BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1998/99REPORT #:PAP 98-9NAME:ARND BURGERT

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued

RECEIVE	1:57
	セク
NOV 16 1998	
PROSPECTORS PROGR	AŁ.

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations 15 to 17, page 6.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name Arnd Burgert	Reference Number <u>97/98 P12</u>
LOCATION/COMMODITIES	
Project Area (as listed in Part A) <u>Sunshine Coast</u> Location of Project Area NTS <u>92K/1</u> <u>417000E 55630</u> Description of Location and Access <u>From Accell Dive</u> <u>13 km. Turn east onto Goat Lak</u> <u>Three target pendants are accessi</u> Main Commodities Searched For <u>Cu</u> , <u>2n</u> , <u>Pb</u> , Known Mineral Occurrences in Project Area <u>Mt</u> . <u>Diade</u> <u>Hummingbird</u> (MinFile No. 092K 047)	MINFILE No. if applicable 000N Lat 50° 12' N Long 124° 09' W cr, BC, take Huy. 101 south for ke Mainline, Follow to km. 63. ble by ground from here. Ag in VMS mineralization m (Minfile No. 092K 084);
WORK PERFORMED 1. Conventional Prospecting (area) 1400 ha 2. Geological Mapping (hectares/scale) 800 ha 3. Geochemical (type and no. of samples) 195 soil S 4. Geophysical (type and line km)	1:25000 amples; 29 rock samples
SIGNIFICANT RESULTS Commodities Zn, Cv, Ag Cla Location (show on map) Lat <u>50° 10.9' N</u> Long <u>1</u> Best assay/sample type <u>1.43%</u> Zn, <u>0.45%</u> C <u>0.01%</u> Cd in <u>sulphide</u> <u>speci</u> Description of mineralization, host rocks, anomalies <u>A</u> Fine to medium grained massive <u>chalcopyrite</u> <u>occurs</u> in <u>medium</u> in <u>a</u> <u>metamorphic</u> roof <u>pe</u> <u>rocks</u> . <u>Report</u> and <u>supporting</u>	im Name Lorat 1 - 11 124° 18.0' W Elevation 5250' C., 19 % Ag, 0.017. Co, men 20cm thick bed of pyrite with sphalerite and grained felsic volcanics ndant of Gambier group documents attatched.

Supporting data must be submitted with this TECHNICAL REPORT

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

FINAL REPORT ON

·

SUNSHINE COAST PROJECT

PROSPECTOR'S ASSISTANCE PROGRAM GRANT NO. 97/98-P12

ARND BURGERT NOVEMBER 9, 1998

.

TABLE OF CONTENTS

INTRODUCTION 1
CLAIMS, LOCATION AND ACCESS 3
GEOMORPHOLOGY
REGIONAL GEOLOGY 8
REGIONAL MINERALIZATION 10
REGIONAL GEOCHEMISTRY 13
REGIONAL GEOPHYSICS 13
TARGET A
TARGET B
TARGET C
TARGET D
REFERENCES

APPENDICES

APPENDIX

AUTHOR'S STATEMENT OF QUALIFICATIONS	I
CERTIFICATES OF ASSAY	[I]
MAJOR EXPENDITURES II	[I
TRAVEL EXPENDIRURES	٤v

-

FIGURES

<u>NO.</u>	DESCRIPTION	<u>PAGE</u>
1	PROJECT LOCATION	2
2	INDEX MAP	4
3	LORAX PROPERTY CLAIM LOCATION	5
4	OLD IRONSIDES PROPERTY CLAIM LOCATION	6
5	REGIONAL GEOLOGY	9
6	TARGET A GEOLOGY	15
7	TARGET A SAMPLE LOCATION	16
8	TARGET A COPPER SOIL GEOCHEMISTRY	17
9	TARGET A BARIUM SOIL GEOCHEMISTRY	18
10	TARGET A SILVER SOIL GEOCHEMISTRY	19
11	TARGET A ARSENIC SOIL GEOCHEMISTRY	20
12	TARGET A ZINC SOIL GEOCHEMISTRY	21
13	TARGET A COBALT SOIL GEOCHEMISTRY	22
14	TARGET B GEOLOGY	26
15	TARGET B GRID COPPER SOIL GEOCHEMISTRY	28
16	TARGET B GRID MOLYBDENUM SOIL GEOCHEMISTRY	29
17	TARGET B SAMPLE LOCATION	31
18	TARGET B COPPER SOIL GEOCHEMISTRY	32
19	TARGET B BARIUM SOIL GEOCHEMISTRY	33
20	TARGET B ZINC SOIL GEOCHEMISTRY	34
21	TARGET B DETAIL SAMPLE LOCATION	35
22	TARGET B DETAIL COPPER SOIL GEOCHEMISTRY	36
23	TARGET C GEOLOGY	39
24	TARGET C SAMPLE LOCATION	40

25	TARGET	С	COPPER SOIL GEOCHEMISTRY	41
26	TARGET	С	ARSENIC SOIL GEOCHEMISTRY	42
27	TARGET	С	BARIUM SOIL GEOCHEMISTRY	43
28	TARGET	D	GEOLOGY	46
29	TARGET	D	SAMPLE LOCATION	47
30	TARGET	D	MOLYBDENUM SOIL GEOCHEMISTRY	48
31	TARGET	D	COPPER SOIL GEOCHEMISTRY	49

.

INTRODUCTION

Prospector's Assistance Grant No. 97/98-12 was issued in June, 1998 to fund a program of reconnaissance exploration north of Powell River, BC (Figure 1). The target was volcanogenic massive sulphide (VMS) base metals mineralization in roof pendants of the lower Cretaceous Gambier group.

Gambier group rocks host the Britannia deposit on Howe Sound as well as the Northair deposit near Squamish. In the Powell River region, uneconomic base metals occurrences lying within the Gambier group include the Mt. Diadem workings overlooking Jervis Inlet and the Hummingbird past producer on Goat Island in Powell Lake. However, in those pendants examined this summer, no previous work was recorded and no evidence of previous prospecting was observed in the field.

Field exploration was conducted from April to October, 1998, from a base camp at mile 35 (km 56) of the Goat Lake Mainline. From there, tent camps were mobilized by foot to several more remote locations. The work consisted of prospecting, reconnaissance soil sampling and large-scale geological mapping. All work was conducted personally by the author, whose Statement of Qualifications appears in Appendix I.

CLAIMS, LOCATION AND ACCESS

The four targets examined are referred to as Targets A, B, C, and D and they are shown on the index map (Figure 2). In 1998, all targets were accessed on foot via the Goat Lake Mainline.

A twenty unit, four-post mineral claim and ten adjacent two-post claims (total 30 units) were staked over Target A on October 20 and 21 (Figure 3). They were named Lorax 1 through Lorax 11. Prospecting of this ground was carried out on foot via Goat Lake Mainline and "G"-branch road, and staking was done by helicopter.

A sixteen unit four-post mineral claim was staked over Target B on June 17 and 18 (Figure 4). The claim is named Old Ironsides, after the local name of the mountain on which it is located. Access to the property was on foot via Goat Lake Mainline and "D"-branch road.

Access to Target C was on foot via Goat Lake Mainline.

Access to Target D was on foot via Goat Lake Mainline and Goat II road.

CALKCIE Name

GEOMORPHOLOGY

All targets are situated in mountainous terrain of the Coast Ranges. Topography is steep, typically 20 to 40° , with elevations ranging from 2500 feet (760 m) to 6800 feet (2070 m). Impassable cliffs are common in the higher areas.

Vegetation consists of dense stands of second growth fir, douglas fir, hemlock, western red cedar and sitka spruce in the valleys and on the lower slopes giving way to old growth yellow cedar scrub above 3500 feet (1070 m). Density of underbrush varies greatly. Above 4500 feet (1370 m), scattered buckbrush, dwarf balsam and moss dominate, while steep talus slopes and cliffs are vegetated only by lichen.

REGIONAL GEOLOGY

The area of interest lies within the Coast Plutonic Complex of the Coast Mountains. It is underlain mostly by plutonic rocks, predominantly granodiorite and quartz diorite (Roddick, 1976). Figure 5 shows regional geology.

Steeply dipping blocks or pendants of metasedimentary and metavolcanic rocks lie engulfed in the main mass of the Coast Plutonic Complex. Pendants of Gambier Group, named for their type locality on Gambier Island in Howe Sound, were the focus of this project's exploration. They extend discontinuously from North Vancouver in the southeast to north of Loughborough Inlet in the northwest.

These pendants are thought to represent fault slices along which plutonic rock was thrust upwards. The bounding shear zones in places still exist, and in many places are flanked by diorite. The dioritic rocks may represent remnants of a primitive granitoid basement upon which sedimentary and volcanic rocks were deposited.

Deep burial and subsequent deformation followed, probably in response to compressive forces transmitted through the North America Plate against oceanic crust. With the eventual onset of subduction, plutonic masses, formed during the compressive stage, began their movement upwards bounded by synplutonic faults.

REGIONAL MINERALIZATION

The most significant mineral deposit known within Gambier group rocks, and this project's type deposit, is the Britannia Deposit near Britannia beach on Howe Sound. Though once the subject of debate, it is now generally concluded that the deposit is volcanogenic in origin, classified as a Kuroko type VMS deposit. It was deformed during later shearing and faulting (Payne et al, 1980), resulting in complex stratigraphy and structure that have made interpretations difficult (Brown, 1974).

During nearly 70 years of production, 52,783,964 tons of ore produced the following metals:

 Commodity
 Grade
 (Payne et al, 1980)
 Recovery
 (Brown, 1974)

 copper
 1.1%
 1,139,223,376
 pounds

 zinc
 0.65%
 276,220,089
 pounds

 silver
 0.2 oz/ton
 492,968 oz
 cadmium

Massive, bedded and "stringer" ores were mined from ten major orebodies.

McColl (1981) divided geology on Britannia Ridge into three packages: the Footwall, Mine and Hangingwall sequences.

The lowest stratigraphic package, the Footwall sequence, comprises seven rock units aggregating a thickness

of 1400 metres which dip 45° and face southwest. The lowest unit mapped is a purple-black <u>argillite</u> which represents quiet submarine deposition prior to extrusion of overlying fine-grained black <u>andesitic-basaltic flows</u>. Creamy feldspar porphyrytic <u>rhyolite</u> phases form small domes and plugs that lie in steep contact with <u>white block breccia</u>. <u>Felsic crystal ash tuff</u> is associated with minor interbedded argillite, chert and lapilli tuff while <u>mafic lapilli block</u> <u>tuff</u> is represented by discontinuous pyroclastic lenses. The uppermost unit of the footwall package is massive to pillowed <u>altered basalt</u>. Mafic flows, flow-breccias and agglomerate are gradational to spilitized, pillowed basalt flows. Local rhyolite domes with related auto-breccia, tuff-breccia, and tuff interfinger with the mafic flows at the top of the package.

Disseminated sulphides occur within massive white chert in flow top breccias, fractures, and surrounding pillows at several horizons in the Footwall package. Gossans are common along the margins of the massive rhyolite domes.

The Mine sequence represents a basinal facies, a dome complex and a thick pyroclastic blanket that is host to the Britannia orebodies. <u>Argillite and ash tuff</u> represents a sedimentary basin on the flank of a dacitic complex. The intrusive-extrusive <u>dacite</u> dome complex exhibits massive, brecciated and tuffaceous facies while <u>crystal lithic tuff</u>

is characterized by green chloritic mottles. It is overlain by a thin, discontinuous sedimentary unit of ash <u>tuff</u>, <u>argillite and chert</u>. Host to the Britannia orebodies is <u>quartz-sericite schist</u>, primarily a hydrothermally altered felsic crystal lapilli tuff. Sulphide mineralization cosists of pyrite, chalcopyrite, sphalerite, erratic galena, tennantite, tetrahedrite and pyrrhotite. Gold occurs in scattered narrow veins and late high grade quartz veinlets. Non-metallic minerals include muscovite, chlorite, anhydrite and barite.

The Hangingwall sequence is characterized by felsic massive and ash flows overlain by thick sedimentary units and mafic intrusions. <u>Crystal lithic tuff</u> is mottled green and white. Creamy white <u>feldspar porphyrytic rhyodacite</u> forms shallow-dipping outcrops while <u>ash tuff and argillite</u> weathers rusty grey. A monotonous sequence of purple-black <u>argillite</u> marks a hiatus in volcanic activity and is overlain by dark green weathering <u>andesite tuff</u>.

