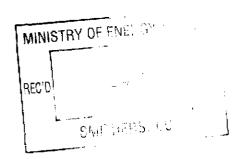
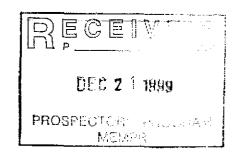
BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES **GEOLOGICAL SURVEY BRANCH**

PROGRAM YEAR: 1999/2000


REPORT #:


PAP 99-4

NAME:

RUPERT SEEL

British Columbia Prospectors Assistance Program

Prospectors Reports Reference #: 99/00 P5

Submitted By: Rupert R. Seel Date Submitted: December 20, 1999

Table of Contents

Purpose (figure 1)1	
Introduction1-2	2
Method2	
Project Area2	
Conclusions (figure 2)2-	3
Summary of Prospecting Activity (form supplied) 4-5	5
Expenditures6	
Expenditures (Northern Lights Air)7-8	В
Expenditures (Analyses/Assay Costs) 9-	11
Expenditures (Travel & receipts)12	!
Daily Reports (Diary)13	-14
Technical Report (form supplied)15	ı
Appendix 1 (1:2,000 plot of samples)	-36
Appendix 2 (Analysis if AU)	-46
Appendix 3 (Multi-Element ICP Analysis)	-53

Purpose:

To prospect in the area of geological features which contains several known mineral deposits.

Introduction:

The area of interest is immediately north and east of Troitsa Peak in the Whitesail Ranges of mountains and mainly south of Tahsta Reach of the Nechako Reservoir (NTS 93E/11 & 93E/10). Access to the area is by recently built logging roads and helicopter.

The higher elevations of the range have been extensively prospected and geologically mapped, however the lower areas have much glacial drift and have few outcrops. Of particular interest is a geographically lower area between the foot of the Whitesail Range Mountains and Tahtsa Reach, which contains several known mineral occurrences and intrusive rocks.

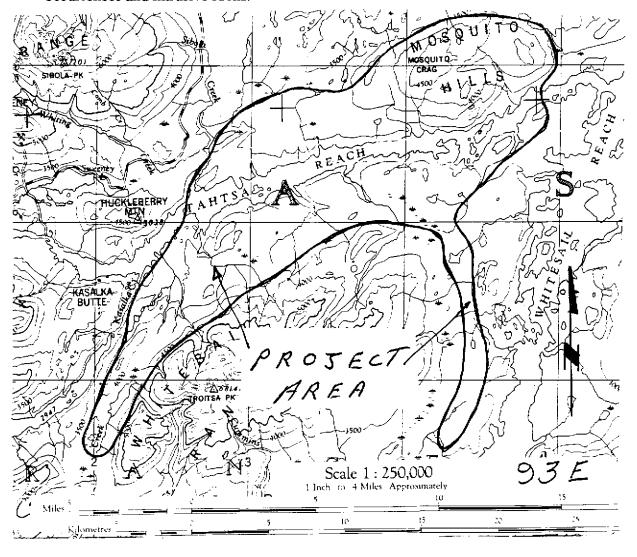


Figure 1: Location of prospecting area

This feature trends northeast and lays to the north of the Whitesail mountains. The writer prospected this area between previously known mineral occurrences taking soil, silt, and rock samples, mainly at four locations, Site #1 - #4.

The area was traversed by truck on new logging roads, by boat, all terrain vehicle and on foot. Soil, silt and rock samples were taken for analysis. Sample locations were flagged with survey ribbons having written sample numbers. Locations of sites were plotted on a 1:50,000 scale map (see Sample Location Map, Figure #2).

Silt samples were taken from areas where the bedrock was probably nearby or the glacial overburden was thought to be shallow. Soil samples for the "B" horizon were collected where the bedrock was close to the surface. Both silts and soil samples were collected in craft paper bags, dried at room temperature and then sent to the lab for analysis.

Rock outcrops with pyrite and/or limonite mineralization were sampled, especially rocks that seemed to be from gossans or had much limonite alteration.

All samples on map were sent to TSL Assayers for multi-element ICP analysis (see Appendix 2) using TSL Assayers standard technique of sample preparation.

