BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1998/99REPORT #:PAP 98-7NAME:BRUCE HOLDEN

PROSPECTING REPORT- NORTHERN LIGHTS MINERAL PROPERTY

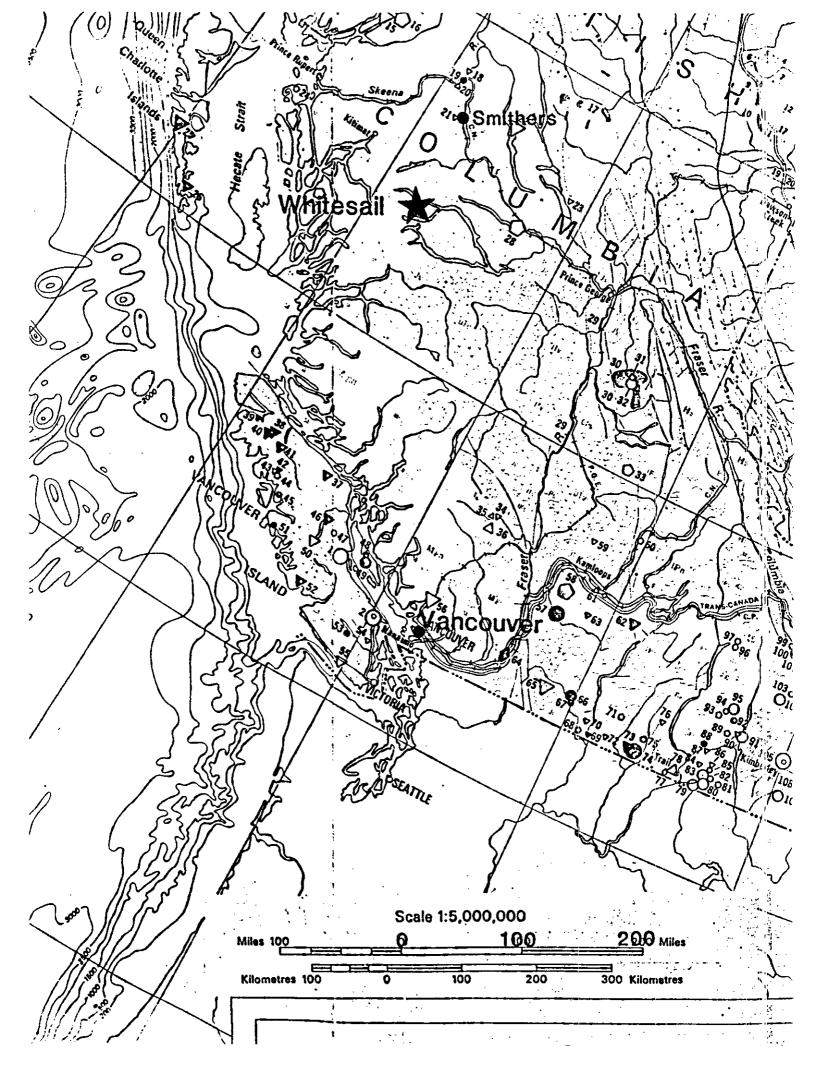
WHITESAIL RANGE 93E10W,93E11E

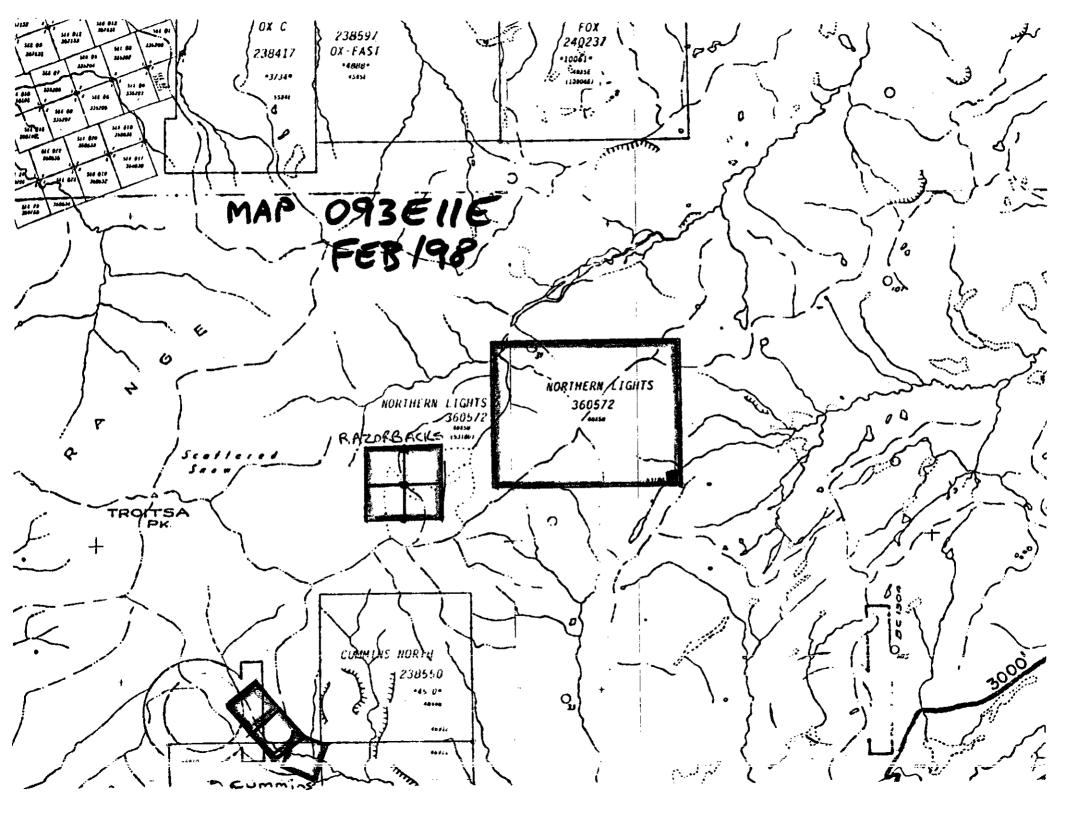
54 35 42 126 02 30

1998 PROGRAM

FOR

PROSPECTORS ASSISTANCE PROGRAM


BY


BRUCE HOLDEN RANDY LORD

1111 NORTH CENTRAL ROAD DENMAN ISLAND, VOR 1TO BRITISH COLUMBIA

OCTOBER 13, 1998

ins	TRY OF ENER	GY & N	IINES
REC'D	- 3	,	1
	SMITHERS,	BC	

PROSPECTING REPORT- NORTHERN LIGHTS

TABLE OF CONTENTS

<u>page</u>

.

LOCATION AND ACCESS	1
PROPERTY HISTORY	1
REGIONAL AND LOCAL GEOLOGY	1
WORK DONE	2
LIST OF CLAIMS	3
ASSAY RESULTS	3
SUMMARY AND CONCLUSIONS	3

.

APPENDIX A	MAPS
APPENDIX B	NOTICE OF WORK
APPENDIX C	GEOLOGY MAP
APPENDIX D	GEOCHEMICAL ANALYSIS
APPENDIX E	PROSPECTORS ASSISTANCE PROGRAM -
	PROSPECTING REPORT FORMS
	PART A- SUMMARY OF PROSPECTING ACTIVITY
	PART B - TECHNICAL REPORT
	•

PROSPECTING REPORT- NORTHERN LIGHTS MINERAL PROPERTY

LOCATION AND ACCESS

The Northern Lights Opal claim is located in the Omineca Mining District on the south east flank of the Whitesail Mountain range some 90 kilometers south of Houston, B.C. The NTS map sheet which corresponds to this property is 93E10W. Copies of the current Mineral titles reference maps and topographical map are attached as Appendix A. The deposit is located at approximately 6000 feet in elevation with snow cover from mid September until July. Access to the area is by helicopter only from a pick up point reached by vehicle at the Tahtsa Reach barge crossing.

