BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR: 1998/99

REPORT #: PAP 98-30

NAME:

RUPERT SEEL

British Columbia Prospectors Assistance Program

> Prospectors Reports Reference #: 98/99 P63

Submitted By: Rupert R. Seel Date Submitted: December 30, 1998

Table of Contents

Purpose	1
Introduction	1
Method	2
Results	3
Conclusions	4
Summary of Prospecting Activity (Form Supplied)	5
Expenditures (Form Supplied)	6
Expenditures (other – Northern Lights Air)	7
Expenditures (Analyses/Assay Costs)	
Expenditures (Travel)	
Expenditures (receipts for travel)	
Daily Reports (Diary)	
Technical Report (Form Supplied)	
Appendix 1 (Analyses of samples)	19-28
Appendix 2 (Detail of Figures 2-6)	29-33
Figure 1a (location map of sample sites)	
CLAIM MAP	34

i.

. ۲

H H H H

捕捕

ŧ.

∰÷#≓

in the

÷

111

ŧH.

1

1

1

Purpose:

To prospect a topographical feature which contains several known mineral deposits.

Introduction:

The area of interest is immediately north and east of Troitsa Peak in the Whitesail Ranges of mountains and mainly south of Tahsta Reach of the Nechako Reservoir (NTS 93E/11 & 93E/10). Access to the area is by recently built logging roads and helicopter.

The higher elevations of the range have been extensively prospected and geologically mapped, however the lower areas have much glacial drift and have few outcrops. Of particular interest is a geographically lower area between the foot of the Whitesail Range Mountains and Tahtsa Reach, which contains several known mineral occurrences and intrusive rocks.

Figure 1:

Location of prospecting work and topographical feature

1

This feature trends northeast and north south of the mountains. The writer prospected this area between previously known mineral occurrences taking soil, silt, and rock samples.

Method:

i Salis

The area was traversed by truck on new logging roads, by boat, and on foot. Soil, silt and rock samples were taken for analysis. Sample locations were flagged with survey ribbons having written sample numbers. Locations were plotted on a 1:50,000 scale map (see Sample Location Map, Figure #1a).

Silt samples were taken from areas where the bedrock was probably nearby or the glacial overburden was thought to be shallow. Soil samples for the "B" horizon were collected where the bedrock was close to the surface. Both silts and soil samples were collected in craft paper bags, dried at room temperature and then sent to the lab for analysis.

Rock outcrops with pyrite and/or limonite mineralization were sampled, especially rocks that seemed to be from gossans or had much limonite alteration.

All samples on map were sent to Min-En Laboratory for multi-element ICP analysis (see Appendix 1) using Min-En Labs standard technique of sample preparation.

Results:

旧

捕り

1#

注当

۱.

The soil, silt and rock analyses are contained within appendix 1.

Following is a brief description of rocks sampled.

Sample No.	Brief Description of Rock	Sulfide Mineralization	Other Notes
98-1 CR	Sedimentary rock nearby	Minor disseminated galena	No silt values
98-4	Chert	Minor pyrite	
98-10	Grey green volcanic tuff	Minor disseminated pyrite	
98-5	Diorite		2.5 km south of Lucy Lake
98-18	Light green volcanic	Very minor pyrite	
98-15	chert (fine grained light colour)		Manganese staining
98-20,21,22	Fine grained light coloured koalinzed volcanic	Minor pyrite	On See #5 claim
98-23,24,25	Fine grained light coloured breccia	Major pyrite,	On See #5 claim
		chalcopyrite, galena	
98-39	Quartz porphyry	Minor pyrite	· · · · · · · · · · · · · · · · · · ·
98-54	Fine grained light coloured volcanic	Minor disseminated pyrite	
98-56	Light grey volcanic	Minor disseminated pyrite	
98-61	Quartz porphyry	Minor pyrite	
98-62	Granite		
98-63	sediment with limonite		Gossan
98-75	Quartz vein in sediment		Gossan
98-78	Volcanic	Chalcopyrite	1 metre wide gossan
98-79	Reddish volcanic tuff		200 metre wide
98-81	Volcanic		Angular float
98-85	Siltstone	<i>A</i>	

Conclusions:

静护

相相

計學

14日

ta≓f

개석

1

The surface sulfide mineralization in this area is not continuous. The geographical depression, which contains several mineral deposits, does not correspond to an area of continuous sulfide mineralization.

Copper sulfide mineralization was discovered in a new area of the geographical lowland. Sample 98-78R has chalcopyrite and was analyzed to contain 1142 ppm Cu. The area around this sample should be further investigated.

