09	<5	160	5	D. 14	<1	10	14	16	2.50	<10	0.63	950	<1 <0.01	13	510	18	<5	<20	10	0.04	<10	43	<10	<1	48
19 1275 4+75 W	<0.2	1.28	<5	80	5	0.18	<1	17	13	24	3.35	<10	0.87	369	<1 <0.01	15	850	20	<5	<20	4	0.05	<10	64	<10	1	51
20 1275 5+00 W	<0.2	1.10	<5	75	<5	0.21	<1	16	13	23	3.35	<10	0.75	305	<1 <0.01	14	580	18	<5	<20	2	0.05	<10	71	<10	<1	39

TIM TERMIDENDE							1	OF CE	VIII IOA	IL OI A	MALIG	5 A/(5	7-044									_		J.,,	50.01		
Et #. Tag #	_Ag	AI %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	P	РЬ	\$b	Sn	Sr	Ti %	Ų	V	w	Y	Zn
21 1275 5+25 W	<0.2	2.90	5	185	5	0.13	<1	17	13	13	3.36	<10	0.44	686	<1 0.01	14	1940	28	<5	<20	9	0.10	<10	58	<10	<1	76
22 1275 5+50 W	<0.2	2.84	<5	145	10	0.13	1	16	15	18	3.37	<10	0.56	357	<1 0.01	21	890	24	5	<20	9	0.10	<10	60	<10	<1	86
23 1275 5+75 W	<0.2	1.37	<5	80	5	0 08	<1	13	19	23	2.65	<10	0.57	233	<1 <0.01	18	580	20	<5	<20	5	0.07	<10	36	<10	1	62
24 1275 6+00 W	<0.2	2.00	<5	90	<5	0.09	<1	15	19	25	2.86	<10	0.60	197	<1 0.01	22	400	30	<5	<20	3	80.0	<10	39	<10	<1	65
25 1275 6+25 W	<0.2	1.17	<5	75	<5	0.10	<1	12	22	20	2.96	<10	0.62	244	<1 <0.01	16	590	26	<5	<20	4	0.08	<10	43	<10	<1	61
26 1275 6+50 W	<0.2	1.10	5	45	<5	0.08	<1	13	19	27	2.36	<10	0.61	176	<1 <0.01	18	190	20	<5	<20	1	0.06	<10	31	<10	1	40
27 1275 6+75 W			<5	55	<5	0.39	1	12	23	49	2.41	20	0.62	606	<1 <0.01	25	270	30	<5	<20	9	0.06	<10	35	<10	19	53
28 1275 7+00 W			<5	100	_	0.08	<1	13	18	25	2.46	<10	0.62	244	<1 <0.01	20	570	22	<5	<20	6	0.07	<10	34	<10	<1	72
29 1275 7+25 W			<5	160	_	0.09	<1	13	22	19	2.46	<10	0.56	457	<1 0.01	21	640	28	<5	<20	4	0.09	<10	36	<10	<1	77
30 1275 7+50 W			5			0.09	<1	11	11		2.00		0.26	577	<1 0 02	15	1450	48	<5	<20	8	0.13	<10	29	<10	<1	70
31 1275 8+00 W	<0.2	1 96	<5	130	5	0.08	<1	11	18	9	2.65	<10	0.39	185	<1 0.01	16	2070	28	<5	<20	5	0.10	<10	37	<10	<1	84
32 1275 8+25 W	<0.2			110		0.06	<1	9	16	_	1.90		0.44	1261	<1 < 0.01	13	310	18	5	<20	4	0.05	<10	26	<10	<1	78
33 1275 8+50 W		0.95		170	_	0.16	<1	8	13	_	1.92		0.30		<1 <0.01	11	640	34	<5	<20	10	0.08	<10	27	<10	<1	67
34 1375 0+00 W			<5	80		0.10	<1	11	17	_	2 86		0.53	187	<1 <0.01		1500	30	<5	<20	3	80.0	<10	36	<10	<1	59
35 1375 0+25 W			<5			0.06	<1	9	10		2.29		0.52		<1 <0.01	13		24	<5	<20		0.01	<10	24	<10	3	34
35 13/5 0-25 00	~ 0.2	0.54	\0	0.5	-5	0.00	~1	3				-10	0.02	- 10	.,				J		·						
36 1375 0+50 W	<0.2	1.46	<5	95	<5	0.17	<1	17	21	24	3.52	<10	0.66	552	4 0.01	20	390	22	<5	<20	12	0.07	<10	64	<10	<1	43
37 1375 0+75 W	< 0.2	1.85	<5	85	10	0.19	<1	19	20	21	3.74	<10	0.74	369	<1 0.01	22	360	30	<5	<20	9	0.09	<10	73	<10	<1	60
38 1375 1+00 W	< 0.2	1.70	<5	115	<5	0.21	<1	24	19	17	3.39	<10	0.63	709	<1 0.01	19	1480	28	<5	<20	14	0.08	<10	59	<10		60
39 1375 1+25 W	< 0.2	1.35	<5	70	<5	0.11	<1	14	21	13	2.96	10	0.73	308	<1 0.01	16	710	16	<5	<20	5	0.06	<10	48	10	1	60
40 1375 1+50 W	0.4	0.88	<5	40	<5	0.42	1	15	19	20	3.36	10	0.42	257	1 0.01	15	410	20	<5	<20	11	0.05	<10	76	<10	27	53
41 1375 1+75 W	<0.2	1.84	<5	115	10	0.31	<1	20	20	16	3.78	<10	0.58	852	<1 0.01	15	480	40	<5	<20	13	0.06	<10	71	20	<1	53
42 1375 2+00 W	< 0.2	2.28	5	80	<5	0.23	<1	15	18	14	3.48	<10	0.57	196	<1 0.01	17	700	26	<5	<20	13	0.08	<10	54	<10	<1	37
43 1375 2+25 W	< 0.2	1.65	<5	130	5	0.14	<1	17	23	18	3.32	<10	0.80	498	<1 0.01	20	1090	22	<5	<20	_	0.07	<10	54	<10	<1	65
44 1375 2+50 W	< 0.2	1.52	5	100	5	0.10	<1	15	20	12	3.19	<10	0.66	511	<1 0.01	18	1590	26	<5	<20	5	0.07	<10	55	<10	<1	63
45 1375 2+75 W	<0.2	1.87	<5	165	5	0.14	<1	17	22	20	3.92	<10	0.73	355	<1 0.01	21	2810	56	5	<20	12	0.09	<10	63	<10	<1	81
46 1375 3+00 W	<0.2	2.01	<5	100	5	0.12	<1	19	24	14	3.52	<10	0.76	271	<1 0.01	23	1020	26	<5	<20	7	0 08	<10	57	<10	<1	57
47 1375 3+25 W	<0.2	1.32	<5	45	5	0.12	<1	15	22	16	3.67	<10	0.74	216	<1 <0.01	18	630	22	<5	<20	5	80 0	<10	66	<10	<1	47
48 1375 3+50 W	< 0.2		<5	65		0.17	<1	17	21		3.38	10	0.73	591	<1 0.01	19	250	24	<5	<20	8	0.07	<10	52	<10	<1	48
49 1375 3+75 W				175	-	0.29	<1	17	25	16	3.35	<10	0.71	808	<1 0.01	21	1000	28	<5	<20	23	0.06	<10	58	<10	<1	82
50 1375 4+00 W			5	95		0.13	<1	14	24		3.23	-	0.72	330	<1. <0.01	20	730	30	<5	<20		0.06	<10	52	<10	<1	64
30 1070 4-0011	-0					00	•								•												
51 1375 4+25 W	<0.2	2.46	10	130	_	0.12	<1	15	29		4.13		0.72	197	<1 0.01	31		40	<5	<20		0.08	<10	56	<10	56	67
52 1375 4+50 W	0.2	1.93	<5	205	10	0.11	<1	16	26	15	3.21		0.68	475	<1 0.01	22		26	<5	<20		0.06	<10	46	<10	<1	106
53 1375 4+75 W	<0.2	1.55	<5	105		0.13	<1	14	20	15	2.80		0.79	482	<1 <0.01	19	530	20	<5	<20		0 06	<10	42	<10	1	84
54 1375 5+00 W	0.2	1.80	<5	150	5	0.22	<1	18	23	21	3.64	<10	0.72	607	<1 0.01	23	550	30	<5	<20		0.09	<10	70	<10		93
55 1375 5+25 W	<0.2	1.57	<5	60	5	0.14	<1	14	21	17	3.21	10	0.74	259	<1 0.01	18	290	22	<5	<20	6	0.07	<10	48	<10	<1	48