PROPERTY HISTORY

Surface showings of precious opal bearing material were found in the Whitesail range in the 80's and early 90's by Bruce Holden and in 1995 claims were staked. In 1996 a 6 week field season revealed further surface showings and in 1997 a 5 week field season resulted in further discoveries so the property was restaked in 1997 by the applicant with a 4 post, 20 unit claim. A fly-in camp has been established and so far all expenses for each field season including necessary helicopter access has been funded entirely by ourselves with the addition of a Prospectors Assistance grant for the 1998 season. The 1998 field season resulted in further discoveries and 7 new units were staked. Appropriate Work permits, reports and an active reclamation bond has been obtained and filed. A copy of completed Notice of work form is included as Appendix B.

REGIONAL / LOCAL GEOLOGY

The Northern Lights property is located in the west central part of the intermontaine belt of the B.C, cordillera along the southern margin of a major east-northeast trending transverse tectonic belt know as the Skeena arch. Rock units across the intermontaine belt include Upper Paleozoic to Miocene volcanics, sediments and intrusive rocks. The Hazelton group dominates the lithologies in this area. Volcanics of the upper Cretaceous Kasalka and lower tertiary Ootsa lake group were deposited in a series of basins across much of the area. This volcanic -tectonic episode is responsible for the development of most of the significant mineral deposits in West- central BC. Attached as Appendix C is a copy of a map of the geological setting and mineral deposits of west-central BC. The precious opal occurs as open space fillings within fractures and vesicles in volcanic lahar and lapilli tuff units in the Ootsa Lake group. Eocene-aged rhyolite and dacite flows, breccia, tuff, basalt and conglomerates also contain significant amounts of agate, common opal and zeolites . This deposit appears to have tonnage potential of some size as indicated by the continuity of units across the structure.

WORK DONE

<u>1998 Program Summary</u> - August 1 to September 9,1998 (40 field days)

Personnel:

Bruce Holden	40 days
Randy Lord	40 days
Larry Hamula	40 days
LeeÁndra Jacobs	16 days
David Graham	16 days
	152 days

<u>Prospecting work</u> - 87 days - ground search of areas marked on topo map in Appendix A , surface sampling, flagging all in-situ precious opal surface showings

<u>Physical work</u> - 53 days - hand trenching priority areas, evaluation and preparation of samples in field, claim staking

Miscellaneous work - 12 days - camp related activities, reclamation work

Continued surface prospecting on and beyond the established claim resulted in the discovery of several new occurrences of precious opal bearing material in different types of host rock. This resulted in the staking of 4 additional opal claims namely Razorbacks 1, 2, 3 and 4. in an area west of the Northern Lights property. Four further occurrences of precious opal bearing material were found this season on the Northern Lights property and continued trenching will be required to determine their potential. Trenching and sampling from 2 priority locations on the property occurred as well as flagging and mapping all in-situ precious opal surface showings.