The prospecting work done in the detailed area would seem to indicate a contact zone. An intrusive in sediments trends east west, with accompanying zinc and lead mineralization.

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

:}∦

∥-∦

:-**≠**₽

9

iles

l⊫

ŧ

Щİ.

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations, section 15, 16 and 17.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

•	· · · · · · · · · · · · · · · · · · ·
LOCATION/COMMODITIES	•
Project Area (as listed in Part A) white sail	MINFILE No. if applicable
Location of Project Area NTS	Lat 50 38'N Long 127 03
Description of Location and Access <u>TRUCK TO TANTSA</u>	A REACH , BUAT TO KASALAA
CRARK THAN G.KM BY ATV.	
Main Commodities Searched For <u>GOLD</u> COPPER	
Known Mineral Occurrences in Project Area <u>OX LAKE</u>	
WORK PERFORMED	
1. Conventional Prospecting (area) Hokm	
2. Geological Mapping (hectares/scale)	
3. Geochemical (type and no. of samples) Sc. 15 53 Sili	T 25 ROCK 13
4. Geophysical (type and line km)	
5. Physical Work (type and amount) STRIPING TO ROCK BY	HAND 35M LONG 2M WIDE
6,. Drilling (no,. holes, size, depth in m, total m)	
7. Other (specify)	
SIGNIFICANT RESULTS	Nama CEE
$\frac{1}{2} \frac{1}{2} \frac{1}$	Name 522 5
Best as: a_{1} and a_{2} by a_{2} and a_{3} by a_{2} and b_{3} and b_{3} and b_{3} and b_{3} and by a and by a and b and b	
SILLAR H7.9 DOM	x 11032 ppm
Description of mineralization host rocks anomalies ATT A	
Dissam DYRITE	apprysy with

Supporting data must be submitted with this TECHNICAL REPORT

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

Prospectors Assistance Program - Guidebook 1998

MR. RUPERT SEEL

Attention: Rupert Seel

Project: SEE

Sample: STREAM SEDIMENT

Mineral Environments Laboratories

8282 Sherbrooke St., Vancouver, B.C., V5X 4E8	Report No	:	8\$0056	ົ
Tel (604) 327-3436 Fax (604) 327-3423	Date	:	Aug-07-98	•

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Au-wet ppb
98-1-CR	<0.2	2.32	10	120	0.5	<5	1.01	<1	15	13	20	5.85	0.05	0.64	2485	4	0.04	8	1480	4	<\$	8	<10	100	0.11	127	<10	24	75	7	5
98-3-CR	<0.2	1.79	5	190	0.5	<5	0.47	<1	14	11	11	5.39	0.05	0.50	3290	2	0.03	7	850	6	<5	5	<10	62	0.08	83	<10	11	74	4	5
98-4-CR	<0.2	1.20	10	130	<0.5	<5	0.53	<1	8	13	7	3.27	0.06	0.47	1090	<2	0.03	7	1030	4	5	3	<10	54	0.05	54	<10	10	68	4	5
98-5-CR	<0.2	0.76	5	170	<0.5	<5	0.46	<1	7	10	8	2.66	0.06	0.28	750	<2	0.03	5	1070	6	<5	3	<10	48	0.05	45	<10	9	72	5	5

