BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR: 1998/99 REPORT #: PAP 98-17

NAME: STEVE TRAYNOR

BRITISH COLUMBIA	
PROSPECTORS ASSISTANCE PROC	GRAM
PROSPECTING REPORT FORM (cont	tinued)

B. TECHNICAL REPORT

1

. .

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations 15 to 17, page 6.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting cata (see section 16) required with this TECHNICAL REPORT.

Name Stave Traynor Reference	nce Number <u>98/99 P3</u> 1
LOCATION/COMMODITIES	
Project Area (as listed in Part A) [eslin Lake MINF	ILE No. if applicable
Location of Project Area NTS 104N16W Lat 59	ILE No. if applicable 59'N132°24' い
Description of Location and Access East shore of Testin hake the B.C. Mukon border by bout.	e, just south of
The B.L. Mukon border by bout.	
Main Commodities Searched For	
Known Mineral Occurrences in Project Area <u>Lakeshore</u> showing re	ported by Mihalynuk (19913)
WORK PERFORMED	· · · · · · ·
1. Conventional Prospecting (area) 2 to 3 Km along lakeshore	and up to I km inland.
2. Geological Mapping (hectares/scale)	1
3. Geochemical (type and no. of samples)	
4. Geophysical (type and line km)	
5. Physical Work (type and amount)	
6. Drilling (no. holes, size, depth in m, total m)	
7. Other (specify)	
SIGNIFICANT RESULTS	,,,
Commodities Claim Name	
Location (show on map) Lat Long	Elevation
Best assay/sample type	
Description of mineralization, host rocks, anomalies	
None, Showing not	found
	<u> </u>

Supporting data must be submitted with this TECHNICAL REPORT

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

Rec 12

JAN 20 120 CEC D

SMITHERS, BC

WINISTRY OF ENERGY & North S

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

1 %

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations 15 to 17, page 6.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name Steve Traynor	Reference Number <u>98/99</u> P3)
LOCATION/COMMODITIES	
Project Area (as listed in Part A) <u>Swift River</u>	MINFILE No. if applicable
	Lat 59°55'N Long 131°45' 14
Description of Location and Access North of Swift to the west and Swan Luke to the	River between Mt Haziel eastrin the Alaska Highwa
Main Commodities Searched For Base and precion	
Known Mineral Occurrences in Project Area <u>A</u> number of I by Mi halynuk (1998)	highway showings reported
WORK PERFORMED	· · · · ·
1. Conventional Prospecting (area) <u>See location desp</u>	cription above
 Geological Mapping (hectares/scale)	15 soil simples and 3 stream sets.
4. Geophysical (type and line km)	
5. Physical Work (type and amount)	
6. Drilling (no. holes, size, depth in m, total m)	
7. Other (specify)	
SIGNIFICANT RESULTS	
	e
Location (show on map) Lat Long	Elevation
Best assay/sample type	
Description of mineralization, host rocks, anomalies	
* Pleuse refor to attach 1998 Field Activities.	ed Report of

Supporting data must be submitted with this TECHNICAL REPORT

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

, 🍾

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations 15 to 17, page 6.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name <u>Steve Traynor</u> Reference Number <u>98/99</u> P.3
LOCATION/COMMODITIES
Project Area (as listed in Part A) //(+. Francis (Hiserault) MINFILE No. if applicable 1040-011
Location of Project Area NTS $104013E$ Lat $59°48'$ Long $131°43'$ W
Description of Location and Access Western Flank of M.J. Francis by
helicopter From newest base
Main Commodities Searched For <u>Cu and Au</u> ,
Known Mineral Occurrences in Project Area Arsenault property active much of 1957 Balacudes and before.
WORK PERFORMED
1. Conventional Prospecting (area) Most of main ridge and Surrounding area
2. Geological Mapping (hectares/scale)
3. Geochemical (type and no. of samples) Joil geochemistry, 54 samples Rock, grub, chip, core, 265 mple
4. Geophysical (type and line km)
5. Physical Work (type and amount) Claim Staking, 40 units
6. Drilling (no. holes, size, depth in m, total m)
7. Other (specify)
SIGNIFICANT RESULTS Commodities Cu and Au Claim Name WIN Location (show on map) Lat <u>59°48'N</u> Long <u>131°43'W</u> Elevation <u>4750</u> Fezt Best assay/sample type <u>Chip Sample across</u> <u>7.5m</u> <u>yielded</u> 0.46% Cu and 1.3g/H Au.
Dest assuy/sumple type
Description of mineralization, host rocks, anomalies Quartzite
Please refer to attached report of 1998 Field Activities for additional details and other results

Supporting data must be submitted with this TECHNICAL REPORT

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

TABLE OF CONTENTS

INTRODUCTION 1 PROJECT SUMMARY 1 TESLIN LAKE AREA (Target A) SWIFT RIVER AREA (Targets B & C) PROJECT SUMMARY 1 AREA LOCATION AND ACCESS 1 PREVIOUS WORK AND EXPLORATION 3 REGIONAL AND GENERAL GEOLOGY 3 DESCRIPTION AND SUMMARY OF WORK 4 ANALYSIS AND RESULTS 4 CONCLUSIONS AND RECOMMENDATIONS 4 MOUNT FRANCIS (ARSENAULT) AREA (Targets D & E) PROJECT SUMMARY 7 AREA LOCATION AND ACCESS 7 PROPERTY DESCRIPTION 7 10 PREVIOUS WORK AND EXPLORATION REGIONAL AND PROPERTY GEOLOGY 10 DESCRIPTION AND SUMMARY OF WORK 12 ANALYSIS AND RESULTS 12 CONCLUSIONS AND RECOMMENDATIONS 15 17 REFERENCES LIST OF FIGURES FIGURE 1 - SWIFT RIVER AREA - Location Man 2

FIGURE 1 SWIFT REVERTREET EDURIOU STUP	-
FIGURE 2a – SWIFT RIVER AREA – Sample Location Map 1	5
FIGURE 2b - SWIFT RIVER AREA - Sample Location Map 2	6
FIGURE 3 – ARSENAULT PROPERTY – Location Map	8
FIGURE 4 – ARSENAULT PROPERTY – Claim Map	9
FIGURE 5 – ARSENAULT PROPERTY – Sample Location Map	13
FIGURE 6 – ARSENAULT PROPERTY – Copper Geochem in Soils – Grid Area	14
MINERAL TITLE REFERENCE MAP 104 O 13E	in Map Pocket

LIST OF APPENDICES

APPENDIX A – SUMMARY OF PROSPECTING ACTIVITIES	18
APPENDIX B ROCK SAMPLE REPORT	20
APPENDIX C – CERTIFICATES OF ANALYSIS	23
APPENDIX D – PETROGRAPHIC (THIN SECTION) REPORT	68

MINIS	IRY OF EN	IERGY & M	INES
REC'D	JAN 2	0 1999	
	SMITHE	RS, BC	6

INTRODUCTION

This report prepared in fulfillment of the requirements of the Prospectors Assistance Program, details the results of field work completed during the 1998 season. A synoptic log detailing prospecting activities is included as Appendix A.

An integrated program consisting of convential prospecting, geochemical surveying and limited geological mapping aimed at identifying new mineral occurrences and following up those previously reported was completed in the Swift River area of central northern B.C.

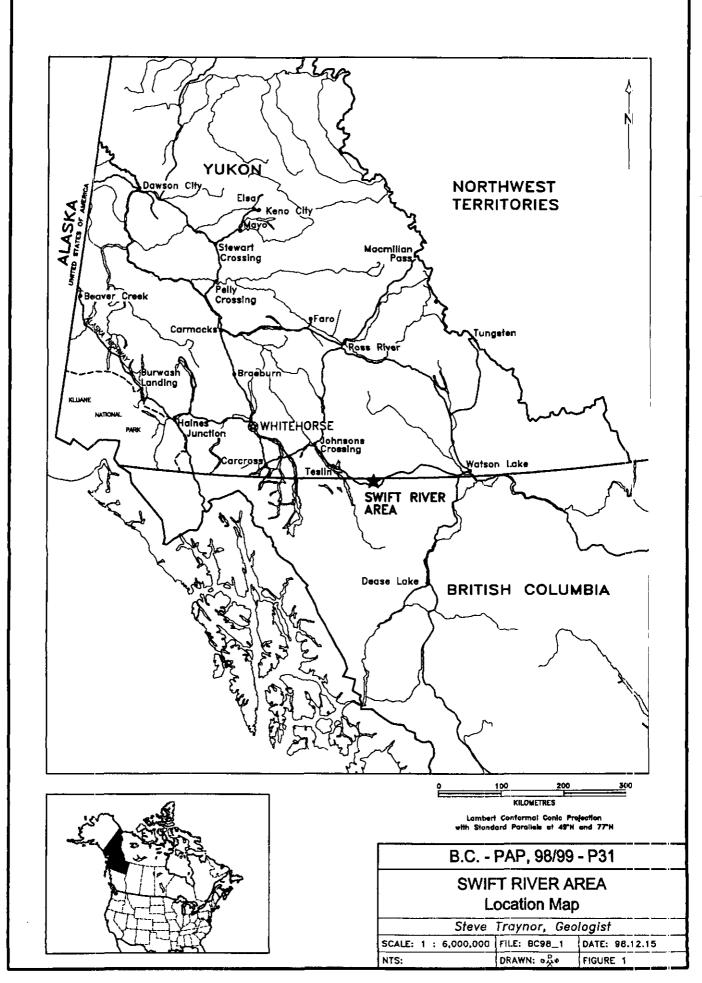
TESLIN LAKE AREA (Target A)

PROJECT SUMMARY

The authors prospecting partner, Mr. W. Carrell, completed a single days' reconaissance in this area in late June of 1998. Reconnaissance of the lake shore was carried out by boat and potentially interesting areas along and adjacent to the shoreline were traversed on foot. Despite his best effort he was unable to locate the Cu occurrence reported by Mihalynuk (1998) or any other signs indicative of potential mineralization. The success of ongoing work elsewhere in the project area did not allow for any further investigations in this area.

SWIFT RIVER AREA (Targets B and C)

PROJECT SUMMARY


Work on these targets was concentrated in the area between Mt. Hazel and Swan Lake north of the Swift River. Grassroots prospecting combined with geochemical sampling met with limited success due to the extensive fluviogacial and lacustrine deposits that were found obscuring much of the area. Despite these difficulties a few hints of the possible massive sulfide potential of the area were uncovered.

AREA LOCATION AND ACCESS

The target area is located in central northern B.C. within the Atlin Mining Division and is shown on the 104 O 13 NTS map sheet (see Figure 1).

Access to the area from Whitehorse, Yukon is via the Alaska Highway approximately 250 km east

İ

to the section of the highway that passes through northern B.C. between Teslin and Watson Lake, Yukon. Access is further facilitated by the use of a number of old mineral property access roads that originate from the Alaska Highway and proceed generally north from those points.

PREVIOUS WORK AND EXPLORATION HISTORY

A review of B.C. Minfile occurrences in this area shows only a few occurrences and suggests that the area has long been neglected by explorationists.

Stradling the B.C./Yukon border to the north a number of vein and skarn occurrences related to Cretaceous intrusive tocks are documented. Of particular note is the Logtung tungsten molybdenum porphyry system that was first discovered in 1976. This large tonnage, but rather low grade deposit has been studied quite extensively, but has never been mined.

The other occurrences of note are found east of Swift Lake in the vicinity of Mt. Francis and include a number of copper/gold showings associated with the old Arsenault property. This history of this area is discussed in detail later in this report.

REGIONAL AND GENERAL GEOLOGY

Situated on the Nisutlin Plateau in northern B.C. the area is underlain by an assemblage of volcanic and sedimentary rocks, metamorphosed to greenschist grades, which lie to the east of the Teslin Fault. Lying within the Big Salmon Complex these rocks are thought to represent the southern extension of the Yukon-Tanana terrance which is currently being explored for massive sulfide deposits formed in volcanogenic settings since the discovery of the Kudz ze Kayah deposit of Cominco and the Wolverine deposit of Atna/Expatriate.

A variety of mica schists, greenstones, terrigeneous clastic and carbonate rocks were observed in the course of prospecting in the area. Of particular interest was an outcropping of quartz-sericite-piedmontite schist discovered on the first ridge to the east of Mt. Hazel at 59 56.85'N/131 49.18'W.

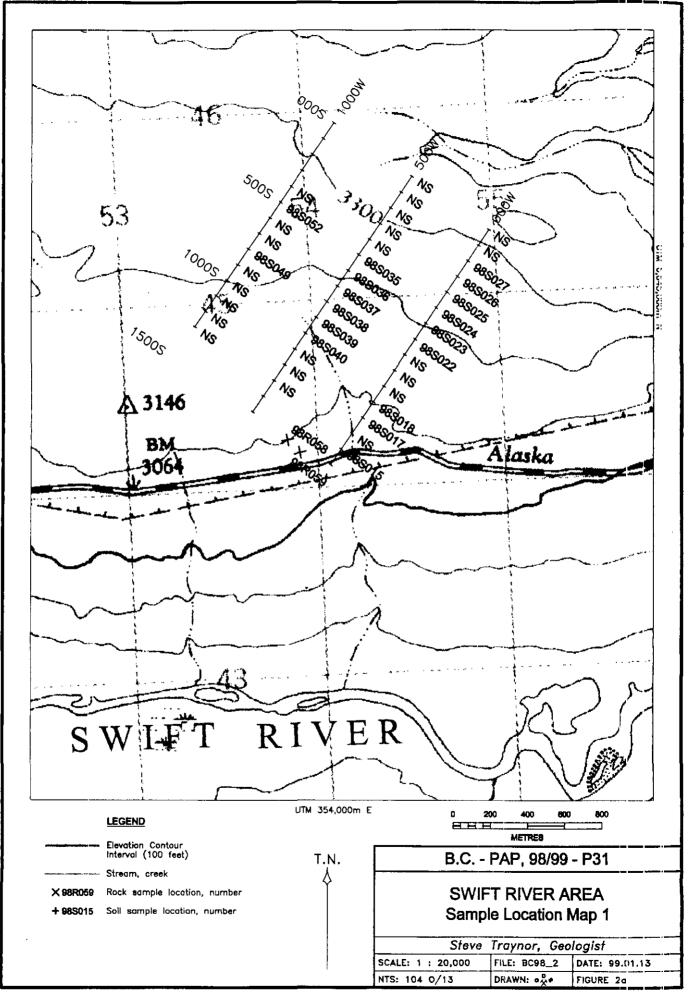
As mentioned previously, overburden in the area is extensive often showing signs of at least secondary transportation and limiting outcrop to less than 1%. The confusing mix of glacial, lacustrine and fluvial deposits coupled with depths of cover often in excess of 20 meters, as measured in numerous gravel pits in the area, ultimately proved to be a significant deterent to further work.

DESCRIPTION AND SUMMARY OF WORK

Twelve days were spent traversing, prospecting and sampling within this project area. The bulk of the work was completed during two seperate trips late in May and early in June that were briefly followed up in mid September.

Foot traverses starting from various points along the main highway and the mineral property access roads in the area provided for good coverage of the ground. The first trip consisted entirely of orientation and prospecting at the Mt. Hazel end of the area. Subsequent trips focused on prospecting and sampling at the Swan Lake or eastern end of the area, Figures 2a and 2b shows the locations of samples collected during the course of this work.

ANALYSIS AND RESULTS


A total of 21 samples were collected for analysis during these investigations and included 3 rock, 15 soil and 3 stream sediment samples, the results of which are presented in Appendix C.


Soil sampling in the area of the Logtung road (Figure 2a) which is inferred to be underlain by prospective lithologies produced two minor Au values, followup of which was inconclusive. A grab sample of some brecciated graphitic schist with quartz veins, collected from the burrow pit located just south of the soil grid did return values that were moderately anomalous in Cu, Co and As. Further west, 3 stream sediment samples collected from a stream (see Figure 2b) that drains across this same band of rocks all returned elevated Mn values, probably derived from the Mn-rich piedmontite layer inferred to be associated with this package. Extensive prospecting failed to locate any outcrop through the glaciofluvial cover of the area eventhough the stream bed was deeply incised into this layer.

CONCLUSIONS AND RECOMMENDATIONS

The widespread occurrence of a Mn-rich exhalative marker horizon throughout the area is highly indicative of the potential for discovery of massive sulfide mineralization. Unfortunately extensive glacio-fluvial cover, especially in areas underlain by the most prospective lithologies, limits the usefulness of conventional prospecting techniques. Detailed examination of available airphotos of the area may be useful in locating areas of potential outcrop.

Ultimatley, the information most useful in attracting additional exploration interest in the area

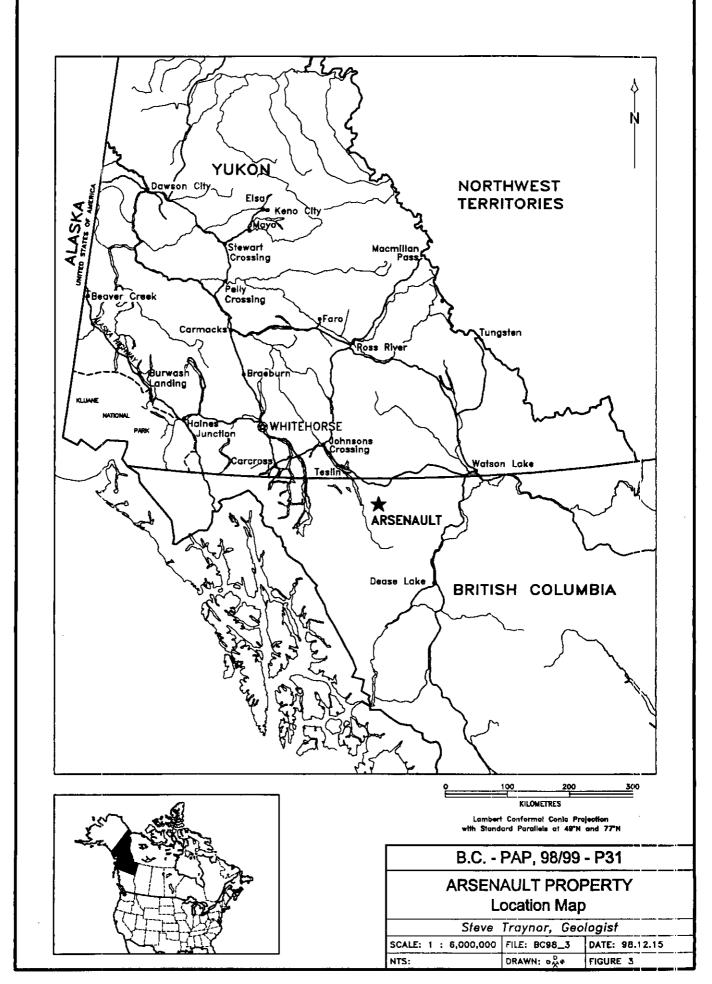
would be the completion and publication of airborne geophysical data, an undertaking that only a government agency would have the resources necessary to complete.

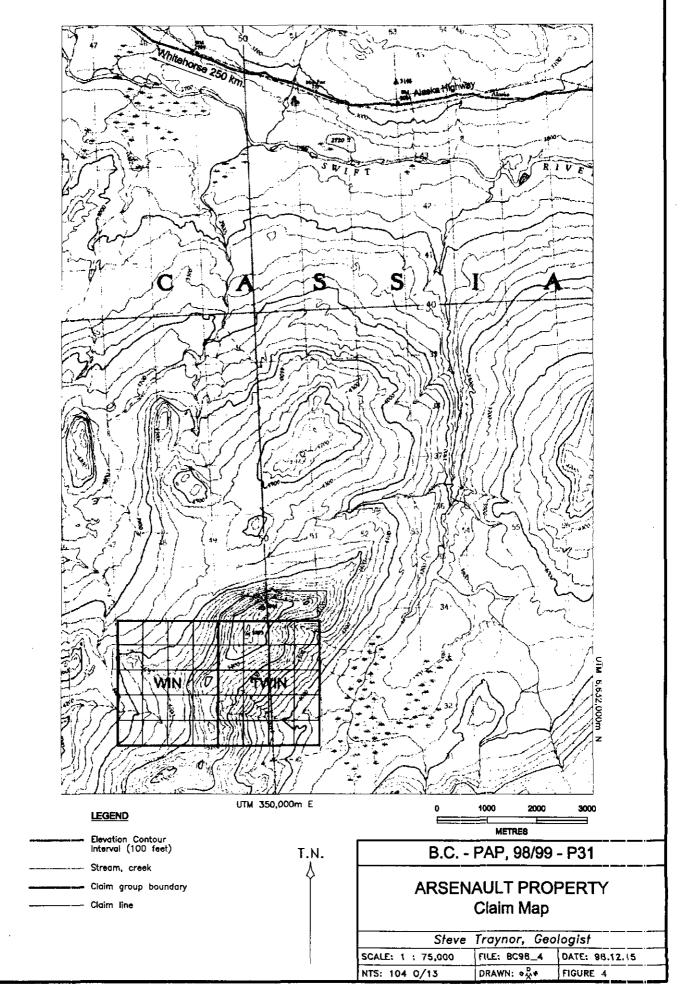
MT. FRANCIS (ARSENAULT) AREA (Targets D and E)

PROJECT SUMMARY

Ongoing research and initial reconaissance served to highlight the mineral potential of this area and resulted in the staking of two 4 post claims, each comprising 20 units.

A detailed program of prospecting and sampling, which include a re-examination of old trenches and available drill core, was then carried out and provided further evidence that previous investigations focused on the limited skarning in the area have likely overlooked the potential of the area to host volcanogenic massive sulfide mineralization.


AREA LOCATION AND ACCESS


The area is located in central northern B.C. in the northwestern corner of the Jennings River Map Sheet, NTS 104 O and is situated approximately 14 km south of the Alaska Highway where it crosses the Smart River (see Figure 3).

Access to the area was facilitated by the use of a float plane and a helicopter stationed at the Jennings River Outfitters camp at Pine Lake some 17 km to ENE. Initial reconaissance, prospecting and staking were completed from a float plane accessible camp on Two Lakes which was abandoned in favor of helicopter supported access during subsequent trips due to the excessive time required to traverse on foot from the camp to the main area of investigation. An old access road constructed in 1971 that once connected the property to the Alaska Highway, was not considered for access as the bridge across the Swift River has long since washed out and the road is now somewhat deteriorated.

PROPERTY DESCRIPTION

The property currently consists of two 4 post mineral claims each of 20 units that covers 1000 ha. Comprising the majority of the main ridge of Mount Francis the property lies mostly above the 4000 foot level and much of it is above treeline (see Figure 4). The claims are within the Atlin Mining Division and

are shown on the Mineral Titles Reference Map 104 O 13E (see Map Pocket).

