BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR: 1998/99 REPORT #: PAP 98-6 NAME: JOHN KEMP Prospecting Report John Kemp Ref. # 98 / 99 P8

<u>Contents</u>

_ - - -

REGENVE

JAN 29 1999

PROSPECTORS PROGP (***

Introduction	Page 1
Summary of prospecting activity	Page 2
Expenditures	Page 3
Daily Reports	Page 4 A&B
Prospecting report	Page 5 - 9
Minfile occurances.	Page 10-17
Recomendations (Linda Caron, M.Sc., P Eng.)	Page 18-24
Claim maps (claims staked)	Page 25 - 26
Assays (stream samples)	Page 27 -30
Assays (rock)	Page 31 - 36
Certificate of Assay	Page 36 - 39
Invoices (assays)	Page 40 -49
Area Sample Maps	Page 50

RECEP **BRITISH COLUMBIA**

	PROSPE	CTORS AS	SSISTAN	CE PROGR	AM	
	PROSPE	CTING RE	PORT FO	RM (contin	ued) JAN 2	9 1999
					PROSPECTOR	
B. TECHNICAL RE	PORT			L	MEN	100 PHUGRAM
• One technical report to	b be completed for	or each projec	t area.			
• Refer to Program Re	quirements/Reg	ulations 15 to	o 17, page 6.			
If work was performed supporting data (see se	d on claims a cop ection 16) require	by of the appli ed with this Th	cable assessn ECHNICAL	nent report may REPORT.	be submitted in li	eu of the
Name JOHN	HEMP			Refere	nce Number9	<u>8 / 99 P</u> 8
LOCATION/COMMOD	ITIES					
Project Area (as listed in P	art A) _ ARR	OW LA	AKE	MINF	ILE No. if applica	ble
Location of Project Area	NTS 82F5 ,	82.58	82E9	Lat 49°15	-/49° 45' Long	118'00' /118% 5
Description of Location ar	nd Access	AS DE	SCRIBED	IN RI	EPORT	
Main Commodities Search	ned For	RECIOUS	, BASI	E a INDU	ISTRIAL N	DINERALS
Known Mineral Occurrence	ces in Project Are MIN oR	ea <u>Mour</u> MINFILE	NTRIN OCCUI	CHIEF , RRENCES	MIDAS /	DEER
WORK PERFORMED						
1. Conventional Prospection	ng (area)	<u>73</u> DI	975			
2. Geological Mapping (h	ectares/scale)					
3. Geochemical (type and	no. of samples)_	STREAM	(moss ,	MAT) 34	, ROCK	65
4. Geophysical (type and I	line km)	6 KM	RAND	om MR	<u>6</u>	
5. Physical Work (type an	d amount)	6 KM	LINEL	UTTING,	STANING	12
6. Drilling (no. holes, size	, depth in m, tota	վ m)				
7. Other (specify)	HAND	TRENCH	2	STARING	Y SHOWING	<u>L PROSPECT 5</u>
SIGNIFICANT RESULT	TS	una lisaal	ZUNCClaim	Name MA	, , , , , , , , , , , , , , , , , , , ,	a mar
Location (show on man)		ERORT	Long		Flevation	
Best assay/sample type	/ A) A	FRORT		· · ·		
Description of mineralization	tion, host rocks,	anomalies				
·····		Crox 1				
<u> </u>						
· · · · · · · · · · · · · · · ·						

Supporting data must be submitted with this TECHNICAL REPORT

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

Prospecting Project Ref. # 98/99 P8

Hydrothermal activity on the Arrow Lakes

<u>Proposal</u> - To carry out a regional prospecting program in the area known as the "Lower Arrow Lake". The area of interest is 20 km wide, (east / west) and 40 km long (north / south) and is divided into an east and west section by the Arrow Lake. Research shows a number of geothermal hotsprings in the area which might relate to a mineralized system.

<u>Location</u> - The proposed area is located in the Greenwood and Trail Creek Mining Districts, of south-central British Columbia and is on map sheets 82E08E/W & 82E09E/W. The limits of the area are Latitudes 49° 15' to 49° 45', and Longitude 118° 00' to 118° 25'.

<u>Access</u> - The project area was accessed on the south from the Blueberry Paulson, highway #3, via the Bulldog Mountain forestry road, and on the east from the community of Deer Park utilizing the Deer Creek forestry road. Access to the north-west section was via the North Fork and Burrell creek forestry roads north of Grand Forks. Most of the drainage's on the east side of the lake were accessed by boat from Snag bay.

<u>Physiography</u> - Elevations in this area range from 420 meters at the Arrow Lake to 2000 meters on the mountain peaks in the Christina Range. Ground cover is characterized by thick forest typical of a wetter climate in B. C. Glaciation has taken place and leaves a float trail to the south with extremely thick dump of glacial material on the southern shoulders of any mountain. Extremely deep cut drainage's flow into the lake from the east and west, with final drainage to the south into the Columbia river.

<u>Geology</u> - The geology of the project area is underlain by the Paleozoic formations of Grand Forks and Monashee Gneiss's and may include the Ordovician Mt. Robert's sedimentary package. These have been intruded by Middle Jurassic Nelson, Cretaceous and / or Jurassic Okanogan, and the Cenozoic Coryell. Tempelman-Kluit suggests that the Coryell is poorly dated and may be undifferentiated from the Jkg (Okanagan) in this area. Numerous dikes cut these intrusions. The project area is on the east side of the Republic Graben as is Mount Tolman and is in the same formations as Mount Tolman.

<u>Structure</u> - The most prominent regional feature in the area is defined by the Arrow Lakes, a major north trending valley with numerous smaller parallel faults.

<u>Summary</u> - Work on this project started by researching information of all the Minfile occurrences that were found within the boundaries of the project area. Although many occurrences were noted, the most important two were the Mountain Chief (past producing skarn deposit, Minfile # 082ESE105 and the Midas / Deer showing, Minfile # 082ESE162

Prospecting Activities - 1998

أسنسفر 🕷

<u>Phase -</u> 1-Six man-days were spent in the area of the Mountain Chief, prospecting the Mt. Robert's formation. The sediment package is very interesting but the Mountain Chief, which is the main showing, is a crown grant that is presently held by others. The party that holds this concession was approached for an option, but to no avail. This could make an excellent property package and demonstrates why crown grants are holding up exploration.

The area of the Midas / Deer were located and prospected. This area was explored for a porphyry type deposit in the 1970's.

<u>Local Geology</u> - Bedrock is composed of a variety of intrusive rocks which range considerably in grain size, texture and composition. A hornblende biotite monzonite and a leucocratic syenite are separated by a northwest trending 600 meter wide aphanitic granite porphyry which is intruded by irregular medium grained aplitic granite bodies in the northwest.

A polylithic breccia zone trends east-west across the north-west intrusive grain and measures approximately 300 x 1200 meters. Fragment size and matrix are highly variable and the presence of breccia fragments not representing the adjoining country rocks suggests some transportation of the fragments.

A dominantly northwest striking, near-vertical swarm of feldspar porphyry, lamprophyre and dacite dikes cut most of the above units. The dikes are both pre and post brecciation except for the molybdenum positive dikes, which are contemporaneous with brecciation.

The property abounds with air-photo lineaments striking in many directions. The most prominent of these is the Deer Park Fault which has a strike of 146° and a dip of 80° to the northeast. This fault is of particular interest because it parallels the general strike of the area and cuts between the two west breccias.

On the surface the fault is easily recognized in the logged area as a slight depression roughly three meters wide cutting across country. The direction of movement on the fault is as yet unknown but might be determined on the surface if the fault was uncovered by trenching.

<u>History</u> - Previous exploration work dates back to the early 1900's when the property was known as the Midas Group. Most of the work at that time consisted of driving short adits and shafts on mineralized quartz veins. More recent work by West Coast Mining and Exploration, and Amax Ltd. Included geological mapping, soil sampling, geophysical surveys and diamond drilling. In 1971, West Coast Mining and Exploration drilled seven holes totaling 549m.

<u>History</u>, con't - During 1974, Amax Ltd. Drilled six holes totaling 1582m, bringing the total meterage drilled before Utah optioned the property in 1979 to 2121m.

The 1979 field work by Utah Mines Ltd. Consisted of geological remapping, diamond drill core relogging and localized sampling of the core, geochemical surface rock sampling and an altimeter survey.

Utah Mines Ltd. Began their first season of drilling on the property in 1980. One hole DP-14 was drilled to a depth of 762.6 metres with the objective of intersecting the source of molybdenum bearing porphyry dikes found in the breccia units.

After researching information on the Midas / Deer area, it was noted that a number of relatively good copper assays were present and none for gold. A number of samples were gathered and sent for assay with no results for gold.

Upon request, Linda Caron, M.Sc., P.Eng. visited the property and suggested numerous ideas that were followed up. One of these was to get samples from deeper in the system and since drainage's in the area are deep cutting, stream samples were taken. Good gold results from drainage's to the north and east of the exploration area were obtained but follow-up prospecting did not divulge the source. Recommendations by Linda Caron are included in this report. Creeks that returned good gold numbers were Pup Creek and Grass Creek on the north and Shields Creek on the east.

No payment was made for Linda Caron as I did work for her on her project.

Six km. of grid lines were re-established to locate and control prospecting on the property. Two four post claims (16 units each) were placed to cover this prospect. Twenty-nine man-days were allotted to this section and as this was only a small portion of the project area, it was time to return to the prospecting program. This area was carried out by day trips from Grand Forks.

<u>Phase 2</u>, A trailer camp was moved to Snag Bay in order to carry out stream sampling and reconnaissance of all drainage's running into the Arrow Lakes. This was carried out by use of boat and motor for all streams on the east side and many on the west. All drainage's were prospected for obvious mineral exposure as well as the lakeshore. Creeks on the east that were sampled and prospected are Octopus Cr., VanHouten Ck., (north & south), Sangrida Ck., Hutchison Ck., Gladstone Ck., Sunshine Ck., and Twobit Ck. A small dike like vein of andesite containing chalcopyrite and galena as well as a number of small epithermal veins were found on VanHouten Ck. But no size or continuity was found. Strike of these veins were consistent with all other veins on the east and west of the lake; strike 20° and dip of 85° east. Twelve man-days were used for sampling and prospecting on the east side.

<u>Phase 3</u> - The area of the hydrothermal system that was located in 1997 was also extensively prospected without much encouraging results.

