BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1998/99REPORT #:PAP 98-3NAME:BILL POOLE

PROSPECTORS' ASSISTANCE PROGRAM

1998 PROSPECTOR REPORT

REFERENCE NO. 98/99 P4

CARIBOO MINING DIVISION

NTS 93G/3W Latitude: 53° 15' N Longitude: 123° 26' W

W.E. (Bill) Poole Box 4651, Quesnel, B.C. V2J 3J8

December 1, 1998

MINISTRY OF ENERGY AND MOMES	RECEIVED
Rec'd Morrin 6 1958	NOV 2 4 1998
	PROSPECTORS PROGRAM

Table of Contents

Page No.

SUMMARY:	•			•	•	•	•		1
Introduction						•			1
Location and Access						•	•		2
Topography							•		2
Work Program			•				•		6&7
Significant Results									8
Exploration Potential		•	•	•	•	•	•	•	9

List of Figures:

Figure 1	Location Map			
Figure 2	Topographical Map	4		
Figure 3	Claim Map	5		
Figure 4	Regional Geology Map	10		
Figure 5	Sketch Geology Map	11		
Figure 6	Soil Geochemical Grid, Silt and			
	Rock Sample Location Map	12		
Figure 7	Soil Geochemical Dispersion			
-	Pattern for: - Gold (Zone 'B')	13		
Figure 8	" - Arsenic (Zone 'B')	14		
Figure 9	Zone 'B' Geochemical Survey	1 5 & 1 6		

Appendices: Appendix 'A'

Appendix 'A'	Statement of Geochemical and Assay Method of Analysis
Appendix 'B'	Analytical Report
Appendix 'C'	Prospecting Report Form
Pocket	Receipts

SUMMARY:

This report summarizes the 1998 work program done on the Murray Group of claims and the adjacent area. Eleven claims (30 units) are owned by myself, W.E. (Bill) Poole, and are situated 95 km northwest of Quesnel in the Cariboo Mining Division, NTS 93G/3W at 53° 15' N; 23° 26' W. Access is gained via the Blackwater and 1100 Roads.

A program of claim staking, geochemical sampling, extensive prospecting and limited geophysical surveying was performed on the Murray Group of claims and the adjacent area during the period May 31 to October 24, 1998. The program involved more than 50 field days to the end of the prospecting season.

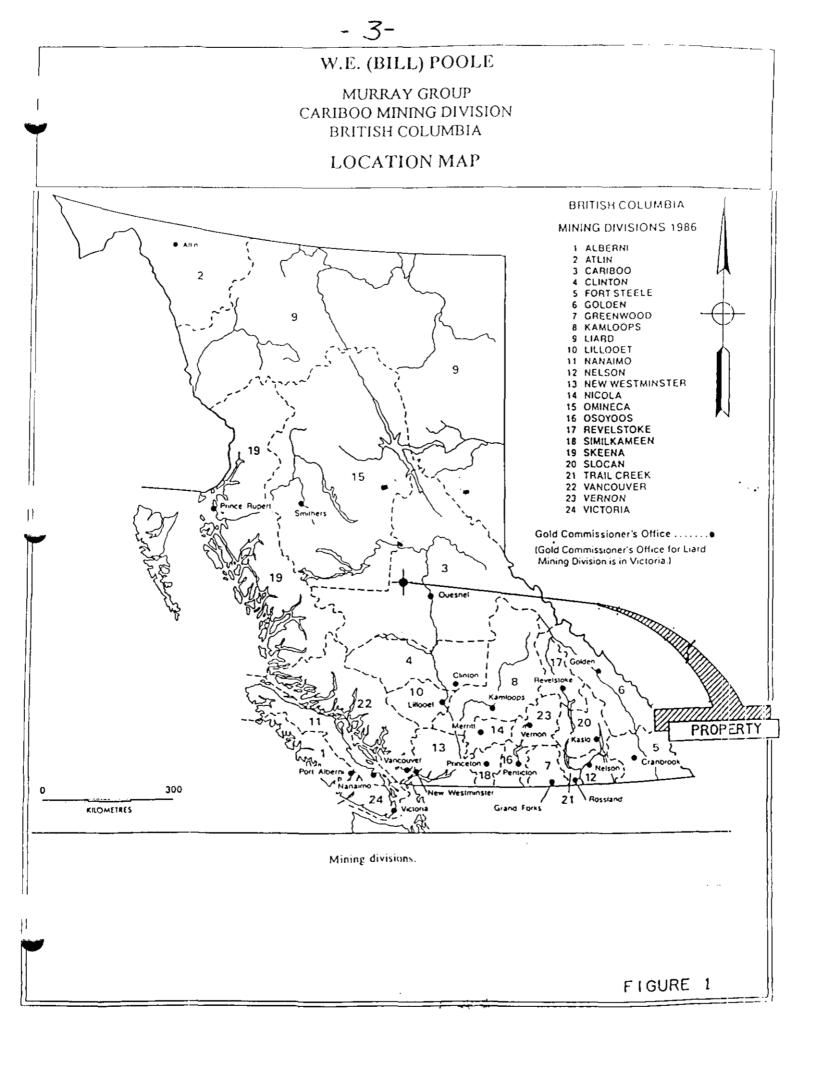
Close to 4 km of soil line was established on which 250 samples were collected. The analytical portion alone represents a cost of \$4,717.96 or 47% of the grant.

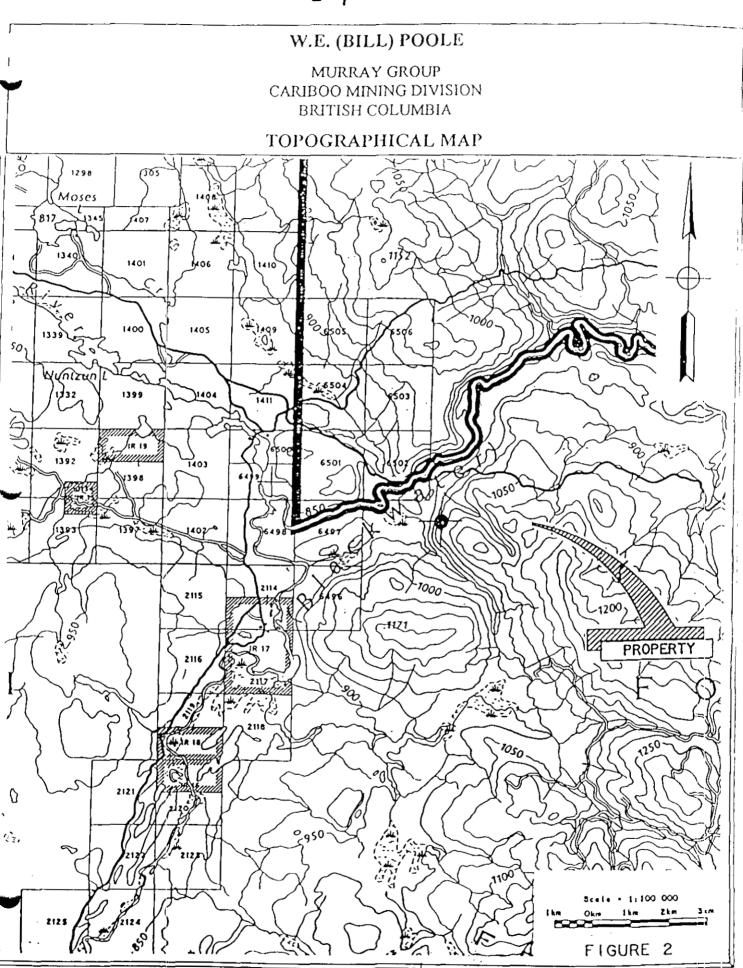
Introduction:

In 1996 road construction in this area exposed mineralization and hydrothermal alteration. During the period 1996-1997 I staked two-post claims, Mass and List 1-6, to cover these areas.

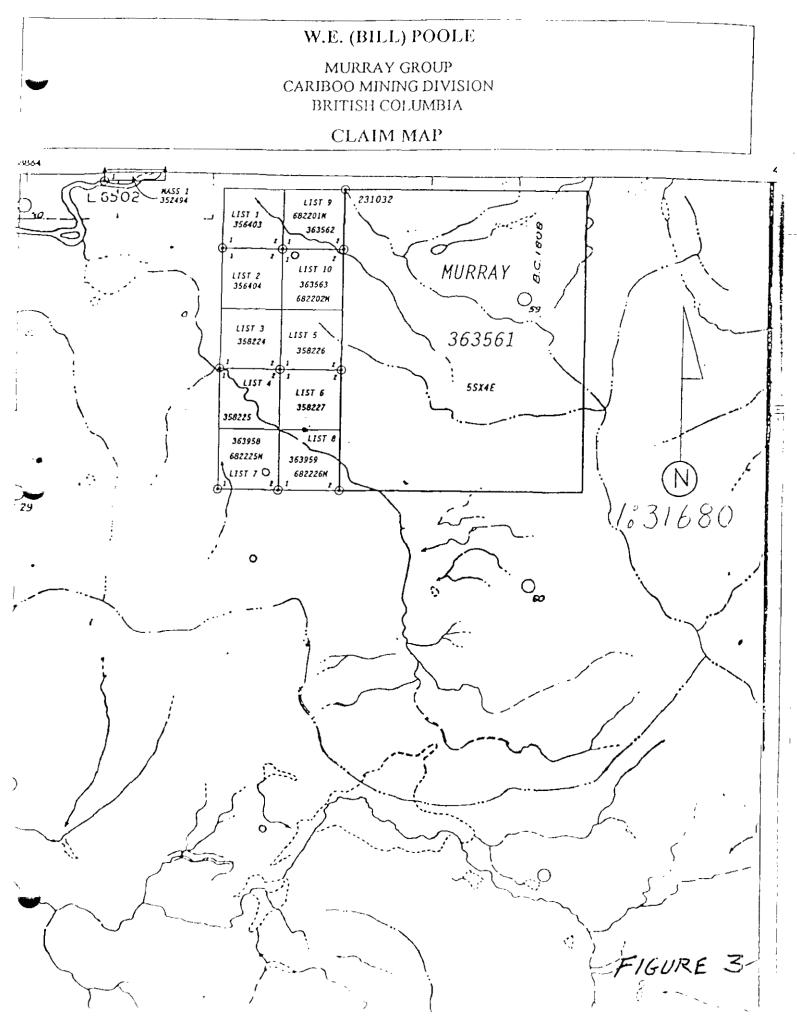
I later learned that in 1968 Rio Tinto Canadian Exploration Limited in search of porphyry mineralization conducted geological, geophysical and geochemical surveys and a drilling program approximately 8 km south of my interest area. This work has been documented in a very modest annual report by the B.C. Minister of Mines 1968.

Following acceptance of my Prospectors' Assistance Application I staked List 7-10, plus Murray, and grouped these with List 1-6.


Although prospecting covered all 30 units, soil geochemistry concentrated on a gold plus sulphide soil anomaly on the List claims. To date mineralization and hydrothermal alteration is found to be localized in faults, both within ultramafic rocks and along their faulted or sheared margins with intrusive rocks. Mineralization, associated with this faulted zone, has been identified in outcrop and soil geochemistry for a distance of more than 2 km. This fault extends in a south easterly direction from the Mass property throughout most of the List claims and possibly as far as the 'B' claims which are located ± 8 km to the south.


Location and Access:

The Murray Group is located 95 km northwest of Quesnel in the Cariboo Mining Division. The prospect is approximately 53° 15' N; 123° 26' W on NTS map 93G/3W. Logging roads access portions of the east and west side of the claim units. However, these roads have undergone varying deactivation. Consequently, even 4x4 or ATV access is limited. The return distance to my home from the claim area is approximately 260 km. A cabin located approximately 20 km from the claims was used periodically as a base throughout the field season.


Topography:

The prospecting area features two distinct linear ridges that are comprised mainly of vuggy quartz flooded ultramafic rocks that are divided by NNW trending gullies. The area has a north aspect with slopes ranging from 15% - 40% except in gullies where slopes range from 40% - 100%. The maximum relief is approximately 300 meters. Elevation range is between 850 meters and 1,150 meters. Rock outcrop ranges from poor to moderate on the top of slopes and is occasionally present in steep gullies.

1

Work Program:

(a) Claim Staking - 6 Days:

The Murray 4-post claim and 2-post claims, List 7-10, were staked over a period of 6 days and grouped with existing claims, List 1-6, to form the Murray Group totalling 30 units.

The claim records as noted in the recording office for the List claims is listed as follows:

Claims	Units	Record No.	Expiry Date	Title
List 1	1	356403	June 6, 2005	W.E. (Bill) Poole
List 2	1	356404	June 6, 2005	W.E. (Bill) Poole
List 3	1	358224	August 3, 2003	W.E. (Bill) Poole
List 4	1	358225	August 3, 2003	W.E. (Bill) Poole
List 5	1	358226	August 3, 2003	W.E. (Bill) Poole
List 6	1	358227	August 3, 2003	W.E. (Bill) Poole

On July 10, 1998 I grouped the following under the name Murray.

Claim Name	No. Units	Tenure No.
List 7	1	363958
List 8	1	363959
List 1	1	356403
List 2	1	356404
List 3	1	358224
List 4	1	358225
List 5	1	358226
List 6	1	358227
List 9	1	363562
List 10	1	363563
Murray	20	363561

(b) **Prospecting - 35 Days:**

A total of 35 prospecting days were spent during the course of this program. 29 days were spent on the Murray Group of claims, 1 day each was spent on the 'B' claims and Mass claims and 5 days were spent prospecting in areas to the immediate south and west of the Murray Group of claims. Prospecting consisted of mapping more precisely the major rock units followed by intense prospecting swaths both inside and outside the intrusive contact zone. During this time 14 silt samples were collected from three streams and sent away for analysis along with 9 rock samples. Measured pH values were recorded on all water courses, seepages, etc. found within or in the immediate area of the claims. All samples registered pH values between 6.7 and 7.8. Acidic waters may have been prevented by buffering carbonate alteration and/or low sulphide content in area of sulphide mineralization.

(c) Geochemistry - 13 Days:

A total of 13 days were spent conducting a combination of prospecting and soil geochemistry. Sampling involved the collection of 237 soil samples from 3.92 km of ribboned grid line. Grid lines are referenced to a G.P.S. located baseline that extends across the property west to east for a distance of 3 km. Grid lines are located in areas estimated to be favourable for mineralization. To date all geochemistry has been conducted on a portion of the List claims which are located on the west side of the Group. Figure 3.

All analyses were performed by Chemex Labs Ltd., 212 Brooksbank Avenue, North Vancouver, B.C. Analytical methods plus reports for soil, silt and rock are presented in Appendices 'A' and 'B'.

(d) Geophysical - N/A:

A magnetometer was used to document the magnetic susceptibility of known rock units then later applied as a prospecting tool as well as to map contacts having contrasting magnetic responses. Throughout the program this method of mapping had limited success due in part to the intercalation of contrasting units. However, the magnetometer was used successfully on 6 days in less complex areas and will be used again in the future. These days were attributed to prospecting.

Total Prospecting Activity Days: May 31st - October 24, 1998 - 54 Days

Note: In addition, related activities and expenses accumulated, other than those found in the prospecting definition, total more than 15 days and \$5,000.

Significant Results:

Rock Sample L1 0+080 - Altered Ultramafic:

Au 40 ppb, Ag 1.8 ppm, As 144 ppm, Ni 1120 ppm, Sb 572 ppm. This grab sample comes from an alteration zone comprised of dolomite veining, iron magnesite and chromium mica. Silicified rock and carbonate minerals are ubiquitous in this area. Soil geochemistry for at least 300 meters, starting from the commencement of Line 1, has identified anomalous Ni, Co, as well as enrichments in As.

Rock Sample L1 1+250C - Zone 'B':

Three small fragments of quartz taken from the 'C" horizon of soil pit L1 1+250C have analysed: Au 515 ppb, Ag 1.0 ppm, As 336 ppm, Bi 6 ppm, Cu 130 ppm, Hg 3 ppm, Mo 18 ppm, Sb 6 ppm.

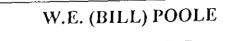
Gold, Arsenic - Soil Anomaly - Zone 'B':

A Au, As soil geochemical anomaly was found on Line 1 between 1+180 and 1+260. To track the dispersion a grid was established at 20 meter intervals, 90° to Line 1, where a total of 67 samples were collected at 10 meter centers. The survey has identified a significant Au, As plus sulphide anomaly. It is estimated that the source may be close to soil pit 1+250C where the grades increased dramatically with soil depth. Figures 7 and 8.

Assay results for soil sample L1 1+250C are: Au 130 ppb, Ag 1.8 ppm, As 552 ppm, Bi 6 ppm, Cu 144 ppm, Cd 2.0, Pb 62 ppm, Sb 2 ppm, Zn 186 ppm. Figure 9.

Silt Sample Str. (Stream) 4-1:

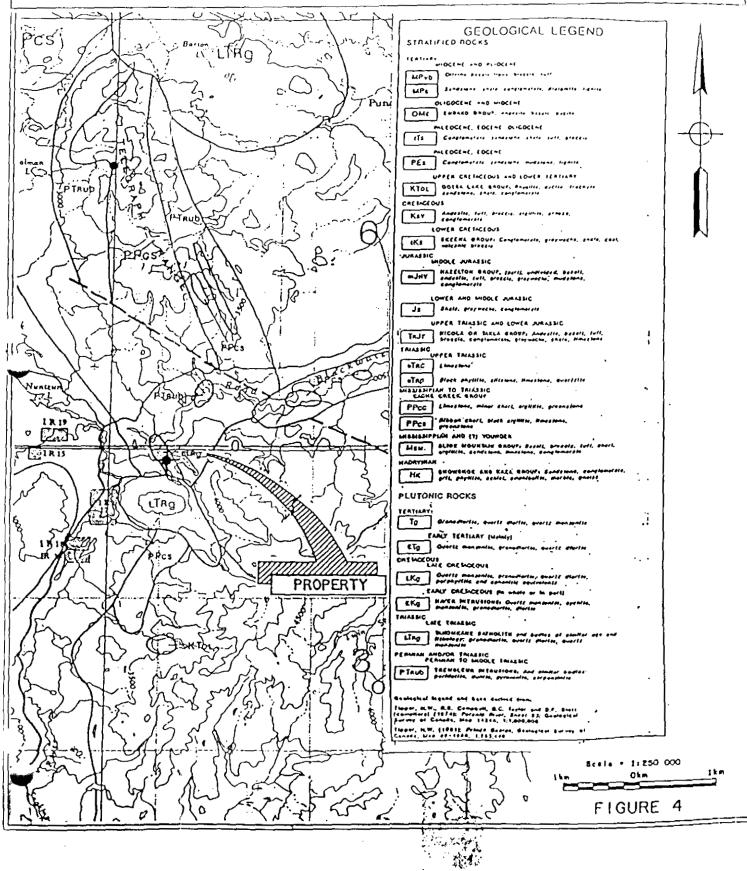
This sample contained 1135 ppb gold. The sample was taken from a major stream located approximately 200 meters down slope of the gold/arsenic soil geochemical anomaly.

