BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1998/99REPORT #:PAP 98-2NAME:ROBIN DAY

ZYMO #7-10 CLAIMS

RECONNAISSANCE GEOLOGICAL & GEOCHEMICAL REPORT

OMINECA MINING DIVISION BRITISH COLUMBIA

NTS 93-L-13

Latitude 54 degrees 49 minutes north Longitude 127 degrees 57 minutes west

Annual Work Approval No. SMI-0200371-113

And For

B.C. Prospectors Assistance Program Reference No. 98/99 P3

By

Robin C. Day B.Sc., F.G.A.C

AUG 31, 1998

3原GETVET AUG 1 1 1898 PROSPEC

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

4...

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations 15 to 17, page 6.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name ROBIN DAY	Reference Number <u>98/99 - P3</u>
LOCATION/COMMODITIES	
Project Area (as listed in Part A) ZYMO	MINFILE No. if applicable
Location of Project Area NTS 93-L-13	Lat_54°49′ Long 127°57′
Description of Location and Access LOCATION IS NORTH IS BY TRUCK TO LANDING BY MULWAIN CA TO THE CLAIMS Main Commodit es Searched For Cu, Au, Ag, Zn, PD	
Known Mineral Occurrences in Project Area <u>RED</u> , <u>ZYMO</u>	
WORK PERFORMED	
1. Conventional Prospecting (area) 500 HECTARES	
2. Geological Mapping (hectares/scale) 500 HECTARES	1 1:5000 SCALE
3. Geochemical (type and no. of samples) 39 SILT 42 Roc	
4. Geophysical (type and line km)	
5. Physical Work (type and amount)	
6. Drilling (no. holes, size, depth in m, total m)	
7. Other (specify)	
SIGNIFICANT RESULTS Commodities <u>Aw Ag ZN Pb</u> Claim Location (show on map) Lat <u>Long</u> Best assay/sample type <u>Rock</u> ; <u>Au 367 ppb Ag 15.4gm</u> Description of mineralization, host rocks, anomalies <u>Sphalerit</u> Sericite - pyrite altered rock & carbonal Sandstones adjacent to diorites & perve alteration - mineralization peripheral	

Supporting data must be submitted with this TECHNICAL REPORT

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

TABLE OF CONTENTS	
Executive Summary	P.2
Project Location	P.2
NTS Map	P.2
Access and Logistics	P.2
Commodities	P.3
Deposit Types	P.3
Geology & Physiography	P.3
Claim Ownership	P.4
Claim Record Data	P.4
Work Undertaken	P.4
Exploration History	P.4
Soil, Silt & Rock Geochemistry Results	P.5
Discussion	P.5
Summary	P.6
Recommendations	P.6
Acknowledgment	P.6
References	P.6
Statement of Qualifications	P.6
Statement of Expenditures	P. 7
Fig.1 Topographic map with Zymo Claim Boundary Fig.2 District Geology Map	

- Fig.2 District Geology Map
- Fig.3 Claim Location Map-Regional
- Fig.4 Claim Map
- Fig.5 Sample Location & Geology Map (1:5000 scale-in pocket)
- Fig.6 Copper-Gold Soil & Silt Geochemistry Map (1:5000 scale-in pocket)
- Fig.7 Comparison between Zymo and Highland Valley Phyllic Zones.
- Fig.8 Comparison between Cu in Streams at Zymo & Panguna

Appendix A 1998 Rock Sample Descriptions, Silt Sample Location Table & Assay Data

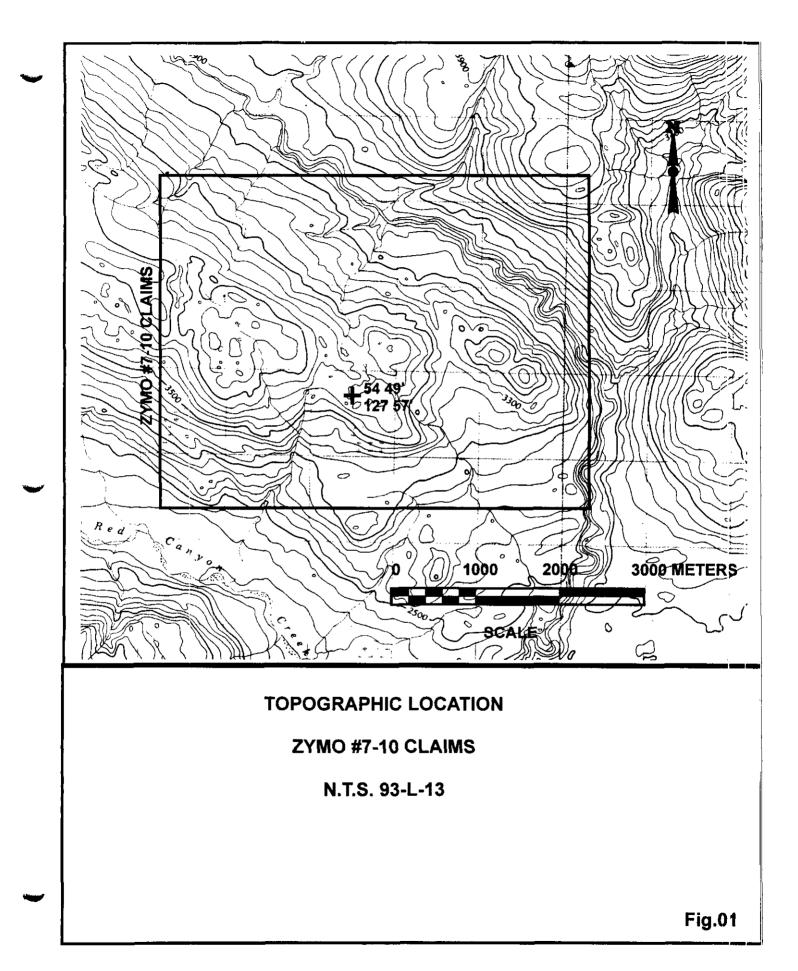
ZYMO #7-10 CLAIMS PROSPECTING AREA

EXECUTIVE SUMMARY

Fieldwork during 1997 identified a new porphyry system (the Zymo porphyry system), characterized by a chalcopyrite-bornite-gold-quartz+carbonate+magnetite mineral assemblage. surrounded by a large zone of pervasive sericite-pyrite+carbonate alteration. Mineralized pebble breccia dykes and adjacent veinlets and small veins carrying elevated Au, Ag, Cu, Pb, Zn, Cd, As, Sb, Hg, Bi, Mn cut the sericite-pyrite alteration zone. A discreet 600 meter by 700 meter Cu in soil anomaly (contoured at 120, 200, 400 & >1000 ppm Cu) occurs south and uphill from chalcopyrite-bornite mineralization identified in outcrop during mapping. Soils are characterized as decomposed bedrock colluvium. Cu in soils range up to 3870 ppm. Silt samples deemed anomalous range from >400 ppm up to 2966 ppm Cu and cluster with the Cu in soil anomaly. The area extent of copper in stream sediments compares favorably with Panguna, Bougainville Island (see Fig. 8). Au in soils and silts deemed anomalous range from >40 up to 110 ppb and cluster with the Cu in soil anomaly. Cu/Au values from rock outcrop and subcrop from the chalcopyrite-bornite zone range up to >1% Cu and 428 ppb Au. Cu/Au values from a guartzcarbonate-pyrite+sphalerite stockwork, located on the east flank of the soil anomaly, range up to 5258 ppm Cu and 1609 ppb Au. Peripheral fault-breccia zones carry Au values up to 7233 ppb Au. Mapping indicates the Zymo porphyry system is nested in a multi-phase precursor pluton and is only partially unroofed (see assessment report #25412).

Fieldwork during 1998 extended the soil/mapping grid to the south for 1750 meters. The zone of pervasive sericite-pyrite±carbonate alteration was extended to the south for up to 900 meters and is now known to be about 3000 by 3000 meters in size. In comparison, the zone of intense phyllic alteration around the Valley deposit, Highland Valley B.C. is about 1200 by 1200 meters in size (see Fig. 7). South of the sericite-pyrite±carbonate alteration zone, variable carbonate alteration was noted in various phases of the host pluton, including diorite, crowded feldspar porphyry and quartz eye feldspar porphyry On the east and west edges of the 1998 grid, pyrite±carbonate altered sediments were noted. Some silt and rock samples from areas underlain by these altered sediments carried elevated gold from 40 to 587 ppbs. These mildly auriferous sediments are likely responsible for the RGS gold anomaly reported from this area. Further work, including airborne magnetics and drilling, is recommended.

PROJECT LOCATION


West-central B.C. about 48 kilometers west of Smithers on an unnamed creek north of Red Canyon Creek, locally known as Mulwain Creek, or about 1000 meters southwest of minfile #304 (Red).

N.T.S. <u>MAP</u>

93-L-13 at about lat. 54 degrees 49 minutes north and long. 127 degrees 57 minutes west.

ACCESS AND LOGISTICS

By truck from Smithers, B.C. to a landing near end of the McDonald Main logging road and then by helicopter to the claims. Helicopters are based in Smithers, B.C. The logging road is scheduled to be extended across the Zymo porphyry system over the next three years and to the south, over Red Canyon Creek. The property will then be about 25 miles by road from the natural gas-electrical power transmission corridor and about 90 miles by main haul road and 'pavement' from deep water port facilities located at Kitimat, B.C.

COMMODITIES

Gold, silver, copper (chalcopyrite, bornite, gold, sphalerite, galena, sulfosalts etc.)

DEPOSIT TYPES

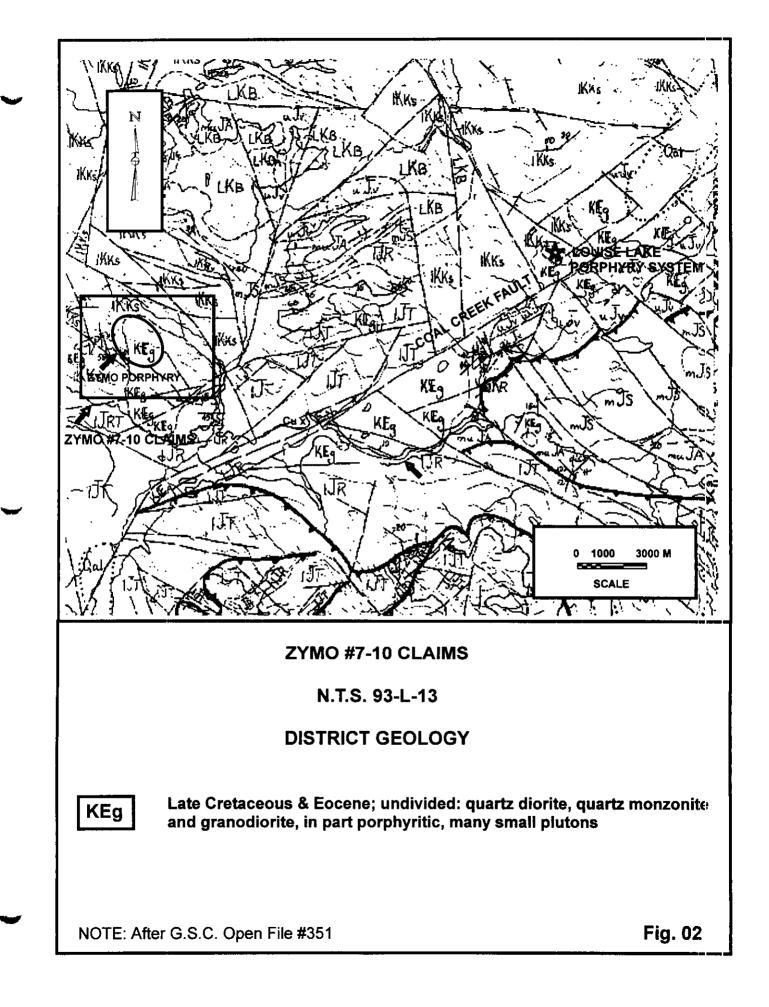
Early Tertiary to Late Cretaceous age ('Nanika' or 'Bulkley' age) Cu-Au-Ag porphyry; porphyry related bulk tonnage high sulphidation Au-Ag-Zn replacement deposit in Skeena Group sandstones and conglomerates (i.e. Pueblo Viejo type).