MR. RUPERT SEEL

Attention: Rupert Seel

Project: SEE

Sample: SOIL

Mineral Environments Laboratories

8282 Sherbrooke St., Vancouver, B.C., V5X 4E8	Report No	:	880067
Tel (604) 327-3436 Fax (604) 327-3423	Date	:	Aug-14-98

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Au-fire ppb
98-7-CR	0.8	2.07	25	320	0.5	<5	0.75	1	10	20	22	4.87	0.05	0.42	9535	8	0.03	9	2250	24	~5	,	~10	25	0.07	67	~10	40		-	
98-8-CR	<0.2	1.14	20	270	<0.5	<5	0.44	1	11	15	25	5.64	0.06	0.41	1505	2	0.02	11	760		5	6	~10		0.03	22	~10	40	1/4	د	10
98-9	0.4	3.26	25	120	<0.5	<5	0.17	<1	10	26	44	4.97	0.10	0.68	550	- 2	0.02	13	700	20	~5		<10	23	0.04	0/	<10	11	297	4	5
98-10	<0.2	1.94	25	80	<0.5	<5	0.31	<1	15	20	34	4 65	0.04	0.52	770	- 7	0.02	10	790	10	~ 5		<10	21	0.08	32	<10	8	206	4	10
98-11	0.2	2.37	30	100	<0.5	<5	0.21	<1	6	21	14	4.19	0.05	0.28	235	14	0.02	8	690	16	<5 <5	3	<10	22	0.07	76 81	<10 <10	19 17	138 87	4	5 5
98-12-	<0.2	1.34	35	80	<0.5	<5	0.15	<1	8	20	14	5.89	0.05	0.31	850	<2	0.02	7	1290	18	<5	2	<10	13	0 17	109	~10	-	100	,	
98-13-CR	<0.2	0.63	25	190	0.5	<5	0.25	<1	12	8	39	4.99	0.06	0.36	1810	<2	0.02	8	800	38	25		<10	10	0.01	103	<10		109	ر د	2
98-14	<0.2	1.95	20	110	0.5	<5	0.11	<1	11	16	39	4.51	0.07	0.49	1790		0.02	10	820	34	~5	5	<10	12	0.02	70	10	10	259	2	5
98-16-CR	<0.2	1.80	20	140	<0.5	<5	0.46	<1	7	19	21	3.41	0.06	0.44	580	- 7	0.02		830	16	<5	ر م	<10	11	0.04	/9	<10		253	5	5
98-17	<0.2	1.86	35	120	<0.5	<5	0.17	<1	8	22	16	6.76	0.05	0.35	350	4	0.02	7	740	18	5	4	<10	28 16	0.05	129	<10 <10	10 2	132 98	د 4	5
98-18	<0.2	2.17	10	60	<0.5	<5	0.10	<1	6	20	10	4,79	0.05	0.28	310	<2	0.02	6	1010	16	<5	3	~10	10	0.00	03	~10	-	100	-	-
98-19	<0.2	3.75	5	80	< 0.5	<5	0.17	<1	17	41	24	7.16	0.05	0.70	665	<2	0.03	13	1470	10	~5	2	<10	10	0.09	93	<10	2	105	3	5
98-20-1	<0.2	5.10	10	120	0.5	<5	1.27	<1	25	34	129	4.52	0.11	1.04	2200	~2	0.00	10	1410	-2	~5	0	<10	12	0.42	144	<10		166	5	5
98-21	<0.2	2.17	25	100	<0.5	<5	0.16	<1	11	25	44	4.53	0.05	0.30	1015	2	0.02	10	790	16	<5	4	<10	115	0.10	111 91	<10 <10	6 14	99 103	3	5

A .5 gm sample is digested with 10 ml 3:1 HCl/HNO3 at 950 for 2 hours and diluted to 25ml with D.I.H20.

ť

*

Ŧ

Page 1 of 1

5

Ţ

ţ

\$

Signed:

ŧ

Ţ

1 P

T

Î

Ē

17 3

σ R

										N	line	ral E	Envi	ron	mer	its L	abo	orato	ories												~
MR. RUPEI	RT S	EE	L							82	282 SI	herbro	ooke	St., '	Vance	uver,	B.C.	, V5X	(4E8							Rep	ort N	No	:	8 S00	67 🔨
Attention: Ruper	t Seel										Tel	(604)) 327	-343	6 Fa	x (604) 32	7-342	3							Dat	e		: /	Aug-1	4-98
Project: SEE																															
Sample: ROCK										ľ	MUL	TI-I	ELE	ME	NT	ICP /	ANA	ALY	SIS												
													Aqu	a Re	gia D	igestic	n														
Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Au-fire ppb
98-15-R	<0.2	0.47	20	80	<0.5	<5	0.04	<1	1	62	5	1.22	0.12	0.02	590	50	0.02	3	200	12	<5	2	<10	3	<0.01	4	<10	2	94	2	5

										Μ	iner	al I	Env	iroı	nme	nts I	Lab	orat	orie	5											0	Ų
MR. RUPER	RT S	EE.	L							82	82 SI	ierbro	ooke	St.,	Vance	ouver	, B.C	2., V5	X 4E8	1						Re	port l	No	;	8S00	156 r	Ŕ
Attention: Rupert	Seel										Tel	(604)) 327	7-343	86 Fa	ıx (60	4) 32	27-34	23							Da	ite		:	Aug-0	7-98	
Project: SEE																																
Sample: ROCK										N	1UL	TI-I	ELE	EME 12 Ré	ENT	ICP	AN	IALY	YSIS													
													ոգւ		-514 L	15031	ion															
Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Au-wei ppb	t
98-2-R	<0.2	0.20	10	40	0.5	<5	2.16	<1	5	52	17	2.15	0.08	0.29	1275	2	0.04	1 3	530	10	<5	2	<10	49	<0.01	20	<10	7	59	6		5

765

2 0.07

2 1880

6

<5

7 <10 23 0.03 45

<10

93

16

25

5

35

6

10 3.52 0.15 0.16

98-4-R

<0.2 0.42

10

90

0.5

.