HM TERMOERDE						IC	JP CER	TIFICA	I E UF AI	VALTO	3 ANS	7-044									E	CO-TE	CHLA	BUKA	ORIE	S LID.
Et #. Tag #	Ag Al%	As	Ва	Bi Ca	a %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na %	Ni	Р	РЬ	Sb	Sn	Sr	Tì %	U	V	w	Y	Zn
56 1375 5+50 W <	0.2 1.40	5	110	10 0	3.13	<1	15	17	21	2.96	10	0.71	1122	<1 <0.01	17	500	24	<5	<20	10	0.07	<10	51	<10	<1	57
	0.2 2.20	<5	165	5 0	0.29	<1	15	21	16	2.80	<10	0.54	591	<1 0.02	23	1560	28	<5	<20	19	0.11	<10	41	<10	2	124
58 1375 6+00 W <	0.2 2.17	<5	120	5 0	0.29	<1	15	21	17	3.00	10	0.63	629	<1 0.01	23	980	30	<5	<20	15	0.09	<10	40	<10	2	83
59 1375 6+25 W <	0.2 1.97	5	190	5 0	0.23	<1	16	17	19	3.13	10	0.64	590	<1 0.02	19	790	28	<5	<20	10	0.10	<10	50	<10	2	101
60 1375 6+50 W <	0.2 2.54	5	180	10 0	0.32	<1	30	15	13	4.53	<10	0.73	1073	<1 0.02	22	2080	28	<5	<20	16	0.13	<10	85	<10	<1	115
61 1375 6+75 W <	0.2 2.03	<5	135	10 0	0.13	<1	25	24	32	5.14	<10	1.07	630	<1 0.01	27	470	24	<5	<20	6	0.07	<10	106	<10	<1	79
62 1375 7+00 W <	0.2 3.30	5	215	10 0	0.18	1	22	16	17	4.40	<10	0.59	900	<1 0.02	23	1470	34	<5	<20	12	0.13	<10	81	<10	<1	158
63 1375 7+25 W <	0.2 2.45	10	80	10 0	0.14	<1	19	25	19	3.50	<10	0.71	235	<1 0.01	24	470	34	<5	<20	8	0.11	<10	57	<10	<1	76
64 1375 7+50 W <	0.2 2.39	<5	90	10 0	0.09	<1	23	43	25	3.93	10	1.02	235	<1 0.01	35	380	34	<5	<20	6	80.0	<10	61	<10	<1	103
65 1375 7+75 W	0.2 2.60	5	90	5 0	0.10	<1	22	45	26	4.04	10	1.06	249	<1 0.01	37	410	34	<5	<20	5	0.09	<10	62	<10	<1	103
66 1375 8+00 W <	0.2 1.11	5	60	5 0	0.26	<1	10	25	13	2.56	10	0.68	255	<1 <0.01	17	220	20	10	<20	10	0.05	<10	33	<10	<1	54
67 1375 8+25 W <	0.2 1.14	<5	130	5 0	3.11	<1	11	19	13	2.26	10	0.57	543	<1 <0.01	17	370	18	<5	<20	4	0.07	<10	24	<10	3	82
68 1375 8+50 W <	0.2 1.58	<5	40	10 0	0.19	<1	20	40	81	3.45	<10	1.08	277	<1 <0.01	29	450	26	<5	<20	<1	0.10	<10	59	30	5	49
69 1375 8+75 W <	0.2 2.55	<5	160	5 0	0.34	<1	26	89	44	4.54	<10	1.34	1309	<1 0.01	34	640	90	<5	<20	15	0.14	<10	78	<10	2	175
70 1375 9+00 W <	0.2 3.46	<5	350	<5 0	0.34	1	32	63	130	4.99	<10	1.86	2046	<1 0.01	46	980	68	5	<20	20	0.18	<10	102	<10	4	169
	0.4 2.81	15	290	<5 0	0.50	1	50	42	153	5.54	<10	1.44	4289	<1 0.02	35	570	44	<5	<20	21	0.15	<10	111	10	<1	132
	0.2 3.18	<5	475	15 0	3.50	2	29	45	44	5.40	<10	1.31	2536	<1 0.02	30	1410	118	<5	<20	27	0.26	<10	105	<10	5	257
73 1375 9+75 W <	0.2 1.43	10	240	<5 0	3.19	<1	12	17	9	2.13	<10	0.37	949	<1 0.02	17	1020	44	<5	<20	18	0.10	<10	27	<10	2	116
	0.2 1.72	10	80	5 0	0.14	<1	16	19	21	2.88	<10	0.58	214	<1 0.01	25	710	32	<5	<20	6	0.09	<10	40	20	2	80
75 1375 10+25 W <	0.2 1.23	10	60	5 0	0.10	<1	13	19	21	2.76	10	0.60	325	<1 <0.01	19	540	26	<5	<20	3	0 07	<10	30	<10	2	70
76 1375 10+50 W <		<5	50	5 0	0.09	<1	15	16		2.87		0.76	218	<1 0.01	17	230	26	<5	<20	4	0.09	<10	41	<10	2	56
77 1375 10+75 W <	0.2 2.41	<5	110	5 0	0.20	1	14	15	24	2.68	<10	0.56	258	<1 0.02	22	1540	30	<5	<20	17	0.10	<10	34	<10	2	127
	0.2 1.71	<5	160	5 0	3.31	<1	13	18	17	2.49	<10	0.46	898	<1 0.02	19	580	34	<5	<20		0.12	<10	38	<10	2	107
79 4100 0+00 E <	0.2 2.32	5	45	5 0	0.09	<1	7	7	10	2.55	<10	0.06	54	<1 0.02	5	400	28	<5	<20	4	0.24	<10	47	<10	4	11
80 4100 0+25 E <	0.2 1.02	<5	65	5 0	0.26	<1	8	9	11	1.85	20	0.28	326	<1 <0.01	7	220	22	<5	<20	9	0.03	<10	28	<10	2	17
_	0.2 1.63	<5	50	5 0).10	<1	19	16	33	3.35	10	0 49	224	<1 <0:01	25	320	30	≺ 5	<20	<1	0.03	<10	21	<10	8,	31
82 4100 0+75 E <	0.2 1.96	5	35	10 0	0.04	<1	7	6	7	2.39	<10	0.14	85	<1 0.01	5	710	24	<5	<20	<1	0.15	<10	37	<10	2	15
83 4100 1+00 E <	0.2 3.27	10	55	5 0	0.28	<1	14	6	11	2.42	<10	0.11	482	<1 0.02	7	750	34	<5	<20	13	0,11	<10	21	<10	12	18
84 4100 1+25 E <	0.2 1.23	5	45	< 5 0	0.05	<1	9	9	16	2.46	<10	0.23	187	<1 0.01	11	330	18	<5	<20	1	0.07	<10	31	< 10	< 1	28
85 4100 1+50 E <	0.2 1.09	<5	45	5 0).57	<1	16	9	13	2.65	<10	0.22	751	<1 0.01	13	410	28	<5	<20	16	0 07	<10	22	<10	<1	27
86 4100 1+75 E <	0.2 0.99	5	40	10 0	0.05	<1	11	17	20	4.29	<10	0.36	140	<1 <0.01	13	280	14	<5	<20	1	0 10	<10	59	<10	<1	26
87 4100 2+00 E <	0.2 0.80	10	40	10 0	0.07	<1	8	15	16	2.99	<10	0.35	141	<1 <0.01	11	310	22	<5	<20	<1	0.05	<10	44	10	<1	25
88 4100 2+25 E <	0.2 1.25	10	50	<5 0	0.10	<1	16	22	45	3.21	10	0 54	429	<1 <0.01	23	260	22	<5	<20	3	0.05	<10	28	<10	<1	38
89 4100 2+50 E <	0.2 1.52	5	70	<5 0	0.05	<1	12	16	30	3.38	<10	0 39	205	2 < 0.01	22	370	26	<5	<20	2	0.03	<10	22	<10	<1	41
90 4100 2+75 E	0.2 1.59	<5	110	10 D	0.05	<1	9	12	11	2.80	<10	0.20	702	<1 0.01	9	550	18	<5	<20	4	0.07	<10	28	<10	<1	39