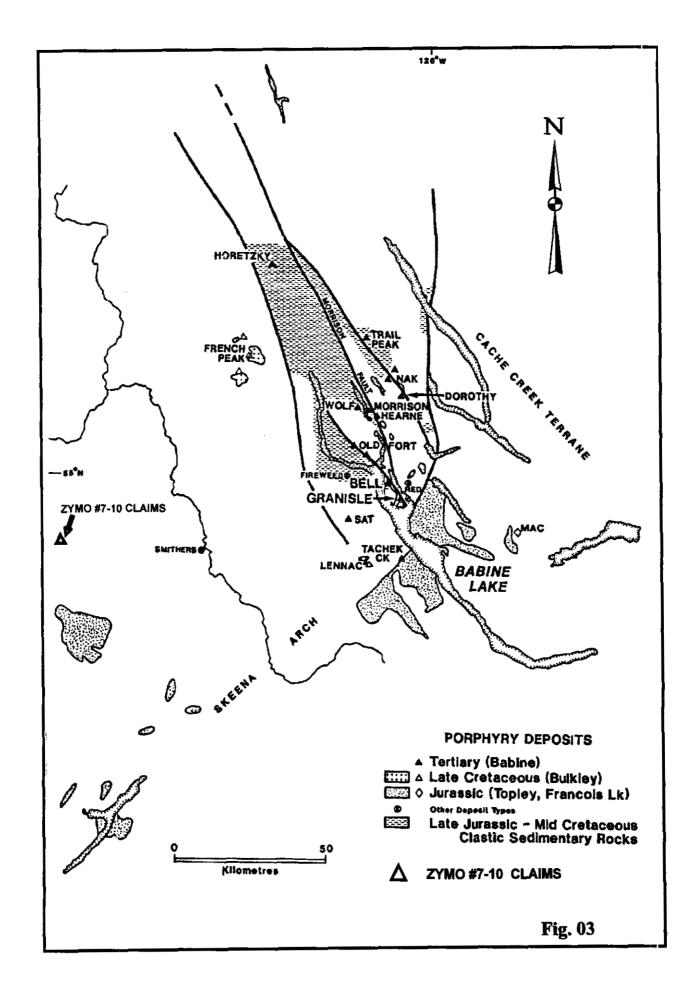
GEOLOGY AND PHYSIOGRAPHY

On a district scale, the Zymo porphyry system is located on the western edge of the Stikine terrain and on the north flank of the Skeena Arch. The Stikine terrain is bounded to the west by the Coast Belt, interpreted by van der Heyden(6) as a middle Jurassic to early Tertiary magmatic arc that developed in an Andean-type subduction setting.

The prospecting area is underlain by Lower Cretaceous Skeena Group sandstones and conglomerates intruded by a multi-phase quartz-eye feldspar, crowded feldspar, and diorite porphyry plutonic complex. Within the pluton, mapping has defined a large area (about 3000x3000 meters) of pervasive sericite-pyrite±carbonate alteration, devoid of mafic minerals and wherein original mineral texture and fabric has been totally destroyed. The adjacent plutonic rocks and the overlying sediments have undergone variable weak to intense carbonate alteration.

Within the sericite-pyrite±carbonate alteration zone, a chalcopyrite-bornite-gold-quartzcarbonate±magnetite alteration zone has been recognized in outcrop (see assessment report # 25412). Cu/Au values within this alteration zone range up to >1% Cu and 428 ppb Au. Bornite and chalcopyrite occur on fractures and joints and disseminated, along with disseminated and veinlet magnetite.


Mineralized pebble breccia dykes have been noted cutting the phyllic alteration zone. Polymetallic veinlets in the footwall or hanging wall and in adjacent veinlets within a few meters of the breccia dykes contain elevated Au, Ag, Cu, Pb, Zn, Cd, As, Sb, Bi, Hg, Ca & Mn (see fig. 5 & 6 and appendix A & B in assessment report # 25412). Rare xenoliths of semi-massive chalcopyrite and rounded mineralized clasts have been observed within these dykes. Metallic gray sphalerite is also common on joint planes exhibiting carbonate alteration, within the phyllic alteration zone.


Peripheral quartz-carbonate stockwork-breccia zones contain elevated Au, Ag, Cu &Zn (see fig. 5 & 6 in assessment report # 25412).

Active 'kill zones' characterized by ferricrete terraces, have a 'battery acid' odor and precipitates from seeps within these zones yield Cu values >400 ppm. Springs or seeps from these kill zones often cement stream gravels with ferricrete, promote dark orange to 'beer bottle brown' limonite gossans and cause solution weathering of carbonate altered porphyry.

Lamprophyre dykes have been noted in the carbonate alteration zone and rare float/subcrop of these dykes has been noted within the phyllic alteration zone.

Large float boulders of andesitic agglomerate occur peripheral to and on the Zymo porphyry system.

Topography in the project area is gentle. The area is below treeline. Vegetation consists of coastal balsam, hemlock and grass swamps. Outcrop is restricted to isolated exposures in the Mulwain Creek valley bottom and streams incised in bedrock, cutting the Zymo claims from south to north. Narrow deep gorges occur on the west creek cutting the Zymo porphyry. Maximum relief is about 325 meters, ranging from about 975 to 1300 meters elevation.

CLAIM OWNERSHIP

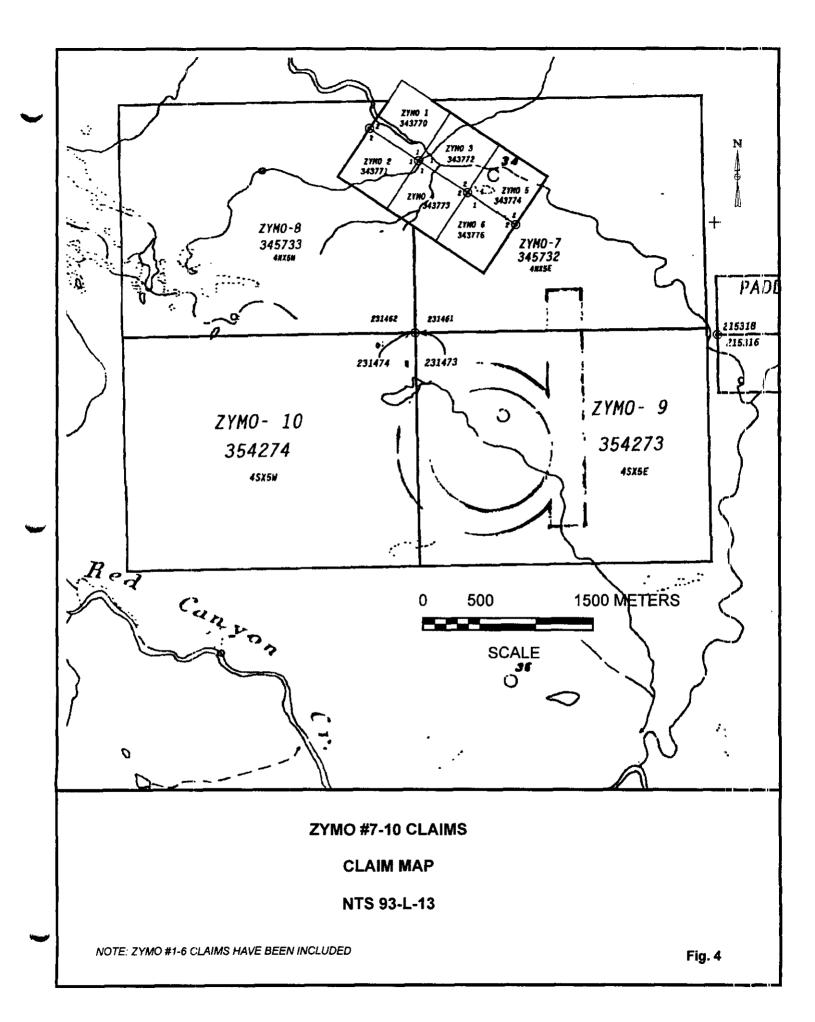
Robin Day and Larry Hewitt own the Zymo 7-10 claims.

CLAIM RECORD DATA

Claim Name	Tenure No.	Record Date
Zymo-7	345732	May 03, 1996
Zymo-8	345733	May 03, 1996
Zymo-9	354273	Mar. 17, 1997
Zymo-10	354274	Mar. 17, 1997

WORK UNDERTAKEN

Field work was performed from June 10 to July 07, and July 11 & 12 for a total of 70 man days comprised of 10 man days equipment preparation, mobilization, camp set up and egress and 60 man days prospecting, soil, silt and rock sampling, geological mapping and minor grid preparation. This work was undertaken to follow up encouraging results obtained during the 1997 field season (see Exploration History).


EXPLORATION HISTORY

A 116(193) ppb stream sediment gold anomaly was identified on a creek draining the project area (open file 1361-RGR 97-<u>1986</u>).

While examining the nearby Louis Lake porphyry system, Lacana staked the Calvin claim over the drainage area of the 'RGR' gold in silt anomaly and performed three days reconnaissance work. A porphyry setting was recognized, however, no further work was performed.

Skeena Resources Ltd. and Leeward Capitol Corp. in each of <u>1990</u> and <u>1991</u> undertook one day of silt sampling and prospecting. Taiga consultants of Calgary, Alberta performed this work. Anomalous Au, Ag, Cu, Pb & Zn silt geochemistry was noted. A few rock samples from narrow calcite veins hosted in Skeena Group sediments reported anomalous Au-Ag-Cu-Pb-Zn values. These occurrences constituted a new minfile occurrence named 'Red' and was assigned minfile #304 on the Smithers map sheet N.T.S.93-L (see assessment Report #21723).

Reconnaissance prospecting performed in <u>1996</u> yielded the following results: a 'dacite' porphyry has undergone intense phyllic alteration characterized by pervasive carbonate-sericite-pyrite and quartz-sericite pyrite replacement; copper in silts from a creek cutting this porphyry range from 572 ppm to 1697 ppm; 32 of 74 rock samples contained gold values from greater than 200 ppb to 6900 ppb; high silver values from 117 ppm to 1664 ppm were obtained from semi-massive to massive Zn-Pb-Cu veins associated with breccia dykes cutting the porphyry (see assessment report #24924).

A new porphyry system was identified during the <u>1997</u> field season (see assessment report # 25412). This porphyry system is characterized by a chalcopyrite-bornite-goldquartz+carbonate+magnetite mineral assemblage, surrounded by a large zone of pervasive quartz-sericite-pyrite+carbonate alteration. Mineralized pebble breccia dykes and adjacent veinlets and small veins carrying elevated Au, Ag, Cu, Pb, Zn, Cd, As, Sb, Hg, Bi, and Mn cut the sericite-pyrite alteration zone. A discreet 600 x 700 meter Cu in soil anomaly (contoured at 120, 200, 400 & >1000ppm Cu) occurs south and uphill from the chalcopyrite-bornite mineralization identified in outcrop. Mapping and sampling indicate the Zymo porphyry is nested in a multi-phase precursor pluton and is only partially unroofed.

Thin section petrology was undertaken during late <u>1997</u> and early <u>1998</u>. The precursor pluton, which hosts the Zymo porphyry system, is a quartz bearing diorite, which has undergone variable albitization and carbonate alteration. Pervasive quartz-pyrite-sericite-carbonate altered rock south and uphill from a large copper in soil anomaly was originally arenite. The rest of this alteration zone was originally quartz-bearing diorite. Petrologic study of the chalcopyrite-bornite-gold-quartz-carbonate<u>+</u>magnetite zone revealed a quartz-Na-alunite-dolomite-chlorite-hematite mineral assemblage overprinted on a chalcopyrite-bornite-gold-quartz<u>+</u>magnetite<u>+</u>biotite assemblage. The chlorite is interpreted as after biotite and the hematite is interpreted as after magnetite. These mineral assemblages are interpreted as representing an Andean style 'high-suphidation' Cu-Au porphyry system which has only just been unroofed.

1998 SOIL, SILT & ROCK GEOCHEMISTRY RESULTS

Soil sampling was performed by coring with a tulip bulb auger to a maximum depth of 1.2 meters. Average sample depth is about 0.4 meters. Soil types are for the most part characterized as decomposed bedrock colluvium, ranging in thickness from 0.2 to 4 meters.

Background Cu in soils ranges from about 20-60 ppm. Four soil samples exceeded 100 ppm Cu...

Two silts exceeded 100ppm Cu.

Au in soils and silts deemed anomalous range from >40 ppb up to 140 ppb.

ICP results indicate that the strong zinc halo associated with the Zymo porphyry system extends to the south (see Appendix A).

DISCUSSION

Carbonate altered porphyries observed in outcrop and float on the south, east and west sides of the grid indicate the Zymo porphyry is nested in a multi-phase precursor pluton.

Overlying Skeena Group sediments on the southeast, southwest and northwest flanks of the 1997 &1998 grid, and pervasive sericite-pyrite<u>+</u>carbonate altered sediments located on the ridge crest, infer the Zymo porphyry system is only partially unroofed. This inference is also supported by adjacent and peripheral auriferous quartz-carbonate stockworks

The cross cutting aspect of the pebble breccia dykes, associated carbonate alteration and polymetallic mineralization with a geochemical signature usually associated with epithermal mineralization, suggests that a younger and higher level mineralizing event was superimposed on an older and deeper mineralizing event.

The Skeena Group sediments are 'basement' rocks intruded by the precursor pluton. The overlying altered sediments suggest that the Zymo porphyry system did not have an overlying volcanic edifice.

As yet undated, the Zymo porphyry system is likely either circa 'Bulkley' age (\sim 80 my) or circa 'Nanika' or 'Babine' age (\sim 50 my).

The area extent of pervasive sericite-pyrite+carbonate alteration at Zymo compares favorably with the Valley deposit, Highland Valley, B.C. (see Fig.8).

The area extent of highly anomalous copper in silt geochemistry identified during the 1996 and 1997 field programs, compares favorably with copper in stream sediments reported from the Panguna porphyry deposit, Bougainville Island (see Fig. 7). It should be noted that soils at Zymo formed in a postglacial to temperate rain forest climate versus a tropical climate at Panguna.

Most other known porphyry systems associated with the Skeena Arch are deeply eroded, in contrast to the Zymo porphyry system, which appears to be just unroofed. Regional mapping shows Skeena Group sediments juxtaposed against older Jurassic volcanics. This infers that the Zymo porphyry system and surrounding Skeena Group sediments were downdropped in a graben, half-graben or hinged fault, thereby providing extended preservation from erosion.

SUMMARY

A new porphyry system has been identified. This system contains significant copper and gold mineralization hosted in a chalcopyrite-bornite-gold-quartz+carbonate+magnetite mineral assemblage.