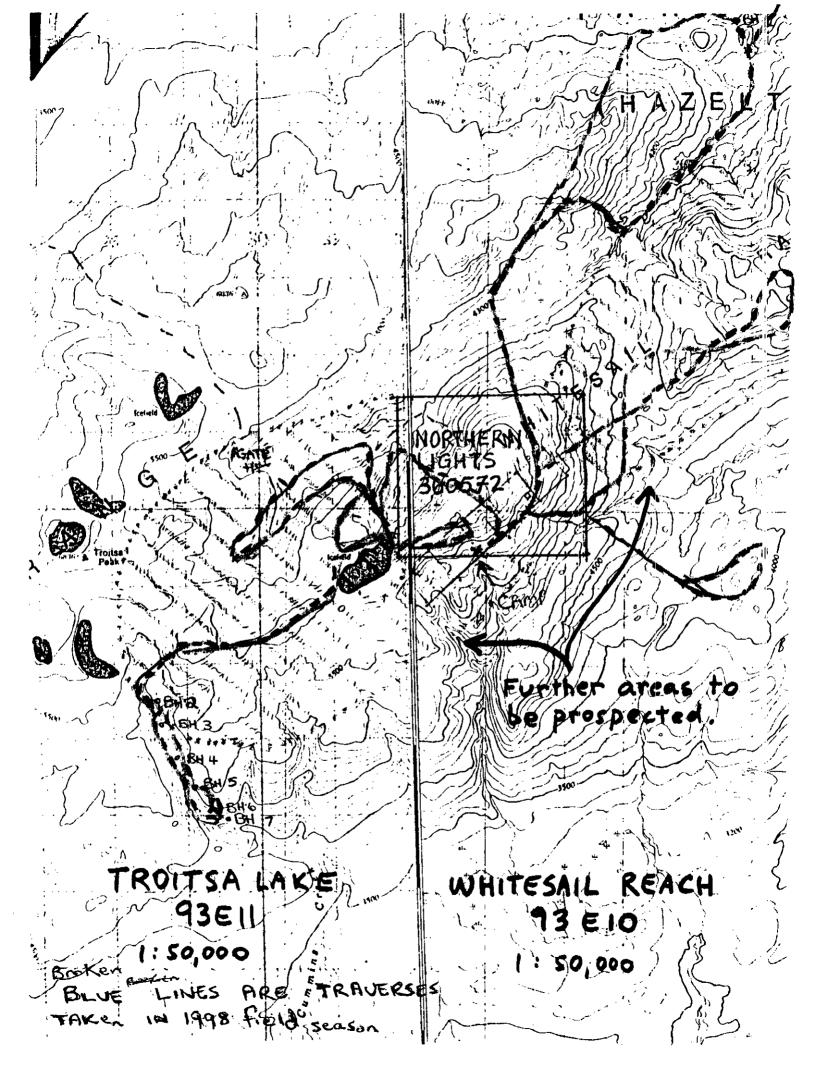
This season we used a Cobra drill and gas saw to work on areas that showed the greatest potential. Hand trenching, drilling and wedging with hand chisels and sledge hammers was used to break the rock. The material was inspected, cobbed then sorted at the face. Approximately 800 kg of precious opal bearing samples were recovered. Paul Wojdak, the regional geologist for Northwest British Columbia, and Dr. George Simandl of the Industrial Minerals Branch, BCGS and his assistant examined the property this season.

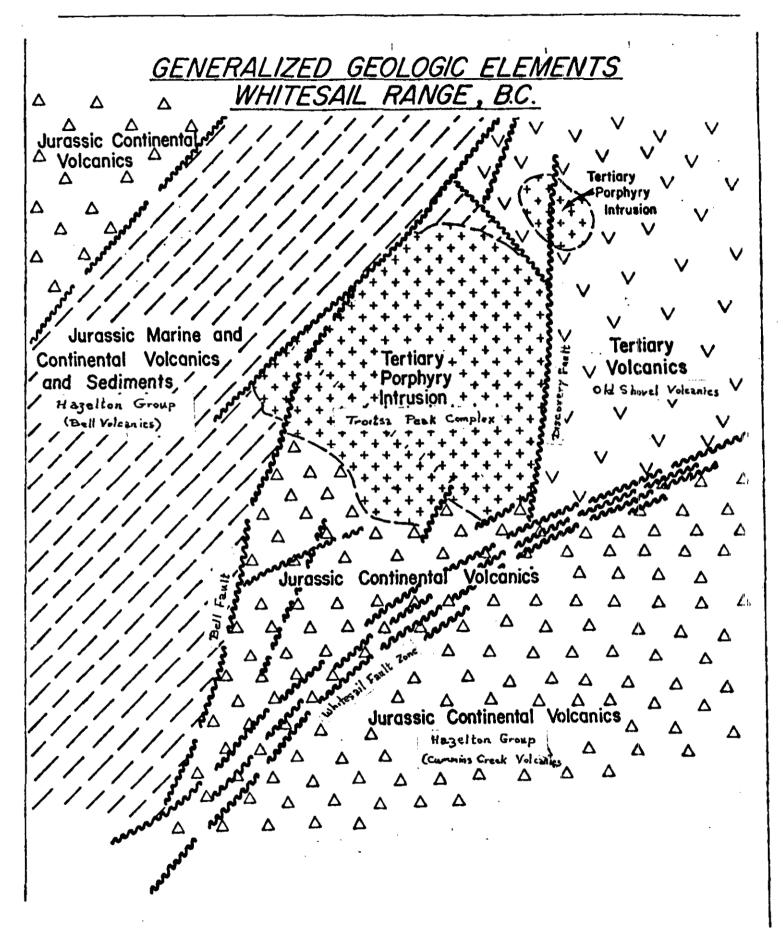
In an area prospected southwest towards Cummins Creek, quartz veins were found and sampled for precious metal numbers. These veins were found to contain tetrahedrite, galena, chalcopyrite, and other metal sulfides. Seven grab samples were taken for geochemical ICP analysis. These results are contained in Appendix D. The results of previous work and the very little work done in the past and the very positive appearance of the material, many parallel veins and alterations to the country rock, encouraged us to stake 3 units and make another project of it. Further trenching and exposing of the veins and enriched alteration zones will be required.