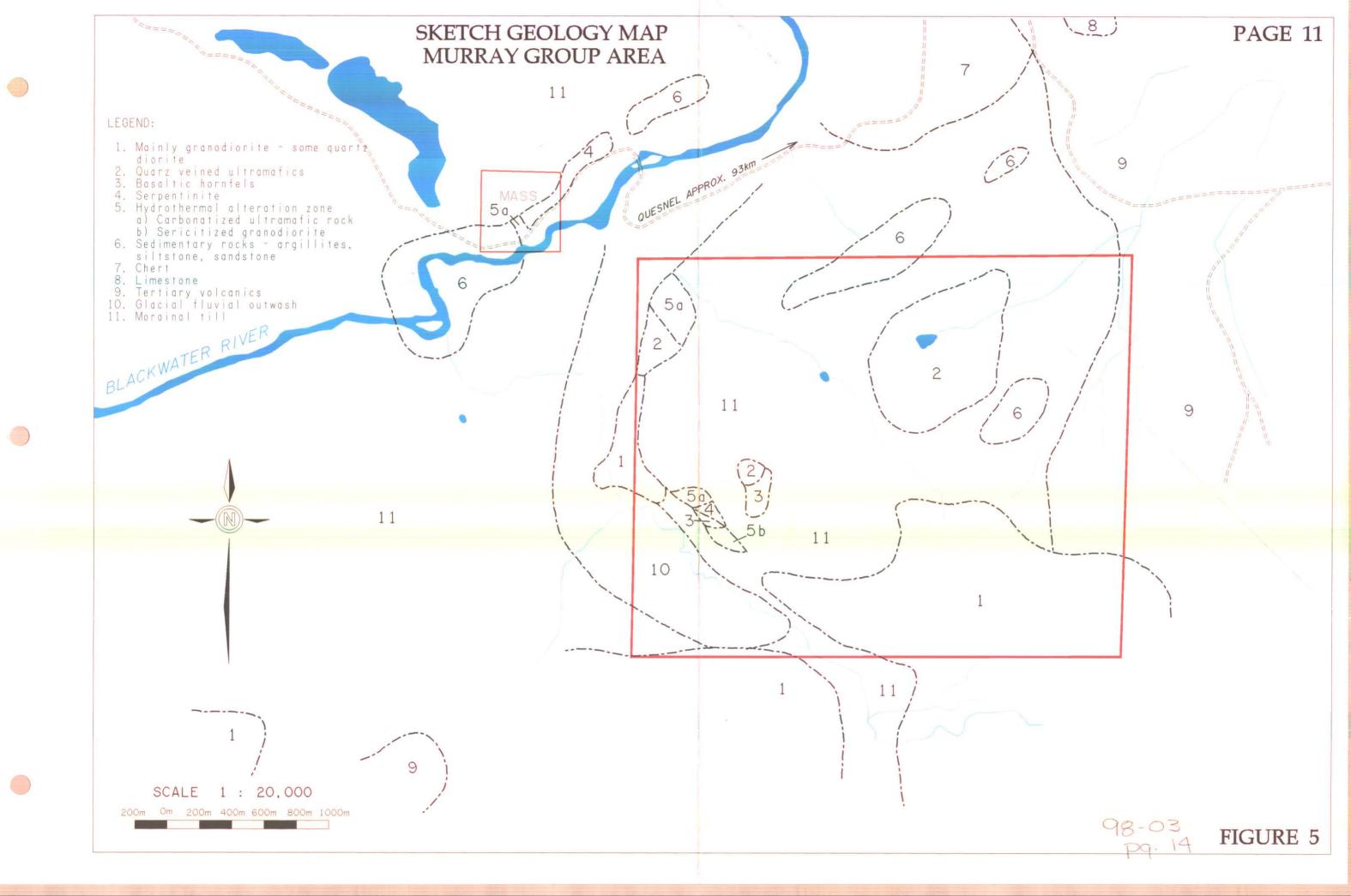

Hornfels Zone - Line 3:

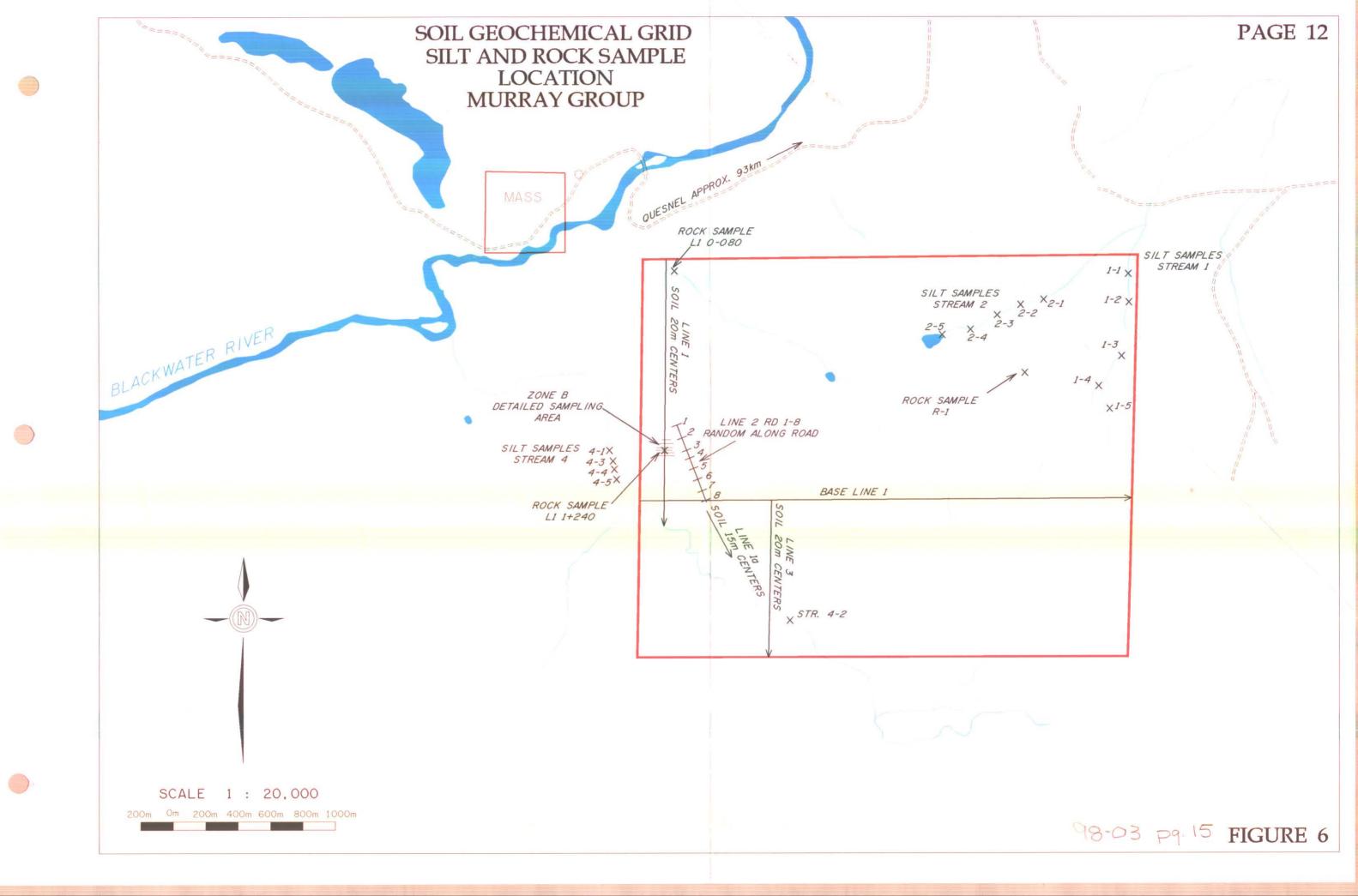
In the south west portion of the property serpentinized ultramafic rocks are in fault contact with adjacent rock units. This zone is complexly intercalated and comprises hornfels, sericite altered granodiorite and a clay altered listwanite zone, plus numerous basic dykes. Basaltic hornfels contain small "hairline" mineralized fractures and up to 5% disseminated pyrite with anomalous Ni, Co and Cu. Overlying this area in the till are fragments of gossan. A soil line that traverses a hornfels zone 300 meters up slope of this area has identified a weak soil geochemical anomaly of Au, As, Sb.

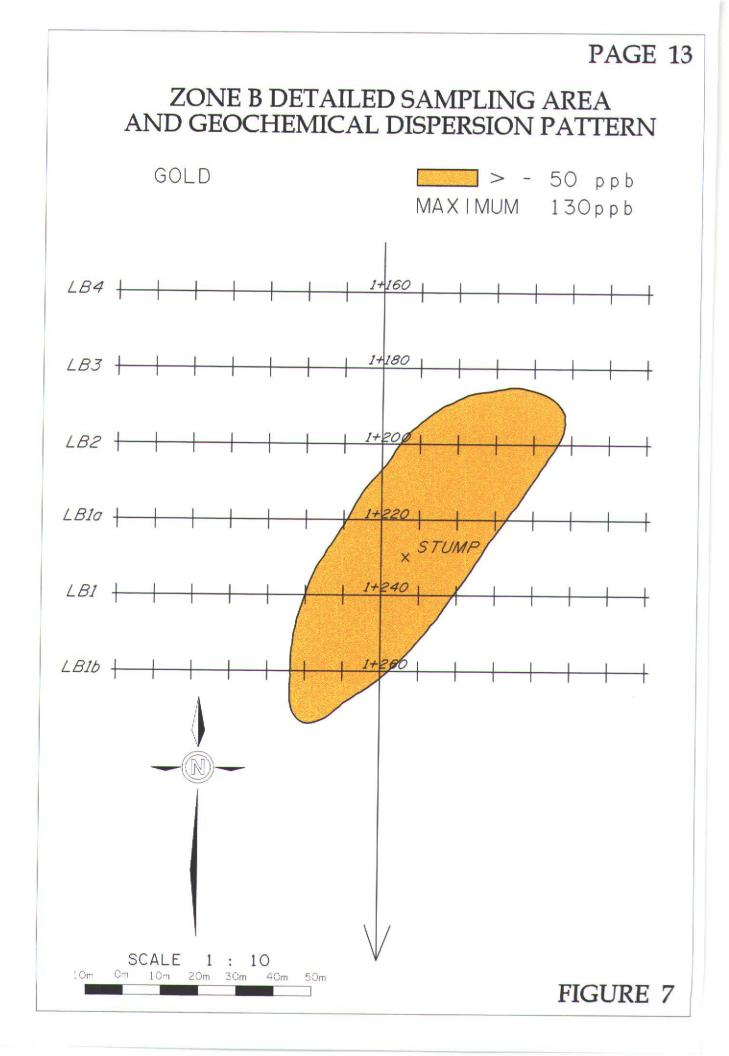
Exploration Potential:

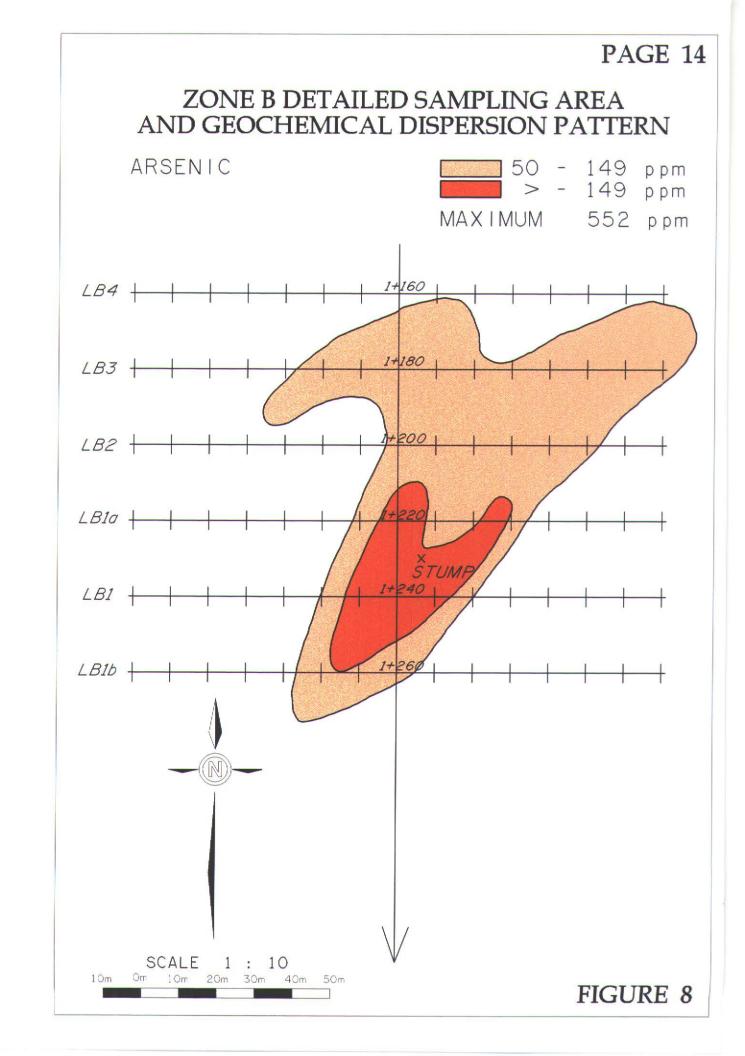
The first soil line to be established identified a significant Au plus sulphide anomaly and an extensive hydrothermal alteration zone. Additional sampling was concentrated in Zone 'B'. Extensive prospecting over the remaining 30 claims confirms that structures and basic geology does not change and the potential to find other areas of mineralization is good. This geological environment contains elements of intrusive related fault/shear controlled gold bearing veins and gold associated with listwanite mineralogical assemblages.


Further work should include detailed geochemistry and detailed ground geophysics in areas underlain by the potentially favourable contact zone. Gold in soil anomalies, such as the one found in Zone 'B', should be trenched into bedrock so that mineralization and geological structure can be observed.




- 10-


MURRAY GROUP CARIBOO MINING DIVISION BRITISH COLUMBIA


REGIONAL GEOLOGY MAP

ZONE 'B' GEOCHEMICAL SURVEY 1998

All values in ppm unless otherwise stated

Sample	Au ppb	Ag	As	Bí	Cu	Ní	Pb	Sb	Zn	Sample Mat'l	Sample Horizon	Soil Color	Slape %
LB1 0+000	*	< 0.2	14	< 2	19	35	2	< 2	68	Till	Bm	Grey	50
LB1 0+010	*	< 0.2	38	< 2	25	36	2	< 2	80	Till	Bm	Grey	50
LB1 0+020	*	0.2	26	< 2	18	48	2	< 2	84	Till	Bm	Grey	50
LB1 0+030	80	0.2	168	2	54	93	6	< 2	112	Till	Bm	Grey	50 50
L1 1+240	130	1.8	552	6	144	829	38	2	186	Colluv?	C	Red	50
Stump	80	< 0.2	246	2	99	156	6	2	100	Colluv?	Bf	Red	50 50
LB1 0+050	85	0.2	182	< 2	110	781	6	< 2	172	Till	Bm	Grey	15
LB1 0+060	*	< 0.2	132	$< \frac{2}{2}$	13	62	6	< 2	84	Till	Bm	Grey	15
LB1 0+000	*	< 0.2	6	< 2	12	44	2	< 2	58	Till	Bm	Grey	15
LB1 0+080	*	0.6	2	< 2	12	30	2	< 2	46	Till	Bm	Grey	15
LB1 0+090	*	0.2	2	< 2	16	35	2	< 2	50	Till	Bm	Grey	15
LB1 0+100	*	< 0.2	2	< 2	14	31	< 2	< 2	56	Till	Bm	Grey	15
LB1 0+110	*	< 0.2	< 2	< 2	8	22	2	< 2	52	Till	Bm	Grey	15
		- 0, <u>2</u>	- 1	- <u>1</u>	Ŭ		2	. 2		1 111	0	Grey	1.2
LB2 0+000	*	< 0.2	26	< 2	22	52	< 2	< 2	54	Till	Bm	Grey	40
LB2 0+010	*	< 0.2	10	< 2	15	65	2	< 2	70	Till	Bm	Grey	40
LB2 0+020	*	< 0.2	12	< 2	15	50	2	< 2	66	Till	Bm	Grey	40
LB2 0+030	*	< 0.2	26	< 2	23	163	2	< 2	66	Till	Bm	Grey	40
L1 1+200	*	< 0.2	42	< 2	36	271	< 2	< 2	70	Till	Bm	Grey	40
LB2 0+050	65	< 0.2	62	2	54	157	2	< 2	94	Till	Bm	Grey	20
LB2 0+060	*	< 0.2	28	< 2	28	140	4	< 2	80	Till	Bm	Grey	20
LB2 0+070	*	< 0.2	48	2	28	92	2	< 2	100	Till	Bm	Grey	20
LB2 0+080	90	< 0.2	78	2	56	141	4	< 2	100	Till	Bm	Grey	20
LB2 0+090	*	< 0.2	34	2	29	67	4	< 2	86	Till	Bm	Grey	20
LB2 0+100	*	< 0.2	16	2	17	44	2	< 2	58	Till	Bm	Grey	20
LB3 0+000	*	< 0.2	46	2	31	50	2	< 2	62	Till	Bm	Grey	30
LB3 0+010	25	< 0.2	70	< 2	59	62	6	< 2	82	Till	Bm	Grey	30
LB3 0+020	25	< 0.2	62	< 2	41	104	4	< 2	70	Till	Bm	Grey	30
L1 1+180	25	< 0.2	54	< 2	41	118	< 2	< 2	68	Till	Bm	Grey	30
LB3 0+040	*	< 0.2	26	< 2	32	86	< 2	< 2	58	Till	Bm	Grey	20
LB3 0+050	*	< 0.2	48	< 2	39	102	< 2	< 2	70	Till	Bm	Grey	20
LB3 0+060	25	< 0.2	50	2	45	163	4	< 2	72	Till	Bm	Grey	20
LB3 0+070	20	< 0.2	50	< 2	39	132	2	< 2	72	Till	Bm	Grey	20
LB3 0+080	*	< 0.2	46	< 2	42	164	2	< 2	66	Till	Bm	Grey	20
LB3 0+090	40	< 0.2	56	2	43	119	2	< 2	76	Till	Bm	Grey	20
LB3 0+100	30	< 0.2	68	< 2	45	162	< 2	< 2	72	Till	Bm	Grey	20

*Sample not analyzed for gold.

Only samples having greater than 49 ppm Arsenic were analyzed for gold using Fire Assay method.