To the south of this system is an area of interest with many parallel veins which contain pyrite, molybdenite, and some chalcopyrite and hosted in syenite. Further south of this area and on strike is another interesting molybdenite showing, again in syenite (some

<u>Prospecting Activities - 1998</u> (cont) monzonite and possible a contact). This is hosted in an major east / west structure that cuts through to the North Fork road. Many small veins were noted, with minor pyrite and nothing else. The most interesting aspect of this area was finding good molybdenum on the north side and lead and zinc on the south side of this deep drainage and again in a fractured syenite. On the initial stream sampling and on the lake shore of Bowman Ck., is a km. wide formation of very brecciated area of monzonite with mafic pyroxenite filling. Crosscutting this were andesite dikes, and in many directions. The drainage was prospected but as usual away from the lake the creek was again filled with glacial debris with little outcrop. I was going to place claims but decided that geophysics should be carried out to define a target as this area is very large. As I wanted to finish the general reconnaissance of the prospecting area, this was to be carried out later. Seventeen man-days were spent on this portion

<u>Phase 4</u> - Camp was then moved to Cottonwood lake near Renata and prospecting and sampling resumed. Drainage's on the west that were sampled are Worthington Ck., Johnston Ck., Cinnamon Ck., Michaud Ck., Bowman Ck., Renata Ck., (east and west) and Faith Ck., as well as four small pups that drain out of the Mt. Roberts formation that is located north of Renata Ck., and on the west side of the lake. Results of stream sampling was not encouraging. Sixteen man-days were spent on this segment.

<u>Phase 5</u> - Camp was moved to the summit of Jump Ck. and considerable time was spent in this locality in the north west of the project area. Many epithermal veins were located but returned no values. One Minfile occurrence, 082ENE045 (Nove) which was next to impossible to locate, was found in November and resulted in the staking of four two post claims. This occurrence was of disseminated chalcopyrite, pyrite & hematite with minor veinlets of galena occurring in the altered contact zone between a Paleocene Coryell intrusion and a large remnant of Cretaceous Valhalla intrusion. An old drill site was found but no core. Samples were taken with some encouraging results. Snow cover hampered prospecting, so this area will be revisited in the spring. Twelve man-days on phase 5.

<u>Conclusion</u> - This was a very large area to prospect with limited access. The rock formations as first were monotonous until different aspect of interest were noticed. After compiling much information and revisiting some areas, I feel confident that the idea for the prospecting proposal was well justified and successful but will require much more work.

The area (phase 3) is by far the most interesting and will have geophysics and more prospecting carried out in 1999 as well as well as work programs on Phase 1 and Phase 5.

- A total of thirty-six claims were placed, with plans for an additional 80 units in 1999 -Six km. of grid were placed as well as random traverses with a proton
- magnetometer (approx 6 km.)
- -A total of 34 stream samples were collected.
- -A total of 65 rock samples were collected.
- -One area that was not visited was in the Faith Ck. area because of lack of time. This area would have to be accessed by a backpack trip consisting of numerous days.
- -A total of 92 days were spent in the field

<u>Sampling Procedure</u> - The program of stream sampling was to use a small sluice box for a heavy stream sampling as well as the gathering of a grab silt sample. Because of the lack of mixed material (either bedrock or round boulders with no fines) and the lack of water above the alluvial fans, I decided to take a "moss mat" as moss was noted on rocks and logs on the edges and center of the streams. Moss was gathered from areas that would have accumulated fines from high water.

Approximately 6 kg of moss mat were collected, washed and screened throught an 80 mesh sieve and the material bagged and shipped to Eco -Tech labs in Kamloops. This made large samples but served the purpose as we were looking for any indication of mineralization. All coarse material that was sieved off was scrutinized for the obvious.

All rock samples were either grab or chip and were assayed at Eco -Tech labs using multi element (28) ICP plus gold.

No samples were collected specifically for rare earths, although encouraging numbers turned up in the assays and lithium was reported in the Faith Ck area in Ike Webie diary. Samples did-not accumulate very fast as there was not a lot to sample.

<u>Sample Results</u> - Sample results were not big numbers but are encouraging, but do suggest that a hydrothermal (possible epithermal as all veins are vuggy) is present. The best copper number is 6151ppm, the best molybdenum is 4999 ppm, the best zinc is 2.69 %, and the best lead is 2.16 %. Best for silver is 80.5 g/t. Numbers for gold were not significant.

<u>Magnetometer work</u> - A number of random magnetometer traverses were made on the Midas / Deer property to locate some of the recommended target by Linda Caron that were mentioned in reports from previous work. Results of the mag work are not included in this report as it was only used to locate a number of mag highs.

The mag that was used was a Scintrex Envi magnetometer (serial # 9310050) and owned by myself.

<u>Prospecting</u> - all roads in the area were prospected as well as well as many traverses from the height of land on the west to the west shore of the lake. Don Hairsine (prospector from Grand Forks) assisted in road prospecting, stream sampling and pick-up by boat after traverses to the lake.

MINFILS NUMBER:	082E5E162		NATION	AL MINERAL INVENTORY:	82E2 AU4
NAME(S):	MIDAS, DEER				
STATUS: NTS MAP: LATITUDE: LONGITUDE: ELEVATION: LOCATION ACCURACY: COMMENTS:	Showing 082E08E 49 20 18 118 02 30 1633 Metres Within 1 KM CENTRE OF CROWN G	RANT L.1265		MINING DIVISION: UTM ZONE: NORTHING: BASTING;	Trail Creek 11 5465370 424325
COMMODITIES:	Molybdenum	Copper	Tungsten	Zinc	
MINERALS SIGNIFICANT: MINERALIZATION AGE:	Molybdenite Unknown	Chalcopyrite	Sphalerite	Scheelite	Fluorite
ISOTOPIC AGE:		DATING METHOD:	Unknown	MATERIAL DATED:	
DEPOSIT CHARACTER: CLASSIFICATION:	Unknown Unknown				
HOST ROCK DOMINANT HOST ROCK:					
LITHOLOGY:					
GEOLOGICAL SETTING TECTONIC BELT: TERRANE:					
CAPSULE GEOLOGY	CORYELL SYENITE A SPAR PORPHYRY ARE ING DYKES OF FELL PORPHYRY, AND AND DISRUPTING THE DY OF QUARTZ AND MAG FROM THE BRECCIA. ITE AND SCHEELITE OCCURS IN THE QUA SYENITE AND DISSE	AND MONZONITE AND A SINTRUDED BY A SWA SEPAR BIOTITE PORPH DESITE. E-TRENDING (KES ARE SURROUNDED SNETITE, WHICH DIMI CHALCOPYRITE, AN CHALCOPYRITE, AN SOCCUR IN BRECCIA ARTZ MONZONITE PHAS SMINATED IN THE SYN	APHANITIC FELD- ARM OF NW-STRIK- HYRY, SYENITE BRECCIA ZONES D BY A STOCKWORK INISHES AWAY D RARE SPHALER- . MOLYBDENITE SE OF THE ENITE.		
BIBLIOGRAPHY	EMPR GEM 1973-49, EMPR BULL 9-16 EMPR ASS RPT 4236 EMPR EXPL 1979-31 EMPR OF 1991-17	5, 4867, 5101, 5190	6, 5197, 7367, 8854	, 10301	
DATE CODED: DATE REVISED:	850724 850724		CODED BY: GSB REVISED BY: GSB		FIELD CHECK: FIELD CHECK:

MINFILE / pc MASTER REPORT GEOLOGICAL SURVEY BRANCH - MINERAL RESOURCES DIVISION MINISTRY OF ENERGY, MINES AND PETROLEUM RESOURCES

MINFILS NUMBER:	082858105		NATIC	NAL MINERAL INVENTORY:	8288 Cu1
NAME(S);	MOUNTAIN CHIEF (L.23	93)			
STATUS: NTS MAP: LATITUDE: LONGITUDE: ELEVATION: LOCATION ACCURACY: COMMENTS:	Past Producer 062E08E 49 24 30 118 06 00 0933 Metres Within 500M PART OF BURNT BASIN	GROUP		MINING DIVISION: UTM ZONE: NORTHING: BASTING:	Trail Creek 11 5473212 420201
COMMODITIES:	Copper	Silver	Gold		
MINERALS SIGNIFICANT: MINERALIZATION AGE;	Chalcopyrite Unknown	Bornite	Pyrite	Azurite	Malachite
DEPOSIT CHARACTER : CLASSIFICATION :	Unknown Skarn				
HOST ROCK DOMINANT HOST ROCK:					
LITHOLOGY :					
GEOLOGICAL SETTING TECTONIC BELT: TERRANE:					
CAPSULE GEOLOGY					
	CHALCOPYRITS, ALONG A LIMESTONE-G 0.22 TO 2.40 PER CE WITH SLIGHT TO COMP FRACTURES.	BORNITE, MALACHITE, RANITE CONTACT. SAM NT COPPER. MINERALI LETE REPLACEMENT OF	AZURITE, AND PLES FROM THI ZATION IS IN BLOCKS OF LIM	PYRITE OCCUR S AREA CONTAINED FISSURE ZON3S, ESTONES BETWEEN	
BIBLIOGRAPHY	EMPR AR 1901-1225, 1927-328, 1955-65 EMPR GEM 1971-397 EMPR ASS RPT 930, 3 GSC MAP 1957-6 EMR MP CORPFILE (MC EMPR ASS RPT 12936	1917-173, 1918-182, 090 DUNTAIN CHIEF MINING	1919-140, 192 CO., UNITED F	0-137, 1922-210, STELLA MINES LTD)	
DATE CODED: DATE REVISED:	850724 850724	RE	CODED BY: GSE VISED BY: GO		FIELD CHECK: 1 FIELD CHECK: 1

RUN DATE: 03/29/98 RUN TIME: 08:46:06

No.

MINFILE NUMBER:	082 <u>ENE045</u>				NATIONAL	MINERAL 1	NVENTORY :	82E10 U2
NAME(S):	NOVE 1 M	AC	CLAINS					
STATUS: NTS MAP: LATITUDE: LONGITUDE: ELEVATION: LOCATION ACCURACY: COMMENTS:	Showing 082B09W 49 37 42 118 18 00 1100 Metres Within 500M CENTRE OF CLAIMS;	CLAIM	MAP			MINING	DIVISION: UTM ZONE: NORTHING: BASTING:	Greenwood 11 5497900 406114
COMMODITIES:	Copper	Lead	L					
MINERALS SIGNIFICANT: MINERALIZATION AGE:	Chalcopyrite Unknown	Hema	títe	Galena				
DEPOSIT CHARACTER: CLASSIFICATION:	Disseminated Unknown							
HOST ROCK DOMINANT HOST ROCK:								
LITHOLOGY:								
GEOLOGICAL SETTING TECTONIC BELT: TERRANE:								
CAPSULE GEOLOGY	DISSEMINATED CHAL MINOR VEINLETS OF CONTACT ZONE BETW & A LARGE REMNANT	COPYRIT GALENA EEN A E OF CRE	TE, PYRITE & HEM A OCCUR IN THE A PALEOCENE CORYEL STACEOUS VALHALL	ATITE WI LTERED L INTRUS A INTRUS	TH ION ION			
BIBLIOGRAPHY	EMPR PF EMPR GEM 1976-E29							

DATE CODED: 850724 DATE REVISED: CODED BY: GSB REVISED BY: FIELD CHECK: N FIELD CHECK:

_

MINFILE NUMBER:	082ENE013	NATIONAL	MINERAL	INVENTORY :	
NAME(S):	DOE, RIVERSIDE				
STATUS: NTS MAP: LATITUDE: LONGITUDE: ELEVATION: LOCATION ACCURACY: COMMENTS:	Prospect 082E09W 49 31 24 118 22 06 0900 Metres Within 500M OLD TRENCH FROM ASS	ESS. REPORT 1845	MINING	DIVISION: UTM ZONE: NORTHING: EASTING:	Greenwood 11 5486315 400967
COMMODITIES:	Copper	Molybdenum			
MINEPALS					
SIGNIFICANT: MINERALIZATION AGE:	Chalcopyrite Unknown	Molybdenite			
DEPOSIT CHARACTER: CLASSIFICATION:	Unknown Porphyry				
HOST ROCK DOMINANT HOST ROCK:					
LITHOLOGY:					
GEOLOGICAL SETTING TECTONIC BELT: TERRANE:					
CAPSULE GEOLOGY	LOW GRADE PORPHYRY- FRACTURE FILLINGS I IN NELSON GRANODIOR CONTAINS STOCKWORK ZED FRACTURE FILLIN IC ALTERATION EVIDE PYRITE-MOLYBDENITE	TYPE MINERALIZATION OCCURS AS N NELSON GRANODIORITE ITE, A ZONE OF FRACTURED ROCK OF WEAKLY ALTERED AND MINERALI- GS. WEAK PROPYLITIC AND ARGILL- NT, WITH WEAK QUARTZ-CHALCO- IN FRACTURE ZONE.			
BIBLIOGRAPHY	GSC MAP 6-1957 GSC MEM 56-172 EMPR ASS RPT 1845, EMPR GEM 1969-310,3 1925-194, 1927-225, EMPR AR 1906-164,25 EMPR ASS RPT 8610	6018 50, 1975-B25, 1976-B28 1928-239, 1929-254, 1930-227, 1932-1 3, 1911-176, 1914-347, 1923-179, 1924	22 -164,		
DATE CODED: DATE REVISED:	850724	CODED BY: GSB REVISED BY:			FIELD CHECK: M

,

MINFILE NUMBER:	082ESE167		NATIONAL M	INERAL I	NVENTORY :	082E8 Mol
NAME(S):	WEWA, RAM					
STATUS: NTS MAP: LATITUDE: LONGITUDE: ELEVATION: LOCATION ACCURACY: COMMENTS:	Showing 082E08E 49 17 00 116 00 12 1650 Metres Within 1 KM CENTRE OF CLAIM GROU BCDOM	JP; CLAIM MAP		MINING	DIVISION: UTM ZONB: NORTHING: RASTING:	Trail Creek 11 5459218 427029
COMMODITIES:	Molybdenum	Copper	Fluorite			
MINERALS SIGNIFICANT: MINERALIZATION AGE:	Fluorite Unknown	Molybdenite	Chalcopyrite			
DEPOSIT CHARACTER: CLASSIFICATION:	Unknown Industrial Min.					
HOST ROCK DOMINANT HOST ROCK:						
LITHOLOGY:						
GROLOGICAL SETTING TECTONIC BELT: TERRANE:						
CAPSULE GEOLOGY	RAM 23 TO 30 AND TH LAIN BY PROPYLITIZE DIORITE STOCK AND B AND FELSITE PORPHYR FAULT BRECCIA ON RA ACCOMPANIED BY MINO MOLYEDENITE-BEARING PORPHYRY ON RAM 9.	E WEWA CLAIMS ARE MA D MONZONITE INTRUDED Y DYKES OF DIORITE, Y. FLUORITE OCCURS M 10, WEWA 29, AND R R CHALCOPYRITE ON WE QUARTZ VEIN CUTS FE	INLY UNDER- BY A ANDESITE, IN MINOR AM 30, WA 29. A LSITE			
BIBLIOGRAPHY	EMPR GEM 1972-44, 1 EMPR ASS RPT 3802, EMPR OF 1992-16	974-59 5826, 7873				
DATE CODED: DATE REVISED:	850724 850724	RE	CODED BY: GSB VISED BY: GSB			FIBLD CHECK: N FIBLD CHECK: N

RUN DATE: 03/29/98 RUN TIME: 08:59:35

MINFILE NUMBER:	092EN8056		NATIONAL	MINERAL INVENTORY:	82E10 U3
NAME(S):	CRYSTAL COPPER				
STATUS: NTS MAP: LATITUDE: LONGITUDE: BLEVATION: LOCATION ACCURACY: COMMENTS:	Showing 082E09W 49 34 54 118 21 06 1000 Metres Within 500M CENTRE OF TP 1, 3,	4, 6 CLAIMS		MINING DIVISION: UTM ZONE: NORTHING: BASTING:	Greenwood 11 5492778 402290
COMMODITIES:	Copper	Molybdenum			
MINERALS SIGNIFICANT: MINERALIZATION AGE:	Chalcopyrite Unknown	Magnetite	Molybdenite		
DEPOSIT CHARACTER : CLASSIFICATION :	Unknown Porphyry				
HOST ROCK	Plutonic				
DOMINANI NOSI KOGA:	11000010				
STRATIGRAPHIC AGE Carboniferous Unknown	<u>GROUP</u> Franklin		FORMATION Unnamed/Unknown Formation	IGNEOUS/METAM	MORPHIC/OTHER
<u>STRATIGRAPHIC AGE</u> Carboniferous Unknown LITHOLOGY;	GROUP Franklin Granodiorite Metamorphic Rock		FORMATION Unnamed/Unknown Formation	IGNEOUS/METAN Unnamed/Unkno	MORPHIC/OTHER
STRATIGRAPHIC AGE Carboniferous Unknown LITHOLOGY; GEOLOGICAL SETTING TECTONIC BELT: TERRANE:	GROUP Franklin Granodiorite Metamorphic Rock		FORMATION Unnamed/Unknown Formation	IGNEOUS/METAN Unnamed/Unkno	MORPHIC/OTHER
STRATIGRAPHIC AGE Carboniferous Unknown LITHOLOGY: GEOLOGICAL SETTING TECTONIC BELT: TERRANS: CAPSULE GEOLOGY	GROUP Franklin Granodiorite Metamorphic Rock PYRITE, CHALCOPYRIT CONFINED TO THE IMM DIORITE BATHOLITH &	TE, MAGNETIT IEDIATE CONT. IND FRANKLIN	FORMATION Unnamed/Unknown Formation 8, MOLYBDENITE ARE ACT OF THE GRANO- GP METAMORPHICS.	IGNEOUS/METAN Unnamed/Unkno	MORPHIC/OTHER
STRATIGRAPHIC AGE Carboniferous Unknown LITHOLOGY: GEOLOGICAL SETTING TECTONIC BELT: TERRANS: CAPSULE GEOLOGY BIBLIOGRAPHY	GROUP Franklin Granodiorite Metamorphic Rock PYRITE, CHALCOPYRIT CONFINED TO THE IMM DIORITE BATHOLITH A GSC MEM \$6-117,170, GSC MAP 97A	E, MAGNETIT EDIATE CONT. ND FRANKLIN 172	FORMATION Unnamed/Unknown Formation 8, MOLYBDENITE ARE ACT OF THE GRANO- GP METAMORPHICS.	IGNEOUS/METAN Unnamed/Unkno	MORPHIC/OTHER

۱ 🖉

MINFILE NUMBER:	082ENE057		NATIONA	L MINERAL	INVENTORY :	82E10 U3	
NAME(S):	WHITE BEAR						
STATUS: NTS MAP: LATITUDE: LONGITUDE: BLEVATION: LOCATION ACCURACY: COMMENTS:	Showing 082E09W 49 34 54 118 20 36 1000 Metres Within 500M CENTRE OF TP 1, 3, 4	4, 6 CLAIMS		MINING	DIVISION: UTM ZONE: NORTHING: EASTING:	Greenwood 11 5492767 402892	
COMMODITIES:	Copper	Molybdenum					
MINERALS SIGNIFICANT: MINERALIZATION AGE:	Chalcopyrite Unknown	Magnetite	Molybdenite				
DEPOSIT CHARACTER: CLASSIFICATION:	Unknown Porphyry						
HOST ROCK DOMINANT HOST ROCK:							
LITHOLOGY;							
GEOLOGICAL SETTING TECTONIC BELT: TERRANE:							
CAPSULE GEOLOGY	SEE 82ENE-056 CRYST.	AL COPPER.					
BIBLIOGRAPHY	EMPR AR 1906-164, 1 GSC MEM 56-116,154 GSC MAP 97A EMPR EXPL 1979-32 EMPR ASS RPT 12508	910-248, 1914-353					
DATE CODED: DATE REVISED:	850724 850724	R	CODED BY: GSB EVISED BY: GSB			FIBLE	CHECK: N CHECK: N

MINFILE NUMBER:	082ENE014	NATIONAL M	INERAL I	NVENTORY :		
NAME(S):	BEAR, COPPER 1 ?					
STATUS: NTS MAP: LATITUDE: CONGITUDE: ELEVATION: LOCATION ACCURACY: COMMENTS:	Prospect 082E09W 49 31 12 118 21 54 0933 Metres Within 500M SHAFT FROM ASSESS. BCDOM	REPORT 1845	MINING	DIVISION: UTM ZONB: NORTHING: BASTING:	Greenwood 11 5485940 401202	
COMMODITIES;	Copper	Molybdenum				
MINERALS SIGNIFICANT: MINERALIZATION AGE:	Chalcopyrite Unknown	Molybdenite				
DEPOSIT CHARACTER: CLASSIFICATION:	Unknown Porphyry					
HOST ROCK DOMINANT HOST ROCK:						
LITHOLOGY:						
GROLOGICAL SETTING TECTONIC BELT: TERRANE:						
CAPSULE GEOLOGY	LOW GRADE, PORPHYR FRACTURE FILLINGS SEE 082ENE013-DOE.	Y-TYPE MINERALIZATION OCCURS AS IN NELSON GRANODIORITE				
BIBLIOGRAPHY	EMPR AR 1906-164, 1927-225, 1928-239 EMPR GEM 1969-310, EMPR ASS RPT 1845, GSC MEM 56-172 GSC MAP 6-1957 EMPR ASS RPT 8610	1911-176, 1914-347, 1923-179, 1924-164, , 1929-254, 1930-227, 1932-122 350, 1975-E25, 1976-E28 6018	1925-194	1 ,		
DATE CODED: DATE REVISED:	850724	CODED BY: GSB REVISED BY:			FIELD CHECK FIELD CHECK	: 14 :

MINFILE NUMBER: 082ENE014

JOHN .