RECOMMENDATIONS

- 1. An airborne gradient magnetic survey should be flown over the claim block.
- 2. Up to fifteen holes should be cored from 300 to 500 meter depths over the Cu in soil anomaly identified in 1997.

ACKNOWLEDGMENT

The B.C. Prospectors Assistance Program in part provided funding for the exploration program on the Zymo claims. Dr. Robert Folinsbee, Professor Emeritus, provided valuable insights and comments.

REFERENCES

- 1. Assessment Reports 21723, 24924 & 25412
- 2. New Mineral Deposit Models of the Cordillera-1996 Cordilleran Roundup Short Course
- 3. Topographic Map N.T.S. 93-L-13
- 4. B.C.D.M. geology map 69-1
- 5. G.S.C. Open File Map 351
- 6. Van Der Heyden, P., 1992, A Middle Jurassic to Early Tertiary Andean-Sierran Model for the Coast Belt of British Columbia. Tectonics, 11, p. 82-97

STATEMENT OF QUALIFICATIONS

I, Robin C. Day, graduated from the University of Alberta in 1976 with a B.Sc. (Concentration in Geology), have been active as a prospector and geologist in Western and Northern Canada since 1972, and am a Fellow of the Geological Association of Canada.

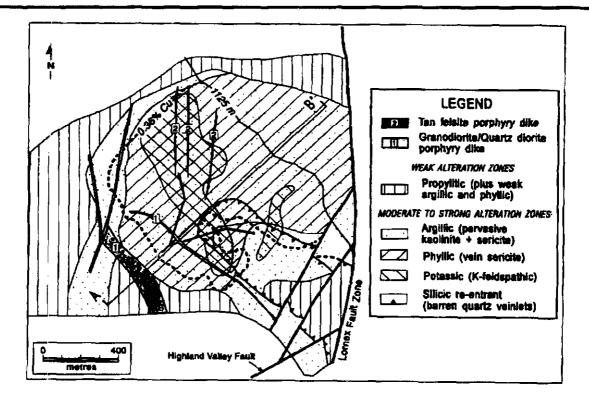
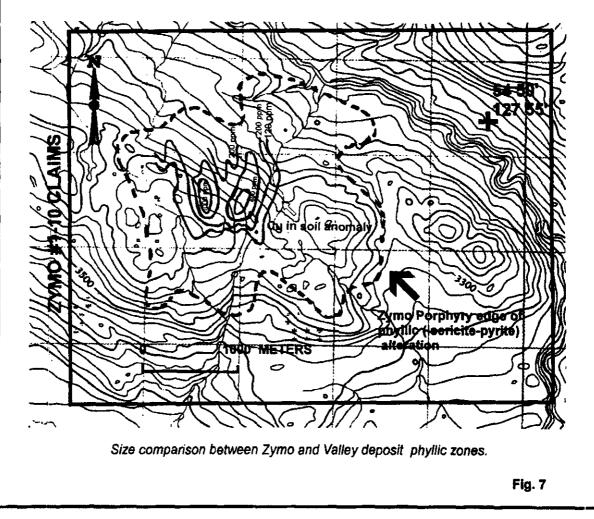
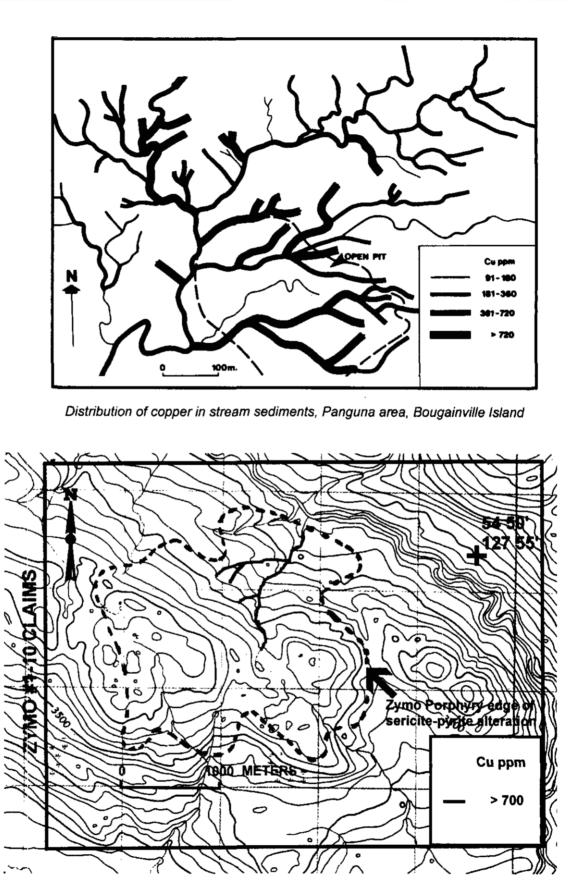




FIGURE 17a. Plan view showing the distribution of major alteration types in the Valley deposit projected to 1125 m level (modified after Oustenko and Jones, 1976).

Distribution of copper in stream sediments, Zymo property, B.C.

Fig. 8

APPENDIX A SAMPLE DESCRIPTION & LOCATION SILT SAMPLE LOCATION TABLE 1998 ASSAY DATA

OUTCROP ROCK SAMPLES

RB-98-01 shear zone in ser py alt in creek at 4510N 4265W	
RB-98-02 ser py alt rock ~ 30 m up from 4500N 6270W	
RB-98-03 breccia at 4250N 5100W quartz-carb alt, trace sph, gn	
RB-98-04 pyritic sandstone, 4030N 6000W	
RB-98-05 pyritic sandstone, 4020N 6000W	
RB-98-06 pyritic sandstone ~190meters upstream from 3250N4600V	N
RB-98-07 pyritic sandstone ~204 meters upstream from 3250N 4600	W
RB-98-08 pyritic sandstone ~208 meters upstream from 3250N4600	W
RB-98-09 breccia located at 4250N 5100W	
RB-98-10 ser, py alt ~ 100 meters upstream from 4000N 5655W	
RB-98-26A ser py alt ~ 100 meters downstream from 3500N 6300W	

FLOAT-SUBCROP ROCK SAMPLES

RR-98-01	angular sub crop, qtz ser py alt, by creek east of camp, 20 meters east of claim line
RR-98-02	fe-carb alt diorite porphyry, angular sub crop, ~100 meters azi 100 from RS-98-01
RR-98-03	sub crop, py, sph, in ser alt rock NE of small lake above 4500N 5875W
RR-98-04	ser py alt sandstone ~ 50meters upstream from 4500N 6270W
RR-98-05	argillite with stringer py, ~ 50 meters upstream from 4500N 6270W
RR-98-06	sub crop, ser py alt sandstone with minor sph at 4500N 6140W
RR-98-07	ser-py alt sandstone, alt not pervasive, ~4250N 4580W
RR-98-08	py alt monzonite? 4250N, 5310W
RR-98-09	py ser alt crowded feldspar porphyry (cfp) 4250N5312W
RR-98-10	sub angular, monzonite? Minor dissem sph 4000N 4910W
RR-98-11	cfp with hematite? Subcrop, 4000N 4850W
RR-98-12	pyritic sandstone in creek ~4020N6000W
RR-98-13	silicified argillite, float, west fork of creek with RR-98-12
RR-98-14	4000N 5980W, west edge of creek, cliff former, aphinitic, ser py alt dyke cutting
· .	sandstone and shale
RR-98-15	float in creek, pyritic sandstone, 3750N6450W
RR-98-16	float in creek, ser py alt with minor sph, ~35 meters upstream from 3750N 5925W
RR-98-17	float, intrusive pebble breccia, ser py alt 3500N 4720W
RR-98-18	ser py alt rock, ~3500N 4825W
RR-98-19	float, py intrusive breccia, ~5 meters below 3500N 6300W
RR-98-20	py diorite, subcrop, 5000W 3355N
RR-98-21	float, calc silicate?, qtz carb, magnetite, hematite alt ~3250N 4600W
RR-98-22	cobble in creek, 3270N 3945W
RR-98-23	py carb alt sandstone ~ 40 meters upstream from 3250N 6525W
RR-98-24	sph, py, qtz-carb veinlet in ser py alt cobble in creek ~3250N 6530W
RR-98-25	1 cm wide sph veinlet in ser py alt rock ~ 30 meters upstream from 4250N 6170W
RR-98-26	fine dark gray rock with minor py, ~30 meters upstream from 3250N 4600W
RR-98-27	alt sandstone with dissem and stringer py ~50 meters upstream from 3250N 4600W
RR-98-28	py sandstone ~60 meters upstream from 3250N 4600W
RR-98-29	minor cpy, in alt felsic rock ~130 meters upstream from 3250N 4600W
RR-98-30	cobble in creek, dissem py in conglomerate ~90 meters downstream from 4000N 5655W
RR-98-31	Qtz ser alt rock, fine dissem and stringer py, above fork in creek(see map)~4140N5570W

1.15 10

8

1a :

SILT SAMPLE LO Sample No.	Location	Sample No.	Location
RS-98-01	Creek east of camp, 37m	RS-98-21	3750N 3980W
	east of claim line	 	
RS-98-02	4500N 4750W	RS-98-22	3750N 4120W
RS-98-03	4500N 4440W	RS-98-23	3750N 6450W
RS-98-04	4500N 4055W	RS-98-24	3750N 6100W
RS-98-05	4500N 4155W	RS-98-25	3750N 5925W
RS-98-06	~4700N 5600W below	RS-98-26	3500N 3980W
	small pond north of line		
RS-98-07	Below RR-98-03	RS-98-27	3500N 4825W
RS-98-08	Below pond at 4500N	RS-98-28	3500N 6300W
	5876W		
RS-98-09	4500N 6270W	RS-98-29	3500N 6460W
RS-98-10	4250N 4580W	RS-98-30	3500N 5910W
RS-98-11	4250N 6390W	RS-98-31	3250N 4600W
RS-98-12	4250N 6095W	RS-98-32	3250N 3945W
RS-98-13	4250N 5990W	RS-98-33	3250N 4065W
RS-98-14	4250N 5730W	RS-98-34	3250N 4215W
RS-98-15	4000N 4215W	RS-98-35	3255N 5915W
RS-98-16	4010N 3985W	RS-98-36	3250N 6525W
RS-98-17	4000N 5380W	RS-98-37	3250N 6350W
RS-98-18	4000N 5655W	RS-98-38	5000W 2700N
RS-98-19	4020N 6000W	RS-98-39	Above inflow to lake
			above 5300W 4500N
RS-98-20	4000N 6350W		

SILT SAMPLE LOCATION TABLE

MR. ROBIN AY

Attention: Robin Day / Frank Nelson

Project: ZYMO

Sample: SILT

Mineral Environments Laboratories 8282 Sherbrooke St., Va. Louver, B.C., V5X 4E8

Tel (604) 327-3436 Fax (604) 327-3423

Report No 8S0044 Jul-27-98 Date :