ZONE 'B' GEOCHEMICAL SURVEY 1998

All values in ppm unless otherwise stated

Sample	Au ppb	Ag	As	Bi	Cu	Ni	Pb	Sb	Zn	Sample Mat'l	Sample Horizon	Soil Color	Slope %
	իիս												
L1 1+160	*	< 0.2	24	< 2	23	95	2	< 2	54	Till	Bm	Grey	1.5
LB4 0+010	*	< 0.2	36	< 2	34	178	2	< 2	58	Till	Bm	Grey	1.5
LB4 0+020	*	< 0.2	34	< 2	31	100	2	< 2	58	Till	Bm	Grey	1.5
LB4 0+030	*	< 0.2	26	< 2	31	114	< 2	< 2	56	Till	Bm	Grey	15
LB4 0+040	*	< 0.2	10	< 2	20	46	< 2	< 2	46	Till	Bm	Grey	15
LB4 0+050	*	< 0.2	10	< 2	13	60	2	< 2	66	Till	Bm	Grey	15
LB4 0+060	*	< 0.2	28	2	23	69	2	< 2	58	Till	Bm	Grey	15
LB4 0+070	*	< 0.2	38	2	35	108	4	< 2	62	Till	Bm	Grey	15
LB1a 0+000	*	< 0.2	12	2	12	34	2	< 2	74	Till	Bm	Grey	50
LB1a 0+010	*	< 0.2	16	< 2	13	36	< 2	< 2	68	Till	Bm	Grey	50
LB1a 0+020	*	< 0.2	30	2	32	51	< 2	< 2	58	Till	Bm	Grey	50
LB1a 0+030	30	< 0.2	54	2	32	50	2	< 2	70	Till	Bm	Grey	50
L1 1+220	115	0.2	240	2	111	114	10	< 2	114	Till	Bm	Grey	20
LB1a 0+050	30	< 0.2	66	2	48	75	2	2	86	Till	Bm	Grey	15
LB1a 0+060	80	< 0.2	56	2	39	82	8	< 2	98	Till	Bm	Grey	15
LB1a 0+070	85	< 0.2	146	2	77	144	6	< 2	128	Till	Bm	Grey	15
LB1a 0+080	*	< 0.2	6	< 2	9	47	4	< 2	90	Till	Bm	Grey	15
LB1a 0+090	*	< 0.2	2	< 2	8	39	< 2	< 2	50	Till	Bm	Grey	15
LB1a 0+100	*	< 0.2	2	< 2	9	28	< 2	< 2	48	Till	Bm	Grey	15
LB1a 0+110	*	< 0.2	6	< 2	13	32	2	< 2	50	Till	Bm	Grey	15
					~ .	20	< 2	< 2	54	Till	Bm	Grey	50
LB1b0+000	*	< 0.2	8	< 2	24	38 39	< 2 2	< 2	- 54 76	Till	Bm	Grey	50
LB1b0+010	*	< 0.2	16	< 2	27	39 45	28	< 2	92	Till	Bm	Grey	50
LB1b0+020	*	< 0.2	42	2	17 50	43 59	0 4	< 2	156	Till	Bm	Grey	50
LB1b 0+030	85 *	< 0.2 < 0.2	112 34	2 < 2	50 31	59 118	< 2	< 2	74	Till	Bm	Grey	50
LB1b 0+040	85	< 0.2	54 68	2	92	562	< 2	2	106	Till	Bm	Grey	20
L1 1+260 LB1b 0+060	*	< 0.2	30	< 2	48	92	< 2	< 2	104	Till	Bm	Grey	15
LB1b 0+070	*	< 0.2	6	< 2	18	66	< 2	< 2	56	Till	Bm	Grey	15
LB1b 0+070	*	< 0.2	< 2	< 2	11	25	< 2	< 2	50	Till	Bm	Grey	15
LB10 0+080	*	< 0.2	2	< 2	10	26	2	< 2	54	Till	Bm	Grey	15
LB100+090	*	< 0.2	< 2	< 2	10	16	2	< 2	46	Till	Bm	Grey	15
LB100+100	*	< 0.2	2	< 2	14	23	2	< 2	48	Till	Bm	Grey	15
LB10 0+110	*	< 0.2	< 2	< 2	9	21	2	< 2	58	Till	Bm	Grey	15
LB10 0+120	*	< 0.2	2	< 2	9	26	2	< 2	70	Till	Bm	Grey	15
LD10 0+130		- U.4	-	· L			_	_				•	

* Sample not analyzed for gold.

Only samples having greater than 49 ppm Arsenic were analyzed for gold using Fire Assay method.

Appendix A

Sample Preparation Procedure - Sieve Screening

Method: Sieving

Geochemical samples (soils, stream sediments, silts) are dried and then hammered to disaggregate any clumps. The samples are then placed in a stainless steel sieve and shaken from side-to-side until as much minus fraction as possible has been extracted.

The sieve size opening determines which code will be applied.

Chemex	Rush		Opening Size	Tyler
Code	<u>Cođe</u>	Parameter	(Microns)	<u>Mesh Size</u>
*24 0		Sieve to -10 Mesh	1700	10
3291	•	Sieve to -20 Mesh	850	20
*203	*243	Sieve to -35 Mesh	425	35
204		Sieve to -60 Mesh	25 0	60
201	241	Sieve to -80 Mesh	180	80
1338		Sieve to -100 Mesh	150	100
216		Sieve to -150 Mesh	106	150
2 30		Sieve to -200 Mesh	75	200
254		Sieve to -250 Mesh	63	250

*Note: Samples typically undergo further particle size reduction prior to laboratory analysis.

- Č

Appendix A

Sample Preparation Procedure - Ring Grinding

Method: Grinding

A crushed sample split (200 - 300 grams) is ground using a ring mill pulverizer with a chrome steel ring set. The Chemex specification for this procedure is that greater than 90% of the ground material passes through a 106 micron (Tyler 150 mesh) screen. Grinding with chrome steel may impart trace amounts of iron and chromium into a sample.

Chemex <u>Code</u>	Rush <u>Code</u>	Parameter
208	258	Assay Grade Ring Grind
205	255	Geochemical Ring Grind

Chemex Labs

Appendix H

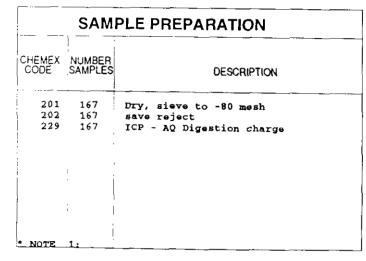
Sample Preparation Procedure - Crushing

Method: Crushing

The entire sample is passed through a primary crusher to yield a crushed product of which greater than 60% is less than approximately 2mm. A split (split size is determined by the final preparation method and analysis requested) is then taken using a stainless steel riffle splitter.

The crushing code indicates the weight of the original sample.

Chemex	Rush	—	Sample	Sample
<u>Code</u>	<u>Code</u>	<u>Parameter</u>	<u>Weight (lb)</u>	<u>Weight (kg)</u>
226	295	0-3 kg Crush and Split	0 - 6	0-3 **
294	272	4-7 kg Crush and Split	7 - 15	4 - 7
276	2 93	8-12 kg Crush and Split	16 - 25	8 - 12
273	271	13-18 kg Crush and Split	26 - 40	13 -18
27 0		19-26 kg Crush and Split	41 - 60	19 - 26
278		27-36 kg Crush and Split	61 -7 9	27 - 36


Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

A9827480

(LEA) - CARIBOO FOREST CONSULTANTS LTD.

Project: P.O. #

Samples submitted to our lab in Vancouver, BC. This report was printed on 18-AUG-98.

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

- To: CARIBOO FOREST CONSULTANTS LTD.
 - BOX 4629 QUESNEL, BC V2J 3J8

Comments: ATTN: BILL POOLE

	NUMBER	DESCRIPTION	METHOD		UPPEF LIMIT
983	166	Au ppb: Fuse 30 g sample	γλ-λλ5	5	10000
100	0	Au ppb: Fuse 10 g sample	FA-AAS	5	10000
866	166	Fusion weight in grams	BALANCE	0.01	40.00
2118	167	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
2119	167	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	167	As ppm: 32 element, soil & rock	ICP-AES	2	10000
2121	167	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	167	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	167	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124	167	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	167	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
2126	167	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2127	167	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
2128	167	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
2150	167	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
2130	167	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
2131	167	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
2132	167	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
2151	167	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	167	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
2135	167	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	167	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
2137	167	Na %: 32 element, soil & rock	ICP-AES	0.01	10.00
2138	167	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
2139	167	P ppm: 32 element, soil & rock	ICP-AES	10	10000
2140	167	Pb ppm: 32 element, soil & rock	ICP-ARS	2	10000
2141	167	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	167	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
2143	167	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
2144	167	Ti %: 32 element, soil & rock	ICP-AES	0.01	10.00
2145	167	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	167	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	167	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	167	W ppm: 32 element, soil & rock	ICP-AES	10	10000
2149	167	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

ANALYTICAL PROCEDURES

A982748

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8 Page Number 1-B Total Pages 5 Certificate Date 18-AUG-99 Invoice No. 19827480 P O Number Account LEA

...

Project : Commonts: ATTN: F

Comments: ATTN: BILL POOLE

·······										CE	RTIFI	CATE	OF A	NALY	'SIS	P	9827480	<u>.</u>
SAMPLE	PREP CODE	Mg %	Мл ррш	Mo ppm	Na %	Ni ppm	р т	Ph ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U Dom	V mgq	W ppm	Zn ppm	
1 0+080	201 202	3.01	545	< 1 <	0.01	1150	590	2	< 2	8	18	0.10	< 10	< 10	58	< 10	54	
1 0+100	201 202	4.20	695		0.01	1955	350	< 2	< 2	13	23	0.08	< 10	< 10	61	< 10	48	
1 0+120 1 0+140	201 202	5.75	1670		0.01	1920	1940	< 2	2	8	79	0.03	< 10	< 10	32	< 10	116	
1 0+160	201 202 201 202	6.72 4.20	1485 1240		0.01 0.01	1885 2000	940 290	< 2 < 2	2 < 2	8 13	117 48	0.02	< 10 < 10	< 10 < 10	30 39	< 10 < 10	50 52	
1 0+180	201 202	6.21	975	< 1	0.03	1105	830	< 2	< 2		91	0.06	< 10	< 10	36	< 10	86	
1 0+200	201 202	6.16	500		0.01	951	590	< 2	< 2	6	41	0.05	< 10	< 10	37	< 10	94	
1 0+220 1 0+240	201 202	3.75	530	< 1 <		1475	530	< 2	< 2	12	34	0.09	< 10	< 10	67	< 10	76	
1 0+260	201 202 201 202	3.99 3.99	600 610	< 1 < 1	_	2180	570 390	< 2	< 2	14	30	0.07	< 10	< 10	70	< 10	60	
				1	0.03	1580	190	< 2	< 2	13	30	0.10	< 10	< 10	71	< 10	58	
1 0+280 1 0+300	201 202 201 202	6.50	1285	< 1 <		1735	1330	< 2	< 2	7	79	0.01	< 10	< 10	33	< 10	128	
1 0+320	201 202 201 202	6.55 3.41	830 500		0.01	2010	390	< 2	< 2	11	34	0.05	< 10	< 10	52	< 10	54	
1 0+340	201 202	2.94	530	_	0.01 0.01	1185 934	700 550	< 2 < 2	< 2 < 2	8 7	29	0.09	< 10	< 10	57	< 10	74	
1 0+360	201 202	3.08	545		0.01	860	860	< 2	< 2	6	27 39	0.11 0.07	< 10 < 10	< 10 < 10	57 49	< 10 < 10	66 72	
1 0+380	201 202	3.58	290	< 1	0.01	779	460	< 2	< 2	9	30	0.08	< 10	< 10	61	< 10	54	
1 0+400	201 202	3.82	390	< 1	0.03	512	260	< 2	< 2	6	21	0.10	< 10	< 10	49	< 10	42	
1 0+420	201 202	4.20	330		0.05	593	310	< 2	< 2	8	35	0.10	< 10	< 10	50	< 10	66	
1 0+440 1 0+460	201 202	4.67	545		0.01	79B	360	< 2	< 2	9	28	0.09	< 10	< 10	49	< 10	52	
	201 202	4.34	425	< 1	0.03	900	210	< 2	< 2	10	27	0.11	< 10	< 10	58	< 10	44	
1 0+480	201 202	3.87	705	< 1 <		1390	480	2	< 2	9	26	0.08	< 10	< 10	54	< 10	66	_
1 0+500 1 0+520	201 202	3.57	785	< 1 <		840	540	< 2	< 2	6	37	0.08	< 10	< 10	40	< 10	64	
1 0+540	201 202 201 202	3.60 3.45	895		0.01	622	300	< 2	< 2	7	37	0.07	< 10	< 10	38	< 10	48	
1 0+560	201 202	2.82	645 775		0.01 0.01	917 889	170 260	< 2 < 2	< 2 < 2	10	30	0.08	< 10	< 10	51	< 10	52	
······	_}						260	< 4	< x	9	28	0.10	< 10	< 10	63	< 10	48	
1 0+580	201 202	4.99	665	< 1 <		1475	160	< 2	< 2	11	49	0.06	< 10	< 10	50	< 10	44	
1 0+600 1 0+620	201 202 201 202	2.34	550		0.01	1095	280	< 2	< 2	9	29	0.09	< 10	< 10	58	< 10	60	
1 0+640	201 202	3.73	585 450	< 1 < < 1 <	_	970 1025	160 170	< 2	< 2	10	26	0.07	< 10	< 10	50	< 10	56	
1 0+660	201 202	2.32	340		0.01	611	190	< 2 < 2	< 2 < 2	10 9	21 23	0.03 0.12	< 10 < 10	< 10 < 10	42 64	< 10 < 10	46 42	
1 0+680	201 202	2.60	355	1	0.03	753	120	< 2	< 2	13	32	0.14	< 10	< 10	78	< 10	46	
1 0+700	201 202	2.53	645		0.02	729	240	< 2	< 2	11	60	0.14	< 10	< 10	84	< 10	50	
1 0+720	201 202	2.70	640		0.01	677	180	< 2	< 2	13	28	0.15	< 10	< 10	97	< 10	54	
1 0+740 1 0+760a	201 202	2.53	680		0.01	766	170	< 2	< 2	8	27	0,12	< 10	< 10	69	< 10	40	
	201 202	1.92	470	1	0.01	763	140	< 2	< 2	8	27	0.12	< 10	< 10	68	< 10	36	
1 0+760B	201 202	2.42	610	1	0.01	649	190	< 2	< 2	6	37	0.11	< 10	< 10	53	< 10	34	
1 0+780	201 202	2.47	750		0.01	1740	220	< 2	< 2	11	37	0.08	< 10	< 10	56	< 10	38	
1 0+800	201 202	1.87	655	< 1 <		969	190	< 2	< 2	8	34	0.10	< 10	< 10	57	< 10	38	
1 0+820 1 0+8 4 0	201 202 201 202	1.99	350		0.01	782	230	< 2	< 2	7	33	0.13	< 10	< 10	62	< 10	34	
1 04080		2.61	690	1 <	0.01	1685	210	< 2	< 2	11	33	0,12	< 10	< 10	58	< 10	38	

CERTIFICATION

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8

Page Number 1-A Total Pages 5 Certificate Date 18-AUG-98 Invoice No. 19827480 P.O. Number LEA Account

...

Project :		
Comments	ATTN	BI

mments: ATTN: BILL POOLE

									CE	RTIF	ICATE	OF A	NALY	SIS	4	\9827	480		
SAMPLE	PREP CODE	Ац ррв Ац ррв ГА+АА ГА+АА	fusion wt.gm	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррш	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm
L1 0+080	201 202		15.00		1.65	12	70	< 0.5	< 2	0.23	< 0.5	65	677	19	5.91	< 10	< 1	0.06	< 10
L1 0+100 L1 0+120	201 202 201 202	-		< 0.2	1.77	24	70	< 0.5	< 2	0.25	< 0.5	81	782	26	7.60	< 10	< 1	0.05	< 10
L1 0+140	201 202			< 0.2 < 0.2	0.94 0.91	22 22	200 150	< 0.5 < 0.5	< 2 < 2	0.72	< 0.5 < 0.5	117 108	871 695	18 25	7.32	< 10 < 10	< 1 < 1	0.04	< 10 < 10
L1 0+160	201 202		15.00		1.29	4	130	< 0.5	< 2	0.57	< 0.5	104	734	39	7,39	< 10	< 1	0.09	< 10
L1 0+180 L1 0+200	201 202 201 202	10		< 0.2	1.07	8	240	< 0.5	< 2	0.90	< 0.5	64	470	25	5.03	< 10	< 1	0.13	< 10
L1 0+220	201 202	-	-	< 0.2 < 0.2	1.30 2.30	< 2 14	100 110	< 0.5 < 0.5	< 2	0.32	< 0.5 < 0.5	55	779	16	5.57	< 10	< 1	0.10 0.10	< 10 < 10
L1 0+240	201 202			< 0.2	2.31	34	80	< 0.5	< 2	0.36		70 96	935 1300	21 21	7.24 8.50	< 10 < 10	< 1 < 1	0.10	< 10
L1 0+260	201 202			< 0.2	2.33	26	70	< 0.5	< 2	0.40	< 0.5	80	768	30	6.37	< 10	< 1	0.07	< 10
L1 0+280 L1 0+300	201 202 201 202			< 0.2	1.02	10	180	< 0.5	< 2	0.64		116	915	14	6.25	< 10	< 1	0.04	< 10
L1 0+320	201 202			< 0.2 < 0.2	1.57 2.05	10 10	80 100	< 0.5 < 0.5	< 2 < 2	0.32	< 0.5 < 0.5	102 65	1135 871	19 18	7.70 6.54	< 10 < 10	< 1 < 1	0.04	< 10 < 10
L1 0+340	201 202			< 0.2	1.84	< 2	140	< 0.5	< 2	0.36		57	856	14	5.71	< 10	< 1	0.08	< 10
L1 0+360	201 202	< 5	15.00	< 0.2	1.76	10	160	< 0.5	< 2	0.42		53	774	14	5.50	< 10	< 1	0.13	< 10
L1 0+380 L1 0+400	201 202 201 202	< 5 < 5		< 0.2	2.14	10	130	< 0.5	< 2	0.35	< 0.5	42	600	17	5.72	< 10	< 1	0.16	< 10
L1 0+420	201 202			< 0.2	1.58	< 2 < 2	90 110	< 0.5 < 0.5	< 2 < 2	0.29		43 45	544 472	11 13	4.93 5.35	< 10 < 10	< 1 < 1	0.05	< 10 < 10
L1 0+ 44 0	201 202	< 5		< 0.2	1.73	< 2	90	< 0.5	< 2	0.38		14.5 56	575	13	5.60	< 10	< 1	0.10	< 10
L1 0+460	201 202	10	15.00	< 0.2	1.93	4	BO	< 0.5	< 2	0.44		51	481	22	5.44	< 10	< 1	0.08	< 10
L1 0+480 L1 0+500	201 202 201 202	< 5		< 0.2	1.83	24	100	< 0.5	< 2	0.25	< 0.5	87	905	11	7.30	< 10	< 1	0.10	< 10
L1 0+520	201 202			< 0.2 < 0.2	1.51 1.65	< 2	130 120	< 0.5 < 0.5	< 2 < 2	0.33 0.32	< 0.5 < 0.5	63 61	622 401	8 13	5.19 4.91	< 10 < 10	< 1 < 1	0.09 0.07	< 10 < 10
L1 0+540	201 202	< 5	_	< 0.2	2.31	10	120	< 0.5	< 2	0.29	< 0.5	65	552	13	5.79	< 10	< 1	0.07	< 10
L1 0+560	201 202	< 5 	15.00	< 0.2	2.41	10	130	< 0.5	< 2	0.29	< 0.5	68	507	13	6.30	< 10	< 1	0.07	< 10
L1 0+580	201 202	< 5		< 0.2	1.89	34	100	< 0.5	< 2	0.65	< 0.5	77	439	25	5.29	< 10	< 1	0.05	< 10
L1 0+600 L1 0+620	201 202	< 5		< 0.2	1,90	22	140	< 0.5	< 2	0.36		61	639	16	6.22	< 10	< 1	0.09	< 10
L1 0+640	201 202 201 202	< 5		< 0.2 < 0.2	1.70 1.89	10 6	110 740	< 0.5	< 2	0.29	< 0.5	69	413	23	5.63	< 10	< 1	0.15	< 10
L1 0+660	201 202			< 0.2	2.13	10	70	< 0.5	< 2 < 2	0.20	< 0.5 < 0.5	51 35	284 277	30 23	5.18 4.49	< 10 < 10	< 1 < 1	0.12 0.14	< 10 < 10
L1 0+680 L1 0+700	201 202	< 5		< 0.2	2.47	< 2	80	< 0.5	< 2	0.40	< 0.5	39	270	41	5.09	< 10	< 1	0.12	< 10
L1 0+720	201 202 201 202	10		< 0.2 < 0.2	2.98	6	100	< 0.5	< 2	0.81	< 0.5	45	412	38	5.65	< 10	< 1	0.10	< 10
L1 0+740	201 202	< 5		< 0.2	3,09 2,33	6 8	100 110	< 0.5 < 0.5	< 2 < 2	0.46	< 0.5 < 0.5	48 54	439 463	42 14	5.84 5.71	< 10	< 1 < 1	0.16 0.11	< 10 < 10
L1 0+760A	201 202	< 5		< 0.2	2,34	ő	90	< 0.5	< 2	0.27	< 0.5	49	429	10	5.35	< 10 < 10	< 1	0.09	< 10
L1 0+760B L1 0+780	201 202	10		< 0.2	1.50	8	100	< 0.5	< 2	0.36		44	297	11	4.06	< 10	< 1	0.11	< 10
L1 0+800	201 202 201 202	< 5		< 0.2 < 0.2	1.95 1.82	22 10	100 110	< 0.5	< 2	0.47	< 0.5	79	589	15	6.62	< 10	< 1	0.09	< 10
L1 0+820	201 202	< 5		< 0.2	1.82	10		< 0.5 < 0.5	< 2 < 2	0.30	< 0.5 < 0.5	52 44	412 344	13 11	5.39 5.15	< 10 < 10	< 1 < 1	0.08 0.09	< 10 < 10
L1 0+84 0	201 202	10		< 0.2	1.84	24		< 0.5	< 2		< 0.5	88	469	20	7.04	< 10	< 1	0.10	< 10
				. <u> </u>				·			····	-					<u> </u>	<u></u>	
							~					(CERTIFIC		ן ז	Withow WE			177
<i>•</i>																			