REGIONAL GEOCHEMISTRY

A regional stream sediment survey published by the Geological Survey in 1988 indicates geochemical anomalies in streams that drain all targets. The anomalies are summarized in the following table.

Target	stream(s) weakly for	stream(s) moderately anomalous for
A	As	Cu, Zn, Pb, Ba, Co, Mo
В	Cu, Zn, Pb	Mo
С	Pb, Ba, As, Mo	
D	Cu, Zn, Pb, Co, Mo	

REGIONAL GEOPHYSICS

In 1988, the Geological Survey published an airborne magnetometer survey as a series of 1:250,000 and 1:50,000 scale maps. Only Target A is covered by the survey.

Target A is located in a zone of relatively low magnetic gradient, increasing to the south. The magnetic signature in the area appears to be largely controlled by topography.

TARGET A - GEOLOGY

Target A is a large pendant of Gambier group rocks which dip vertically and strike northwest (Figure 6). Due to poor access, only a brief examination was possible. Rocks observed include fine grained mafic to medium grained felsic volcanic rocks of low metamorphic grade.

TARGET A - MINERALIZATION

A 20 cm thick, 8 m long bed of massive sulphides was discovered on the ridge top. It is composed mostly of pyrite with 3% sphalerite and 1% chalcopyrite. A specimen (M500378) of the sulphides was submitted to Chemex Labs in North Vancouver, BC, where it was crushed and pulverized to 150 mesh, digested in a nitric aqua regia solution and analyzed for 32 elements using an induced coupled plasma (ICP) technique. Certificates of Analysis appear in Appendix II. The rock returned values of 1.43% zinc, 0.45% copper, 19 g/t silver, 0.01% cobalt and 0.01% cadmium. The sulphide bed is fine to medium grained, weathered black and is cut by several small quartz veins. Bedrock immediately above and below the sulphide bed is medium grained felsic volcanic.

TARGET A - GEOCHEMISTRY

16 soil samples were collected along two contour soil lines using elevation as the primary control (Figures 7-13). All soil samples were submitted to Chemex Labs Ltd. in North

Vancouver, BC where they were screened to 150 mesh, digested in a nitric aqua regia solution and analyzed for 32 elements by an induced coupled plasma (ICP) technique. Certificates of Analysis appear in Appendix II. Using regional thresholds, all sixteen samples are anomalous for copper, ranging from weakly to extremely anomalous. The peak copper value is 512 ppm. Most of the samples are also weakly to strongly anomalous for barium, and some are anomalous for silver, arsenic and cobalt. Barite is an accessory mineral at the Britannia Deposit and the Red Dog Deposit in Alaska (Koehler et al, 1991), while cobalt is a commodity at the Fyre Lake and Ice VMS Deposits in southeast Yukon. Arsenic is an indicator in numerous other sulphide deposits.

It is significant to note that the soil lines do not cross topography steeply, indicating that the observed sulphide showing is not the cause of the whole anomalies. The length of the copper anomaly is 1100 m.

TARGET A - RECOMMENDATIONS

The sulphide showing and adjacent soil geochemical anomaly represent a significant VMS target which has been protected by the Lorax 1 through Lorax 11 mineral claims. Due to poor access, it is suggested that a helicoptersupported flycamp be employed for future work.

Geological mapping at a scale no less than 1:10000 is recommended. A suitable basemap will have to be produced or

acquired. Careful prospecting is recommended, in particular in the vicinity of and along strike from the current showing. Hand pitting may be required if mineralized float is encountered. An extensive soil grid is recommended to define the current multielement anomaly.

Pending the outcome of the recommended work, a ground geophysical survey may be warranted by the end of the next field season. Due to the massive nature of the sulphides, they will likely respond to electromagnetic, induced polarization and magnetic field surveys.

TARGET B - GEOLOGY

The target lies within banded low grade metamorphic rocks of Gambier group that dip nearly vertically and strike northwest (Figure 14). A lower mixed package of andesitic volcanics and thinly laminated schist is overlain by predominantly andesitic volcanics with interbeds of felsic volcanics. The proportion of felsics increases to the northeast. High up on the ridge, a mafic agglomerate with a matrix bearing 5% pyrrhotite with minor chalcopyrite crops out.

TARGET B - MINERALIZATION

Fine bands of pyrite are common within the felsics at numerous localities on the upper half of the ridge. Samples of the pyrite-bearing felsics were submitted for analysis, and generally returned background values for all metals.

Two specimens (M500360; M500361) of the mafic agglomerate on the ridge top returned assay values of 01% copper.

A 15 cm wide float specimen collected in the valley bottom near the valley's eastern end contained 5% pyrite and several quartz veins in a host rock that appears to be a felsic volcanic. The specimen (M500355), which returned assay values of 0.29% copper and 5.2 g/t silver, was of insufficient size to determine whether the mineralization

has been deformed by regional metamorphism.

A series of massive magnetite veins at the top of the ridge to the east of the 6072 foot peak is undeformed by regional metamorphism. A specimen (M500362) of the magnetite was analysed and returned background values for all metals except iron.

TARGET B - GEOCHEMISTRY

60 soil samples were collected from a grid with a sample density of 100 by 100 metres and 70 soil samples were collected on reconnaissance lines using elevation as the primary control.

Overburden is considered largely residual or colluvial, and often of thickness of less than four metres. It was observed that soil development at almost all sample sites is extremely poor, with no differentiable horizons. Material commonly sampled was a brown-grey BC or C horizon. The poor soil development suggests that the soil assay results may not reflect an accurate signature of bedrock mineralization.

The grid was located near the western edge of the Gambier pendant, over the zone in which the volcanics change in composition from predominantly mafic to predominantly felsic (Figures 15, 16). The area sampled covers at least two thick felsic units in which fine bands of pyrite were

observed.

The grid samples generally returned background values for all metals with the exception of a single sample from the western edge of the grid. It was extremely anomalous for molybdenum at 51 ppm.

East of the grid, two contour soil lines were sampled at a spacing of 50 metres (Figures 17-20). 450 metres of the top line intermittently returned weakly to moderately anomalous response for copper. The mineralized rock specimen M500355, which returned an assay value of 0.29% copper, was found on the valley floor downhill from the eastern edge of the copper anomaly.

To the west of and downhill from this copper anomaly, barium was weakly anomalous in eight samples. The barium response is likely understated due to incomplete solution of sulphates by the aqua regia digestion. Bedded barite occurs on the margins of numerous VMS deposits.

Three reconnaissance soil samples (S11 - S13) were collected from a location on the north-facing slope approximately 25 metres downhill from the site at which rock specimens (M500360; M500361) of mafic agglomerate were found (Figures 21, 22). Two of these soil samples returned weakly anomalous values for copper.

TARGET B - RECOMMENDATIONS

This target is protected by the Old Ironsides mineral claim. Geological mapping at a scale no greater than 1:10000 is recommended. A suitable basemap will have to be produced or acquired. Further prospecting is warranted in the vicinity of the sulphide-bearing agglomerate on the ridgetop. Detailled prospecting, additional soil sampling and possibly hand pitting are recommended in the vicinity of the molybdenum soil anomaly at the western edge of the soil grid. A soil grid is recommended to define the copper and barium anomalies outlined by the contour lines east of the grid.

TARGET C - GEOLOGY

Target C is located in the same pendant as Target B and represents its northern extension. No detailed geological mapping was done on this target due to very poor access, but felsic and mafic volcanics and schist were observed (Figure 23). Bedding strikes approximately northwest and dips nearly vertical.

TARGET C - MINERALIZATION

Several pieces of float cobble bearing 1/2% to 4% pyrite in fine bands were found, but none were sampled. In granodiorite west of the metamorphic pendant, rare coarse blobs of molybdenite were observed in thick veins of coarse quartz and pink feldspar.

TARGET C - GEOCHEMISTRY

Contour soil lines with a sample spacing of 100 metres were run on the northern and southern lower slopes of the valley which bisects the target (Figures 24-27). Samples on the northern slope returned background values for all metals while those on the southern slope pointed out an interesting anomaly.

Two samples near the eastern end of the line returned weakly anomalous barium values and one of those returned an extremely anomalous arsenic value of 750 ppm. Both barium and arsenic are indicator minerals for VMS mineralization

38

(Hoffman, 1986). Base metals response was at background levels.

TARGET C - RECOMMENDATIONS

Geological mapping at a scale no larger than 1:10000 is recommended. A suitable basemap will have to be produced or acquired. Prospecting on the southern valley slope is recommended. Additional reconnaissance contour soil lines are recommended for the southern valley slope, including some closely-spaced sampling in the vicinity of the current arsenic-barium anomaly.

TARGET D - GEOLOGY

Target D is a narrow, linear pendant that dips vertically and strikes northwest (Figure 28). It comprises alternately bands of fine grained volcanics of andesitic to basaltic composition and fine to medium grained felsics of rhyolitic composition. A thick diorite dyke bisects the pendant for about half its length. A thin, coarse grained marble lens was observed near the northern margin of the pendant. Metamorphic grade is low.

TARGET D - MINERALIZATION

Fine pyrite bands were observed at several locations but, where sampled, returned background values for all metals.

TARGET D - GEOCHEMISTRY

43 soil samples were collected along a series of reconnaissance soil lines using elevation as the primary control (Figures 29-31). The most significant result is moderately anomalous molybdenum response near the centre of the area sampled. The peak value is 34 ppm molybdenum.

TARGET D - RECOMMENDATIONS

A limited program of prospecting and soil sampling is recommended, particularly to the north of the ridge, where no work has yet been done.

45

REFERENCES

- Brown, A. Sutherland, 1974: Britannia Mine, in Geology, Exploration and Mining in British Columbia, British Columbia Department of Mines and Petroleum Resources, pp. 190-196.
- Geological Survey of Canada, 1988: Stream sediment and water geochemical survey, northern Vancouver Island and adjacent mainland, Geological Survey Open File 2039
- ----, 1988: Aeromagnetic total field map, Map 9760 G
- Hoffman, S. J., 1986: The volcanogenic massive sulphide target, in Exploration geochemistry: design and interpretation of soil surveys, James M. Robertson, ed., Reviews in economic geology, Society of economic geologists, pp. 139-146.
- Koehler, George F., and George D. Tikkanen, 1991: Red Dog, Alaska: Discovery and definition of a major zinc-leadsilver deposit, Economic Geology, Monograph 8, pp. 268-274.
- McColl, Kathryn Margaret, 1981: Geology of Britannia Ridge, east section, southwest British Columbia, unpublished MSc thesis, University of British Columbia
- Payne, J. G., J. A. Bratt and B. G. Stone, 1980: Deformed mesozoic volcanogenic Cu-Zn sulphide deposits in the Britannia district, British Columbia, Economic Geology, Volume 75, pp. 700-721.
- Roddick, J. A., 1976: Notes on the stratified rocks of Bute Inlet map-area, Geological Survey of Canada Open File 480.
- Roddick, J. A., W. W. Hutchison and G. J. Woodsworth, 1976: Geology of Bute Inlet map area, Geological Survey of Canada Open File 480.
- Roddick, J. A., and Woodsworth, G. J., 1979: Geology of Vancouver, west half, and mainland part of Alberni, Geological Survey of Canada Open File 611.
- Woodsworth, G. J., 1977: Geology of Pemberton map-area, Geological Survey of Canada Open File 482.

APPENDIX I

AUTHOR'S STATEMENT OF QUALIFICATIONS

.