\$t1/~

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V mqq	W ppm	Y ppm	Zn ppm	Zr ppm	Au-fire ppb	
RS-98-01	0.2	2.03	20	170	1.5	<5	0.19	<1	16	18	31	4.25	0.09	0.29	785	4	0.02	2 17	2740	80	5	5	<10	27	0.02	61	<10	10	303	8	7	,
RS-98-02	<0.2		35	470	0.5		0.44	3	18	19		4.71			8150	<2	0.03	21	1360	48	<5	3	<10	87	0.02	56	<10	7	530	4	4	ŧ.
		1.91	35	200	0.5		0.43	1	16	26		4.28			2890	2	0.02	20	2010	198	5	2	10	36	0.02	59	<10	9	425	4	10	נ
RS-98-03		1.66	15	350	0.5	<5	0.41	1	10	17		4.02			1765	<2	0.02	2 16	1310	30	<5	3	<10	58	0.02	65	<10	8	240	4	£	3
RS-98-04		1.47	45	370			0.42	2	16	20		4.57			3690	2	0.02	2 30	1650	158	<5	4	<10	46	0.02	58	<10	13	727	6	15	ŝ
RS-98-05	0.0	1.4/	45	3/0	1.0		0.72	-			•																					
RS-98-06	1.0	1,38	20	230	0.5	<5	0.18	1	8	14	36	3.05	0.05	0.21	840	<2	0.02	2 12	1550	48	<5	1	<10	35	0.01	38	<10	9	166	2	٤	3
RS-98-00		2.57	85	900	2.0		0.68	22	8	17	171	5.99	0.04	0.13	8140	8	0.02	2 16	2920	280	<5	4	<10	72	0.02	34	<10	38	871	6	16	5
RS-98-08		1.33		320		-	0.30	2	33	13	85	6.80	0.07	0.14	7725	<2	0.02	2 50	1500	296	5	3	<10	41	0.01	35	<10	10	627	5	126	i
RS-98-09		1.06		300			0.27	<1	46	15	142	9.62	0.06	0.14	8255	<2	0.02	2 55	1940	170	5	3	<10	30	0.01	41	<10	9	439	7	140	3
RS-98-10		1.02		420			0.51	1	14	20	31	4.46	0.09	0.27	4905	2	0.03	3 21	1480	46	<5	3	<10	87	0.02	55	<10	8	404	4	7	7
K2-30-10	0.2	1.01	40	120	0.0	-		-																								
RS-98-11	1.0	1.47	30	450	1.0	5	0.35	11	34	17	36	3.86	0.07	0.14	>10000	<2	0.04	4 37	1610	98	<5	3	<10	39	0.01	34	<10	11	400	3	5!	
RS-98-12		2.01		280			0.37	3	12	19	82	3.95	0.07	0.15	5120	2	0.02	2 29	1850	266	<5	3	<10	49	0.02	47	<10	16			48	
RS-98-13		0.77		240	0.5	5	0.32	1	13	13	65	4.62	0.08	0.22	2540	<2	0.03	3 28	1120	226	5	3	<10	44	0.02	47	<10	7			49	
RS-98-14		1.06		400	1.0	5	0.55	3	15	13	48	5.16	0.06	0.17	4830	<2	0.0	2 22	1840	168	5	3	<10	79	0.01	39	<10	14	556		37	
RS-98-15		1.04		420	0.5		0.57	1	14	18	36	4.21	0.09	0.23	3440	<2	0.03	3 28	1430	44	<5	3	<10	91	0.01	49	<10	10	303	4	9	9
																																_
RS-98-16	<0.2	1.96	30	440	0.5	5	0.34	з	15	22	31	5.02	0.05	0.27	4700	2	0.02	2 28	920	40		4	<10	43	0.03			10				5
RS-98-17	<0.2	0.98	25	300	0.5	<5	0.41	<1	9	15	25	3.86	0.05	0.18	2575	2	0.02	2 11	1110			2	<10	43	0.02		-	6				3
RS-98-18	0.4	1.20	55	370	1.0	5	0,43	2	16	19	44	4.95	0.07	0.23	4365		0.02		1470			4	<10	60	0.02						24	
RS-98-19	0.6	0.60	80	260	0.5	5	0.28	<1	13	12	48	3.99	0.09	0.16	1935		0.02					4	<10		0.01			7			4	
RS-98-20	3.0	2.24	50	220	2.0	< 5	0.33	2	8	16	61	2.44	0.04	0.11	1240	2	0.03	2 21	2500	148	<5	3	<10	37	0.01	33	<10	34	269	3	2	2
																		-			_								225	3		•
RS-98-21	<0.2	0.96	20	470	0.5	5	0.49	1	13	16		3.60			3065		0.03		1100						10.0							1 3
RS-98-22	<0.2	1.34	35	350	0.5	<5	0.40	<1	13	20	-	4.30			2025	_	0.02		1130			4	<10		0.03							
RS-98-23	0.4	0.93	65	260	0.5	5	0.40	1	14	19		4.07			1770	_	0.02					5	<10		0.01							
RS-98-24	0.4	0.43	65	290	0.5	< 5	0.30	<1	13	11	42	3.57	0.09	0.13	1215		0.02					4	<10		< 0.01						1	۲ 5
RS-98-25	1.8	0.74	165	360	0.5	5	0.36	<1	14	11	42	4.31	0.08	0.15	3785	<2	0.0	2 29	1150	238	5	3	<10	45	0.01	. 34	<10	9	240		•	2
																					-				0.01	74	~10	7	147	2		8
RS-98-26	<0.2	0.54	20	350	0.5	< 5	0.36	<1	11	15		3.00			1420		0.02								0.01			-				9
RS-98-27	<0.2	1.23	40	480	0.5	5	0.46	<1	33	16				0.20	9580		0.0					3	<10		0.02						1	
RS-98-28	0.2	0.53	50	280	0.5	5	0.37	<1	15			3.97			1240		0.0					6		44	< 0.01						14	
RS-98-29	0.4	0.91	60	290	0.5	5	0.43	1	12			3.65			1605		0.0						<10	46	0.01			-			120	
R5-98-30	<0.2	1.19	40	310	0.5	5 5	0.26	1	16	20	39	4.76	0.06	0.26	4330	<2	0.0	2 23	910	58	< 5	5	<10	42	0.03	, 0	-10	. 0	200	7		-

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed.

MR. ROBIN JAY

Attention: Robin Day / Frank Nelson

Project: ZYMO

Sample: SILT

Mineral Environg ats Laboratories

8282 Sherbrooke St., Vancouver, B.C., V5X 4E8 Tel (604) 327-3436 Fax (604) 327-3423

Report No 8S0044 Date Jul-27-98

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Au-fire ppb	
RS-98-31	<0.2	1.14	35	320	0.5	<5	0.28	<1	15	21	30	3.61	0.09	0.26	2095	<2	0.02	38	640	24	<5	4	<10	51	< 0.01	33	<10	5	114	3	14	
RS-98-32	<0.2	0.50	20	310	0.5	<5	0.30	<1	11	18	22	3.21	0.09	0.13	1160	<2	0.02	29	690	14	<5	4	<10	38	0.01	40	<10	6	147	2	9	
RS-98-33	0.4	1.34	5	440	1.0	<5	0.25	1	6	15	19	2.08	0.04	0.10	550	2	0.02	23	1930	10	<5	5	<10	35	0.01	34	<10	24	123	4	8	
RS-98-34	<0.2	1.45	5	310	0.5	<5	0.19	<1	16	25	17	3.33	0.07	0.25	3765	<2	0.02	30	940	12	<5	4	<10	28	0.01	45	<10	7	90	3	8	
RS-98-35	<0.2	1.53	40	1100	1.0	5	0.48	4	20	19	22	6.19	0.05	0.17	>10000	<2	0.02	22	1880	56	<5	3	<10	102	0.02	51	<10	9	347	5	10	
RS-98-36	0.2	0.39	50	230	0.5	<5	0.29	<1	12	10	38	3.57	0.08	0.18	1135	<2	0.02	35	670	56	<5	5	<10	32	<0.01	30	<10	5	279	2	11	
RS-98-37	0.2	1.04	35	360	0.5	5	0.42	1	11	15	28	3.86	0.07	0.24	2905	<2	0.02	21	1100	64	5	4	<10	59	0.02	49	<10	9	276	3	15	
RS-98-38	<0.2	1.24	40	730	1.0	5	0.37	<1	16	16	14	4.96	0.06	0.21	7965	<2	0.02	32	990	22	<5	4	<10	68	0.01	36	<10	9	172	4	6	
RS-98-39	<0.2	0.51	10	790	<0.5	5	0.18	2	20	15	2	4.14	0.04	0.15	>10000	<2	0.02	10	560	24	<5	1	<10	52	0.01	28	<10	2	378	2	6	

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 nours and diluted to 25ml with D.I.H20.

ŚĨ Ū " Signed.

MR. ROBIN AY

Attention: Robin Day / Frank Nelson

Project: ZYMO

Sample: ROCK

Mineral Environments Laboratories

8282 Sherbrooke St., Val. ouver, B.C., V5X 4E8

Tel (604) 327-3436 Fax (604) 327-3423

Report No 8S0044 Date Jul-27-98

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

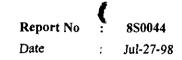
Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Au-fire ppb
RR-98-1	0.2	0.27	25	500	0.5	<5	1.15	<1	6	43	25	1.96	0.21	0 33	2810	~7	0.02	5	650	24	<5		<10	47	-0.01	-	-10	-			_
RR-98-2	1.6	1.19	10	1000			1.73	<1	9	96				_	1490	_	0.10	9	1270	42	_	5	<10			5		5	105	10	8
RR-98-3	10.8	0.25	85				0.32	-	8	78				0.03			0.02	6	1500	4964	5	5	<10		0.01 <0.01	60	<10	•	154	5	138
RR-98-4	3.2	0.21	40	300			0.01	<1	5				0.16	-	65		0.02	19	90	48	-	<1	<10			8	40		>10000	13	161
RR-98-5	0.2	3.43	195	30			1.71		102	76		>15.00		-			0.01	140	8870	60	-	- 1	<10		<0.01 0.01	6	<10	<1	65	2	112
				-		_		-			307		0.01		2000	1	0.01	140	00/0	00	10	,	~10	~~~	0.01	101	<10	14	197	17	65
RR-98-6	0.4	0.39	95	80	0.5	<5	0.05	4	23	51	34	4.77	0.18	0.67	1690	<2	0.03	152	160	256	<5	z	<10	10	<0.01	31	<10	2	1376	5	-
RR-98-7	<0.2	0.37	45	70	0.5	<5	0.96	<1	17	115	59			0.61			0.03	81	540	26	5	5	<10	26		48	<10	8	226	5	7
RR-98-8	<0.2	0.49	35	730	0.5	<5	2.21	<1	5	63	16			0.76			0.04	5	1130	78	5	3	<10			35	<10	9	161	9	5
RR-98-9	<0.2	1.39	25	290	0.5	<5	1.97	<1	10	60	34			1.24			0.09	11	1640	56	<5	6	<10	90	<0.01	74	<10	7	181	, 6	9
RR-98-10	0.4	0.78	15	820	0.5	<5	2.26	5	3	68	42			0.90			0.05	6	1490	682		5	<10		< 0.01	48	<10	11	1080	8	32
																		-				•		22			410		1000	0	22
RR-98-11	<0.2	0.29	<5	1070	1.0	<5	4.22	<1	9	29	9	3.25	0.21	0.89	1255	<2	0.03	4	1830	14	<5	5	<10	142	<0.01	53	<10	12	161	9	4
RR-98-12	0.6	0.14	260	70	<0.5	5	0.38	<1	7	146	9	4.82	0.11	0.11	1750	<2	0.02	34	90	30	5	3	<10	8	<0.01	9	<10	1	27	3	199
RR-98-13	11.4	0.95	4075	40	1.0	20	6.55	<1	36	51	197	>15.00	0.02	0.70	4955	<2	0.02	125	>10000	1574	20	6	20		< 0.01	79	<10	22	681	18	587
RR-98-14	<0.2	0.65	80	480	0.5	<5	2.30	<1	11	60	39	4.17	0.28	0.74	1115	2	0.05	13	2290	54	<5	6	<10	97	<0.01	54	<10	11	146	9	16
RR-98-15	38.6	0.15	220	450	<0.5	85	0.05	<1	5	99	150	4.50	0.13	0.01	90	<2	0.02	19	250	812	5	<1	<10		<0.01	6	<10	<1	133	3	53
																										•		••		2	
RR-98-16	2.0	0.28	240	190	0.5	5	2.53	6	2	52	25	1.32	0.30	0.20	4135	2	0.02	5	760	328	<5	1	<10	57	< 0.01	4	<10	5	2072	10	22
RR-98-17	<0.2	0.33	25	530	<0.5	5	0.13	<1	1	43	6	3.36	0.15	0.02	295	<2	0.02	2	950	18	<5	2	<10	36	<0.01	26	<10	1	43	2	33
RR-98-18	1.8	0.25	30	520	0.5	5	0.85	1	6	79	13	2.78	0.20	0.30	1520	2	0.02	16	500	124	5	1	<10	60	< 0.01	4	<10	4	290	9	14
RR-98-19	0.8	0.25	110	220	0.5	<\$	3.98	<1	12	65	56	3.32	0.24	1.31	2915	2	0.02	15	560	46	5	2	<10	115	<0.01	21	<10	8	73	5	46
RR-98-20	<0.2	1.09	<5	600	0.5	<5	1.49	<1	7	70	14	2.69	0.28	0.86	1320	4	0.04	6	1440	8	<5	3	<10	89	<0.01	39	<10	7	87	4	4
RR-98-21	<0.2	-	15	680	1.0	5	6.36	<1	35	42	94	13.25	0.01	3.85	9260	<2	0.02	144	850	38	5	25	<10	143	<0.01	99	<10	35	346	10	6
RR-98-22	<0.2	0.27	65	250	0.5	<5	9.76	<1	19	53	4	7.44	0.04	3.03	3390	<2	0.04	97	510	34	5	7	<10	213	<0.01	55	<10	14	86	6	13
RR-98-23	1.4	0.24	175	140	0.5	<5	1.92	<1	11	102	42	4.67	0.22	0.50	2655	<2	0.02	60	230	24	5	2	<10	62	<0.01	31	<10	8	48	4	13
RR-98-24	75.4	0.12	310	170	<0.5	5	2.05	>100	4	76	310	5.99	0.13	0.36	3480	2	0.02	5	350	>10000	35	1	<10	47	< 0.01	7	50	3	>10000	8	367
RR-98-25	21.8	0.28	235	90	0.5	20	0.59	>100	5	88	677	4.95	0.32	0.20	1970	<2	0.02	3	890	>10000	15	1	<10	19	< 0.01	9	170	3	>10000	15	305
RR-98-26	0.2		5		<0.5		1.07	2	9	54	8	2.08	0.08	0.04	805	<2	0.06	6	870	76	<5	9	<10	16	0.02	26	<10	7	509	3	4
RR-98-27	<0.2		<5		<0.5	-	0.01	<1	13	151	6	4.03	0.21	0.04	40	4	0.02	42	90	36	5	<1	<10	12	<0.01	7	<10	1	138	4	9
RR-98-28	<0.2		5	250	0.5		0.34	<1	6	120	5	1.69	0.12	0.13	825	8	0.02	16	90	12	<5	1	<10	16	<0.01	8	<10	3	115	2	5
RR-98-29	0.4		30	300	0.5		1.78	<1	33	110	363	9,19		-	3670	<2	0.02	102	330	32	10	9	<10	32	<0.01	81	<10	8	343	7	8
RR-98-30	1.0	0.11	50	500	<0.5	<5	0.45	<1	6	161	11	2.03	0.08	0.13	3990	2	0.02	25	170	44	5	1	<10	21	< 0.01	10	<10	3	216	Z	21