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8 Page Number 2-A Total Pages 5 Certificate Date: 18-AUG-98 Invoice No. 19827480 P.O. Number Account LEA

••

Project : Comments: ATTN: BILL POOLE

	- <u>p</u>								CE	RTIF		OF A	NALY	SIS		49827	480		i
SAMPLE	PREP CODE	Ац ррb Ац ррb FA+AA FA+AA		Ag ppm	Al %	As ppm	Pa ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррш	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm
L1 0+860 L1 0+880 L1 0+900 L1 0+920 L1 0+940	201 202 201 202 201 202 201 202 201 202 201 202		30.00 30.00 30.00 30.00 30.00	< 0.2 < 0.2 < 0.2	1.70 1.44 1.32 1.11 1.47	10 6 8 < 2 10	90 80 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2		< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	40 30 27 16 25	259 231 185 153 177	16 9 11 8 12	4.69 3.57 3.44 2.65 3.41	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.06 0.09 0.09 0.07	< 10 < 10 < 10 < 10 < 10 < 10
L1 0+960 L1 0+980 L1 0+1000 L1 1+020 L1 1+040A	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5	30.00 30.00 30.00 30.00 30.00	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.27 1.29 1.57 1.34 1.35	< 2 6 24 < 2 6	90 120 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.25	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 14 31 17 13	118 98 209 115 94	6 11 13 10 10	2.16 2.83 3.66 2.92 2.76	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.10 0.10 0.11 0.10	< 10 < 10 < 10 < 10 < 10 < 10
L1 1+040B L1 1+080 L1 1+100 L1 1+120 L1 1+140	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 < 5	30.00 30.00	< 0.2 < 0.2	1.32 1.18 1.47 1.10 1.11	< 2 < 2 16 10 4	100 110 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.27	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 12 22 12 12	76 83 148 85 72	8 6 16 7 8	2.41 2.07 3.45 2.40 2.31	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.11 0.11 0.09 0.10	< 10 < 10 < 10 < 10 < 10 < 10
L1 1+160 L1 1+180 L1 1+200 L1 1+220 L1 1+240	201 202 201 202 201 202 201 202 201 202 201 202	5 40 15 15 75	30.00	< 0.2 < 0.2	1.07 1.12 2.27 1.33 1.41	6 42 36 28 132	100 150 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.27	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 14 25 10 13	48 63 201 50 80	7 33 45 18 43	1.95 3.16 4.31 2.73 3.44	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.11 0.14 0.09 0.11	< 10 < 10 < 10 < 10 < 10 < 10
L1 1+260 L1 1+280 L1 1+300 L1 1+320 L1 1+480	201 202 201 202 201 202 201 202 201 202 201 202	45 5 5 5 5 5	30.00 30.00 30.00	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.50 1.41 2.22 1.38 1.01	38 < 2 < 2 2 < 2 < 2	150 110 150	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.27 0.38 0.30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 9 38 15 10	80 48 268 78 83	38 7 32 19 7	3.47 2.12 4.65 3.52 2.37	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.15 0.08 0.32 0.27 0.11	< 10 < 10 10 10 < 10
L1 1+520 L1 1+540 L1 1+560 L1 1+580 L1 1+600	201 202 201 202 201 202 201 202 201 202 201 202	< 5 5 < 5 < 5 5	30.00 30.00 30.00	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.76 1.64 2.05 2.17 2.01	2 2 10 < 2 14	160 160 140	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.35 0.38 0.24	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 15 14 18 27	65 70 74 87 125	12 15 16 15 26	2.91 3.34 3.44 2.80 4.60	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.16 0.15 0.09 0.14	< 10 < 10 < 10 < 10 < 10 < 10
L1 1+620 L1 1+640 L1 1+660 L1 1+680 L1 1+700	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5 15 < 5	15.00 < 30.00 < 15.00 <		1.37 1.18 1.42 1.10 1.57	2 < 2 10 < 2 6	120 130 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.47 0.53 1.20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	17 14 16 13 18	62 60 61 49 63	23 20 25 25 25 22	3.25 3.40 3.20 2.79 3.21	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.11 0.08 0.10 0.08 0.10	10 10 10 10 < 10
L1 1+720 L1 1+740 L1 1+760 L1 1+780 L1 1+780 L1 1+800	201 202 201 202 201 202 201 202 201 202 201 202	5 < 5 < 5 < 5 < 5	30.00 « 30.00 «	< 0.2 < 0.2	2.12 2.45 2.20 2.24 2.33	< 2 < 2 < 2 < 2 < 2 < 2 < 2	150 170 140	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.29	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 11 12 12 12	57 43 46 45 46	18 10 11 10 9	3.29 2.71 2.88 2.92 2.91	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.05 0.07 0.05 0.05 0.06	< 10 < 10 < 10 < 10 < 10 < 10

CERTIFICATION:

*

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8 Page Number 2-B Total Pages 5 Certificate Date 18-AUG-9c Invoice No 19827480 P.O Number Account : LEA

Project : Comments: ATTN: BILL POOLE

	PREP										CAIE		NALY	212	<u>д</u>	9827480	
SAMPLE	CODE	Mg %	Mn ppm	Мо И	a Ni % ppm	P Ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U mqq	V ppm	W ppm	Zn ppm	
1 0+860 1 0+880 1 0+900 1 0+920 1 0+940	201 202 201 202 201 202 201 202 201 202 201 202	1.51 1.06	350 280 290 280 325	<pre>< 1 < 0.0 1 < 0.0 2 < 0.0 1 < 0.0 1 < 0.0 < 1 < 0.0</pre>	1 485 1 305 1 170	110 240 170 160 220	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	6 4 3 4	21 19 20 23 27	0.13 0.13 0.15 0.17 0.16	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	67 54 63 56 63	< 10 < 10 < 10 < 10 < 10 < 10	38 38 36 34 40	
1 0+960 1 0+980 1 0+1000 1 1+020 1 1+040A	201 202 201 202 201 202 201 202 201 202 201 202	2.00	350 260 510 240 225	< 1 0.0 1 < 0.0 < 1 < 0.0 2 < 0.0 2 < 0.0	1 134 1 344 1 155	270 240 300 240 280	< 2 < 2 < 2 < 2 < 2 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	3 3 6 4 3	20 27 25 24 27	0.15 0.16 0.14 0.16 0.18	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	45 61 58 59 60	< 10 < 10 < 10 < 10 < 10 < 10	64 46 50 40 44	
1 1+040B 1 1+080 1 1+100 1 1+120 1 1+140	201 202 201 202 201 202 201 202 201 202 201 202	1.55	200 320 305 185 175	2 < 0.0 1 < 0.0 1 0.0 1 < 0.0 1 < 0.0 1 < 0.0	1 90 1 227 1 137	270 220 290 260 300	< 2 2 < 2 < 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	3 3 4 3 2	25 23 31 20 17	0.16 0.17 0.16 0.14 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	51 45 66 47 47	< 10 < 10 < 10 < 10 < 10 < 10	42 32 42 42 42	
1 1+160 1 1+180 1 1+200 1 1+220 1 1+220 1 1+240	201 202 201 202 201 202 201 202 201 202 201 202	0.49 0.63 1.68 0.42 0.59	165 215 245 200 225	<pre>< 1 < 0.0 3 < 0.0 < 1 0.0 1 < 0.0 2 < 0.0</pre>	L 84 1 399 L 53	460 370 330 150 210	2 < 2 < 2 4 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 3 10 3 4	14 21 31 24 23	0.09 0.12 0.11 0.14 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	38 67 73 60 76	< 10 < 10 < 10 < 10 < 10 < 10	50 66 64 62 108	
1 1+260 1 1+280 1 1+300 1 1+320 1 1+320 1 1+480	201 202 201 202 201 202 201 202 201 202 201 202	0.64 0.41 2.42 0.65 0.52	305 260 460 340 215	4 < 0.0 < 1 < 0.0 1 < 0.0 1 < 0.0 1 < 0.0 < 1 < 0.0	L 60 L 557 L 87	260 490 280 290 190	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	5 3 10 6 3	26 26 30 30	0.16 0.16 0.12 0.17 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	72 44 57 74 55	< 10 < 10 < 10 < 10 < 10 < 10	94 72 64 64 34	
1 1+520 1 1+540 1 1+560 1 1+580 1 1+580 1 1+600	201 202 201 202 201 202 201 202 201 202 201 202	0.61 0.75 0.85 0.69 2.09	215 445 365 410 500	< 1 < 0.0 1 < 0.0 1 < 0.0 1 < 0.0 1 < 0.0 1 0.0	L 58 L 78 L 150	390 580 890 1330 850	4 < 2 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 4 4 4 6	32 36 38 24 50	0.16 0.13 0.13 0.13 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	64 71 72 50 96	< 10 < 10 < 10 < 10 < 10 < 10	52 58 84 88 52	
1 1+620 1 1+640 1 1+660 1 1+680 1 1+700	201 202 201 202 201 202 201 202 201 202 201 202	0.90 0.60 0.72 0.66 0.86	430 455 570 605 660	1 0.0 < 1 0.0 1 0.0 < 1 0.0 1 0.0 1 0.0	59 80 2 64	890 710 820 890 980	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 2 < 2 2 < 2 < 2 < 2 < 2	5 4 5 4 4	43 41 45 78 46	0.16 0.14 0.14 0.11 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	73 84 72 65 66	< 10 < 10 < 10 < 10 < 10 < 10	52 44 50 50 54	
1 1+720 1 1+740 1 1+760 1 1+760 1 1+780 1 1+800	201 202 201 202 201 202 201 202 201 202 201 202	0.73 0.40 0.42 0.32 0.37	490 365 770 425 560	1 < 0.0 1 < 0.0 < 1 < 0.0 < 1 < 0.0 < 1 < 0.0 < 1 < 0.0	L 54 L 49 L 53	830 990 1380 1110 1110	< 2 < 2 2 < 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 2	4 3 3 4 3	29 33 31 28 28	0.14 0.15 0.14 0.15 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	72 58 63 67 63	< 10 < 10 < 10 < 10 < 10 < 10	68 76 84 74 114	

1 . . . S 🖌

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To CARIBOO FOREST CONSULTANTS LTD.

> BOX 4629 QUESNEL, BC V2J 3J8

Page Number 3-A Total Pages 5 Certificate Date 18-AUG-98 Invoice No P.O. Number 19827480 Account :LEA

**

Project ;			
Comments:	ATTN:	BILL	POOLE

		-								CE	RTIF		OF A	NALY	SIS	/	49827	480		
SAMPLE	PREP CODE		Au ppb FA+AA		Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm
L1 1+820	201 202	< 5		30.00	< 0.2	2.67	< 2	140	< 0.5	< 2	0.23	< 0.5	11	47	13	3.35	< 10	< 1	0.05	< 10
L1 1+860	201 202	< 5		30.00	< 0.2	2.57	< 2	100	< 0.5	< 2	0.20	< 0.5	10	38	9	2.96	< 10	< 1	0.05	< 10
L1 1+880	201 202			30.00	< 0.2	2.66	10	110	< 0.5	< 2	0.36	< 0.5	12	47	12	3.29	< 10	< 1	0.07	< 10
L1 1+900	201 202	-			< 0.2	2.29	6	150	< 0.5	< 2	0.31	< 0.5	12	50	14	3.47	< 10	< 1	0.07	< 10
L1 1+920	201 202	< 5		30.00	< 0.2	2.13	8	110	< 0.5	< 2	0.31	< 0.5	9	41	17	3.07	< 10	< 1	0.08	< 10
L1 1+940	201 202			30.00	< 0.2	2.09	< 2	120	< 0.5	< 2	0.29	< 0.5	11	47	12	2.87	< 10	< 1	0.07	< 10
L1 1+960	201 202				< 0.2	2.27	2	120	< 0.5	< 2	0.30	< 0.5	11	41	13	2.91	< 10	< 1	0.07	< 10
L1 1+980	201 202	-			< 0.2	1.99	8	120	< 0.5	< 2	0.25	< 0.5	10	38	11	3.16	< 10	< 1	0.08	< 10
L1 1+1340	201 202				< 0.2	1.24	8	160	< 0.5	< 2	0.26	< 0.5	15	74	21	3.50	< 10	< 1	0.22	10
L1 1+1360	201 202	< 5		30.00	< 0.2	1.97	8	140	< 0.5	< 2	0.39	< 0.5	16	106	26	3.97	< 10	< 1	0.35	10
L1 1+1380	201 202				< 0.2	1.23	6	90	< 0.5	< 2	0.36	< 0.5	14	91	19	3.12	< 10	< 1	0.17	< 10
L1 1+1400	201 202				< 0.2	0.95	< 2	90	< 0.5	< 2	0.27	< 0.5	9	70	23	2.53	< 10	< 1	0.16	< 10
L1 1+1420	201 202				< 0.2	1.41	8	100	< 0.5	< 2	0.34	< 0.5	18	96	76	3.36	< 10	< 1	0.15	10
L1 1+1440	201 202				< 0.2	1.25	< 2	90	< 0.5	< 2	0.23	< 0.5	8	59	7	2.36	< 10	< 1	0.08	< 10
L1 1+1460	201 202	10		30.00	< 0.2	0.95	< 2	80	< 0.5	< 2	0.25	< 0.5	11	82	9	2.44	< 10	< 1	0.10	< 10
L1 1+1500	201 202			30.00	< 0.2	1.31	< 2	110	< 0.5	< 2	0.30	< 0.5	9	41	7	2.38	< 10	< 1	0.09	< 10
L1 2+000	201 202			30.00	< 0.2	1.96	2	160	< 0.5	< 2	0.21	< 0.5	10	31	9	2.45	< 10	< 1	0.08	< 10
L1a 0+000	201 202				< 0.2	1.18	< 2	80	< 0.5	< 2	0.27	< 0.5	10	74	9	2.46	< 10	< 1	0.07	< 10
L1a 0+015	201 202			30.00		1.23	2	70	< 0.5	< 2	0.35	< 0.5	9	68	10	2.55	< 10	< 1	0.10	< 10
L1a 0+030	201 202	< 5		30.00	< 0.2	1.37	< 2	80	< 0.5	< 2	0.32	< 0.5	16	143	14	3.15	< 10	< 1	0.13	< 10
L1a 0+045	201 202			30.00	< 0.2	2.71	10	130	< 0.5	< 2	0.43	< 0.5	39	234	49	4.96	< 10	< 1	0.21	10
L1a 0+060	201 202				< 0.2	1.45	4	90	< 0.5	< 2	0.40	< 0.5	20	106	16	3.25	< 10	< 1	0.15	< 10
L1a 0+075	201 202				< 0.2	1.62	8	130	< 0.5	< 2	0.43	< 0.5	21	95	37	3.49	< 10	< 1	0.13	10
L1a 0+090	201 202				< 0.2	0.95	8	60	< 0.5	< 2	0.28	< 0.5	10	68	10	2.46	< 10	< 1	0.10	< 10
L1a 0+105	201 202	< 5		30.00	< 0.2	0.84	< 2	50	< 0.5	< 2	0.26	< 0.5	9	51	8	2.57	< 10	< 1	0.08	< 10
L1a 0+120	201 202			30.00	< 0.2	1.57	< 2	70	< 0.5	< 2	0.28	< 0.5	19	110	20	3.54	< 10	< 1	0.15	10
L1a 0+135	201 202					1.48	B	80	< 0.5	< 2	0.32	< 0.5	16	90	19	3.24	< 10	< 1	0.14	10
L1a 0+150	201 202			30.00		1.40	< 2	90	< 0.5	< 2	0,28	< 0.5	11	76	13	3.00	< 10	< 1	0.13	< 10
L1a 0+165 L1a 0+180	201 202			30.00		1.73	< 2	100	< 0.5	< 2	0.36	< 0.5	14	87	20	3.45	< 10	< 1	0.19	10
TT4 04180	201 202			30.00	< 0.2	1.15	< 2	60	< 0.5	< 2	0.29	< 0.5	B	59	B	2.54	< 10	< 1	0.16	< 10
L1a 0+195	201 202			30.00	< 0.2	1.40	< 2	90	< 0.5	< 2	0.36	< 0.5	11	59	13	2.84	< 10	< 1	0.11	< 10
L1a 0+210	201 202			30.00	< 0.2	1.03	< 2	60	< 0.5	< 2	0.27	< 0.5	11	79	11	2.64	< 10	< 1	0.12	< 10
L1a 0+225	201 202			30.00		2.02	< 2	90	< 0.5	< 2	0.39	< 0.5	23	115	29	3.92	< 10	< 1	0.16	10
L1a 0+240 L1a 0+255	201 202			30.00		1.28	6	70	< 0.5	< 2	0.32	< 0.5	15	87	17	3.06	< 10	< 1	0.13	< 10
		10		30.00	< 0.2	1.64	6	120	< 0.5	< 2	0.32	< 0.5	15	106	14	3.00	< 10	< 1	0.27	< 10
L1a 0+270	201 202				< 0.2	2.05	6	210	< 0.5	< 2	0.33	< 0.5	15	78	27	3.55	< 10	< 1	0.18	< 10
L1a 0+285	201 202	-		30.00	< 0.2	2.47	< 2	200	< 0.5	< 2	0.43	< 0.5	15	58	25	4.11	< 10	< 1	0.30	< 10
L1a 0+300 L1a 0+315	201 202			30.00		2.09	6	200	< 0.5	< 2	0.35	< 0.5	13	48	24	3.70	< 10	< 1	0.27	< 10
L1a 0+330	201 202 201 202			30.00	< 0.2	2.45	8	200	< 0.5	< 2	0.55	< 0.5	14	52	41	4.12	< 10	< 1	0.27	< 10
777 04330		1 ` `		30.00	< 0.2	2.11	8	250	< 0.5	< 2	0.35	< 0.5	12	43	22	3.53	< 10	< 1	0.41	< 10