AR 5196 1974 Geological, Geochemical and Geophysical Report Deer Park Property M.B. Laub and J.L. LeBel Amax

- they refer to old adits, shafts on the property. They are shown on the geology map as being in the area of the breccia zone. Have you seen these?
- they talk about an aphanitic feldspar porphyry in the SW part of the property with 12-15 fractures per foot, filled with magnetite, epidote or hematite. This should be sampled for gold.
- on the geology map he contours # of quartz-magnetite veins per foot. Try to get to the highest concentration and sample this stuff
- see the attached news release from Eastfield. They talk about magetite-sulfide breccia cobbles which run up to 15 oz/t Au in an area of syenite and trachyte stocks. It would be interesting to know what the fragments of their breccia are, if the magnetite-sulfides are the matrix, etc. ie) how does it compare to your breccia body. I'll see what I can find out.
- much of what they drilled were strong mag highs. On the east grid, there are several very strong mag highs to the north and south of the area drilled that were untested. The one north of DP74-3 is in an area of not much outcrop. It would be useful to prospect this area, locate the mag high (with your mag) and try a couple of soils for gold if there isn't much for outcrop.
- see the attached summary of the Sulfurets district. I know nothing about this, but:
 - they talk about porphyry Cu-Au in quartz-syenite type intrusives
 - pervasive Kspar-magnetite-biotite-specularite alteration
 - high level quartz-moly veins
 - quartz-sericite-chlorite-pyrite alteration at high levels (AR 5197 describes sericite-clay-carbonate-pyrite with patchy silicification which sounds similar this suggests you are are in the wrong part of the system for Au)
 - fluorite common near the syenites
 - they also mention a pyrite rich breccia pipe which can have gold
 - My comment would be that you have many of the same characteristics. Note from the figure on Sulfurets that the Stage 2 qtz-ser-py with moly, Fl is the only stage of mineralization that doesn't have associated gold. Perhaps you could sell the concept of deep or peripheral drilling to someone. Someone who knows more about the Sulfurets district could comment on this (Dave Lefebure?)

AR 5197 1973 Geological, Geochemical and Geophysical Report Deer, Park and Camel Claims, Deer Park MoS₂ property H.W. Sellmer and G.M. DePaoli Amax

- on surface quartz-vein and quartz-mag vein stockwork are most intense peripheral to the breccia
- pyrite is most intense near or within the breccia and forms a weakly developed halo around it
- fluorite, calcite, secondary biotite, hematite and magnetite occur in the breccia and near its peripheries (see comments on Sulfurets above)
- strong mag highs occur at the peripheries of the breccia zone, also in the syenite
- they talk about a shallow IP anomaly over much of the east-central grid area, with several root-like zones extending to greater depth at the edges of the breccia zone.
- best ddh intersection is West Coast Hole#7, 1971, 50 feet @ 0.22% Mo (0.3% MoS₂) from 70-120 feet depth.
- the West Coast holes were all relatively shallow:
 - ddh 1 222' dipped -50°
 - ddh 2 295' dipped -50°
 - ddh 3 93' dipped -90°
 - ddh 4 464' dipped -57°
 - ddh 5 114' dipped -90°
 - ddh 6 287' dipped -47°
 - ddh 7 282' dipped -70°

ألسهرينات

• they describe one phase of the syenite as being quartz bearing (see Sulfurets again)

AR 7367 1979 Combined Geological, Geochemical and Geophysical Report Deer Park Groups 1 and 2 George Norman Utah Mines

- state that the old shafts and adits were dug on mineralized quartz veins
- note area of strong quartz-sericite-pyrite zone at 73+00E 68+00N (near holes 71-1 to 71-3 and near the shaft?) This would be interesting to see.
- has drill logs for 1971 and 1974 holes. 1974 holes were somewhat deeper (150-200 metres range). Still no Au assays on core.

AR 8854 1980 Drilling Report Deer Park Property Tom Pollock Utah Mines

- one hole DP-14 drilled to 763 metres deep (2502 feet)!
- still no Au assays (or Cu). Assays only for Mo, Zn, W, Fl
- Fluorine values are high ie. 2300 ppm Fl from 708-711 m

AR 10,301 1981 Drilling Report Deer Park Molybdenum Property Tom Pollock Utah Mines

- hole DP-14 drilled in 1980 was deepened to 933 metres
- a second deep hole was drilled, DP-15, to 933 metres
- there was little moly mineralization in either hole
- he does describe weak to strong argillic altered zones, up to 50 metres in length, which decrease below about 700 metres depth
- some of the alteration sounds intriguing although overall the extent of alteration was limited
 - ie. DP-15 @ 480 metres. He logs clay altered intrusive with up to 1% py and a stockwork of fine dark grey qtz veinlets. It would be nice to have Au, Ag, base metal etc assays for this type of stuff
 - ie DP-15 @ 246 m where he logs strongly altered intrusive rx with an extreme quartz stockwork
- in the logs there is mention of dykes with diss gal, cpy, shal and moly ie. DP-15 @ 425m depth. This sounds similar to what you are finding on surface.

All in all, I think the best selling points will be

- you are in a big mineralized system
- that there are no gold assays from drilling
- only 2 holes test for deeper level stuff
- you wouldn't probably expect the gold to be where the moly is
- •• gold values in stream drainages suggest that the system could have a gold rich portion

.-..

PORPHYRY COPPER AND RELATED GOLD MINERALIZATION IN THE SULPHURETS DISTRICT OF NORTHWESTERN BRITISH COLUMBLA -IMPLICATIONS FOR INTRUSION-RELATED GOLD EXPLORATION

Jacob Margolis, Homestake Mining Company Reno, Nevada

The Sulphurets district, 60 km northwest of Stewart and 20 km southeast of the Eskay Creek mine, contains at least four significant Cu-Au deposits: the Kerr Cu-Au (148 million tons [MT], .76% Cu, .01 opt Au), West zone Au-Ag (.71MT, .43 opt Au, 20 opt Ag), Snowfield Au (8 MT, .08 opt Au), and Mitchell Cu-Au (geologic resource of ±200 MT, .2% Cu, .025 opt Au). This report concerns the northern portion of the district on the flanks of Mitchell Valley, the area of the Mitchell and Snowfield deposits. Host rocks, apparently correlative with the Lower Jurassic Hazelton Group, include submarine hydroclastic basaltic lava flows, dioritic intrusive rocks, and volcaniclastics. Calc-alkaline granitoid (commonly quartz-syenite) stocks occur at the base of the alteration system, are altered and mineralized by stage 1 (see below), and are believed to have driven the hydrothermal activity. Fluorite (post stage 1) is common proximal to the syenites. Ar-Ar and U-Pb dating of hydrothermal tournaline and quartz-syenite, respectively, indicate an Early Jurassic (about 192 Ma) mineralization age. A Middle Cretaceous (110 Ma) thermal event is also recognized and is probably coincident with post-mineralization low-grade greenschist metamorphism and thrusting.

Excellent exposures and high relief have facilitated the recognition of four superimposed hydrothermal/mineralization events representing a gold-enriched porphyry-epithermal transition. From earliest to fatest these are:

(1) porphyry-style Cu-Au stage consisting of pervasive potassic alteration (K-feldspar-magnetitebiotite-specularite) of deep-level, intrusive quartz-syenite and surrounding volcanic rocks; Cu-Au-bearing quartz stockworks (e.g., Mitchell deposit) developed at high levels within country-rock volcanic and intrusive rocks; electrum occurs within chalcopyrite, and there is a strong positive correlation between Cu and Au.

(2) relatively high-level quartz-scricite-chlorite-pyrite alteration hosting quartz-molybdenite yeins and tourmaline, both of which were introduced at this time;

(3) unmineralized, blanket-like, advanced-argillic alteration (pyrophyllite-kaolinitewoodhouseite-pyrite-barite) at high levels; and underlying massive pyrite veins enriched in Bi-Te-Sn;

(4) gold-rich, quartz-barite veins containing galena-sphalerite-tetrahedrite-pyrargyrite-goldacanthite (Pb-Zn-Au-Ag-Sb-Cu-Cd-Hg±Te) best developed at high and peripheral positions (West zone style); and a high-grade, basalt-hosted disseminated Au zone (Snowfield deposit) with a similar mineral assemblage. This disseminated gold mineralization occurs proximal to a high-level, stage-1 stockwork zone and beneath and laterally adjacent to an advanced-argillic cap. Gold precipitation at Snowfield apparently resulted from sulfidation of previously altered (stages 1 and 2) basaltic andesite which was highly permeable due to a coarse hydroclastic texture. Within the stage-4 veins, abundant barite and absence of adularia are evidence that fluid mixing as opposed to boiling led to precipitation of gold and metal sulfides. Although stage-3 massive pyrite veins may contain high but erratic gold grades, textural relations indicate that gold (with galena-sphalerite-tetrahedrite) was introduced by the stage-4 fluid.

Two gold environments are present at Sulphurets:

(1) earliest, central (within or above granitoid), porphyry-Cu stage, with gold apparently carried as a chloride complex at relatively high temperature in a dominantly magnetic fluid of high salinity;

(2) latest, typically high-level and distal (to granitoid and stage-1 system), base-metal related, gold mineralization akin to adularia-sericite type epithermal systems, with gold apparently carried as a sulfide complex at lower temperatures in a relatively alkaline and reduced fluid with a larger component of meteoric water. Stable isotope data provide evidence for these two fluid types and temperatures.

New Mineral Deposit Models of the Cordillora 1996

Exploration in porphyry-style systems must be geared to recognize and target these two settings, as both may be economically viable. In addition, a third, rarer setting, not present at Sulphurets is the acid-sulfate-related enargite-gold (high sulfidation) style of mineralization; such deposits typically occur in a high-level and central position relative to underlying causative porphyry intrusions and potassic Cu-rich mineralization. It is possible that such a system existed in the advanced-argillic zone at Sulphurets but was eroded. However, the temporal transition from the acidic stage-3 system to the more alkaline and gold-rich stage 4 system at Sulphurets is an emerging characteristic of at least some high sulfidation gold deposits. Although the early, high-temperature Cu-Au environment is similar in most districts, the late, generally peripheral, lower-temperature gold system may assume a variety of deposit styles, chiefly dependent upon host-rock type, precipitation mechanisms, and hydrothermal flow regimes. The distinctive transition from the crystallizing silicic melt, as demonstrated in experimental studies of other workers.