<5 0.46

<1

MR. RUPERT SEEL

Attention: Rupert Seel

Project: SEE

Sample; SOIL

Mineral Environments Laboratories

8282 Sherbrooke St., Vancouver, B.C., V5X 4E8 Tel (604) 327-3436 Fax (604) 327-3423
 M
 850093 SJ N

 Date
 :
 Sep-30-98

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Number	Ag ppm	Аі %	AS ppm	ppm	ppm	ppm	Ca %	ppm	ppm	ppm	ppm	⊦e %	К %	Mg %	ppm	мо ppm	Na %	Ni ppm	ррт ррт	Pb ppm	Sb ppm	SC ppm	Sn ppm	Sr ppm	Ті %	V ppm	w ppm	Y ppm	Zn ppm	Zr ppm	Au-wet ppb
98-20 A	<0.2	2.83	10	110	<0.5	<5	0.11	<1	10	24	51	4.34	0.05	0.46	585	<2	0.02	20	1560	6	5	5	<10	15	0.07	67	<10	5	145	5	5
98-26-CR	<0.2	1.30	20	130	<0.5	<5	0.57	<1	7	17	18	2.67	0.06	0.43	685	<2	0.0Z	13	860	2	<5	3	<10	62	0.02	45	<10	18	83	3	5
98-27-CR	0.2	1.28	10	270	<0.5	5	0.97	<1	13	14	15	5.51	0.05	0.28	2880	<2	0.03	13	2050	4	<5	3	<10	137	0.02	83	<10	26	55	6	5
98-28-CR	<0.2	0.91	5	140	<0.5	<5	0.32	<1	6	12	4	2.07	0.04	0.34	1035	<2	0.03	8	760	6	<5	2	<10	41	0.04	39	<10	7	62	3	5
98-30	<0.2	1.20	15	150	<0.5	<5	0.10	<1	4	11	10	3.28	0.06	0.21	795	<2	0.02	6	1110	8	<5	2	<10	16	0.01	46	<10	6	96	2	5
98-31	<0.2	1.31	20	100	<0.5	<5	0.21	<1	7	15	15	3.30	0.05	0.43	410	<2	0.02	10	570	14	5	3	<10	29	0.03	62	<10	5	107	2	5
98-32	<0.2	1.61	20	120	<0.5	<5	0.23	<1	7	17	19	3.44	0.06	0.46	330	<2	0.02	11	630	10	<5	4	<10	24	0.03	64	<10	5	126	2	5
98-33	<0.2	1.10	20	130	<0.5	<5	0.33	<1	8	19	21	3.51	0.04	0.38	515	<2	0.02	11	830	8	5	5	<10	43	0.04	67	<10	14	107	3	10
98-34	<0.2	1.12	10	60	<0.5	<5	0.07	<1	5	12	4	2.92	0.04	0.18	560	<2	0.02	6	820	8	<5	2	<10	11	0.03	64	<10	1	78	3	5
98-35	<0.2	1.07	20	90	<0.5	<5	0.18	<1	9	15	14	3.69	0.05	0.37	750	<2	0.02	9	730	10	<5	3	<10	20	0.03	70	<10	3	115	3	5
98-36	<0.2	0.98	15	130	0.5	<5	0.48	<1	10	15	17	3.53	0.07	0.40	1315	<2	0.02	10	700	12	<5	4	<10	34	0.01	50	<10	13	103	3	5
98-37	0.2	0.65	20	200	0.5	<5	0.29	1	6	8	7	2.75	0.12	0.14	1450	<2	0.02	6	750	130	<5	3	<10	20	0.01	25	<10	16	192	2	5
98-38	<0.2	1.21	20	260	0.5	<5	0.56	<1	8	14	24	3.59	0.11	0.40	995	<2	0.02	11	850	20	<5	5	<10	35	0.02	49	<10	20	152	3	5
98-39	1.2	0.80	30	170	0.5	5	0.32	13	13	15	15	5.33	0.16	0.23	8295	<2	0.02	10	1600	502	5	6	<10	26	0.01	35	<10	27	968	3	15
98-40	<0.2	1.85	20	150	<0.5	<5	0.24	<1	8	16	18	4.39	0.05	0.32	320	<2	0.02	10	640	14	<5	3	<10	34	0.03	68	<10	7	116	4	5
98-41	<0.2	1.02	15	120	<0.5	<5	0.24	<1	11	15	9	4.30	0.04	0.41	1415	<2	0.02	10	670	6	5	3	<10	33	0.04	57	<10	8	94	3	5
98-42	<0.2	1.48	10	140	0.5	<5	0.21	<1	7	11	6	4.05	0.11	0.25	1065	<2	0.02	8	1400	6	<5	4	<10	18	0.02	51	<10	14	108	2	15
98-43	<0.2	2.33	30	130	<0,5	<5	0.09	<1	10	19	22	3.84	0.05	0.43	350	<2	0.02	14	700	10	5	5	<10	19	0.04	68	<10	5	129	4	5
98-44	<0.2	1.23	5	100	<0.5	<5	0.04	<1	3	4	<1	2.48	0.06	0.05	335	<2	0.02	3	\$ 40	<2	<5	1	<10	7	0.01	25	<10	3	58	1	5
98-45	<0.2	0.96	15	130	<0.5	<5	0.21	<1	7	14	11	2.91	0.04	0.37	455	<2	0.02	9	870	6	< 5	3	<10	30	0.04	55	<10	7	93	3	5
98-46	<0.2	0. 9 4	20	320	0.5	<5	1.24	<1	11	14	23	5.11	0.11	0.32	1870	<2	0.02	14	1040	32	<5	9	<10	67	0.01	47	<10	33	217	4	10
98-48	<0.2	1.50	20	150	<0.5	<5	0.21	<1	10	17	20	3.58	0.05	0.50	1100	<2	0.02	12	760	12	5	4	<10	25	0.02	59	<10	12	117	3	5
98-49	<0.2	1.80	10	70	<0.5	<5	0.09	<1	8	20	8	4.05	0.09	0.38	960	<2	0.02	10	3110	8	<5	3	<10	16	0.06	68	<10	2	143	4	5
98-50	<0.2	1.48	10	70	<0.5	<5	0.05	<1	4	14	10	2.61	0.04	0.22	160	<2	0.02	6	580	10	<5	2	<10	12	0.05	56	<10	2	59	2	5