NA T CERTIFICATION:_

Ł

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8

Page Number 3-8 Total Pages 5 Certificate Date: 18-AUG-98 Invoice No. 19827480 Invoice No. P.O. Number Account :LEA

Project :			
Comments:	ATTN:	BILL	POOLE

										CE	RTIFI	CATE	OF A	NALY	'SIS	A	9827480	
SAMPLE	PREP CODE	Mg %	Mn ppm	Мо ррш	Na %	Ni ppm	г ррш	Pb ppm	SD ppm	Sc ppm	sr ppm	Ti %	T1 ppm	U mqq	V mqq	W ppm	Zn ppm	
L1 1+820	201 202	0.42	225	< 1 <		48	680	< 2	< 2	3	28	0.16	< 10	< 10	77	< 10	62	
L1 1+860 L1 1+880	201 202 201 202	0.34	230		0.01	58	970	< 2	< 2	3	21	0.15	< 10	< 10	60	< 10	138	
L1 1+900	201 202	0.52	270 285	< 1 <	0.01	65 69	1230 1910	< 2 < 2	< 2 < 2	3	39 33	0.17 0.14	< 10 < 10	< 10 < 10	76 75	< 10 < 10	100 56	
L1 1+920	201 202	0.48	210	< 1 <		39	810	< 2	< 2	3	33	0.13	< 10	< 10	69	< 10	60	
L1 1+940	201 202	0.46	205		0.01	63	690	< 2	< 2	3	30	0.14	< 10	< 10	60	< 10	76	
L1 1+960 L1 1+980	201 202	0.49	290	< 1 <		32	760	< 2	< 2	3	48	0.15	< 10	< 10	67	< 10	74	
L1 1+1340	201 202 201 202	0.39	265 445	< 1 <	0.01	25 75	760 250	2 < 2	< 2 < 2	3 5	35	0.16	< 10	< 10	74 83	< 10 < 10	60 62	
L1 1+1360	201 202	0.78	330		0.01	133	450	< 2	< 2	8	28 41	0.18 0.18	< 10 < 10	< 10 < 10	67	< 10	92	
L1 1+1380	201 202	0.68	320	< 1 <		106	360	2	< 2	5	33	0.17	< 10	< 10	65	< 10	50	
L1 1+1400 L1 1+1420	201 202	0.52	240	< 1 <		51	300	< 2	< 2	3	23	0.15	< 10	< 10	58	< 10	46	
L1 1+1440	201 202 201 202	1.07	335 185		0.01 0.01	144 46	400 330	< 2	< 2	6 3	30	0.14	< 10	< 10	66	< 10	50	
L1 1+1460	201 202		280	< 1 <		82	190	< 2 < 2	< 2 < 2	3	21 22	0.17 0.15	< 10 < 10	< 10 < 10	54 54	< 10 < 10	36 34	
L1 1+1500	201 202	0.31	390	< 1 <	0.01	30	390	< 2	< 2	3	27	0.17	< 10	< 10	52	< 10	62	
L1 2+000	201 202	0.24	695	< 1 <		24	790	< 2	< 2	3	25	0.14	< 10	< 10	54	< 10	90	
L1a 0+000	201 202	0.50	190	< 1 <		71	260	< 2	< 2	3	25	0.17	< 10	< 10	58	< 10	40	
L1a 0+015 L1a 0+030	201 202 201 202	0.50	190 240		0.01 0.01	70 167	310 310	< 2 < 2	< 2 2	3 5	29 25	0.18 0.18	< 10 < 10	< 10 < 10	59 69	< 10 < 10	44 52	
L1a 0+045	201 202	2.35	595	1	0.01	544	280	< 2	< 2	11	33	0.15	< 10	< 10	76	< 10	70	
L1a 0+060	201 202	1.03	385	1	0.01	154	180	< 2	< 2	5	27	0.15	< 10	< 10	64	< 10	36	
L1a 0+075 L1a 0+090	201 202		480	1	0.01	212	490	< 2	< 2	6	36	0.13	< 10	< 10	70	< 10	52	
L1a 0+105	201 202 201 202	0.55	210 205	< 1 < < 1 <		55 39	110 90	< 2 2	< 2 < 2	3 3	25 25	0.16 0.19	< 10 < 10	< 10 < 10	60 65	< 10 < 10	30 32	
L1a 0+120	201 202	0.93	285	1	0.01	221	250	< 2	< 2	7	27	0.17	< 10	< 10	60	< 10	44	
L1a 0+135	201 202		275	< 1	0.01	121	270	12	< 2	6	30	0.17	< 10	< 10	66	< 10	42	
L1a 0+150 L1a 0+165	201 202 201 202	0.65	210 270	< 1 < < 1 <		110	280 480	2	< 2	5 7	26	0.17	< 10	< 10	57	< 10	46	
L1a 0+180	201 202		195	< 1 <		112 48	310	< 2 < 2	< 2 < 2	3	32 21	0.17 0.16	< 10 < 10	< 10 < 10	64 59	< 10 < 10	50 40	
L1a 0+195	201 202	0.49	270		0.01	55	430	< 2	< 2	4	29	0.16	< 10	< 10	61	< 10	40	
L1a 0+210	201 202	0.60	255	< 1 <		70	130	< 2	< 2	4	24	0.16	< 10	< 10	59	< 10	32	
L1a 0+225 L1a 0+240	201 202 201 202	1.39	505	< 1	0.01	222	310	< 2	< 2	8	36	0.14	< 10	< 10	69	< 10	54	
L1a 0+255	201 202	0.81	245 275	< 1 < 1 <	0.01	141 133	390 410	< 2 < 2	< 2 < 2	4	27 25	0.16 0.18	< 10 < 10	< 10 < 10	65 63	< 10 < 10	42 56	
L1a 0+270	201 202	0.89	465	_	0.01	95	960	< 2	< 2	5	33	0.14	< 10	< 10	69	< 10	106	
L1a 0+285	201 202	1.02	430		0.01	47	660	< 2	< 2	6	44	0.13	< 10	< 10	87	< 10	90	
Lla 0+300 Lla 0+315	201 202	0.87	275		0.01	42	690	2	< 2	5	56	0.15	< 10	< 10	79	< 10	94	
L1a 0+315 L1a 0+330	201 202 201 202	0.84	510 615		0.01 0.01	36 26	650 400	< 2 < 2	< 2 < 2	76	60 52	0.09 0.16	< 10 < 10	< 10 < 10	82 83	< 10 < 10	92 88	

٠.

L3 L3 L3 L3 L3

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8 Page Number 4-A Total Pages 5 Certificate Date: 18-AUG-9 Invoice No. 19827480 P.O. Number Account .LEA

Bien

· · · ·

**

Project :

Comments: ATTN: BILL POOLE

									CE	RTIF	ICATE	OF A	NALY	'SIS	ļ	49827	480		
SAMPLE	PREP CODE	Au ppb Au pp FA+AA FA+A		Ag ppm	A1 %	As mqq	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	?e *	Ga ppm	Eg ppm	к %	La ppm
3 0+000	201 202	< 5	30.00	< 0.2	2.98	< 2	240	< 0.5	< 2	0.34	< 0.5	18	60	25	2.87	< 10	< 1	0.05	< 10
3 0+020	201 202			< 0.2	2.06	< 2	160	< 0.5	< 2	0.55	0.5	25	128	34	3.03	< 10	< 1	0.09	< 10
3 0+040 3 0+060	201 202		30.00	< 0.2	3.22	8	730	< 0.5	< 2	0.53	< 0.5	19	77	47	3.35	< 10	< 1	0.10	< 10
3 0+080 3 0+080	201 202 201 202			< 0.2 < 0.2	2.15 2.91	10 10	200 220	< 0.5 < 0.5	< 2 < 2	0.43 0.41	< 0.5 < 0.5	20 19	92 71	28 34	3.21 3.17	< 10 < 10	< 1 < 1	0.07 0.08	< 10 < 10
3 0+100	201 202	< 5	30.00	< 0.2	1.46	8	110	< 0.5	< 2	0.33	< 0.5	19	148	20	3.06	< 10	< 1	0.08	< 10
3 0+120	201 202		30.00		1.44	< 2	110	< 0.5	< 2	0.29	< 0.5	14	80	14	2.87	< 10	< 1	0.07	< 10
3 0+140	201 202		30.00	< 0.2	1.63	< 2	110	< 0.5	< 2	0.30	< 0.5	13	73	15	2.88	< 10	< 1	0.08	< 10
3 0+160	201 202				1.87	< 2	140	< 0.5	< 2	0.30	< 0.5	10	48	17	2.95	< 10	< 1	0.07	< 10
3 0+180	201 202	< 5	30.00	< 0.2	1.92	< 2	120	< 0.5	< 2	0.32	< 0.5	11	51	22	2.83	< 10	< 1	0.06	< 10
3 0+200	201 202		30.00		1.56	26	90	< 0.5	< 2	0.35	< 0.5	16	57	58	2.56	< 10	< 1	0.09	< 10
3 0+220	201 202			< 0.2	1.51	< 2	80	< 0.5	< 2	0.35	< 0.5	19	72	22	2.88	< 10	< 1	0.09	< 10
3 0+240 3 0+260	201 202				2.25	< 2	140	< 0.5	< 2	0.38	< 0.5	12	40	27	2.73	< 10	< 1	0.08	< 10
3 0+280	201 202		+ +		1.35	< 2	80	< 0.5	< 2	0.25	< 0.5	9	43	16	2.26	< 10	< 1	0.06	< 10
				< 0.2	1.49	< 2	100	< 0.5	< 2	0.30	< 0.5	10	50	20	2.59	< 10	< 1	0.07	< 10
3 0+300	201 202				1.59	< 2	110	< 0.5	< 2	0.37	< 0.5	12	50	17	2.92	< 10	< 1	0.12	< 10
3 0+320	201 202		30.00		1.46	< 2	90	< 0.5	< 2	0.32	< 0.5	14	73	19	3.08	< 10	< 1	0.17	< 10
3 0+340 3 0+360	201 202		30.00		1.42	< 2	90	< 0.5	< 2	0.28	< 0.5	10	44	12	2.74	< 10	1	0.10	< 10
3 0+380	201 202 201 202			< 0.2 < 0.2	1.86 2.12	< 2 8	120 130	< 0.5 < 0.5	< 2 < 2	0.37 0.44	< 0.5 < 0.5	17 14	78 69	26 24	3.48 3.29	< 10 < 10	< 1 < 1	0.21 0.17	< 10 < 10
3 0+400	201 202	< 5	30.00	< 0.2	1.50	< 2	110	< 0.5	< 2	0.29	< 0.5	9	46	9	2.42	< 10	< 1	0.06	< 10
3 0+420	201 202		30.00		1.76	< 2	120	< 0.5	< 2	0.29	< 0.5	10	55	13	2.85	< 10	< 1	0.07	< 10
3 0+440	201 202	< 5	30.00		1.69	< 2	130	< 0.5	< 2	0.33	< 0.5	10	55	17	2.96	< 10	< 1	0.07	< 10
3 0+460	201 202		30.00	< 0.2	2.41	< 2	360	< 0.5	< 2	0.45	< 0.5	12	49	28	3.10	< 10	< 1	0.38	< 10
3 0+480	201 202	< 5	30.00	< 0.2	2.21	< 2	220	< 0.5	< 2	0.38	< 0.5	13	56	23	3.51	< 10	< 1	0.36	< 10
3 0+500	201 202		30.00		1.50	< 2	210	< 0.5	< 2	0.37	< 0.5	11	45	13	2.80	< 10	< 1	0.29	< 10
3 0+520	201 202		30.00		2.24	< 2	470	< 0.5	< 2	0.56	< 0.5	14	37	21	2.94	< 10	< 1	0.35	< 10
3 0+540 3 0+560	201 202 201 202		30.00	< 0.2	1.10	< 2	100	< 0.5	< 2	0.26	< 0.5	8	59	9	2.43	< 10	< 1	0.09	< 10
3 0+580	201 202		30.00 30.00		1.09 1.68	< 2 < 2	90 120	< 0.5 < 0.5	< 2 < 2	0.22 0.25	< 0.5 < 0.5	9 9	54 47	6 9	2.26 2.35	< 10 < 10	< 1 < 1	0.05	< 10 < 10
3 0+620	201 202	< 5	30.00	< 0.2	1.27	< 2	110	< 0.5	< 2	0.25	< 0.5	10	77	7	2.18	< 10	< 1	0.06	< 10
3 0+640	201 202	< 5	30.00		1.45	< 2	130	< 0.5	< 2	0.32	< 0.5	15	88	18	3.05	< 10	< 1	0.08	< 10
3 0+660	201 202		30.00	< 0.2	2.07	< 2	130	< 0.5	< 2	0.32	< 0.5	14	78	17	3.39	< 10	< 1	0.14	< 10
3 0+680	201 202		30.00	< 0.2	2.10	< 2	140	< 0.5	< 2	0.32	< 0.5	13	62	11	3.04	< 10	< 1	0.17	< 10
3 0+700	201 202	< 5	30.00	< 0.2	2.25	2	160	< 0.5	< 2	0.46	< 0.5	14	67	20	3.19	< 10	< 1	0.22	< 10
0+760	201 202	< 5	30.00	< 0.2	1.42	< 2	270	< 0.5	< 2	0.26	1.5	15	50	24	3.01	< 10	< 1	0.07	10
3 0+780 3 0+800	201 202 201 202		30.00		2.67	< 2	250	< 0.5	< 2	0.39	< 0.5	13	50	15	3.42	< 10	< 1	0.08	< 10
3 0+820	201 202 201 202		30.00 30.00		1.39	< 2	100	< 0.5	< 2	0.26	< 0.5	6	31	11	1.88	< 10	< 1	0.12	< 10
0+860	201 202	•	30.00	< 0.2	1.39 2.46	< 2	110 130	< 0.5 < 0.5	< 2 < 2	0.36	< 0.5 < 0.5	11 11	42	16 34	2.84	< 10	< 1	0.09	10
			20100		4.10	D	130	. 0.5	≺ ∡	0.54	< 4.5	11	4,)	34	3.15	< 10	< 1	0.07	10

CERTIFICATION:__

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8 Page Number 4-B Total Pages 5 Certificate Date, 18-AUG-9⊱ Invoice No. : 19827480 P.O. Number : Account : LEA

.