Project Area:

Method:

Site #1 was selected based on a sample taken in at rock pit contained 475ppm of Arsenic. A grid was layed out in a south west direction.

Site #2 was based on high VLF-EM response reported in 10168 assessment report. This same area, with a high magnetic reading taken in 1984 by Lansdowne. Grid is based on Lansdowne grid.

Site #3 was based on a high magnetic high reading of over 1000. Grid is based on Lansdowne work of 1984.

Site #4 is an area selected for high VLF-EM response survey. 4 lines were run in a West to East direction.

Conclusion:

Site #1:

38 soil samples taken, only those taken at the north end showed any value in Au (see appendix 1). This is most likely due to the bed rock being near the surface. Bed rock in this area is sedimentary.

Site #2:

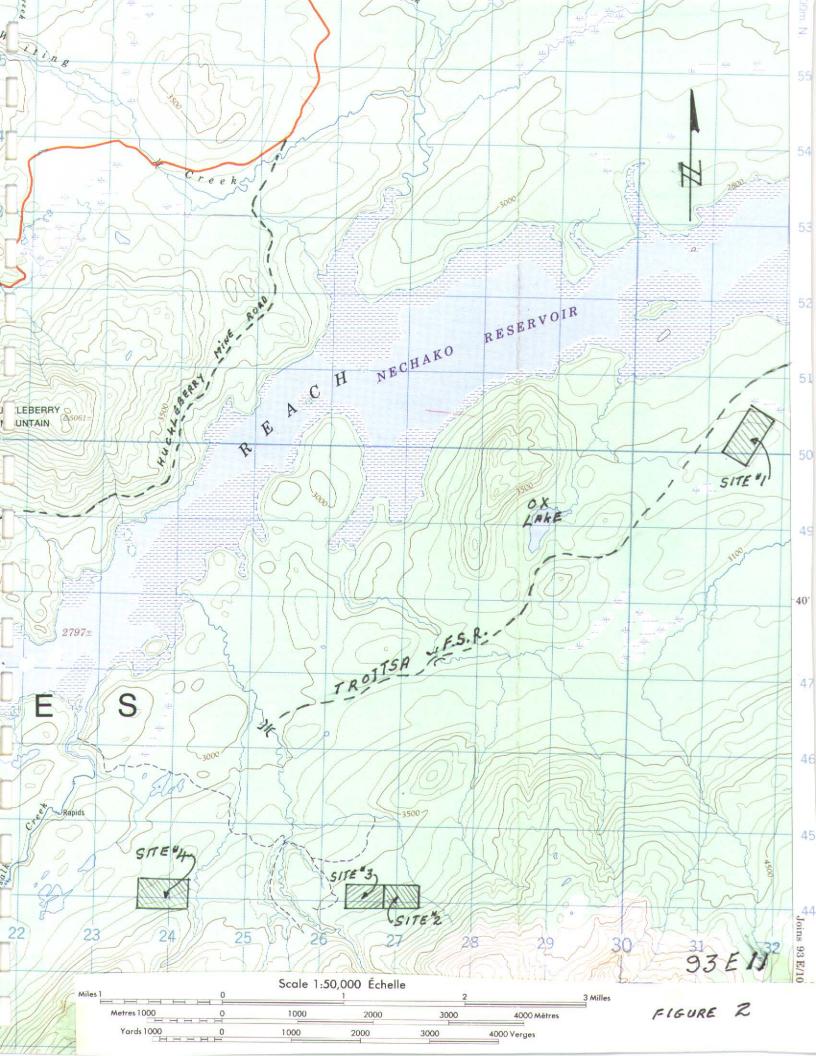
A total of 51 soil samples were taken. Grid lines run across the slope East to West. High in Au of 202ppb, Ag 1.8ppm, Zn 473ppm (see appendix 1). The only bed rock found was in the small creeks on the north edge of the site. This bed rock is volcanic and cherts with veinlets of pyrite, maybe a fault zone. There is a possibility that this anomaly could be contained to the East, as the area is covered by an old slide.