AUTHOR'S STATEMENT OF QUALIFICATIONS

I, Arnd Burgert, geologist, with business and residential address in New Westminster, British Columbia, do hereby certify that:

- I graduated from the University of British Columbia in 1995 with a B.Sc. in geology.
- From 1989 to present, I have been actively engaged in mineral exploration in British Columbia, the Northwest Territories and the Yukon Territory.
- 3. I have personally performed the work reported herein.

and Bayn

A. Burgert, B.Sc.

APPENDIX II

_

-

CERTIFICATES OF ANALYSIS

Analytical Chemists * Geochemists * Registered Assayers

North Vancouver V7J 2C1 212 Brooksbank Ave., British Columbia, Canada PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8

Page Number :1-A Total Pages :2 Certificate Date: 12-JUL-98 Invoice No. P.O. Number :19823569 QHB Account

Project : SUNSHINE COAST Comments: ATTN: ARND BURGERT CC: ARND BURGERT

**

										;	CE	RTIF	CATE	OF A	NALY	/SIS	4	9823	569		
	SAMPLE	PREP CODE	λg ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
Б 🔔	so1_ \$02 \$03 \$04 \$05	201 202 201 202 201 202 201 202 201 202 201 202 201 202	0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	5.97 3.04 5.04 5.09 4.99	< 2 < 2 < 2 < 2 < 2 < 2	40 40 60 50 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 2 2 2	0.07 0.05 0.08 0.08 0.07	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 2 7 7 7	19 19 22 25 26	18 13 27 28 24	2.97 4.16 3.75 4.50 3.80	< 10 10 < 10 10 10	1 < 1 < 1 3 < 1	0.05 0.04 0.13 0.10 0.10	< 10 < 10 < 10 < 10 < 10 < 10	0.34 0.12 0.46 0.43 0.52	140 60 135 130 155	1 1 3 3 3
D 	SO6 SO7 SO8 L8000N 7850E L8000N 7900E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	6.63 3.70 2.64 0.74 1.71	< 2 < 2 < 2 < 2 < 2 < 2	50 80 40 10 30	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.07 0.19 0.08 0.03 0.10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 11 6 < 1 2	22 17 16 3 3	31 26 14 4 6	3.03 3.56 4.25 1.87 3.30	< 10 10 10 < 10 30	2 < 1 1 < 1 < 1	0.08 0.22 0.06 0.02 0.02	< 10 < 10 < 10 < 10 < 10 < 10	0.33 0.86 0.24 0.08 0.06	110 275 90 30 25	3 3 5 1 2
5#	L8000N 8000E L8000N 8100E L8000N 8200E L8000N 8300E L8000N 8400E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.68 1.32 2.86 0.58 0.12	< 2 18 14 < 2 < 2	10 30 30 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 2 2 < 2 2 2	0.03 0.01 0.07 0.05 0.02	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 3 4 2 < 1	3 5 12 1 < 1	4 6 11 6 < 1	0.34 7.65 5.28 2.57 0.21	< 10 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.03 0.06 0.10 0.03 0.01	< 10 < 10 < 10 < 10 < 10 < 10 <	0.06 0.12 0.31 0.10 0.01	35 50 160 80 15	1 7 4 1 3
	L8100N 7800E L8100N 7900E L8100N 8000E L8100N 8100E L8100N 8100E L8100N 8200E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.73 0.27 0.25 6.32 0.19	< 2 < 2 < 2 6 < 2	10 < 10 < 10 30 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 < 2 < 2	0.04 < 0.01 0.01 0.04 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 1 < 1 3 < 1	4 < 1 1 14 < 1	6 3 1 14 < 1	4.31 0.38 0.54 3.56 0.05	10 < 10 < 10 10 < 10	< 1 < 1 - < 1 < 1 < 1	0.01 < 0.01 0.01 0.08 < 0.01	< 10 10 < 10 < 10 < 10	0.04 0.09 0.03 0.29 0.01	25 45 25 140 25	< 1 < 1 3 < 1
	L8100N 8300E L8100N 8400E L8200N 7800E L8200N 7900E L8200N 8000E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.08 0.11 3.30 0.29 0.06	< 2 < 2 6 < 2 < 2	20 < 10 10 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.06 0.01 0.02 0.01 < 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 < 1 3 < 1 < 1	9 < 1 8 1 < 1	8 < 1 9 < 1 < 1	5.01 0.22 13.40 0.13 0.06	10 < 10 10 < 10 < 10	1 < 1 < < 1 < 1 < < 1 <	0.06 < 0.01 0.04 < 0.01 < 0.01	< 10 30 < < 10 < 10 < < 10 <	0.24 0.01 0.06 0.01 0.01	115 5 35 20 25	1 51- < 1 < 1
	L8200N 8100E L8200N 8200E L8200N 8300E L8200N 8400E L8300N 7750E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.63 0.12 0.58 0.25 3.36	36 < 2 < 2 < 2 < 2 < 2	40 < 10 30 < 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.03 < 0.01 0.01 0.03 0.05	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 < 1 1 < 1 1	2 1 < 1 1 8	5 < 1 < 1 1 5	3.85 0.29 0.87 0.18 3.70	10 < 10 < 10 < 10 < 10 10	< 1 < 1 3 1 < 1	0.05 0.01 0.04 0.02 0.03	< 10 10 < 10 10 10 10 10	0.07 0.01 0.10 0.03 0.07	65 20 105 35 50	6 < 1 < 1 2 1
	L8300N 7800E L8300N 7900E L8300N 8000E L8300N 8100E L8300N 8100E L8300N 8200E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.73 0.35 3.67 0.39 0.71	< 2 < 2 16 8 28	10 < 10 30 10 < 10	× 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 4 < 2	0.08 0.01 0.03 0.02 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 < 1 3 < 1 1	< 1 2 12 1 4	5 1 14 1 6	2.21 0.07 5.57 1.49 3.12	< 10 < 10 10 < 10 20	< 1 < 1 1 < 1 < 1 < 1	0.05 0.01 0.08 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	0.13 0.01 0.27 0.03 0.03	95 10 140 25 15	< 1 1 6 1
	L8300N 8300E L8300N 8400E L8400N 7800E L8400N 7900E L8400N 8000E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.16 2.02 0.22 0.85 1.26	2 40 < 2 8 74	< 10 70 < 10 10 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 < 2 2 2	0.01 0.03 0.01 0.05 0.03	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 3 < 1 1 1	< 1 7 1 5 5	1 4 < 1 3 9	0.49 4.05 0.15 1.66 2.68	< 10 20 10 10 < 10	< 1 < < 1 < 1 < 1 < 1 < 1	<pre>< 0.01 0.30 < 0.01 0.05 0.09</pre>	< 10 < < 10 < 10 < 10 < 10 < 10	0.01 0.65 0.01 0.11 0.16	15 375 10 65 85	1 4 < 1 2 4
	Ĺ		<u> </u>						į					(SEBTIFIC		14	and	-12	ندك	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 North Vancouver To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8

Project : SUNSHINE COAST Comments: ATTN: ARND BURGERT CC: ARND BURGERT

**

Page Number :1-B Total Pages :2 Certificate Date: 12-JUL-98 Invoice No. :19823569 P.O. Number : OHB Account

										ļ	CE	RTIFI	CATE	OF A	NALYSIS	A9823569	
	SAMPLE	PREP CODE	Na %	Ni. ppm	q mqq	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	ndđ D	V ppm	W Mgg	Zn ppm	-	
в 🌡	so1 so2 so3 so4 so5	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	5 4 5 5 7	360 280 200 350 320	< 2 8 < 2 < 2 < 2	6 < 2 < 2 6 < 2	5 3 5 5 4	4 6 7 6 8	0.15 0.23 0.21 0.25 0.26	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	63 105 81 102 98	< 10 < 10 < 10 < 10 < 10 < 10	28 20 24 24 36		
D	SO6 SO7 <u>SO8</u> L8000N 7850E L8000N 7900E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	5 5 4 < 1 < 1	530 300 140 80 170	< 2 < 2 8 2 4	2 < 2 < 2 < 2 < 2 2	6 3 2 < 1 1	6 11 5 1 8	0.20 0.32 0.27 0.17 0.22	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	83 126 144 112 188	< 10 < 10 < 10 < 10 < 10 < 10	30 48 20 12 12		
Ď∰r	L8000N 8000E L8000N 8100E L8000N 8200E L8000N 8300E L8000N 8300E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1 < 1 3 1 < 1	170 280 180 130 50	2 2 8 2 8	< 2 2 < 2 2 2 < 2	< 1 3 1 < 1	4 3 3 1 1	0.06 0.14 0.21 0.18 0.11	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	15 165 97 82 20	< 10 < 10 < 10 < 10 < 10 < 10	14 16 36 12 4		
	L8100N 7800E L8100N 7900E L8100N 8000E L8100N 8100E L8100N 8200E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1 < 1 < 1 2 < 1	160 90 100 290 60	2 2 2 2 2 2	< 2 < 2 < 2 6 < 2	3 1 < 1 4 < 1	2 1 1 5 < 1	0.26 0.14 0.09 0.14 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	150 31 31 62 8	< 10 < 10 < 10 < 10 < 10 < 10	12 8 2 38 4		
	L8100N 8300E L8100N 8400E L8200N 7800E L8200N 7900E L8200N 8000E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	1 < 1 1 < 1 < 1 < 1	150 90 310 60 60	4 < 2 12 4 < 2	6 < 2 2 < 2 < 2 < 2	3 < 1 2 < 1 < 1	3 2 3 < 1 < 1	0.21 < 0.01 0.12 0.11 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 10 < 10 < 10	143 4 125 23 2	< 10 < 10 < 10 < 10 < 10 < 10	22 2 16 < 2 < 2		
	L8200N 8100E L8200N 8200E L8200N 8300E L8200N 8400E L8300N 7750E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1 < 1 < 1 < 1 < 1 1	260 90 60 100 160	2 2 2 6 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 < 1 1 < 1 3	4 1 1 3	0.13 0.06 0.06 0.14 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	92 18 23 21 68	< 10 < 10 < 10 < 10 < 10 < 10	16 6 8 6 10		
	L8300N 7800E L8300N 7900E L8300N 8000E L8300N 8100E L8300N 8200E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1 < 1 3 < 1 < 1	100 120 150 80 90	2 10 6 6 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 < 1 4 < 1 < 1	3 1 3 1 2	0.16 0.10 0.18 0.13 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	42 12 86 62 269	< 10 < 10 < 10 < 10 < 10 < 10	8 2 26 10 12		
	L8300N 8300E L8300N 8400E L8400N 7800E L8400N 7900E L8400N 8000E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1 1 < 1 1 1	40 170 60 90 70	2 4 6 4 2	< 2 < 2 < 2 < 2 < 2 2 2	< 1 10 < 1 1 2	1 2 1 2 3	0.08 0.26 0.11 0.20 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	50 175 31 69 45	< 10 < 10 < 10 < 10 < 10 < 10	2 42 2 10 12		

Г

CERTIFICATION:

Hank Bielle

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8

Page Number :2-A Totał Pages :2 Certificate Date: 12-JUL-98 Invoice No. :19823569 P.O. Number : Account :QHB

Project : SUNSHINE COAST Comments: ATTN: ARND BURGERT CC: ARND BURGERT

**

										CE	RTIFI	CATE	OF A	NALY	SIS		9823	569		
SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg mqq	K %	La ppm	Mg %	Mn ppm	Mo mqq
L8400N 8100E L8400N 8200E L8400N 8300E L8400N 8300E L8400N 8400E L8500N 7725E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.42 0.73 0.15 1.47 0.61	< 2 4 < 2 < 2 < 2	< 10 20 < 10 10 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 0.01 0.02 < 0.01 0.03 0.04	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 1 2	1 3 < 1 3 < 1	4 3 < 1 8 7	0.07 0.46 0.04 2.49 2.54	< 10 < 10 < 10 10 < 10	< 1 < < 1 < 1 < 1 < 1 < 1 < 1	0.01 0.07 0.01 0.01 0.07	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	< 0.01 0.11 < 0.01 0.16 0.16	15 50 10 30 90	4 3 < 1 3 < 1
L8500N 7800E L8500N 7900E L8500N 8000E L8500N 8100E L8500N 8200E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.52 0.48 0.26 0.16 1.44	< 2 < 2 < 2 < 2 < 2 28	60 < 10 10 < 10 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 0.01 0.04 0.02 0.01 0.04	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 2 < 1 < 1 2	< 1 2 1 < 1 7	2 1 < 1 1 12	0.84 0.87 0.15 0.40 3.25	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.16 0.13 0.01 0.01 0.08	< 10 < 10 < 10 < 10 < 10 < 10	0.13 0.23 0.01 0.01 0.28	40 125 20 15 125	< 1 1 2 4 5
L8500N 8300E L8500N 8400E L8600N 7800E L8600N 7900E L8600N 8000E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.10 4.07 0.65 0.30 4.17	< 2 14 < 2 < 2 24	< 10 100 < 10 < 10 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 0.01 0.04 0.01 0.01 0.04	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 6 < 1 < 1 3	< 1 8 3 3 12	< 1 26 3 < 1 12	0.01 4.29 1.30 0.12 3.43	< 10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1	<pre> 0.01 0.10 0.01 0.01 0.05 </pre>	< 10 < 10 < 10 < 10 < 10 < 10	< 0.01 0.60 0.01 0.01 0.17	5 210 20 15 95	< 1 1 2 9
L8600N 8050E L8600N 8100E L8600N 8200E L8600N 8300E L8600N 8400E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	0.13 0.27 0.73 0.10 0.10	< 2 < 2 10 < 2 < 2	< 10 < 10 10 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 0.01 0.01 0.04 0.01 < 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 < 1 < 1 < 1 < 1 < 1	< 1 1 5 < 1 < 1	1 < 1 < 1 < 1 < 1	0.22 0.05 2.06 0.06 0.03	< 10 < 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.05 0.01 < 0.01	< 10 < 10 < 10 10 < 10	< 0.01 < 0.01 0.20 < 0.01 < 0.01	5 10 105 5 15	< 1 6 4 < 1 1
L8700N 7700E L8700N 7800E L8700N 7900E L8700N 8000E L8700N 8100E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.08 0.80 0.11 0.59 0.74	< 2 < 2 < 2 < 2 < 2 6	10 < 10 < 10 10 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.03 0.01 0.06 < 0.01 0.03	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 < 1 < 1 < 1	7 6 < 1 < 1 3	7 8 1 1 4	3.11 3.19 0.25 1.46 1.18	10 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.01 0.02 0.04 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.16 0.04 < 0.01 0.06 0.10	110 35 55 65	3 4 1 4 4
L8700N 8200E L8700N 8300E L8700N 8375E	201 202 201 202 201 202	< 0.2 < 0.2 < 0.2	0.15 0.41 0.57	< 2 4 8	20 30 30	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	< 0.01 0.01 0.03	< 0.5 < 0.5 < 0.5	< 1 < 1 1	< 1 1 2	< 1 1 3	0.07 0.64 1.19	< 10 < 10 < 10	< 1 < 1 < 1	0.01 0.04 0.03	10 10 < 10	0.02 0.07 0.16	20 35 30	< 1 2 2