Et #.	Tag #		Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	Р	РЬ	Sb	Sn	Sr	Ti %	U	٧	w	Y	Zn
91	4100	3+00 E	<0.2	0.44	5	10	<5	0.02	<1	5	5	8	1.58	<10	0.13	69	<1 <0.01	6	240	10	<5	<20	<1	0.03	<10	22	10	<1	14
92	4100	3+25 E	<0.2	0.62	10	35	<5	0.04	<1	7	10	17	2 45	<10	0.21	153	<1 <0 01	9	260	16	<5	<20	1	0.06	<10	32	<10	<1	37
93	4100	3+50 E	<0.2	0.93	20	35	10	0.04	<1	16	39	25	3.77	<10	0.47	297	<1 <0.01	24	580	20	<5	<20	1	0.06	<10	51	<10	<1	46
94	4100	3+75 E	<0.2	0.80	<5	35	10	0.04	<1	9	13	17	2.77	10	0.29	133	<1 <0.01	10	220	18	<5	<20	2	0.04	<10	33	<10	<1	41
95	4100	4+00 E	<0.2	2.04	10	65	5	0.08	<1	11	16	28	3.85	<10	0.26	145	1 < 0.01	12	320	38	<5	<20	4	0.05	<10	24	<10	<1	56
96	4100	4+25 E	< 0.2	0.75	<5	120	10	0.07	2	8	6	11	2.95	<10	80.0	345	<1 0.01	10	620	26	20	<20	6	0.11	<10	61	<10	<1	40
97	4100	4+50 E	0.6	1.92	10	160	10	0.29	<1	12	12	13	3 88	<10	0.23	719	<1 0.01	9	3550	30	<5	<20	15	0.11	<10	40	<10	<1	78
98	4100	4+75 E	<0.2	0.68	10	40	5	0.07	<1	5	10	9	2.65	<10	0.22	113	<1 <0.01	7	390	30	<5	<20	<1	0.04	<10	34	<10	<1	27
99	4100	5+00 E	<0.2	0.69	25	40	5	0.04	<1	8	8	16	3.95	10	0.24	255	2 < 0.01	10	480	28	<5	<20	<1	0.04	<10	40	<10	<1	89
100	4500	4+25 E	0.4	2.02	<5	90	<5	0.06	<1	16	25	18	3.28	<10	0.64	1018	<1 0.01	17	520	24	<5	<20			<10	60		<1	72
101	4500	4+50 E	<0.2	2.61	5	60	10	0.06	<1	9	11	9	2.64	<10	0.22	150	<1 0.01	10	590	32	<5	<20	2	80 0	<10	29	<10	<1	36
102	4500	4+75 E	<0.2	0.86	5	50	5	0.06	<1	9	13	16	2.95	10	0.35	116	1 < 0.01	13	230	16	<5	<20	2	0 03	<10	25	<10	<1	32
103	4500	5+00 E	0.6	2.58	<5	85	5	0.08	<1	10	16	10	2.64	<10	0.31	535	<1 0.02	14	1230	26	<5	<20	5	0.11	<10	40	<10	<1	50
104	4500	5+25 E	<0.2	1.75	5	75	<5	0.06	1	7	11	8	2.35	<10	0.20	161	1 0.01	10	600	26	5	<20	3	0.05	<10	34	<10	<1	53
105	4500	5+50 E	<0.2	0.56	<5	40	<5	0.08	<1	4	9	1	0.94	10	0.22	222	<1 < 0.01	4	110	10	<5	<20		0.04	<10	21	<10	2	23
106	4500	5+75 E	<0.2	1.39	<5	50	5	0.05	<1	14	35	27	3.93	10	0.83	193	1 < 0.01	20	1060	22	<5	<20	<1	0.04	<10	68	<10	<1	55
107	4500	6+00 E	<0.2	0.60	5	25	<5	0.08	<1	6	16	9	1.68	<10	0.35	88	<1 <0.01	7	220	12	5	<20	4	0.02	<10	39	10	<1	23
108	4500	6+25 E	<0.2	0.80	<5	35	5	0.08	<1	8	11	14	2.74	10	0.36	105	2 < 0.01	10	150	12	<5	<20	<1	0.02	<10	42	10	<1	34
109	4500	6+50 E	<0.2	0.90	5	55	<5	0.16	<1	8	16	17	2.47	10	0.38	106	1 <0 01	12	140	12	<5	<20	5	0.03	<10	43	<10	<1	33
110	4500	6+75 E	0.2	0.94	<5	65	<5	0.08	<1	8	8	18	2.29	<10	0.29	179	<1 <0.01	9	680	22	<5	<20	2	0.06	<10	31	10	<1	32
111	450 0	7+00 E	0.2	0.74	5	50	2	0.07	1	9	11	31	2.46	<10	0.25	188	1 0.01	12	222	18	<5	<20	4	0.04	<10	25	<10	<1	28
112	4500	7+25 E	<0.2	0.61	5	55	5	0.23	<1	8	8	20	2.88	10	0.23	177	2 < 0.01	10	530	14	<5	<20	5	0.04	<10	22	<10	<1	35
113	4 500	7+50 E	<0.2	0.55	<5	35	<5	0.04	<1	6	8	13	1.68	10	0.22	89	<1 <0.01	8	140	10	<5	<20	<1	0.03	<10	28	<10	<1	21
114	4500	7+75 E	<0.2	0.61	<5	30	<5	0.04	<1	5	11	11	1 64	10	0.18	62	1 < 0.01	7	130	12	<5	<20	<1	0.02	<10	21	<10	<1	27
115	4 500	8+00 E	<0.2	0.83	<5	40	10	0.05	<1	7	13	6	1.97	<10	0.26	188	<1 0.01	7	420	18	<5	<20	<1	0.06	<10	34	<10	<1	38
116	4500	8+25 E	<0.2	1.07	5	40	<5·	0.03	<1	5	8	5	1.73	<10	0.16	98	<1 <0.01	5	810	24	<5	<20	<1	0.04	<10	26	<10	<1	48
117	4500	8+50 E	8.0	2.95	10	60	10	0.06	<1	10	5	11	2.04	<10	0.11	821	<1 0.02	8	1260	34	. <5	<20.	<1	0 12	<10	31	<10	3	94
118	4500	8+75 E	<0.2	0.91	<5	45	<5	0.03	<1	10	6	6	1.55	10	0.13	256	1 < 0.01	4	230	36	<5	<20	<1	0.02	<10	20	<10	<1	55
119	4500	9+00 E	<0.2	0.95	<5	25	<5	0.06	<1	13	12	46	2.58	10	0.46	176	1 < 0.01	16	400	24	<5	<20	<1	0.03	<10	29	<10	1	52
120	4500	9+25 E	< 0.2	1.29	10	70	5	0.05	<1	11	19	17	3.45	20	0.37	127	1 < 0.01	14	490	34	<5	<20	<1	0.06	<10	36	<10	<1	71
121 4	4500	9+50 E	< 0.2	1.69	10	105	10	0.06	<1	10	9	18	2.70	10	0.19	250	<1 0.01	9	630	36	<5	<20	<1	0.06	<10	27	<10	<1	77
122	4500	9+75 E	<0.2	0.70	<5	35	5	0.08	<1	10	11	16	2.42	10	0.46	146	<1 < 0.01	11	340	12	<5	<20			<10	27	<10	<1	32
		10+00 E	<0.2	1.10	<5	55		0.04	<1	9	12		2.14		0.28	146	<1 <0.01	9	380	34	<5	<20		0 06	<10	27	<10	1	43
124	4500	10+25 E	<0.2	1.39	5	60	5	0.14	<1	10	9	15	2.57	<10	0.29	159	<1 < 0.01	8	340	24	<5	<20		0 05	<10	28		<1	29
125	4500	10+50 E	<0.2	0.92	<5	85	5	0.07	<1	8	10	9	2.44	<10	0.23	457	<1 < 0.01	7	630	24	<5	<20		0.04	<10	27	<10	<1	44