Site #3:

A total of 23 soil samples were taken (see appendix 1). This area in on the same grid as Site #2. No values are indicated this may be due to depth of overburden.

Site #4:

A total of 29 soil samples were taken (see appendix 1). These grid lines were run across the slope in a westerly direction. There were low values in Cu; 65ppm and Ag; 1.0ppm. No bed rock was found but there was sedimentary float located and prospecting higher up the ridge was volcanics, this area may be on or near a contract zone.

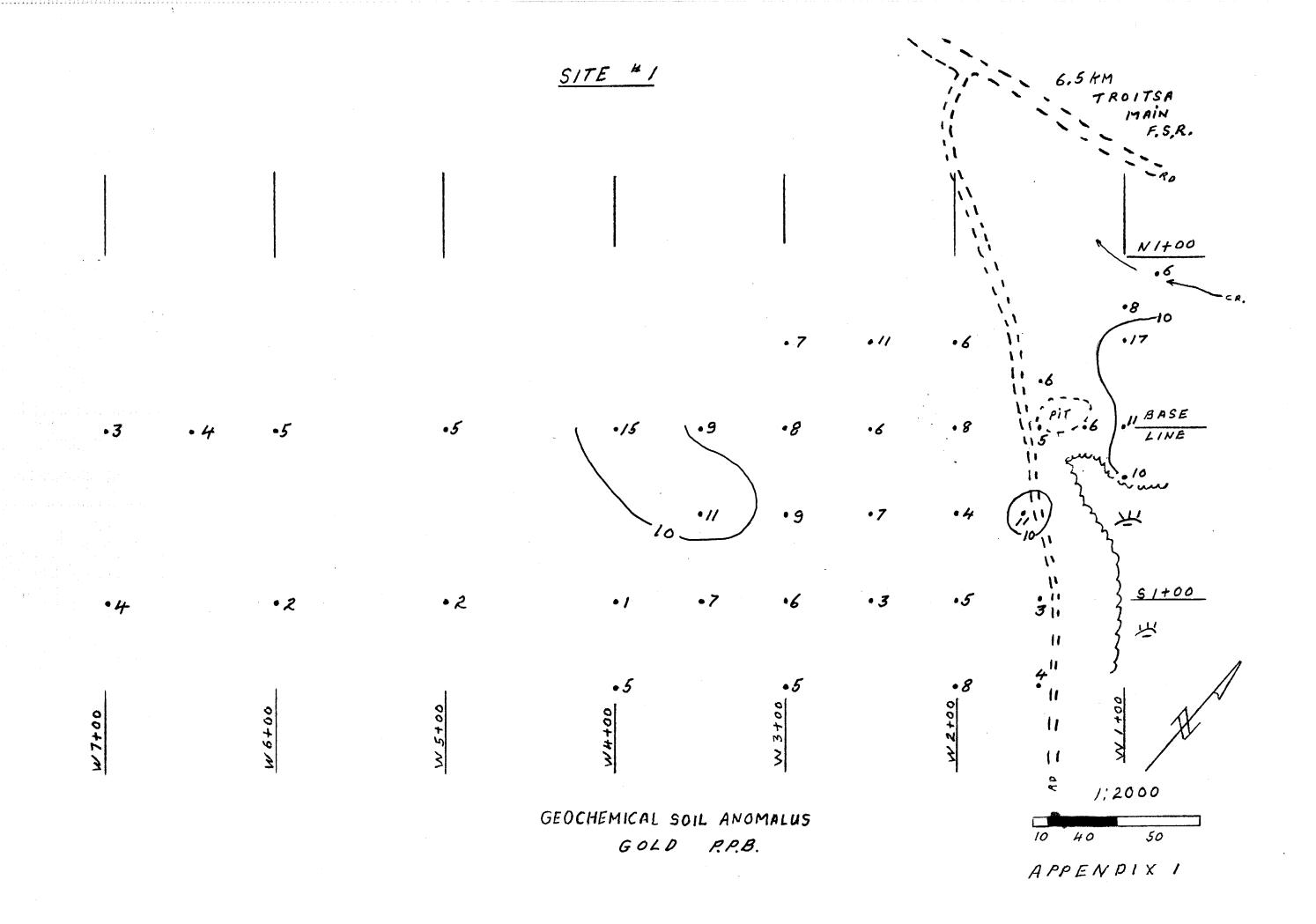

Reconnaissance:

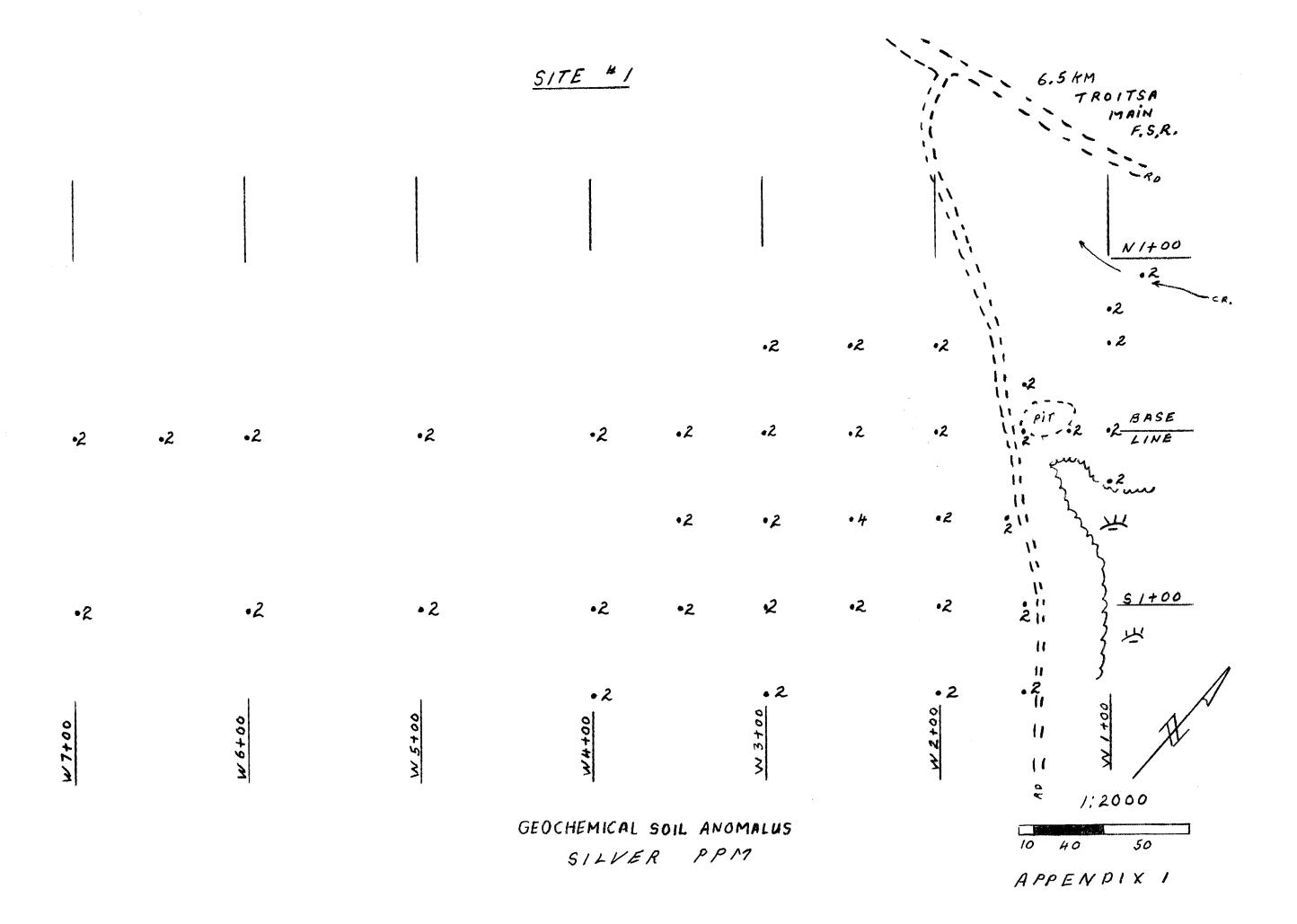
A reconnaissance of The Shelford Hills showed a silt sample analysis of Au 30ppm. This is an interesting area.