Claim Data

<u>Name</u>	<u>Tag #</u>	Tenure# Units/Shape	Staked	Recorded	Expiry Date*	<u>Owner</u>
Twin Win		363335 20/5Nx4W 363336 20/5Nx4W	June 12, 1998 June 13, 1998	June 17, 1998 June 17, 1998	June 17, 2000 June 17, 2000	

*Upon filing and acceptance of Evaluation Assessment Report in progress.

PREVIOUS WORK AND EXPLORATION

It is reported by Sawyer (1979) that copper mineralization was discovered in the area by Wilf McKinnon of Hudson's Bay Mining and Smelting in the 1940's. Subsequent work was concentrated on the Arsenault and adjacent claims in the area around Mt. Francis. Geological and geochemical survey work was undertaken in 1967 and included the excavation of 16 trenches, one of which reportedly yielded an assay result of 0.10 oz/ton Au over 3 meters (Sawyer, 1967). Construction of an access road (now washed out at Swift Fiver), airborne and ground geophysical surveying, geochemical surveying, geological mapping and 1080 meters of diamond drilling in 4 holes, between 1970 and 1972 by Bolivar Mining Corp. Ltd., identified sulfide mineralization containing copper and zinc values – but not of commercial grade. Additional drilling of two holes totaling 675.5 meters by Rebel Developments Ltd. was completed in 1979 and 1981, the former of which contained a 27.6 meter intersection of moderate to heavy sulfides which included 6.7 meters that averaged 0.22% Cu. Two reports for Arnica Resources Ltd. by Ross (1989) and Christopher (1990) served to confirm many of the previous analytical results.

For more detailed information the reader is referred to the numerous reports referrence at the end of this report Of note here though is the fact that invariably previous investigations have focused almost exclusively on the limited skarning in the area while the more important massive sulfide potential of the area has been largely ingnored.

REGIONAL AND PROPERTY GEOLOGY

Situated on the Nisutlin Plateau in northern B.C. the area is underlain by an assemblage of volcanic and sedimentary rocks, metamorphosed to greenschist grades, which lie to the east of the Teslin Fault. Lying within the Big Salmon Complex these rocks are thought to represent the southern extension of

the Yukon-Tanana terrance which is currently being explored for massive sulfide deposits formed in volcanogenic settings since the discovery of the Kudz ze Kayah deposit of Cominco and the Wolverine deposit of Atna/Expatriate.

Locally on the property a variety of micaceous schists, quartzites and actinolite (chloritemagnetite) schists are found. The mafic schists occasionally are interbedded with carbonate rich layers and less frequently with quartzites, petrographic analysis of thin sections taken from samples of most of these units suggests intermediate to mafic volcanics as the most likely protoliths.

The diopside-garnet skarn complexes targeted during previous explorations are confined to the east-west trending lower ridge in the western central part of the property and are apparently contained in the upper horizons of the stratigraphy in the area. Although the calc-silicate mineralogy of these rocks is suggestive of skarn, no causative intrusion has been found and the interpretation of available drill logs suggests that the massive sulfide mineralization encountered in the drill holes have a syngentic origin as originally proposed by Sawyer (1979) and favored by Mihalynuk (1998). In fact the presence of hematite and a number of Mn bearing minerals, including piedmontite, associated with sulfide mineralization in greenstone as described in the drill logs for hole 79-2, suggests that this mineralization may in fact be related to the barium-manganese-rich rocks of the crinkle chert unit described by Mihalynuk (1998) which outcrops to the SW of where the drill hole was collared and for which Nelson (1997) has proposed an exhalative origin. This unit forms a distinctive marker horizon throughout much of the project area and at most localities is found to be underlain by carbonate and overlain by greenstone.

Mineralization consisting mainly of pyrite and chalcopyrite is dominant and is found at surface associated with the actinolite (chlorite) schists and the quartzites and occurs mainly as fine disseminations and blebs, but occassionally as semi-massive accumulations. Some samples contain late carbonate and chlorite veinlets which cut across the metamorphic fabric, but the chalcopyrite (where present) shows no obvious relationship to these and appears to belong to an earlier phase of mineralization (B Northcote, personal communication see Appendix C), suggesting that it was deposited contemperaneously with the volcano-sedimentary lithologies that host it.

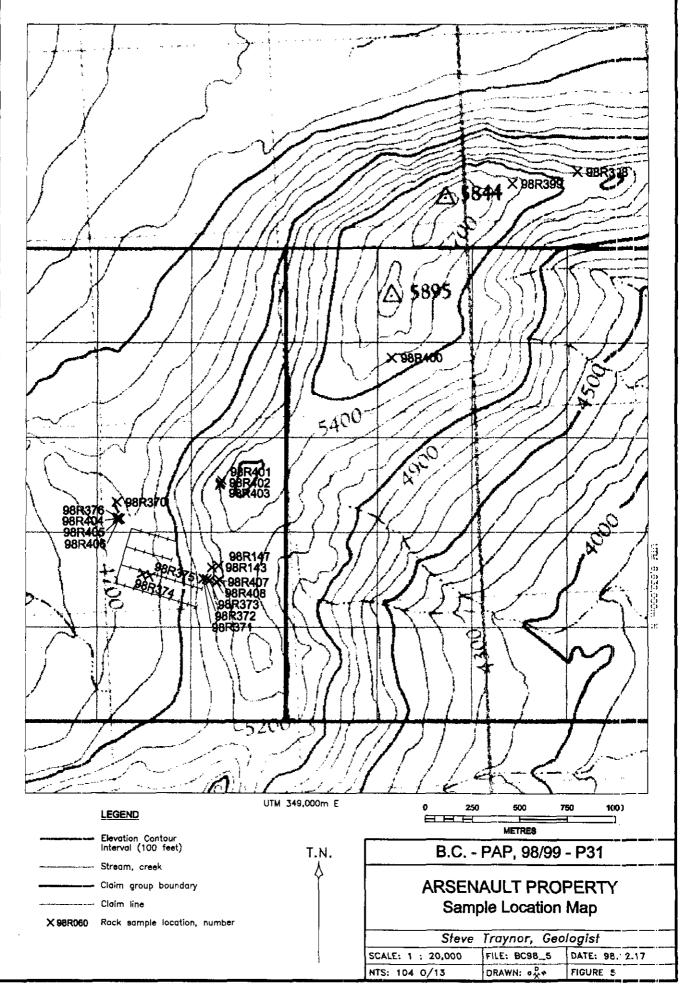
Chalcopyrite is also found associated with the 'Arsenault' dacite tuff of Mihalynuk (1998), the

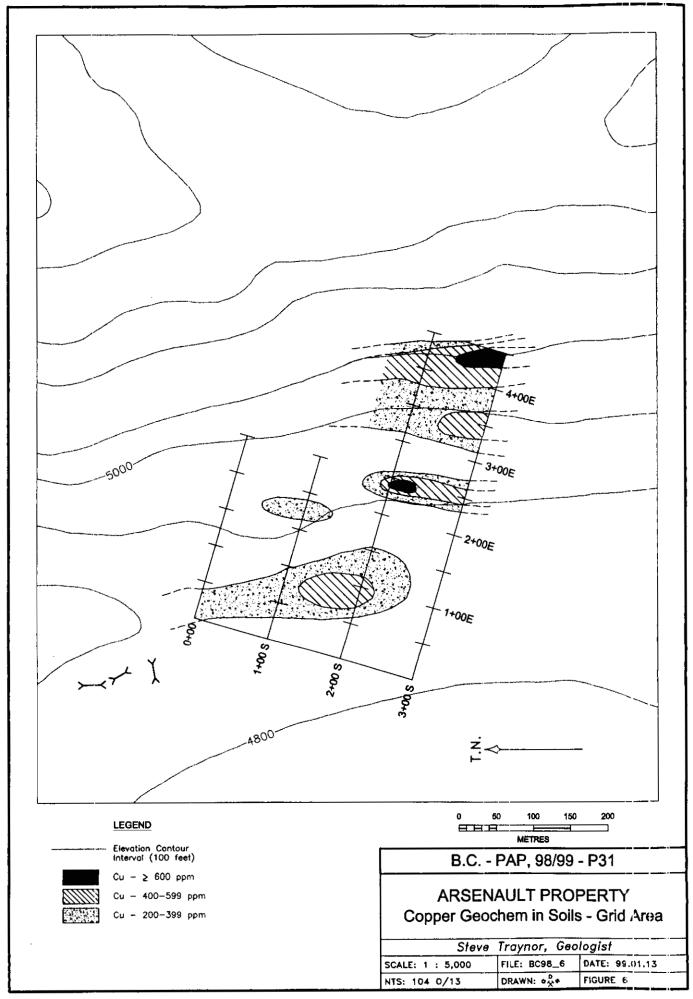
U

unit that apparently hosts two other chalcopyrite occurrences first identified by Sawyer in 1967 that appear to have received little attention since.

DESCRIPTION AND SUMMARY OF WORK

Investigations during the 1998 field season focussed on evaluating the claims staked in the Mount Francis area for their potential to host volcanogenic massive sulfides. Orientation and reconaissance of the property were carried out in conjunction with staking during mid June. Preliminary prospecting revealed widespread disseminated sulfide mineralization and a number of lithologies of specific interest.


Following a review of the existing data, more detailed prospecting and sampling was carried out on the western flank of the mountain in an area overlooking the site(s) of previous investigations (see Figure 5). This phase of the evaluation involved the collection, for analysis, of 54 soil samples from an area that had previously produced a number of interesting Cu values and grab sampling of various lithologies in the immediate area. In addition, core available on the property from the 1971 drilling program was studied and sampled. Unfortunately, core from the 1979 and 1981 drilling which contained the reported massive sulfide intersections was not located on the property and subsequent inquires in Whitehorse failed to determine its whereabouts. The collection of the soil samples involved the digging of small pits with a mattock to remove obstructing talus and/or felsmeer, followed by drilling with a hand auger to obtain good samples of B horizon material wherever possible.


Two additional days were spent in followup on the property in mid September and involved additional prospecting and sampling on the main ridge of the mountain and around the gridded area sampled in June to determine if extensions to zones identified at that time could be extended along strike.

ANALYSIS AND RESULTS

Analysis of sampled material produced numerous highly significant results, particularily from the the upper ridge area. Rock sample descriptions, complete analytical results and methodology and selected thin section descriptions and petrographic reports are presented in the Appendicies of this report.

The results of the soil geochemistry show a number of well defined copper anomalies within the gridded area (see Figure 6) that appearently parallel the prevailing strike in this area and are open along strike. This reconnaissance work produced a peak value of 1122 ppm for copper and the resultant

anomalies, which occur in proximity to numerous grab samples of actinoloite-chlorite schist that returned very high values for copper and gold, are probably derived from this unit. Au and possibly Co may show some correlation with Cu in soils, but a larger sample population will be necessary before this can readily be determined.

Chip sampling of an old trench just NW of the soil grid, which contained quartzite showing abundant malachite staining, returned 0.46% Cu and 1.3g/t Au over 7.5 meters. Petrographic analysis of this unit suggests a protolith that was probably a mafic to intermediate volcanic.

Descriptions from drill logs and historic reports suggests that the actinolite-chlorite schist sampled from the upper ridge area is quite probably the same unit ("mafic D unit") that contained the massive sulfide mineralization intersected during the 1979 and 1981 drill programs. This unit has been found in mineralized outcrop (high Cu and elevated Au) over an extended strike length and occurs over the entire 2+ km. length of the main ridge (Mihalynuk (unpublished mapping and field notes)).

CONCLUSIONS AND RECOMMENDATIONS

Compilation of the results of the 1998 work program in conjunction with a re-evaluation of existing data has shown that the Arsenault property has a high probability of hosting volcanogenic massive sulfide mineralization. Reconaissance soil sampling and lithological grab sampling have revealed a highly anomalous and mineralized band of intermediate to mafic volcanic rocks exposed on the ridge overlooking the area in which previous investigations were focused.

This band of rock which includes carbonate altered quartzites and schists, including an actinolitechlorite-(magnetite) rich member thought to host the massive sulfide mineralization previously intersected on the property, is known to occur along the entire length of the main Mt. Francis ridge. A review of two geophysical reports by Walcott (1970 and 1972) shows a well defined linear magnetic trend coincident with the inferred extent of these rocks. Further analysis of LP, data from the same reports shows the presence of a number of strong anomalies also associated with this trend that show good correlation with the elevated soil geochemical responses discussed above.

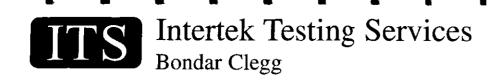
In light of the numerous positive indications of the potential for mineralization on the property further work is definitely recommended. Grid development and additional soil geochemical sampling should be completed to close off the open anomalies identified during the 1998 season. In addition and

REFERENCES

- Christopher, Peter A., 1990: Geological, Geochemical, Geophyscial and Trenching Report on the Fidelity Prospect; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 20137.
- Geological Survey of Canada, 1978: Stream Sediment and Water Geochemical Survey (104N), northern British Columbia, Open File 517.
- Geological Survey of Canada, 1978: Stream Sediment and Water Geochemical Survey (104O), northern British Columbia, Open File 561.
- Mihalynuk, M. and Nelson, J.L., 1998: Regional Geology and Mineralization of the Big Salmon Complex (104N NE and 104O NW), in Geological Fieldwork 1997, B.C. Ministry of Employment and Investment, Paper 1998-1.
- MINFILE, 1988: Jennings River Mineral Occurrence Map, Ministry of Energy, Mines and Petroleum Resources; Minfile Map 104O.
- Nelson, J., 1997: Last Seen Heading South: Extensions of the Yukon-Tanana into Northern British Columbia; in Geological Fieldwork 1996, B.C. Ministry of Employment and Investment, Paper 1997-1.
- Phendler, R.W., 1982: Report on Assessment Work (Diamond Drilling) on the Arsenault #1, #2 and #3 Claims; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 10411.
- Ross, Katherina, 1989: Assessment Report on the Ram Group of Mineral Claims; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 19082.
- Sawyer, J.B.P., 1967: Geological, Geochemical and Geophysical Report for Assessment Credit on the Top Claim Group; B.C. Ministry of Energy, Mines and Petroleum Resources. Assessment Report 1149.
- Sawyer, J.B.P., 1979: Report on the 1979 Drilling Program on the Arsenault Claims Copper Prospect; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 8022.
- Turnbull, I. and Simpson, J.G., 1970: Report on a Geochemical Survey and Physical Work on the Top Claim Group; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 8022.
- Walcott, Peter E., 1970: A Report on Ground Magnetic and Induced Polarization Surveys; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 3014.
- Walcott, Peter E., 1972: A Report on Ground Magnetic and Induced Polarization Surveys; B.C. Ministry of Energy, Mines and Petroleum Resources, Assessment Report 3502.

APPENDIX B

ROCK SAMPLE REPORT

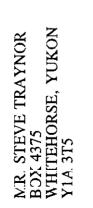

ROCK SAMPLE REPORT

SAMPLE NUMBER	SAMPLE LOCATION	SAMPLE DESCRIPTION	ANALYTICAL HIGHLIGHTS
SWI	FT RIVER SAM	PLES	
98R013	East of Mt. Hazel	Quartz-sericite-piedmontite schist.	Highly elevated Mn (5434 pp n) anc. B (7828 ppm)
98R058	Burrow Pit at start of Logtung Road	Chip sample of argilliceous quartz-sericite schist, with disseminated pyrite and traces of chalcopyrite.	
98R059	Burrow Pit at start of Logtung Road	Brecciated (?) graphitic schist with quartz veining and sulfides.	Highly anomalous Cu, Co and Sb.
ARS	ENAULT SAMP	PLES	
98R143	Ridge above soil grid	Silicified actinolite (chlorite) schist with 2% sulfides.	Highly elevated Cu (9754 ppm) and anomalous Au and Ag values.
98R147	Ridge above soit grid	Chlorite-biotite schist with minor quarzite, showing malachite staining.	Very high Cu (9772 ppm) and Au (121ppb
98R365	Eastern edge of claim block	Float, chlorite-magnetite schist with 8% sulfides including pyrite, chalcopyrite and bornite (?).	Elevated Cu value of 549 ppm.
98R366	Core - DDH 71-4 at ~240 ft.	Quartz-chlorite-magnetite schist with 15% sulfides, mainly pyrite with minor chalcopyrite.	Elevated Cu values.
98R367	Core - DDH 71-4 at ~-500 ft.	Chlorite rich quartzite with 2-3% chalcopyrite as disseminations. Non magnetic.	Elevated Cu and Au values.
98R368	Core - DDH 71-4 at -930 to 933 ft.	Chlorite-magnetite schist with some quartz with 15-20% disseminated to semi-massive sulfides, mostly pyrite.	Elevated Cu, Co and Au values.
98R369	Core - DDH 71-4 at ~360 ft.	Quartz>chlorite>biotite schist with 3% sulfides, including pyrite, chalcopyrite and bornite (?).	Elevated Cu values.
98R 370	Trench 8	Slightly skarnified chloritic schist with 4% sulfides.	High Cu and Au values (5114ppm and 147 ppb, respectively)
98R371	Ridge above soil grid	Actinolite >>chlorite schist with 5% finely disseminated sulfides, showing minor malachite staining.	
98R372	Ridge above soil grid	Taken from 3-5m wide band of iron stained talus, rock is quite chloritic and shows abundant malachite stain.	Elevated Cu values.
98R373	Ridge above soit grid	Very fine grained, silicified chloritic rock that is moderately magnetic. It is interbedded with quartz>>sericite schist.	Elevated Cu, Au and Hg values.
98R374	215 S/125 E on the soil grid	Large felsemeer blocks of quartz>>biotite schist with some chlorite developed. Sulfides to 5% with minor chalcopyrite.	
98R375	212 S/259 E on the soil grid	Grey quartz>>biotite schist that appears chloritized with 2% sulfides and minor malachite staining.	High Cu (7879 ppm) and elevated Au.
98R376	Trench 10	Massive, recrystalized (?) quartzite with 6% sulfides, including pyrite and chalcopyrite with malachite staining.	Very high Cu (1.3%), Au (1479 ppb) values and Hg (112ppb) values
98R377	Ridge above soil grid	Well silicified, finely laminated argillite (?) float with 2% sulfides.	
98R398	North end of Mount Francis	Chloritized quartzite with finely disseminated sulfides.	
98R399	North end of Mount Francis	Greyish quartzite with 5% sulfides along schistosity and blebs throughout, mostly pyrite and pyrrhotite.	

SAMPLE NUMBER	SAMPLE PARTICULARS	SAMPLE DESCRIPTION	ANALYTICAL HIGHLIGHTS
98R400	Central part of main ridge	Slightly chloritic fine grained quartzite with 2% disseminated sulfides.	Elevated Cu values.
98R401	West flank of main ridge	1/2m thick layer of chloritic actinolite (?) schist bedded with carbonate rich layer. Sulfide content to 30% is semi-massive pyrite and chalcopyrite.	High Cu (4689 ppm) and elevated Au va ues
98R402	West flank of main ridge	Same as 98R401, 5m along strike to the SW.	Elevated Cu an Co values.
98R403	West flank of main ridge	Same as 98R401, 10m along strike to the SW.	High Cu (4325 ppm) and elevated Au va ues
98R404	Trench 10	2.5m chip sample of massive recrystalized quartzite.	98R404, 405 & 406 average 0.46 % Cu and 1.3g/t Au over 7.5 m wid h.
98R405	Trench 10	2.5m chip sample of massive recrystalized quartzite.	98R404, 405 & 406 average (1.46 % Cu and 1.3g/t Au over 7.5 m wid h.
98R406	Trench 10	2.5m chip sample of massive recrystalized quartzite.	98R404, 405 & 406 average (1.46 % Cu and 1.3g/t Au over 7.5 m width.
98R407	Ridge above soil grid	Thinly laminated, very schistose actinolite schist showing abundant malachite staining and sulfides to 2%.	Very high Cu (9099 ppm) and Au (307 rpb) values.
98R408	Ridge above soil grid	Similar to 98R407 but contains some interbedded quartzite and is magnetic.	Anomalous Cu values.
<u> </u>			

APPENDIX C

CERTIFICATES OF ANALYSIS


+

+

+

+

 Geochemical Lab Report

S Intertek Testing Services Bondar Clegg

Geochemical Lab Report

REPORT: V98-00959.0 (COMPLETE)

CLIENT: MR. STEVE TRAYNOR

PROJECT: SWIFT RIVER

REFERENCE:

SUBMITTED BY: S. TRAYNOR

DATE RECEIVED: 22-JUN-98 DATE PRINTED: 9-JUL-98

.