1

Í

í

Т. G Ц

С U

18-Sep-9	ECO-TECH LAB 10041 East Tran KAMLOOPS, B. ^I V2C 6T4	Phone: 604-573-	Fax : 604-573-	Values in ppm	Et #. Tag #	R 59 DJ40	R60 UJ41	X &I DJ42	, R62 DJ44	p 62 DJ45	24 DJ46	P65 D147	QC DATA:	RIS 1 DJ40	Repeat: 1 DJ40	Standard: GEO'98	
8	ORATORIES s Canada Higt 3.	5700	7664	unless otherw	Au(ppb)	ιΩ	n ç	2	ς.	ۍ	5	5		£	Ω	140	
	LTD. way			rise reț	Ag	0.2	7,0 2,0 2,0 2,0	0.Q	2.8	8.2	1.0	1.4		0.2	0.2	1.2	
				ported	AI %	0.78	0.44	0.09	0.31	0.40	0.21	2.71		0.82	0.77	1.82	
					As	ŝ	οu V	9	<5	ŝ	ŝ	55		22 V	ŝ	60	
					Ba	245	9 0 1 1	C7	110	65	95	1110		265	230	165	
					ы	ب ℃	₽ 4	Ŷ	\$5	ŝ	ŝ	ŝ		ŝ	ŝ	сл	
					a %	2.42	2.39	R7.7	0.05	1.31	0.57	1.62		2.48	2.38	1.79	
					Po	7	- u	60	3	თ	Ł	v		$\overline{\mathbf{v}}$	*-	$\overline{\mathbf{v}}$	
	$\overline{\Omega}$	¢	×		ပိ	45	ί Σ	α	11	10	5	34		14	13	20	
	P CER1		001		อ	114	1/	0	104	6	160	86		120	112	62	
	FIFICAT				CuF	284	423	=	143	918	11	66		268	288	84	
	re of ,		r s		e %	4.59	014	70.0	7.65	2.91	1.94	9.69		4.67	4.51	4.13	
	ANALY		XC		La M	120		007	100	190	80	1910		130	130	v10 v	
	'SIS A		2770		1g %	0.95	0.44	0,4 I V	0.04	0.37	0.03	3.25		0.99	0.95	0.99	
	< 98-5%		S		ЧЧ	1222	400	00001	1916	1666	1905	2725		1292	1212	710	
	35				Mo	2341	2 1	v	195	27	22	73		2256	2247	7	
					Na %	0.05	0.08	cn.u	0.04	0.06	<0.01	0.04		0.05	0.04	0.03	
					ż	18	4 ('n	12	4	7	32		19	17	22	
					٩	1920	0070	780	120	850	550	6170		1920	1920	690	
					РР	28	222	n/el	234	1168	624	180		30	30	22	
					Sb	ΰ	ۍ ې	o V	ŝ	ۍ ۷	ዓ የ	S ∧		ς Υ	с V	5 V	
	₽ ₩ 5 ×	.A	Σ Ϋ́ C Ϋ́	Ś	Sn	<20 20		~~n	<20	<20	<20	<20		<20	<20	<20	
	AINBO DX 866 RAND I DH 1H0	TTENT	o. of sa ample t ROJEC HIPMEI	amples	S	148	811	77	ω	249	74 <	179		156	143	60	
	NS & S FORKS	ion: J	mples r ype: R T#: A NT#: 6	submit	Ti %	0.03	0.08	0.07	0.02	0.02	:0.01	0.12		0.03	0.03	0.12	
	UNSHII , BC	OHN KI	eceivec ock RROW	ted by:	∍	<10 10		212	<10	<10	<10	<10		<10 10	<10 <	<10	
	Ш Z	SMP	1: 7	J. Kem	>	43	4 5 5 5 7	70	33	19	7	130		44	42	62	
				đ	3	<10 <10		212	10	<10	<10 <10	<10		<10	<10	<10 <10	
					≻	4	7 77 7	2	9	17	10	21		16	15	9	
					Zn	170		0000	271	1660	122	253		165	172	80	

1

d(1529 XLS/98 fax: 250-442-3401

ECO-TECH LABORATORIES LTD. Der Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

4-Sep 98

.

ECO-TECH LABORATORIE S LTD. 10041 East Trans Canada H ghway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

ICP CERTIFICATE OF ANALYSIS AK 98-498

-051-11 Pax N010 /6/1	E Stofypagest 2
To	From
Co. Dept. ROCK	Co. SAMPIES
Phone #	Fnone #
Fax #	Fax.#

.

RAINBOWS & SUNSHINE
BOX 866
GRAND FORKS, BC
VOH 1H0

ATTENTION: JOHN KEMP

No. of samples received: 13 Sample type: ROCK PROJECT #: ARROW SHIPMENT #: 5 Samples submitted by: J_KEMP

Values in ppm unless otherwise reported

Et# Tan#	Autorby	Aα	AL 7.	٨e	Ba	Ri	Ca %	C-1	Co	<u> </u>	<u>~</u>	E - 9/	7	м на.				_				ភពហ្វេអខ	s Stunit	meu ny.	J. N	=MIP		
			0.45									FE %	La Mg	7a m in	MO	<u>Na %</u>	Ni	<u> </u>	Pb	Sb	Sn	Sr	Ti %	u	v	W	Y	Zn
R 46 03-21	10	1.4	0.15	<2	335	<5	0.30	<1	5	173	10	1.98	30 0.0	11 159	19	<0.01	5	1180	110	<5	<20	49 -	0.01	<10	8	<10		22
A 47 DJ-28	5	4 J.2	0.48	<5	85	<5	0.36	<1	4	96	29	1.48	60 0.3	4 235	З	D.04	3	610	14	<5	<20	28	0.01	<10	10	-10	47	22
R 48 DJ-29	5	⊲0.2	0.19	<5	25	15	0.03	<1	8	130	13	6.81	<10 0.0	2 92	11	0.03	<1	30	6		~~~		20.01	~10	13	~10	12	21
R 49 DJ-30	5	≪0.2	0.17	<5	80	<5	0.04	<1	2	151	7	1.08	30 <0.0	1 315	10	0.01	ط	100	วดี	-5	~20		-0.01	×10 - 40	~~	<10	<1	в
R 50 DJ-31	140	25 4	0.84	<5	580	<5	0.59	<1	10	68	5947	4 65	150 0.5	0 4001	10	0.0F		020	20	<0 	~20		-0.01	<10	2	<10	<1	12
											0011	4.00	100 0.0	~ .201		0.00	- 4	830	200	<0	<20	70	0.01	<10	41	<10	11	160
851 DJ-32	5	⊲0.2	2.12	<5	210	<5	2 48	~1	26	116	46	E 90	60 0 0			• • •			_									
per DJ-33	5	22	0.26	<5	60	<5	0.36	- 1	6	94	70	0.00	30 2.0	0 024	۹ ۹	0.00	81	2700	6	<5	<20	101	0.07	<10	94	<10	8	68
A 3 2 130 30	5	n 🤉	0.23	~E	40	~	105	~1	40	04	70	2.59	70 0.0	9 216	16	0.01	6	1310	92	<5	<20	15 -	-C.01	<10	9	~10	7	45
A22 D1 22	5	0.2	0.70	-0	40	2	1.03	51	10	80	28	3.21	130 0.6	i 9 492	8	0.03	17	2070	20	<5	<20	51	0.02	<10	28	<10	13	45
R54 01-35	5	-0.2	0.10	<0	125	<₽	0.06	<1	~1	113	11	1 16	30 0.0	4 49	141	0.04	<1	420	112	<5	<20	23 -	40.01	<10	6	<10	<1	13
RS5 UJ-35	5	٩ <i>.</i> 2	0.17	<5	45	<5	0.10	<1	1	67	12	1.17	<10 <0.0	1 1039	4	0.05	</td <td>310</td> <td>74</td> <td><5</td> <td><20</td> <td>31</td> <td>0.02</td> <td><10</td> <td>22</td> <td><10</td> <td></td> <td>20</td>	310	74	<5	<20	31	0.02	<10	22	<10		20
																						•	0.02	14	~~	10	~1	00
K 26 DJ - 37	5	<0.2	0.45	<5	260	<5	4.15	<1	13	53	128	3.21	<10 0.8	0 2640	<1	0.03	9	2870	20	-6	ก</td <td>4073</td> <td>0.14</td> <td></td> <td>70</td> <td></td> <td></td> <td></td>	4073	0.14		70			
-R 57 DJ - 38	5	1.8	1.11	<5	455	<5	2.17	18	13	67	983	3.71	70 1.0	2 1029	76	0.02	26	2746	1670	~5	<20	477	0.14	~10	12	<10	8	114
<i>R 5</i> 8 DJ - 39	5	19.6	0.96	<5	45	<5	5.74	60	13	41	5553	3.65	70 0.8	7 6925	2	0.05	2	1210	N10000	 -5 	~20	111	-0.01	< 10	50	<70	6	1716
1. J.													10 0.0	J DOLG	-	0,00	7	1010	210000	<0	<20	398	0.03	<10	51	<10	<1 >	10000
OC DATA:																												
Resplit																												
R/S 1 DI- 27	10	16	017	6 5	365	~~	0.33	~1	E	107		0 4 F																
Papask	10	•	0.17	\sim	500	0	0.32	21	J	102	14	2.15	30 0.0	N 167	18	<0.01	6	1210	118	<5	<20	51 -	<0.01	<10	9	<10	2	24
A DI 07	-	4.4	0.48	~	0.4F				_																			
	5	-0.0	0.10	5	345	<5	0.30	<1	5	177	14	2.01	30 0.0	1 169	19	<0.01	6	1200	120	<5	<20	50 <	:0.01	<10	я	<10	2	74
10 DJ-36	-	<0.2	0.17	<5	45	<5	0.10	<1	2	67	13	1.19	<10 -0.0	1053	3	0.05	<1	310	84	<5	<20	33	0.02	<10	22	~10	-1	27
Standard:																					20		O.OL	10	23	~10	<u> </u>	90
GEO'98	135	1.0	1.76	65	155	<5	1.72	<1	19	62	84	4.13	<10 0.9	4 696	<1	0.02	23	660	22	-5	~~~~	55	D 44		-			_
											-					0.02	23	000	22	~0	~20	20	u . Li	~1U	- 11 -	~10	6	72

df/493 XLS/98 fax: 250-442-3401

1.11.17

1

¢ ¢

1.5

÷.

11-00 UIS

4001

ECO-TEC 10041 Ea KAMLOO V2C 6T4	13-Aug-9 :H LABO st Trans :PS, B.C.	9 RATORI Canada I	E: †i							IC	PCER	TIFICA	TE OF	ANALY	isis ai	K 98-4	16						R. Bi G Vi	AINBO OX 860 RAND 0H 1H	WS& 3 Fork)	SUNSI S, BC	INE			
Phone: 2 Fax : 2 Values in	90-573-53 50-573-48 9 ppm un	700 157 less oth	PROCK SAMPLES Differ eported u(pp Ag Al % As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Min Mo Na % Ni P Pb 0.8 0.44 <5 80 <5 0.21 <1 18 91 130 7.36 40 0.41 188 683 0.06 4 1450 30 <0.2 0.30 <5 100 <5 0.09 1 5 90 69 3.98 20 0.13 89 4907 0.06 <1 630 838 1.0 0.34 <5 90 <5 0.15 1 6 76 24 5.17 30 0.23 143 4999 0.08 2 1040 3864																A N S S S	io. of si ample ROJE(HIPME ample	TION: J amples type: F CT #: A ENT #: s subm	ighn H Teceivi RCCK RROW 4 itted by	(EMP ed:7 /	IN KEM	P					
Et #.	Tag #	Au(p	p Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	ng %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	T7 %	U	v	W	Y	Zn
R40	DJ - 21		0.8	0.44	<5	80	<5	0.21	<1	18	91	130	7.36	40	0.41	188	683	0.06	4	1450	30	<5	<20	26	0.03	10	49	20	<1	34
R 41	DJ - 22		<0.2	0.30	<5	100	<5	0.09	1	5	90	69	3.98	20	0.13	89	4907	0.06	<1	630	838	<5	<20	21	0.02	<10	25	10	<1	27
R 42	DJ_ 23		. 1.0	_ D.34	<5	90	<5	0,15	1	6	76	24	5.17	30	0.23	143	4999	0.08	2	1040	3864	<5	<20	53	0.04	<10	19	<10	<1	- 56
R43	DJ - 24		0.8	0.92	<5	50	<5	0.79	<1	38	62	166	7.99	08	0.73	252	72	0.07	40	4040	38	<5	<20	41	0.06	<10	25	<10	9	27
R44	DJ-25		0.4	0.62	5	95	<5	0.28	<1	4	113	22	2.11	110	0.57	224	158	0.07	1	1610	674	<5	<20	20	0.06	<10	17	<10	8	50
R45	DJ - 26		0.2	3.65	20	965	<5	9.36	<1	<1	91	15	2.26	130	0.19	118	26	1.10	<1	1500	42	<5	<20	397	0.02	<10	18	<10	13	24
QC DATA Resplit: 1 DJ	u - 21		0.6	0 43	<5	90	<5	0.21	<1	12	94	128	6.93	40	0.39	179	706	0 06	2	1390	28	45	<20	21	0.03	10	49	20	<1	32
Repeat 1 DJ	- 21		1.0	0.45	<5	85	≺5	0.24	<1	18	90	131	7,38	40	0.41	189	695	0.07	2	1470	32	~5	<20	26	0.03	10	49	20	<1	35
Standard GEO'98	2		1.2	1.68	60	160	<5	1.68	<1	19	59	80	4.04	<10	0.92	669	11	0.03	21	660	22	<5	<20	56	0.10	<10	74	<10	3	66

ł

NOTE: * = Results still to co

.

df/410 XLS/98

.