LIST OF CLAIMS

<u>Claim</u>	Record No.	<u>Type</u>	<u>Units</u>	<u>Owner</u>	Recording date
Northern Lights	360572		20	B. Holden	Nov 18,1997
Razorback # 1	658393	2 post	1	B. Holden	Sept 5,1998
Razorback # 2	658394	2 post	1	B. Holden	Sept 5,1998
Razorback # 3	658395	2 post	1	B. Holden	Sept 5,1998
Razorback # 4	658396	2 post	1	B. Holden	Sept 5,1998
Cummins # 1	681805	2 post	1	B. Holden	Aug 27,1998
Cummins # 2	681806	2 post	1	B. Holden	Aug 27,1998
Cummins # 3	681807	2 post	1	B. Holden	Aug 27,1998

ASSAY RESULTS


As it is not possible to detect precious opal other than with close visual inspection, all material must be examined closely then further sorting, grading and evaluation occurs. A diamond saw is used in the field on select pieces then the material is graded according to size and grade then sacked.


Sample evaluation consists of the sorting and cutting of polished sections and gemstones to determine marketability and price. As no analytical technique can be used to define gem quality this on-going procedure is necessary in order to asses the value of the material and the deposit. We have our own cutting, coring, grinding, lapping and polishing equipment and are actively evaluating the material. As well several opal cutters are assisting in the evaluation of this material. Cut and polished sections of this precious opal bearing material have been shown to be stable while exhibiting intense and brilliant play of colour. The base colour of the opal ranges from water clear, white, orange to black with clarity ranging from transparent through translucent to opaque.

The results from the seven grab samples taken for geochemical ICP analysis are contained in Appendix D. Duplicate samples were retained.

SUMMARY AND CONCLUSIONS

We are extremely encouraged by the results this season. The additional opal claims and potential precious metal claims staked this season confirm the need for close visual examination of the areas. On the Northern Lights property our main goals of examining material past the weathering and establishing continuity were well met. We expect to bring this property to the next stage as soon as possible and plan to test market the matrix opal as cutting, carving and jewelry grade material. Our goal is to become a producer and to market high value added material through established channels. We are very thankful to the the Ministry of Employment and Investment for their financial support through the Prospectors Assistance Program.

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name BRUCE HOLDEN	Reference Number <u>Sm198 - 0200 495 - 141</u>

Project Area (as listed in Part A) WHITE SAIL- NORTHERN LIGH	TS MINFILE No. if	applicable
Location of Project Area NTS 93 E 10 W	Lat 53 36' 42	Long 12 02 50
Description of Location and Access AREA 15 IN WHITESAIL	MOUNTAINS. ON THE	SOUTHEAST FLANK !!
NORTHERN LIGHTS CLAIM. ACCESS BY HELICOPTER 1	AND FLAGGED TRAIL	FROM W5 207 LOGEING
ROAD AFTER CROSSING TAHTSA REACH BY BARG	E.	
Main Commodities Searched For OPAL & GOLD-SILVER	EPITHERMAL	· · ·