TIM TERMUENDE							11	CH CE	RIIFICA	I C UF A	NALYS	SAKS	7-544									Ŀ	:CO-1E	CH LA	BURA	IUKIE	:5 L I D.
Et#. Tag#	<u>Ag</u>	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	Lа	Mg %	Mn	Mo Na%	Ni	P	Рþ	Sb	Sn	Sr	Ti %	U	٧	W	Y_	Žn
126 4500 10+75 E	<0.2	0 42	<5	40	5	0.19	<1	2	5	3	0.77	<10	0.11	59	<1 <0.01	3	150	20	<5	<20	5	0.03	<1D	18	<10	1	10
127 4500 11+00 E	<02	0 83	<5	70	5	0.06	<1	8	9	7	2.11		0.24	281	<1 <0.01	6	420	18	<5	<20	< 1	0.03	<10	24	<10	<1	38
128 4500 11+25 E	<0.2	0.34	<5	100	<5	80.0	<1	2	3	2	0.60	10	0.12	285	<1 <0.01	2	110	6	<5	<20	<1	0.01	<10	10	<10	1	18
129 4500 11+50 E		NO SAM	IPLE																								
130 4500 11+75 E	<0.2	0.57	<5	25	<5	0.12	<1	10	12	14	1.89	10	0.46	213	<1 <0.01	10	290	14	<5	<20	<1	0 03	<10	19	<10	2	22
131 4500 12+00 E	<0.2	2.22	<5	40		0.07	<1	6	9	7	2.87		0.11	57	<1 0.01	4	350	26	<5	<20		0.13	<10	31	20	2	11
132 5000 08+25 E	0.2	0.73	10	60	<5	0.05	<1	6	6	22	1.93		0.13	174	1 <0.01	8	210	14	<5	<20		0.02	<10	17	<10	<1	23
133 5000 08+50 E	0.4	1.22	20	90	<5	0.04	<1	12	10	48	2.88	10	0.29	233	2 <0 01	14	260	18	<5	<20		0.02	<10	17	<10		41
134 5000 08+75 E	<0.2	1.50	25	75	10	0.04	<1	12	10	34	3.18	20	0.24	334	1 <0.01	14	290	20	<5	<20		0.04	<10	18	10	2	57
135 5000 09+00 E	<0.2	0.71	15	45	<5	0.06	<1	7	11	19	2.11	20	0.24	277	<1 <0.01	9	160	14	<5	<20	<1	0.04	<10	17	<10	<1	46
136 5000 09+25 E	<0.2	1.52	5	95	5	0.09	<1	12	30	25	3.01	20	0.37	107	<1 <0.01	19	290	24	<5	<20	<1	0.05	<10	23	<10	1	45
137 5000 09+50 E			15	55	_	0.05	<1	11	12	28	2.87	20	0.37	122	2 < 0.01	14	330	34	<5	<20	<1	0.02	<10	14	<10	<1	69
138 5000 09+75 E			15	55	5	0 10	<1	6	8	17	2.28	10	0.18	109	1 < 0.01	10	250	32	<5	<20	<1	0.03	<10	11	<10	<1	118
139 5000 10+00 E		1.13	10	55	10	0 05	<1	6	9	7	2.43	<10	0.22	159	<1 < 0.01	6	280	48	<5	<20	<1	0.03	<10	23	<10	<1	142
140 5000 10+25 E			20	45	10	0.08	<1	10	13	10	2.96	10	0.33	126	<1 <0.01	14	170	52	<5	<20	1	0.06	<10	20	<10	<1	245
140 000																											
141 5000 10+50 E	0.2	0.59	25	35	<5	0.10	<1	9	6	14	2.67	10	0.18	232	<1 <0.01	9	210	58	<5	<20	5	0.04	<10	14	<10	<1	246
142 5000 10+75 E	<0.2	0.79	30	60	10	0.05	<1	9	6	12	2.95	10	0.19	189	<1 <0.01	10	270	66	<5	<20	<1	0.04	<10	15	<10	<1	280
143 5000 11+00 E	0.6	1.02	30	45	5	0.26	<1	14	6	19	2.66	10	0.19	291	1 < 0.01	15	280	56	<5	<20	7	0.02	<10	13	<10	4	246
144 5000 11+25 E	<0.2	1.00	10	45	10	0.27	<1	15	28	37	3.00	10	0.49	372	2 < 0.01	20	410	56	<5	<20	6	0.02	<10	26	<10	10	153
145 5000 11+50 E	<0.2	1.05	<5	65	10	0.07	<1	10	18	10	3.26	10	0.31	141	2 < 0.01	13	200	24	<5	<20	<1	0.04	<10	20	10	<1	39
146 5000 11+75 E	<0.2	0.96	<5	50	10	0.82	<1	10	21		2.50		0.46	209	<1 0.01	14	220	22	<5	<20	-	0 08	<10	57	<10	26	27
147 5000 12+00 E	0.4	1.03	<5	60	5	0.06	<1	7	19	5	2.36	10	0.42	96	<1 <0.01	12	160	14	10	<20		0.05	<10	43	<10	<1	21
148 5000 12+25 E	<0.2	1.00	<5	35	<5	0 01	<1	4	5		1.17	10	0.17	37	<1 <0.01	5	220	8	<5	<20		0.01	<10	12	<10		11
149 5000 12+50 E	<0.2	0.98	<5	45	5	0 10	<1	4	7		1.52		0.15	39	<1 <0.01	4	350	12	<5	<20		0.06	<10	30	10	<1	10
150 5000 12+75 E	<0.2	2.78	5	95	10	0.08	<1	7	7	4	2.29	<10	0.13	100	<1 0.01	5	720	26	<5	<20	3	0.06	<10	21	<10	<1	16
151 5000 13+00 E	<0.2	1.37	<5	70	10	0.44	<1	4	5	6	1.69	20	0.14	116	<1 0.02	4	240	24	<5	<20 -	14	0.07	<10	23	10	. 17	13
152 5500 08+25 E		1.51	30	80		0.03	<1	13	15	90	3.46	10	0.36	203	2 <0 01	20	350	22	<5	<20	<1	0.04	<10	33	<10	<1	46
153 5500 08+50 E			35	105	10	0.09	<1	12	12	20	4.79	<10	0.17	285	1 0.01	10	740	32	<5	<20	5	0 11	<10	58	<10	<1	79
154 5500 08+75 E			10	80	10		<1	18	14	28	3.84	<10	0.34	847	<1 < 0.01	14	640	36	<5	<20	1	0.13	<10	55	<10	<1	76
*		1.55	20	90		0.08	<1	11	12	33	2.84	<10	0.23	772	1 < 0.01	11	360	26	<5	<20	2	0.04	<10	37	<10	<1	44
					·-·		-	-													Ī						
156 5500 09+25 E	<0.2	1.97	20	85		0.18	<1	20	24		4.11		0.90	597	<1 <0.01	23	290	22	<5	<20	-	0.10	<10	86	<10		66
157 5500 09+50 E			20	55		0.02	<1	9	9		2 49		0.26	119	<1 <0.01	11	300	18	<5	<20		0.05	<10	25	<10		37
158 5500 09+75 E		2.42	65	75		0.26	2	19	19		3 19		0.38	1829	<1 0.01	38	630	164	<5	<20		0.08	<10	24	<10	20	675
159 5500 10+00 E	0.4	1.43	40	85	5	0.03	<1	12	9	33	3.81		0 19	250	2 < 0.01	12	330	38	<5	<20		0 02	<10	16	<10	<1	137
160 5500 10+25 E	<0.2	1.00	5	55	5	0.03	<1	5	5	9	1.94	<10	0.15	94	<1 <0 01	5	160	32	<5	<20	<1	0.05	<10	29	<10	<1	08