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed,

MR. ROBIN AV

Attention: Robin Day / Frank Nelson


Project: ZYMO

Sample: ROCK

Mineral Environn ats Laboratories

8282 Sherbrooke St., Vancouver, B.C., V5X 4E8

Tel (604) 327-3436 Fax (604) 327-3423

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P Ppm	Рь Ррт	Sb PPm	Sc ppm	Sn ppm	Sr ppm	Ti %	V Ppm	W ppm	Y ppm	Zn ppm		Au-fire ppb
RR-98-31	2.6	0.Z0	20	420	<0.5	<5	0.02	<1	1	181	29	2.58	0.24	0.01	210		0.02	8	70	154											
RB-98-1	1.8	0.35	60	120	0.5	<5	2.18	18	25	36					1175	-	0.02		-			<1			+-+-	6	<10	2	72	4	3
RB-98-2	1.0	0.26	55	220	< 0.5		0.20	<1		41					-	-			90	1554	-	5	<10	64	<0.01	23	10	5	4025	4	82
RB-98-3		0.40			0.5		5.91		ź				0.23		-	-	0.02	-	950	410	<\$	1	<10	9	<0.01	10	<10	2	140	8	37
RB-98-4		0.28						<1	8	90	157				2455		0.02	9	550	216	5	5	<10	88	<0.01	29	<10	8	333	5	Z 5
NG-30-4	0.2	0.20	10	120	0.5	< 5	2.18	<1	4	62	10	2.75	0.16	0.54	1475	2	0.02	5	660	18	<5	2	<10	57	<0.01	12	<10	5	76	13	5
RB-98-5	<0.2	0.30	5	360	0.5	<5	4.13	<1	3	50	8	2.02	0.21	0.35	990	2	0.03	4	740	22	<5	,	<10	253	<0.01	8	-10	-		-	_
RB-98-6	<0.2	0.44	135	70	1.0	10	5.26	<1	106	48	71	>15.00	0.02	2.87	6200	<2	0.02	233	850	70		34	<10			-	<10	5	77	9	5
RB-98-7	0.6	0.29	35	90	0.5	< 5	0.49	<1	36	103	87					-	0.03		430		-				< 0.01		<10	24	349	13	33
RB-98-8	0.4	0.31	35	50	0.5	10	3.82	<1	40	41	140		-			-	0.02			14		-	<10			46	<10	3	97	6	18
RB-98-9	0.6	0.36	100	240	0.5		3.40		12	83	210			-					940	32	-+	11	<10	111	<0.01	101	<10	16	303	11	15
				2.0	0.5		9.40	2	12	05	210	4.19	0.12	1.06	1950	12	0.02	18	550	128	10	5	<10	52	<0.01	26	<10	6	841	7	35
RB-98-10	<0.2			170	1.0		2.45	<1	5	49	8	2.20	0.24	0.67	1080	<2	0.03	5	860	10	<5	2	<10	198	<0.01	10	<10	6	117	9	1
RB-98-26A	<0.2	0.31	5	540	0.5	<5	1.73	<1	3	89	11	1.37	0. 29	0.41	640	<2	0.04	4	720	8	_	1	<10		<0.01	6	<10	6	39	9	1

Page 2 of 2

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

MR. ROBIN LAY

Attention: Robin Day / Frank Nelson

Project: ZYMO

Sample: SOIL

Mineral Environments Laboratories

8282 Sherbrooke St., Vancouver, B.C., V5X 4E8 Tel (604) 327-3436 Fax (604) 327-3423

	•	
Report No	:	8S0044
Date	:	Jul-27-98

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	РЬ ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Au-fire ppb
L4500N 4000W	<0.2	1.68	15	100	<0.5	<5	0.06	<1	7	16	24	5 17	0.06	0,32	615	•	0.02		740						• • •			_		_	·
L4500N 4100W	<0.2		20	150	0.5	<5		<1	12				_	0.45	1810		0.02		710 1160	26 24		1	<10	17	0.04	97	<10	5	113	3	4
L4500N 4200W		1.44	40	290	1.0	-	0.31	1	14	16			_	0.19	3340		0.02		1450	222		2	<10	24	0.04	64	<10	9	279	7	5
L4500N 4300W	<0.2		35	300	0.5	<5		<1	14	23				0.41	1540		0.02	-		66		3	<10	35	0.01	56	<10	17	499	5	20
L4500N 4400W		2.03	60	180	1.5	<5		<1	14	32		5.36			2825		0.02		1510		-	6	<10	74	0.04	111	<10	8	205	4	4
								-	-			3.50	0.12	0,47	2025	~	0.02	2 52	1010	5040		¢	<10	40	0.03	80	<10	30	1282	6	42
L4500N 4500W	<0.2	1.53	35	90	<0.5	<5	0.05	<1	7	24	43	4.70	0.10	0.22	645	2	0.02	2 15	670	228	5	1	<10	19	0.03	96	<10	3	259	2	6
L4500N 4600W	4.6	2.99	40	200	1.0	<5	0.22	<1	14	27	41	5.14	0.09	0,36	4815	<2	0.02	2 21	1490		-	4	<10	27	0.02	67	<10	18	822	9	32
L4500N 4700W	<0.2	2.00	80	80	<0.5	<5	0.05	<1	7	22	71	6.94	0.05	0.33	495	4	0.02		1480	44	5	2	<10	13	0.03	80	<10	2	124	5	13
L4500N 4800W	0.2	1.34	130	120	0.5	5	0.03	<1	6	10	165	5.29	0.08	0,05	320	4	0.02	2 6	1460	32	5	2	<10	11	0.01	77	<10	2	122	4	15
L4500N 4900W	<0.2	2.61	35	160	0.5	<5	0.09	<1	16	29	46	5.05	0.10	0,46	870	<2	0.02		570	32		4	<10	27	0.03	80	<10	A	256	4	14
																												-		•	• •
L4500N 5000W	<0.2	2.33	55	90	0.5	<5	0.02	<1	9	27	54	5.43	0.07	0.38	550	2	0.02	2 21	620	32	5	2	<10	13	0.02	77	<10	4	142	4	10
L4500N 5100W	<0.2	2.47	55	120	0.5	<5	0.07	<1	11	21	32	4.83	0.05	0.21	610	2	0.02	2 12	980	46	<5	1	<10	16	0.02	63	<10	9	125	3	8
L4500N 5200W	0.4	2.23	40	100	0.5	< 5	0.05	<1	9	25	41	5.66	0.08	0,20	1185	<2	0.02	13	1300	72	5	2	<10	14	0.02	72	<10	2	193	4	16
L4500N 5300W	<0.2	2.57	20	150	0.5	<5	0.13	<1	8	23	29	3.97	0.07	0.33	240	2	0.02	! 17	910	26	<5	3	<10	19	0.03	63	<10	8	120	4	10
L4500N 5400W	0.6	1.89	40	80	0.5	<5	0.04	<1	5	16	30	4.78	0.05	0,13	580	2	0.02	6	840	254	<5	1	<10	9	0.03	71	<10	5	219	3	12
L4500N 5500W		1.92	50	140	0.5	<5	0.13	<1	12	22	49	5.79	0.07	0,29	1965	2	0.02	: 14	1090	118	5	1	<10	22	0.03	71	<10	10	206	4	11
L4500N 5600W		2.01	65	310	0.5	5	0.13	<1	17	28	27	6.77	0.08	0.22	>10000	<2	0.02	13	2350	146	5	1	<10	24	0.02	83	<10	6	250	5	8
L4500N 5800W		3.13	40	90	<0.5	<5	0.03	<1	7	25	28	5.84	0.05	0,24	580	<2	0.02	12	980	74	<5	3	<10	12	0.05	92	<10	Z	232	4	1
L4500N 5900W	1.4	1.99	50	100	<0.5	5	0.04	<1	9	20	58	6.29	0.07	0,18	1855	2	0.02	11	1320	142	5	2	<10	13	0.02	69	<10	1	225	5	11
L4500N 6000W	0.4	1.67	60	90	<0.5	5	0.02	<1	9	19	52	5.69	0.06	0.15	1610	<2	0.02	14	1140	104	5	2	<10	14	0.02	62	<10	2	169	4	26
						_																									
L4500N 6100W		2.00	45	80	0.5	<5		<1	27	26		6.57		0.40	2310		0.02		690	118	5	2	<10	12	0.03	73	<10	11	222	4	30
L4500N 6200W	0.4		40	80	< 0.5	<5		<1	7	27		6.38	0.05		535		0.02		1000	46	<5	3	<10	12	0.04	85	<10	2	147	4	5
L4500N 6300W	0.8		35	160	< 0.5		0.07	<1	8	22		5.16			1095		0.02		1230	36	5	1	<10	19	0.03	80	<10	5	1 2 5	3	7
L4500N 6400W	<0.2		30	170	0.5		0.11	<1	8	23		5.48		-	6 05		0.02		1040	32	-	1	<10	19	0.02	74	<10	6	113	4	12
L4500N 6500W	0.4	1.98	80	110	0.5	5	0.03	<1	7	21	38	7.42	0.07	0,15	1205	<2	0.02	11	980	232	5	2	<10	11	0.02	80	<10	1	270	5	20
L4250N 4000W	0.6	1.21	30	230	<0.5	~5	0.23	<1	4	21	77	4.12	0.06	0.10	265	,	0.02	14	850	44	-5			20	0.02			-		-	-
L4250N 4100W	<0.2		45	100	< 0.5		0.03	<1	6	24					420		0.02		710	34	<5 5	2	<10	39	0.03	84	<10	3	164	2	5
L4250N 4200W	~0.2 0.4		45	110	0.5		0.06	<1	9	24		6.07	-		420 535		0.02	-	1400	32	د 2		<10	14	0.04	87	<10	1	111	5	7
L4250N 4400W	<0.2		40	170	0.5	<5	0.07	<1	13	22	-		-		2840		0.02		1630	32 44	د 5	3 A	<10	17	0.04	93 64	<10	3	138	6	12
L4250N 4500W	<0.2		30	450	1.0		0.11	<1	9	13		4.66			560		0.02		840	22	5	3	<10	20	0.02	-	<10	7	203	4	2
	10.2	2.20	50		1.0			~	9	.,	-0	4.00	5.09	0.10	100	4	0.02	13	040	24	3	¢	<10	25	0.02	67	<10	10	139	4	1

A .5 gm sample is digested with 10 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.1.H20.

Signod.