DATE APPROVED ELE	EMENT	NUMBER OF ANALYSES	LOWER DETECTION	EXTRACTION	METHOD	DATE APPROVED	ELEMENT	NUMBER OF ANALYSES	LOWER DETECTION	EXTRACTION	METHOD
980709 1 ALI30	Gold	21	5 PP8	Fire Assay of 30g	30g Fire Assay - A	980709 37 Ci	J Copper	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 2 Ag	Silver	2	0.5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA			19	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 3 Cu	Соррег	2	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM			19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 4 Pb	Lead	2	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM			19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 5 Zn	Zinc	2	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	980709 41 N	Nickel	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 6 Mo	Molybdenum	2	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	980709 42 Co		19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 7 Ni	Nickel	2	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	980709 43 Ca	d Cadmium	19	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 8 Co	Cobalt	2	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	980709 44 B	i Bismuth	19	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 9 Cd	Cadmium	2	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	980709 45 As	s Arsenic	19	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 10 Bi	Bismuth	2	5 PPM	HF-HN03-HCLO4-HCL	INDUC. COUP. PLASM	980709 46 st	o Antimony	19	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 11 As	Arsenic	2	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	\$980709 47 Fe	e Iron	19	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 12 Sb	Antimony	2	5 PPM	HF-HNO3-HCLO4-KCL	INDUC. COUP. PLASM	\$ 980709 48 Mr	n Manganese	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 13 Fe Tot	t Total Ir on	2	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	980709 49 Te	e Tellurium	19	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 14 Mn	Manganese	2	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	980709 50 Bi	a Barium	19	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLA
980709 15 Te	Tellurium	2	25 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASH	980709 51 Ci	r Chromium	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 16 Ba	Barium	2	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	980709 52 V	Vanadium	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 17 Cr	Chrome	2	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	980709 53 Sr	n Tîn	19	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 18 V	Vanadium	2	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	980709 54 ₩	Tungsten	19	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 19 Sn	Tin	2	20 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	980709 55 La	a Lanthanum	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 20 W	Tungsten	2	20 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	980709 56 A	. Aluminum	19	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLA
-980709 21 Li	Lithium	2	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	980709 57 Mg	a Magnesium	19	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 22 Ga	Gallium	2	10 PPM	KF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	980709 58 Ca	a Calcium	19	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 23 La	Lanthanum	2	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM		a Soclium	19	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 24 Sc	Scandium	2	5 PPM	HF-HN03-HCLO4-HCL	INDUC. COUP. PLASNA	980709 60 K	Potassium	19	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 25 Ta	Tantalum	2	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	980709 61 SI	Strontium	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 26 Ti	Titanium	2	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	980709 62 Y	Yttrium	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 27 Al	Aluminum	2	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	980709 63 Ga	a Gallium	19	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 28 Mg	Magnesium	2	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	980709 64 L	i Lithium	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 29 Ca	Calcium	2	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	980709 65 N	o Niobium	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 30 Na	Sodium	2	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	980709 66 Se	: Scandium	19	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 31 K	Potassium	2	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASMA	980709 67 Ta	a Tantalum	19	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 32 Nb	Niobium	2	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	980709 68 Ti	i Titanium	19	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 33 Sr	Strontium	2	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	980709 69 Zi	Zirconium	19	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLA
980709 34 Y	Yttrium	2	5 PPM	HF-KNO3-HCLO4-HCL	INDUC. COUP. PLASM	980709 70 Ba	a Barium	1	10 PPM	Pressed Pellet	XRAY FLUORESCENC
980709 35 Zr	Zirconium	2	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM	l l					
980709 36 Ay	Silver	19	0.2 PPM	HCL:HNOJ (3:1)	INDUC. COUP. PLASH	i					

Intertek Testing Services Bondar Clegg

Geocnemical Lab Report

REPORT: V98-00959.0 (COMPLETE)

CLIENT: MR. STEVE TRAYNOR

PROJECT: SWIFT RIVER

REFERENCE:

SUBMITTED BY: S. TRAYNOR

DATE RECEIVED: 22-JUN-98 DATE PRINTED: 9-JUL-98

SA	MPLE TYPES	NUMBER	SI	ZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER	
s	SOIL	15	1	-80	18	DRY, SIEVE -80	18	:
т	STREAM SED, SILT	3	2	- 150	3	CRUSH ONLY	3	÷
R	ROCK	3				PULVERIZE 500 G	3	
								-

REPORT COPIES TO: BOX 4375

INVOICE TO: BOX 4375

This report must not be reproduced except in full. The data presented in this report is specific to those samples identified under "Sample Number" and is applicable only to the samples as received expressed on a dry basis unless otherwise indicated

	TS Intertek Testir Bondar Clegg	ng Services Geochemical Report
	NR. STEVE TRAYNOR 198-00959.0 (COMPLETE)	PROJECT: SWIFT RIVER DATE RECEIVED: 22-JUN-98 DATE PRINTED: 9-JUL-98 PAGE 1A(1/ 6)
SAMPLE NUMBER	ELEMENT AU30 Agy Cu Pb Zn Mo Ni Co Cd Bi UNITS PPB PPM PPM PPM PPM PPM PPM PPM PPM PPM	
98\$015	19	<.2 41 9 64 2
98s017	9	<.2 22 5 35 <1
985018	7	<.2 14 3 28 <1
98\$022	<5	<.2 10 4 32 1
985023	<5	<.2 11 4 53 1
985024	<5	<.2 11 6 44 1
98\$025	7	<.2 32 3 55 3
98s026	<5	<.2 20 5 77 2
98s027	<5	< .2 25 3 53 1
985035	<5	<.2 9 16 75 2
985036	37	<.2 27 49 81 2
98\$037	<5	< . 2 6 10 46 <1
98\$038	6	<.2 29 11 74 2
98\$039	53	<.2 13 7 67 2
98\$040	-5	<.2 15 4 32 1
985054	<5	<.2 30 5 87 1
98\$055	6	<.2 32 4 98 1
985056	<5	< <u>.2</u> 34 5 99 1
98R013	ক	< . 2 15 8 22 2
98R058	<5<.523 8 41 3 24 8 <1 <5	<5 <5 2.61 755 <25 202 364 24 <20 <20 5 <10 15 <5 <5 0.12 2.53 0.81 1.78 0.20 0.93 5 71 6 27
98R059	10 <.5 841 7 75 <1 15 129 <1 <5	135 <5 >10.00 577 <25 170 172 93 <20 212 16 <10 <5 11 <5 0.22 5.89 1.07 0.22 1.76 0.54 9 91 7 16

.

	TS				ek [Cleg		ing	г С	Servi	ce	S	•				•		•	1		E		•		•	•	La		mīcal
	R. STEVE TRAYNOR 98-00959.0 (CON)									DATE	RECE	IVED:	22- JI	JN-98	3	DAT	E PR		D:	9-JUL	-98	PA	PROJI AGE 1B(2/		JIFT RIV	ER	
SAMPLE	ELEMENT NI	Co Co	d Bī	As	Sb Fe	Mn Te	Ba	Cr	V Sn W	La	 Al	Mg	Ca	Na	к	 Sr	Y	 Ga		Nb	Sc.	Ta	τī	7r					
NUMBER	UNITS PPM	PPM PP	1 PPM	PPM					ррм ррм ррм			•																	
985015	35	13 0.4	4 <5	16	<5 3.19	632 <10	156	27	38 <20 <20	19 1	.42	0.66	1.23	0.02	0.19	41	11	\overline{Q}	13	3	ব	<10 0	.09	3					
98s017	21	8 <.2	2 <5	9	<5 1.99	278 <10			33 <20 <20																				
98\$018		5 <.2				167 <10			27 <20 <20																				
98\$022	19	10 0.2	2 <5	12	<5 2.41	205 <10			39 <20 <20																				
98s023	20	8 0.5	5 <5	12	<5 2.20	212 <10			32 <20 <20																				
985024	24	10 <.2	2 <5	11	<5 2.74	317 <10	132	28	43 <20 <20	14 1	.71	0.40	0.28	0.01	0.08	20	4	3	12	2	< 5	<10 0	.08	3					
98\$025	34	11 <.;	2 <5	- 10	<5 3.73	234 <10			36 <20 <20																				
98\$026	28	90.3	3 <5	10	<5 2.98	263 <10			50 <20 <20																				
98s027	14	9 0.2	2 <5	5	<5 3.12	346 <10			49 <20 <20																				
988035	32	11 0.3	3 <5	36	<5 5.85	532 <10			16 <20 <20													<10 <							
98s0 36	60	23 0.4	4 <5	61	<5 7.52	741 <10	103	21	28 <20 <20	21 1	.76	0.24	0.21	<.01	0.05	12	19	~2	8	1	5	<10 0	.03	3					
98\$037	12	6 <	2 <5	8	<5 2.11	177 <10	64	20	30 <20 <20	13 1	. 14	0.29	0.33	0.01	0.06	18	4	Z	10	2	<5	<10 0	.08	1					
985038	34	14 0.0	5 <5	22	<5 3.72	428 <10			45 <20 <20															3					
985039	17	8 0.4	4 <5	22	<5 4.03	231 <10			68 <20 <20															1					
985040	23	7 <.2	2 <5	10	<5 1.89	1 99 <10			30 <20 <20															4					
985054	22	12 0.3	3 <5	15	<5 3.47	2145 <10	220	26	49 <20 <20	12 1	.46	0.64	0.72	0.01	0.09	33	8	<2	11	1	<5 ·	<10 0	.09	<1					
985055	23	11 0.4	4 <5	11	<5 3.23	1642 <10			46 <20 <20																				
98\$056	23	10 0.	5 <5	12	<5 3.20	1340 <10			45 <20 <20																				
98r013 98r058	18	5 <.2	2 <5	8	<5 0.87	54 3 4 <10			2 <20 <20																7828				

.

98r059

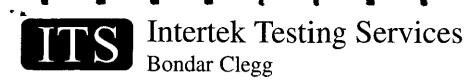
「「「ない」では、「ない」」」」

							C leg		esi	.1ľ	ıg	2	Ser	V1	CE	es																				La Re		ort			
LIENT: MR. STEVE TR	AYNOR						U	U																								PF	OJEC	:T: S	WIFT	RIV	/ER				
EPORT: V98-00959.0		PLETE)														DAT	E RE	CEIV	ED:	22-JL	IN-98	3	DA	TE P	RINT	ED:	9-JU	L-98	PA	GE	2A(3/ 6	5)							
TANDARD ELEMENT AME UNITS																					Li PPM P					T i PCT		L M T PC			Na PCT		Nb PPM						Pb PPM		
NALYTICAL BLANK	<5	<.5	<1	<2	<2	<1	<1	<1	<1	<5	<5	<5	<0.01	<5	<25	ব	<2	~2	<20	<20	~~ <	10	<5	ر ج	<5	<.01	<_0	1 <.0	1 <.0	10.	03 4	c.01	<5	3	-5	~5	< 2	<1	-2	<1	
umber of Analyses	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	`
ean Value	3	0.3	0.5	1	1	0.5	0.5	0.5	0.5	3	3	3	0.005	3	13	3	1	1	10	10	1	5	3	3	3	.005	.00	5.00	5.00	5 0.	.03	.005	3	3	3	3	0.1	05	1	0.5	n
tandard Deviation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		_			-		-	-	-		-	-	-	·	•••
ccepted Value	5	0.2	1	2	1	1	1	1	0.5	2	5	5	0.05	1	.01	.01	1	1	.01	.01	.01 .	01.	.01	.01	.01	<.01		- <.0	1 <.0	1	- <	< . 01	.01	.01	.01	.01	0.2	1	2	1	
annet Ref.Material	393	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	_		-	
mber of Analyses	1	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	_	-	-	-	
ean Value	393	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		•	-	-	-	-	-	-	-	-	-	-	-	-	
tandard Deviation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	÷	-	-	-	-	-	-	-	
ccepted Value	410	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		•	-	-	-	-	-	-	-	-	-	-	-	•	
CC GEOCHEM STD 4	-	0.5	262	32	224	3	40	10	<1	ব	28	<5	2.94	553	<25	372 ·	122	26 -	<20 ·	<20	9 <	10	<5	11	<5 (0.09	5.69	7 1.2	5 1.3	61.	76 1	.21	<5	76	10	71	0.5	257	28	221	
umber of Analyses	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1		I	1	1	1	1	1	1	1	1	1	1	1	
ean Value	-	0.5	262	32	224	3	40	10	0.5	3	28	3	2.94	553	13	372 *	22	26	10	10	9	5	3	11	3 (0.09	5.69	1.23	5 1.3	61.	76 1	.21	3	76	10	71	0.5	257	28 2	-	
tandard Deviation	-	-	-	-	-	~	-	-	-	· -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	
ccepted Value	-	0.5	290	33	255	4	42	9	0.8	1	30	1	2.81	600	-	305 1	136	29	5	1	10	8	8	12	1 (0.12	6.88	3 1.34	1.4	31.	82 0	.89	7	9 0	8	68 (0.5	290	33 2	255	
NMET SO-2 REF STD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	· .		-	-	-	-	-	-	-	-	-	-	-	
mber of Analyses	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	
an Value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			•	-	-	-	-		-	-	-	-	-	
andard Deviation	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_		-	-	-	-	-	-	-	-	-	-	-	
cepted Value	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-		•	-	-	-	-	-	-	-	-	-	-	
anite - Cert.Ref.M	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	_	_		-	-	-	÷	-	-	-	_	-	_	-	
mber of Analyses	-			·	-	-	-	•	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	
an Value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			-	-	-	_	-	-	-	-	-	_	
andard Deviation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	_		-	_	-	
cepted Value		-	-	-	_		-	_																								-	-	-	-	-	-	-	-	-	

ITS								[] eg		S1	[1]	ng	, h	56	er	V1	C	es																				Lab Rep	ort	
LIENT: MR. STEVE TRA																														_	_						SWIFT	RIVER		
EPORT: V98-00959.0 (COM	PLET	E)								• •	/							DA	1E F	RECE	I VED :	-22	JUN	. 98		DATE	PRI	NTED		- 101	-98	PA · ·	GE	28(4/	6)				
ANDARD ELEMENT		-	Cd PPM		As PPN			Fe PCT	Min PPM	T¢ PPI		Ba PPM			Sn PPM		La PPM			Mg CT	Ca PCT	Na PCT		K S			Ga PM P						Zr PPM	Ba PPM						
ALYTICAL BLANK	<1	<1	<.2	<5	<5	5 •	ر ه د	.01	<1	<1()	<1	<1	<1	<20	<20	<1	<.0	1 <.1	01 <	<.01	<.01	<.0	01 •	(1 •	:1	<2	<1	<1	<5 •	<10 ·	<.01	<1	-						
mber of Analyses	1	1	1	1	1	1	1	1	1		1	1	1	1	1	1	1		1	1	1	1		1	1	1	1	1	1	1	1	1	1	-						
an Value	0.5	0.5	0.1	3	3	5	3.	005	0.5	ŗ	5	0.5	0.5	0.5	10	10	0.5	.00	5.0	05.	.005	.005	.00	5 0.	5 0.	5	10	.5 0	.5	3	5	.005	0.5	-						
andard Deviation	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-						
cepted Value	1	1	0.1	2	5	5	5 0	0.05	1	.0	1 0.	005	1	1	.01	.01	.01	<.0	1 <.	01 •	<.01	<.01	<.0	01.0	01.0	01.	01 .	D1 .	01.	01.	.01 •	<.01	.01	.005						
nnet Ref.Material		-	-	-		-	-	-	-		-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-							
nber of Analyses	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-		-	-	-	-		-	•	-	-	-	-	-	-	-	-	-						
an Value	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-						
andard Deviation	-	-	-	~	•	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-		•	-	-	-	-	-	-	-	-	-	-						
cepted Value	-	-	-	-	-	-	-	-	-		-	-	-	-	-	•	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-						
c geochem std 4	36	8	0.9	~ 5	23	3 •	5 2	2.69	538	<10)	55	67	7	<20	<20	3	0.7	51.	16 1	1.40	0.05	0.1	3 3	8	3	<2	5	<1	<5 •	<10 •	<.01	7	-						
mber of Analyses	1	1	1	1		1	1	1	1		1	1	1	1	1	1	1		1	1	1	1		1	1	1	1	1	1	1	1	1	1	-						
an Value	36	8	0.9	3	23	3	3 2	2.69	538		5	55	67	7	10	10	3	0.7	61.	16 1	1.40	0.05	0.1	3 3	8	3	1	50	.5	3	5.	.005	7	-						
andard Deviation	-	-	-	-		-	-	-	-		- ·	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-						
cepted Value	42	9	8.0	1	30	D	1 2	2.60	600	0.	1	55	80	9	5	1	4	0.7	7 1.	34 1	.43	0.05	0.1	4 3	9	4	2	7	1	12	1 (0.01	8	420						
NMET SO-2 REF STD	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	1086						
mber of Analyses	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	•	-	-	-	1						
an Value	-	-	-	-	•	-	•	-	-		-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	•	-	-	-	1086						
andard Deviation	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-						
cepted Value	-	-	-	-	-	• .	-	-	-		-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	1000						
anite - Cert.Ref.M		-	-	-		-	-	-	-		-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	1437						
mber of Analyses	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	,	-	-	-	-	-	1						
an Value	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	1437						
andard Deviation	-	-	-	-		-	~	-	-		•	-	-	-	-	-	-		-	-	-	-		-	-	-	-	-	-	-	-	-	-	-						
cepted Value	-	-	-	-		-	-	-	-		-	-																						1400						

.

	TS.	Bon	ertel		• sting	g Se:	• rvice	t es	L	ŧ	ł	t	8	t	Geochem Lab Report	ical
	. STEVE TRAYNO 8-00959.0 (CC							DATE	RECEIVED: 2	2-JUN-98	DATE PRI	NTED: 9-J	UL-98 PA	PROJECT GE 3A(5/6)	: SWIFT RIVER	
SAMPLE NUMBER	ELEMENT AU3 UNITS PP	0 Ag Cu BPPM PPM I	PID Zn Mo PPM PPM PPM	NÎ CO PPM PPM F	CCI Bî As PPM PPM PPN				V Sn W MPPMPPMP			TI AL CT PCT P	Mg Ca I CT PCT P	Na KND St PCt PPM P	Sr Y Zr Ag Cu Pb PM PPM PPM PPM PPM PPM	
985035 Duplicate	<	5													<.2 9 16 <.2 10 15	
98R059 Duplicate		0 <.5 8 41 0	7 75 <1	15 129	<1 <5 135	<5 >10.0	00 577 <25	170 172 9	3 <20 212	16 <10 <5	11 <5 0.	22 5.89 1.0	07 0.22 1.3	76 0.54 9		10 Z


•

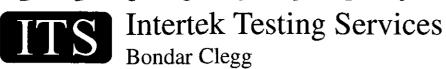
.

Υ.

Ι	TS Intertek Testing Services Bondar Clegg	Geochemical Lab Report
	STEVE TRAYNOR 3-00959.0 (COMPLETE) DATE RECEIVED: 22-JUN-98 DATE PRINTED: 9-JUL-98 PAGE 3B(PROJECT: SWIFT RIVER
SAMPLE NUMBER	ELEMENT NI CO COL BI AS SO FE MIN TE BA CI V SIN W LA AL MOJ CA NA K SIN Y GA LI NO SC TA TI ZI BA UNITS PPM PPM PPM PPM PPM PPM PPM PPM PPM PP	
98SO35 Duplicate	32 11 0.3 <5 36 <5 5.85 532 <10 97 12 16 <20 <20 44 1.30 0.13 0.25 <.01 0.05 15 11 <2 6 1 <5 <10 <.01 <1 32 11 0.4 <5 36 <5 5.86 535 <10 97 12 17 <20 <20 44 1.31 0.13 0.25 <.01 0.05 15 12 <2 6 <1 <5 <10 0.01 <1	
98R059 Duplicate		

.

Geocnemical Lab Report


MR. STEVE TRAYNOR BOX 4375 WHITEHORSE, YUKON YLA 3T5 +

+

+

+

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

Geochemical Lab Report

REPORT: V98-01535.1 (COMPLETE)

CLIENT: MR. STEVE TRAYNOR

PROJECT: ARSENAULT

REFERENCE:

SUBMITTED BY: S. TRAYNOR

DATE RECEIVED: 26-AUG-98 DATE PRINTED: 4-SEP-98

.

DATE APPROVED ELI	EMENT	NUMBER OF ANALYSES	LOWER DETECTION	EXTRACTION	METHOD	DATE APPROVED	ELEMENT	NUMBER OF ANALYSES	LOWER DETECTION	EXTRACTION	METHOD
980902 1 Au30	Gold	3	5 PPB	Fire Assay of 30g	30g Fire Assay - A	980902 37 Cu	Cooper	2	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 2 Ag	Silver	1	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA			2	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 3 Cu	Copper	1	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM	980902 39 Zn	Zinc	2	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 4 Pb	Lead	1	2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA			2	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 5 Zn	Zinc	1	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	980902 41 Ni	Nickel	2	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 6 Mo	Molybdenum	1	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	980902 42 Co	Cobalt	2	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 7 Ni	Nickel	1	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	980902 43 Cd	Cadmium	2	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 8 Co	Cobalt	1	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM			2	5 PPM	HF-HNO3-HCLO4-HCL	INDUC, COUP, PLA
980902 9 Cd	Cadmium	1	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM			2	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 10 Bi	Bismuth	1	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA	980902 46 Sb	Antimony	2	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 11 As	Arsenic	1	5 PPM	HCL:HNQ3 (3:1)	INDUC. COUP. PLASMA			2	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 12 Sb	Antimony	1	5 PPM	HCL:HNQ3 (3:1)	INDUC. COUP. PLASMA	980902 48 Min	Manganese	2	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 13 Fe	Iron	1	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	980902 49 Te	. Tellurium	2	25 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 14 Mn	Manganese	1	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	980902 50 Ba	n Barium	2	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 15 Te	Tellurium	1	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM	980902 51 Cr	Chrome	2	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 16 Ba	Barium	1	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	980902 52 V	Vanadium	2	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 17 Cr	Chromium	1	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM		n Tin	2	20 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 18 V	Vanadium	1	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASN	980902 54 W	Tungsten	2	20 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 19 Sn	Tin	1	20 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM			2	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 20 W	Tungsten	1	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM			2	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 21 La	Lanthanum	1	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA			2	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 22 AL	Aluminum	1	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASM			2	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 23 Mg	Magnesium	1	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASM			2	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 24 Ca	Calcium	1	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASM	980902 60 K	Potassium	2	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 25 Na	Sodium	1	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASM	· · · · · · · · · ·		2	1 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 26 K	Potassium	1	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASM		Yttrium	2	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP, PLA
980902 27 Sr	Strontium	1	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA			2	10 P PM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 28 Y	Yttrium	1	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM			2	2 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 29 Ga	Gallium	1	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM			2	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 30 Li	Lithium	1	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	980902 66 Sc	Scandium	2	5 ppm	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 31 Nb	Niobium	1	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM			2	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 32 Sc	Scandium	1	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP, PLASM			2	0.01 PCT	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 33 Ta	Tantalum	1	10 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM		Zirconium	2	5 PPM	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLA
980902 34 Ti	Titanium	1	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASM						
980902 35 Zr	Zirconium	1	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASH						
980902 36 Ag	Silver	2	0.5 PPH	HF-HNO3-HCLO4-HCL	INDUC. COUP. PLASM						

ITTS Intertek Testing Services Bondar Clegg

Geochemical Lab Report

REPORT: V98-01535.1 (COMPLETE)

CLIENT: MR. STEVE TRAYNOR PROJECT: ARSENAULT

SAMPLE TYPES	NUMBER	ZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER
R ROCK	3	- 150	3	CRUSH ONLY	4
				CRUSH, SPLIT	10
				PULVERIZATION	14
REPORT COPIES TO: E	201 / 375			TO: BOX 4375	
		****		****	e de alcale

This report must not be reproduced except in full. The data presented in this report is specific to those samples identified under "Sample Number" and is applicable only to the samples as received expressed on a dry basis unless otherwise indicated

REFERENCE:

SUBMITTED BY: S. TRAYNOR

DATE RECEIVED: 26-AUG-98 DATE PRINTED: 4-SEP-98

	Intertek Testing Services Bondar Clegg Geochemi Report	cal
	TEVE TRAYNOR PROJECT: ARSENAULT 11535.1 (COMPLETE) DATE RECEIVED: 26-AUG-98 DATE PRINTED: 4-SEP-98 PAGE 1A(1/ 4)	
SAMPLE	ELEMENT AU30 Ag CU Pb Zn Mo Ni Co Cd Bî As Sb Fe Mn Te Ba Cr V Sn W La Al Mg Ca Na K Sr Y Ga Lî Nb Sc Ta Ti Zr Ag Cu Pb	
NUMBER	UNITS PPB PPM PPM PPM PPM PPM PPM PPM PPM PPM	'PM PPM
98R143	60 2.2 9754 38 1	148 10
98r.365 98r.370	9 <.2 549 5 36 1 18 46 <.2 <5 <5 9.44 585 <10 23 22 24 <20 <20 2 1.30 1.25 3.12 0.19 0.06 44 2 <2 8 4 <5 <10 0.03 <1 147	754

	TS			c To legg	ti	ng	S	lei	rvi	• Ce	es	•		-		·			•		•					•	Æ	Geocher Lab Report	nīcal
	R. STEVE TRAYNOR 98-01535.1 (COM	E)										DATE	RECE	IVED	: 26-	-AUG-	98	D	ATE F	RINT	ED:	4-S	EP-98	3 F	PAGE	PROJECT 1B(2/ 4)		ISENAULT	
SAMPLE NUMBER	ELEMENT NÎ UNITS PPM I											-				K PCT i			-				. –						
98R143 98R365 98R370				9.42 >10.00					25 <20 20 <20											4 5	_	<5 <5		.07 .11					

.