Page 5

TIM TERMUENDE	ICP CERTIFICATE OF ANALYSIS AK97-544	ECO-TECH LABORATORIES LTD.
---------------	--------------------------------------	----------------------------

Et #. Tag #	Ag	AI %	Aş	Ba	Bi	Ca %	Cď	Co	Cr	Сш	Fe %	La M	vig %	Mn	Mo Na%	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	٧	w	Y	Zn
161 5500 10+50 E		1.79	60	105	<5	0.05	<1	9	11	23	2 81	10	0.26	165	2 < 0.01	17	180	96	<5	<20	1	0.02	<10	27	<10	<1	916
162 5500 10+75 E	0.2		55	95	10	0.12	<1	7	8	15	3.78	<10	0.12	77	2 < 0.01	10	180	140	<5	<20	3	0.03	<10	23	<10	<1	503
163 5500 11+00 E	0.2		65	80	5	0.07	<1	10	7	37	2.50	10	0.17	175	10 < 0.01	17	260	174	<5	<20	1	0.02	<10	19	<10	3	630
164 5500 11+25 E	<0.2	0.86	30	50	<5	0.03	<1	9	10	22	2.96	<10	0.25	118	2 < 0.01	13	210	40	<5	<20	<1	0.05	<10	36	<10	<1	200
165 5500 11+50 E		0.91	25	50	10	0.13	<1	7	3	13	3.49	<10	0.07	170	3 < 0.01	9	300	94	<5	<20	2	0.03	<10	17	<10	<1	193
166 5500 11+75 E	<0.2	0.30	25	40	<5	0.18	<1	6	6		1.85	<10	0.15	142	3 < 0.01	11	160	26	<5	<20		<0.01	<10	8	<10	<1	124
167 5500 12+00 E	0.4	0.67	55	30	5	0.83	1	21	19	19	2.90	<10	0.40	785	4 < 0.01	25	640	74	<5	<20	22	0.01	<10	9	<10	2	337
168 5500 12+25 E	<0.2	1.54	15	50	15	0.07	<1	14	8	24	4.27	<10	0.44	188	<1 <0.01	11	220	28	<5	<20	1	0.07	<10	113	60	<1	50
169 5500 12+50 E	0.8	2.47	10	90	<5	0.28	7	19	7	73	4.98	10	0.87	658	26 <0.01	36	180	12	180	<20	23	0 03	<10	94	<10	14	53
170 5500 12+75 E		NO S	AMPLE																								
171 5500 13+00 E	<0.2	1.54	15	50	15	0.07	<1	14	8	24	4.27	<10	0 44	188	<1 <0.01	11	220	28	<5	<20	1	D.07	<10	113	60	<1	50
QC/DATA:																											
Repeat:		4 45			_	0.40		40	40	40	2 20	-10	0.54	Ene	-4 -0.04	15	270	24	<5	<20	19	0 07	<10	49	<10	<1	41
1 1275 0+25 W		1.45	<5 -5	90	5	0.49	<1 -1	16	18 14	18	3.28 3.00		0.54 0.49	596 225	<1 <0.01 <1 <0.01	15 12	1560	24 24	<5	<20	5	0.06	<10	47	<10	<1	48
10 1275 2+50 W		1.20	<5	75	5	0.08	<1 -1	10 16	13	10 24	3.31		0.49	366	<1 <0.01	15	820	18	<5	<20	4	0.00	<10	63	<10	<1	50
19 1275 4+75 W	<0.2		<5 -5	75 05	<5 5	0.17 0.07	<1 <1	13	18	24	2.40	-	0.59	235	<1 <0.01	19	570	22	5	<20	5	0 07	<10	33	<10	<1	71
28 1275 7+00 W			<5 5	95	-5 -<5	0.07		16	19	24	3.34		0.65	546	<1 0.01	19	410	24	< 5	<20	10	0.07	<10	58	<10	<1	42
36 1375 0+50 W	₹0.2	1.44	J	90	~ο	U. 17	<1	10	19	24	3.34	~10	0.05	540	VI 0.01	1.5	410	24	-5	120		0.07	-10	Ü	-10		
45 1375 2+75 W	<0.2	1.85	<5	160	10	0.13	<1	17	23	20	3.93	<10	0.72	353	<1 0.01	22	2790	56	<5	<20	11		<10	64	<10	<1	82
54 1375 5+00 W	0.2	1.74	<5	150	5	0.21	<1	17	22	20	3.56	<10	0.69	590	<1 0.01	21	540	30	<5	<20	14	0.08	<10	68	<10	<1	92
63 1375 7+25 W	<0.2	2.49	<5	85	10	0.15	<1	19	26	19	3.53	<10	0.73	244	<1 0.01	25	470	34	<5	<20	9	0.11	<10	57	<10	<1	76
71 1375 9+25 W	0.4	2.90	10	300	<5	0.51	2	50	42	157	5.66			4419	<1 0.02	34	530	40	<5	<20	20	0.16	<10	115	<10	<1	133
80 4100 0+25 E	<0.2	1.03	<5	65	<5	0.26	<1	8	10	14	1.85	20	0.28	308	<1 0.01	7	220	24	<5	<20	10	0.04	<10	28	<10	2	19
89 4100 2+50 E	<0.2	1.54	10	75	5	0.06	<1	12	17	33	3.41	-	0.39	208	1 < 0.01	23	390	26	<5	<20	3	0.03	<10	23	<10	<1	45
98 4100 4+75 E	<0.2	0.68	<5	45	5	0.07	<1	5	10	9	2.66		0.22	115	<1 <0.01	7	370	30	<5	<20	<1	0.05	<10	34	<10	<1	28
106 4500 5+75 E	<0.2	1.34	<5	45	10	0.04	<1	14	35	26	3.89		0.80	190	1 < 0.01	20	1060	24	5	<20	<1	0.04	<10	66	10	<1	55
115 4500 8+00 E	0.4		<5	45	5	0.05	<1	7	13	6	1.99	-	0.26	191	<1 0.01	7	420	18	<5	<20	<1	0.06	<10	34	<10	<1	39
124 4500 10+25 E	<0.2	1.40	5	60	5	0.14	<1	9	9	15	2.57	<10	0.29	161	<1 <0.01	8	350	24	<5	<20	Ź	0 05	<10	28	10	<1	29
133 5000 08+50 E		1.22	20	90	<5	0.04	<1	12	10	48	2.88		0.29	232	1 <0.01	13	260	16	<5	<20	2		<10	17	<10	<1	42
141 5000 10+50 E	0.6	0.59	30	35	10	0.10	<1	10	6	13	2.74		0.18	239	<1 <0.01	8	210	64	<5	<20	4	0.04	10	14	<10	<1	254
150 5000 12+75 E	<0.2	2.82	10	95	<5	0.07	<1	7	7	4	2.30	<10	0 12	109	<1 <0.01	6	720	24	<5	<20	3	0.06	<10	21	<10	<1	19