ſ

B

172

A Sicher

」、 イン

CERTIFICATION

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8

Page Number :2-B Total Pages :2 Certificate Date: 12-JUL-98 :19823569 Invoice No. P.O. Number : QHB Account

Project : SUNSHINE COAST Comments: ATTN: ARND BURGERT CC: ARND BURGERT

**

											CE	RTIFIC	CATE	OF A	NALYS	SIS	A98235	69	
	SAMPLE	PREP CODE	Na %	Ni ppm	p ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	D . mdđ	V ppm	M	Zn ppm				
	L8400N 8100E L8400N 8200E L8400N 8300E L8400N 8400E L8400N 8400E L8500N 7725E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1 < 1 < 1 < 1 < 1 < 1	120 200 100 120 100	14 4 2 < 2 < 2 < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 1 < 1 2 3	3 4 < 1 1 7	0.11 0.05 0.01 0.13 0.25	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	12 15 4 116 80	< 10 < 10 < 10 < 10 < 10 < 10	6 14 2 10 10				
	L8500N 7800E L8500N 7900E L8500N 8000E L8500N 8100E L8500N 8100E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1 1 < 1 < 1 1 1	60 60 40 30 130	< 2 2 8 2 8	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	4 1 < 1 < 1 3	< 1 2 1 1 7	0.06 0.10 0.12 0.04 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	25 25 18 15 52	< 10 < 10 < 10 < 10 < 10 < 10	10 10 4 2 26				
3	L8500N 8300E L8500N 8400E L8600N 7800E L8600N 7900E L8600N 8000E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1 3 < 1 < 1 1	30 130 60 60 120	< 2 4 6 12 6	< 2 < 2 < 2 < 2 < 2 < 2	< 1 7 < 1 < 1 4	< 1 8 1 2 6	0.01 0.26 0.12 0.16 0.15	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	1 139 58 16 58	< 10 < 10 < 10 < 10 < 10	< 2 38 4 2 22				
	L8600N 8050E L8600N 8100E L8600N 8200E L8600N 8300E L8600N 8400E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 1 < 1 < 1 < 1 < 1	150 60 30 130 90	2 10 10 2 2	< 2 < 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1	< 1 3 < 1 2 1	0.01 0.06 0.19 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	6 71 3 < 1	< 10 < 10 < 10 < 10 < 10	2 16 6 < 2				
	L8700N 7700E L8700N 7800E L8700N 7900E L8700N 8000E L8700N 8100E	201 202 201 202 201 202 201 202 201 202 201 202	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	1 < 1 < 1 < 1 1	90 110 220 70 70	4 10 2 6 6	< 2 < 2 < 2 < 2 < 2	1 < 1 < 1 < 1 1	2 1 4 2 1	0.20 0.33 < 0.01 0.04 0.07	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	67 151 5 12 23	< 10 < 10 < 10 < 10 < 10	18 6 8 12				
	L8700N 8200E L8700N 8300E L8700N 8375E	201 202 201 202 201 202	< 0.01 < 0.01 < 0.01	< 1 < 1 < 1	120 40 120	2 4 4	< 2 < 2 < 2	< 1 < 1 2	1 4 3	< 0.01 0.05 0.14	< 10 < 10 < 10	< 10 < 10 < 10	30 100	< 10 < 10 < 10	< 1 6 6			·	
	L		I												CERTIFIC	ATION:_	itanh	Riel	19.

á.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8

Page Number : 1-A Total Pages : 1 Certificate Date: 24-JUL-98 Invoice No. : 19824806 P.O. Number : Account : QHB

Project : SUNSHINE COAST Comments: ATT:ARND BURGERT CC:ARND BURGERT

CERTIFICATE OF ANALYSIS A9824806

**

	SAMPLE	PF	ep De	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	No ppm
	\$10 \$11 \$12 \$13 \$14	201 201 201 201 201	202 202 202 202 202 202	< 0.2 0.2 < 0.2 0.2 < 0.2 < 0.2	0.41 3.51 2.38 3.50 4.12	48 < 2 < 2 < 2 < 2	10 160 230 260 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 · < 2 · < 2 · < 2 ·	< 0.01 0.06 0.03 0.06 0.07	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 3 1 3	1 31 14 28 14	10 84 40 66	7.31 4.85 4.20 4.38 2.43	< 10 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.06 0.42 0.97 0.88 0.10	< 10 < 10 < 10 < 10 < 10	0.15 1.89 1.82 2.08 0.32	75 320 325 465 215	5 9 3 5 4
3	\$15 \$16 \$17 \$18 \$19	201 201 201 201 201	202 202 202 202 202 202	< 0.2 0.2 0.2 < 0.2 < 0.2	1.88 4.47 3.96 7.57 4.77	14 36 12 4 2	50 40 30 40 70	< 0.5 0.5 < 0.5 0.5 0.5	2 < 2 < 2 < 2 < 2 < 2 < 2	0.05 0.01 0.06 0.04 0.10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 3 3 6 9	10 17 15 16 23	16 16 18 26 31	4.58 12.05 3.55 3.82 3.58	< 10 10 10 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.13 0.13 0.05 0.07 0.20	< 10 < 10 < 10 < 10 < 10 < 10	0.50 0.34 0.22 0.41 0.70	190 125 105 180 345	17 4 2 8 8
	\$20 \$21 \$22 \$23	201 201 201 201	202 202 202 202	< 0.2 0.2 < 0.2 0.4	2.29 3.28 5.89 4.19	20 4 < 2 < 2	70 230 60 80	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.11 0.94 0.07 0.12	< 0.5 < 0.5 < 0.5 < 0.5	14 4 18	7 23 21 10	17 57 4 35 29	2.77 5.38 4.72 4.52	< 10 < 10 10 < 10	< 1 < 1 1 2	0.16 0.69 0.09 0.12	< 10 < 10 < 10 < 10 < 10	0.39 1.25 0.40 0.75	610 550 145 680	7 32= 6 3
		1																				
						·																
																			-			

L

CERTIFICATION: HartSielle

ŧ

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8

Page Number :1-B Total Pages :1 Certificate Date: 24-JUL-98 :19824806 Invoice No. P.O. Number : :OHB Account

Project : SUNSHINE COAST Comments: ATT:ARND BURGERT CC:ARND BURGERT

**

.

CERTIFICATION:

• •

											CE	RTIF	CATE	OF A	NALYSIS	A9824806
	SAMPLE	PREP CODE	Na %	Ni ppm	b đđđ	Pb ppm	Sd ppm	Sc ppm	Sr ppm	Ti X	T1 ppm	U PD#	V ppn	W M	Zn ppm	
51 51 51 51		201 20 201 20 201 20 201 20 201 20 201 20	2 < 0.01 2 < 0.01 2 0.01 2 < 0.01 2 < 0.01 2 < 0.01	< 1 7 4 7 5	360 600 580 510 270	8 < 2 < 2 < 2 10	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 9 11 13 4	2 6 5 9 3	0.01 0.18 0.17 0.22 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	15 133 132 154 46	< 10 < 10 < 10 < 10 < 10 < 10	8 56 40 88 36	
51 51 51 51 51	5 5 7 3 9	201 20 201 20 201 20 201 20 201 20 201 20	2 < 0.01 2 < 0.01 2 < 0.01 2 < 0.01 2 < 0.01 2 < 0.01	4 5 3 4 10	220 420 200 420 380	8 2 < 2 2 < 2	2 < 2 < 2 < 2 < 2 < 2 < 2	4 5 3 7 5	3 3 4 3 6	0.15 0.18 0.19 0.16 0.20	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	82 89 82 68 92	< 10 < 10 < 10 < 10 < 10 < 10	36 38 26 50 84	
82 82 82 82		201 20 201 20 201 20 201 20 201 20	2 < 0.01 2 0.07 2 < 0.01 2 < 0.01 2 < 0.01	4 5 5 4	420 450 370 440	4 < 2 2 < 2	< 2 2 < 2 < 2 < 2	4 19 7 5	9 71 7 8	0.11 0.14 0.21 0.28	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	58 154 98 126	< 10 < 10 < 10 < 10 < 10	42 56 36 80	
											1.44%					
-																
															×	
	······································	<u> </u>					······································				·····					147. 1. 21. 00

L

٢

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8 Page Number :1-A Total Pages :1 Certificate Date: 26-AUG-1998 Invoice No. :19828381 P.O. Number : Account :QHB

CERTIFICATION: Harte Roo

Project : SUNSHINE COAST Comments: ATTN:ARND BURGERT CC:ARND BURGERT

										CE	RTIFI	CATE	OF A	NALY	SIS	/	9828	381		
SAMPLE	PREP	Ag ppm	λ1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррп	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K X	La ppm	Ng %	Mn ppm	Mo ppm
524 525 526 527 528	201 229 201 229 201 229 201 229 201 229 201 229	9 0.2 9 < 0.2 9 < 0.2 9 0.2 9 0.2	1.71 2.43 1.26 2.77 3.68	< 2 8 6 10 8	10 60 10 60 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.04 0.09 0.03 0.11 0.03	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 4 3 5 < 1	6 16 21 15 14	10 14 10 18 20	0.44 1.62 3.35 2.47 3.07	< 10 < 10 10 10 < 10	< 1	0.02 0.03 0.02 0.12 0.03	< 10 < 10 < 10 < 10 < 10	0.05 0.36 0.07 0.46 0.11	15 100 50 140 35	1 3 7 7 13
\$29 \$30 \$31 \$32 \$33	201 229 201 229 201 229 201 229 201 229 201 229	<pre> < 0.2 < 0.2 </pre>	0.71 1.29 1.30 2.00 0.93	2 8 < 2 10 < 2	50 30 60 90 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.06 0.06 0.11 0.10 0.13	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 1 3 8 3	10 11 9 37 23	9 6 16 44 13	2.03 1.22 2.59 4.05 3.72	< 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.03 0.07 0.18 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.09 0.15 0.26 0.79 0.28	60 40 80 120 65	4 3 17 6 6
534 535 536 537 538	201 229 201 229 201 229 201 229 201 229 201 229	9 < 0.2 9 < 0.2 9 < 0.2 9 < 0.2 9 < 0.2 9 < 0.2	0.90 1.66 1.19 1.20 1.10	< 2 8 64 22 12	10 40 30 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.04 0.04 0.06 0.05 0.05	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 7 2 < 1 3	8 13 11 14 10	5 5 6 20 15	1.09 4.12 2.08 13.25 5.40	< 10 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.06 0.13 0.03 0.02 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.15 0.51 0.17 0.01 0.08	55 130 40 15 35	3 9 11 17 11
\$39 \$40 \$41 \$42 \$43	201 229 201 229 201 229 201 229 201 229 201 229	9 < 0.2 9 < 0.2 9 < 0.2 9 < 0.2 9 < 0.2 9 < 0.2	1.35 1.27 1.59 1.67 1.99	10 8 < 2 10 14	30 10 40 30 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.04 0.06 0.03 0.07 0.05	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 3 4 3	15 10 9 14 12	8 7 9 9 9	5.44 1.60 1.34 3.90 2.69	10 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1	0.06 0.04 0.07 0.08 0.03	< 10 < 10 < 10 < 10 < 10 < 10	0.15 0.15 0.22 0.37 0.25	35 50 55 110 65	19 14 7 7 3
844 845 846	201 229 201 229 201 229	9 0.2 9 < 0.2 9 < 0.2	1.69 0.75 1.84	< 2 2 8	10 10 10	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	0.04 0.06 0.07	< 0.5 < 0.5 < 0.5	2 < 1 1	8 9 51	35 5 14	1.81 0.85 5.15	< 10 < 10 10	< 1 < 1 < 1	0.05 0.03 0.03	< 10 < 10 < 10	0.15 0.01 0.41	40 5 90	7 16 34
										ι Ι ι										
																				:
									<u> </u>	<u> </u>										