Known Mineral Occurrences in Project Area <u>SEVERAL</u>, PLUS PROXIMITY TO HUCKLEBERRY, DEERHORN, etc.. TROITSA PEAK and HAZELTON VOLCANICS

WORK PERFORMED

1. Conventional Prospecting (area) 87 DAYS COVERING AREA OF CLAIM AND BEYOND

2. Geological Mapping (hectares/scale)_____

3. Geochemical (type and no. of samples) 7 EPI THERMAL GRAB SAMPLES

4

4. Geophysical (type and line km)

5. Physical Work (type and amount) 53 DAYS OVERBURDEN STRIPPING, TRENCHING, ROCK BREAKING

6,. Drilling (no,. holes, size, depth in m, total m)

7. Other (specify) STAKING, BACK FILLING

SIGNIFICANT RESULTS

Commodities <u>OPAL</u>	Claim Name//	ORTHERN LIGHTS
Location (show on map) Lat.	Long	Elevation 6,000'FT
Best assay/sample type <u>LARGE BOULDE</u>	RS OF MATRIX OPAL	-

Description of mineralization, host rocks, anomalies <u>OPAL 15 INCLUDED INTO VESICULAR BASALT</u> <u>AS CLASTS, IN HIGH ENERGY LAHARS AS FILLING AND AS MATRIX IN VERY</u> POROUS BASALT, JONETIMES OCCURS AS CRACK FILLING.

CUMMING CREEK IS A SERIES OF QUARTE VEING EXPOSED IN CREEK BOTTOM. EPITHERMAL DEPOSIT WITH SULFIDES.

Supporting data must be submitted with this TECHNICAL REPORT

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

	Ð	
INTERNATIO	ONAL PLASM	ABORATORY LTD.

CERTIFICATE OF ANALYSIS iPL 98J1100

2036 Columbia Street Vancouver, B.C. Canada V5Y 3E1 Phone (604) 879-7878 Fax (604) 879-7898

oject : Whitesail			Sample	s Out: Oct 16, 1998	In: Oct 14, 1998	L==+	015:15:06:89	10103
ipper : Bruce Nolden ipment: PO#: alysis:	B211	AMOUNT 7	TYPE Rock	PREPARATION DESCRIPTION crush, split & pulverize	NS=No Sample	Rep=Replicate	PULP 12M/Dis H-Month Dis	REJI 03M/I =Disca
TP(AqR)30	Anal	ytical S	Summar	y	 · · · · · · · -			
omment:	## Code	Method	Units	Description	Element	Limi: Lov		
mment.	01 0721 02 0711	ICP	ppm	Ag ICP	Silver	0.3	1 99.9)
	02 0711 03 0714	ICP ICP	ppm	CU ICP Pb ICP	Copper Lead		1 20000 2 20000) •
ocument Distribution	04 0730	ICP	ppm ppm	Zn ICP	Zinc		1 20000)
Northern Lights EN RT	CC IN FX 05 0703	ICP	ppm	As ICP	Arsenic	1	5 9999	1
Demman Island DL 3D	EM BT BL 06 0702	ICP	ppm	Sb ICP	Antimony	:	5 999	,
B.C. VOR 1TO 0 0	0 0 0 0 0 7 0 7 3 2	ICP	ppm	Hg ICP	Mercury		3 9999)
Canada Att: Bruce Nolden	08 0717 09 0747	ICP ICP	ppm ppm	Mo ICP Tl ICP (Incomplete Digestion)	Molydenum Thallium	1	1 999 D 999	j
	10 0705	ICP	ppm	Bi ICP	Bismuth		2 9999	
	11 0707	ICP	ppm	Cd ICP	Cadmium	0.3	1 99.9	į
	12 0710	ICP	ppm	Co ICP	Cobalt	-	1 9999)
	13 0718 14 0704	ICP ICP	ppm ppm	Ni ICP Ba ICP (Incomplete Digestion)	Nickel Barium		1 9999 2 9999	
	15 0727	ÎĈP	ppm	W ICP (Incomplete Digestion)	Tungsten		2 9999 5 999	ļ
	16 0709	ICP	ppm	Cr ICP (Incomplete Digestion)	Chromium	:	1 9999	,
	17 0729	ICP	ppm	V ICP	Vanadium		2 9999	}
	18 0716 19 0713	ICP ICP	ppm ppm	Mn ICP La ICP (Incomplete Digestion)	Manganese Lanthanum		1 9999 2 9999	•
	20 0723	ICP	ppm	Sr ICP (Incomplete Digestion)	Strontium		ī <u>9999</u>)
	21 0731	ICP	ppm	Zr ICP	Zirconium	:		
	22 0736	ICP	ppm	Sc ICP	Scandium	0.0		
	23 0726 24 0701	ICP ICP	X X	Ti ICP (Incomplete Digestion) Al ICP (Incomplete Digestion)	Titanium Aluminum	0.0		ı –
	25 0708	ICP	*	Ca ICP (Incomplete Digestion)	Calcium	0.0		
	26 0712 27 0715	ICP	x	Fe ICP	Iron	0.0		
	27 0715 28 0720	ICP	X	Mg ICP (Incomplete Digestion) K ICP (Incomplete Digestion)	Magnesium Potassium	0.0		
	29 0722	ICP ICP	*	Na ICP (Incomplete Digestion) Na ICP (Incomplete Digestion)	Sodium	0.0		ļ
	30 0719	ICP	X	P ICP	Phosphorus	0.0		
						0	1	
-Envelope # R1-Report Style CC-Copies IN-Invoice Download 3D=34 Disk EM=E-Mail BT=BBS Type	es Fx Fax(i=Yes u=Nei	Touis:	i-Copy Z	−īnvoice ú−322 Disk			5	