•

Ę

ECQ-TECH LABORATORIES LTD. Der Park J. Pezzotti, A.Sc.T. B.C. Certified Assayer

05-13-98 15:40 2250 573 4557

V1003

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

ICP CERTIFICATE OF ANALYSIS AK 98-297

ŧ

ROCK SAMPLES

Values in ppm unless otherwise reported

Et	#. Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	la	Ma %	Mn	Мо	Na %	AL:	D	DL.	~.	•							
R 20	DJ-01-98	5	<0.2	0.95	<5	240	10	0.70	<1	9	Q1	15	3 10	20	0 76	200		Na 70		P	Pb	Sb	Sn	Sr	<u>Ti %</u>	<u> </u>	<u>v</u>		<u>Y</u>	<u>Zn</u>
R 21	DJ-02-98	5	<0.2	0.36	<5	60	<5	0.05	<1	1	146	15	1 05	20	0.70	308	5	0.08	1	1880	4	<5	<20	51	0.14	<10	54	<10	3	62
22 N	DJ-03-98	5	0.6	0.23	<5	50	<5	0.02	<1	۔ 1	26	- 4	1.05	40	0.13	1/4/	16	0.02	3	50	10	<5	<20	18	<0.01	<10	3	<10	2	64
R23	DJ-04-98	5	0.8	0.24	<5	45	<5	0.05	<1	1	20	5	1.01	120	0.01	112	6	0.05	<1	90	24	<5	<20	22	<0.01	<10	<1	<10	<1	35
R24	DJ-05-98	5	0.6	0.30	<5	95	5	0.00	~1	2	20	5	1.08	<10	0.01	22	7	0.03	<1	120	72	<5	<20	41	<0.01	<10	2	<10	<1	15
					•	20	0	0.40		3	30	3	1.51	<10	0.06	635	5	0.04	<1	240	14	<5	<20	160	<0.01	<10	22	<10	4	9
R 25	DJ-06-98	5	<0.2	1.57	20	50	5	0.73	-1	10	74	~																		
R 26	DJ-07-98	5	< 0.2	1.06	<5	75	<5	0.75	~1	10	14	31	3.39	70	1.22	419	13	0.01	23	2910	20	5	<20	91	<0.01	<10	52	<10	4	72
R27	DJ-08-98	270	>30	0.75	70	35	~5	0.44	~1	10	40	28	2.57	70	0.60	594	13	0.04	10	1460	44	<5	<20	64	<0.01	<10	21	<10	4	91
R 28	DJ-09-98	5	10	1.86	<5	155	~5	2.40	2	22	30	2671	7.71	70	0.08	1152	130	0.02	<1	160	>10000	<5	<20	10	0.02	<10	15	<10	<1	2457
R29	DJ-10-98	5	<0.2	0.80	<5	215	<5 <5	3.40	1	3	76	111	1.64	80	0.05	1083	1325	0.47	<1	110	326	<5	<20	41	<0.01	<10	2	<10	21	423
		0		0.00	-0	215	~5	0.40	<1	8	39	21	3.94	210	0.74	215	154	0.06	<1	1750	32	<5	<20	61	0.12	<10	53	<10	12	29
R30	DJ-11-98	5	0.2	1 14	~5	210	~5	0.57					_																	
1 Q C	DJ-12-98	15	6.0	0.45	~J ~5	310	<0	0.57	<1	12	54	115	5.37	280	1.07	393	391	0.06	6	2570	58	<5	<20	57	0.11	<10	75	<10	16	62
032	D.I-13-98	.0	2.6	0.43	~J ~5	40	10	0.31	2	1	57	53	4.14	100	0.22	553	1222	0.04	2	1460	1230	<5	<20	27	<0.01	<10	13	<10	4	650
D33	D.1-14-98	5	2.0	0.75	<5 <5	00	<0	0.40	4	13	51	54	3.24	150	0.52	2589	376	0.04	5	1480	492	<5	<20	58	< 0.01	<10	9	<10	15	787
R 24	DJ-15-98	5	<0.4	0.40	<5 <5	00	<0	0.27	<1	3	66	7	2.14	40	0.05	172	18	0.05	<1	700	26	<5	<20	35	<0.01	<10	10	<10	6	20
137	20-10-30	5	~0.2	0.23	<0	240	<5	0.02	<1	<1	123	4	1.25	10	<0.01	33	11	0.01	<1	190	120	<5	<20	47	< 0.01	<10	1	<10	3	<1
A75	D J_16_08	10	~0.2	0.67	-5	40		- ·-																			•		Ŭ	
026	DI-17-09	10	~0.2	0.07	<5	40	<5	0.45	<1	35	65	54	6.40	80	0.85	224	197	0.07	26	2010	16	<5	<20	39	0.08	<10	35	<10	7	20
A 30 A 47	DJ-17-90	5	<0.2	0.79	10	35	<5	0.90	<1	14	110	58	3.48	130	0.74	494	54	0.03	36	2430	42	<5	<20	103	0.08	<10	27	<10	11	23 54
107	DJ-10-90	5 E	<0.2	1.68	<5	50	15	6.90	<1	27	209	16	4.40	100	2.61	2654	13	0.03	77	4770	36	10	<20	348	0.00	<10	60	<10	6	00
N 38	DJ-19-98	5	1.2	1.72	<5	40	<5	0.96	<1	53	92	381	>10	80	1.33	715	30	0.04	77	4600	136	<5	<20	35	0.12	<10	109	<10	-1	60
N37	DJ-20-98	10	1.0	0.30	<5	50	<5	0.24	2	4	140	39	1.95	100	0.15	78	500	0.05	8	1420	486	<5	<20	44	0.03	<10	40 9	<10	7	514
																				-		•	~~~		0.00	- 10	0	~ 10		

Page i

RAINBOWS & SUNSHINE BOX 866 GRAND FORKS, BC V0H 1H0

(

ATTENTION: JOHN KEMP

No. of samples received: 20 Sample type: Rock PROJECT #: ARROW SHIPMENT #: 3 Samples submitted by: John Kemp

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLCOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

ICP CERTIFICATE OF ANALYSIS AK 97-1299

ROCK SAMPLES

RAINBOWS & SUNSHINE BOX 866 GRAND FORKS, BC V0H 1H0

(

ATTENTION: JOHN KEMP

No. of samples received: 13 Sample type: ROCK PROJECT #: NONE GIVEN SHIPMENT #: NONE GIVEN Samples submitted by: J. KEMP

Frank J. Pezzotti, A.Sc.T.

.

B.C. Centhed Assayer

Values in ppm unless otherwise reported

2

÷.

Et #	t. Tag#	Au(ppb)	Ag	AL%	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Ee %	la	Mn %	Ma	Ma	Na 9/	kt:	-	-	<u>.</u> .		_						
R07	JD 97-2	10	<0.2	0.65	<5	140	<5	1.14	<1	<u> </u>	57	8	2.05	100	0 00	740			141		PD	SD	Sn	Sr	Π%	<u> </u>	V	W	Y	Zn
ROS	JD 97-3	5	0.4	0.28	5	50	<5	0.28	<1	4	46	0 8	2.00	100	0.0Z	748	3	0.27	4	670	14	<5	<20	30	0.03	<10	23	<10	11	41
R09	JD 97-4	10	0.4	0.51	10	120	<5	0.44	<1	2	20	0	2.00	100	<0.01	000	5	0.10	2	280	16	<5	<20	9	0.03	<10	12	<10	6	46
R10	JD 97-5	5	9.8	0.61	25	40	<5	0.50	- 1	2	25 64	6 4 D	2.07	230	<0.01	51/	4	80.0	<1	150	26	<5	<20	15	0.03	<10	9	<10	7	51
RII	JD 97-6	5	2.2	0.24	<5	35	<5	0.06	2	5	10	044	4.10	130	0.03	801	29	0.09	1	280	4963	<5	<20	16	0.01	<10	4	<10	15	813
-					-		÷	0.00	2	0	42	44	4 48	80	<0.01	1391	24	0.04	<1	170	534	<5	<20	7	0.03	<10	12	<10	9	701
RIZ	JD 97-7	5	0.8	1.37	<5	90	<5	2.20	-1		20	400	4.04														_		-	
RIS	JD 97-8	5	5.4	1.33	<5	725	10	Q 55	14	3	30	130	1.61	60	0.03	1194	511	0.34	<1	130	304	<5	<20	35	<0.01	<10	3	<10	19	1300
RILL	JD 97-9	5	3.8	1 45	<5	205	-5	2.33	14	13	70	43	7.32	100	1.14	5054	36	0.02	19	920	702	<5	<20	611	0.04	<10	68	<10	, с Я	3070
1017	JD 97-10	15	17.8	071	<5	325	~5	2.04	~1	17	85	1009	4.86	70	1.51	948	22	0.04	21	3200	76	<5	<20	139	0.05	<10	70	<10	å	179
R IZ	JD 97-11	35	12.8	0.36	75	35	~5	0.95	< 1 - 1	10	38	6151	4.26	150	0.47	1569	8	0.04	8	860	144	<5	<20	90	0.02	<10	43	<10	11	197
				0.00	<i>i</i> 4	35	~0	0.15	<1	5	195	28	1.06	20	0.17	138	92	<0.01	17	470	12	<5	<20	22	<0.01	<10	43	<10	4	24
R 17	JD 97-12	5	8 0	0.21	~5	40	~5	0.00					-														·•••	10	1	21
R 18	JD 97-13	5	1.0	1.50	~5	40	<0 -5	0.05	<1	<1	57	20	0.73	110	0.01	167	5	0.05	2	30	8	<5	<20	11	<0.01	<10	<u>_1</u>	~10		-
A 19	JD 97-14	5	1.0	0.24	~5	30	<0	3.48	<1	13	89	23	3,34	90	0.87	1024	14	<0.01	22	1900	136	<5	<20	226	<0.01	<10	24	<10	4	0
11 1 1	000.14	5	U.E.	0.24	~5	30	<5	0.13	<1	2	59	20	1.43	10	0.06	648	7	0.04	2	290	276	<5	<20	23	0.01	<10	27	<10	4	400
00.0	λτα																					-		20	0.01	~10	20	• 10	i	133
Rose	-nin-																													
DIG -	1 10 07 2	F	~ ~ ~	0.70		450	~																							
Page	(<u>JD J/-2</u>	Ð	0.4	0.70	<5	150	<5	1.20	<1	5	59	9	2.12	110	0.03	826	3	0.25	4	730	18	<5	<20	20	0.04	~10	~~			
лерч	1007.0	40	~ ~ ~			1																	-20	00	1	~10	20	<10	13	41
í Cán in	30 97-2	10	<0.2	0.59	<5	130	<5	1.02	<1	4	51	9	1.78	90	0.02	678	3	0.26	3	610	22	~F		20	0.07					
Stan	dard:					i											-		v	510	64	~5	~20	29		<10	20	<10	10	50
GEO	97	-	1.4	1.85	60	170	<5	1.86	<1	21	65	89	4.28	<10	0.98	729	<1	0.03	22	720	24	-5	-20	-						
																.40	- •	0.00	44	720	24	<5	<20	69	<u>j</u> e je	<10	83	<10	5	75
																										\sim				
	-																								-/	/	0			
d1/12	95																						-		$5 \leq 6$	140	<u>A</u> Z[<u> </u>		
XLS/	97																							ECO-T	ECHU	BORA 1	ORE	S LTD.		