Ĺ

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8

CERTIFICATION:_

INO

Page Number :1-B Total Pages :1 Certificate Date: 26-AUG-1998 Invoice No. : I9828381 P.O. Number : Account :QHB

 212 Brooksbank Ave.,
 North Vancouver
 V3M 538

 British Columbia, Canada
 V7J 2C1
 Project :
 SUNSHINE COAST

 PHONE: 604-984-0221
 FAX: 604-984-0218
 Comments:
 ATTN:ARND BURGERT

										CE	RTIFI	CATE	OF A	NALYSIS	A9828381
SAMPLE	PREP CODE	Na %	Ni ppm	p ppm	Ppm Ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	ndd D	bbm A	M Mqq	Zn ppm	
824 825 826 827 828	201 229 201 229 201 229 201 229 201 229 201 229	0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	1 4 2 5 1	780 410 220 510 630	4 8 6 10 10	< 2 < 2 < 2 < 2 < 2 < 2	< 1 2 1 3 1	5 13 4 16 5	0.05 0.18 0.29 0.19 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	14 67 155 57 67	< 10 < 10 < 10 < 10 < 10 < 10	10 22 12 26 18	
\$29 \$30 \$31 \$32 \$33	201 225 201 225 201 225 201 225 201 225 201 225	< 0.01 < 0.01 0.01 0.01 < 0.01	< 1 2 3 8 < 1	580 430 570 170 200	8 6 4 < 2 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 1 3 2	6 8 14 12 5	0.13 0.11 0.12 0.26 0.32	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	77 45 43 111 180	< 10 < 10 < 10 < 10 < 10 < 10	14 12 18 30 16	
\$34 \$35 \$36 \$37 \$38	201 229 201 229 201 229 201 229 201 229	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	1 3 1 < 1 1	540 220 240 600 420	12 8 10 6 6	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 3 1 1 1	3 5 10 5 10	0.22 0.41 0.28 0.26 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	49 165 74 176 87	< 10 < 10 < 10 < 10 < 10 < 10	14 30 14 18 12	
539 540 541 542 543	201 229 201 229 201 229 201 229 201 229 201 229	<pre>< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01</pre>	1 3 1 3 3	270 180 200 150 420	12 16 20 12 10	< 2 < 2 2 < 2 < 2 < 2	2 1 1 2	4 8 5 10 7	0.20 0.32 0.21 0.26 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	201 79 54 96 70	< 10 < 10 < 10 < 10 < 10	14 14 16 20 14	
544 545 546	201 229 201 229 201 229	<pre>< 0.01 < 0.01 < 0.01 < 0.01</pre>	3 < 1 1	570 660 290	6 6 6	< 2 < 2 < 2	< 1 < 1 1	6 6 3	0.07 0.08 0.29	< 10 < 10 < 10	< 10 < 10 < 10	31 19 196	< 10 < 10 < 10	16 8 16	

٢

D

Ē

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: BURGERT, ARND

242 BOYNE STREET NEWWESTMINSTER, BC V3M 5J8 Page Number :1-A Total Pages :1 Certificate Date: 16-SEP-1998 Invoice No. :19830818 P.O. Number : Account :QHB

Project : SUNSHINE COAST Comments: ATTN:ARND BURGERT

CC:A.BURGERT

CERTIFICATE OF ANALYSIS A9830818

PREP Mg Mn Mo Bİ Cđ Cu Ga ĸ La λg **A1** Àв Ba Be Ca Co Cr Fe Ħg ×. pp∎ SAMPLE CODE % * ppm * DDE ppm ۶. ppm ppm ppm ppm рра ррш ppm ppm ppm ppm \$47 \$48 6 201 229 < 10 0.05 < 10 0.08 25 < 0.2 0.62 < 2 30 < 0.5 2 0.04 < 0.5 < 1 - 5 -5 0.68 < 1 201 229 2.45 10 0.04 < 10 0.16 45 9 16 11 < 1 < 0.2 1.17 6 20 < 0.5 < 2 0.05 < 0.5 1 **\$49** 201 229 0.24 < 10 0.95 270 12 26 3.76 < 10 10 150 32 < 1 < 0.2 2.10 < 0.5 < 2 0.33 < 0.5 10 50 9 \$50 201 229 13 5.26 10 0.02 < 10 0.13 20 17 < 1 < 0.2 1.83 < 2 < 0.5 6 0.04 < 0.5 < 1 70 9 < 1 < 0.01 s51 201 229 < 0.5 0.08 < 0.5 87 16 3.97 10 < 10 1.46 < 0.2 2.15 < 2 < 10 < 2 6 6 35 852 < 1 < 10 0.11 201 229 < 0.2 0.65 2 10 < 0.5 2 0.04 < 0.5 < 1 6 -4 1.00 10 0.04 < 10 0.54 335 6 \$53 201 229 < 0.2 1.76 10 80 < 0.5 < 2 0.48 < 0.5 10 24 17 2.39 < 10 < 1 0.16 35 < 1 854 201 229 < 10 0.02 < 10 0.08 < 0.2 0.77 < 2 10 < 0.5 < 2 0.05 < 0.5 < 1 9 6 0.52 < 1 855 < 10 0.20 < 10 0.68 530 7 201 229 < 0.2 2.00 14 100 < 0.52 0.53 < 0.5 15 29 21 2.90 < 1 **3**56 201 229 10 10 0.07 < 10 0.42 125 6 0.13 < 0.5 6 2.31 < 1 < 0.2 1.18 4 30 < 0.5 2 3 13 30 < 0.5 2 70 \$57 201 229 < 0.2 < 2 < 2 0.08 12 11 1.55 10 < 1 0.06 < 10 0.42 1.44 < 0.5 9 \$58 75 201 229 < 0.2 1.39 < 2 50 < 0.5 < 2 0.13 < 0.5 4 23 5.34 < 10 < 1 0.06 < 10 0.22 -1 70 8 **s**59 201 229 < 0.2 1.26 < 2 10 < 0.5 < 2 0.07 < 0.5 < 1 5 8 2.56 10 < 1 0.03 < 10 0.20 13 160 860 201 229 < 0.2 0.49 < 2 20 < 0.5 < 2 0.10 < 0.5 4 17 8 >15.00 < 10 < 1 0.09 10 0.12 0.82 285 16 \$61 201 229 < 0.2 1.36 2 80 < 0.5 < 2 0.01 < 0.5 5 4 1.59 < 10 < 1 0.28 < 10 < 1 9 \$62 201 229 3.96 10 < 1 0.17 < 10 0.32 160 < 0.2 1.70 12 50 < 0.5 2 < 0.01 12 < 0.5 < 1 4 s63 5 201 229 2.11 0.04 < 0.5 14 2.30 < 10 < 1 0.28 < 10 0.38 415 < 0.2 12 RO < 0.5 < 2 7 -4 \$64 485 201 229 < 0.2 2.07 26 60 < 0.5 < 2 12 2.23 < 10 < 1 0.25 < 10 0.43 3 0.05 < 0.5 6 - 6 \$65 < 1 < 0.01 30 < 1 201 229 < 0.2 0.18 < 2 < 10 < 0.5 2 < 0.01 < 0.5< 1 < 1 0.13 < 10 10 < 0.01< 1 70 **B66** 0.12 4 201 229 < 0.2 4.01 12 10 < 0.5 < 2 0.03 < 0.5 13 10 4.34 10 < 1 0.04 < 10 < 1 201 229 < 1 < 10 25 < 1 **\$67** < 0.2 0.27 < 2 < 10 < 0.5 < 2 0.01 < 0.5 < 1 2 < 1 0,22 < 10 0.01 0.03 868 201 229 < 0.2 0.71 50 < 0.5 10 < 1 0.11 < 10 0.23 75 3 4 4 < 0.01 < 0.5 < 1 1 1 1.94 g 69 201 229 < 0.5 < 1 < 10 0.42 260 6 < 0.2 1.46 < 2 15 1.26 < 10 0.15 < 2 40 0.10 < 0.5 3 14 \$70 201 229 < 0.2 < 2 < 10 < 0.5 < 2 28 20 < 1 0.01 < 10 0.08 60 -3 1.80 0.02 < 0.5 8 6.53 1 \$71 201 229 < 0.2 1.89 < 2 110 < 0.5 < 2 0.05 < 0.5 g 31 11 2.97 < 10 < 1 0.37 < 10 0.94 520 2 \$72 3 201 229 595 < 0.2 1.81 14 170 < 0.5 < 2 0.16 9 15 3.46 < 10 0.77 < 10 0.92 < 0.5 9 < 1 **\$73** 201 229 < 0.2 1.81 40 230 4 < 0.5 < 2 0.15 < 0.5 7 9 18 2.83 < 10 < 1 0.60 < 10 0.66 325 1 874 201 229 750 < 0.2 1.52 200 2 < 0.5 < 2 0.11 < 0.5 7 19 11.45 < 10 0.44 < 10 0.46 215 4 4 < 1 \$75 201 229 < 0.2 1.96 20 160 < 0.5 < 2 0.10 < 0.5 8 17 2.07 < 10 < 1 0.40 < 10 0.59 270 4 5 **s**76 201 229 0.32 135 < 0.2 1.35 18 50 < 0.5 2 0.02 < 0.5 1 6 4 1.50 < 10 < 1 0.12 < 10 1 \$77 2 201 229 0.33 0.03 < 0.2 < 2 < 10 0.01 < 10 20 30 < 0.5 < 2 0.06 < 0.5 < 1 1 2 0.35 < 1 \$78 201 229 < 0.2 2.08 0.41 185 3 6 50 < 0.5 < 2 0.06 < 0.5 3 11 9 2.64 10 < 1 0.17 < 10 \$79 201 229 < 0.2 0.98 < 2 < 10 < 0.5 < 2 0.02 < 0.5 5 1.85 < 10 0.01 < 10 0.03 30 4 < 1 4 < 1 \$80 201 229 < 0.2 0.32 < 2 0.04 55 < 1 < 10 < 0.5< 2 0.04 < 0.5 4 < 1 0.52 < 10 < 1 0.03 < 10 < 1 ij .