MR. ROBIN AY

Attention: Robin Day / Frank Nelson

Project: ZYMO

Sample: SOIL

Mineral Environments Laboratories

8282 Sherbrooke St., Vancouver, B.C., V5X 4E8 Tel (604) 327-3436 Fax (604) 327-3423

Report No 8\$0044 Jul-27-98 Date •

ITIN,

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	A! %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr Dom	Au-fire ppb
	22		P			1.6		r	F 6 · · ·	r r					FF	P.P		FF	F F			F C		FF					F F · · ·	F F	11
L4250N 4600W	0.4	3.30	30	300	0.5	< 5	0.06	<1	7	30	46	5.2 6	0.08	0.36	380	2	0.02	25	710	24	<5	4	<10	18	0.02	88	<10	3	156	4	8
L4250N 4700W	<0.2	2.08	30	210	0.5	<5	0.08	<1	8	23	28	4.79	0.07	0.38	425	2	0.02	17	740	22	< 5	2	<10	23	0.03	76	<10	3	125	3	7
L4250N 4800W	<0.2	2.33	35	100	<0.5	<5	0.03	<1	8	28	36	5.63	0.07	0.34	610	<2	0.02	17	930	32	5	3	<10	15	0.02	87	<10	2	112	4	4
L4250N 4900W	0.6	2.10	15	230	0.5	<5	0.13	<1	8	18	36	3.17	0.08	0.14	925	2	0.02	8	1090	14	<5	1	<10	22	0.02	59	<10	8	92	2	41
L4250N 5000W	0.4	1.99	25	140	<0.5	<5	0.04	<1	10	23	27	5.27	0.06	0.32	855	2	0.02	16	2260	30	5	2	<10	17	0.03	76	<10	1	101	4	11
L4250N 5100W	1.8	1.26	40	350	0.5	< 5	0.03	<1	7	17	72	4.96	0.08	0.13	1360	<2	0.02	9	1280			1	<10		0.02		<10	2		3	29
L4250N 5200W	0.2	1.89	30	260	0.5	<5	0.24	<1	14	24	38	4.51	0.09	0.36	1920	2	0.02	24	950	30	5	3	<10	38	0.03	71	<10	7	156	3	5
L4250N 5300W	<0.2	1.23	40	100	<0.5	<5	0.10	<1	10	27	37	5.85	0.11	0.29	1000	2	0.02	17	2770	42	5	2	<10	19	0.06	103	<10	3	135	3	17
L4250N 5400W	0.2	1.44	35	100	<0.5	<5	0.04	<1	9	24	63	5.73	0.08	0.26	950	2	0.02	15	800	58	5	2	<10	17	0.05	107	<10	5	178	3	93
L4250N 5500W	0.4	1.76	25	100	<0.5	<5	0.04	<1	9	33	40	5.29	0.10	0.49	640	<2	0.02	16	640	44	5	2	<10	18	0.06	123	<10	4	156	3	111
																															_
L4250N 5600W	0.4	1.69	35	80	<0.5	<5	0.04	<1	9	21				0.30	880		0.02					2			0.06	96	<10	5	107	4	15
L4250N 5700W	0.4	2.60	20	120	<0.5	<5	0.04	<1	6	23		4.77			265		0.02				-	2			0.05	91	<10	3	107	3	4
L4250N 5800W	0.2	2.09	35	120	0.5	<5	0.03	<1	7	21	47	5.50	0.05	0.21	680		0.02				-	2	<10		0.04	93	<10	3	175	4	9
L4250N 5900W	0.4	2.02	25	160	0.5	<5	0.06	<1	11	16		6.08			1610		0.02		2050			1	<10		0.02	82	<10	1	192	4	9
L4250N 6000W	0.2	1.59	45	160	0.5	<5	0.04	<1	7	20	31	4.92	0.10	0.22	1285	<2	0.02	13	1190	72	5	1	<10	13	0.02	73	<10	2	195	3	44
																_					_	_						-		-	
L4250N 6100W		1.03		160			0.04	<1	11	19				0.12	4060		0.02		2170			2			0.02	59	<10	2		3	22
L4250N 6200W	8.4	4.30		590				6	15	32		3.75			8995		0.02		3820		-	5	<10		0.01	41	<10	49	2059	6	9
L4250N 6300W		1.45		220			0.15		11					0.22	1090		0.02					2	<10		0.03	96	<10	5	173	3	6
L4250N 6400W		2.29				5			5	23		5.00			305		0.02		1240			2			0.03	76	<10	3	155	4	23
L4250N 6500W	0.2	1.83	5	200	1.0	<5	0.15	1	3	15	34	1.12	0.09	0.22	120	2	0.03	11	1410	78	<5	4	<10	25	0.02	33	<10	14	211	3	7
						-									1000	200	0.07	20	2000	58	<5		<10	33	0.03	111	<10	12	215	£	8
L4000N 4000W	•	1.86					0.16		17			8.25	-		1230		0.02		2080		-	3			0.03	99	<10	8	141	ه ا	9
L4000N 4100W		2.25		180			0.08		8	26		5.84			535		0.02		1360 390		-		<10 <10		0.01	47	<10	•	89	2	-
L4000N 4200W		0.62		80		<5		<1	3	8		2.62			205		0.02				-	د 3			0.01	77	<10	2	96	4	8
L4000N 4300W		2.39		90		<5			6	23		5.12			255		0.02						<10		0.03	82	<10	5	134	3	8
L4000N 4400W	<0.2	1.62	60	170	0.5	<5	0.13	<1	12	23	45	5.26	0.09	0.39	1100	2	0.02	18	950	40	5	1	<10	51	0.03	02	<10	2	134	3	0
			25	130	-0.5	-5	0.12	<1	6	21	37	4.54	0.07	0.24	565	2	0.02	13	850	24	<5	1	<10	22	0.03	72	<10	3	97	3	9
L4000N 4600W		2.19				<5			10			4.77			640		0.02					1			0.03	75	<10	4	124	3	6
L4000N 4700W	-	1.81	30	210 270		<5		<1	8			4.31			1985		0.02		1380		-	2			0.01	68	<10	4	174	3	8
L4000N 4800W		1.31				<5			10			3.62			485		0.02		1710			5	<10		0.03	56	<10	15	161	9	6
L4000N 4900W		5.07		160		10		<1	21	11		9.77	•		8375		0.02		3460			3	<10		0.01	89	<10	4	319	7	14
L4000N 5000W	<0.2	1.05	170	260	0.5	10	0.03	~1	~1	11	102	3.77	0.00	0.04	275	20	0.02	3	5400	550	10	5	~10	5	0.01	0.2		*		,	- ·

A .5 gm sample is digested with 10 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed.

Page 2 of 5

MR. ROBIN

Attention: Robin Day / Frank Nelson

Project: ZYMO

Sample: SOIL

Mineral Environg nts Laboratories 8282 Sherbrooke St., Vancouver, B.C., V5X 4E8

Tel (604) 327-3436 Fax (604) 327-3423

Report No 8S0044 Date Jul-27-98 ٠

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	Ai %	As ppm	Ba	Be ppm	Bi pom	Ca %	Cd pom	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Au-fire ppb	
Number	b bun		, pp.m	D P111	, p.p.m.	, p. p. n.									.,	• •			F F	••		••	••			••	•••	••	••	••		
L4000N 5100W	1.0	2.11	30	360	0.5	<5	0.30	<1	10	26	48	4.82	0.09	0.40	1105	<2	0.02	21	1130	40	<5	2	<10	48	0.02	72	<10	10	393	4	2	
L4000N 5200W	<0.2	1.54	65	530	1.0	5	0.10	<1	13	10	41	6.22	0.11	0.09	7210	2	0.02	. 8	4010	264	5	2	<10	16	0.01	S7	<10	5	326	7	13	
L4000N 5300W	0.4	1.54	105	520	1.0	5	0.16	<1	12	9	35	6.44	0.09	0.07	3610	4	0.02	8	3200	126	<5	3	<10	18	0.01	75	<10	5	546	5	10	
L4000N 5400W	0.6	1.13	110	170	0.5	S	0.05	<1	20	15	102	6.87	0.09	0.11	3120		0.02		2760	156	5	2	<10	12	0.01	46	<10	3	246	5	11	
L4000N 5500W	<0.2	0.98	45	260	<0.5	<5	0.44	<1	5	13	22	4.58	0.07	0.22	340	2	0.02	10	540	42	5	1	<10	33	0.03	81	<10	2	132	3	2	
																												_				
L4000N 5600W	<0.2	1.49	35	220	0.5	<5	0.14	<1	21	24		4.60			1755		0.02				5	-			0.03	77	-	5	118	3	1	
L4000N 5700W	<0.2	1.49	60	150	<0.5	5	0.02	<1	7	22		7.03			1180		0.02		1620		5		<10	12	0.03	107	<10	1	157	4	70	
L4000N 5800W	0.2	1.89	45	120	<0.5	5	0.07	<1	8	21		6.7 6			735		0.02		1200	68	5		<10	17	0.02	75	<10	1	152	4	7	
L4000N 5900W	0.6	1.70	65	190	1.0	5	0.12	<1	12	19		5.16			2435		0.02		1950		5		<10	23	0.03	64	<10	17	407	5	7	
L4000N 6100W	8.0	1.76	60	150	0.5	5	0.04	<1	11	23	49	5.57	80.0	0.23	2795	2	0.0Z	17	1070	150	5	2	<10	16	0.02	71	<10	3	274	4	31	
						_													700					12	0.02	76	<10	1	100	2	19	
L4000N 6200W		1.00	20				0.03		3	13		3.59			250		0.02			32 62			<10	12	0.02	70 54	<10	5	161	23	15	
L4000N 6300W		1.29	35				0.07	<1	6	12		4.24			1695		0.02				<5 5	2	<10 <10	13	0.01	76	<10	1	240	3	11	
L4000N 6400W		1.55	55				0.05		10	19		5.51			2580		0.02		1910 1150		<5		<10		<0.02	42		3	303	3	11	
L4000N 6500W		0.81	25				0.13	<1	6	2		5.02 5.09			710 430		0.02				<5		<10	14	0.04	79	<10	2	117	7	4	
L3750N 4000W	<0.2	2.73	20	150	0.5	<5	0.03	<1	8	24	30	5.09	0.07	0.55	430	2	0.02	13	440	24	~5	2	-10	14	0.04		120	•	••••			
	-0.2	1 05	40	90	<0.5	5	0.02	<1	8	23	30	6.33	0.06	0.25	735	<2	0.02	14	920	50	5	3	<10	12	0.03	81	<10	1	146	4	5	
L3750N 4100W		1.85	25			<5		<1	9	22		5.10		-	655		0.02			22	5	2	<10	20	0.03	79		5	132	3	4	
L3750N 4200W		2.17	30			<5			7	24		5.14			390		0.02			20	5	2	<10	21	0.03	79	<10	4	125	3	3	
L3750N 4300W L3750N 4400W	~	2.01	20			<5	0.07	<1	13	27		4.29			2660		0.02		740	18	<5	1	<10	20	0.03	70	<10	2	159	2	8	
L3750N 4500W		2.13	35				0.10		11	22		4.87			860		0.02			26	<5	1	<10	25	0.03	79	<10	6	129	3	7	
L3/3014 430044	-0.2	2			•.•	-																										
L3750N 4600W	<0.2	1.56	20	380	0.5	< 5	0.13	<1	5	18	31	3.89	0.05	0.21	370	2	0.02	11	510	18	<5	1	<10	31	0.03	75	<10	7	88	2	4	
L3750N 4700W		0.81	15				0.02	<1	3	9	17	3.13	0.05	0.06	170	2	0.02	5	580	14	<5	1	<10	10	0.02	80	<10	1	73	2	2	
L3750N 4800W		1.82	35	110	<0.5	5	0.03	<1	6	18	33	7.24	0.07	0.20	505	<2	0.02	10	1300	46	5	2	<10	14	0.04	106	<10	1	116	4	6	
L3750N 4900W		1.82		160	<0.5	<5	0.07	<1	8	23	32	4.66	0.08	0.37	505	2	0.02	16	630	24	5	2	<10	21	0.04	87	<10	3	108	3	1	
L3750N 5000W		2.73	20	110	<0.5	<5	0.04	<1	5	20	19	4.63	0.05	0.21	295	<2	0. 02	10	850	18	<5	2	<10	13	0.04	65	<10	1	138	5	6	
L3750N 5100W	<0.2	2.01	30	290	<0.5	<5	0.61	<1	7	20	21	4.37	0.06	0.37	370		0.02			20			<10		0.04	78		3	116	3	4	
L3750N 5200W	<0.2	2.44	45	130	<0.5	<5	0.03	<1	7	25	35	6.48	0.05	0.29	360		0.02			30	-		<10	15	0.04	89	<10	2	109	4	5	
L3750N 5300W	<0.2	1.49	30	Z40	0.5	<5	0.27	<1	10	20		4.70			800		0.02		-	26	5		<10	46	0.03	70		10	162	4	7	
L3750N 5400W	0.2	3.98	55	130	0.5	<5	0.09	<1	25			4.63			4215		0.02				-		<10		0.03	62	<10	19	276	13	21	
L3750N 5500W	1.6	1.79	60	110	0.5	<5	0.05	<1	9	21	41	6.12	0.05	0.28	980	2	0.02	12	970	60	5	2	<10	16	0.05	91	<10	10	188	4	9	

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:

MR. ROBIN AΥ

Attention: Robin Day / Frank Nelson

Project: ZYMO

Sample: SOIL

Mineral Environg nts Laboratories

8282 Sherbrooke St., Vancouver, B.C., V5X 4E8 Tel (604) 327-3436 Fax (604) 327-3423

Report No 8S0044 Date Jul-27-98 :

ÂU,

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y Mqq	Zn ppm	Zr ppm	Au-fire ppb
	111		P.F	r	rr	F F		FF		FF	FF				P P ···	• F · · ·				F.F		F (*)		<i></i>		FF					F1 -
L3750N 5600W	0.6	1.74	60	100	<0.5	<5	0.04	<1	6	17	37	5.43	0.04	0.22	475	<2	0.02	12	880	54	5	1	<10	17	0.03	84	<10	6	154	3	10
L3750N 5700W	<0.2	0.77	10	140	<0.5	<5	0.07	<1	5	10	31	4.41	0.06	0.11	555	2	0.02	6	490	30	<5	1	<10	17	0.06	115	<10	2	106	2	5
L3750N 5775W	0.8	3.04	145	180	1.0	<5	0.09	<1	21	28	39	5.63	0.08	0.34	5085	2	0.02	20	970	148	5	4	<10	24	0.04	72	<10	15	282	5	30
L3750N 5900W	<0.2	1.76	60	130	<0.5	<5	0.03	<1	8	20	34	5.09	0.06	0.17	715	<2	0.02	12	620	78	5	3	<10	17	0.03	99	<10	1	205	3	12
L3750N 6000W	2.2	2.83	130	110	0.5	<5	0.10	<1	5	21	39	6.10	0.05	0.19	480	2	0.02	11	1220	668	5	3	<10	17	0.02	66	<10	4	515	7	66
L3750N 6200W	0.2	2.90	45	650	1.5	<5	0.66			30		5.46			4070		0.03		1440			9		100	0.05			30		15	18
L3750N 6300W	0.2	1.61	30	110			0.21	<1	7	20		5.58			565		0.02					1	<10	34	0.03	64	<10	3	108	3	7
L3750N 6400W	<0.2	2.17	30	80	<0.5	<5	0.05	<1	15	24		4.26			1580		0.02					3	<10	16	0.03	66	<10	3	176	4	4
L3750N 6500W	<0.2	1.25	15	100	<0.5	<5	0.02	<1	3	13	17	3.31	0.03	0.08	205		0.02					2	<10	10	0.02		<10	1	64	2	1
L3500N 4000W	<0.2	1.55	25	290	0.5	<5	0.10	<1	10	19	40	4.43	0.07	0.22	550	<2	0.02	19	440	22	5	3	<10	27	0.02	80	<10	10	111	3	3
																					_					~ .					
L3500N 4100W	-	1.90	20	340			0.13		10	29		4.65			1110		0.02					1	<10	26	0.02		<10	12		3	1
L3500N 4200W		1.02	20	80			0.01	<1	4	17		4.78			300		0.02				-	1	<10	10	0.02		<10	1	68	3	2
L3500N 4300W	<0.2	1.92	25	150			0.05		13	26		5.65			1630	-	0.02		1630			2		15	0.02	69	<10	8	96	3	1
L3500N 4400W		2.00	20	100		<5		<1	7	23		4.82		0.23	755		0.02		1420		_	2	-	15	0.03		<10	15	112	3	4
L3500N 4500W	<0.2	1.34	35	80	<0.5	<5	0.03	<1	6	20	38	5.09	0.05	0.18	555	<2	0.02	. 14	820	30	5	1	<10	13	0.03	84	<10	3	125	3	7
	_					_				• •					4505	- 7			700		-	-		6 7	0.03	75	~10	••	177	3	5
L3500N 4600W		1.52	35	350		<5		<1	13	24		4.64			1595		0.02					2		82 24	0.03	75 75	<10 <10	10 5	127 132	3	6
L3500N 4700W	-	1.73	40	170		<5			10	27		5.05			765		0.02				-	2	<10		0.02			3	183	3	5
L3500N 4800W		1.52	60	140		<5		<1	12	21		5.95			1385		0.02				-	4	<10	15		91		4	105	3	38
L3500N 4900W		1.51	40	480		<5	-	<1	10	22		5.06			715		0.02				-	1	<10	41 13	0.02	84 78	<10 <10	4	148	3	30 8
L3500N 5000W	1.8	1.98	35	130	0.5	<5	0.03	<1	5	22	28	5.09	0.05	0.21	345	2	0.02	12	800	50	<5	1	<10	13	0.03	/0	<10	-	140	J	0
							0.04		7	10	20	5.63	0.06	0.10	885		0.02	11	650	34	<5	2	<10	46	0.03	64	<10	3	136	4	11
L3500N 5100W		1.45	30	230			0.21		6			5.03	-		220		0.02				-	3	-	31	0.02		<10	2	74	4	7
L3500N 5200W		1.32	35			-	0.16		-	17		3.89			300		0.02			-	-	2		27	0.02		<10	- 5	243	3	4
L3500N 5300W		2.08	30				0.12		10 5	22					325	_	0.02				-	1	<10	15	0.01	41	<10	2	66	2	11
L3500N 5400W		1.61	15	130		<5			6	15		1.97 2.77			140		0.02				-	3	<10	14	0.02		<10	5	67	2	1
L3500N 5600W	<0.2	1.54	30	140	0.5	<>	0.05	<1	0	18	22	2.//	0.05	0.19	140	2	0.02	. ,	470	20	~)	5	10	14	0.02	04	-10	5	0,	-	•
L3500N 5700W	0.4	1.54	30	140	0.5	<5	0.06	<1	17	24	31	4.66	0.06	0.23	3310	2	0.02	13	840	32	<5	1	<10	21	0.02	70	<10	4	100	3	4
L3500N 5800W		1.60	35	100		<5		<1	7	22		5.23			635		0.02		1200			2		15	0.03	95	<10	1	110	3	1
		2.72	35	250		<5			14	23		4.83			5905		0.02		1060			3	<10	20	0.02		<10	16	253	4	7
L3500N 5900W		2.80	40	190		<5		<1	14	37		6.23			1625		0.02		1060			1	<10	20	0.02		<10	7	287	4	7
L3500N 6000W	_		20	150			0.04		5	21		3.57			395		0.02		1230		-	1		17	0.02		<10	10	111	2	3
L3500N 6100W	1.4	2.97	20	100	0.5	~ >	U.V4	~1	5	*1	-0	3.37	0.07	0.07		•	0.04					-								-	-