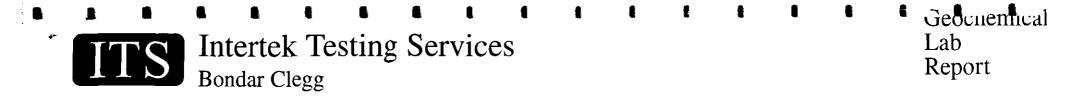
.

.

.

		B					$\mathcal{O}_{\mathcal{C}}$	0																																
LIENT: MR. STEVE TR EPORT: V98-01535.1																	DA	TE D	FCET		26-	AUG-9	2	DAT	E PRI		6.0	ccp.C	90	DACE				ARSE	NAUL	T				
	CUM												· · ·				UA			VED	20-	AUG-3		DAT	E PK1	NIED;	4-:	257-2	·0	PAGE	. <i>C</i> P	(3/	4)							
TANDARD ELEMENT	Au30	Ag	Cu	Рb	Zn	Мо	Ni	Co	Cd	Bi	As	Sb	Fe	Mn	Te	Ba	Cr	v	Sn	W	La	Al	Mg	Ca	Na	K	Sr	Ŷ	Ga	Li	Nb	Sc	Ta	Ti	Zr	Ag	Çu	Pb	Zn	1
AME UNITS	PPB	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM F	PPM	PPM F	P M	РСТ	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PCT	PCT	PCT	PCT	PCT	₽P M	PPM	₽₽₩	PPM	PPM	PPM	PPM	PCT	PPM	PPM	PPM	PPM	PPM	I P
NMET STREAM-SED	-	<.2	33	29	137	1	18	12	0.6	<5	17	<53	.43 3	3299	<10	238	22	41	<20	<20	20	1.16	0.81	1.64	0.03	0.07	30	22	<2	8	3	<5	<10	0.03	<1	<.5	34	38	184	
mber of Analyses	-	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	ļ
an Value	-	0.1	33	29	137	1	18	12	0.6	3	17	33	.43 3	3299	5	238	22	41	10	10	20	1.16	0.81	1.64	0.03	0.07	30	22	1	8	3	3	5	0.03	0.5	0.3	34	38	184	
andard Deviation	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-	
ccepted Value	-	0.3	36	34	165	2	18	14	0.8	-	17	23	.50 3	37 40	-	-	28	47	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	0.3	36	35	178	5
ALYTICAL BLANK	<5	<.2	<1	<2	<1	<1	<1	<1	<.2	<5	<5	<5 <	.01	<1	<10	<1	<1	<1	<20	<20	<1	<.01	<.01	<.01	<.01	<.01	<1	<1	<2	<1	<1	<5	<10	<.01	<1	<.5	<1	~2	<2	,
mber of Analyses	1	1	1	1	. 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
an Value	3	0.1	0.5	1	0.5	0.5	0.5	0.5	0.1	3	3	3.	005	0.5	5	0.5	0.5	0.5	10	10	0.5	.005	.005	.005	.005	.005	0.5	0.5	1	0.5	0.5	3	5	.005	0.5	0.3	0.5	1	1	1 1
tandard Deviation	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-		-	-	-	-	-			_	_	,
cepted Value	5	0.2	1	2	1	1	1	1	0.1	2	5	50	.05	1	.01	.01	1	1	.01	.01	.01	<.01	<.01	<.01	<.01	<.01	.01	.01	.01	.01	.01	.01	.01	<.01	.01	0.2	1	2	1	
nnet Ref.Material	2333	-	-	_	-	-	-		-	-		-	-	-	-	-	-	-	-	_	-	-	-	-	-	-	-	_	-	-	-	-	-	_	_	_	-	-	_	
mber of Analyses	1	-	-	-	-	-	-	_	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-
an Value	2333	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	_	-	-	-	-	-	-	-	-	-	-		-	-	-	_	-	-	-	-	-	,
tandard Deviation	-	_	-	-	-	-	-	-	-	-		-	-	-	-	_	-	-		-	-	-	_	-	-	-	-	-	-	-	-	_	_	-		-	-	-	_	
ccepted Value	2520																																						_	

1


.

Ē

ITTS Intertek Testing Services Bondar Clegg

Geochemical Lab Report

CLIENT: MR. STEVE TR	AYNOR																													PROJECT:	ARSENAU	ΙLΤ
REPORT: V98-01535.1	COM	PLETE)														DATE	RECEIV	ED: 2	6-AUG	6-98	ł	DATE	PRIN		4-		-98	PAGE	2B(4/4)		
			 س	n :	• -	ch			T -		6 -	.,,	6					6 -	N			, v	6 -					•	-			
										Ba				W			Mg				Sr.								Zr			
NAME UNITS	PPM	PPM P	"PM	PPM	PPM	FFM	PUI	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PUI	PUI	PCT	PUI	PCT	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PUT	PPM			
CANMET STREAM-SED	24	21	<1	<5	23	<5	4.36	3856	<25	576	48	89	<20	<20	25	4.51	1.30	2.75	1.27	0.97	177	34	<10	10	6	11	5	0.34	74			
Number of Analyses	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Mean Value	24	21 0).5	3	23	3	4.36	3856	13	576	48	89	10	10	25	4.51	1.30	2.75	1.27	0.97	177	34	5	10	6	11	5	0.34	74			
Standard Deviation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
Accepted Value	24	17 0	8.0	-	23	3	4.70	3950	-	630	67	98	4	-	30	4.80	1.33	2.57	1.30	1.04	170	42	-	11	5	14	0.4	0.45	87			
ANALYTICAL BLANK	<1	<1	<1	<5	<5	<5	<0.01	7	<25	<5	<2	<2	<20	<20	<5	<.01	<.01	<0.01	0.01	<.01	<1	<5	<10	<2	<5	<5	<5	<.01	<5			
Number of Analyses	1	1	1	1	- 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1			
Mean Value	0.5	0.5 0	3.5	3	3	3	0.005	7	13	3	1	1	10	10	3	.005	.005	0.005	0.01	.005	0.5	3	5	1	3	3	3	.005	3			
Standard Deviation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				
Accepted Value	1	1 0).5	2	5	5	0.05	1	.01	.01	1	1	.01	.01	.01	-	<.01	<.0001	-	<.01	.01	.01	.01	.01	.01	.01	.01	<.01	-01			
Gannet Ref.Material	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
Number of Analyses	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
Mean Value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-			
Standard Deviation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			
Accepted Value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-			

+

+

+

+

MR. STEVE TRAYNOR BOX 4375 WHITEHORSE, YUKON YIA 3T5

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

Intertek Testing Services Bondar Clegg

Geocnemical Lab Report

REPORT: V98-01535.0 (COMPLETE)

CLIENT: MR. STEVE TRAYNOR

PROJECT: ARSENAULT

REFERENCE:

SUBMITTED BY: S. TRAYNOR

t

DATE RECEIVED: 26-AUG-98 DATE PRINTED: 15-SEP-98

DATE APPROVED EL	NUMBER OF EMENT ANALYSES	LOWER DETECTION	EXTRACTION	MÉTHOD	DATE APPROVED ELE	NUMBER OF Ement Analyses	LOWER DETECTION	EXTRACTION	METHOD
980911 1 Au30	Gold 11	5 PPB	Fire Assay of 30g	30g Fire Assay - A	A 980911 37 Zr	Zirconium 11	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PL
980911 2 Ag	Silver 11	0.2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM		Silica (SiO2) 7		BORATE FUSION	INDUC. COUP. PL
980911 3 Cu	Copper 11	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM		Titanium (TiO2) 7		BORATE FUSION	INDUC. COUP. PL
980911 4 CUOL	Copper, semiquant 1	0.1 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASM	A 980911 40 AL203	Alumina (Al2O3) 7	0.01 PCT	BORATE FUSION	INDUC. COUP. PL
980911 5 Pb	Lead 11	2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM	A 980911 41 Fe203	' Total Iron (Fe2O3) 7	0.01 PCT	BORATE FUSION	INDUC. COUP. PL
980911 6 Zn	Zinc 11	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM	A 980911 42 MnO	Manganese (MnO) 7	0.01 PCT	BORATE FUSION	INDUC. COUP. PL
980911 7 Mo	Molybdenum 11	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM		Magnesium (MgO) 7	0.01 PCT	BORATE FUSION	INDUC. COUP. PL
980911 8 Ni	Nickel 11	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM		Calcium (CaO) 7	0.01 PCT	BORATE FUSION	INDUC. COUP. PL
980911 9 Co	Cobalt 11	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM		Sodium (Na2O) 7		BORATE FUSION	INDUC. COUP. PL
980911 10 Cd	Cadmium 11	0.2 PPM	HEL:HNO3 (3:1)	INDUC. COUP. PLASM		Potassium (K2O) 7		BORATE FUSION	INDUC. COUP. PL
980911 11 Bi	Bismuth 11	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM		Phosphorous (P205) 7		BORATE FUSION	INDUC. COUP. PL
980911 12 As	Arsenic 11	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM	A 980911 48 LOI	Loss on Ignition 7	0.05 PCT	Ignition 1000 Deg.	GRAVIMETRIC
980911 13 Sb	Antimony 11	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM	Å 980911 49 Total	Whole Rock Total 11	0.01 PCT		
980911 14 Hg	Mercury 11	0.010 PPM	HCL:HN03 (3:1)	COLD VAPOR AA	980911 50 Cr203	Chromium Oxide 7	0.01 PCT	BORATE FUSION	INDUC. COUP. PL
980911 15 Fe	Iron 11	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASM	A 980911 51 Ba	Barium 7	10 PPM	Pressed Pellet	XRAY FLUORESCEN
980911 16 Mn	Manganese 11	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM	Å 980911 52 Sr	Strontium 7	1 PPM	Pressed Pellet	XRAY FLUORESCEN
980911 17 Te	Tellurium 11	10 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM	A 980911 53 Y	Yttrium 7	1 PPM	Pressed Pellet	XRAY FLUORESCEN
980911 18 Ba	Barium 11	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM	A 980911 54 Nb	Niobium 7	2 PPM	Pressed Pellet	XRAY FLUORESCEN
980911 19 Cr	Chromium 11	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM		Zirconium 7		Pressed Pellet	XRAY FLUORESCEN
980911 20 V	Vanadium 11	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM		Rubidium 7	- · · · · ·	Pressed Pellet	XRAY FLUORESCEN
980911 21 Sn	Tin 11	20 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM		Cerium ć			NEUTRON ACTIVAT
980911 22 W	Tungsten 11	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM		Europium ć	0.5 PPM		NEUTRON ACTIVAT
980911 23 La	Lanthanum 11	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM		Lanthanum 6	1 PPM		NEUTRON ACTIVAT
980911 24 AL	Aluminum 11	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP, PLASM	A 980911 60 Lu	Lutetium 6	0.2 PPM		NEUTRON ACTIVAT
980911 25 Mg	Magnesium 11	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASM		Neodymium 6	10 PPM		NEUTRON ACTIVAT
980911 26 Ca	Calcium 11	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASM		Scandium 6			NEUTRON ACTIVAT
980911 27 Na	Sociium 11	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP, PLASM		Samarium 6			NEUTRON ACTIVAT
980911 28 K	Potassium 11	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASM		Terbium 6	1 PPM		NEUTRON ACTIVAT
980911 29 Sr	Strontium 11	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM	A 980911 65 Th	Thorium 6			NEUTRON ACTIVAT
980911 30 Y	Yttrium 11	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM	à 980911 66 U	Uranium 6	1 PPM		NEUTRON ACTIVAT
980911 31 Ga	Gallium 11		HCL:HN03 (3:1)	INDUC. COUP. PLASM	<u> </u>	Ytterbium 6	1 PPM		NEUTRON ACTIVAT
980911 32 Li	Lithium 11		HCL:HN03 (3:1)	INDUC. COUP. PLASM					
980911 33 Nb	Niobium 11	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM					
980911 34 Sc	Scandium 11	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM					
980911 35 Ta	Tantalum 11	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM					
980911 36 Ti	Tilanium 11	0.01 PCT	HCL.HN03 (3.1)	INDUC. COUP. PLASH	Â				

Intertek Testing Services Bondar Clegg

Geochemical Lab Report

REPORT: V98-01535.0 (COMPLETE) CLIENT: MR. STEVE TRAYNOR PROJECT: ARSENAULT

SAMPLE TYPES	 SIZ	E FRACTIONS	NUMBER	SAMPLE PREPARATIONS	NUMBER	
r rock	 2	-150	11	CRUSH ONLY CRUSH, SPLIT	4 10	•

REMARKS: In the whole rock analysis, samples R2 98R366 and R2 98R368 were found with unusually low total values of major oxides and LOI. The results were checked with a retest. RRD 9/8/98.

REPORT COPIES TO: BOX 4375

-

INVOICE TO: BOX 4375

PULVERIZATION

14

This report must not be reproduced except in full. The data presented in this report is specific to those samples identified under "Sample Number" and is applicable only to the samples as received expressed on a dry basis unless otherwise indicated

REFERENCE:

SUBMITTED BY: S. TRAYNOR

DATE RECEIVED: 26-AUG-98 DATE PRINTED: 15-SEP-98

	t			1								t			İ	1			L		1	8		L		i.		Ē	Ċ	3e	ocn	em	cal
,		ТС	ΙI	nte	rtel	\mathbf{x}'	Ге	st	ing	S	e	rvi	ce	S															L	.al)		
				Sond					U																				F	Rej	port	- /	
	CLIENT: MR.	STEVE TR	AYNOR			-	•																			F	ROJE	CT: #	RSEN/	AULT			
	REPORT: V98	8-01535.0	COMPLE	(E)											DATE	RECEI	VED :		AUG-98	i	DATE PF	INTED:	15-SE	P-98	PAGE		17	3)					
	SAMPLE	ELEMENT	Au30 Ag	g Cu	CuOL F	ъz	n Mo	Ni	Co Cd	Bi	As	Sb	Hg	Fe	M⊓	Te	Ba	Сг	V Sr	n ₩	La	AL M	9	Ca	Na	K Sr	Υ	Ga	Li	Nb	Sc Ta	a Ti	Zr
	NUMBER	UNITS	PPB PPI	I PPM	PCT PF	PM PP	m ppm	PPM	PPM PPM	PPM	PPM	PPM	PPM	PCT	PPM	PPM	₽PM	PPM	PPM PPM	PPM	PPM F	PCT PC	TF	CT P	CT PC	T PP₩	I PPM	PPM	PPM F	PPM	PPM	PCT	PPM
	98R366		17 <.3	2 1093		10 1	32	9	25 <.2	6	16	<50.	.020 >	10.00	1179	<10	19	17	4 <20) <20	20.	37 0.1	9 >10.	OO O.	01 0.0	14 172	2 4	<2	<1	5	<5 <10	0.02	<1
	98r367		26 <	2 1026		52	03	27	17 <.2	<5	<5	<5 0.	.013	2.78	251	<10	53	83	57 <20	<20	2 2.	00 2.3	1 0.	90 0.	08 0.1	6 12	2 4	<2	9	4	<5 <10	0.10	<1
	98R368		31 <.;	2 841	2	20 1	44	13	93 <.2	5	58	<5 0.	.025 >	>10.00	757	<10	<1	15	4 <20	<20	6 0.	29 0.3	26.	59 0.	03 0.0	3 59	> 5	<2	<1	5	<5 <10	0.02	1
	98R369		12 <.3	2 426		52	06	11	15 <.2	<5	<5	<5 0.	016	3.41	284	<10	51	39	83 <20	<20	4 2	52 3.0	70.	48 0.	04 0.2	35	> 6	5	11	4	11 <10	0.04	<1
	98R371		<5 <.3	2 145		35	3 <1	10	7 <.2	<5	<5	<5 <.	010	3.55	524	<10	5	16	13 <20) <20	10 1	14 1.1	56.	94 0.	19 0.0	07 134	6	<2	1	4	<5 <10	0.05	5
	98R372		12 0.3	3 1968		86	2 18	5	9 0.6	<5	8	<5 0.	022	8.58	2097	<10	8	27	8 <20) <20	7 0.	31 0.0	36.	06 0.	02 0.0	01 19	9	<2	<1	4	<5 <10	0.03	6
	98r373		31 0.	2 1576		6 1	52	3	4 <.2	<5	5	<5 0.	.059	6.15	1077	<10	6	26	5 <20) <20	90	30 0.0	14.	670.	02 <.0	01 a	2 9	<2	<1	3	<5 <10	0.03	6

8 55 3 23 14 <.2 <5 8 <5 0.013 3.40 871 <10 82 69 27 <20 <20 14 2.24 1.88

27 43 12 16 13 1.6 <5 7 <5 0.018 2.19 478 <10 121 37 34 <20 <20 13 1.31 2.71

1479 0.7 >10000 1.3 35 12 <1 7 6 <.2 <5 <5 0.112 1.67 64 <10 8 93 14 <20 <20 1 0.48 0.47 0.13 0.03 0.04 6 2 <2 3 2 <5 <10 0.02 <1

14 57 8 26 11 <.2 <5 <5 <5 0.010 2.62 351 <10 106 114 186 <20 <20 27 2.85 2.57 1.61 0.02 1.09 40 14 <2 9 5 8 <10 0.17 2

0.39 0.03 0.74 6 7 <2 9 3 <5 <10 0.10 1

2.78 0.06 0.11 95 12 <2 29 5 <5 <10 0.16 <1

<5 <.2

57 2.2 7879

<5 <.2 108

65

98r374

98r375

98R376

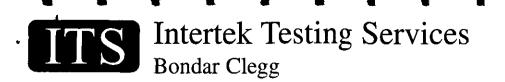
98R377

	ITTS				tel tr C			stir	ng	Se	∎ rvi	ces			E.		Ł		Ĭ		Ĭ	ł		8				£	Geocher Lab Report	mcal
CLIENT:	MR. STEVE TRA	AYNOR																								P	ROJE	CT: AF	RSENAULT	
REPORT:	V98-01535.0 ((Comp	-)									DATE	RECE	IVED:	26	AUG-9	98	DA	TE PRI	NTED	: 15-	SEP-	98	PAGE	1B(2/ 8	3)		
SAMPLE	ELEMENT	Si02	2 TiO2	Al203	Fe203*	MnO	MgO	CaO	Na20	K20 P20	5 LO	I Total	Cr203	Ba	Sr	Y	Nb	Zr	Rb	Ce Eu	ı La	Lu	Nď	Sc	Sm	Тb	Th	יט	ŕb	
NUMBER	UNITS	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT P	T PC	т рст	PCT	PPM	PPM	PPM	PPM I	PPM P	PM P	PM PPM	1 PPM	₽P M	PPM	PPM I	PPM P	PM	PPM I	PPM PI	PM	
98R366		30.31	1 0.12	3.97	21.21	0.26	2.06	22.43	0.29	0.06 0.1	5 <0.0	5 80.86	<0.01	29	385	7	2	25	4											
98r367														_,			-													
98r368		39.55	5 0.14	2.41	24.51	0.16	2.58	12.95	0.52	<.05 0.1	2 5.8	5 88.82	. <0. 01	<10	89	9	2	41	2	22 <.5	5 13	<.2	<10	2.6	1.7	<1	2.4	6 •	<1	
98R369																														
98r371		44.02	2 0.34	9.12	14.22	0.16	6.14	15.97	1.97	0.28 0.2	6 6.4	3 98.94	<0.01	<10	276	11	7	79	3	38 1.0	17	<.2	20	10.2 4	4.1	<1	6.7	7 •	<1	
98R372																														
98R373		49.48	3 0.08	1.02	25.04	0.48	1.57	18.93	0.82	<.05 0.1	4 <0.0	5 97.57	<0.01	<10	10	10	2	37	<2	24 0.6	5 15	<.2	<10	1.7	1.4	<1	1.6	4 •	<1	
98R374												3 99.91																4	2	
98R375																													-	
98r376		88.73	5 0.14	4.47	2.49	? < .0 1	0 .87	0.85	1.14	0.31 0.0	4 1.1	7 100.22	0.03	49	51	5	3	21	7	5 <.5	3	<.2	<10	6.5 (0.5	<1	8.0	<1 -	<1	
98r377		67.53	8 0.55	11.97	3.73	0.05	4.29	3.75	0.03	3.13 0.4	6 4.2	99.53	0.03	715	189	25	11 1	150 1	10	72 1.1	38	0.3	31	13.0 5	5.5	<1 1	3.0	11	2	