20-Oct-97

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada HWY KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax 604-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK97 1177

TOKLAT RESOURCES INC. 2720-17th STREET SOUTH CRANBROOK, B.C. V1C 4H4

ATTENTION: TIM TERMUENDE

No. of samples received: T. Termuende Sample Type. Soil PROJECT #:GD-97 SHIPMENT #:GD-97-03 Samples submitted by: T. Termuende

Et #.	Tag #	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	ρ	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	CDGD97D 01	06	1.15	35	75	<5	0.36	<1	11	3	38	2.91	<10	0 14	1480	2	0.02	9	250	46	<5	<20	14	0.04	<10	21	<10	<1	335
2	CDGD97D 02	<0.2	1.63	35	65	5	0.09	<1	13	60	35	3 68	<10	0.63	130	<1	0.01	25	240	30	<5	<20	2	0.08	<10	34	<10	2	112
3	CDGD97D 03	<0.2	1.76	35	55	<5	0.03	<1	12	106	28	3.86	<10	0.33	122	2	0.01	34	320	36	<5	<20	<1	0.07	<10	46	<10	<1	58
4	TTGD97D 01	<02	4 88	25	50	<5	0.07	<1	11	7	13	2.80	<10	0.11	167	<1	0 02	6	860	60	<5	<20	3	0 11	<10	23	<10	4	132
5	MWGD97D 01	<0.2	3 93	<5	155	<5	0 49	<1	54	6	268	>10	<10	2.39	2085	2	0.01	32	760	34	<5	<20	20	0 16	<10	40	<10	3	195
6	MWGD97D 02	<0.2	1 79	10	45	<5	0.03	<1	10	2	18	2.54	10	0 18	385	1	0.01	8	340	24	<5	<20	<1	0.04	<10	23	<10	<1	71
7	MWGD97D 03	0.4	0.43	<5	305	10	0 27	2	51	38	14	8.96	<10	0.41	4286	7	0.01	240	900	22	<5	<20	4	0 01	<10	12	<10	7	92
8	MWGD97D 04	<0.2	2 57	<5	90	5	0.10	<1	25	35	45	5.05	<10	1.39	1112	<1	0.02	26	920	16	<5	<20	5	0 15	<10	20	<10	3	70
9	MWGD97D 05	<0.2	1 77	15	75	<5	0 06	<1	10	49	9	2.00	30	0.72	236	<1	0.01	25	530	28	<5	<20	2	0 08	<10	30	10	3	39
10	MWGD97D 06	<0.2	0 44	<5	35	<5	0 10	<1	1	<1	3	0.48	<10	0.04	119	<1	0.01	1	140	8	<5	<20	2	0.01	<10	15	<10	<1	11
11	MWGD97D 07	<0.2	0 98	5	25	<5	0.02	<1	3	2	4	1.32	<10	0.05	195	<1	0.02	<1	260	16	<5	<20	<1	0.11	<10	34	<10	2	7
12	MWGD97D 08	2.6	0 69	<5	275	25	0.13	<1	52	2	69	>10	<10	0.12	>10000	14	0.01	12	730	68	<5	<20	5	0.05	<10	24	<10	< 1	79
13	MWGD97D 09	<0.2	1.41	<5	60	<5	0.03	<1	61	3	298	5.64	<10	0.11	1838	5	0.01	9	350	100	<5	<20	<1	0.03	<10	20	<10	<1	57
14	MWGD97D 10	<0.2	1.35	5	40	<5	0 02	<1	12	3	42	3.81	<10	0.14	1210	3	0 01	10	400	16	<5	<20	<1	0.04	<10	18	<10	3	54
15	MWGD97D 11	0.4	0.58	<5	40	5	0.05	<1	15	2	25	5.52	10	0.11	3659	4	0.01	10	440	16	<5	<20	<1	0.01	<10	11	<10	5	153
16	MWGD970 12	0.4	-	10	55	10	0.06	<1	17	5	23	4 32	<10	0.14	2931	3	0.01	10	780	36	<5	<20	<1	0.03	<10	17	<10	5	163
17	MWGD97D 13	<0.2	0 77	5	30	<5	0.03	<1	8	5	14	2.09	20	0.19	627	1	0.01	7	490	20	<5	<20	<1	0.02	<10	15	<10	1	54
18	MJWD 01	<0.2	1 92	10	115	<5	0.25	<1	20	22	42	4 09	<10	0.72	525	<1	0.01	26	580	52	<5	<20	11	0.09	<10	60	<10	<1	103
19	MJWD 02	<0.2	1.63	<5	160	<5	0.96	1	22	16	61	3 85	<10	0.71	1771	<1	0.02	22	670	50	<5	<20	41	0.09	<10	71	<10	<1	133
20	MJWD 03	<0.2	1.04	10	20	<5	0 07	<1	19	9	46	3.64	10	0.53	387	2	0 01	25	290	42	<5	<20	<1	0 04	<10	38	<10	1	111
21	MJWD 04 .	<02	1.03	10	40	<5	0.13	<1	19	7	25	2.93	10	0 41	995	2	0.01	15	610	46	<5	<20	5	0 02	<10	27	<10	2	69
22	MJWD 05	<0.2	1.04	<5	25	<5	0.06	<1	10	15	10	2.72	<10	0.65	337	2	0.01	14	220	12	<5	<20	<1	0.02	<10	21	<10	<1	37
23	MJWD 06	<0 2	0.75	5	20	<5	0.04	<1	8	9	16	2 67	<10	0.31	149	2	0.01	10	350	22	<5	<20	<1	0.03	<10	30	<10	<1	27
24	MJWD 07	<0.2	1.18	10	40	<5	0 04	<1	13	8	26	3.14	10	0.44	147	1	0.01	12	300	20	<5	<20	<1	0.04	<10	39	<10	<1	36
25	MJWD 08	<0.2	2.20	10	75	<5	0 07	<1	16	8	14	2.97	<10	0.32	570	<1	0.02	14	770	28	<5	<20	5	0.10	<10	40	<10	<1	51

ICP CERTIFICATE OF ANALYSIS AK97- 1177

ECO-TECH LABORATORIES LTD.