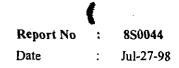
A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed.

Page 4 of 5

MR. ROBIN JAY

Attention: Robin Day / Frank Nelson

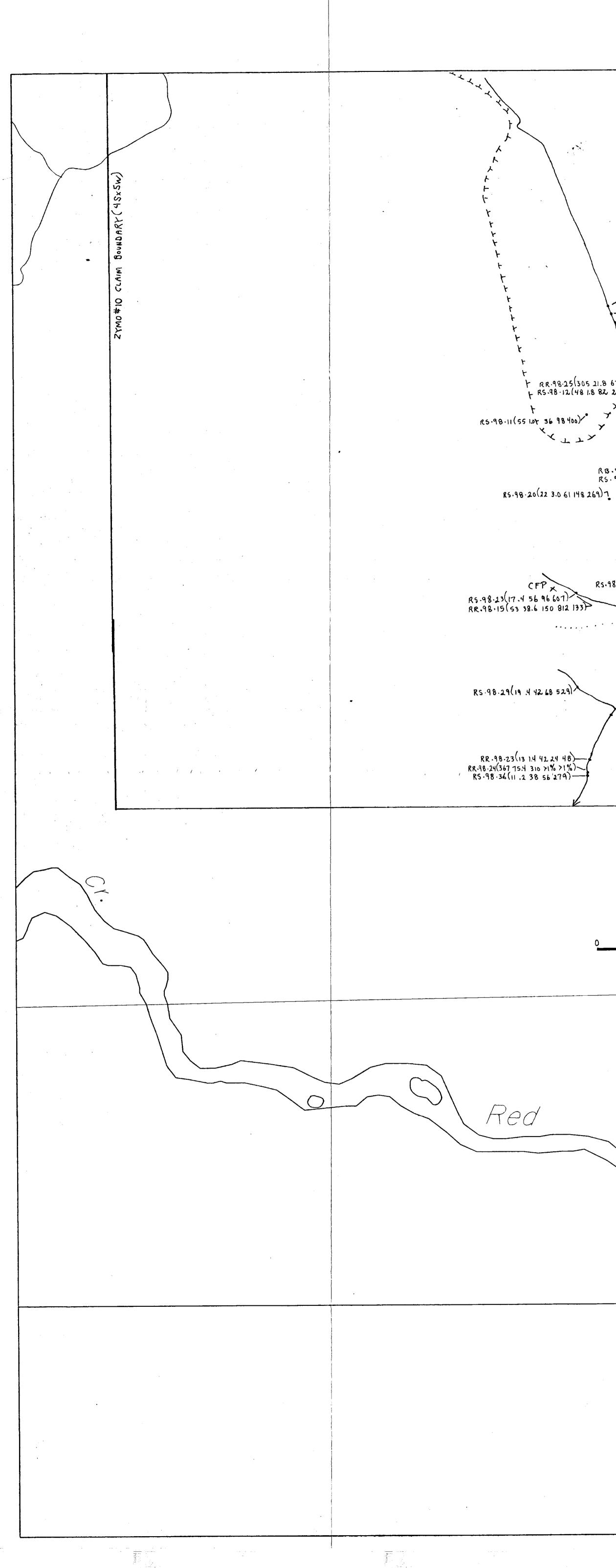

Project: ZYMO

Sample: SOIL

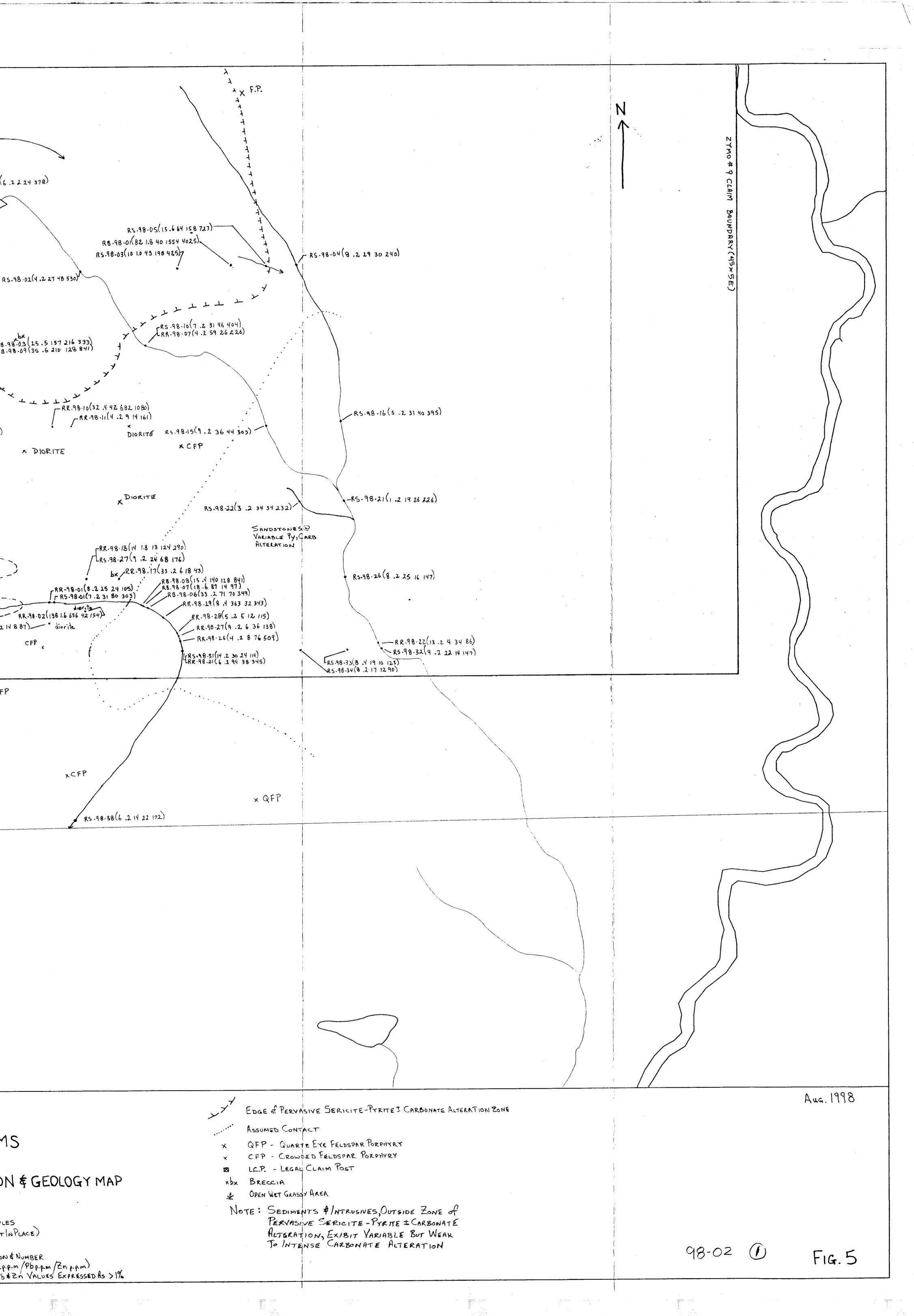
Mineral Environ nts Laboratories

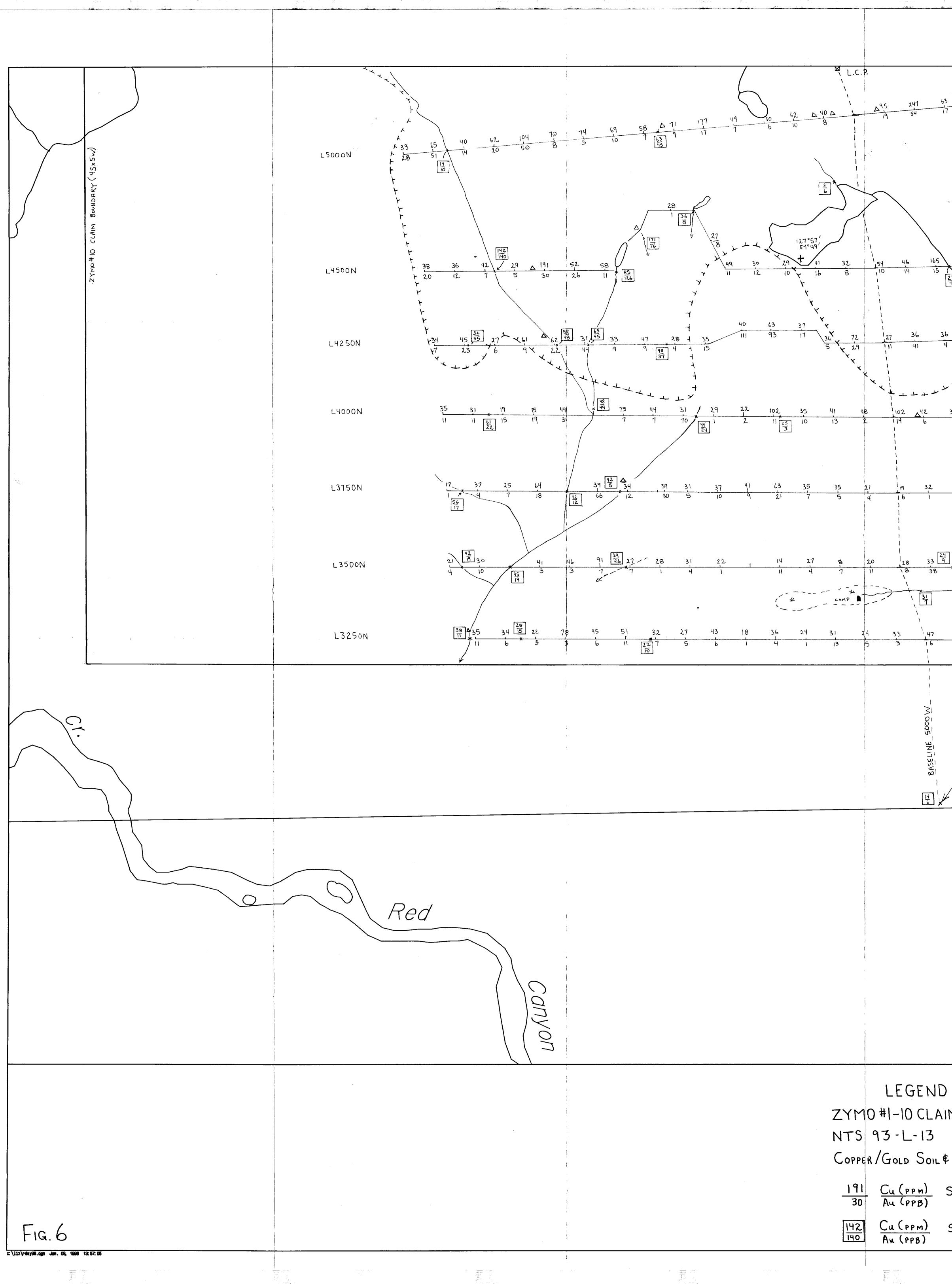
8282 Sherbrooke St., Vancouver, B.C., V5X 4E8