,

ITS		nter onda				esi	tir	Ŋ	S	eı	CV1C	es																	Lal Rej	b po	rt		
CLIENT: MR. STEVE TRA REPORT: V98-01535.0 (YNOR												DATE I	RECEIN	VED:	26-A	UG-9	8	DAT	E PRII	ITED :	15-SEP-'	78	PAGE			CT: A 8)	NRSEN	AULT				
			• •	• •																													
STANDARD ELEMENT NAME UNITS	Au30 Ag PPB PPM	Cu C PPM		PID Z PPM PP								•						Sn PM PP			•	Ca PCT	Na PCT		Sr PPM		Ga PPM					Ti PCT	
ANALYTICAL BLANK	<5 <.2	3	-	<2 <	<1 <	1 <1	<1	<.2	<5	<5	<5 0.01	3 <0.01	<1	<10	<1	<1	<1 <	:20 <2	0 <	1 <.0 [.]	1 <.01	<0.01	<.01	<.01	<1	<1	<2	<1	<1	<5	<10	<.01	<1
Number of Analyses	11	1	-	1	1	1 1	I 1	1	1	1	1	1 1	1	1	1	1	1	1	1	1 '	1 1	1	1		1	1	1	1	1	1	1	1	1
Mean Value	3 0.1	3	-	10.	5 0.	5 0.5	5 0.5	0.1	3	3	3 0.01	3 0.005	0.5	5 (0.5 (0.5 0).5	10 1	0 0.	5.00	5.005	0.005	.005	.005	0.5	0.5	1	0.5	0.5	3	5	.005	0.5
Standard Deviation		-	-	-	-			-	-	-	-		-	-	-	-	-	-	-	-		-	-	•	-	-	-	-	-	-	-	-	-
Accepted Value	5 0.2	1 <	.01	2	1	1 .	1 1	0.1	2	5	5 0.00	5 0.05	5 1	.01	.01	1	1.	.01 .0	1.0	1 <.0	1 <.01	<.0001	<.01	<.0	.01	-01	.01	.01	.01	.01	.01	<.01	.01
Gannet Ref.Material	2554 -	-	-	-	-			-	-	-	-			-	-	-	-	-	-			-	-			-	-	-	-	-	-	-	-
Number of Analyses	1 -	-	-	-	-			-	-	-	-			-	-	-	-	-	-	-		-	-			-	-	-	-	-	•	-	-
Mean Value	2554 -	-	-	-	-	- •		-	-	-	-			-	-	-	-	-	-	•		-	-		· -	-	-	-	-	-	-	-	-
Standard Deviation		-	•	-	~			-	-	-	-			-	-	-	-	-	-	-		-	-			-	-	-	-	-	-	-	-
Accepted Value	2520 -	-	~	-	-	-		-	-	-	-		• •	-	-	-	-	-	-	-		-	-		• -	•	-	-	-	-	-	-	-
CANMET STD SY-3		-	-	-	-			-	-	-	-	. .		-	-	-	-	-	-			-	-			-	-	-	-	-	-	-	-
Number of Analyses		-	-	-	-			-	-	-	-		· -	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
Mean Value		-	-	-	-			-	-	-	-		· -	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
Standard Deviation			-	-	-			-	-	-	-		· -	-	-	-	-	-	-			-	-		-	-	-	-	-	-	-	-	-
Accepted Value		17	- '	133 24	4			-	-	-	0.4			-	-	-	-	-	-	- 6.2	2 1.61	-	-	•	-	-	-	-	-	-	-	-	-
Loss on Ignition Std		-	-	-	-			-	-	-	-			-	-	-	-	-	-			-	-	-	. <u>-</u>	-	-	-	-	-	-	-	-
Number of Analyses		-	-	-	-	. .		-	-	-	-		· -	-	-	-	-	-	-			-	-	-	· -	-	-	-	-	-	•	-	-
Mean Value		-	-	-	-			-	-	-	-			-	-	-	-	-	-			-	-		· -	-	-	-	-	-	-	-	-
Standard Deviation		-	•	-	-			-	-	-	-		· -	-	-	-	-	-	-			-	-	•	-	-	-	-	-	-	-	-	-
Accepted Value		-	-	•	-	-, -	• •	-	-	-	-			-	-	-	-	-	-			-	-	•	• -	-	-	-	-	-	-	-	-
Loss On Ignition Std			-		_			-	-	-	-		. <u>-</u>	-	-	-	-	-	-			-	-	-	_	-	-	-	-	-	-	-	-
Number of Analyses			-		-			-	-	-	-			-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	-	-	-
Mean Value		-	•	-	-			-	-	-	-			-	-	-	-	-	-			-	-		-	-	-	-	-	-		-	-
Standard Deviation		-	~	-	-			-	-	-	-	. .	· -	-	-	-	-	-	-			-	-		-	-	-	-	-	-	-	-	-
Accepted Value		-	-	-	-			-	-	-	-			-	-	-	-	-	-			-	-	-	-	-	-	-	-	-	•	-	-
CANMET STREAM-SED	- <.2	36	•	20 15	50	1 11	3 13	<u>د</u> ۲	~5	16	<5 0.10	5 7 7 2	1 72/0	<10	278	22	<u>ل</u> ت م	20 <7	n o	0 1 1	5 N 83	1 47	0 07	0.00	2 20	22	-2	Q	ι.	~	<10	0.03	<1
Number of Analyses	- 1	1		1						1	1			1				1			1 1						1			1			
Mean Value	- 0.1	36									3 0.10																			3		0.03	
Standard Deviation		-		-	-				-	.0			, <u></u> 40	-	-~		-	-						· •.•	· 20			-	-	-	-		
							-														-		_		_	_							

			ter				est	• ir	ng	s S	er	vi	1 .C6	es					1		1						6		ŧ		1		Geochemical Lab
		R0	nda	r C	leg	gg																											Report
CLIENT: MR. STEVE TRA	YNOR																													PROJE	CT:	ARSE	ENAULT
REPORT: V98-01535.0 (COMPI	LETE	ł												DATE	RECE		26-	AUG-	78	D/	ATE F	RINT	ED:	15~s	EP-S	8	PAGE	2B	(4/	8)		
STANDARD ELEMENT	SiO2	T102	AL 203	Fe203'	* Min	nO Mg	g0 (CaO i	Na20	K20	P20	5 LC	л т	otal	Cr203	Ba	Sг	Y	Nb	Zr	Rb	Ce	Eu	La	Lu	Nd	Sc	Sm	Тb	Th	IJ	YЬ	
NAME UNITS	PCT	PCT	PCT	PC	t pc	T PC	CT F	PCT	PCT	PCT	PC	r po	T	PCT	РСТ	PPM	PPM	PPM												PPM			
ANALYTICAL BLANK	<0.01	<.01	<0.01	<0.0	1 <.0	01 <.0	01 <0.	.01	<.01	<.05	<.03	3	-		<0.01	-	-	~	-	_	-	-	_	_	-	_	-	_	_	_			•
Number of Analyses	1	1	1		1	1	1	1	1	1		ſ	-	-	1	-	-	•	-	-	-		-	-		-	-	-	-	_	-		
Mean Value	0.005		0.005	0.005	5.00	5.00	05 0.0	005	.005	0.03	0.02	2	-	- (0.005	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Standard Deviation	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	
Accepted Value	<.001	<.01	<.001	<.000'	1 <.0)1 <.0	01 <.0	001 ·	<.01	<.01	<.0	<.00)1 <.	0001	<.001	.005	.01	.01	.01	.01	.01 .	.01 .	.01 .	01.	01.	01.	005	.01	.01	.005	.01	.01	
Gannet Ref.Material	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	-	_	-	-	-	-	-	-	-	-	_	_	-	-	-	
Number of Analyses	-	-	-		-	-	-	-	-	-			-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Mean Value	-	-	-	-	-	-	-	-	-	-			-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Standard Deviation	-	-	-	•	-	-	-	-	-	-		-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	•	-	
Accepted Value	-	-	-	•	-	-	-	-	-	-			-	-	-	-	-	-	-	-	•	-	-	-	-	-	•	-	-	-	-	-	
CANMET STD SY-3	60.04	0.15	11.81	6.40	5 0.3	3 2.6	508.	.24 4	4.10 4	4.15	0.54		- 9	8.43	<0.01	-	-		-	-	-	-	-	-	-	-	-	÷	-	-	-	-	
Number of Analyses	1	-	1				1		1		١		•	1	1	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
	60.04	0.15	11,81	6.46	5 0.3	3 2.6	508.	.24 4	4.10 4	4.15	0.54	•	- 9	8,43 (0.005	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Standard Deviation	-	-	-		-	-	-	-	-	-	-		-	-	-	-	-	•	-	-	-	-	-	-	•	-	-	-	-	-	-	-	
Accepted Value	59.68	0.15	11.80	6.42	2 0.3	2 2.6	578.	.26 4	4.15 4	4.20	0.54	1.2	0	-	•	-	-	-	-	-	-	-	-	-	•	-	•	-	-	-	-	•	
Loss on Ignition Std	-	-	-	-	•	-	-	-	-	-	-	3.8	9	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Number of Analyses	-	-	-	-	-	-	-	-	-	-	-		1	-	-	-	-	-	-	-	-	-	-	-	•	-	•	-	-	-	-	-	
Mean Value	-	-	-	-	•	-	-	-	-	-	-	3.8	9	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Standard Deviation	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Accepted Value	-	•	-	-	•			-	+	-	-	4.2	4	-	-	-	-	-	-	-	-	-	-	-	•	-	-	•	-	-	-	-	
Loss On Ignition Std	-	-	-	-	-	-	-	-	-	-	-	40.4	8	_	-	-	-	-	_	-	-	-	-	-	-	-	-	-	-	_	-	_	
Number of Analyses	-	-	-	-	· .		-	-	-	-	-		1	-	-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Mean Value	-	-	-	-		-	-	-	-	-	-	40.4	8	-	-	-	-	•	-	-	-	-	-	•	-	_	-	-	-	-	-	-	
Standard Deviation	-	-	-	-			-	-	-	-	-		-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Accepted Value	-	-	-	-		-	-	-	•	-	-	41.0	8	-	-	-	-	•	-	-	-	. –	-	-	-	-	-	-	-	-	-	-	
CANMET STREAM-SED	-	-	-	-			-	-	-	-	-		-	-	-	-		•	-	-	-	-	_	-	-	_	_	_	-	-	-	-	
Number of Analyses	-	-	-	-	· .	-	-	-	-	-	-		-	-	-	-	-	~	-	-	-	-	-	-	-	-	_	-		-	-	-	
Number of Analyses Mean Value	-	-	-	-	· .		-	-	-	-	-		- -	-	-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	•	-	
•	-	-	-	-	· .	- ·	- - -	• • •	- - -	-	-		- - -	-	-	-	-	~	-	-	• • •	- - -	-	- - -	- -	-	-	- -	-	-	•	-	


ITS	Intertek Bondar Cl	Testin		• •		L.	•	8	E.	Geochemical Lab Report
CLIENT: MR. STEVE TRAYNOR REPORT: V98-01535.0 (COM	PLETE)		 	DATE RECEIVED:	26-AUG-98		INTED: 15-SEP-9			ECT: ARSENAULT 8)

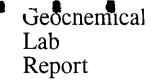
STANDARD ELEMENT NAME UNITS		•			Pb PPM									Hg PPM	Fe PCT	Min Ppmi								Al PCT	Mg PCT	Ca PCT	Na PCT					Li PPM					
Granite - Cert.Ref.M	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-
Number of Analyses	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	_	-	-	-	-	-
Mean Value	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-
Standard Deviation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Accepted Value	-	-	•	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-
CANMET SO-2 REF STD	-		-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-			-	-	-	_	_	_
Number of Analyses	•	-	•	-	•	-	-	-	-	-	-	•	-	-	•	-	-	-	-		-	-	-	-	-	-	-	-	-	÷	-	-	-	-	-	-	-
Mean Value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Standard Deviation	-	•	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Accepted Value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-

	S				∎ tek r Cl			• stin	g	s S	erv	• vic	es	-				8								•					1	Geochemical Lab Report
CLIENT: MR. STEVE REPORT: V98-0153														DATE	DEOF		- 24		00					45		~~					ARS	ENAULT
REPORT: V98-0155.	(DATE		I VED	: 20	-AUG-	98	U	ATE I	PRIN	IED:	15-3	SEP-		PAGE	. 58	(6/	8)		
STANDARD ELEM	IENT	si02	T i 02	Al203	Fe203*	MnO	MgO	CaO Na	a20	K20	P205	LOI	Total	Cr203	Ba	a Sr	Ŷ	Nb	Zr	RЬ	Ce	Eu	La	Łu	Nd	Sc	Sm	Тb	Th	U	Yb)
NAME UI	HTS	PCT	PCT	PCT	PCT	PCT	PCT	PCT F	PCT	PCT	PCT	PCT	PCT	PCT	PPN	1 PPM	PPM	PPM	PPM	PPM	PPM I	PPM	PPM I	PPM I	PM	PPM	PPM	PPM	PPM	PPM	PPM	i -
Granite - Cert.Re	ef.M	-	-	-	-	-	-	-	-	-	-	-	-	-	1385	5 570	15	23	243	188	-	-	-	•	-	-	-	-	-	-	-	
Number of Analyse	es	-	-	-	-	-	-	-	-	-	-	-	-	-	1	1	1	1	1	1	-	-	-	-	-	-	-	-	-	-	-	
Mean Value		-	-	-	-	•	-	-	-	-	-	-	-	-	1385	5 570	15	23	243	188	-	-	-	-	-	-	-	-	-	-	-	
Standard Deviation	n n	-	-	-	-	-	-	-	-	-	-	•	-	-	-	· -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Accepted Value		-	-	-	-	-	-	-	-	-	-	-	-	-	1400	570	14	21	235	185	-	-	-	-	-	-	-	-	-	•	-	
CANMET SO-2 REF S	STD	-	-	-	-	-	-		-	-	-	-	-	-	1000	348	41	19	755	73	-	-	-	_	-	-	-		-	_	-	
Number of Analyse	es.	-	-	÷	-	-	-	•	-	-	-	-	-	-	1	1	1	1	1	1	-	-	-	-	-	-	-	-	-	-	-	
Mean Value		-	-	-	-	-	-	-	-	-	-	-	-	-	1000	348	41	19	755	73	-	-	-	-	-	-	-	-	-	-	-	
Standard Deviatio	n n	-	-	-	-	-	-	-	-	-	-	-	-	-	-	• •	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Accepted Value	-	53.46	-	15.24	-	-	-	-	-	-	-	-	-	-	1000	340	40	22	760	78	-	-	-	-	-	-	-	•	-	-	-	

		nte Bond					st	in	g	S	eı	vi	ces	I			•			L		•					•			t				La	ıb	ort		iic	al
	STEVE TRAYNOR -01535.0 (COMPLE	TE)												na	ATE RE	CET	VED	26-	- 6110-	-09		DAT	- 001	NTC	. 16	5-SEP-	00		rr				ARSE	ENAUL	T				
						••• • •									•••		VED.	20-	AUG	- 70		UAT	: PKI	NIEL		D-SEP-		PA	GE .	4A(8)							
SAMPLE	ELEMENT AU30 A	-	u CuOL		-								Hg F	e	Mn	Te	Ba	Cr	۷	Sn	i W	l La	a A	a	Mg	Ca	a	Na	κ	Sr	Y	Ga	ı Li	i Nb	s s	Sc Ta	аT	ίZ	2r
NUMBER	UNITS PPB PP	M PP	M PC1	t ppm	PPM	PPM	PPM	PPM P	PM P	PM PI	PM F	PPM P	PM PC	T	PPM F	PM	PPM	PPM	PPM	PPM	PPM	PP	1 PC	T F	PCT	PCI	· P(ст	PCT	PPM	PP	PPM	⊨ P P ₩	I PPM	i PP	M PPN	f PC	T PF	
98R366	17 <.	2 1093	3	10	13	2	9	25 <	.2	6	16	<5 0.0	20 >10.0	00 1	1179 <	<10	19	17	4	<20	<20	. 2	2 0.3	7 0.	.19 :	10.00	0.0	01 0	.04	172	4	<2	<1	5	. <	5 <10	3 0.0	ρ.	<1
Duplicate																																-		-	-			-	•
98r372	12 0.	3 196	8	8	62	18	5	90	.6	<5	8	<5 0.0	22 8 5	8 2	2097 <	:10	8	27	R	<20	<20		0.3	1 0	7 0	6.06	. n r	ח כח	01	19	0		. <1	,		5 <10		7	,
Duplicate	90.	2 181	5	7	63	19	5	-		-		<5 0.0			1907 <		8	26	-		<20		0.3	• -•		5.82	-	-				<2	-			5 <10		-	-
98R376 Duplicate	1479 0.	7 >1000	0 1.3	3 35	12	<1	7	6 <	.2	<5 ·	<5	<5 0.1	12 1.6	57	64 <	<10	8	93	14	<20	<20		0.4	8 0.	.47	0.13	0.0	03 0	.04	6	2	<2	3	5 2	; <	5 <10) 0.0	2 •	:1

•			•	(t	_	ŧ					8	(L	l				ł			:	Geochemical
	TC		In	ter	tel	ζ']	les	stir	lg i	Ser	vic	ces														Lab
					r Cl				U																	Report
CLIENT: MR.	STEVE TRA		20			5	>																	PROJEC	CI- 884	SENAULT
REPORT: V98	-01535.0 (COMPL	ETE)										DATE	RECEI	VED :	26-AU	IG- 98	DA	TE PRI	NTED:	15-SEP	-98 PA		B(8/ 8		
SAMPLE	ELEMENT	Si02	TiO2	AL203	Fe203*	MnO	MgO	CaO	Na20 k	20 P205	LOI	Total	Cr203	Ba	Sr	YN	lb Zr	Rb	Ce Eu	La	Lu Nd	Sc S	im Tb	Th	U YE	
NUMBER	UNITS	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT P	CT PCT	PCT	PCT	PCT		PPM P							PPM PP				•
98R366		30.31	0.12	3.97	21.21	0.26	2.06	22.43 (0.29 0.	06 0.15	<0.05	80.86	<0.01	29 :	385	7	2 25	4								
Duplicate											<0.05					•		•								
98r372																										
Duplicate																										
98r376		88.73	0.14	4.47	2.49	<.01	0.87	0.85	1.14 0.	31 0.04	1.17	100,22	0.03	49	51	5	3 21	7	5 < 5	3.	: 2 < 10	6.5 0.	5 /1	0.8	<i>.</i> 1 <i>.</i> 1	
Duplicate		88.12 (0.13	4.40						29 0.03			0.03		50	3	3 22	8	<i></i>		10	0.5 0.	J	0.0	N N	

..


+

+

+

+

.

オロ

.

MR. STEVE TRAYNOR BOX 4375 WHITEHORSE, YUKON YIA 3T5

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

ITTS Intertek Testing Services Bondar Clegg

REPORT: V98-01534.0 (COMPLETE)

CLIENT: MR. STEVE TRAYNOR

PROJECT: ARSENAULT

•

REFERENCE:

SUBMITTED BY: S. TRAYNOR

DATE RECEIVED: 26-AUG-98 DATE PRINTED: 7-SEP-98

DATE		NUMBER OF	LOWER			SAMPLE TYPES	NUMBER	SIZE FRACTIONS	NUMBER	SAMPLE PREPARATIONS NUM	IE
APPROVED EL	EMENT	ANALYSES	DETECTION	EXTRACTION	METHOD	s soil		1 -80	54	DRY, SIEVE -80	5
980903 1 Au30	Gold	54	5 PPB	Fire Assay of 30g	30g Fire Assay - AA		24	1 -00	54	DRT, SIEVE -BO	-
	1 Test Weight	54	0.01 GM	FIRE ASSAY	FIRE ASSAY-AA						
980903 3 Ag	Silver	54	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA	REPORT COPIES TO:	BOX 4375		INVOICE	TO: BOX 4375	
980903 4 Cu	Соррег	54	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA				1110102		
980903 5 Pb	Lead	54	2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		******	******	*****	******	
980903 6 Zn	Zinc	54	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA		eport must not l	be reproduced except	in full. The	data presented in this	
					-					Sample Number" and is	
980903 7 Mo	Molybdenum	54	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		able only to the	e samples as receive	d expressed o	n a dry basis unless	
980903 8 Ni	Nickel	54	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		ise indicated				
980903 9 Co	Cobalt	54	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		******	*****	******	********	
980903 10 Cd	Cadmium	54	0.2 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÀ						
980903 11 Bi	Bismuth	54	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÀ						
980903 12 As	Arsenic	54	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
980903 13 Sb	Antimony	54	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
980903 14 Fe	Iron	54	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
980903 15 Mn	Manganese	54	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
980903 16 Te	Tellurium	54	10 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
980903 17 Ba	Barium	54	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
980903 18 Cr	Chromium	54	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
. 980903 19 V	Vanadium	54	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
980903 20 Sn	Tin	54	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
980903 21 W	Tungsten	54	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
980903 22 La	Lanthanum	54	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMÀ						
980903 23 Al	Aluminum	54	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP, PLASMA						
980903 24 Mg	Magnesium	54	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
000007 05 0-	e_1_1	E /	0.01.007	UCL-0007 77-15							
980903 25 Ca 980903 26 Na	Calcium Sodium	54 54	0.01 PCT 0.01 PCT	HCL:HNO3 (3:1) HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA						
980903 27 K	Potassium	54	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA INDUC. COUP. PLASMA						
980903 28 Sr	Strontium	54 54	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
980903 29 Y	Yttrium	54	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
980903 30 Ga	Gallium	54	2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
PD 00 00 00	Garcian		C FFM	10L.1800 (J.1)	INDUC. COUP. PLASMA						
980903 31 Li	Lithium	54	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA		*				
980903 32 Nb	Niobium	54	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASMA						
980903 33 Sc	Scandium	54	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
980903 34 Ta	Tantalum	54	10 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
980903 35 Ti	Titanium	54	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASMA						
980903 36 Zr	Zirconium	54	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASMÀ						