£

CERTIFICATION: Hartfuller

قمه

Analytical Chemists * Geochemists * Registered Assayers

North Vancouver 212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8

Page Number :1-B Total Pages :1 Certificate Date: 16-SEP-1998 :19830818 Invoice No. P.O. Number :QHB Account

SUNSHINE COAST Project : ATTN: ARND BURGERT Comments:

CC:A.BURGERT

A9830818 **CERTIFICATE OF ANALYSIS** Tì U V W Zn Tl Pb Sb Sc Sr PREP Na Nì ₽ ррш ppm ppm ٩, DOM ppm ppm SAMPLE CODE * ppm ppm ppm ppm ppm 38 < 10 8 < 10 < 0.01 < 1 0.14 < 10 380 10 4 \$47 201 229 1 < 2 99 < 10 10 < 10 3 0.18 < 10 230 6 \$48 201 229 < 0.01 3 < 2 1 < 10 94 < 10 46 38 0.20 < 10 549 550 201 229 0.03 350 12 < 2 2 8 < 10 151 < 10 8 6 < 2 1 4 0.30 < 10 201 229 < 0.01 з 140 179 < 10 26 < 10 3 1 0.32 < 10 201 229 < 0.01 150 < 2 < 2 851 11 8 < 10 < 10 58 < 10 5 0.28 201 229 140 18 < 2 < 1 952 < 0.01 1 < 10 75 < 10 34 19 0.14 < 10 2 201 229 < 0.01 9 580 10 < 2 \$53 6 < 10 53 < 10 0.17 < 10 1 3 854 201 229 < 0.01 1 180 6 < 2 44 < 10 96 < 10 24 0.17 < 10 \$55 201 229 0.01 9 590 12 2 3 22 94 < 10 11 0.31 < 10 < 10 201 229 < 0.01 230 10 < 2 1 4 **\$**56 18 70 < 10 < 2 2 5 0.33 < 10 < 10 201 229 180 10 857 < 0.01 5 89 < 10 10 9 0.24 < 10 < 10 200 2 1 \$58 201 229 < 0.01 1 2 < 10 127 < 10 14 2 3 0.30 < 10 201 229 300 10 < 2 < 0.01 1 g 59 79 < 10 20 < 10 8 5 0.05 < 10 201 229 < 0.01 220 < 2 1 **\$60** 2 53 < 10 34 < 10 6 0.08 < 10 < 2 < 2 2 **861** 201 229 < 0.01 < 1 260 22 76 < 10 0.20 < 10 < 10 201 229 210 6 < 2 4 з 562 < 0.01 1 < 10 38 < 10 54 6 0.12 < 10 \$63 201 229 < 0.01 2 440 < 2 < 2 4 48 < 10 34 6 0.13 < 10 < 10 S64 201 229 < 0.01 3 230 2 < 2 4 < 10 < 10 1 < 10 < 2 1 < 0.01865 < 2 < 1 201 229 < 0.01 < 1 50 < 2 < 10 88 < 10 10 4 1 0.18 < 10 2 866 201 229 < 0.01 1 150 < 2 14 < 10 < 2 < 10 < 10 < 2 < 2 < 1 1 0.05 S 67 201 229 < 0.01 < 1 80 < 10 < 10 56 < 10 12 < 1 0.13 **\$68** 201 229 < 0.01 < 1 60 < 2 < 2 1 < 10 47 < 10 40 < 10 201 229 290 < 2 2 5 0.13 **5**69 < 0.01 3 4 < 10 < 10 202 < 10 6 1 1 0.21 201 229 190 6 < 2 **\$7**0 < 0.01 2 76 < 10 48 5 0.16 < 10 < 10 < 2 2 3 \$71 201 229 < 0.01 10 660 < 10 70 < 10 56 < 10 8 0.16 < 2 < 2 6 s72 201 229 < 0.01 4 610 58 61 < 10 0.14 < 10 < 10 5 11 s73 201 229 0.01 5 480 2 < 2 < 10 54 < 10 50 0.12 < 10 201 229 0.01 4 430 6 < 2 4 8 \$74 64 52 < 10 5 9 0.13 < 10 < 10 201 229 < 0.01 4 320 < 2 < 2 s75 28 4 0.13 < 10 < 10 48 < 10 201 229 < 0.01 190 6 < 2 3 976 1 10 2 7 0.05 < 10 < 10 < 10 \$77 201 229 < 0.01 < 1 200 4 < 2 < 1 28 < 10 73 < 10 0.15 < 10 2 3 4 \$78 201 229 < 0.01 1 230 < 2 < 10 64 < 10 2 2 0.17 < 10 201 229 < 0.01 120 < 2 < 2 < 1 \$79 1 33 < 10 2 < 1 3 0.11 < 10 < 10 201 229 < 0.01 < 1 110 2 < 2 380 1

ł

CERTIFICATION Hartfushler

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8

Project : SUNSHINE COAST Comments: CC: ARND BURGERT Page Number : 1-A Total Pages :2 Certificate Date: 02-OCT-1998 Invoice No. : 19832053 P.O. Number : Account :QHB

											CEF	RTIFIC	CATE	OF A	NALY	SIS	A	9832	053		
	SAMPLE	PREP	Ag ppm	л1 %	As ppa	Ba. pom	Be pom	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
	581 582 583 584 585	201 229 201 229 201 229 201 229 201 229 201 229	0.2 0.2 0.2 0.6 0.4	1.94 2.10 2.14 2.25 3.43	32 32 26 78 76	230 < 210 < 240 < 240 < 190 <	0.5 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.88 0.94 0.81 0.67 0.51	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 10 10 8 10	34 29 30 27 36	134 139 154 171 187	2.50 2.52 2.76 3.80 3.25	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.12 0.12 0.13 0.16 0.08	< 10 < 10 < 10 < 10 < 10	0.64 0.61 0.62 0.55 0.74	170 165 170 135 110	4 3 3 3 6
Ņ	586 587 588 589 590	201 229 201 229 201 229 201 229 201 229 201 229 201 229	0.2 < 0.2 0.2 0.6 1.2	2.19 2.29 2.58 2.91 3.26	46 48 6 20 32	410 × < 220 × 1160 × 1230 × 130 ×	c 0.5 c 0.5 c 0.5 c 0.5 c 0.5 c 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.24 0.30 0.35 0.33 0.07	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 12 23 13 4	49 30 51 71 67	133 134 158 232 107	3.26 3.06 3.70 4.89 4.89	< 10 < 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.16 0.17 0.71 0.41 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.90 0.79 1.51 1.41 1.53	165 245 280 195 210	2 < 1 1 6 4
A	891 892 893 894 895	201 229 201 229 201 229 201 229 201 229 201 229	2.0 1.2 0.6 0.4 0.8	3.03 3.09 3.35 2.83 4.76	20 58 38 140 108	1030 < 720 < 190 < 870 170	<pre> 0.5 0.5 0.5 0.5 0.5 1.0 </pre>	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.44 0.57 0.52 0.27 0.21	1.0 1.5 < 0.5 < 0.5 < 0.5	10 43m 10 42 17	76 42 53 68 47	116 512 138 71 64	4.29 6.44 3.95 3.79 4.41	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.40 0.23 0.15 0.30 0.17	< 10 < 10 < 10 < 10 < 10 < 10	1.08 1.13 0.81 0.93 0.81	375 330 175 730 410	13 5 7 3 3
-	<u>995</u> 897 898 899 8100	201 229 201 229 201 229 201 229 201 229 201 229	0.2 < 0.2 0.2 < 0.2 < 0.2 0.2	4.00 4.72 2.78 0.21 2.75	40 6 16 < 2 14	350W < 140 < 60 < 10 < 190 <	<pre>< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5</pre>	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.49 0.15 0.21 0.30 0.21	< 0,5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	27 21 9 1 28	42 9 26 2 49	1824 47 32 5 34	4.81 5.59 3.97 0.11 4.24	< 10 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.91 0.30 0.15 0.04 0.40	< 10 < 10 < 10 < 10 < 10 < 10	1.27 2.21 0.85 0.06 0.78	500 1025 250 5 1095	3 < 1 1 < 1 1
	5101 5102 5103 5104 5105	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 0.2 < 0.2 0.2 0.2 0.2	2.25 2.49 2.94 2.40 3.36	18 18 30 16 24	160 < 190 < 120 130 < 150	< 0.5 < 0.5 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.06 0.20 0.04 0.09 0.12	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 18 11 15 27	48 50 60 42 62	31 37 41 28 40	4.01 3.99 4.67 4.15 4.97	< 10 < 10 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.59 0.60 0.28 0.30 0.31	< 10 < 10 < 10 < 10 < 10	0.71 0.77 0.74 0.67 0.90	410 605 300 915 675	< 1 1 < 1 < 1
A	\$106 \$107 \$108 \$109 \$110	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 < 0.2 < 0.2 0.2 < 0.2 < 0.2	3.45 2.70 3.68 6.08 3.89	24 22 10 14 < 2	110 190 230 4 230	0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.05 0.19 0.23 1.05 0.29	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 15 19 20 15	34 35 6 9 7	36 31 39 41 27	4.82 4.08 4.34 4.54 4.89	10 < 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.23 0.19 0.51 0.55 0.18	< 10 < 10 < 10 < 10 < 10 < 10	0.71 0.80 1.40 2.39 1.47	210 800 615 745 480	< 1 1 < 1 < 1 < 1
B	\$111 \$112 \$113 \$114 \$115	201 229 201 229 201 229 201 229 201 229 201 229	0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	3.81 1.61 3.41 3.17 3.65	< 2 6 22 2 2 < 2	200 4 50 140 290 4 200 4	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.17 0.08 0.19 0.43 0.32	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	19 5 12 15 17	6 4 6 6 4	39 18 32 41 34	5.18 3.79 4.12 3.60 4.03	10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.26 0.06 0.26 0.61 0.62	< 10 < 10 < 10 < 10 < 10 < 10	1.22 0.46 1.19 1.87 1.76	700 120 315 320 735	< 1 < 1 < 1 < 1 < 1
	S116 S117 S118 S119 S120	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	3.00 3.30 2.92 2.90 4.07	< 2 2 16 12 10	160 110 60 80 130	< 0.5 < 0.5 < 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.15 0.15 0.04 0.05 0.08	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 9 6 7 13	5 3 57 56 81	21 25 42 49 55	3.76 3.73 4.94 5.31 5.42	10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.31 0.17 0.17 0.20 0.33	< 10 < 10 < 10 < 10 < 10 < 10	1.25 1.30 0.56 0.40 0.84	310 220 150 155 270	< 1 < 1 1 < 1
																				~	

Hust chlen

Analytical Chemists * Geochemists * Registered Assayers North Vancouver

212 Brooksbank Ave., V7J 2C1 British Columbia, Canada PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8

SUNSHINE COAST Project : Comments: CC: ARND BURGERT

CERTIFICATE OF ANALYSIS

Page Number :1-8 Total Pages :2 Certificate Date: 02-OCT-1998 :19832053 Invoice No. P.O. Number OHB Account

A9832053

V M Zn **T1** ប 71 Ni P ЪP Sb Sc Sr PREP Na DDI ppm DDE * DDT DDM DDE DDW. SAMPLE CODE * ppm ppm ppm ppm 30 < 10 63 < 10 0.16 < 10 36 < 2 201 229 0.11 22 610 2 4 581 62 < 10 26 < 10 < 10 47 0.18 201 229 21 630 < 2 < 2 4 582 0.13 63 < 10 28 < 10 < 10 40 0.17 201 229 700 < 2 < 2 4 22 \$83 0.10 30 < 10 66 < 10 < 10 780 24 < 2 3 28 0.18 384 201 229 0.03 16 32 < 10 69 10 < 10 2 33 0.14 740 2 < 2 22 \$85 201 229 0.03 30 65 < 10 13 0.14 < 10 < 10 18 520 6 < 2 4 \$86 201 229 0.03 52 78 < 10 < 10 < 10 10 0.23 0.01 19 670 6 < 2 з 987 201 229 52 90 < 10 27 0.25 < 10 < 10 42 690 4 < 2 4 201 229 0.01 38B 54 118 < 10 < 10 6 26 0.24 < 10 201 229 0.03 36 860 6 < 2 589 56 105 < 10 < 10 0.17 < 10 8 8 6 12 320 < 2 201 229 < 0.01 890 136 147 < 10 < 10 0.20 < 10 10 < 2 7 23 591 1200 201 229 0.01 30 292 < 10 < 10 76 < 10 3 17 0.15 A 56 690 2 < 2 201 229 692 0.02 76 131 < 10 < 10 21 0.18 < 10 5 20 1140 4 < 2 0.01 893 201 229 70 < 10 77 < 10 0.14 < 10 28 36 1010 16 < 2 6 594 201 229 0.01 124 < 10 < 10 < 10 90 7 0.16 14 37 890 < 2 < 2 595 201 229 < 0.01 121 < 10 104 0.28 < 10 < 10 26 <u>596</u> 597 51 840 2 < 2 10 201 229 0.01 194 < 10 126 < 10 0.32 < 10 140 < 2 < 2 15 8 201 229 < 0.01 8 117 < 10 42 0.26 < 10 < 10 5 12 160 6 < 2 398 201 229 0.01 11 2 < 10 20 < 10 < 10 22 < 0.01< 2 < 1 3 420 < 2 201 229 0.01 399 73 < 10 114 < 10 < 2 15 0.16 < 10 8 680 0.01 32 < 2 S100 201 229 72 < 10 < 10 70 < 10 0.15 < 2 7 11 880 2 201 229 < 0.01 24 \$101 108 < 10 62 < 10 0.14 < 10 2 < 2 7 14 201 229 0.01 31 690 \$102 84 < 10 103 < 10 0.19 < 10 390 < 2 < 2 9 9 201 229 < 0.01 32 \$103 68 < 10 < 10 92 < 10 < 2 6 15 0.14 17 630 2 201 229 < 0.01 \$104 120 107 < 10 0.18 < 10 < 10 10 14 530 2 < 2 < 0.01 35 201 229 \$105 106 < 10 64 0.20 < 10 < 10 9 10 2 < 2 < 0.01 14 430 S106 201 229 < 10 68 0.15 < 10 < 10 95 26 8 2 < 2 201 229 0.01 20 680 **S107** 102 < 10 125 < 10 < 10 16 0.21 13 201 229 0.03 7 480 < 2 < 2 **S108** 156 < 10 86 0.25 < 10 < 10 16 75 201 229 0.24 6 390 12 < 2 \$109 72 147 < 10 < 10 12 22 0.29 < 10 290 < 2 < 2 201 229 Ô.Ô3 6 **S11**0 78 153 < 10 < 10 10 10 0.28 < 10 201 229 430 < 2 < 2 < 0.01 5 **s**111 30 189 < 10 0.34 < 10 < 10 5 6 420 < 2 201 229 < 0.01 3 4 \$112 56 < 10 < 10 155 < 10 12 0.27 12 340 2 < 2 201 229 0.03 4 \$113 62 138 < 10 < 10 < 10 < 2 13 20 0.19 520 < 2 201 229 0.05 3 \$114 74 126 < 10 < 10 0.23 < 10 12 20 3 540 < 2 < 2 201 229 0.07 \$115 68 125 < 10 < 10 < 10 0.26 410 < 2 < 2 10 13 201 229 0.01 3 **\$116** 46 140 < 10 < 10 < 10 11 17 0.25 120 < 2 < 2 2 201 229 0.04 s117 < 10 58 134 0.26 < 10 < 10 < 2 8 4 240 4 201 229 < 0.01 18 S118 60 110 < 10 0.20 < 10 < 10 7 < 2 8 24 430 4 201 229 < 0.01 \$119 < 10 102 < 10 < 10 123 0.25 11 8 610 2 < 2 201 229 < 0.01 47 \$120 Hartfichlen