12. 200 12.2001

.

.

29-Oct-98

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 98-663

ROCK SAMPLES

RAINBOWS & SUNSHINE BOX 866 GRAND FORKS, BC V0H 1H0

ĺ

ATTENTION: JOHN KEMP

No. of samples received: 6 Sample type: Rock PROJECT #: ARROW SHIPMENT #: 7 Samples submitted by: J. Kemp

Values in ppm unless otherwise reported

Et	t. Tag#	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr Ti	%	U	v	w	Y	Zn
201	BARRY #1	25	1.6	0.27	<5	290	<5	0.09	21	6	45	2597	1.28	<10	0.03	662	4	0.03	2	120	8464	<5	<20	54 <0.	01	<10	12	<10	5	5405
R02	BARRY #2	5	18.0	0.05	<5	110	40	0.01	30	2	162	33	0.82	<10	<0.01	164	22	<0.01	3	<10	248	<5	<20	29 <0.	01	<10	3	<10	<1	692
RO3	BARRY #3	5	0.2	0.20	<5	55	<5	0.49	<1	5	93	6	1.63	20	0.03	341	8	0.02	4	470	34	<5	<20	29 <0.	.01	<10	19	<10	8	42
ROY	BARRY #4	5	2.2	0.27	<5	115	<5	0.53	39	4	59	1750	0.90	<10	0.08	665	113	0.04	<1	20	>10000	<5	<20	1373 <0.	.01	<10	9	<10	2	4375
ROS	BARRY #5	5	0.4	0.25	<5	170	<5	0.09	<1	5	73	12	2.07	<10	0.02	1151	6	0.03	3	210	196	<5	20	28 <0.	.01	<10	26	<10	9	118
R06	P-1	5	10.6	0.20	<5	85	65	0.04	1	4	171	57	2.88	<10	0.07	363	114	0.01	4	110	154	<5	20	44 <0.	.01	<10	5	<10	<1	158
QC Resj R/S	DATA: D iit: 1 BARRY #1	35	1.6	0.27	<5	275	<5	0.09	21	6	52	2578	1.27	<10	0.03	686	4	0.03	3	130	8356	<5	<20	55 <0	.01	<10	12	<10	4	5308
Rep 1	eat: BARRY #1	5	1.6	0.27	<5	275	<5	0.09	22	6	46	2724	1.32	<10	0.03	685	5	0.03	2	130	8862	<5	<20	56 <0	.01	<10	12	<10	4	5614
Star GEC	dard: '98	140	1.2	1.70	60	170	5	1.86	<1	18	66	91	3.93	<10	0.98	663	<1	0.02	25	650	22	<5	<20	56 0	.10	<10	74	<10	6	74

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/643 XLS/98 fax: 250-442-3401 ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 98-662

STREAM SAMPLES

RAINBOWS & SUNSHINE BOX 866 GRAND FORKS, BC V0H 1H0 - -

ATTENTION: JOHN KEMP

No. of samples received: 9 Sample type: Soil/Stream PROJECT #: ARROW SHIPMENT #: 7 Samples submitted by: J. Kemp

Values in ppm unless otherwise reported

Et #	t. Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	<u>Ca</u> %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Рb	Sb	Sn	Sr	Ti %	U	v	W	Y	Zn
826	79 PUP	<5	<0.2	0.74	<5	65	10	0.60	<1	8	44	11	4.58	30	0.20	289	1	0.02	9	640	12	<5	<20	54	0.06	<10	121	<10	4	35
527	BOWMAN #2	<5	<0.2	0.83	<5	75	10	0.55	<1	8	28	7	3.58	50	0.28	470	<1	0.02	8	1460	16	<5	<20	48	0.08	<10	72	<10	9	44
853	REN-NF	<5	<0.2	0.55	<5	70	20	0.65	<1	11	78	5	8.01	40	0.31	399	3	0.01	25	1990	6	<5	<20	49	0.07	<10	163	<10	<1	39
529	REN-SF	<5	<0.2	0.66	<5	95	10	0.69	<1	8	34	6	5.85	40	0.18	324	2	0.01	8	2000	8	<5	<20	66	0.06	<10	146	<10	4	37
\$30	FAITH #1	275	<0.2	0.56	<5	140	15	1.37	1	18	259	15	>10	70	0.36	345	5	0.02	26	4540	6	<5	<20	93	0.09	<10	417	<10	7	40
531	80 PUP	<5	<0.2	2.21	<5	115	<5	0.31	<1	8	21	11	3.02	20	0.25	233	<1	0.02	15	1130	20	<5	<20	42	0.11	<10	53	<10	6	83
532	81 PUP	<5	<0.2	2,22	<5	100	10	0.55	<1	9	20	19	2.76	40	0.27	462	<1	0.03	11	620	22	<5	<20	60	0.12	<10	46	<10	25	63
233	82 PUP	<5	<0.2	1.26	<5	80	<5	0.29	<1	9	30	11	2.94	30	0.37	238	<1	0.02	13	420	14	<5	<20	36	0.10	<10	60	<10	6	42
5 34	83 PUP	<5	<0.2	2.18	10	250	5	0.36	<1	6	14	13	2.34	40	0.22	625	<1	0.02	8	1210	40	<5	<20	49	0.11	<10	39	<10	13	68
	DATA:																													
Rep 1	eat: 79 PUP	<5	<0.2	0.74	<5	60	10	0.59	<1	8	44	9	4.53	30	0.19	283	2	0.02	9	650	12	<5	<20	52	0.06	10	119	<10	4	34
Stan GEC	<i>dard:</i> '98	130	1.2	1.78	65	170	<5	1.73	<1	19	66	82	3.96	<10	0.95	669	<1	0.02	24	630	20	<5	<20	62	0.11	<10	76	<10	5	67

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/637 XLS/98 fax: <u>250-442-3401</u>

18-Sep-98	

Ä

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 ICP CERTIFICATE OF ANALYSIS AK 98-536

STREAM SAMPLES

E

RAINBOWS & SUNSHINE BOX 866 GRAND FORKS, BC V0H 1H0

٩

ATTENTION: JOHN KEMP

No. of samples received: 8 Sample type: Stream PROJECT #: ARROW SHIPMENT #: 8 Samples submitted by: J. Kemp

,	Jalues	in ppm unles	s otherwis	se r	eport	ed														N - 0/	NG	a	Ph	Sb	Sn	Sr	Ti %	U	V	W	Y	Zn
5 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Et #. 8 7 2 2 2 2 2 2 2 2 2 2 2 2 2	Tag # JDN#3 TO-BIT#1 OCTO#1 SUN-5#1 GRITA#1 BOWMAN#1 HUTCH#1 WORTH#1	Au(ppb) 5 5 5 5 5 5 5 5 5 5 5 5		Ag / 0.2 0.2 0.2 0.2 c0.2 c0.2 c0.2 c0.2 c0.	AI % 0.60 0.65 0.67 0.76 0.45 0.61 0.64 0.80	As <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5 <5	Ba 95 60 95 85 105 70 115 105	Bi (15 15 10 15 25 15 15 5	2a % 0.79 0.69 0.74 0.93 1.48 0.76 1.62 0.58	Cd 1 <1 1 1 2 <1 1 1	Co 18 16 12 16 23 17 24 9	Cr 146 89 75 86 245 87 217 55	Cu 16 15 9 18 15 12 16 9	Fe % >10 9.03 7.91 >10 >10 >10 >10 >10 4.91	La N 50 10 40 70 100 50 110 40	Ng % 0.36 0.30 0.38 0.28 0.26 0.24 0.39 0.31	Mn 527 422 345 640 424 638 646 521	Mo 8 3 3 3 9 4 8 3	0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.05 0.02	NI 17 11 10 11 23 13 21 10	2430 1280 2310 2010 4860 2030 4730 1350	14 8 20 12 12 8 14	<5 <5 <5 <5 <5 <5 <5 <5	<20 <20 <20 <20 <20 <20 <20 <20 <20	50 54 42 105 95 57 130 50	0.08 0.10 0.09 0.13 0.09 0.12 0.12 0.07	<10 <10 <10 <10 <10 <10 <10 <10	263 230 183 230 465 287 446 105	<10 10 <10 <10 <10 <10 <10 <10	<1 <1 <1 <1 <1 <1 <1 <1 <1 <1 4	46 47 39 71 42 55 52 52
	<u>QC D</u> Rene	ATA:							10	0.81	1	19	145	16	>10	50	0.41	572	7	0.02	17	2450	18	<5	<20	54	0.09	<10	263	<10	<1	50
	1 Stan GEO	JDN#3 <i>dard:</i> '98	14	5 40	<0.2 1.0	0.66 1.82	<5 65	95 155	5	1.84	<1	19	60	77	4.13	<10	0.96	664	<1	0.02	24	670	18	<5	< <u>2</u> 0	64	ų 0.13	<10	84	<10	6	66

NOTE: * = Au results still to come

ECO-TECH LABORATORIES LTD. Per Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/540 XLS/98 fax: 250-442-3401