Project : Comments: ATTN: BILL POOLE

	· · · · · · · · · · · · · · · · · · ·			·			·····		CE	RTIF	CATE	OF A	NALY	'SIS	A	9827480	<u> </u>
SAMPLE	PREP CODE	Mg %	Мл ррт	Mo Na ppm %		P ppm	95 ppm	Sb ppm	Sc ppm	ŝr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
,3 0+000 ,3 0+020	201 202	0.51	380	2 < 0.01		630	< 2	< 2	3	25	0.16	< 10	< 10	59	< 10	66	
3 0+040	201 202 201 202	1.45 1.18	590 220	2 < 0.01 1 < 0.01		600	4	< 2	4	28	0.14	< 10	< 10	53	< 10	84	
3 0+060	201 202	0.77	345	1 < 0.01		450 490	< 2 < 2	< 2 < 2	9 5	150 47	0.10 0.17	< 10 < 10	< 10 < 10	72 68	< 10 < 10	42 56	
,3 0+080	201 202	0.62	360	3 < 0.01		680	4	2	4	51	0.17	< 10	< 10	60	< 10	76	
,3 0+100 ,3 0+120	201 202	1.10	310	1 < 0.01		450	< 2	< 2	5	32	0.16	< 10	< 10	62	< 10	46	
3 0+140	201 202 201 202	0.51 0.54	425 225	2 < 0.01 1 < 0.01		400	2	< 2	4	32	0.20	< 10	< 10	67	< 10	<u>4</u> B	
,3 0+160	201 202	0.37	230	1 < 0.01		360 690	2 6	< 2 < 2	4	31 33	0.19 0.19	< 10 < 10	< 10 < 10	65 63	< 10 < 10	40 60	
3 0+180	201 202	0.47	190	1 < 0.01		230	2	< 2	4	37	0.19	< 10	< 10	64	< 10	48	
,3 0+200 ,3 0+220	201 202	0.47	490	2 < 0.01	_	260	< 2	< 2	4	25	0.15	< 10	< 10	58	< 10	50	
3 0+240	201 202 201 202	0.73 0.41	260 265	1 < 0.01 1 < 0.01		380	4	< 2	4	26	0.16	< 10	< 10	55	< 10	36	
3 0+260	201 202	0.31	180	1 < 0.01		650 290	2 < 2	< 2 < 2	5 3	31 25	0.19 0.17	< 10 < 10	< 10 < 10	59 58	< 10 < 10	64 38	
3 0+280	201 202	0.38	170	1 < 0.01		320	< 2	< 2	3	40	0.18	< 10	< 10	63	< 10	42	
3 0+300 3 0+320	201 202	0.42	265	1 < 0.01		520	2	< 2	5	37	0.19	< 10	< 10	64	< 10	48	······································
3 0+340	201 202 201 202	0.66 0.39	260 235	2 < 0.01 2 < 0.01		110	2	< 2	5	29	0.17	< 10	< 10	74	< 10	38	
3 0+360	201 202	0.80	275	1 < 0.01		410 460	4	< 2 < 2	3 6	29 46	0.19 0.19	< 10	< 10	65	< 10	46	
3 0+380	201 202	0.82	300	1 < 0.01		440	< 2	< 2	5	39	0.19	< 10 < 10	< 10 < 10	85 80	< 10 < 10	46 54	
3 0+400	201 202	0.37	285	1 < 0.01		440	2	< 2	3	27	0,18	< 10	< 10	56	< 10	76	
3 0+420 3 0+440	201 202 201 202	0.43	210	2 < 0.01		490	2	< 2	3	33	0.19	< 10	< 10	68	< 10	54	
3 0+460	201 202	0.42 0.70	205 700	1 < 0.01 1 < 0.01		250 330	< 2	< 2	4	45	0.20	< 10	< 10	76	< 10	48	
3 0+480	201 202	0.71	345	1 < 0.01		280	< 2 2	< 2 < 2	3 5	226 117	0,20 0,23	< 10 < 10	< 10 < 10	77 95	< 10 < 10	72 66	
3 0+500	201 202	0.61	375	1 < 0.01	23	280	2	< 2	3	64	0.21	< 10	< 10	79	< 10	62	
3 0+520 3 0+540	201 202 201 202	0.71	1865	3 < 0.01		540	2	< 2	3	105	0.20	< 10	< 10	74	< 10	142	
3 0+560	201 202	0.36	215 345	< 1 < 0.01 < 1 < 0.01	35 33	320 290	2	< 2	3	28	0.17	< 10	< 10	66	< 10	44	
3 0+580	201 202	0.38	200	1 < 0.01	47	510	2 2	< 2 < 2	2 3	19 24	0.16 0.16	< 10 < 10	< 10 < 10	60 55	< 10 < 10	46 62	
3 0+620	201 202	0.49	215	1 < 0.01	62	420	< 2	< 2	3	23	0.15	< 10	< 10	51	< 10	52	
3 0+640 3 0+660	201 202 201 202	0.71	400	< 1 < 0.01	78	350	4	< 2	4	33	0.17	< 10	< 10	73	< 10	54	
3 0+680	201 202	0.71 0.63	245 405	2 < 0.01 1 < 0.01	76 61	760 650	< 2	< 2	4	38	0.18	< 10	< 10	84	< 10	62	
3 0+700	201 202	0.74	490	1 < 0.01	50	650	6 4	< 2 < 2	4 5	29 59	0.15 0.15	< 10 < 10	< 10 < 10	70 80	< 10 < 10	66 60	
3 0+760	201 202	0.37	1925	1 < 0.01		1660	2	< 2	4	26	0.13	< 10	< 10	64	< 10	156	
3 0+780 3 0+800	201 202 201 202	0.57	400	1 < 0.01	61	3030	2	< 2	4	40	0.13	< 10	< 10	67	< 10	116	
3 0+820	201 202	0.26 0.43	205 360	< 1 < 0.01	25	890	6	< 2	3	23	0.12	< 10	< 10	37	< 10	86	
3 0+B60	201 202	0.58	405	1 < 0.01 1 < 0.01		580 530	6 < 2	< 2 < 2	5 6	34 37	0.16 0.16	< 10 < 10	< 10 < 10	67 75	< 10 < 10	54 74	

* *

فيقرح حريد

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver Bntish Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8

Page Number 5-A Total Pages 5 Certificate Date: 18-AUG-98 Invoice No. : 19827480 P.O. Number Account :LEA

••

Project : Comments: ATTN: BILL POOLE

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			_		 						CE	RTIF	ICATE	OF A	NALY	'SIS		49827		,	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	SAMPLE																				La ppm
	L3 0+900 L3 0+920 L3 0+940	201 201 201	202 202 202	< 5 < 5 < 5	 30.00 30,00 30,00	< 0.2 < 0.2 < 0.2	2.58 2.71 2.81	4 4 < 2	230 160 150	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.32 0.26 0.29	< 0.5 < 0.5 < 0.5	11 12 11	46 38 43	14 13 15	3.53 3.20 3.13	< 10 < 10 < 10	< 1 < 1 < 1	0.05 0.05 0.06	< 10 < 10 < 10
					30.00 30.00	< 0.2 < 0.2	1.61 2.51					0.33 0.36	< 0.5 < 0.5				2.76 3.20				< 10 10
	f																				

vory Bidle

SAMPLE

L3 0+880

L3 0+900

PREP

CODE

201 202

201 202

Mg

0.65

0.38

%

Mŋ

bbw

540

345

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Мо

₽₽₽

Na

1 < 0.01

< 1 < 0.01

%

Ni

ppm

59

42

To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8

Page Number 5-B Total Pages 5 Certificate Date. 18-AUG-98 Invoice No :19827480 P.O. Number LEA Account

10

Project :

Comments: ATTN: BILL POOLE

A9827480 CERTIFICATE OF ANALYSIS v W Zn Ũ Ρ Pb Sb Sc Sĭ Ti TÌ ppm % ppm ppm ppm ppm ppm ppm ppm ppm ppm 108 < 10 74 < 10 0.14 < 10 4670 4 < 2 4 66 < 10 73 < 10 70 0.13 < 10 5090 ß < 2 3 40 72 < 10 6B 27 0.16 < 10 < 10 1040 2 < 2 3

••

L3 0+940	201 201	202 202 202	0.42	240 235 205	1 < 0.01 1 < 0.01 1 < 0.01	48 51 52	1040 1700 1230	< 2 6	< 2 < 2 < 2	3 3 4	27 29 33	0.16 0.15 0.14	< 10 < 10 < 10	< 10 < 10 < 10	72 66 63	< 10 < 10 < 10	68 62 64	
L3 0+980 L3 1+000		202 202		255 365	1 < 0.01 1 < 0.01	76 77	430 1020	6 2	< 2 < 2	4	33 34	0.16 0.15	< 10 < 10	< 10 < 10	62 67	< 10 < 10	52 80	

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8

A9832232

Comments: ATTN: BILL POOLE

CERTIFICATE

A9832232

(LEA) - CARIBOO FOREST CONSULTANTS LTD.

Project: P.O. # :

Samples submitted to our lab in Vancouver, EC. This report was printed on 30-SEP-1998.

	SAMPLE PREPARATION													
CHEMEX	NUMBER SAMPLES	DESCRIPTION												
202	84 84 84	Dry, sieve to -80 mesh save reject ICP - AQ Digestion charge												
* NOTE	.													

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPEP LIMIT
2118	84	Ag ppm: 32 element, soil & rock	ICP-ARS	0.2	100.0
2119	84	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	84	As ppm: 32 element, soil & rock	ICP-AES	2	10000
2121	84	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	84	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	84	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124	84	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	84	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
2126	84	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2127	84	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
2128	84	Cu ppm: 32 element, soil & rock	ICP- AES	1	10000
2150	84	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
2130	84	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
2131	84	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
2132	84	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
2151	84	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	84	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
2135	84	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	84	Mo ppm: 32 element, soil & rock	ICP-ARS	1	10000
2137	84	Na %: 32 element, soil & rock	ICP-ARS	0.01	10.00
2138	84	Ni ppm: 32 element, soil & rock	ICP-ARS	1	10000
2139	84	P ppm: 32 element, soil & rock	ICP-ARS	10	10000
2140	84	Pb ppm: 32 element, soil & rock	ICP-ARS	2	10000
2141	84	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	84	Sc ppm: 32 elements, soil & rock	ICP-ARS	1	10000
2143	84	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
2144	84	Ti %: 32 element, soil & rock	ICP-AES	0.01	10.00
2145	84	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	84	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	84	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	84	W ppm: 32 element, soil & rock	ICP-AES	10	10000
2149	84	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

ANALYTICAL PROCEDURES

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8 Page Number : 1-A Total Pages :3 Certificate Date: 30-SEP-199 Invoice No. : 19832232 P.O. Number : Account : LEA

**

Project :

Comments: ATTN: BILL POOLE

		_				<u>.</u>				CERTIFICATE OF ANALYSIS					(SIS	/	49832			
SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
B1 0+000 B1 0+010 B1 0+020 B1 0+030 B1 0+050	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 0.2 0.2 0.2	1.47 1.32 1.29 2.19 2.45	14 38 26 168 182	150 120 120 200 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.30 0.28 0.23 0.35 0.24	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 10 9 18 63	43 47 48 74 448	19 25 18 54 110	3.03 3.19 2.86 4.71 7.11	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.16 0.14 0.15 0.48 0.13	< 10 < 10 < 10 10 < 10	0.39 0.40 0.44 0.86 3.53	230 260 205 360 750	6 5 2 6 3
B1 0+060 B1 0+070 B1 0+080 B1 0+090 B1 0+100	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 0.6 0.2 < 0.2 < 0.2	1.39 1.42 1.09 1.42 1.72	12 6 2 2 2	140 100 100 100 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.23 0.24 0.23 0.26 0.27	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 8 9 10 10	53 45 45 45 45	13 12 13 16 14	2.35 2.52 2.88 3.12 3.08	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.08 0.06 0.07 0.07	< 10 < 10 < 10 < 10 < 10 < 10	0.40 0.43 0.41 0.40 0.37	320 200 215 225 240	2 1 1 1 1
B1 0+110 B2 0+000 B2 0+010 B2 0+020 B2 0+030	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.44 1.30 1.58 1.49 1.69	< 2 26 10 12 26	90 190 150 140 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.27 0.23 0.28 0.26 0.40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 13 10 9 17	29 55 55 47 108	8 22 15 15 23	2.30 3.42 2.80 2.62 3.66	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.21 0.12 0.10 0.15	< 10 < 10 < 10 < 10 < 10	0.28 0.62 0.54 0.46 1.01	165 230 210 205 240	1 5 1 1 3
B2 0+050 B2 0+060 B2 0+070 B2 0+080 B2 0+090	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.90 1.55 1.41 1.52 1.43	62 28 48 78 34	110 110 130 110 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 2 2 2	0.35 0.29 0.29 0.28 0.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	18 14 12 17 10	111 101 69 92 56	54 28 28 56 29	3.90 3.16 3.07 3.88 3.07	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.14 0.09 0.11 0.15 0.09	< 10 < 10 < 10 < 10 < 10 < 10	0.99 0.92 0.59 0.75 0.52	245 180 195 310 205	3 1 2 3 3
B2 0+100 B3 0+000 B3 0+010 B3 0+020 B3 0+040	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.34 1.39 1.42 1.51 1.53	16 46 70 62 26	100 150 130 120 130	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 < 2 < 2 < 2 < 2	0.22 0.26 0.26 0.24 0.30	< Q.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 12 14 16 13	48 54 62 80 77	17 31 59 41 32	3.07 3.48 3.84 3.67 3.43	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.20 0.18 0.17 0.12	< 10 < 10 < 10 < 10 < 10 < 10	0.50 0.58 0.68 0.89 0.73	220 265 275 280 235	2 5 5 4 2
B3 0+050 B3 0+060 B3 0+070 B3 0+080 B3 0+080 B3 0+090	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.45 1.90 1.77 1.69 1.69	48 50 50 46 56	110 120 130 110 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 < 2 2 2 2	0.29 0.32 0.29 0.28 0.27	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 20 16 17 17	90 125 98 119 95	39 45 39 42 43	3.41 3.90 3.57 3.48 3.60	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.11 0.13 0.10 0.10 0.16	< 10 < 10 < 10 < 10 < 10 < 10	0.75 1.03 0.88 1.07 0.82	220 315 275 255 275	3 3 3 2 4
B3 0+100 B4 0+010 B4 0+020 B4 0+030 B4 0+040	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.57 1.68 1.48 1.44 1.22	68 36 34 26 10	160 140 130 130 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.31 0.26 0.27 0.26 0.26	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	18 19 14 15 10	118 118 85 97 53	45 34 31 31 20	3.83 3.72 3.22 3.31 2.91	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.21 0.18 0.13 0.15 0.08	< 10 < 10 < 10 < 10 < 10 < 10	1.09 1.26 0.83 0.94 0.45	310 290 265 245 245	3 3 3 2 1
B4 0+050 B4 0+060 B4 0+070 L1 1+160B L1 1+180B	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.40 1.30 1.46 1.29 1.80	10 28 38 24 54	120 120 120 120 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 2 < 2 < 2 < 2	0.22 0.22 0.26 0.23 0.31	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 10 15 13 16	49 58 88 75 96	13 23 35 23 41	2.57 2.77 3.36 2.89 3.82	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.07 0.12 0.12 0.18	< 10 < 10 < 10 < 10 < 10 < 10	0.48 0.53 0.79 0.75 0.95	220 180 245 225 265	1 2 3 3 3
L																		. :		

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8 Page Number : 1-8 Total Pages : 3 Certificate Date: 30-SEP-19 Invoice No. : 19832232 P.O. Number : Account : LEA

**

Project : Comments: ATTN: BILL POOLE

										CE	RTIFI	CATE	OF A	NALYSIS	A9832232
SAMPLE	PREP CODE	Na X	Ni pom	bbm J	Pb	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	₩ ppm	Zn ppm	
B1 0+000 B1 0+010 B1 0+020 B1 0+030 B1 0+030 B1 0+050	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01	35 36 48 93 781	630 440 380 630 490	2 2 2 6 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	4 4 9 15	29 28 24 38 24	0.15 0.17 0.16 0.19 0.07	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	71 76 68 115 75	< 10 < 10 < 10 < 10 < 10 < 10	68 80 84 112 172	
B1 0+060 B1 0+070 B1 0+080 B1 0+090 B1 0+100	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01	62 44 30 35 31	540 530 510 630 610	6 2 2 2 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	3 3 4 3	20 24 26 28 29	0.14 0.16 0.17 0.18 0.19	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	52 60 75 76 76	< 10 < 10 < 10 < 10 < 10 < 10	84 58 46 50 56	
B1 0+110 B2 0+000 B2 0+010 B2 0+010 B2 0+020 B2 0+030	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01	22 52 65 50 163	520 370 640 450 530	2 < 2 2 2 2	<pre>< 2 < 2</pre>	3 5 4 3 6	28 38 27 25 36	0.16 0.15 0.14 0.14 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	53 86 65 61 84	< 10 < 10 < 10 < 10 < 10 < 10	52 54 70 66 66	
82 0+050 82 0+060 82 0+070 82 0+080 82 0+080 82 0+090	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01	157 140 92 141 67	590 550 640 660 790	2 4 2 4 4	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	6 4 3 7 4	28 23 21 26 24	0.12 0.11 0.11 0.12 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	78 62 60 72 65	< 10 < 10 < 10 < 10 < 10 < 10	94 80 100 100 86	
B2 0+100 B3 0+000 B3 0+010 B3 0+010 B3 0+020 B3 0+040	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01	44 50 62 104 86	350 470 520 450 500	2 2 6 4 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 5 6 5 5	21 31 29 27 31	0.17 0.15 0.14 0.13 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	76 85 87 84 85	< 10 < 10 < 10 < 10 < 10 < 10	58 62 82 70 58	
B3 0+050 B3 0+060 B3 0+070 B3 0+070 B3 0+080 B3 0+090	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01	102 163 132 164 119	360 350 370 370 540	< 2 4 2 2 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	5 8 6 6 6	26 29 29 25 26	0.14 0.14 0.13 0.12 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	82 84 75 70 77	< 10 < 10 < 10 < 10 < 10 < 10	70 72 72 66 76	
B3 0+100 B4 0+010 B4 0+020 B4 0+030 B4 0+040	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01	162 178 100 114 46	620 390 400 350 370	< 2 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	6 7 5 5 4	32 27 28 27 28	0.13 0.14 0.14 0.15 0.16	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	74 80 76 77 73	< 10 < 10 < 10 < 10 < 10 < 10	72 58 58 56 46	
B4 0+050 B4 0+060 B4 0+070 L1 1+160B L1 1+180B	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01	60 69 108 95 118	360 320 410 430 440	2 2 4 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2	3 3 5 4 7	19 23 27 23 32	0.14 0.14 0.13 0.12 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	59 67 72 68 85	< 10 < 10 < 10 < 10 < 10 < 10 < 10	66 58 62 54 68	ĩ

CERTIFICATION.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CARIBOO FOREST CONSULTANTS LTD.