CERTIFICATION:

R

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8

Project : SUNSHINE COAST Comments: CC: ARND BURGERT

*

Page Number :2-A Total Pages :2 Certificate Date: 02-OCT-1998 Invoice No. :19832053 P.O. Number QHB Account

									Ì	CE	RTIFI	CATE	OF A	NAL	rsis	ļ	9832	053		
SAMPLE	PREP	Ag ppm	A1 %	As ppm	Ba ppm	bbw Be	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La pom	Mg %	Mn ppm	Mo ppm
\$121 \$122 \$123 \$124 \$125	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	4.84 2.53 3.80 3.32 3.33	16 12 18 28 18	190 100 130 220 4 90	0.5 < 0.5 0.5 • 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.05 0.07 0.07 0.17 0.04	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	19 13 10 21 8	59 23 74 50 70	112 33 71 60 48	4.92 2.69 5.16 4.72 5.04	10 < 10 10 < 10 10	< 1 < 1 < 1 < 1 < 1	0.46 0.32 0.28 0.67 0.25	10 10 < 10 < 10 < 10	0.93 0.49 0.83 0.92 0.68	355 345 280 770 210	1 < 1 1 < 1 < 1
5126 5127 5128 5129 5130	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 0.2 0.2 < 0.2 < 0.2 < 0.2	3.33 2.58 4.56 3.57 1.78	40 42 42 46 12	100 B0 170 130 100	< 0.5 < 0.5 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.05 0.04 0.08 0.06 0.02	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 7 26 16 2	71 46 56 61 16	78 28 99 83 17	4.91 4.18 4.58 5.18 4.78	10 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.22 0.17 0.41 0.24 0.19	< 10 < 10 < 10 < 10 < 10	0.78 0.53 0.99 0.79 0.39	265 170 825 265 155	1 < 1 2 1 4
) 5131 5132 5133 5134 5134 5135	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 1.0 0.6 < 0.2 < 0.2	2.58 4.87 5.18 4.24 3.41	18 36 16 8 < 2	140 400 200 170 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.08 0.15 0.44 0.16 0.13	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 20 37 14 15	8 7 7 6 7	21 31 55 34 30	4.74 5.02 4.35 4.29 4.65	< 10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.29 0.31 0.19 0.50 0.19	< 10 < 10 < 10 < 10 < 10	0.52 1.96 2.02 1.68 1.17	335 585 885 465 620	< 1 < 1 < 1 < 1 < 1
s136	201 229	0.2	2.78	12	120	< 0.5	< 2	0.14	< 0.3		•								-	
	<u>l</u>	<u> </u>						 , ,		<u>.</u>				CEBTIE	CATION	. 1	Store A	N E	.Do	6-

1 ſ
To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8

•

Page Number :2-B Total Pages :2 Certificate Date: 02-OCT-1998 Invoice No. :19832053 Invoice No. P.O. Number : OHB Account

۲

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Project : SUNSHINE COAST Comments: CC: ARND BURGERT

		PHONE: 60	04-984-02						[CE	BTIE	ATE	OF A	NALYSIS	S A9832053
	PREP	Na	Ni	P	Pb	Sb	SC	Sr ppm	TÌ X	Tl ppm	U ppm	V ppm	W ppm	Zn ppn	
SAMPLE 121 122 123 124 125 126 127 1318 129 5130 \$131 \$132 \$134 \$135 \$136	CODE 201 22 201 22	$ \frac{1}{9} < 0.01 \\ < 0.01 \\ 9 < 0.01 \\ 9 < 0.01 \\ 9 < 0.01 \\ 9 < 0.01 \\ 9 < 0.01 \\ 9 < 0.01 \\ 9 < 0.01 \\ 9 < 0.01 \\ 9 < 0.01 \\ 9 < 0.01 \\ 19 < 0.01 \\ 19 < 0.01 \\ 19 < 0.01 \\ 29 & 0.01 \\ 19 < 0.01 \\ 19 < 0.01 \\ 29 & 0.01 \\ 19 < 0.01 \\ 10 & 0.01 \\ 20 & 0.01 \\ 10 & 0.01 \\ 20 & 0.01 \\$	ppm 64 32 35 39 31 52 24 57 54 5 7 8 5 6 4	ppm 360 280 520 700 510 320 390 610 380 420 310 280 320 310 360 630	yym 4 4 2 8 6 2 2 2 6 2 2 6 4 2 2 6 4 2 6 6 4 2 6 6 7 6 6 7 6 7 6 6 7 6 7 6 7 6 7 6 7	<pre>>pm < 2 /pre>	11 5 11 9 9 7 11 9 8 5 14 15 14 9 9 9	19 13 10 19 8 12 6 14 16 4 76 14 34 11 9 9 11	0.23 0.11 0.20 0.26 0.23 0.18 0.21 0.14 0.14 0.31 0.24 0.31 0.25	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	98 38 108 72 112 126 106 94 113 71 147 132 140 173 125	< 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10	134 102 98 162 78 96 54 130 106 42 62 114 108 70 66 54	
			<u> </u>											CERTIFICA	ATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,	North Vancouver
British Columbia, Canada	a V7J2C1
PHONE: 604-984-0221	FAX: 604-984-0218

To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8

Page Number :1-A Total Pages :1 Certificate Date: 12-JUL-98 Invoice No. :19823568 P.O. Number : QHB Account

Project : SUNSHINE COAST Comments: ATTN: ARND BURGERT CC: ARND BURGERT

**

												CEI	RTIFI	CATE	OF A	NALY	sis	4	9823	568		
	SAMPLE	PREP		, Ag	A1 %	As ppm	Ba. ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm	Mo ppm
3	N500351 N500352 N500353 N500354 N500355	205 2 205 2 205 2 205 2 205 2 205 2	26 26 26 26 26	< 0.2 0.2 < 0.2 0.2 5.2	1.87 1.73 1.91 1.22 3.77	20 12 2 < 2 < 2 < 2	50 10 50 20 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 < 2 14	0.23 0.21 0.21 0.03 1.88	< 0.5 < 0.5 1.0 < 0.5 4.5	19 30 24 22 18	38 29 56 48 157	31 140 49 72 2900	4.76 7.49 4.07 3.96 * 3.57	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.61 0.08 0.14 0.12 0.18	< 10 < 10 < 10 < 10 < 10	1.46 1.11 0.60 0.71 0.38	855 420 220 500 450	1 4 16 6 1
D	<u>N5</u> 00356 N500357 N500358	205 2 205 2 205 2	26 26 26	0.2 < 0.2 0.6	2.17 0.91 0.36	8 6 10	190 110 10	0.5 < 0.5 < 0.5	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0.52 0.19 0.43	< 0.5 < 0.5 < 0.5	14 8 102	62 76 45	39 53 608	5.32 3.88 5.27	< 10 < 10 < 10	< 1 < 1 < 1	0.73 0.25 0.02	< 10 < 10 < 10	0.86 0.84 0.12	425 185 120	3 17 19
																			<u> </u>		. 0	<u> </u>
	÷															CERTIFI	CATION	: Ľ	<u>d</u> úv	ر ترکه د ترگ	معلا	<u>x e</u>

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8 Page Number :1-B Total Pages :1 Certificate Date: 12-JUL-98 Invoice No. :19823568 P.O. Number : Account :QHB

<u> . 00</u>

Project : SUNSHINE COAST Comments: ATTN: ARND BURGERT CC: ARND BURGERT

**

											CE	RTIFI	CATE	OF A	NALYSIS	A9823568
SAMPLE	PR	ep De	, Na %	Ni ppm	ppm P	Pb ppm	Sb ppm	SC ppm	Sr ppm	Ti %	T1 Dom	mđđ D	v rqq	W mqq	Zn ppm	
M500351 M500352 M500353 M500354 M500354 M500355	205 205 205 205 205	226 226 226 226 226 226	0.03 0.07 0.04 0.04 0.28	3 12 6 6 2	710 460 910 30 280	10 8 2 < 2 2 2	< 2 < 2 2 2 < 2	6 < 1 1 < 1 2	8 17 < 12 < 7 < 82	0.04 0.01 0.01 0.01 0.01 0.04	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	71 15 13 11 34	< 10 < 10 < 10 < 10 < 10 < 10	82 44 114 70 308	
M500356 M500357 M500358	205 205 205	226 226 226	0.10 0.01 0.04	13 20 38	610 460 1000	< 2 6 < 2	< 2 < 2 < 2	6 20 4	32 11 13	0.17 0.19 0.06	< 10 < 10 < 10 < 10	< 10 < 10 < 10	76 183 35	< 10 < 10 < 10	70 60 22	
						,									·	

OCOTIFICATION:

£

В

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8 Page Number :1-A Total Pages :1 Certificate Date: 24-JUL-98 Invoice No. :19824807 P.O. Number : Account :QHB

Project : SUNSHINE COAST Comments: ATT:ARND BURGERT CC:ARND BURGERT

**

							_			CE	RTIF	CATE		NAL	/SIS	/	49824	807		
SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	R %	La ppm	Mg %	Mn ppm	No ppm
M500359 M500360 M500361 M500362	205 226 205 226 205 226 205 226	< 0.2 1.0 0.2 < 0.2	1.04 6.09 6.66 0.31	32 < 2 < 2 10	40 30 80 < 10	0.5 < 0.5 0.5 < 0.5	< 2 20 2 2	0.01 2.61 1.62 0.10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 25 21 10	78 263 84 16	14 1140 1055 28	9,17 9,73 7,01 >15,00	< 10 10 10 < 10	< 1 1 3 3	0.16 1.35 2.42 0.03	< 10 < 10 < 10 < 10 < 10	0.17 1.57 2.41 0.06	155 410 820 540	4 19 3 2
		- -								쁔										
									· · ·						CATION	14	مثر		ىلىك	

c

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8

Project : SUNSHINE COAST Comments: ATT:ARND BURGERT CC:ARND BURGERT

**

Page Number :1-B Total Pages :1 Certificate Date: 24-JUL-98 Invoice No. :19824807 P.O. Number : Account :QHB

												CE	RTIFI	CATE	OF A	NALY	SIS	A98	24807			
	SAMPLE	PRI COI	ep De	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	bbw A	V ppm	भ इत्यूय्	Zn ppm						
, >	x500359 x500360 x500361 x500362	205 205 205 205	226 226 226 226 226	0.03 0.47 0.58 0.01	7 26 16 4	50 1000 1050 30	< 2 < 2 < 2 6	< 2 2 < 2 2	1 14 20 < 1	5 < 175 173 3	0.01 0.18 0.30 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	14 191 184 20	< 10 < 10 < 10 < 10 < 10	28 48 74 24						
				·																		
											·											
,																		<u></u>		00		
															ſ	ERTIFIC/		Agr	12	en	×.,	

L

B

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8 Page Number :1-A Total Pages :1 Certificate Date: 24-AUG-1998 Invoice No. :19828383 P.O. Number : Account :QHB

Project : SUNSHINE COAST Comments: ATTN:ARND BURGERT CC:ARND BURGERT

.