	4-Sep-98																					Į							
EC 10	CO-TECH LABORATOR	tifis LTD. Highway								ICP CEI	RTIFIC	ATE OF	= ANAI	YSIS /	ak 98-	499						F	AINBA	ວ₩S 8 i6	SUNS	HINE	;		
V2	C 6T4																					G V	RANE /OH 1H	D FORI	KS, BC				
Ph	one: 604-573-5700																					۵	TTEN	TION:	JOHN	KEN	P		
га	x :009-073-4557									57	R	EAN	7	SA	g m	しど	5						1	- -					
																						S	vo. at s Sample	ampie. Type:	s recen Moss/	red: 1 'Silt	15		
																						F	ROJE	CT#:	ARRC	W			
Va	lues in ppm unless of	he invise re	ported	r																		ن د	Somolo	5/41 #.	لۍ منابع ملکيت		K		
E	t#. Tag#	/ <u>(add) nr</u>	Ag	AI %	As	Ba	Bi Ca	Ko Cd	Co	Cr	Cu	Fe %	La	Mg %	Ma	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	naten n H	y, J_1 V	Verno M	v	7.
S 0 3	SHIELDS #3	-345	<0.2	1.05	<5	200	<5 0.6	4 <1	7	32	13	2.65	40	0.36	321	<1	0.02	19	1230	20	<5	<20	64	0.08	<10	47	<u></u>		
504	SHIELDS #4	>1000	4.6	0.62	<5	180	5 0.9	9 <1	9	53	10	4.73	70	0.38	310	<1	0.02	14	3060	12	<5	<20	87	0.10	<10	47 07	<10	2	40
505	SHIELDS #5	5	<0.2	0.68	<5	220	<5 1.1	8 <1	11	85	10	5,12	70	0.52	431	<1	0.02	19	3700	14	<5	<20	119	0.11	<10	110	~10	2A	-11 639
506	SHIELDS #6	330	<0.2	1.03	<5	395	<5 1.4	2 1	10	58	17	4.13	80	0.74	377	<1	0.02	25	3320	56	<5	<20	243	0.16	<10	74	<10	44	74
S 07	SHIELDS #7	5	1.0	0.80	<5	200	<5 1.(18 <1	10	52	12	6.17	90	0.42	325	2	0.02	16	3380	24	~5	<20	103	0.09	<10	119	<10	11	66
508	SHIELDS #8	5	⊲0.2	0.67	<5	145	<5 0.9	ril <1	11	65	13	7.48	90	0.30	539	6	0.02	14	3020	30	<5	≂ 20	72	0.07	~10	124	~10	~	
509	HOTCHRIDA#1	5	⊲0.2	0.46	<5	95	15 1.3	6 2	21	204	14	>10	100	0.27	494	ģ	0.03	20	4380	л Я	~	<20	7 E 8G	0.07	~10	422	<10		87
\$ 10	VAN HOUTEN #1	5	⊲0.2	0.65	<5	115	10 0.6	6 <1	14	161	11	8.06	50	0.49	333	2	0.02	25	2600	8	a di	<20	65	0.10	~10	922	~10		57
\$ 11	CINNAMON #1	5	<0.2	0.77	<5	145	<5 0.4	7 <1	7	30	8	4.80	110	0.14	585	4	0.02		1280	จกั	~5	~20	47	0.10	~10	203	<10 ⊲10	10	38
S / S	CINNAMON #2	5	<0.2	0.4 7	<5	110	1 0 0,€	i2 <1	11	74	13	9.27	80	0.14	520	6	0.01	8	1890	20	<5	<20	52	0.09	<10	166	<10 <10	3	82 79
513	GLADSTONE #1	5	<0.2	0.43	<5	85	20 1.0	92	21	140	16	>10	80	0 16	714	10	0.03	14	2220	10	~5	~10	85	0.40			.40		
514	MICHAUD #1	5	<0.2	0.80	<5	115	<5 0.5	ii <1	7	33	9	4.79	120	0.16	671	4	0.00	 A	1240	30	< <u>-</u>	~20	50 50	0.12	<10	410	<10	<1	80
515	MICHAUD #2	5	<0.2	0.81	<5	125	<5 0.6	53 <1	9	48	10	5 80	130	0.22	606	4	0.02	7	1/10	32 29	<5 25	~20	50	0.03	<10	19	<10 	14	91
s 16	JON #1	5	<0.2	0.49	<5	55	<5 0.2	9 <1	6	20	6	2.65	30	0.36	334	1	0.02	' 2	1410 040	40	<0	~10	04	0.08	<10	102	<10	15	81
S17	JON #2	>1000	<0.2	0.40	<5	90	15 0.7	'9 2	26	251	25	>10	20	0.18	411	15	0.01	28	2430	18	<> <5	<20 <20	41	0.04	<10 10	40 451	<10 <10	3 <1	37 68
QC	DATA:																											-	
Rej	peat;																												
1	SHIELDS #3	345	<0.2	1.08	<5	205	<5 0.6	5 <1	7	34	13	2.81	40	0.37	331	<1	0.02	20	1280	20	~5	-20	65	0.00	-10		-10	~	
1	0 CINNAMON #2	-	<0.2	0.48	<5	105	15 0.6	i1 <1	11	73	12	9.03	80	0.15	543	5	0.01	20 8	1860	20	<5	~20 <20	00 51	0.08	<10 <10	51 162	≺10 ≺10	6 4	47 74
STR GE(ndard: C'98	130	1.0	1.73	65	150	<5 1.8	6 <1	18	66	76	4.18	<10	0.96	667	<1	0.03	22	670	24	<5	~20	57	0. 1 1	<10	78	<10	5	69

ĺ

df/493 XLS/95 fax: 250-442-3401

.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer i

ļ

:

ĩ

:

Page 1

(
18-Aug-98	

	ECO-TI 10041 E KAMLC V2C 6T	ECH LABORA East Trans Ca DOPS, B.C. [4	ATORIES L Inada High	_TD, way							ļ	CP CEF	RTIFIC	ATE OF	ANAL	YSIS A	NK 98-4	15						R. B(G V(AINBO OX 86 RAND 0H 1H	0WS & 3 6 9 FORK3 0	SUNSH S, BC	INE			
	Phone: Fax :	: 250-573-570(250-573-4557	0 7					:	STR	EAN	つ	sА	MØ	LE	5									A N S S S	TTEN o. of s ample ROJE HIPM	TION: J amples type: S CT #: A ENT #: 4	OHN K receive TREAN RROW 4	EMP ed:2 1			
	Values	s in ppm unle	ss otherw	ise rep	orted																			S	ample	s subm	itted by	JOHN	I KEMP		
	Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	٤a	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
50; 50;	2	SHIELDS - 01 SHIELDS - 02	i 825 2 660	o <0.2) <0.2	0.63 0.49	<5 <5	170 105	<5 20	1.07 0.89	1 2	19 17	145 261	39 31	>10 >10	100 40	0.35 0.26	409 374	12 9	0.02 0.02	26 31	3510 2710	24 22	<5 <5	<20 <20	78 63	0.07 0.07	<10 <10	304 342	10 <10	<1 <1	92 127
	QC DA	ATA:																													
	Repea 1	at: SHIELDS - 01	1 >1000) <0.2	. 0.61	<5	160	<5	1.04	1	19	142	38	>10	100	0.33	394	12	0.01	23	3440	22	<5	<20	72	0.07	<10	292	10	<1	89
	Standa GEO'9	a rd: 98		- 1.4	1.74	60	155	<5	1.74	<1	19	56	82	4.37	<10	0.92	678	<1	0.03	23	700	16	<5	<20	56	0.11	<10	80	<10	4	70

4

. ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

.

ĺ

df/413 XLS/98

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557

CERTIFICATE OF ASSAY AK 98-297

RAINBOWS & SUNSHINE BOX 866 GRAND FORKS, BC V0H 1H0 16-Jul-98

ATTENTION: JOHN KEMP

No. of samples received: 20 Sample type: Rock PROJECT #: ARROW SHIPMENT #: 3 Samples submitted by: John Kemp

			A	g Ag	j Pb	
,	ET #.	Tag #	(g/	t) (oz/t)) (%)	
•	8 C	DJ-08-98	80.	5 2.35	5 1.08	
	QC/DAT	<u>'A:</u>				
	Repeat: 8 [DJ-08-98	80	0 · 2.33	3 1.08	
	Standar Mp-IA	rd:	69	7 2.03	3 4.33	

ECO-TECH LABORATORIES LTD. Jank J. Pezzotti, A.Sc.T. **B.C. Certified Assayer**

XLS/98 fax: 250-442-3401

8-Sep-98

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ASSAY AK 98-498

RAINBOWS & SUNSHINE BOX 866 GRAND FORKS, BC V0H 1H0

ATTENTION: JOHN KEMP

No. of samples received: 13 Sample type: Rock PROJECT #: ARROW SHIPMENT #: 5 Samples submitted by: J. Kemp

ET #. Tag #	Pb (%)	Zn (%)	
13 DJ - 39	2.69	1.76	· · · · · · · · · · · · · · · · · · ·
QC/DATA:			
Repeat:			
13 DJ - 39	2.71	1.77	
Standard:			
Mp-IA	4.33		
CPb-1		4.42	

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/98 fax: 250-442-3401

16-Sep-98

10041 E. Trans Canada Hwy.. R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ASSAY AK 98-535

.....

RAINBOWS & SUNSHINE BOX 866 GRAND FORKS, BC V0H 1H0

ATTENTION: JOHN KEMP

No. of samples received: 7 Sample type: Rock PROJECT #: ARROW SHIPMENT #: 6 Samples submitted by: J. Kemp

		Zn
ET #.	Tag #	(%)
3	DJ42	2.16

QC/DATA:

Standard: Cpb-1

4.42

O-TECH LABORATORIES LTD. Nank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/98

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ASSAY AK 98-663

RAINBOWS & SUNSHINE BOX 866 GRAND FORKS, BC V0H 1H0		30-Oct-98
ATTENTION: JOHN KEMP		
No. of samples received: 6 Sample type: Rock PROJECT #: ARROW SHIPMENT #: 7 Samples submitted by: J. Kemp		
	Pb	
ET # Tag #	(%)	
4 BARRY #4	1.79	
QC/DATA:		
Repeat:		
4 BARRY #4	1.75	
Standard:		
Mp-IA	4.33	

TECH LABORATORIES LTD. Yank J. Pezzotti, A.Sc.T. ۴٩ B.C. Certified Assayer

24

GLOSSARY GLOSSAIRE Airtield

	and the atternade Be
Arena	Aréna
Canal	Canal
City Limits	Limites de ville
Customs	Douanes
Ditch	Fosse
Dugout	Abreuvoir
Dump	- Dépotoir
Factory	Usine
Filtration Plant	Usine de filtration
Gas	Gaz
Golf Course	Terrain de golf
Irrigation Canal	- Canal d'irrigation
Junk Yard	 Dépôt de terrailles
Kiln	Four
Lookout	Poste d'observation
Oil Wells	Puits de pétrole
Park	- Parc
Pipeline	Pipeline
Rink	Patinoire
Senior Citizens Home	Foyer pour citoyens de l'âge d'or
Silo	- Silo
Ski Area	 Station de ski
String Bog	. Marécage en enfilade
Surveyed Line	Ligne arpentee
Tailings	- Terrils
Tank	- Réservoir
Water	Eau
North State	