CLEAT: ML. STARE TRAINED PROJECT: 4825-01 (CMPRETE) DATE RECEIVES: 25-0LG-96 DATE RECEIVES: 25-0LG 97 DATE RECEIVES: 25-0LG-96 DATE RECEIVES: 25-0LG-96 <thdate 25-0lg-96<="" receives:="" th=""> DATE RECEIVES:</thdate>			S		nte:					• ti	ng	• S	er	vi	ı Ct	es	Ì	¢	ł	•		I	ŧ		•		3		1	Ge La Re	b	nemical	1
EXPART: VMP-01534.0 (C 00PELTE) DATE RECEIVED: 20-400-98 DATE RELIVED: 7-50-98 PAGE 1 0F 5 SWPLE ELEMENT AUGO ALUKI AG 0LUKI AG 0	CLIENT	1: MR. ST	FVE TRAYNOR					00																			Р	ROJE	CT:	ARSENAUL	r		
NUMBER UNITS PM M PM </td <td></td> <td></td> <td></td> <td>PLETE</td> <td>)</td> <td></td> <td>DATE R</td> <td>ECEI</td> <td>VED: 2</td> <td>6-AUG-</td> <td>98 C</td> <td>ATE PR</td> <td>INTED:</td> <td>7-SEP</td> <td>98</td> <td>PAGE</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>				PLETE)												DATE R	ECEI	VED: 2	6-AUG-	98 C	ATE PR	INTED:	7-SEP	98	PAGE							
NUMBER UNITS PM M PM </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>• •</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>•••••</td> <td></td>																	• •						•••••										
$ \begin{array}{c} -0.008 1.8. \\ -0.008 125E \\ -0.008 1$	SAMPLE	E	LEMENT AU30	Au W	t1 Ag	Cu	Pb	Zn M	10 N	i C	io Cd	Bi	As	Sb	Fe	Min T	e Ba	Cr	V S	n W	La Al	Mg	Са	Na I	(Sr	Y	Ga	Li	Nb	Sc Ta	Ti	Zr	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	NUMBER	2	UNITS PPB		GM PPM	PPM	PPM P	PM PF	PM PP	M PP	m PPM	PPM	PPM	PPM F	CT	PPM PP	m ppm	PPM I	PPM PP	M PPM	PPM PC1	PCT	PCT	PCT PC1	PPM	PPM P	PM P	PM P	PM P	PM PPM I	PCT P	PM	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0+004	D1	~	30	<u>ر م در ا</u>	270	7	54	2 2	R 1	2 - 2	-5	12	<i>1</i> 5 2	80	·	0 117	77	56 ~2	0 ~20	19 1 74	1 10	0 / 0 (מ מכמ ה	3 10	8	z	11	-1	~5 ~10 0	17	1	
0+000 0056 6 2 0.00 0 7 2 1 6 5 20 20 10 10 5 20 20 10 10 5 20 20 10 10 5 3 0 10 10 5 3 10 10 10 5 10																																	
0-000 075E 6 30 130 30 110 110 <t< td=""><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			_																														
0+0001 125E -5 5, 3,4 -2 30 95 5 3 10 -1 -5 1, 4 4 4 4 4 4 4 4 4 4 4 4 1 2 10 1, 4 1 2 10 1, 4 1 2 10 1, 4 1 2 10 1, 4 1 2 10 1, 4 1 2 10 1, 1 2 10 10 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 1 4 1 4 1 4 1 4 4 1 4 1 4 1 4 1 4 1 4 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 10 1			6	30.	13 <.2	131																											
0+00N 175E 6 30.11 2 81 17 2 44 17.2 5 49 45 2002 10 <td>0+00N</td> <td>125E</td> <td><5</td> <td>5.</td> <td>34 <.2</td> <td>300</td> <td>95.5</td> <td></td>	0+00N	125E	<5	5.	34 <.2	300	95.5																										
0+00N 175E 6 30.11 2 81 17 2 44 17.2 5 49 45 2002 10 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																																	
0+00N 200E +5 30.09 + 2 39 12 56 1 30 12 + 2 5 1 30 12 + 2 5 1 30 12 + 2 5 1 <td>0+00N</td> <td>150E</td> <td>6</td> <td>15.</td> <td>30 <.2</td> <td>130</td> <td>15</td> <td>88</td> <td>23</td> <td>4 1</td> <td>5 <.2</td> <td><5</td> <td>31</td> <td><5 3.</td> <td>.97</td> <td>738 <1</td> <td>0 90</td> <td>39</td> <td>58 <2</td> <td>0 <20</td> <td>19 2.11</td> <td>1.53</td> <td>0.83 (</td> <td>0.02 0.1</td> <td>30</td> <td>11</td> <td>4</td> <td>12</td> <td><1</td> <td><5 <10 0</td> <td>.12</td> <td><1</td> <td></td>	0+00N	150E	6	15.	30 <.2	130	15	88	23	4 1	5 <.2	<5	31	<5 3.	.97	738 <1	0 90	39	58 <2	0 <20	19 2.11	1.53	0.83 (0.02 0.1	30	11	4	12	<1	<5 <10 0	.12	<1	
C+00N 225E C+3 30.57 < 2 63 10 59 2 39 17 < 2 C+3 1 C+3 3.6.8 4.55 C+0 10 2.2.6 10 0.1 C+1	0+00N	175E	6	30.	11 <.2	83	18	78	24	1 1	7 <.2	<5	49	<5 4.	.26	1027 <1	0 107	33	51 <2	0 <20	35 2.02	2 1.48	0.70 0	0.02 0.1	5 32	22	4	9	<1	5 <10 0	. 12	<1	
0+00N 250E 13 30.27 < 2 68 16 7 1 40 15 < 2 5 42 5 41 11 62 42 5 41 11 62 10 12 1 41 5< 11 41 5< 11 41 5< 11 41 5< 10 1.1 45 10 1.1 41 5< 10 1.1 41 5< 10 1.1 41 5< 40 1.1 41 5< 40 1.1 41 5< 41 1.1 41 42 45 41 41 42 45 41 41 42 45 41 41 41 41 45 41 41 45 41			<5	30.	09 <.2	39	12																				3	9	<1	<5 <10 0	.12	<1	
1+005 BL 14 25.15 < 2 9 19 < 2 3 10 < 2 3 10 < 2 < 3 10 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>																											_						
1+005 025E -5 20.06 -2 197 13 72 2 4 14 -2 5 2 5 2 100 15 20.00 35 2.11 1.29 0.70 0.03 0.16 40 22 4 11 -7 10.013 -1 1+005 050E -5 30.04 2 16 14 61 2 34 15 -2 5 14 10 9 2 2 14 10.013 5 -10 0.13 5 -10 0.13 5 -10 0.13 5 -10 0.13 5 5 -10 10.01 -1 -5 -10 0.13 5 5 -10 -1 1 -1 -1 -1 -1 <	0+00N	250E	13	30.	27 <.2	68	16	74	14	.0 1	5 <.2	<5	42	<54.	.11	1162 <1	0 81	34	53 <2	0 <20	26 2.23	5 1.75	0.59 (0.02 0.09	25	14	5	11	<1	<5 <10 0	.12	<1	
1+005 025E -5 20.06 -2 197 13 72 2 4 14 -2 5 5 4.08 807 10 10 5 520 20 35 2.11 1.29 0.70 0.03 0.16 40 22 4 11 -7 10 0.13 5 1+005 505E -5 30.10 2 16 14 61 2 34 15 -2 5 14 10 9 2 14 10.55 0.02 0.09 28 7 3 10 -1 5 -10 0.13 5 1+005 125E 2 16 14 64 1 38 15 -2 5 16 -7 10 62 20 14 10.57 0.10 0.13 35 8 18 20 20 18 0.55 14 0.75 0.00 14 10.57 0.00 13 8 4 18 -7 10 0.10 14 15 10 0.	1+00s	8L	14	25.	15 <.2	99	19	71	2 3	4 1	0 <.2	<5	19	<5.3.	.22	366 <1	0 103	38	51 <2	0 <20	19 2.20	1.30	0.52 ().82 0.1 <i>4</i>	5 22	8	4	12	<1	<5 <10 0	. 14	<1	
1+00S 050E 6 30.42 2 30 1 69 3 45 16 2 5 3.57 592 210 15 43 57 20 20 11.003 0.62 0.03 0.13 37 12 4 12 <1 5 400 100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>																																	
1+005 1006 -5 30.10 -2 16 1 2 34 13 -2 5 24 5 37.7 414 6 32 44 20 20 11 11 05 10 -1 < 5 <10 <1 <																																	
1+005 175E -5 10.91 -2 243 9 66 2 33 24 -2 -5 21 -5 4.66 767 10 96 28 58 20 20 14 2.09 1.42 0.75 0.01 0.13 33 8 4 18 -7 -7 10 0.07 -1 1+005 200E -5 15.14 -2 181 25 63 2 9 15 3 2 10 21 24 -7 10 7 22 32 20 20 31 2.1 1.25 0.01 0.13 38 15 3 10 -1 <5	1+00s	100E	<5	30.	10 <.2																												
1+005 200E -5 15.14 -2 15 -5 15 -5 3.7 127 -10 167 22 32 -20 30 1.88 0.85 0.81 0.10 1.3 8 15 3 10 -1 -5 -10 0.02 -1 1+005 225E -5 25.36 -2 63 25 83 2 50 22 -2 -5 32 -5 4.1 124 -10 63 0.10 0.13 27 1 1 -5 <10	1+00S	125E	24	30.	04 <.2	116	14	64	1 3	8 1	5 <.2	<5	26	<5 3.	.87	661 <1	086	31	47 <2	0 <20	18 2.05	5 1.16	0.57 (0.02 0.1 ⁻	31	9	4	10	<1	<5 <10 0	. 10	<1	
1+005 200E -5 15.14 -2 15 -5 15 -5 3.7 127 -10 167 22 32 -20 30 1.88 0.85 0.81 0.10 1.3 8 15 3 10 -1 -5 -10 0.02 -1 1+005 225E -5 25.36 -2 63 25 83 2 50 22 -2 -5 32 -5 4.1 124 -10 63 0.10 0.13 27 1 1 -5 <10																																	
1+005 225E 43 25.36 2 63 2 50 22 2 53 2 50 22 2 53 2 50 22 2 53 2 50 22 2 53 2 50 22 2 53 2 50 22 2 53 2 50 22 2 55 4 57 52 20 20 31 2 15 4 12 4 4 14 15 4 12 4 4 14 11 41 45 400 43 20 20 30 2.21 1.25 0.87 0.01 0.11 41 15 4 12 41 14 11 41 45 40.0 41 41 41 41 41 41 41 41 45 40.0 42 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 <th< td=""><td></td><td></td><td><5</td><td>10.</td><td>91 <.2</td><td>243</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>4</td><td>18</td><td><1</td><td>7 <10 0</td><td>.07</td><td><1</td><td></td></th<>			<5	10.	91 <.2	243	-																				4	18	<1	7 <10 0	.07	<1	
1+005 250E < 5 15.15 < 2 87 28 108 3 69 34 < 2 < 5 6 < 5 7.13 1365 < 10 90 34 43 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 < 20 20 < 20 20 $20 $			<5	15.	14 <.2																												
2+00S BL <5			_																											<5 <10 0	.11	<1	
2+00S 075E 16 20.90 <.2																													_			_	
2+00s 100E 21 25.66 2.5 579 11 97 3 40 20 0.3 <5	2+00S	BL	<5	15.	01 <.2	58	14	67	23	7 1	6 <.2	<5	18	<5 3.	.82	462 <1	0 111	41	53 <2	0 <20	22 2.07	7 1.20	0.53 (0.02 0.13	5 24	11	4	11	<1	<5 <10 0	.14	1	
2+00s 100E 21 25.66 2.5 579 11 97 3 40 20 0.3 <5	2+00S	075E	16	20.	90 <.2	439	12	81	3 3	2 1	6 0.2	4 5	14	<5 4.	.08	529 <1	0 116	34	55 <2	0 <20	29 2.16	5 1.35	0.56 (0.02 0.17	7 22	15	4	12	<1	5 <10 0	. 12	<1	
2+00s 150E <5																																	
2+00s 175E <5																																	
2+00S 200E 6 15.58 .2 54 13 70 2 35 15 .2 <5																																	
2+00S 225E <5																																	
2+005 250E 15 5.96 0.3 1122 11 53 13 48 30 0.2 <5			U									-														-			•		- •	-	
2+00S 275E <5 30.57 <.2 82 12 71 2 37 15 <.2 <5 36 <5 4.38 521 <10 102 36 57 <20 <20 20 2.30 1.39 0.44 0.01 0.13 18 8 5 10 <1 <5 <10 0.11 <1 2+00S 300E <5 50.08 <.2 108 13 106 2 34 15 <.2 <5 18 <5 3.99 618 <10 92 34 53 <20 <20 20 2.09 1.25 0.61 0.01 0.14 25 10 5 11 <1 <5 <10 0.12 <1	2+00S	225E	<5	15.	26 <.2	196	19 1	117	23	7 1	6 <.2	<5	55	<5 3.	.85	661 <1	0 111	37	52 <2	0 <20	65 2.07	7 1.14	0.43 0	0.01 0.13	5 19	26	5	11	<1	<5 <10 0	. 10	<1	
2+00\$ 300£ <5 50.08 <.2 108 13 106 2 34 15 <.2 <> 18 <> 3.99 618 <10 92 34 53 <20 <20 20 2.09 1.25 0.61 0.01 0.14 25 10 5 11 <1 <5 <10 0.12 <1	2+00S	250E	15	5.	96 0.3	1122	11	53	13 4	8 3	0 0.2	<5	18	<5.7.	.14	1337 <1	0 73	9	39 <2	0 <20	6 1.19	0.82	1.52 <	<.01 0.10	22	17	<2	4	<1	17 <10 <	.01	<1	
	2+00S	275E	<5	30.	57 <.2	82	12	71	23	7 1	5 <.2	<5	36	<5 4	.38	521 <1	0 102	36	57 <2	0 <20	20 2.30	1.39	0.44 (0.01 0.13	5 18	8	5	10	<1	<5 <10 0	.11	<1	
2+005 325E <5 15.94 <.2 204 9 142 2 40 18 0.5 <5 17 <5 5.95 680 <10 /7 57 50 <20 <20 41 2.50 1.61 0.71 0.02 0.15 29 25 5 12 <1 <5 <10 0.15 <1	2+00S	300E	<5	50.	08 <.2	108	13 1	106	23	4 1	5 <.2	\$	18	<5 3.	.99	618 <1	0 92	34	53 <2	0 <20	20 2.09	1.25	0.61 (.01 0.14	25	10	5	11	<1	<5 <10 0	. 12	<1	
	2+00S	325E	\$	15.	¥4 <.2	204	9 1	142	2 4	0 1	8 U.5	\$	17	<5.5	.95	680 <1	U //	51	50 <2	U <20	41 2.50	J 1.61	0.71 ι	J.UZ 0.1:	5 29	25	5	12	<1	<5 <10 0	. 15	<1	

1000

÷

.

	ΓS				- cte ur (st	ing	S	e	rvi	ce	es -	L	•	•		-		-		•		•		•			-	L	eōc ab epc	ort
CLIENT: MR.	STEVE TRAYNOR			1.44	•1 、	<u></u>	-55	>																					PRO.	IECT:	ARS	SENAL	JLT	
REPORT: V98-	-01534.0 (COMI	PLE	TE)													DATE	RECEI	VED:	26-A	UG-9	8	DATE	PRIN	ED:	7-SE	P-98	PAG	E 2	OF 5	5				
SAMPLE	ELEMENT Au30	I Au	Wt1	Ag	Cu	Рb	Zn	Mo	Ni	Co Co	Bi	As	Sb	Fe	Mn 1	e Ba	Cr	۷	Sn	W	La /	Al	Mg (a N	la	кs	гY	Ga	Li	Nb	Şc	Ta	Ti	Zr
NUMBER	UNITS PPB	1	GM	PPM	PPM	PPM	PPM	PPM	PPM	PPM PPM	PPM	PPM	PPM F	CT	PPM PI	m PPM	PPM	PPM	PPM P	PM P	PM P	CT F	PCT PC	CT PC	ст р	CT PP	M PPM	PPM	PPM	PPM	PPM	PPM	PCT	PPM
2+00s 350E	<5	1	5.41	<.2	253	9	67	2	42	17 <.2	<5	30	<5 4.	80	750 <	0 86	30	45	<20 <	20	22 2.0	08 1.	25 0.6	53 0.0	02 0.	14 2	6 10	4	10	<1	<5	<10	0.11	<1
2+00s 375e	7	3	0.00	<.2	292	9	79	3	46	23 <.2	<5	27	<54.	84	706 <	0 90	34	47	<20 <	20	26 2.0	60 Z.	.08 0.6	51 0.0	01 0.	21 2	1 14	5	14	<1	<5	<10	0.15	<1
2+00S 400E	8	3 2	5.02	<.2	609	14	79	3	41	18 <.2	<5	32	<54.	41	721 <	0 97	39	57	<20 <	20	19 2.	13 1.	.34 1.0	0.0 0.0)2 0.	12 4	0 11	5	11	<1	<5	<10	0.13	<1
2+00s 425E	13	i 3	0.00	<.2	457	5	55	3	34	14 <.2	<5	22	<5 4.	03	552 <	0 89	44	61	<20 <	20	15 2.8	82 2.	79 0.8	31 0.0	01 0.	13 3	57	8	17	<1	6	<10	0.15	<1
2+00\$ 450E	10) 3	0.97	<.2	83	8	63	2	27	11 <.2	<5	22	<5 3.	07	459 <	0 83	30	49	<20 <	20	15 1.0	69 0.	98 0.3	52 0.0	01 0.	13 1	56	4	9	<1	<5	<10	0.11	<1
3+005 BL	6	5 2	0.31	<.2	166	10	100	2	43	18 0.2	<5	26	<5 4,	42	718 <	10 159	41	57	<20 <	20	29 2.	171.	.33 0.5	51 0.0	02 0.	25 2	3 15	5	11	1	<5	<10	0.14	2
3+00s 025E	<5	53	0.45	<.2	75	12	98	2	35	16 0.3	<5	21	<5 3.	62	772 <	0 121	37	51	<20 <	20	22 1.4	851.	16 0.4	6 0.0	D2 0.	14 1	8 10	4	10	<1	<5	<10	0.13	<1
3+00s 050E	<5	5 1	5.54	<.2	125	14	129	2	43	15 0.4	<5	16	<5 3.	52	464 <	0 145	41	55	<20 <	20	28 1.4	981.	11 0.4	8 0.0	D2 0.	16 2	1 14	4	11	<1	<5	<10	0.14	4
3+00s 075E	6	51	5.13	<.2	77	11	85	3	32	9 <.2	<5	21	<5 3.	26	453 <	0 93	39	53	<20 <	20	17 1.4	861.	15 0.5	50 0.0	02 0.	11 2	0 8	4	10	1	<5	<10	0.13	<1
3+005 100E	6	5 1	0.28	<.2	83	12	79	3	30	9 <.2	<5	30	<5 3.	14	636 <	0 114	38	52	<20 <	20	17 1.1	841.	.06 0.!	57 0.0	01 0.	12 2	47	4	11	<1	<5	<10	0.10	<1
3+00s 125E	<5	5 2	5.56	<.2	135	19	124	4	24	12 0.2	-5	19	<5 3.	42	470 <	0 71	ප	52	<20 <	20	14 1.3	70 1.	14 0.5	i9 0.0	01 0.	11 2	27	3	11	<1	<5	<10	0.11	<1
3+00s 150E	9	2	0.76	<.2	141	78	322	5	27	17 0.6	<5	42	<55.	15	692 <	0 134	24	9 2	<20 <	20	16 2.5	56 2.	04 0.8	so o. c	01 0.	36 3	0 11	4	12	<1	6	<10	0.16	<1
3+00s 175E	14	3	0.22	<.2	179	11	84	3	33	14 <.2	<5	14	<53.	23	370 <	0 71	30	49	<20 <	20	15 1.	53 0.	98 0.4	8 0.0	01 0.	08 2	46	3	10	<1	<5	<10	0.11	<1
3+00\$ 200E	10)	5.88	<.2	183	18	133	5	32	12 0.5	<5	31	<5 3.	97	571 <	0 114	36	53	<20 <	20	19 1.8	88 1.	17 0.8	3 0.0	D1 0.	11 3	29	4	11	<1	<5	<10	0.10	<1
3+00\$ 225E	<5	5 1	5.42	<.2	182	21	88	3	34	16 <.2	<5	24	<5 3.	73	595 <	0 74	43	65	<20 <	20	19 1.9	941.	42 0.4	9 0.0	01 0.	10 2	07	5	13	<1	<5	<1 0	0.13	<1
3+00\$ 250E	10)	5.79	<.2	753	10	96	6	36	18 0.4	<5	21	<5 4.	53	623 <	0 94	32	57	<20 <	20	39 2.4	49 1.	54 0.6	51 0.0	01 0.	13 2	4 18	4	19	<1	8	<10	0.03	<1
3+00s 275e										22 <.2																			38	<1	17	<10	<.01	<1
3+00s 300E	<5	5 2	5.33	<.2	173	10	58	4	23	10 <.2	<5	24	<5 4.	07	394 <'	0 99	35	62	<20 <	20	16 1.4	87 0.	94 0.2	26 0.0	01 0.	13 14	45	5	8	1	<5	<10	0.15	<1
3+00s 325E					316					12 <.2																	56		15	<1	<5	<10	0.18	<1
3+00S 350E	<5	;	5.58	<.2	543	10	84			14 <.2																	48	5	12	<1	<5	<10	0.10	<1
3+00S 375E	35	i 2	0.72	<.2	255	12	72	4	28	14 <.2	<5	33	<5 4.	09	473 <	0 80	38	64	<20 <	20	14 2.1	12 1.	30 0.2	28 0.0	01 0.	14 1	35	5	11	<1	<5	<10	0.16	<1
3+005 400E	6	5 1	5.08	<.2	399	9	62	4		14 <.2																							0.11	
3+00S 425E	<5	;	5.24	<.2	500	7	55			12 <.2																							0.10	
3+00\$ 450E				-	·					16 <.2																								

.

Intertek Testing Services Bondar Clegg

Geochennical Lab Report

CLIENT: MR. STEVE TR REPORT: V98-01534.0		Έ)							-						D	ATE	RECE	VED	: 26	- AUG	-98	D	ATE P	RINTE	D: 7	-SEP-9	98	PAGE		PROJ OF 5	-	: AR	SENAL	JLT	
	au30 Au 3 PPB	÷											Fe PCT										•		Na PCT			Y PPM		Li PPM					Zr PPM
ANALYTICAL BLANK	<5	- <.2	<1	<2	<1	<1	<1	<1	<.2	<5	<5	<5	<.01	<1	<10	<1	<1	<1	<20	<20	<1	<.01	<.01	<.01	<.01	<.01	<1	<1	<2	<1	<1	<5	<10	<.01	<1
ANALYTICAL BLANK	<5	- <.2	<1	<2	<1	<1	<1	<1	<.2	<5	<5	<5	<.01	<1	<10	<1	<1	<1	<20	<20	<1	<.01	<.01	<.01	<.01	<.01	<1	<1	<2	<1	<1	<5	<10	<.01	<1
ANALYTICAL BLANK	<5		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Number of Analyses	3	- 2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Mean Value	3	- 0.1	0.5	1	0.5	0.5	0.5	0.5	0.1	3	3	3	.005	0.5	5	0.5	0.5	0.5	10	10	0.5	.005	.005	.005	.005	.005	0.5	0.5	1	0.5	0.5	3	5	.005	0.5
Standard Deviation	-		-	-		-	-		-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Accepted Value	50.	.005 0.2	1	2	1	1	1	1	0.1	2	5	5	0.05	1	.01	.01	1	1	.01	.01	.01	<.01	<.01	<.01	<.01	<.01	.0 1	.01	.01	.01	.01	.01	.01	<.01	.01