												CE	RTIFI	CATE	OF A	NALY	'SIS	/	19828	383		
	SAMPLE	PR CO	ep De	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca	Cđ ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg	K %	La ppm	Mg %	Mn ppm	Мо ррш
)	M500363 M500364 M500365 M500366 M500368	205 205 205 205 205	226 226 226 226 226	0.2 < 0.2 0.4 < 0.2 0.2	1.52 2.52 6.82 1.46 1.46	28 24 30 592	100 40 630 90	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 < 2 < 2	0.94 7.24 3.91 0.53 0.49	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	35 11 35 14 9	51 157 28 28 79	90 25 206 35 45	3.44 9.07 9.61 4.26 2.57	< 10 < 10 20 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.64 0.05 0.06 0.72 0.56	< 10 10 10 < 10 < 10	1.41 0.11 0.07 0.68 0.72	340 2370 200 235 100	4 12 2 4 6
							·															
				1 •																		
			s í																			
			11																	r		
							_									CENTIFI		IF	J.	لمبد	معل	` _

To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8 Page Number :1-B Total Pages :1 Certificate Date: 24-AUG-1998 Invoice No. :19828383 P.O. Number : Account :QHB

ł

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

C

Project : SUNSHINE COAST Comments: ATTN:ARND BURGERT CC:ARND BURGERT

											CE	RTIF	CATE	OF A	NALYSIS	A9828383
SANPLE	PR	ep De	Na %	Ni ppm	P mqq	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	ppm W	Zn ppm	
N500363 N500364 N500365 N500366 N500366 N500368	205 205 205 205 205	226 226 226 226 226 226	0.14 0.09 0.93 0.06 0.12	28 18 6 2 14	720 1310 1210 1370 770	2 < 2 2 < 2 4	< 2 < 2 < 2 < 2 < 2	6 3 < 1 7 8	27 86 514 23 20	0.26 0.09 0.07 0.18 0.19	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	93 310 221 171 83	< 10 < 10 < 10 < 10 < 10 < 10	48 46 40 30 36	
											:. 'a					
											ž					
			-													
		•														_
									<u>. </u>						CEDTIEICATION	Hartbicklen

ſ

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8

Page Number :1-A Total Pages :1 Certificate Date: 26-AUG-199 Invoice No. :19828382 P.O. Number : Account :QHB

Project : SUNSHINE COAST Comments: ATTN:ARND BURGERT CC:ARND BURGERT

CERTIFICATE OF ANALYSIS A9828382

*

PREP CODE	Ag ppm AAS	Al % (ICP)	Bappm (ICP)	Be ppm (ICP)	Bi ppm (ICP)	Ca % (ICP)	Cđ ppm (ICP)	Coppm (ICP)	Cr ppm (ICP)	Cu ppm (ICP)	Fe % (ICP)	K % (ICP)	Mg % (ICP)	Mn ppm (ICP)
205 22	6 < 0.2	1.11	30	0.5	2	>25.0	0.5	3	28	23	0.99	0.03	0.21	65
														ļ
		ļ	i											
			l	ļ	ļ									
										ļ				
	1						,						ł	
			:											
											ļ			
			- -					l						
		})]							
	PREP CODE 205 22	PREP CODE AAS	PREP CODE Ag ppm AAS Al % (ICP) 205 226 < 0.2	PREP CODE Ag ppm AAS Al % (ICP) Ba ppm (ICP) 205 226 < 0.2	PREP CODE Ag ppn AAS Al % (ICP) Ba ppm (ICP) Be ppm (ICP) 205 226 < 0.2	PREP CODE Ag ppm AAs Al % (ICP) Ba ppm (ICP) Be ppm (ICP) Bi ppm (ICP) 205 226 < 0.2	PREP CODE Ag ppm AAS Al % (ICP) Ba ppm (ICP) Be ppm (ICP) Bi ppm (ICP) Ca % (ICP) 205 226 < 0.2	PREP CODB Ag ppm AAS A1 % (ICP) Ba ppm (ICP) Bi ppm (ICP) Ca % (ICP) Cd ppm (ICP) 205 226 < 0.2	PREP CODE Ag ppm AAS I 1 % (ICP) Ba ppm (ICP) Bi ppm (ICP) Ca % (ICP) Cd ppm (ICP) Co ppm (ICP) 205 226 < 0.2	PREP CODE Ag ppm AAS Ai % (ICP) Ba ppm (ICP) Bi ppm (ICP) Ca % (ICP) Cd ppm (ICP) Co ppm (ICP) Cr ppm (ICP) 205 226 < 0.2	PREP CODB Ag ppn AAs Al % (ICP) Be ppn (ICP) Be ppn (ICP) Bi ppn (ICP) Ca % (ICP) Cd ppn (ICP) Co ppn (ICP) Cr ppn (ICP) Cu ppm (ICP) 205 226 < 0.2	PREP CODE Ag ppm AAS A1 & Ba ppm (ICP) Bi ppm (ICP) Ca & Ci ppm (ICP) Co ppm (ICP) Cr ppm (PREP CODB Ag ppn AAS 1 % (TCP) Ba ppn (TCP) Be ppn (TCP) Bi ppn (TCP) Cd ppn (TCP) Co ppn (TCP) Cr ppn (TCP) Cr ppn (TCP) Cr ppn (TCP) Cr ppn (TCP) Cr ppn (TCP) Cr ppn (TCP) Ps % (TCP) K % (TCP) 205 226 < 0.2	PREP CODB As As Ba ppn (TCP) Bi ppn (TCP) Ca k (TCP) Cd ppn (TCP) Co ppn (TCP) Cu ppn (TCP) Pe k (TCP) K. k (TCP) Mg k (TCP) 205 226 < 0.2

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8 Page Number :1-B Total Pages :1 Certificate Date: 26-AUG-1998 Invoice No. :19828382 P.O. Number : Account :QHB

Project : SUNSHINE COAST Comments: ATTN:ARND BURGERT CC:ARND BURGERT

CERTIFICATE OF ANALYSIS A9828382

CERTIFICATION 12 NR 000

	SAMPLE	P	rep Ode	Mo ppm (ICP)	Na % (ICP)	Ni ppm (ICP)	P ppm (ICP)	Pb ppm AAS	Sr ppm (ICP)	Ti % (ICP)	V ppm (ICP)	W ppm (ICP)	Zn ppm (ICP)		
D	₩ 500367	205	226	2	0.07	8	20	18	203	0.07	38	< 10	24		

l

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8 Page Number : 1-A Total Pages : 1 Certificate Date: 18-SEP-1998 Invoice No. : 19830821 P.O. Number : Account : QHB

Project : SUNSHINE COAST Comments: ATTN:ARND BURGERT (

GERT CC:A.BURGERT

		(A.B	JHG	iΕ	HI	
	•	-							
_	-		-	-					

												CE	RTIFI	CATE	OF A	NAL	(SIS	4	9830	821		
	SAMPLE	PRI CO	ep De	Au ppb FA+AA	Ag ppm	λ1 *	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu	Fe %	Ga ppn	Hg ppm	K %	La ppm	Mg %	Mn ppm
-	1500369 1500370 1500371 1500372 1500373	205 205 205 205 205 205	226 226 226 226 226 226	< 5 < 5	0.2 1.0 0.2 0.8 0.4	0.87 2.08 0.68 1.66 0.94	12 < 2 8 12 6	< 10 10 60 90 90	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 < 2 < 2	1.36 0.33 0.03 0.14 0.04	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	37 14 10 9 5	125 188 204 170 196	216 349 42 928 313	4.02 4.60 2.46 5.67 3.23	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < < 1 1 1 1	<pre>c 0.01 0.15 0.19 0.51 0.47</pre>	< 10 < 10 < 10 < 10 10	0.06 0.86 0.16 0.81 0.02	120 320 160 660 135
	£500374	205	226		0.6	1.50	168	60	1.0	< 2	0.19	0.5	13	191	46	3.85	< 10	1	0.16	10	0.32	370
												, Ì										
																				<u>o</u>		
	L												_			CERTIFI	CATION:	140	itic	rela	لمعل	

l

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8

Page Number :1-B Total Pages :1 Certificate Date: 18-SEP-1998 Invoice No. :19830821 P.O. Number : QHB Account

4000001

Project : SUNSHINE COAST Comments: ATTN:ARND BURGERT

CC:A.BURGERT

											CERTIFICATE OF ANALTSIS A9050021							
SAMPLE	PR	ep De	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sr ppm	Ti X	T1 ppm	U ppm	V ppm	W	Zn ppm		
x500369 x500370 x500371 x500372 x500373	205 205 205 205 205 205	226 226 226 226 226 226	6 36 21 15 8	< 0.01 0.07 0.01 0.07 0.02	28 9 5 16 4	240 1340 90 510 230	16 10 12 12 8	< 2 4 < 2 2 2	5 6 < 1 5 < 1	18 9 9 15 7	0.41 0.03 0.03 0.15 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	46 49 12 64 7	< 10 < 10 < 10 < 10 < 10 < 10	22 32 22 64 16		
M500374	205	226	14	0.04	9	760	10	2	7	12	0.02	< 10	< 10	16	< 10	46		

Hartbichlen

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 North Vancouver V7J 2C1 To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8

*

Project : SUNSHINE COAST Comments: CC: ARND BURGERT

Page Number :1-A Total Pages :1 Certificate Date: 02-0CT-1998 Invoice No. :19832052 P.O. Number Account QHB

												CEF	TIFI	CATE	OF A	NALY	'SIS	/	19832	052		
	SAMPLE	PR CO	BP DE	Ag ppm	л1 %	As ppm	Ba ppm	Be	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm	Ng %	Mn ppm	Mo ppm
A	N500375 N500376 N500377 N500378 N500379	205 205 205 205 205	226 226 226 226 226 226	0.8 0.2 19.03 0.6	1.27 6.14 1.67 0.27 1.11	14 < 2 < 2 260 6	20 10 40 < 10 40	< 0.5 1.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 8 < 2	1.33 2.16 0.10 0.61 0.83	< 0.5 < 0.5 < 0.5 120.0 < 0.5	64 41 21 139 13	38 99 53 32 24	1885 1150 228 4470 182	13.25 8.68 5.17 15.00 3.93	< 10 10 < 10 10 < 10	1 3 7 < 1	0.08 1.53 1.12 0.01 0.10	< 10 < 10 < 10 < 10 < 10	1.02 1.41 0.75 0.01 0.24	400 435 245 200 85	< 1 < 1 9 43
						·										CERTIFI				R.	<u>.Qo</u> ,	<u></u> *

L

	0			hen Aytical Chemi 212 Brooks British Colu PHONE: 60	Tex ists • Geor bank Ave mbia, Ca 04-984-02	chemists mada 221 FA)	Registered forth Van V (: 604-98	d Assayer couver 7J 2C1 4-0218	d.		To: E Projec Comm	BURGER 242 BOY NEW WE V3M 5J8 eents: (CE	RT, ARNE STMINS SUNSHIN CC: ARNI RTIFI	EET TER, BO D BURG CATE	ERT	NALYSIS	Page Number :1-B Total Pages :1 Certificate Date: 02-OCT-19 Invoice No. : 19832052 P.O. Number : Account :QHB	98
	SAMPLE	PRI	EP DB	Na %	Ni ppm	P ppm	Pb	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	D Mđđ	V ppm	W ppm	Zn ppm		
A	M500375 N500376 N500377 M500378	205 205 205 205 205	226 226 226 226 226 226	0.16 0.38 0.01 < 0.01 0.16	37 58 3 97 3	140 640 430 690 590	< 2 < 2 < 2 20B < 2	< 2 < 2 < 2 < 2 < 2 < 2 < 2	13 6 14 < 1 3	27 275 5 4 21	0.22 0.25 0.29 0.02 0.17	< 10 < 10 < 10 < 10 < 10	10 < 10 < 10 40 < 10	447 131 61 18 41	< 10 < 10 < 10 < 10 < 10 < 10	128 82 46 10000 28		
В												-				.		
														<u>. </u>		CERTIFICATI	ON: Hast Rigo.	

ĺ

Í

ł

٠,

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

242 BOYNE STREET NEW WESTMINSTER, BC V3M 5J8

٠

Project : SUNSHINE COAST Comments: CC: ARND BURGERT

Page Number :1 Total Pages :1 Certificate Date: 05-0CT-1998 Invoice No. : 19832686 P.O. Number : QHB Account

					A98	32686	r		
SAMPLE	PREP CODE	Zn %							
1500378	244	1.43							
									+.