Et #.	Tag #	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	\$n	Sr	Tì %	υ	٧	w	Υ	Zn
26	MJWD 09	<0.2	3.05	<5	105	5	0.14	<1	31	13	83	6.35	<10	1.35	474	<1	0.02	24	340	20	~ 5	<20	6	0 17	<10	150	<10	<1	73
27	MJWD 10	<0.2	2.29	5	90	5	0.11	<1	26	12	43	4 72	<10	1 02	404	<1	0.01	21	230	32	<5	<20	7	0 18	<10	84	10	<1	57
28	MJWD 11	< 0.2	3.61	<5	95	<5	0 14	<1	31	16	156	7 42	<10	1.68	514	2	0 01	30	350	34	<5	<20	6	0 11	<10	220	10	<1	91
29	L7000 9+25E	<0.2	2.23	10	150	10	0 15	<1	34	3	75	6 44	<10	1.01	2541	1	0.02	10	500	50	<5	<20	7	0 15	<10	133	<10	<1	81
30	L7000 9+50E	<0.2	2.10	<5	75	10	0.08	<1	21	<1	33	5.83	<10	0.97	533	<1	0.02	15	210	14	<5	<20	2	0 15	<10	268	<10	<1	68
QC/DATA:																													
Repeat:																													
1	CDGD97D 01	0 4	1.11	35	65	<5	0.35	<1	11	4	35	2.76	<10	0 14	1393	2	0.02	В	250	46	<5	<20	11	0.04	<10	20	<10	<1	329
10	MWGD97D 06	<0.2	0 45	<5	35	<5	0 10	<1	1	<1	3	0 50	10	0 04	112	<1	0.01	<1	130	8	<5	<20	2	0 01	<10	16	<10	<1	9
19	MJWD 02	<0.2	1.71	5	160	<5	0.98	<1	23	16	64	4 01	<10	0.74	1826	<1	0.02	23	700	54	<5	<20	43	0 10	<10	74	<10	<1	136
28	MJWD 11	<0.2	3.33	<5	85	<5	0.12	<1	30	14	146	7.18	<10	1.52	504	2	0 01	26	310	36	<5	<20	4	0.09	<10	216	<10	<1	80
Standard:																												_	
GEO'97		1.0	1.87	65	150	<5	1 92	<1	19	60	79	4 13	<10	1.00	686	<1	0 02	23	640	22	<5	<20	58	0 12	<10	82	<10	5	74

df/1176 XLS/97Toklat fax: 426-6899 ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B C. Certified Assayer

APPENDIX IV

Rock Sample Descriptions

ROCK SAMPLE DESCRIPTIONS

TTGD96-01: Altered gabbro along recessive north/south linear feature located along ridge-crest. Feature appears to be 10-15m in width.

TTGD96-02: Extremely rusty, chloritic, pyritic quartzite. Fine, euhedral pyrite visible in some fragments.

TTGD96-03: Float; Pyritic quartz. 2-3% pyrite within sucrosic, brown-weathering quartzite.

TTGD96-04: Purina Shaft; 2% chalcopyrite with 10-15% pyrite within silicified phyllitic material.

TTGD96-05: Purina Shaft; 1.7m continuous-chip of massive pyrrhotite, hosted by silicified phyllite.

TTGD96-06: Purina Shaft; 1.0m continuous-chip of massive pyrrhotite, hosted by silicified phyllite.

TTGD96-07: Purina Shaft; Grab sample of massive sulphides from dump.

TTGD96-08: Purina Shaft; 1.0m continuous-chip of silicified, apparently barren footwall phyllite.

TTGD96-09: Purina Shaft; 1.0m continuous-chip of silicified, apparently barren hangingwall phyllite.

TTGD96-10: Purina Shaft; Grab sample of massive pyrrhotite from dump.

CDGD96-01: In situ; Bedded quartzite with 5% quartz eyes, 2-3% rusty ankeritic porphyroblasts.

CDGD96-02: As above: with abundant mica.

RBGD96R-01: quartz float. No visible sulphides.

RBGD96R-02: as above.

RBGD96R-03: green phyllite with 3-5% coarse euhedral pyrite crystals.

MBGD96R-01: gabbroic sill 10-40cm in width, vertical dip, striking N/S. Exposed over 3m, apparently continues to north and south.

MBGD96R-02: In-situ: stockwork quartz veining within quartzite. No visible sulphides.

MBGD96R-03: Float: barren quartz.

MBGD96R-04: as above.

TTGD97R-01: Float; rusty, apatite-rich meta sed.

TTGD97R-02: Float: qzite with minor rusty weathering, disseminated dark metallic (graphite') crystals.

TTGD97R-03: Float: siliceous schist with 1-3 mm-thick dark metallic laminae.

TTGD97R-04: In-situ: gabbro sill: multiphase, spheroidal weathering, outcrops for 25m, appears to be roughly 75m wide.

TTGD97R-05: Float: rusty, pyritic quartz schist. Contains 10-20% wad, 3-5% pyrite.

TTGD97R-06: Sub-crop: "Meatball Showing": (L5500/11+20E): quartzite host with disseminated ga and ga crackle-textures. Showing consists of 1m x 1m angular boulder, does not appear to have travelled.

TTGD97R-08: In-situ: phyllites with interlayered po and cp stringers.

TTGD97R-09: Float: weakly clay-altered sucrosic-textured quartzite. 1-2% dull-grey metallic mineral, minor secondary biotite. Weakly foliated.

TTGD97R-10: In-situ: streaky, buff-brown cream-coloured sucrosic quartzite oriented 010/80W. Contains trace galena parallel to foliation.

TTGD97R-11: In-situ: brown, weakly foliated quartzite with mm-scale rusty bands parallel to foliation,. micaceous sheen.

TTGD97R-12: Float: kaolinized quartzite with fine disseminated black xtals throughout.

TTGD97R-13: Sub-crop; **"Pup Showing":** (L5500/9+75E): quartzite host with mm-scale fracture fillings containing sp, cp, ga.

TTGD97R-14: In-situ "Upper Adit" shallow (1m) working on quartzite-hosted ga stringers parallel to foliation 150/80E.

TTGD97R-15: In-situ; trace cp in 2-5 cm wide quartz vein hosted by phyllite, proximal to gabbro sill (typical Moyie sill contact minz'n).

TTGD97R-16: Float: extremely pyritic gabbro.

TTGD97R-17: Float: rusty quartzite boulder

TTGD97R-18: In-situ; 1m cc: sericitic phyllite from high geochem area.

TTGD97R-19: In situ: 5m thick gabbro sill from high geochem area.

TTGD97R-20: Float: .5m x 1m boulder, obviously from gabbro-hosted qz lens exposed in cliff face. Biotitic, sericitic, with trace cp, po.

TTGD97R-21: In-situ: Felsic dyke/sill ~2m wide: sub-parallel to foliation; creamy white coloration, no visible sulphides. Light green lichens grow exclusively on dyke.

TTGD97R-22: In-situ: ex rusty-weathering, pyritic gabbro. Prominent foliation, rusty phenocrysts on fresh surfaces. Taken from high geochem area.