Gannet Ref.Material	374	31.20	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	•	-	-	-	-	-	•	-	-	-	-	-	-	-
Number of Analyses	1	1	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Mean Value	374	31.20	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Standard Deviation	-	-	-	~	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Accepted Value	410	-	-	-	-	-	-	-		-	•	-	•	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
			. ,	47/		175	- 4-	4 7					477 47	750		F 400							· -		• • • •			-	20		-		• •	
STD GEOCHEM STD 6	-	Ű	.4	136	16	122	2 12	נ ו: י	2 <.2	<51	21	<s (.<="" th=""><th>. 17 1.</th><th>352 <</th><th>10</th><th>5 182</th><th>40</th><th><20</th><th><20</th><th>11</th><th>.84 /</th><th>2.08</th><th>3.15</th><th>0.01</th><th>0.04</th><th></th><th>3</th><th>2</th><th>20</th><th><1</th><th>1</th><th>ាប <</th><th>01</th><th><1</th></s>	. 17 1.	352 <	10	5 182	40	<20	<20	11	.84 /	2.08	3.15	0.01	0.04		3	2	20	<1	1	ាប <	01	<1
Number of Analyses	-		1	1	1	1	1	1	1 1	1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	· 1	1	1	1	1	1	1	1	1	1
Mean Value	-	- 0	.4	136	16 '	135	2 12	1 3	2 0.1	31	27	37.	.17 13	352	5	5 182	46	10	10	11	.84 2	2.68	3.75	0.01	0.04	77	3	2	20 (0.5	7	5.	.005 (0.5
Standard Deviation	-	-	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Accepted Value	-	- 0	.2	148	20 1	148	4 13	53	5 0.2	11	45	17.	.20 14	450 0.	.2	6 170	50	5	12	- 1	.80 2	2.70	4.00	0.01	0.04	70	3	-	24	2	6	1.	003	5
Denne Def Maraziak	7507	77 54																																
Gannet Ref.Material	2507	32.51	-	-	-	-	-	-		-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Number of Analyses	1	1	-	-	-	- -	-	-		-	-	-	-	-	-	 	-	-	-	-	- -	-	-	-	-	-	-	- -	-	- -	-	-	-	-
	2507 1 2507	1	- -	-	- -	- - -	- - -	- -		• • -	- - -	•	-	- -	-	 	-	-	- - -	- -	- -	- - -	-	-	- -	-	- - -	- - -	- -			- - -	- - -	- -
Number of Analyses	1	1	- - -	- - -	- - -	- - -	-	- - -		• • •	- - -	• • -	- - -	- - -	- - -	 	- - -		- - -	- - -	- - -	- - -	- - -	-	- - -	- - -	- - -	- - -	- - -	• • •	- - -	- - -	- - -	- - -
Number of Analyses Mean Value	1	1		• • •	- - - -	- - - -	-	- - -	 	- - -		- - -	-	-	-	 	-	-	- - - -	- - - -	- - -	-	•	- - -	- - -	- - -		- - - -	-		• • • •	-	- - -	
Number of Analyses Mean Value Standard Deviation Accepted Value	1 2507 - 2520	1 32.51 - -	• • •				-	-		-		- - -	-	-	-	 	-		- - -		-	-	-	- - -	- - -	-	- - -	- - -	-	• • •	- - -	-	- - -	-
Number of Analyses Mean Value Standard Deviation Accepted Value Gannet Ref.Material	1 2507 -	1 32.51 - -	-			- - - -	-	- - -	 	- - -	-	-	-		-	· · · · · · · · · · · · · · · · · · ·	-		- - -			-	-	- - -	- - -	-		- - - -	-	- - -	- - -	-		-
Number of Analyses Mean Value Standard Deviation Accepted Value	1 2507 - 2520	1 32.51 - - 30.29 1					-	- - -		-	-		-		-	 	-					-	-	- - -	- - -	-			-	- - -	- - - -	-	- - -	
Number of Analyses Mean Value Standard Deviation Accepted Value Gannet Ref.Material	1 2507 - 2520	1 32.51 - - 30.29 1	• • • •				-			- - - -	-	- - - -	-	- - - -	-	· · ·	-			-		-	-	-	- - - -	-			-	- - - -	- - -	-		-
Number of Analyses Mean Value Standard Deviation Accepted Value Gannet Ref.Material Number of Analyses	1 2507 - 2520 980 1	1 32.51 - - 30.29 1	•			-	-	-	 	-	-			•	-	 				-	-	-	-	-					-	- - - -	- - - -			-

	S		nte					sti	in	g	• S	er	V	• ic	es	4		ſ	ł		1		1		l		l	l		8		*		Ge La Re		ort	mic	al
CLIENT: MR, STEVE REPORT: V98-01534.			Έ)													DA	ATE R	ECEI	VED :	26-7	AUG-	98	DA	te pr	INTEC		-SEP-S	78 F	AGE	4 0	ROJE(F 5	27:	ARSE	NAUL	.Τ			
	ENT AL	LIZO ALI PPB	Wt1 A GM PP	-	CU P PM PP	b Zn MPPM	Mo PPM		Co PPM I			-	Sb PPM	Fe PCT			Ba PPM		-	Sn PPM		La PPM	AL PCT	Mg PCT	Ca PCT			sr PPM I		Ga PPM P			SC IPM F	Ta PPM		Zr PPM		
CANMET STREAM-SED Number of Analyses	6	-	- <. -	2 :	383 1	5162 11	2 1	20 1	15 (1	0.7 1	<5 1	20 1	<5 : 1	3.81 1	3612 1	<10 1	269 1	27 1	47 1	<20 1	<20 1	21 1	1.26 1	0.87 1	1.80 1	0.03 1	0.08 1	30 1	24 1	2 1	9 1	<1 1	<5 < 1	<10 (1	0.04 1	<1 1		
Mean Value Standard Deviation Accepted Value		- - -	- D. - - D.	-	-	5 162 4 165	-	20 - 18	15 (- 14 (-	3 - -	20 - 17	•	-	3612 - 3740	-	269 - -	-	47 - 47	10 - -	10 - -	21 - -	1.26 - -	0.87 - -	1.80 - -	0.03 - -	0.08 - -	30 - -	24 - -	2 - -	90 - -	.5 - -	3 - -	5 - -	D.04 - -	0.5 - -		

,

`

	ГS		ate: ond					sti	ng	• S	lei	• rvic	es	¢			L		8		1	2		•		i			•			*	L	ab ab)	hemical rt
	STEVE TRAYNOR -01534.0 (COMF		,											DA	דב ם	5751	VED:	26.	AUC.	.08	م		PRINI		7-0	ED-0	10	PAGE				AR	SENA	ULT		
	-01554.0 (CUM	LEIE	, .										•	UA	IE K	EUEI	VED:	20.	AUG		U		PKINI	EU:	1-2	CP->		PAGE	2		•					
SAMPLE NUMBER	ELEMENT AU30 UNITS PPB					Zn PPM P			Co Co PM PPM		As PPM	Sb Fe PPM PCT	Min PPM F				V PPM	Sn PPM				M PC			Na °CT		Sr PPM	•					: Ta IPPM			
0+00N 125E	<5	5.3	4 <.2	300	95	509	2	30	19 1.1	<5	19	<5 4.14	849 -	:10	97	52	66	<20	<20	18	2.34	1.8	3 1.1	60.	02 0	. 18	40	19	4	16	1	20	<10	0.1	4	<1
Duplicate			<.2	310	99	532						<5 4.32																		17	3	21	<10	0.1	4	<1
2+00\$ BL	\$	15.0	1 <.2	58	14	67	2	37	16 <.2	<5	18	<5 3.82	462 -	:10	11 1	41	53	<20	<20	22	2.07	1.2	0 0.5	53 0.	02 0	. 13	24	11	4	11	<1	<5	<10	0.1	4	1
Duplicate	11	5.3	7																																	
2+005 100E	21	25.6	6 <.2	579	11	97	3	40	20 0.3	<5	15	<5 4.31	500 ·	:10	110	34	52	<20	<20	29	2.28	1.5	5 0.5	58 0.	02 0	.18	20	14	4	12	<1	5	<10	0.1	3	<1
Duplicate			<.2	580	12	98	3	40	19 <.2	<5	16	<5 4.32	502 ·	:10	108	35	52	<20	<20	28	2.25	1.5	5 0.5	57 0.	01 0	.18	19	14	4	12	1	5	<10	0.1	2	<1
2+00s 450E	10	30.9	7 <.2	83	8	63	2	27	11 <.2	ر ې	22	<5 3.07	459 -	<10	83	30	49	<20	<20	15	1.69	0.9	8 0.3	52 0.	01 0	.13	15	6	4	9	<1	<5	<10	0.1	1	<1
Duplicate	<5	5.4	4																																	
3+00s 125E	4	25.5	6 <.2	135	19	124	4	24	12 0.2	<5	19	<5 3.42	470 ·	:10	71	25	52	<20	<20	14	1.70	1.1	4 0.5	59 0.	01 0	.11	22	7	3	11	<1	<5	<10	0.1	1	<1
Duplicate			<.2	134	19	125	3	24	12 0.3	<5	19	<5 3.43	481 -	:10	73	25	53	<20	<20	14	1.71	1.1	5 0.6	50 0.	01 0	.12	22	7	3	11	<1	<5	<10	0.1	1	<1
3+00\$ 350E Duplicate	÷	5.5 5.5		543	10	84	6	35	14 <.2	<5	39	<5 4.22	562 ·	:10	120	42	60	<20	<20	24	2.34	1.3	9 0.3	51 0.	01 0	. 15	14	8	5	12	<1	<5	<10	0.1)	<1

Intertek Testing Services Bondar Clegg

+

+

Ϋ́,

* 1

PTI

.

Geochemical Lab Report

MR. STEVE TRAYNOR BOX 4375 WHITEHORSE, YUKON Y.A 3T5 + +

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C., V7P 2R5, (604) 985-0681

ITS Intertek Testing Services Bondar Clegg

Geochemical Lab Report

REPORT: V98-01746.0 (COMPLETE)

CLIENT: MR. STEVE TRAYNOR

PROJECT: ARSENAULT

REFERENCE:

SUBMITTED BY: S. TRAYNOR

DATE RECEIVED: 24-SEP-98 DATE PRINTED: 6-OCT-98

1

DATE APPROVED ELE	EMENT	NUMBER OF ANALYSES	LOWER Detection	EXTRACTION	METHOD	DATE APPROVED	ELEMENT	NUMBER OF ANALYSES	LOWER DETECTION	EXTRACT I	ON	METHOD
981005 1 Au30	Gold	12	5 PPB	Fire Assay of 30g	30g Fire Assay - A	A 981005 37	SiO2 Silica (SiO2)	5	0.01 PCT	BORATE FUS	TON	INDUC. COUP. PL
981005 2 Au Wt		12	0.01 GM	FIRE ASSAY	FIRE ASSAY-AA	981005 38			0.01 PCT	BORATE FUS		INDUC. COUP. PL
981005 3 Ag	Silver	12	0.2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASH			•	0.01 PCT	BORATE FUS		INDUC. COUP. PL
981005 4 Cu	Copper	12	1 PPM	HCL:HN03 (3:1)			Fe203* Total Iron (Fe		0.01 PCT	BORATE FUS		INDUC. COUP. PL
981005 5 Pb	Lead	12	2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASH			-	0.01 PCT	BORATE FUS		INDUC. COUP. PL
981005 6 Zn	Zinc	12	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM	A 981005 42	MgO Magnesium (MgC) 5	0.01 PCT	BORATE FUS		INDUC. COUP. PL
981005 7 Mo	Molybdenum	12	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASH	A 981005 43	CaO Calcium (CaO)	5	0.01 PCT	BORATE FUS	ION	INDUC. COUP. PL
981005 8 Ni	Nickel	12	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM	A 981005 44	Na2O Sodium (Na2O)	5	0.01 PCT	BORATE FUS	ION	INDUC. COUP. PL
981005 9 Co	Cobalt	12	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM	A 981005 45			0.05 PCT	BORATE FUS	ION	INDUC. COUP. PL
981005 10 Cd	Cadmium	12	0.2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM				0.03 PCT	BORATE FUS	ION	INDUC. COUP. PL
981005 11 Bi	Bismuth	12	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM				0.05 PCT	Ignition 1	000 Deg.	GRAVIMETRIC
981005 12 As	Arsenic	12	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM	A 981005 48	Total Whole Rock Tot	al 5	0.01 PCT			
981005 13 Sb	Antimony	12	5 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM				0.01 PCT	BORATE FUS		INDUC. COUP. PL
981005 14 Fe	Iron	12	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASP			5	10 PPM	Pressed Pe	llet	XRAY FLUORESCEN
981005 15 Mn	Manganese	12	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASH			5	1 PPM	Pressed Pe		XRAY FLUORESCEN
981005 16 Te	Tellurium	12	10 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASH			5	1 PPM	Pressed Pe		XRAY FLUORESCEN
981005 17 Ba	Barium	12	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASH			5	2 PPM	Pressed Pe		XRAY FLUORESCEN
981005 18 Cr	Chromium	12	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM	A 981005 54	Zr Zirconium	5	1 P PM	Pressed Pe	llet	XRAY FLUORESCEN
981005 19 V	Vanadium	12	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASH	A 981005 55	Rb Rubidium	5	2 PPM	Pressed Pe	llet	XRAY FLUORESCEN
981005 20 Sn	Tin	12	20 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM	À.						
981005 21 W	Tungsten	12	20 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM	À						
981005 22 La	Lanthanum	12	1 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM	A SAMPLE TY	(Pes Number	SIZE FRAC	TIONS	NUMBER	SAMPLE PR	EPARATIONS NUMB
981005 23 Al	Aluminum	12	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASM	A	· • • • • • • • • • • • • • • • • • • •					
981005 24 Mg	Magnesium	12	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASM	A R ROCK	12	2 -150			CRUSH/SPL TOTAL SAM	IT & PULV.
981005 25 Ca	Calcium	12	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASM	Å						
981005 26 Na	Socium	12	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASM							
981005 27 K	Potassium	12	0.01 PCT	HCL:HNO3 (3:1)	INDUC. COUP. PLASM		PIES TO: BOX 4375			INVOICE TO	. ROX 437	5
981005 28 Sr	Strontium	12	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM	+				INVOICE TO		
981005 29 Y	Yttrium	12	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM		*******	*******	*****	********	*******	*****
981005 30 Ga	Gallium	12	2 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM		This report must not	be reproduc	ed except in	full The d	ata prese	nted in this
	-						report is specific t	o those samp	les identifi	ed under "Sa	mple Numb	er" and is
981005 31 Li	Lithium	12	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM		applicable only to t	he samples a	s received ex	xpressed on	a dry bas	is unless
981005 32 Nb	Niobium	12	1 PPM	HCL:HN03 (3:1)	INDUC. COUP. PLASM		otherwise indicated					
981005 33 Sc	Scandium	12	5 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASM	ņ.	*****	******	******	******	*******	******
981005 34 Ta	Tantalum	12	10 PPM	HCL:HNO3 (3:1)	INDUC. COUP. PLASH							
981005 35 Ti	Titanium	12	0.01 PCT	HCL:HN03 (3:1)	INDUC. COUP. PLASH							
981005 36 Zr	Zirconium	12	1 001	HCL:HN03 (3:1)	INDUC. COUP. PLACH	Å						
						:						

	TS		ite:					st	ing	S	bei	rv	ice	S							4				E		E			2	La			ncal	
-	2. STEVE TRAYNOR 28-01746.0 (COMF	PLETE)												DATE	RECEI	VED	: 24-	SEP-9	8	DATE		NTED:	6-00	CT-98	PAG	F 1		DJECT		RSENAUL	T			
SAMPLE	ELEMENT AU30			с. Ст.	 рь	7-	 Ma		Co Cd		As	6 h	Fe	• •••																		···· ··· ·	··· ··		
NUMBER	UNITS PPB		÷						PPM PPM									V S PM PP				Mg PCT				sr PPM PI		Ga IPM F	- ·		SC Ta PPM PPM			SiO2 TiO PCT PC	
98R398	10	31.3	1 <.2	43	5	10	18	31	12 <.2	<5	<5	<5	1.70	315 •	<10	13 15	i 3 a	28 <2	<u>ہ</u> ح	12	0.92	0.33	1.04	0.03	0.16	13	6	<2	3	2	<5 <10	0.08	27	2.23 0.4	
98R399	7	32.20) <.2	84	5	18	5	53	24 <.2	<5	38	<5	4.54	185 <	<10	39 12	22 3	37 <2	0 <20	14	1.38	0.81	0.52	0.04	0.50	16	8	<2	7	2	<5 <10	0.08	5 6	5.35 0.8	
98R400	9	31.40	5 <.2	518	7	16	4	20	31 <.2	<5	<5	<5	3.12	154 <	<10	40 10)7 3	31 <2	0 <20	7	1.66	0.57	1.15	0.04	0.30	7	5	<2	3	3	<5 <10	0.11	1		
98R401	25	15.8	2 2.1	4689	11	32	5	13	13 <.2	<5	7	<5	>10.00	209 <	<10	93	۰ ک	<1 <2	0 <20	9	0.47	0.24	1.55	0.03	0.05	35	6	<2	<1	2	<5 <10	0.05	13	5.06 0.3	
98R402	23	15.39	7 1.3	1970	12	23	6	15	88 <.2	<5	9	<5	>10.00	185 <	<10	4 5	5	<1 <2	0 <20	18	0,42	0.18	1.12	0.04	0.06	25	5	<2	<1	3	<5 <10	0.05	<1		
98R403	34	15.0	5 2.4	4325	12	28	5	12	15 <.2	<5	48	<5	>10.00	303 <	<10	73	i5 ·	<1 <2	0 <20	4	0.61	0.32	5.10	0.02	0.03	84	7	<2	<1	3	<5 <10	0.04	2		
98R407	307	30.8	5 4.2	9099	13	19	3	2	2 0.4	10	<5	<5	1.59	154	10	<1 1	3 -	<1 <2	0 <20	3	0.05	0.58	0.74	0.02	<.01	3	2	2	<1	2	<5 <10	0.01	4 5	2.93 0.0	
98R408	7	32,10) <.2	656	4	43	2	7	3 <.2	<5	<5	<5	2.35	1021 <	<10	4 10)7	3 <2	0 <20	3	0.24	0.32	4.05	0.03	0.02	60	3	<2	<1	2	<5 <10	0.01	<1 7	3.58 0.0	
98R147	121	31.05	\$ 2.7	9772	14	93	34	11	33 0.6	<5	<5	ৎ	8.49	609 <	<10	358	37	4 <2	0 <20	2	0.25	0.08	2.55	0.01	0.02	14	3	<2	<1	3	<5 <10	0.02	2		
98R404	1729	31.13	5 1.1	5901	10	14	1	5	3 <.2	<5	<5	\$	1.41	57 <	(10	393	19	12 <2	0 <20	<1	0.44	0.44	0.21	0,02	0.04	3	:1	<2	3	Z	<5 <10	0.02	<1		
98R405	817	31.90	0.7	4349	8	12	1	5	4 <.2	<5	ح	<5	1.37	59 <	<10	33 4	6 1	12 <2	0 <20	<1	0.45	0,43	0.10	0.02	0.03	3	1	<2	3	1	<5 <10	0.02	<1		
98R406	1360	32,94	6 0.9	3577	7	13	<1	5	5 <.2	· <5	<5	4	1.43	92 <	:10	22 4	4 1	18 <2	Ø <20	1	0.68	0.73	0.14	0.01	0.03	5	1	~2	4	2	<5 <10	0.02	<1		

,

.

		Inte Bone					• ting	s S	erv	• ice	es I		4		ť	•		t	ł		1	ł	Geochem Lab Report	lcal
	98-01746.0 (COMPLI	ETE)									DA	TE RE	CEIVE	ED: 24	-\$EP-98	DATE	PRINTE	D: 6-C	CT-98	PAGE	Proje 1B(2/		SENAULT	
SAMPLE NUMBER	ELEMENT A1203 (UNITS PCT		Mn0 PCT	Mg0 PCT			K20 P205 PCT PCT		Total PCT	Сг203 РСТ		• •		Zr PPM F								•		
988398 988399 988400 988401 988402	13.36	7.06 0	.04	1.80	2.16	1.12	1.74 0.14 3.85 0.08 0.18 0.20	4.44	100.15	0.03	662 19	4 20	10	237 1	27									
98R403 98R407 98R408 98R147 98R404	1.08 1.14						<.05 0.10 <.05 0.06						+	31 16	-									
98R405 98R406																								

.

Geocnemical t **Intertek Testing Services** Lab Report Bondar Clegg CLIENT: MR. STEVE TRAYNOR

REPORT: V98-01746.0 (COMPLETE)

PROJECT: ARSENAULT

1

DATE PRINTED: 6-OCT-98 PAGE 2A(3/ 8)

TANDARD ELEMENT	-	Auwt1 A GMIPP	•						Co PPM P					Fe PCT	Mn PPM	Te PPM							AL PCT	Mg PCT	Ca PCT					-							· SiC I PC	O2Ti CTF
NALYTICAL BLANK	<5		2	-1	0	-1	-1	<i>~</i> 1	<i>.</i> 1 <i>.</i>		~5	-5	-5	<0.01	-1	~10	~1	~1	-1	<u>~20</u> .	-20	<u>_1</u> .	e .01	<.01	< 01	< 01	< 01	-1	-1	0	-1	-1	-5	<10	~ 0'	1 ~1	. -0 î	01 ~
under of Analyses	1			4	1	1			1			1	1	1	1		1	1		1			1	1	1				1									1
ean Value	3	- 0.	•	<1	•	-		-	-1 0		•	3	3	<0.01	- <1	-		•				•	•	<.01	•	•								-				•
tandard Deviation	-				-		-		-		-	-	-	-	_				-		-	-	-	-	-	-	-	-	-		-	-	-	-	,		-010	-
ccepted Value	5	<0.01 0.	2	1	2	1	1	1	1 0	.1	2	5	5	0.05	1	<1	<1	1	1	<1	<1	<1 ·	<.01	<.01	<.01	<.01	<.01	<1	<1	<1	<1	<1	<1	<1	<.0	<1	<0.0	D1 <,
CC Au Std.8	1018	30.46	-	-	-	-	-	-	-	÷	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-				-
unber of Analyses	1	1		~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	_	+	-	-	-	-	,	· -		-
ean Value	1018	30.46	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-		• -		-
tandard Deviation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		. .	2	-
ccepted Value	10 7 0	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		• •		-
ANMET STD SY-3	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		. .	60.0	09 0.
umber of Analyses	-	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-	-	•	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-		• •		1
an Value	-	-	-	÷	-	-	-	-	-	٠	-	•	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	÷	-	-	-	-	-	-		• -	60.0	09 O.
tandard Deviation	-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-	-		· -		-
ccepted Value	-	-	-	17 1	33 2	244	-	-	-	-	•	-	<1	-	-	-	-	-	-	-	-	- (5.22	1.61	-	-	-	-	-	-	-	-	-	-			59.6	58 0.
oss on Ignition Std	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-				-
umber of Analyses	-	-	-	-	-	-	-	~	-	+	-	-	-	+	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-				-
ean Value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-		· -		-
tandard Deviation	-	-	-	÷	-	-	-	▪.	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	÷	-	-	-	-		• •		-
ccepted Value	-	-	-	•	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		• •		-
ANMET STREAM-SED	-	- 0.	3 !	59	15	85	z	22	10 <	.2	<5	11	<5	2.76	1108	<10	792	28	43	<20 <	<20	11	1.12	0.68	1.16	0.04	0.10	48	10	<2	8	-		<10	0.0	5 1		-
umber of Analyses	-	-	1	1	1	1	1	ļ	1	1	1	1	1	1	-					1				1				-	1	-		1	1	1	,	1		-
ean Value	-	- 0.	3	59	15	85	2	22	10 0	.1	3	11	3	2.76	1108	5	792	28	43	10	10	11	1.12	0.68	1.16	0.04	0.10	48	10	1	8	4	3	5	0.0	5 1		-
tandard Deviation	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-				-
ccepted Value	-	- 0.	3 (66	13	82	2	23	11 0	.6	-	11	4	2.60	1200	-	-	30	51	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-		-
ANMET SO-2 REF STD	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-		· -		-
umber of Analyses	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	+	-	-	-	-	-	•	-	-	-	-	-	-				-
ean Value	-	-	-	-	-	-	-	- '	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-				-
tandard Deviation	-	-	-	÷	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-	-	-	-				-
ccepted value	-	-	-	-	-	-	-	-	-	-	-	-	-	_	_	-	-	-	-		-		-	_		-	-					_		-			53.4	46

DATE RECEIVED: 24-SEP-98

		Int Bon					.11	ug	50	JI V .		o,											La Re	port
.IENT: MR. STEVE TRA PORT: V98-01746.0 (.ETE)											DATE	REC	EIVED	: 24	-SEP-98	DATE PR	INTED:	6-0CT-98	8 P/	F Age 2B(ARSENAULT	
· · · · · ·	· · · · · ·						• •		• •	• • • •													 	· ·· ·· ·· ··
TANDARD ELEMENT ME UNITS	AL2O3 PCT	Fe2O3* PCT	Mn0 PCT	Mg0 PCT) P205 PCT	LOI PCT	Total PCT		Ba PPM			Nic PPM F									
ALYTICAL BLANK	<0.01	<0.01	<.01	<0.01	<0.01	<.01	<.05	<.03	-	_	<0.01	-		_	-	-								
mber of Analyses	1	1	1						-	-	1	-	-	-	_	-	-							
an Value	<0.01	<0.01			<0.01	<.01	0.03	0.02	-	-	<0.01	-	-	-	-	-	-							
andard Deviation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-							
cepted Value	<0.01	<0.01	<.01	<0.01	<0.01	<.01	<.01	<.01	<0.01	<0.01	<0.01	<1	<1	<1	<1	<1	<1							
C Au Std.8	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-								
mber of Analyses	-	-		-	-	~	-	-	-	-	-	-	-	-	-	-	-							
an Value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-							
andard Deviation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-							
cepted Value	-	+	-	-	-	-	-	-	-	-	-	•	-	-	-	-	-							
WET STD SY-3	11.95	6.51	0.33	2.69	8.25	4.16	4.27	0.53	-	98.92	<0.01	-	-	-	-	-	-							
mber of Analyses	1	Ť.	1	1	1	1	1	1	-	1	1	-	-	-	-	-	-							
an Value	11.95	6.51	0.33	2.69	8.25	4.16	4.27	0.53	-	98.92	<0.01	-	-	-	-	-	-							
andard Deviation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-							
cepted Value	11.80	6.42	0.32	2.67	8.26	4,15	4.20	0.54	1.20	.	-	-	-	-	-	-	-							
ss on Ignition Std	-	-	-		-	-	-	•	4.38	-	-	-	-	-	-	-	-							
mber of Analyses	-	-	-	-	-	-	-	-	1	-	-	-	-	-	-	-	-							
an Value	-	-	-	-	-	+	-	-	4.38	-	-	-	-	-	-	-	-							
andard Deviation	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-							
cepted Value	-	-	-	-	-		-	-	4.24	-	-	-	-	-	-	-	-							
MET STREAM-SED	-	-	-	-	-	-	-	-	-	-	-	÷	-	-	-	-	-							
nber of Analyses	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-							
an Value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-							
andard Deviation	-	-	-	-	-	-	-	-	-	-	-	~	-	-	-	-	-							
epted Value	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-							
IMET SO-2 REF STD	-	-	-	-	-	-	-	-	-	-	-	1019 3	46	38	19 7	51	72							
nber of Analyses	-	-	-	-	-	-	-	· _	-		-				1									
an Value	-	-	-	-	-	-	-	-	-	-	_	, 1019 3												
andard Deviation				_	-	-	-	-	-	÷	-	-		~	17 8									
											_	-	•		-	-	-							

6

1

.