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 05c for 2 hours and diluted to 25ml with D.I.H20.

Page 1 of 1

SEEL ENTERPRISES LTD.

Attention: RUPERT SEEL

Project:

Sample: SOIL

Mineral Environments Laboratories

 8282 Sherbrooke St., Vancouver, B.C., V5X 4E8
 Report

 Tel (604) 327-3436
 Fax (604) 327-3423
 Date

 ★

 Report No
 :
 8V0645 SJ ♥

 Date
 :
 Oct-09-98

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

,

Sample Number	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W mqq	Y ppm	Zn ppm	Zr ppm	Au-wet ppb
98-51	<0.2	2.23	15	50) <0.5	<5	0.05	<1	4	18	5	5.62	0.03	0.22	175	<2	0.01	5	670	6	5	3	<10	10	0.05	70	<10	2	68	6	5
98-52	<0.2	0.94	10	50) <0.5	<5	0.04	<1	3	9	2	2.19	0.03	0.11	85	<2	0.01	3	290	8	5	2	<10	9	0.10	66	<10	1	40	3	5
98-53 [;]	<0.2	3.18	30	60) <0.5	<5	0.05	<1	8	21	13	3.75	0.03	0.37	295	<2	0.01	11	650	2	5	6	<10	11	0.06	69	<10	3	143	9	5
98-57	<0.2	2.33	10	180	0.5	<5	0.49	<1	11	20	18	4.11	0.04	0.48	1100	<2	0.01	10	620	8	5	4	<10	23	0.05	73	<10	22	112	3	5
98-59°	<0.2	2.80	35	70	<0.5	<5	0.08	<1	6	15	8	3.79	0.04	0.27	245	<2	0.01	9	850	2	5	4	<10	15	0.05	62	<10	4	139	6	5
98-60	0.4	2.01	25	190	< 0.5	<5	0.28	<i< td=""><td>17</td><td>19</td><td>38</td><td>5.62</td><td>0.04</td><td>0.42</td><td>5285</td><td><2</td><td>0.02</td><td>10</td><td>1440</td><td>40</td><td>5</td><td>z</td><td><10</td><td>20</td><td>0.05</td><td>124</td><td><10</td><td>12</td><td>184</td><td>3</td><td>5</td></i<>	17	19	38	5.62	0.04	0.42	5285	<2	0.02	10	1440	40	5	z	<10	20	0.05	124	<10	12	184	3	5
98-61	<0.2	2.26	15	50) <0.5	<5	0.04	<1	6	20	5	4,52	0.04	0.26	550	<2	0.01	8	1700	4	5	3	<10	8	0.08	85	<10	2	99	3	5
98-64:	<0.2	2.76	<5	40) <0.5	<5	1.63	<1	12	8	36	3.45	0.07	0.85	510	<2	0.04	9	1710	<2	<5	5	<10	145	0.01	80	<10	11	39	2	5
98-69:	<0.2	1.76	20	130	0.5	<5	0.10	<1	10	13	27	4.26	0.05	0.32	575	<2	0.01	11	610	4	<5	6	<10	13	0.02	71	<10	9	105	3	5
98-54CR	<0.2	1.12	65	200	0.5	<5	0.37	<1	10	12	8	4,58	0.06	0.30	3255	2	0.01	9	1110	14	5	3	<10	27	0.02	56	<10	15	204	3	5
98-55CR	0.2	1.21	55	140	0.5	<5	0.40	<1	11	13	11	4.08	0.06	0.41	205 0	2	0.02	9	860	14	<5	3	<10	29	0.02	59	<10	12	168	3	5