UERTIFICATE OF ANALYSIS iPL 98J1100

2036 Columbia Street Vancouver, B.C.

ATIONAL PLA:	SMA LABOI	ATORY I	TD

	Cana	da V5Y 3E1	
	Phon	e (604) 879-7878	
	Fax	(604) 879-7898	
Out: Oct 16,	1998	Page	1 c
In : Oct 14.	1998	Section	1 0

mple Name	<u> </u>								Rock									[1	10015:	:15:0	6:891	01698]			Oct 16 Oct 14				Page Sect		1 of 1 of								
	-	Ag ppm	Cu ppm	Pb ppm	Zn ppm		Sb ppm		Mo ppm	T1 ppm	Bi ppm	Cd ppm	Co ppm	Ni ppm	Ba W ppm ppm	Cr ppm	V ppm	Mn ppm	La ppm	Sr ppm	Zr ppm	Sc ppm	Ti X	A1 X	Ca X	Fe X	Mg X	K X	Na	F									
#1 98 #2 98 #3 98 #4 98 #5 98	R		20 13 7 175 7123	18 39 13 7 2119	68 111 27 100 3929	295 1094 93 72 <	9 8	< <	12 96 450 22 40	<		15.1 12.9 3.9 15.2 0.2m	5 8 4 24 3	39 15 10 26 7	10 < 12 < 30 < 14 < 2 <	94 163 188 59 292	16 8 11 156 3	32 179 52 960 115	6 3 5 12 <	14 13	4 3 2 3 2	2 < 6 0 <	< 、 .01	0.45 0.26 2.19	0.02 0.03 0.58 0.42 0.06	6.01 1.85 6.86	0.32 0.03 2.09	0.11 0.17 0.11		0.03 0.01 0.04 0.21 0.01	L 4 L								
#6 98 #7 98	R	0.3 0.3	76 45	21 11	68 59	21 66	~ ~	< <		~ ~	. V V	12.1 14.6	12 57	4 12	37 < 16 <	92 69	72 87	393 419	4	∵3 3.4	2 2	10 0 5			0,17 0,16					0.12 0.13									

Min Limit Max Reported* Mothod