CERTIFICATE OF ANALYSIS

BOX 4629 QUESNEL, BC V2J 3J8 Page Number : 2-A Total Pages : 3 Certificate Date: 30-SEP-19 Invoice No. : 19832232 P.O. Number : Account : LEA

A9832232

**

		·													313	/ 	49032	232 		
SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Мо ррш
L1 1+200B L1 1+220B L1 1+240B L1 1+240C	201 202 201 202 201 202 201 202 201 202	< 0.2 0.2 1.2 1.8	2.19 2.17 2.23 1.64	42 240 366 552	150 130 100 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 6 6	0.38 0.43 0.33 0.33	< 0.5 < 0.5 0.5 2.0	22 22 31 44	188 78 183 241	36 111 139 144	4.28 5.31 5.76 5.81	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.14 0.23 0.10 0.07	< 10 10 20 10	1.60 0.66 1.56 2.86	265 345 605 720	1 10 5
LB1a 0+000B	201 202 201 202	< 0.2	2.18	68 12	110 200	< 0.5 < 0.5	2	0.23	0.5	40 	279 	92	5.43	< 10 < 10	< 1 < 1	0.17	10	3.04	525 	3
LB1a 0+000C LB1a 0+010 LB1a 0+020 LB1a 0+030C	201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2	1.26 1.36 1.46 1.47	22 16 30 54	140 120 110 120	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 2	0.26 0.25 0.23 0.23	< 0.5 < 0.5 < 0.5 < 0.5	8 9 13 11	43 44 58 51	19 13 32 32	2.93 2.62 3.46 3.36	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.13 0.13 0.17 0.17	< 10 < 10 < 10 < 10	0.42 0.46 0.75 0.55	215 215 245 240	3 2 3 6
Bla 0+050 Bla 0+060 Bla 0+070 Bla 0+080 Bla 0+080	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.42 1.19 1.37 1.73 1.29	66 56 146 6 2	140 90 60 100 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 2 < 2 < 2	0.20 0.18 0.22 0.29 0.25	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 11 17 7 8	60 64 102 36 48	48 39 77 9 8	3.71 2.92 3.98 2.40 2.34	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.12 0.07 0.11 0.07 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.62 0.53 0.92 0.36 0.45	255 210 240 200 285	4 3 4 < 1 < 1
B1a 0+100 B1a 0+110 B1b 0+000C B1b 0+010 B1b 0+010 B1b 0+020	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.54 1.77 1.39 1.62 1.65	2 6 8 16 42	100 120 120 140 170	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 2	0.25 0.28 0.28 0.31 0.32	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 10 10 11 8	37 47 50 50 47	9 13 24 27 17	2.61 3.15 3.03 3.61 2.77	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.07 0.15 0.17 0.16	< 10 < 10 < 10 < 10 < 10 < 10	0.39 0.44 0.44 0.46 0.37	210 240 225 290 450	< 1 1 7 5 2
B1b 0+030 B1b 0+040 B1b 0+060 B1b 0+070 B1b 0+080	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.36 1.32 1.81 1.82 1.52	112 34 30 6 < 2	120 100 100 110 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 < 2 < 2	0.22 0.26 0.28 0.27 0.26	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 15 14 9 6	59 122 75 63 40	50 31 48 18 11	3.60 3.43 3.98 3.14 2.44	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.20 0.23 0.35 0.07 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.54 0.88 0.80 0.59 0.31	225 250 315 220 180	3 1 3 2 < 1
B1b 0+090 B1b 0+100 B1b 0+110 B1b 0+110 B1b 0+120 B1b 0+130	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.69 1.46 1.62 1.97 1.90	2 < 2 2 < 2 2 < 2 2	100 90 90 120 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.29 0.27 0.31 0.29 0.30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 5 7 6 6	38 37 44 37 33	10 10 14 9 9	2.46 2.49 2.89 2.46 2.34	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.06 0.07 0.06 0.08	< 10 < 10 < 10 < 10 < 10 < 10	0.29 0.26 0.31 0.26 0.33	180 170 210 200 180	1 < 1 < 1 < 1
dL2-1 dL2-2 dL2-3 dL2-4 dL2-5	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.89 1.53 2.28 1.71 1.29	36 26 42 40 22	160 150 140 150 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 2 < 2 2 2	0.41	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	25 32 28 17 132	182 147 164 88 636	46 45 66 42 35	3.96 3.68 4.97 4.08 5.62	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.16 0.09 0.15 0.23 0.04	< 10 10 10 10 < 10	2.38 3.85 1.97 1.12 7.33	460 725 690 425 1150	2 1 3 1 1
dL2-6 dL2-7 dL2-8 TR2-1 TR2-5	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.34 2.17 1.74 0.98 2.49	24 18 24 2 2	460 90 110 160 140	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 < 2 < 2 < 2	0.43 1.09 2.37 0.80 0.45	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	61 41 54 6 12	271 261 262 57 155	63 104 74 31 11	7.07 6.45 7.11 1.16 3.45	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.14 0.08 0.09 0.06 0.10	< 10 < 10 10 < 10 < 10	3.47 3.94 2.91 1.02 1.54	1060 675 1530 235 210	1 1 < 1 < 1 1

CERTIFICATION Hart Fichler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8

Page Number : :2-B Total Pages : 3 Certificate Date: 30-SEP-1 Invoice No. : 19832232 P.O. Number : LEA Account

 \mathbb{N} $\widehat{\mathbb{N}}$.

Project : Comments: ATTN: BILL POOLE

SAMPLE C L1 1+200B 20 L1 1+220B 20 L1 1+240B 20 L1 1+240B 20 L1 1+240B 20 L1 1+240B 20 L1 1+260B 20 LB1a 0+000B 20 LB1a 0+000C 20 LB1a 0+010 20 LB1a 0+030C 20 LB1a 0+050 20 LB1a 0+100 20 LB1a 0+100 20 LB1b 0+000C 20 LB1b 0+010 20 LB1b 0+020 20 LB1b 0+030 20 LB1b 0+040 20									<u>-</u>		CE	RTIFI	CATE	OF A	NALYSIS	A9832232
L1 1+220B 20 L1 1+240B 20 L1 1+240B 20 L1 1+240C 20 L1 1+260B 20 LB1a 0+000C 20 LB1a 0+010 20 LB1a 0+020 20 LB1a 0+050 20 LB1a 0+050 20 LB1a 0+060 20 LB1a 0+060 20 LB1a 0+090 20 LB1a 0+110 20 LB1a 0+100 20 LB1b 0+010 20 LB1b 0+030 20 LB1b 0+030 20 LB1b 0+040 20	PREP CODE		Na %	Nippm	р ррш	Pb mqq	Sp mqq	Sc ppm	Sr ppm	Tì %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
LB1a 0+000C 20 LB1a 0+010 20 LB1a 0+020 20 LB1a 0+030C 20 LB1a 0+050 20 LB1a 0+050 20 LB1a 0+050 20 LB1a 0+050 20 LB1a 0+060 20 LB1a 0+090 20 LB1a 0+000 20 LB1b 0+010 20 LB1b 0+010 20 LB1b 0+020 20 LB1b 0+020 20 LB1b 0+020 20 LB1b 0+020 20 LB1b 0+040 20	01 20 01 20 01 20 01 20 01 20 01 20	12 12 12	0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	271 114 454 829 562	450 300 460 390 430	< 2 10 62 38 < 2	< 2 < 2 2 2 2	9 12 13 12 12	31 42 33 30 24	0.11 0.07 0.02 0.03 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	72 74 56 48 75	< 10 < 10 < 10 < 10 < 10 < 10	70 114 158 186 106	
LB1a 0+060 20 LB1a 0+070 20 LB1a 0+080 20 LB1a 0+090 20 LB1a 0+100 20 LB1a 0+100 20 LB1b 0+000C 20 LB1b 0+010 20 LB1b 0+020 20 LB1b 0+030 20 LB1b 0+030 20 LB1b 0+040 20	01 20 01 20 01 20 01 20 01 20 01 20	2 12 12	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	34 31 36 51 50	570 400 400 340 300	2 2 < 2 < 2 2 2	<pre>< 2 < 2</pre>	3 4 3 5 6	32 30 23 25 26	0.14 0.15 0.12 0.09 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	55 68 57 69 68	< 10 < 10 < 10 < 10 < 10 < 10	74 54 68 58 70	
LB1a 0+110 20 LB1b 0+000C 20 LB1b 0+010 20 LB1b 0+020 20 LB1b 0+030 20 LB1b 0+040 20	01 20 01 20 01 20 01 20 01 20 01 20)2 ·)2 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	75 82 144 47 39	550 350 580 990 340	2 8 6 4 < 2	2 < 2 < 2 < 2 < 2 < 2 < 2	5 3 5 3 3	26 19 23 27 26	0.09 0.12 0.10 0.15 0.16	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	72 57 65 49 50	< 10 < 10 < 10 < 10 < 10 < 10	86 98 128 90 50	
LB15 0+040 20	01 20 01 20 01 20 01 20 01 20 01 20)2 ·)2 ·)2 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	28 32 38 39 45	330 470 400 500 810	< 2 2 < 2 2 8	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	3 3 5 6 4	26 32 32 36 30	0.17 0.19 0.17 0.14 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	61 77 72 76 53	< 10 < 10 < 10 < 10 < 10 < 10	48 50 54 76 92	
LB1Ъ 0+070 20	01 20 01 20 01 20 01 20 01 20 01 20)2 ·)2 ·	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	59 118 92 66 25	490 260 600 620 420	4 < 2 < 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2	5 4 7 4 3	18 18 24 36 33	0.14 0.18 0.15 0.19 0.20	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	74 75 85 69 54	< 10 < 10 < 10 < 10 < 10 < 10	156 74 104 56 50	
LB15 0+100 20 LB15 0+110 20 LB15 0+120 20	01 20 01 20 01 20 01 20 01 20 01 20	2	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	26 16 23 21 26	420 290 430 540 760	2 2 2 2 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 3 4 3 3	35 34 38 35 33	0.20 0.21 0.22 0.20 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	55 58 67 50 46	< 10 < 10 < 10 < 10 < 10 < 10	54 46 48 58 70	
RdL2-2 20 RdL2-3 20 RdL2-4 20	01 20 01 20 01 20 01 20 01 20 01 20	2	0.01 0.02 0.01 0.01 0.01	391 408 305 147 2220	520 650 560 640 140	<pre>< 2 < 2</pre>	< 2 < 2 < 2 < 2 < 2 < 2 < 2	9 8 14 9 11	28 78 36 32 74	0.12 0.09 0.12 0.15 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	65 55 76 72 36	< 10 < 10 < 10 < 10 < 10 < 10	60 68 70 72 44	,
RdL2-7 20 RdL2-8 20 STR2-1 20	01 20 01 20 01 20 01 20 01 20 01 20	2	0.01 0.01 0.01 0.01 < 0.01 < 0.01	1285 825 1160 98 125	580 450 210 680 410	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 2 < 2 2 < 2 < 2 < 2	17 8 17 5 8	55 55 85 44 28	0.08 0.05 0.02 0.10 0.16	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	63 · 53 49 ¹ 31 45	< 10 < 10 < 10 < 10 < 10 < 10	64 72 42 58 48	· ·

Havit (1) **CERTIFICATION:_**

**

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE; 604-984-0221 FAX: 604-984-0218 To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8 Page Number 13-A Total Pages 13 Certificate Date: 30-SEP-199 Invoice No. 19832232 P.O. Number 1 Account 1LEA

**

Project : Comments: ATTN: BILL POOLE

										CE	RTIFI	CATE	OF A	NALY	ISIS	<u> </u>	9832	232		
SAMPLE	PREP) PI	lg Al		Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K Ş	La ppm	Mg	Mn ppm	Mo ppm
STR4-3 STR4-4 STR4-5 STOMO 1+240	201 20 201 20 201 20 201 20 201 20	2 < 0, 2 < 0, 2 < 0, 2 < 0, 2 < 0, 2 < 0,	2 1.54 2 1.59	L 6	180 150	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 2 2	0.87	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 10 12 19	57 58 69 86	31 31 38 99	3.26 3.37 3.96 5.06	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.07 0.09 0.08 0.12	10 10 10	0.77 0.79 0.82 1.06	595 765 1175 420	< 1 1 6
	#												1) 1		

٠,

. . .

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8 Page Number : 3-B Total Pages : 3 Certificate Date: 30-SEP-19 Invoice No. : 19832232 P.O. Number : Account : LEA

**

Project : Comments: ATTN: BILL POOLE

	,													NALYSIS	A9832232
SAMPLE	PREP CODE	Na %	Ni ppm	P ppm	dd mdd	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	ppm U	V Mqq	M mqq	Zn ppm	
STR4-4 STR4-5	201 202 201 202 201 202 201 202	0.01 0.01 0.01 < 0.01	80 81 108 156	740 770 910 460	< 2 < 2 < 2 6	< 2 < 2 < 2 2 2	5 5 6 14	53 74 56 29	0.10 0.11 0.11 0.04	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	72 74 92 69	< 10 < 10 < 10 < 10	56 62 84 104	
													1] ,

CERTIFICATION

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 10 CARIBUG FOREST CONSULTANTS LTD

BOX 4629 QUESNEL, BC V2J 3J8

A9833514

Comments: ATTN: BILL POOLE

CERTIFICATE A9833514			ANALYTICA	PROCEDURES	3	
LEA) - CARIBOO FOREST CONSULTANTS LTD.	CHEMEX CODE	NUMBER	DESCRIPTION	METHOD	DETECTION LIMIT	UPPEP LIMIT
amples submitted to our lab in Vancouver, BC. his report was printed on 17-0CT-1998.	983	19	Au ppb: Fuse 30 g sample	FA-AAS	5	10000
SAMPLE PREPARATION						
HEMEX NUMBER CODE SAMPLES DESCRIPTION						
244 19 Pulp; prev. prepared at Chemex		2				

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To CARIBOO FOREST CONSULTANTS LTD

BOX 4629 QUESNEL, BC V2J 3J8 Page Number 1 Total Pages 1 Certificate Date 17-OCT-1998 Invoice No 19833514 P.O. Number Account LEA

MANY

CERTIFICATION.

...

				CERTIFIC	ATE OF A	NALYSIS	A98	33514	
SAMPLE	PREP CODE	Au ppb FA+AA							
B1 0+050 B2 0+050 B2 0+080 B3 0+010 B3 0+020	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	85 65 90 25 25							
B3 0+060 B3 0+070 B3 0+090 B3 0+100 L1 1+180B	244 244 244 244 244	25 20 40 30 25							
L1 1+220B L1 1+240C L1 1+260B LB1a 0+030C LB1a 0+050	244 244 244 244 244 244	115 130 85 30 30							
LB1a 0+060 LB1a 0+070 LB1b 0+030 STUMP 1+240	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	80 85 85 80							
									· ·
									 !

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave.. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8

Comments: ATTN: BILL POOLE

c	ERTIF	ICATE A	9827476			ANALYTICAL F	ROCEDURES	 S	
(LEA) - (Project: P.O. # ⁻	CARIBOO	FOREST CONSULTANTS LI	г <u>р</u> .	CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION	UPPEF LIMIT
Samples This re	submitt port was	ed to our lab in Vanc printed on 15-AUG-98	ouver, BC.	983 2118 2119 2120 2121 2122 2123		Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock	PA-AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	5 0,2 0.01 2 10 0.5	10000 100.0 15.00 10000 10000 100.0
	SAM	PLE PREPARATIC	DN	2124 2125 2126	4	Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock	ICP- ARS ICP- ARS ICP- ARS	2 0.01 0.5	10000 15.00 500
CHEMEX CODE	NUMBER SAMPLES	DESCRI	PTION	2127 2128 2150 2130 2131	4 4 4 4	Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	1 1 0.01 10	10000 10000 10000 15.00 10000
205 226 3202 229	4 4 4	Geochem ring to appr 0-3 Kg crush and spl Rock - save entire r ICP - AQ Digestion c	it	2132 2151 2134 2135 2136 2137 2138 2139 2140	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	K %: 32 element, soil & rock La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mo ppm: 32 element, soil & rock Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock P ppm: 32 element, soil & rock Pb ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	1 0.01 10 0.01 5 1 0.01 1 10 2	10000 10.00 15.00 10000 10000 10.00 10000 10000 10000
frace g Elements ligestic	for when is pos	CP package is suitabl in soil and rock sam nich the nitric-aqua ssibly incomplete are:	ples. regia	2141 2142 2143 2144 2145 2146 2147 2148 2149	4 4 4 4 4	Sb ppm: 32 element, soil & rock Sc ppm: 32 elements, soil & rock Sr ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Tl ppm: 32 element, soil & rock U ppm: 32 element, soil & rock V ppm: 32 element, soil & rock W ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	2 1 1 0.01 10 10 1 10 2	10000 10000 10000 10.00 10000 10000 10000 10000 10000
nigestic Ba, Be, Ni, W.	n 18 pos Ca, Cr,	sibly incomplete are: Ga, K, La, Mg, Na, Sr	Al, , Ti,						

A9827476

- ---- --- ----

Chemex Labs Lt

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To. CARIBOO FOREST CONSULTANTS LTD

BOX 4629 QUESNEL, BC V2J 3J8

Page Number 1-A Total Pages 1 Certificate Date: 15-AUG-98 Invoice No. : 19827476 P O. Number Account :LEA

۰.

	·	.								CE	RTIFI	CATE	OF A	NAL	rsis	A	9827	476	••••••••••••••••••••••••••••••••••••••	
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
R1 R2 R3 R5	205 226 205 226 205 226 205 226		1.0 < 0.2 < 0.2 < 0.2	0.31 0.14 0.61 1.71	100 < 2 < 2 < 2	40 60	< 0.5 < 0.5 < 0.5 < 0.5	< 2 2 6 < 2	0.42	< 0.5 < 0.5 0.5 < 0.5	46 29 59 5	438 272 859 59	27 9 18 10	2.77 2.93 5.51 1.44	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < < 1 < 1	0.01 0.01 0.01 0.32	< 10 < 10 < 10 < 10	6.52 12.95 6.74 0.94	725 545 705 800
														CERTIFI			\$ EL	×-1:	Sich	Se_

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To. CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8

Page Number 1-B Total Pages 1 Certificate Date: 15-AUG-98 Invoice No. 19827476 P.O. Number .LEA Account

• •

<u></u>						. <u> </u>				CE	RTIFI	CATE	OF A	NALY	'SIS	A9827476	
SAMPLE	PREP CODE	Мо ррт	Na %	Ni ppm	b b b	PP Mqq	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm		
71 R2 R3 R5	205 226 205 226 205 226 205 226	< 1 < 1	< 0.01 < 0.01 0.02 0.02	911 598 1070 10	< 10 10 < 10 250	8 4 < 2 < 2	486 < 2 < 2 < 2	5 5 8 2		x 0.01 x 0.01 0.01 0.08	< 10 < 10 10 < 10	< 10 < 10 20 10	14 11 41 43	< 10 < 10 < 10 < 10	2 14 30 26		
					_					-				CERTIFIC	DATION:_	Hant	·.

ſ

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8

A9835509

Comments: ATTN: BILL POOLE

CERTIFICATE A9835509			ANALYTICAI		6	
(LEA.) - CARIBOO FOREST <u>CONSULTANTS LTD.</u> Project. P.O. # .	CHEMEX	NUMBER	DESCRIPTION	METHOD		UPPER LIMIT
Samples submitted to our lab in Vancouver, BC. This report was printed on 11-NOV-1998.	983	1	Au ppb: Fuse 30 g sample	P A-AA <i>S</i>	5	10000
SAMPLE PREPARATION						
CHEMEX NUMBER CODE SAMPLES DESCRIPTION						
244 1 Pulp; prev. prepared at Chemex						
)				۱
		-				:
						:
						j

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8 Page Number :1 Total Pages :1 Certificate Date: 11-NOV-199 Invoice No. :19835509 P.O. Number : Account :LEA

**

			CERTIFIC	ATE OF ANALYSIS	A9835509	
SAMPLE	PREP CODE	Au ppb FA+AA				
B1 0+030	244	30				
		ļ			l l	
					í	
	(

Huk Vinh CERTIFICATION:

Chemex Labs Ltd.