98-56CR	<0.2	1.42	15	120	< 0.5	<5	0.49	<1	9	18	16	3.21	0.06	0.53	1255	<2	0.02	11	890	4	5	3	<10	31	0.03	54	<10	12	102	3	10
98-58CR	<0.2	1.40	50	160	0.5	<5	0.54	<1	10	15	12	3.97	0.06	0.41	2510	<2	0.02	9	950	8	<5	3	<10	32	0.03	56	<10	14	141	3	5
98-65CR	<0.2	1.53	15	160	<0.5	<5	0.30	<1	8	15	6	2.73	0.06	0.38	475	<2	0.02	9	1170	2	<5	2	<10	46	0.05	131	<10	10	78	2	5
98-66CR	<0.2	1.05	10	180	< 0.5	<5	0.43	<1	10	8	3	2.68	0.08	0.27	2110	<2	0.02	8	1150	<2	5	3	<10	65	0.03	75	<10	12	61	3	5
98-67CR	<0.2	1.05	5	230	0.5	<5	0.50	<1	9	13	9	3.14	0.09	0.40	1025	<2	0.05	9	990	2	<5	4	<10	61	0.02	56	<10	12	111	2	5
98-70CR	<0.2	0.76	10	110	<0.5	<5	0.37	<1	11	18	11	3.56	0.06	0.38	910	<2	0.02	12	890	6	<5	4	<10	33	0.04	81	<10	11	81	З	5
98-71CR	<0.2	0.66	10	130	<0.5	<5	0.42	<1	10	8	14	3.43	0.08	0.31	970	<2	0.02	10	990	4	<5	4	<10	43	0.06	70	<10	11	86	8	5
98-72CR	<0.2	0.87	35	270	<0.5	<5	0.69	1	11	15	6	3.11	0.08	0.33	1250	<2	0.02	12	1900	72	15	3	<10	71	0.08	75	<10	11	284	7	5
98-73CR	<0.2	0.92	10	170	<0.5	<5	0.40	<1	8	14	6	3.20	0.06	0.33	635	<2	0.02	10	890	8	5	3	<10	50	0.07	74	<10	10	86	4	15
98-74CR	<0.2	0.97	10	110	<0.5	<5	0.40	<1	8	11	12	3.07	0.07	0.47	845	<2	0.02	10	740	6	5	4	<10	33	0.03	54	<10	11	96	3	5

A .5 gm sample is digested with 10 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Ē

Page 1 of 1

E

ł

ŧ

ŧ

Signed:

1

ŧ

1

Ď

Ĩ

E

1 ¥

	Mineral Environments Laboratories		2
SEEL ENTERPRISES LTD.	8282 Sherbrooke St., Vancouver, B.C., V5X 4E8	Report No	: 8V0645 RJ
Attention: RUPERT SEEL	Tel (604) 327-3436 Fax (604) 327-3423	Date	: Oct-09-98
Project:			
Sample: ROCK	MULTI-ELEMENT ICP ANALYSIS		
-	Aqua Regia Digestion		

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Au-wet ppb
98-62R	<0.2	0.40	5	110	0.5	<5	0.69	<1 <1	6 1	7 47	11 4	3.10 1.65	0.11 0.06	0.27 0.02	545 305	<2 12	0.03 0.01	4 5	500 200	6 12	<5 5	4 1	<10 <10	27 13	<0.01 <0.01	22 8	<10 <10	13 4	114 35	2 2	5 5
98-68R	<0.2	0.90	<5	130	<0.5	<5	0.79	<1	9	22	6	4.02	0.09	0.53	985	<2	0.03	11	660	4	<5	6	<10	19	0.01	62	<10	15	133	3	5