Tel (604) 327-3436 Fax (604) 327-3423

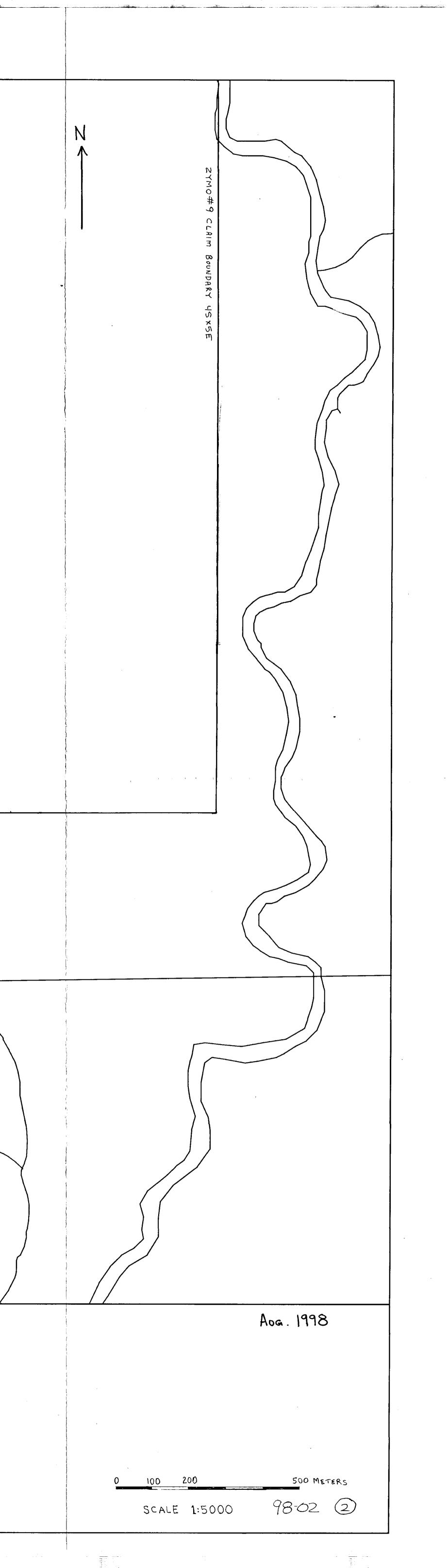

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion


Sample Number	Ag ppm	Aì %	As ppm	Ba ppm	Be ppm	Bì ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	Р ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W mqq	Y ppm	Zn ppm	Zr ppm	Au-fire ppb	
L3500N 6200W	0.4	2.25	25	150	0.5	<5	0.06	<1	10	25	41	4.68	0.08	0.44	605	<2	0.02	2 20	570	36	5	,	<10	20	0.04	73	<10	6	172	3	3	
L3500N 6400W	1.0	1.83	45	450	0.5	5	0.29	<1	12	23	30	5.93	0.07	0.29	910		0.02		1040			2	<10	50	0.03		<10	8	258	4	10	
L3500N 6500W	<0.2	2.24	120	150	0.5	5	0.05	<1	5	15	21	4.67	0.06	0.16	500		0.02		1590			2	<10	12	0.01	55	<10	2	168	4	4	
L3250N 4000W	<0.2	2.22	15	140	<0.5	<5	0.02	<1	6	28	25	5.94	0.04	0.19	365	<2	0.02				-	3	<10	10	0.02	75	<10	1	118	4	2	
L3250N 4100W	<0.2	1.63	35	90	0.5	<5	0.01	<1	3	14	14	4.57	0.05	0.08	345	<2	0.02					3	<10	7	0.01	70		1	84	4	3	
L3250N 4200W	0.2	1.86	15	120	0.5	5	0.02	<1	7	18	21	4.60	0.05	0.11	705	<2	0.02	2 11	1230	20	<5	2	<10	9	0.01	59	<10	1	93	4	2	
L3250N 4300W	<0.2	1.65	10	240	0.5	<5	0.05	<1	11	30	18	4.11	0.07	0.25	3445	<2	0.02	2 22	660	14	<5	2	<10	13	0.02	66	<10	7	108	3	1	
L3250N 4400W	0.2	1.05	20	130	<0.5	<5	0.04	<1	5	17	27	3.83	0.06	0.06	375	2	0.02	15	1030	16	<5	2	<10	10	0.01	44	<10	1	95	3	1	
L3250N 4500W	<0.2	1.75	10	120	<0.5	<5	0.04	<1	8	21	20	5.29	0.04	0.24	765	<2	0.02	16	880	12	<5	2	<10	13	0.02	60	<10	3	80	4	1	
L3250N 4700W	<0.2	0.65	40	60	<0.5	<\$	0.01	<1	5	10	32	3.33	0.06	0.04	150	Z	0.02	! 16	1420	16	<5	2	<10	4	0.01	37	<10	1	75	2	1	
L3250N 4800W	1.0	1.02	55	160		<5	0.02	<1	9	18				0.12	845	2	0.02	15	1510	46	5	1	<10	14	0.02	81	<10	1	105	3	1	
L3250N 4900W	0.6	1.98	25	210	0.S	<5	0.08	<1	7	18	33	4.31	0.06	0.30	400	2	0.02	16	740	44	<5	1	<10	26	0.02	71	<10	9	157	3	1	
L3250N \$000W		1.34	40	670	0.5	-	0.30	<1	6	16	47	4.75	0.07	0.21	485	2	0.02	12	940	60	5	<1	<10	76	0.01	73	<10	10	202	з	6	
L3250N \$100W		2.51	30	310	1.0	<5	0.14	<1	9	20	33	5.21	0.07	0.38	705	2	0.02	16	630	66	<5	2	<10	29	0.02	80	<10	5	262	4	3	
L3250N 5200W	0.4	2.92	35	80	0.5	<5	0.02	<1	5	21	24	5.49	0.05	0.19	320	2	0.02	9	740	112	<5	2	<10	9	0.02	70	<10	1	185	5	5	
		~			-0 -													_					_	_				_				
L3250N S300W		2.49	35	100		-	0.01	<1	6	22		6.13			495		0.02		850	128		3	<10	9	0.02	83	<10	2		5	13	
L3250N \$400W		2.91	30	90	<0.5	-	-	<1	5	20		5.43			380	-	0.02	-	500	72	-	3	<10	10	0.04	95	<10	2	134	5	1	
L3250N 5500W	<0.2		20	180	0.5			<1	4	18		4.18			305	-	0.02			46	-	<1	<10	22	0.01	70	<10	4	109	2	4	
L3250N \$600W	<0.2		20	100	0.5		0.02	<1	6 7	20		5.44			295	-	0.02		1010	70	-	3	<10	8	0.02	75	<10	1	144	7	1	
L3250N 5700W	Ų.4	1.53	50	130	0.5	2	0.03	<1		10	43	4.36	0.07	0.10	995	2	0.02	8	1360	112	5	1	<10	10	0.01	45	<10	1	285	4	6	
L3250N 5800W	1.0	2.72	20	120	0.5	<5	0.04	<1	11	17	27	4.61	0.05	0.17	1685	<2	0.02	10	2320	50	<5	2	<10	12	0.02	63	<10	1	171	4	5	
L3250N 5900W		1.87	30	150	0.5			1	11	19	32	4.55			1430		0.02	-	1940	60		1	<10	13	0.02	65	<10	3	205	3	7	
13250N 6000W	1.0	3.59	50	130	0.5	5	0.09	<1	12	23	51	5.21	0.04	0.20	1230	<2	0.02		1540	64	<5	2	<10	15	0.02	55	<10	5	149	6	11	
L3250N 6100W	<0.2	1.93	40	230	0.5	<5	0.12	t>	10	26	45	5.98	0.08	0.47	730		0.02		710	62	5	2	<10	28	0.03	105	<10	10	201	3		
L3250N 6200W		1.74	45	100	<0.5			<1	10	22		5.39			1515	-	0.02		1120	78	-	2	<10	12	0.05	73	<10	10	141	3	3	
-	_		-	-	•										_	-	-	_		-	-	_				-				5	-	
L3250N 6300W	0.6	2.07	30	150	<0.5	<5	0.04	1	7	19	22	6.38	0.05	0.14	535	<2	0.02	11	730	80	<5	2	<10	10	0.05	88	<10	1	200	5	3	
L3250N 6400W	<0.2	1.36	30	140	<0.5	<5	0.03	<1	6	17	34	4.63	0.04	0.18	495	2	0.02	12	1080	4Z	<5	3	<10	13	0.03	76	<10	4	142	3	6	
L3250N 6500W	<0.2	0.83	30	320	0.5	<5	0.51	<1	13	18	35	3.83	0.10	0.31	1380	<2	0.03	26	1010	S2	<5	6	<10	57	0.02	53	<10	8	184	3	11	


A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.I I20.

-ឯថ្ងៃកតជ.



L.C.P. - PERVASINE SERICITE - PYRITE & CARBONATE ALTERATION ORIGINALLY MIXED SEDIMENTS & INTRUSIVES -ROOF PENDANT SETTING? RS.98.39(6.2224 378) RS.98-06(8 1-0 36 48 165) AR.98.03 (161 10.8 742 4964 710000)7 R5.98.07(76 1.2 171 280 871) RR-98-04(112 3.2 36 48 65) RR-98-05(65 .2 557 60 197) -RB.98.02(37 1.0 86 410 140) IRR.98.06(7.4342561376) -RS.98.08(1401.685296627) --RS.98.09(1401.042170439) RS.98.02(4.2 27 48 530) DIORITELX RR.98.08(5.2 1678 161) RR.98.09(9.2 34 56 183)-H RR.98.25(305 21.8 677 71% >1%) H RS.98.12(48 1.8 82 266 490)bx RB.98.03 (15.5157216333) - RB.98.09 (35.6210128841) RS-98-13(45 1.6 65 226 434) DIORITE CFP RS.98.14 (37.848168556) RB.98.10(1.2.8 10 117)~ 0 18 76) 9 122 331) SHALE X RR.98.12(199.693027) RR.98.05(5.282277) RR-98-31 (3 2.6 29 154 72) RB.98.04(5.2101876) RS.98.19(44.549122331)-RS-98-18(3.4 44 132 445) RR-98-30(21 1.0 1144 216) RR-98-13(587 11.4 197 1574 681) (RR-98-14(16.2 39 54 146) SANDSTONES * DIORITE (VARIABLE RY, CARB ALTERATION) - CUT BY DYKES RR-98.16(22 2.0 25 328 2072) RS.98.24(12.442 65 224) RS.98.25(5 1.8 42 238 545) •••• (*) (* RS.98-28(19.2 45 54 256) RR.98-19(46 .8 56 46 73) s) - 2 RS.98.30(126.23958200) CFP RB-96-26A(1.2 11 8 39) RS.98-35(10.2 22 56 347) CFP RS-98-37 (15.2 2.8 64 276) ×QFP × QFP QFP × 500 METERS 100 200 SCALE 1:5000 00LEGEND ZYMO#1-10CLAIMS NTS 93-L-13 SAMPLE LOCATION & GEOLOGY MAP <u>1998</u> RB.98.(01-10,26A) BEDROCK SAMPLES RR.98.(01-31) ROCK SAMPLES (NOT IN PLACE) RS.98.(01-39) SILT SAMPLES • RR.98.24 1998 SAMPLE LOCATION & NUMBER (Aup.p.D/Agp.p.m./Cup.p.m/PDp.p.m/Znp.p.m) Note: Some LARGER P5#Zn VALUES EXPRESSED AS > 1%

n an	
× 1 × 32 47	35
33 22 46 61 32 47 17 15 9 11 73 50 14 6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{16}{20}$ $\frac{1}{10}$ $\frac{1}{10}$ $\frac{24}{10}$ $\frac{24}{10}$ $\frac{1}{10}$ $\frac{24}{10}$ $\frac{1}{10}$ $\frac{1}{$
21 21 4 21 4 21 4 21 4 21 4 21 4 2 10 42 4 2 42 4 2 42 42 42 42 42 42 42 42 4	
4 7 8 31 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
37 26 37 46	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
8 6 9 8	
33 17 31 34 27 6 2 4 7 8	$\frac{24}{3}$ $\frac{30}{4}$ $\frac{30}{5}$ $\frac{30}{4}$ $\frac{19}{1}$
	3 4 $\frac{34}{3}$ 5 4
41 37 39 38 33 5 6 5 1 4	34 25 34 40 25 8
	27 18 $\frac{17}{8}$ 21 14 $\frac{19}{8}$ 25 $\frac{22}{9}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	/
IMS	
SILT GEOCHEMISTRY	
	LCP - LEGAL CLAIM POST
Soil	L' EDGE OF SERICITE-PYRITE ALTERATION D SPHALERITE (>1000 PPM Zn) OUTCROP & SUBCROP
SILT	△ SPHALERITE (>1000 PPM Zn) OUTCROP\$ SUBCROP
· · ·	