Analytical Chemists " Geochemists " Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8

A9832231

Comments: ATTN: BILL POOLE

С	ERTIF	ICA	ΓE	A9832231			ANALYTICAL P	ROCEDURES	3	
LEA) - C. roject: 2.0. # ;	ARIBOO F	ORE:	ST CONSULT.	ANTS LTD.	CHEMEX	NUMBER		METHOD		UPPER LIMIT
amples his rep	submitt port was	ed to prin	o our lab inted on 02-	in Vancouver, BC. -OCT-1998.	983 2118 2119 2120 2121 2122 2123 2124	444444	Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock	FA-AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	5 0.2 0.01 2 10 0.5 2	10000 100.0 15.00 10000 10000 100.0 10000
	SAM	PLE	PREPAR	RATION	2125 2126	4	Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock	ICP-ARS ICP-ARS ICP-ARS	0.01 0.5 1	15.00 500 10000
CODE	NUMBER SAMPLES		cham ring	DESCRIPTION	2127 2128 2150 2130 2131 2132 2151		Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock La ppm: 32 element, soil & rock	ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS	1 1 0.01 10 1 0.01 10	10000 10000 15.00 10000 10000 10.00
226 3202 229	4	0-3 Roc	Kg crush k - save e		2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146	444444	Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mo ppm: 32 element, soil & rock Na %: 32 element, soil & rock P ppm: 32 element, soil & rock Pb ppm: 32 element, soil & rock Sb ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Sr ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Tl ppm: 32 element, soil & rock	ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS ICP-ARS	0.01 5 1 0.01 1 10 2 2 1 1 0.01 10	10000 15.00 10000 10000 10000 10000 10000 10000 10000 10000 10000 10000
race m lements igestio	etals : for when is pos	in s hich ssibl	the nitri	suitable for ock samples. C-aqua regia te are: Al, Na, Sr, Ti,	2147 2148 2149	4 4 4	V ppm: 32 element, soil & rock W ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock	ICP-ARS ICP-ARS ICP-ARS	1 10 2	10000 10000 10000

.... -

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

10. CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8

Page Number 1-A Total Pages .1 Certificate Date: 02-OCT-1998 Invoice No. P.O. Number 19832231 LEA Account

Hartfield

CERTIFICATION:

••

										CE	RTIF	CATE	OFA	NAL	rsis	A	9832	231	_	
SAMPLE	PREP CODE	Ац ррв ГА+АА	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ <i>≣qq</i>	Co Mgq	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	R %	La ppm	Mg %	Mn ppm
L1 0+080 L1 1+240 LB1A 0+030 11M-5.2	205 226 205 226 205 226 205 226	515 < 5	1.8 1.0 < 0.2 0.2	0.28 0.03 1.09 2.02	144 336 26 16	< 10 90	< 0.5 < 0.5 < 0.5 < 0.5	< 2 6 < 2 < 2	0.01	< 0.5 < 0.5 < 0.5 1.5	48 3 12 7	710 184 68 37	8 130 28 110	3.15 4.52 3.13 3.81	< 10 < 10 < 10 < 10 < 10	3 < 1	c 0.01 c 0.01 0.13 0.25	< 10 < 10 < 10 < 10 < 10	11.15 0.05 0.47 1.28	495 105 605 1175
																			·	_

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8 Page Number 1-B Total Pages 1 Certificate Date: 02-OCT-1998 Invoice No. 19832231 P.O. Number 1 Account 1LEA

• •

										CE	RTIFI	CATE	OF A	NALY	SIS	A9832231
SAMPLE	PREP CODE	Мо ррш	Na %	Ni ppm	р т	Pb mqq	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	n Tdđ	ppm V	W ppm	Zn ppm	
L1 0-080 L1 1+240 LB1A 0+030 11M-5.2	205 226 205 226 205 226 205 226 205 226	23	< 0.01 < 0.01 0.03 0.05	1120 38 28 52	90 20 530 450	2 < 2 < 2 2	572 6 2 < 2	6 < 1 7 9	1 < 14 <	0.01 0.01 0.01 0.01	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	18 4 52 69	< 10 < 10 < 10 < 10	14 38 50 98	

ſ

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8

A9832230

Comments: ATTN: BILL POOLE

C	ERTIF	ICATE	A9832230			ANALYTICAI	PROCEDURES	5	
(LEA) - 0 Project: P.O. # ;	CARIBOO F	OREST CONSULT,	ANTS LTD.	CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD		UPPER LIMIT
Samples	submitt port was	ed to our lab i printed on 02-	n Vancouver, BC. OCT-1998.	983	3	Au ppb: Fuse 30 g sample	ም እ-እእ <i>ዩ</i>	5	10000
	SAM	PLE PREPAR	RATION						
CHEMEX CODE	NUMBER	1	DESCRIPTION						
201 202		Dry, sieve to save reject	-80 mesh						
	:								
	l								

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8 Page Number :1 Total Pages :1 Certificate Date:02-OCT-1998 Invoice No. :19832230 P.O. Number : Account :LEA

**

			CE	RTIFICATE OF A	NALYSIS	A9832230	
SAMPLE	PREP CODE	Au ppb FA+AA					
STR2-2 STR2-3 STR2-4	201 202 201 202 201 202	10 < 5 5					
						ť	
				(SEPTIFICATION:	Junk!	Unh

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8

Comments: ATTN: BILL POOLE

983 100 866 2118 2120 2121 2122 2123 2124 2125 2126 2127	NUMBER SAMPLES 6 0 6 6 6 6 6 6 6 6 6 6	DESCRIPTION Au ppb: Fuse 30 g sample Au ppb: Fuse 10 g sample Fusion weight in grams Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock	METHOD FA-AAS FA-AAS BALANCE ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	DETECTION LIMIT 5 5 0.01 0.2 0.01 2	UPPER LIMIT 10000 10000 30.00 100.0 15.00
100 866 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127	0055556	Au ppb: Fuse 10 g sample Fusion weight in grams Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock	FA-AAS BALANCE ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	5 0.01 0.2 0.01 2	10000 30.00 100.0
2123 2124 2125 2126 2127	6	Bi ppm: 32 element, soil & rock		10	10000 10000
2126 2127	6	CT 4: JE GIGMONC, BOIL & LOCK	ICP -AES ICP -AES	0.5 2 0.01	100.0 10000 15.00
2128 2150 2130 2131 2132 2151 2134 2135 2136 2137 2138 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2144 2145 2146 2147 2148 2149	<u> </u>	Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Ct ppm: 32 element, soil & rock Ct ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock Mg %: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Nn ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Sb ppm: 32 element, soil & rock Sb ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Ti %: 32 element, soil & rock St ppm: 32 element, soil & rock Sc ppm: 32 element, soil & rock Ti ppm: 32 element, soil & rock	ICP-AES ICP-AES	0.01 0.5 1 1 1 0.01 10 0.01 10 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0.01 1 0 2 2 1 1 0.01 10 2 2 1 10 10 10 10 10 10 10 10 10	10000 10000
	2151 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148	2151 6 2134 6 2135 6 2137 6 2138 6 2139 6 2140 6 2141 6 2142 6 2143 6 2144 6 2145 6 2145 6 2145 6 2148 6	21516La ppm: 32 element, soil & rock21346Mg %: 32 element, soil & rock21356Mn ppm: 32 element, soil & rock21366Mo ppm: 32 element, soil & rock21376Na %: 32 element, soil & rock21386Ni ppm: 32 element, soil & rock21396P ppm: 32 element, soil & rock21396P ppm: 32 element, soil & rock21406Pb ppm: 32 element, soil & rock21416Sc ppm: 32 element, soil & rock21436Sc ppm: 32 element, soil & rock21436Sr ppm: 32 element, soil & rock21446Ti %: 32 element, soil & rock21456Tl ppm: 32 element, soil & rock21466U ppm: 32 element, soil & rock21476V ppm: 32 element, soil & rock21486W ppm: 32 element, soil & rock	21516La ppm: 32 element, soil & rockICP-AES21346Mg %: 32 element, soil & rockICP-AES21356Mn ppm: 32 element, soil & rockICP-AES21366Mo ppm: 32 element, soil & rockICP-AES21376Na %: 32 element, soil & rockICP-AES21386Ni ppm: 32 element, soil & rockICP-AES21396P ppm: 32 element, soil & rockICP-AES21406Pb ppm: 32 element, soil & rockICP-AES21416Sb ppm: 32 element, soil & rockICP-AES21426Sc ppm: 32 element, soil & rockICP-AES21436Sr ppm: 32 element, soil & rockICP-AES21446Ti %: 32 element, soil & rockICP-AES21456Tl ppm: 32 element, soil & rockICP-AES21446V ppm: 32 element, soil & rockICP-AES21456U ppm: 32 element, soil & rockICP-AES21466W ppm: 32 element, soil & rockICP-AES21476W ppm: 32 element, soil & rockICP-AES21486W ppm: 32 element, soil & rockICP-AES	21516La ppm: 32 element, soil & rockICP-AES1021346Mg %: 32 element, soil & rockICP-AES0.0121356Mn ppm: 32 element, soil & rockICP-AES521366Mo ppm: 32 element, soil & rockICP-AES121376Na %: 32 element, soil & rockICP-AES121386Ni ppm: 32 element, soil & rockICP-AES0.0121386Ni ppm: 32 element, soil & rockICP-AES121396P ppm: 32 element, soil & rockICP-AES1021406Pb ppm: 32 element, soil & rockICP-AES221416Sc ppm: 32 element, soil & rockICP-AES121436Sr ppm: 32 element, soil & rockICP-AES121446Ti %: 32 element, soil & rockICP-AES121446Ti %: 32 element, soil & rockICP-AES1021456Tl ppm: 32 element, soil & rockICP-AES1021446Ti %: 32 element, soil & rockICP-AES1021456Tl ppm: 32 element, soil & rockICP-AES1021446V ppm: 32 element, soil & rockICP-AES1021456W ppm: 32 element, soil & rockICP-AES1021476V ppm: 32 element, soil & rockICP-AES1021486W ppm: 32 element, soil & rockICP-AES10

A9827477

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To CARIBOO FOREST CONSULTANTS LTD

BOX 4629 QUESNEL, BC V2J 3J8

Page Number 1-A Total Pages 1 Certificate Date, 15-AUG-98 Invoice No. 19827477 P.O. Number LEA Account

٠.

					 	 							CE	RTIF		OF A	NALY	SIS		\9827	477		
SAMPLE	PRE: CODI		Au pp FA+A		o fus A wt.	A(ppi		A1 %	As ppm	Ba ppm	e PP	3e om	Bi ppm	Ca %	Cđ ppm	Со ррш	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm
STR.1-2 STR.1-3 STR.1-4	201 201 201 201 201 201	202 202 202	< < <	5 - 5 - 5 -	 	 < 0. < 0. < 0. < 0. < 0.	2 2 2	0.73 0.54 0.61 0.72 1.02	2 < 2 < 2 < 2 < 2 6	100 110 150	< 0. < 0. < 0. < 0. < 0.	.5 .5 .5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.25 0.27 0.33	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 3 4 4 11	11 11 11 6 63	6 3 4 6 11	1.07 0.96 1.07 1.05 3.21	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.13 0.11 0.12 0.19 0.07	10 10 10 10 10
STR.4-2	201	202	<	5 -	 	 < 0.	2	1.28	6	150	< 0.	.5	< 2	0.62	< 0.5	13	70	25	3.58	< 10	< 1	0.09	10

C

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8 Page Number 1-B Total Pages 1 Certificate Date: 15-AUG-98 Invoice No. : 19827477 P.O. Number Account LEA

••

r									CE	RTIF	CATE	OFA	NALY	(SIS	4	9827477	<u> </u>
SAMPLE	PREP CODE	Mg %	Mn ppm	Mo Na ppm %	Ni ppm	ppm P	dq mqq	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	ndd	V ppm	W ppm	Zn ppm	
STR.1- <u>1</u> STR.1-2 STR.1-3 STR.1-4 STR.4-1	201 202 201 202 201 202 201 202 201 202 201 202	0.23	730 170 200 190 915	i 0.02 < 1 0.01 < 1 0.01 < 1 0.01 < 1 0.01 1 < 0.01	16 8 9 8 45	440 470 470 590 840	2 2 2 2 2 4	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 1 1 2 4	33 23 23 28 39	0.05 0.05 0.06 0.07 0.16	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	24 24 27 22 96	< 10 < 10 < 10 < 10 < 10 < 10	38 30 32 42 48	
STR.4-2	201 202	1.08	620	2 < 0.01	91	910	2	< 2	5	52	0.13	< 10	< 10	99	< 10	66	
		!															
		!															
1																	
L																	

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8

A9832731

Comments: ATTN: BILL POOLE

С	ERTIFI	ICATE	A9832731			ANALYTICAL P	ROCEDURE	S	5
) - C. ect: # :	ARIBOO F	FOREST CONSULTAN	ITS LTD.	CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD		UPPER LIMIT
les rep	submitt port was	ed to our lab in printed on 13-00	Vancouver, BC. CT-1998.	983 2118 2119 2120 2121 2122 2123	3 3 3 3 3 3 3	Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock	FA-AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	5 0.2 0.01 2 10 0.5 2	10000 100.0 15.00 10000 10000 100.0 10000
	SAM	PLE PREPARA	ATION	2124 2125 2126	3	Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES	0.01	15.00 500
	NUMBER SAMPLES	D	ESCRIPTION	2127 2128 2150 2130 2131	3 3 3 3 3	Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	1 1 0.01 10	10000 10000 10000 15.00 10000 10000
2 44 229	6 3	Pulp; prev. pre ICP – AQ Digest	pared at Chemex ion charge	2132 2151 2134 2135 2136	3 3 3 3 3	K %: 32 element, soil & rock La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mo ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	0.01 10 0.01 5 1	10.00 10000 15.00 10000
				2137 2138 2139 2140 2141	3333	Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock P ppm: 32 element, soil & rock Pb ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES	0.01 1 10 2	10.00 10000 10000 10000
701121				2142 2143 2144 2145	3	Sb ppm: 32 element, soil & rock Sc ppm: 32 elements, soil & rock Sr ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Tl ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	2 1 1 0.01 10	10000 10000 10000 10.00 10000
eπ	etals :	ICP package is su in soil and roc hich the nitric-	k samples.	2146 2147 2148 2149	3 3 3	U ppm: 32 element, soil & rock V ppm: 32 element, soil & rock W ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	10 1 10 2	10000 10000 10000 10000

(LEA) - C

Project: P.O. # :

Samples This rep

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
2 44 229	6 3	Pulp; prev. prepared at Chemex ICP - AQ Digestion charge
* NOTE	1:	

The 32 trace Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CARIBOO FOREST CONSULTANTS LTD.

..

BOX 4629 QUESNEL, BC V2J 3J8 Page Number :1-A Total Pages :1 Certificate Date: 13-OCT-199 Invoice No. :19832731 P.O. Number : Account :LEA

					•••••••						CE	RTIF	CATE	OF /	NAL	rsis		49832	731		
SAMPLE	PR CO		Au ppb FA+AA	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca १	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe ę	Ga ppm	Hg ppm	K 9	La ppm	٣g	Mn ppm
STR4 - 3 STR4 - 4 STR4 - 5 STR2 - 2 STR2 - 3	244 244 244 244 244		< 5 < 5 < 5	< 0.2	1.14 1.11	<pre></pre>	170 140	<pre></pre>	<pre></pre>	0,88	<pre></pre>	17 22	267 210	31 22	2.08 2.36	< 10 < 10	< 1 < 1	0.08 0.10	<pre></pre>	2.42 2.36	175 265
STR2-4	244	229		< 0.2	1.26	(2)		< 0.5	(2)		< 0.5	14	321	46	2.35	< 10	(1	0.07	10	2.28	180
		1																			

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: CARIBOO FOREST CONSULTANTS LTD.

**

BOX 4629 QUESNEL, BC V2J 3J8 Page Number :1-B Total Pages :1 Certificate Date: 13-OCT-199 Invoice No. :19832731 P.O. Number : Account :LEA

Havituche

ŧ

CERTIFICATION:_

	·					- <u></u>						CE	RTIF	CATE	OF A	NALY	/SIS	A9832731
SAMPLE	PR CO		Mo PP			Ni ppm	P ppm	Pb ppm	Sb Ppm	SC ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W	Zn ppm	
STR4 - 3 STR4 - 4 STR4 - 5 STR2 - 2 STR2 - 3	244 244 244 244 244 244				 1	290 270	 680 690	<pre></pre>	< 2 < 2 < 2	 5 5	47 39	0.08	<pre> < 10 < 10</pre>	<pre></pre>	46 51		52 48	·········
STR2-4		229		0.0		327	700	4	< 2	5	36	0.10	< 10	< 10	34	< 10	48	
		,																
				_														

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8

Comments: ATTN: BILL POOLE

С	ERTIF	ICATE	A9832229			ANALYTICAL	PROCEDURES	5	
LEA)- C Project: P O, # ·	CARIBOO F	FOREST CONSULT	ANTS LTD.	CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD		UPPER LIMIT
Samples	submitt port was	ed to our lab : printed on 30	in Vancouver, BC. -SEP-1998.	983	1	Au ppb: Fuse 30 g sample	የ λ-እእ <i>s</i>	5	10000
	SAM	PLE PREPA	RATION						
CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION						
235 234	1	Pan con ring 0-7 Kg splitt	to approx 150 mesh ing charge						
						4 4 4			
					6.				
	(((-	

A9832229

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., British Columbia, Canada North Vancouver V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: CARIBOO FOREST CONSULTANTS LTD.

BOX 4629 QUESNEL, BC V2J 3J8

Page Number :1 Total Pages :1 Certificate Date: 30-SEP-19 Invoice No. : 19832229 P.O. Number LEA Account

**

Project : Comments: ATTN: BILL POOLE

			 CERTIFICATE OF ANALYSIS			A9832229		
SAMPLE	PREP CODE	Au ppb FA+AA						
STR4	235 234	285						
					ſ			
¥.							1	
φ.v				, (į	, i	

ECEIN	J
NOV 2 4 1993	
N PROSPECTORS PA	

MEMPP

BRITISH COLUMBIA

PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

- One technical report to be completed for each project area
- Refer to Program Requirements/Regulations, section 15, 16 and 17
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT

Name W.E. (Bill) Poole Reference Number 98/99 P4
LOCATION/COMMODITIES
Project Area (as listed in Part A) Blackwater River MINFILE No if applicable
Location of Project Area NTS 93G/3W Lat 53 15'N Long 123 26'W
Description of Location and Access Approximately 95 km NW of Quesnel near the
Blackwater River. Access is gained via the Blackwater and 1100 Roads.
Main Commodities Searched For Gold
Known Mineral Occurrences in Project Area In 1968 Rio Tinto explored for porphyry mineralization 8 km south on the 'B' claims.
WORK PERFORMED
1. Conventional Prospecting (area) +/- 2,000 ha.
2. Geological Mapping (hectares/scale) +/- 1,500 ha.
3. Geochemical (type and no. of samples) Rock 9; Silt 14, Soil 250
4. Grophysical (type and line km) Mag No lines run
5. Physical Work (type and amount) N/A
6,. Drilling (no,. holes, size, depth in m, total m) <u>N/A</u>
7. Other (specify)
SIGNIFICANT RESULTS Commodities Gold Claim Name List 1 - 6
Location (show on map) Lat. 53° 15'N Long 123° 26'W Elevation 1,000 meters
Best assay/sample type Sediment, Au - 1135; Soil, Au - 130 ppb; Rock, Au - 515 pph
Description of mineralization, host rocks, anomalies Gold plus sulphide minerals has been identified in soils and rock overlying ultramafic rock near their
faulted margins with intrusives.

Supporting data must be submitted with this TECHNICAL REPORT

Information on this form is confidential for one sear from the date of receipt advect to the procoson, of the Treedom of Information Act