										M	liner	ral I	Envi	iron	mer	nts L	abo	orato	ories												\ \	ò
RUPERT SE	EEL									82	282 SI	herbr	ooke	St., 1	Vanco	ouver,	B.C.	, V5X	(4E8							Re	port l	No	:	8V07:	54 RJ	Y
Attention: RUPE	Tel (604) 327-3436 Fax (604) 327-3423														Da	te		:	Nov-	18-98												
Project:																																
Sample: ROCK MULTI-ELEMENT ICP ANALYSIS																																
													Aqı	la Re	gia D	igestic	on															
Sample Number	Ag ppm	Ał %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	.Р ррт	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppn	Zr ppm	Au-wei opb	t

8 <5

8 <10

4 <0.01

34 <10

9 45

10

3

5 50 <0.5 <5 0.15 <1 6 82 1142 2.92 0.02 0.09 715 <2 0.05 7 340

0.2 0.29

98-78R

RUPERT SEEL

Attention: RUPERT SEEL

Project:

Sample: SOIL

Mineral Environments Laboratories

8282 Sherbrooke St., Vancouver, B.C., V5X 4E8

Tel (604) 327-3436 Fax (604) 327-3423

Report No:8V0754 SJ_{γ}^{\wedge} Date:Nov-18-98

(Le

7

Signed

1

f

Ē

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	A1 %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	F e %	K %	Ma %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm	Au-wet ppb
98-23	0.2	3.13	20	150	0.5	<5	0.12	<1	16	27	161	4.92	0.10	0.73	445	6	0.02	24	810	14	<5	6	<10	13	0.04	73	<10	12	227	4	10
98-75	<0.2	1.94	<5	60	0.5	5	0.09	<1	13	98	80	8.25	0.02	0.16	415	<2	0.01	39	990	6	5	25	<10	9	0.02	185	<10	11	102	5	5
98-76 CR	<0.2	4.15	5	310	1.0	<5	1.23	<1	8	21	31	3.55	0.11	0.59	560	<z< td=""><td>0.0Z</td><td>14</td><td>1030</td><td>4</td><td><5</td><td>5</td><td><10</td><td>84</td><td>0.03</td><td>57</td><td><10</td><td>25</td><td>71</td><td>5</td><td>5</td></z<>	0.0Z	14	1030	4	<5	5	<10	84	0.03	57	<10	25	71	5	5
98-77	<0.2	2.31	5	100	<0.5	<5	0.13	<1	9	21	14	3.39	0.05	0.37	435	<2	0.02	13	1460	4	<5	3	<10	14	0.09	66	<10	3	106	5	10
98-79	<0.2	2.13	5	240	1.5	<5	0.85	<1	26	15	110	5.72	0.07	1.03	4280	<2	0.05	36	1870	8	<5	11	<10	140	0.09	113	<10	18	117	15	10
98-79	<0.2	2.30	95	80	0.5	<5	0.08	<1	9	20	31	4.46	0.04	0.40	415	<2	0.0Z	15	990	10	10	5	<10	10	0.07	63	<10	4	101	7	5
98-80 CR	<0.Z	1.42	10	230	0.5	<5	0.68	<1	9	15	17	2.69	0.11	0.47	605	<2	0.03	11	1430	8	5	4	<10	76	0.08	61	<10	10	62	11	5
98-81	<0.2	3.31	15	70	D.5	<5	0.08	<1	7	20	20	3,72	0.04	0.34	235	2	0.02	15	700	12	<5	4	<10	13	0.06	53	<10	5	126	7	5
98-82	<0.2	2.53	45	120	<0.5	<5	0.14	<1	9	19	19	4.59	0.06	0.36	500	<2	0.02	11	1140	16	5	4	<10	18	0.07	73	<10	6	139	4	5
98-83	<0.2	2.31	25	140	0.5	<5	0.14	<1	9	16	23	3.90	0.06	0.32	570	<2	0.02	12	1040	14	5	3	<10	15	0.05	61	<10	6	136	3	5
98-84	0.2	1.48	65	90	0.5	5	0.11	<1	10	27	73	6.66	0.06	0.32	530	2	0.02	37	950	46	5	9	<10	13	0.02	76	<10	12	203	4	5
98-85	<0.2	1.34	30	100	<0.5	<5	0.34	<1	9	17	19	3.84	0.07	0.51	480	2	0.02	11	730	22	<5	5	<10	53	0.03	67	<10	10	120	3	5
98-86	<0.2	2.04	25	80	<0.5	<5	0.12	<1	6	17	17	4.00	0.05	0.38	325	<2	0.02	9	750	18	<5	4	<10	20	0.03	63	<10	4	117	3	5
98-87	<0.2	1.66	25	100	0.5	<5	0.15	<1	10	18	31	3.92	0.07	0.50	675	<2	0.02	13	570	18	<5	7	<10	38	0.03	64	<10	15	128	3	5
98-88	<0.2	2.55	25	120	0.5	<5	0.14	<1	11	19	27	3.98	0.07	0.45	550	<2	0.02	15	800	24	<5	5	<10	17	0.04	63	<10	7	178	3	5