.

1

.

.

.

IT	S		In Bo	nte n	er da	te r C	k Cle	T gg	es g	sti	in,	g	Se	er	vi	ce	S																			Lat Rep	por por		1110	cal
CLIENT: MR. STEVE REPORT: V98-01746			FTF	`															REC	EIVE		- 550	-08		DATE	DDTN	TCN .	6-00	90-T	DA	CE.	PR 3A(RSENA	WLT				
	(,																		- 9Ch	- 70		UNIE	PRIN		0°U		P#	\UC	5A(
STANDARD ELEM	IENT A	u30 /	Au Wt	1 /	Ag	Cu	Pb	Zn	Mo	Ni	Co	Cd	Bi ,	As :	Sb	Fe	Mn	Te	Ba	Cr	v	Sn	W	La	Al	Mg	Са	Na	κ	Sr	Ŷ	Ga	Li	Nb	Sc	Ta	Ti	Zr	\$i02	? TiO
NAME UN	IITS	PPB	G	M PI	PM I	P PM F	PPM I	PPM -	PPM F	P PM F	PPM F	PM P	PM P	PM PI	M	PCT	PPM	PPM	PPM	PPM I	PPM F	PPM F	PPM P	PM	PCT	PCT	PCT	PCT	РСТ	PPM	PPM	PPM	PPM	PPM	PPM F	PM	PCT	PPM	PCT	PC
Granite - Cert.Re	ef.M	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Number of Analyse	s	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Mean Value		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
Standard Deviatio	n	-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	*	-	-	-	-	-	~	-	-	-	
Accepted Value		-		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	

.

L , L		1					•	ł		ł	4	1				1	ł		1		chemical
. 67			Int	erl	tek	Teo	sting	Se	>rv	ice	20									Lah	chennear
							oung	, 01		IUC	23									Lab	
			Bon	dar	· Cle	egg														Rep	ort
CLIENT: MR	. STEVE TR/	YNOR																	PRO.IF	ECT: ARSENAULT	
REPORT: V9	8-01746.0	COMPLE	ETE)								DAT	E RECEIV	VED: 24	-SEP-98	DATE PR	INTED: 6	-OCT-98	PAG	E 3B(6/		
											•						••• •• •••				
STANDARD	ELEMENT	AL203 F	'e203*	MnO	MgO	CaO Na20	K20 P205	LOI	Total	Cr203	Ba Sr	Y N	b Zr I	Rb							
NAME	UNITS	PCT	PCT	PCT	PCT	PCT PC1	PCT PCT	PCT	PCT	РСТ	PPM PPM	PPM PP	M PPM P	PM							
Granite -	Cert.Ref.M	-	-	-	-		÷ -	-	_	-	1456 577	12 2	3 232 11	88							
Number of a	Analyses	-	-	-	-			-	-	-	1 1	1	1 1	1							

- 1456 577 12 23 232 188

- 1400 570 14 21 235 185

- -

.

- - - -

-

-

.

-

.

Mean Value

Standard Deviation

Accepted Value

-

.

--

-

-

-

-

.

_

. --

-

IENT: MR. STEVE TR	AYNOR	Βι	mu	ar (_16	;gg	5																								Kŧ	pc	rt		
PORT: V98-01746.0		PLETE)											DATE	RECE	IVED	: 24	-SEP-9	8	DATE	E PRI	NTED:	6-0	XCT-98	3 P#	GE	PR 4A(CT: # 3)	\RSE	NAUL	т			
MPLE ELEMENT MBER UNITS			-	Cu PPM	PD PPM I				 	As PPM P		Fe PCT	Min PPM 1		Ba PPM P		V : PM Pi		La PPM	AL PCT	Mg PCT				(Sr PPM)	Y PPM	Ga PPM		Nb PP M			• • •	Zr PPM	SiO PC	р2Т Т
R398 ep Duplicate plicate		31.3 30.9		-	-		. –	12 < 11 <	 -	-	<5 <5		315 - 308 -														<2 <2	-	-			0.08 0.09	-	72.2 75.3	

Bondar-Clegg & Company Ltd., 130 Pemberton Avenue, North Vancouver, B.C.	, V7P 2R5, (604) 985-0681
--	---------------------------

			Int Bor					t11	ng	Se	erv	ice	es														Geochemica Lab Report
CLIENT: MR. ST REPORT: V98-01	746.0 (LETE)											DATE	RECE	IVED:	24-	SEP-98	Di	ATE PRI	NTED:	6- 0C	T-98	PAGE	PROJE 4B(8/		RSENAULT
SAMPLE E	LEMENT	A1203	Fe203*	MnO	MgO	CaO	Na20	K20	P205	LOI	Total	Cr203	8a	Sr	Y	Nb Zi	~ D								* * * **	· · ·	
UMBER	UNITS	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT	PCT					PM PP											
8R398		7.70	4-55	0.28	2.77	6.16	0.58	1.74	0 14	1 50	98.12	0.07	186	127		11 0	, ,										
rep Duplicate		7.69									<i>JU. 12</i>		193				35 25	•									
ouplicate										1.48																	
98R407		1.08	12.77	0.28	16.89	11.76	0,45	<.05 (0.10	1.97	98.31	<0.01	<10	15	4	3 31		2									

Duplicate

.

APPENDIX D

PETROGRAPHIC (THIN SECTION) REPORT for Steve Traynor

Prepared by K.E. Northcote & Associates for Vancouver Petrographics October 13, 1998

]

at form

fax From: To: Date: Oct 8 1998 Number of Pages: 8 Bruce Northcote teve Traynor Phone: (604) 859-4618 (for Vancouver 67) 667-6784 Fax: (604) 859-4619 Petrographics) Remarks: Dear Steve, The following is a fax copy of petrographic descriptions for your samples 98R375, 376, 396, 407. A hard copy will follow via courier with photomicrographs and your thin sections and offcuts. To guickly respond to some of your questions, 375 and 376 both look like intermediate to mafic metavolcanics, although 376 has abundant quartz, which may have been introduced - textures in the quartz are more consistent with veins than quartzite, chert or purely metamorphic segregations. The copper mineralization in 396 consists of malachite, which occurs in late veinlets. I could not find primary Cu minerals. Several of the samples contain late carbonate and chlorite, and in one case K-spar veinlets which cut across the metamorphic fabric, but the chalcopyrite (where present) shows no obvious relationship to these and appears to belong to an earlier phase of mineralization. All of the samples have been affected to some degree by shearing. Please feel free to contact me with any guestions of concerns. Sincerely. uc Nattoo Bruce Northcote

[1] 98R375 Greenstone (→amphibolite)

Summary description

Metamorphic rock consisting mainly of actinolite and plagioclase with lesser chlorite, quartz, and epidote. At least two generations of carbonate can be identified – one parallel to fabric, which has undergone some deformation, and late crosscutting microveins. Chlorite is also observed in late crosscutting veins. Plagioclase is overprinted with fine sericite and locally partly replaced by carbonate.

Copper mineralization consists of finely scattered chalcopyrite, some of which is enclosed by plagioclase, quartz, epidote, and amphibole and is not obviously related to the late veining.

Protolith was probably an intermediate volcanic.

Microscopic description

Transmitted light

1

1

Plagioclase; 45-50%, anhedral (0.01 to 1.0 mm). Interlocking plagioclase in roughly lensoidal segregations (affected by shearing). Has a strong dusting of sericite alteration. Some local carbonate replacement. Myrmekitic intergrowths of quartz noted locally.

Amphibole (tremolite-actinolite); 25-30%, euhedral to subhedral (0.01 to 1.0 mm). Elongate laths with planar preferred orientation. Thin metamorphic segregations developed, disrupted by shearing. Very pale green pleochroic, maximum extinction angle 17°, biaxial (-) with moderately high 2V. Properties consistent with tremoliteactinolite.

Carbonate; most occurs in irregular veinlets in amphibole segregations, following the overall fabric, but a few carbonate (+quartz) microveins run perpendicular to the fabric and crosscut the previous generation. Most of these microveins have undergone some minor, local deformation. Chlorite is commonly associated [carbonate reacts with cold, dilute HCI -- calcite].

Sericite; <5%, anhedral (microcrystalline). Strong dusting of sericite alteration in plagioclase.

Quartz; 3-5%, anhedral (0.05 to 0.5 mm). A few quartz lensoids parallel to fabric and some quartz is intermixed with the plagioclase. Some elongate "segregations" parallel to fabric may represent deformed veins. Generally the quartz is strongly strained in these, compared to that interlocking with the plagioclase.

Chlorite; 2-3%, anhedral (<0.01 to 0.8 mm). Most is coarse, oriented parallel to foliation, but some is in veins cutting across the metamorphic fabric.

[1] Continued

Epidote; <1%, anhedral (0.01 to 0.1 mm). Sparse epidote, mainly in plagioclase.

Biotite; traces, anhedral (0.05 to 0.1 mm). Pale reddish-brown flakes in plagioclase segregations, oriented parallel to fabric.

Tourmaline; trace, subhedral (0.2 mm). Very sparse. Brownish-green core and pale rims.

<u>Veins</u>:

ł

Carbonate veins as noted above; both parallel to fabric and minor late, crosscutting microveins which cut amphibole, plagioclase crystals and earlier fabric-parallel carbonate. Some chlorite and quartz associated.

K-feldspar; a veinlet containing K-feldspar (<1.0 mm wide) is observed cutting across the fabric in the stained offcut.

Reflected light

Sphene; 1-2%, anhedral to euhedral (<0.01 to 0.1 mm). Scattered throughout. Some encloses rutile.

Rutile; \leq 1%, anhedral (<0.01 to 0.1 mm). Scattered crystals, commonly enclosed by sphene.

Hematite; traces, anhedral (<0.01 to 0.1 mm). Hematite with chlorite, carbonate, and quartz in a deformed, discontinuous vein (?), parallel to overall fabric.

Chalcopyrite; traces, anhedral (<0.01 to 0.1 mm). Scattered diffuse clusters. Most in plagioclase and quartz but also observed in amphibole. Some is enclosed by euhedral, unaltered grains of amphibole.

Pyrite, euhedral (0.01 mm). Very sparse.

[2] 98R376 Greenschist

Photomicrograph 98R XXII 17 Reflected light Scale 0.1 mm______ Pictured: Malachite occupies cavity in chalcopyrite. Blue mineral is covellite.

Summary description

Slivers of greenschist alternate with bands of quartz. The greenschist portion of the sample consists of plagioclase, epidote, chlorite, calcic clinoamphibole, and remnants of biotite. Chlorite and amphibole produce a weak foliation. Protolith was probably a mafic to intermediate volcanic or intrusive.

Quartz bands consist of interlocking quartz with widely varying grain size. Generally without crystalloblastic texture. Most is strained. Possibly originally veins(?).

Copper mineralization consists of interstitial chalcopyrite in quartz-rich portions, and unevenly disseminated chalcopyrite in greenschist "slivers." Some alteration of chalcopyrite to covellite.

[2] Continued

Microscopic description

Transmitted light

Quartz; 60-65%, anhedral (<0.01 to 2.0 mm). Interlocking quartz in lenses or deformed veins alternating with bands of feldspathic material. Quartz ranges from strongly to weakly strained. Some recrystallization has occurred around grain edges. Lesser quartz is intermixed with plagioclase in the feldspathic / chloritic segregations. Quartz bands probably represent introduced material rather than purely metamorphic segregations, based on texture (generally not crystalloblastic).

Chlorite; 5-7%, anhedral to subhedral (0.01 to 1.0 mm). Ragged bladed chlorite intermixed with plagioclase, epidote, and amphibole. Chlorite has a very rough preferred orientation which contributes to foliation. Observed partially replacing biotite in some cases.

Amphibole; 3-5%, anhedral to subhedral (<0.01 to 2.0 mm). Ragged amphibole laths have very rough preferred orientation in slivers of greenschist. Green to pale brown pleochroic, biaxial (+) interference figures obtained -- probably hornblende.

Epidote; 3-5%, anhedral (<0.01 to 2.0 mm). Irregular grains of epidote with chlorite and amphibole.

Biotite; <0.5%, subhedral (0.01 to 0.5 mm). Partly (largely) replaced by chlorite. No preferred orientation discerned.

Sericite / muscovite; <1%, anhedral (microcrystalline to 0.1 mm). Plagioclase is dusted with sericite alteration. Very minor coarser colourless mica occurs with biotite.

Malachite; trace, anhedral (<0.05 mm). Alteration of chalcopyrite.

Reflected light

Chalcopyrite; 1-2%, anhedral (<0.01 to 0.5 mm). Coarse and interstitial in quartz-rich portion of sample and irregularly disseminated in greenschist portion of sample. Some associated with lesser pyrrhotite.

Rutile; traces+, anhedral (<0.01 to 0.2 mm). Scattered grains, mainly in greenschist portions of section.

Pyrite; traces+, anhedral to euhedral (0.01 to 0.5 mm). Sparsely disseminated, mainly in greenschist slivers.

Pyrrhotite; traces, anhedral (0.01 to 0.2 mm). Sparse, associated with chalcopyrite

[2] Continued

Covellite; traces, anhedral (<0.01 to 0.1 mm). Alteration of chalcopyrite.

Unknown; traces, anhedral (≤0.01 mm). Alteration product of chalcopyrite, with covellite. Bluish-grey colour. Too fine for reliable identification. Possibly chalcocite.

Hematite; traces+, anhedral (<0.01 to 0.1 mm). Locally forms rims around chalcopyrite and pyrite.

[4] 98R407 Amphibolite

Photomicrograph 98R XXII 19 Reflected light Scale 0.1 mm ______ Pictured: Euhedral amphibole enclosed by chalcopyrite; sphalerite rims on chalcopyrite

Summary description

Consists largely of green pleochroic amphibole laths with preferred orientation. Minor, scattered, roughly equant grains of pale green to pinkish-brown pleochroic clinopyroxene is probably diopside. Minor plagioclase and small quartz lensoids are present.

Contains interstitial carbonate (calcite) in diffuse streaks parallel to the dominant fabric. Chalcopyrite is also interstitial with respect to the euhedral-to-subhedral amphibole, and is generally observed with carbonate. Locally, sphalerite forms thin rims on chalcopyrite.

[4] Continued

Microscopic description

Transmitted light

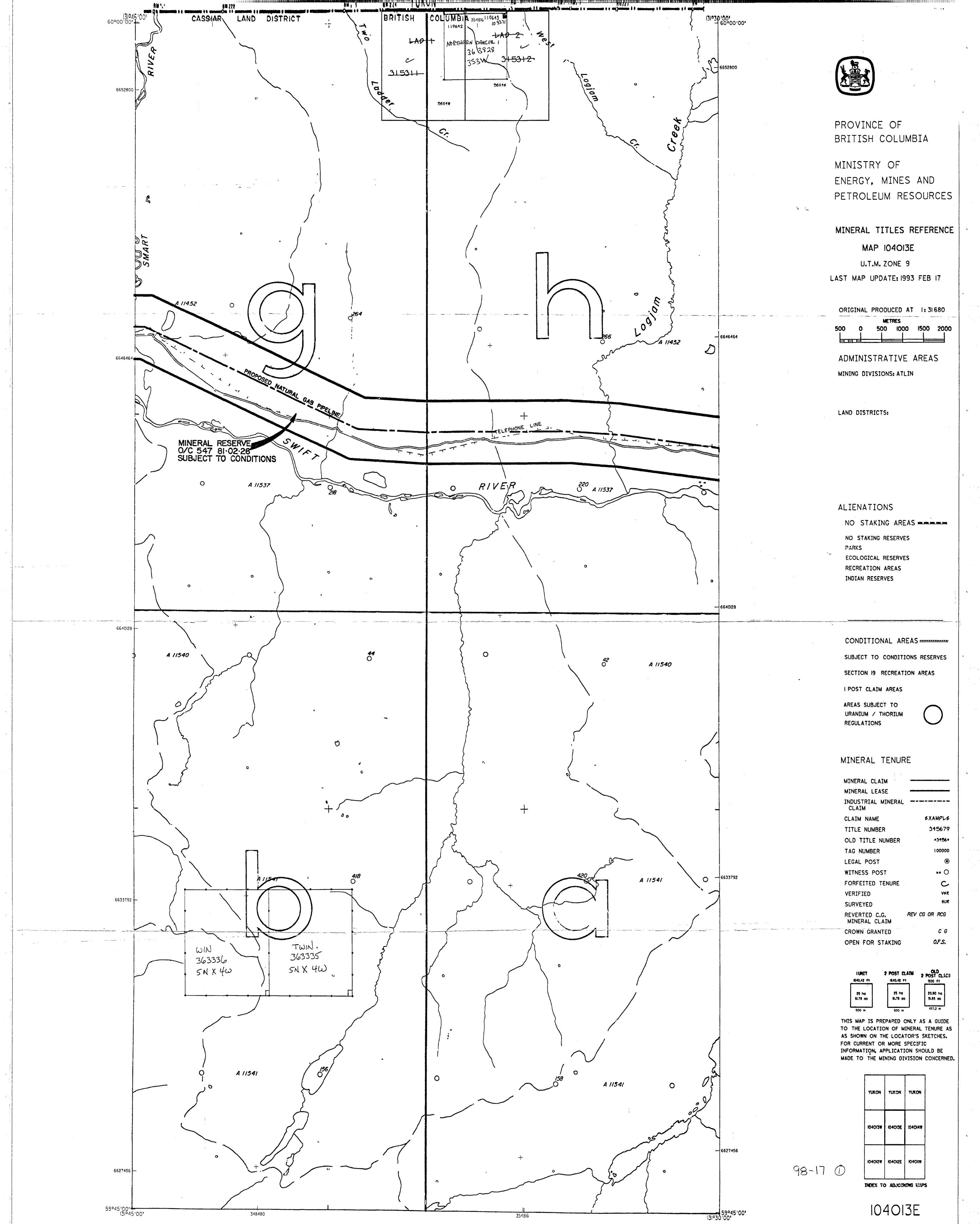
Amphibole; 80-90%, anhedral to euhedral (<0.01 to 1.0 mm). Section consists largely of pale green amphibole laths with preferred orientation. Biaxial (-) with high 2V (~80°). Green to bluish-green pleochroic. Maximum extinction angle approximately 17°. Calcic clinoamphibole -- actinolite or hornblende.

Clinopyroxene (diopside?); <5%, anhedral, subhedral (0.1 to 0.5 mm). Similar in colour to amphibole but with a pinkish tint in one orientation. Occurs as scattered, roughly equant grains. Higher relief than the amphibole. Biaxial (+), 2V 50-60°. Maximum extinction angle approaches 45°. Characteristic pyroxene cleavages at near 90°.

Carbonate; 3-5%, anhedral to euhedral (<0.01 to 1.0 mm). Interstitial to amphibole, in diffuse and discontinuous bands parallel to fabric. Calcite -- reacts with cold, dilute HCI.

Plagioclase / albite; 1-2%, anhedral (0.01 to 1.0 mm). Interstitial to amphibole in small segregations. Most has apparently associated chalcopyrite and carbonate.

Quartz; 1-2%, anhedral (<0.01 to 0.5 mm). Strained quartz in small lensoidal aggregates.


Epidote; <1%, anhedral (<0.01 to 0.2 mm). Sparsely scattered irregular grains.

Reflected light

Chalcopyrite; 3-5%, anhedral (<0.01 to 1.0 mm). Interstitial to amphibole. Some is rimmed with sphalerite. Arranged in narrow and diffuse bands, commonly but not exclusively with carbonate.

Sphalerite; traces+, anhedral (<0.01 to 0.05 mm). Sphalerite observed as thin rims on chalcopyrite.

Sphene; <1%, anhedral (<0.01 to 0.1 mm). Disseminated.