TTGD97R-23: In-situ: ga, sp along mm-scale fracture coatings within quartzite. Fine, euhedral crystals in rusty clay groundmass. Very similar in appearance to TTGD97R-13.

TTGD97R-24: In-situ: as above, oriented 010/85E.

TTGD97R-25: Subcrop: "Alpo Showing": foliation-parallel chalcopyrite over 2m, hosted by creamy-coloured foliated quartzite.

TTGD97R-26: In-situ: cc/5.0m:chalcopyrite within yellow, moderately foliated quartzite.

TTGD97R-27: Dump: "Purina Shaft": high-grade chalcopyrite, hosted by massive pyrrhctite.

CDGD97R-01A: Float: quartz shear material, contains sericite, chlorite, minor po.

CDGD97R-02A: Float: qz with 2-3% dis py, tr cp, sp; local chlorite, sericite.

CDGD97R-03A: Float: bull-quartz with pyrite, rusty weathering.

CDGD97R-04A: Float: gz shear with 3-5% po as disseminations and fracture-fillings.

CDGD97R-05A: In-situ: gzite (164/70W), light-green, sericitic, well-foliated (bedded?)

CDGD97R-06A: Float: qz vein/shear; chloritic, sericitic, minor rusty stain, tr bornite?.

CDGD97R-07A: Float: quartzite with selective hematitic weathering.

CDGD97R-01: In-situ: well-foliated rusty quartzite with .5% ga.

CDGD97R-02: In-situ (2320m): 2m wide qzite lens in gabbro sill; white with rusty fractures; oriented 021/90.

CDGD97R-03: In-situ (2340m): qzite boudins within rusty phyllite; fine grained, white to opaque with rusty fractures containing tr ga.

CDGD97R-04: In-situ (2340m): phyllite 025/90; well-foliated, local crenulations; minor sericite on foliation planes.

CDGD97R-05: In-situ (2355m): qzite boudins in gabbro sill.

CDGD97R-06-11: In-situ (2190m): 5M wide rusty-weathering gabbro with abundant qz lenses, qzite boudins; foliation well-developed, oriented 045/85E

CDGD97R-12, 13: Subcrop (1965m): "Flea Showing": Disseminated cp within fine to medium-grained white to smoky-grey qzite. Fol'n/bedding well-defined, oriented 019/90.

CDGD97R-14: In-situ: qz veins; bedding-parallel, 4 x 3cm wide bands, no vis. min'zn.

CDGD97R-15: In-situ: qzite; rusty fracture surfaces, tr cp, po.

CDGD97R-16: In-situ: as above.

CDGD97R-17: Float (1800m):gzite; as above.

CDGD97R-18: In-situ (1755m): qzite; as above.

CDGD97R-19: Float: qzite; as above.

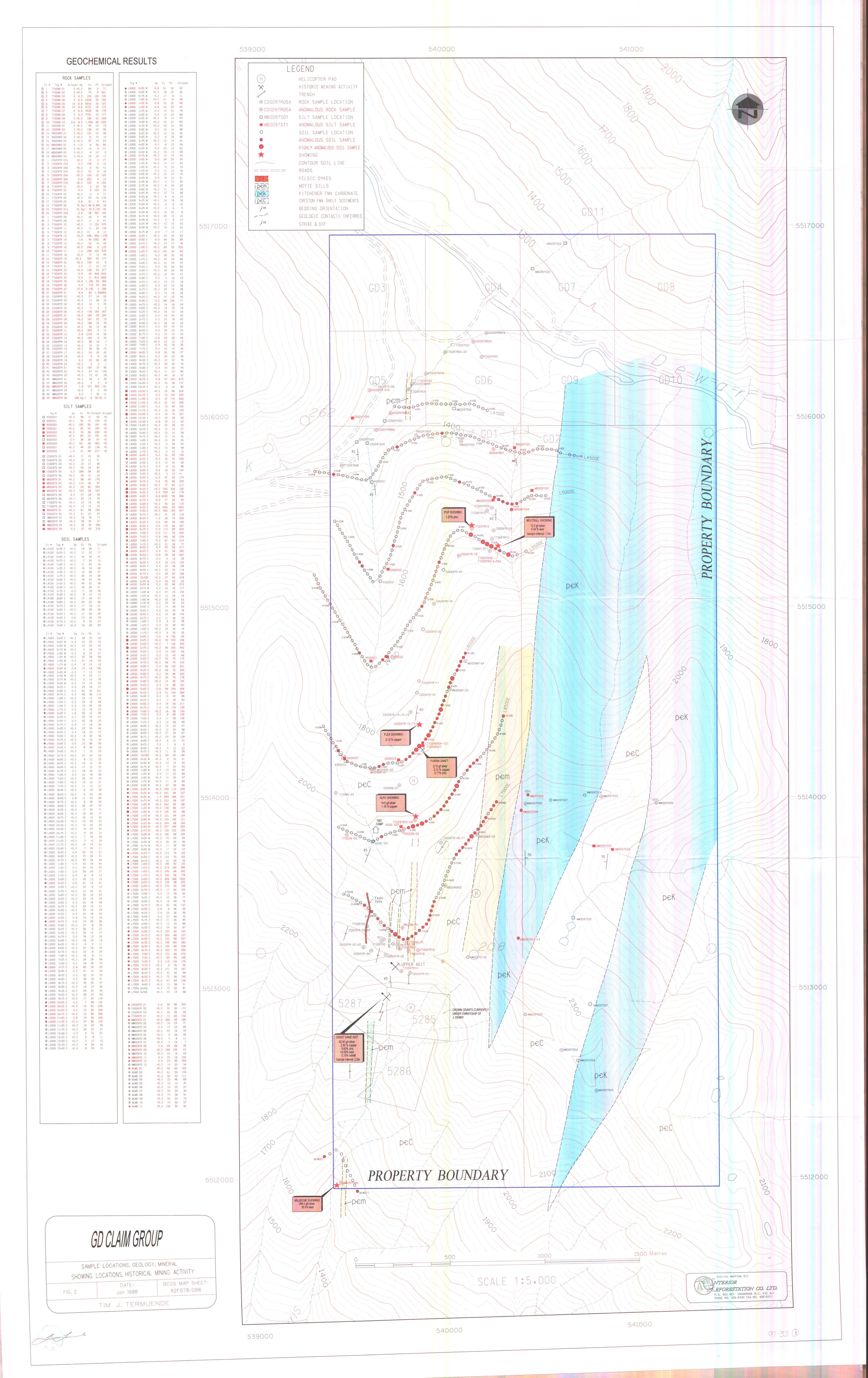
CDGD97R-20: Subcrop (1660m): qzite; s above

RBGD97R-01: Float: quartzite with 2-3% py, tr cp.

RBGD97R-02: Float: rusty-weathering quartzite.

RBGD97R-03: Float: as above.

MWGD97R-01: In-situ: limonite stained drusy & white bull quartz sweat


MWGD97R-02: In-situ: quartz lens, white bull quartz, minor limonite staining

MWGD97R-03: In-situ: limonite stained rusty quartzite, sericite altered quartzite

MWGD97R-04: In-situ: sericite altered quartzite

MWGD97R-05: In-situ: vuggy quartzite, limonite and manganese staining

MWGD97 R-06: In-situ: "**Milkbone Showing**" foliation-parallel massive galena over 15cm: unknown lateral continuity; hosted by coarse-grained, creamy white quartzite, located 30m east of gabbro sill.