Page 1 of 1

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25mi with D.I.H20.

TONER	(LABO	RAT	ORI	ss ti	NC.			5-	-730	EATON	I WA'	Y	Neg	N WE	STMI	INSTE) R, 1	вс	CA	NADA	\ V	зм (5J9			ĩ	ELRI	PRONI	8 (6(04)5) 22-30	00
TUCKLEB Project: Sample Ty	JERRY pe; Roci	MIN k Pul	IBS I	LTD.			đ	E O Muit dilu 8a, *Au furr	C H i-elected to Ti, B Analy:	B K J ment IC o 10 ml , W and sīs- 10 A finiel	C C Ana With d Lim gram hed to	AL lysis Wate ited samp	r. for ile i	A' N 500 g This Na, s dig etec	(AI gram s teach K an gested tion.	L K S sample I 1s pa vd Al. 1 wfth	I i is di ntial Det aqua	S gesi foi cecti regi	C tediwi Mn, ion Li ia, Mi	ER ith 3 Fe, C imit f IBK ex	TI mi of a, P, for Au tracte	PI aqua La, C is d, gr	C A regia ir, Mg J ppm aphit			An Re Da	alyst port te: 0	No. 98 ctober	192753 5, 1			
		No	Ou	Pb	Zn	Agi	N S	Co	Min Doolt	Fe	As	 U 10000	Au	Th	Sr DOM	Cdi ppm	Sb	Bi	V	Ca X	P 2	La ppn	Cr ppn	Ng X	Ba ppm	11 7	8 Ppm	Al X	Ka Z	r z	V ppn	Aut* ppb
9858-20 9858-21 9858-22 9858-22 9858-23		45 26 14 1 1 1 1	168 626 866 60523 17632	29 67 18 361 118	54 126 50 783 865	,3 11.0 1.2 35.0 47.9		16 8 22 19 57	265 151 205 2498 390	4.19 5.86 7.91 10.98 26.59	32 49 9 112 27	8 8 8 8 8 8	ND ND ND ND ND	4 3 3 2 2	10 7 22 7 2	1.2 .9 .2 5.6 7.4	3 9 3 77 55	3 11 3 4 30	4 4 98 10 3	.62 .09 .32 .61 .10	.035 .057 .097 .034 .001	4 6 1 1	75 62 68 65 55	.20 .04 .32 .23 .05	24 58 17 24 6	.01 .01 .06 .01 .01	4 3 3 3 3	.28 .27 .81 .28 .10	.01 .01 .06 .01 .01	.19 .24 .05 .22 .07	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	35 210 65 60 760
9658-25		4	55	27	5	10.7	3	1	37	.69	32	8	ND	Z	3	.2	59	4	2	.01	.004	9	75	.02	149	.01	5	.26	.01	.22	2	145
· .	fup	527	- ද	;Æ	L'S	C	LA	105	ŝ			F a F i	or .ssa or s 1	Cu ay Ag req	gr dig gr uir	eate esti eate ed f	ert on rt	ha is ha co	n 1 re n 3 rre	0,0 (qui: 5 pr	00 p red om, data	pm, for ass	со ау	rre dig	ct d esti	lata Lon	ι.					
			20 22 23 24 24		STI LO L: R	RIPA 11 - T 5 E 10 H40	ED 0 326 CIF	Да 01.1 5.(С.) -Е	е <u>ен</u> с с и (?)	IN tmp on ii FR	THE FR THE	E C Com E F	E - T 210 ((2E/	THE DGE VCH	: A {_	Bové	E C	Ł.														
									PA+	- m	сÂ	W.C	NE	:55		ų	88-	-2	665	7					_		_	_		- - -	PAGE	1