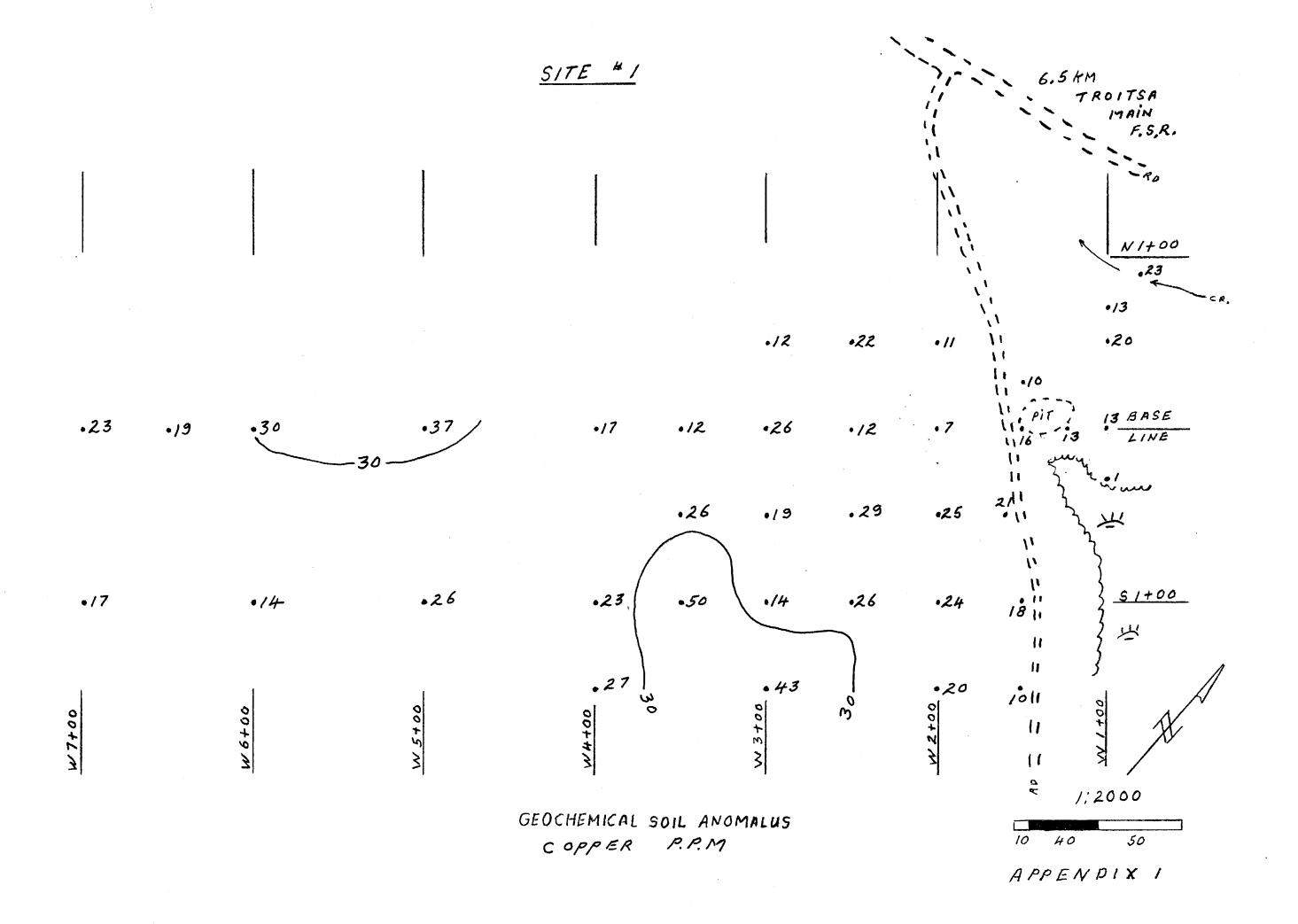
A trip to the Whitesail area was of little value, most rock viewed was volcanics.

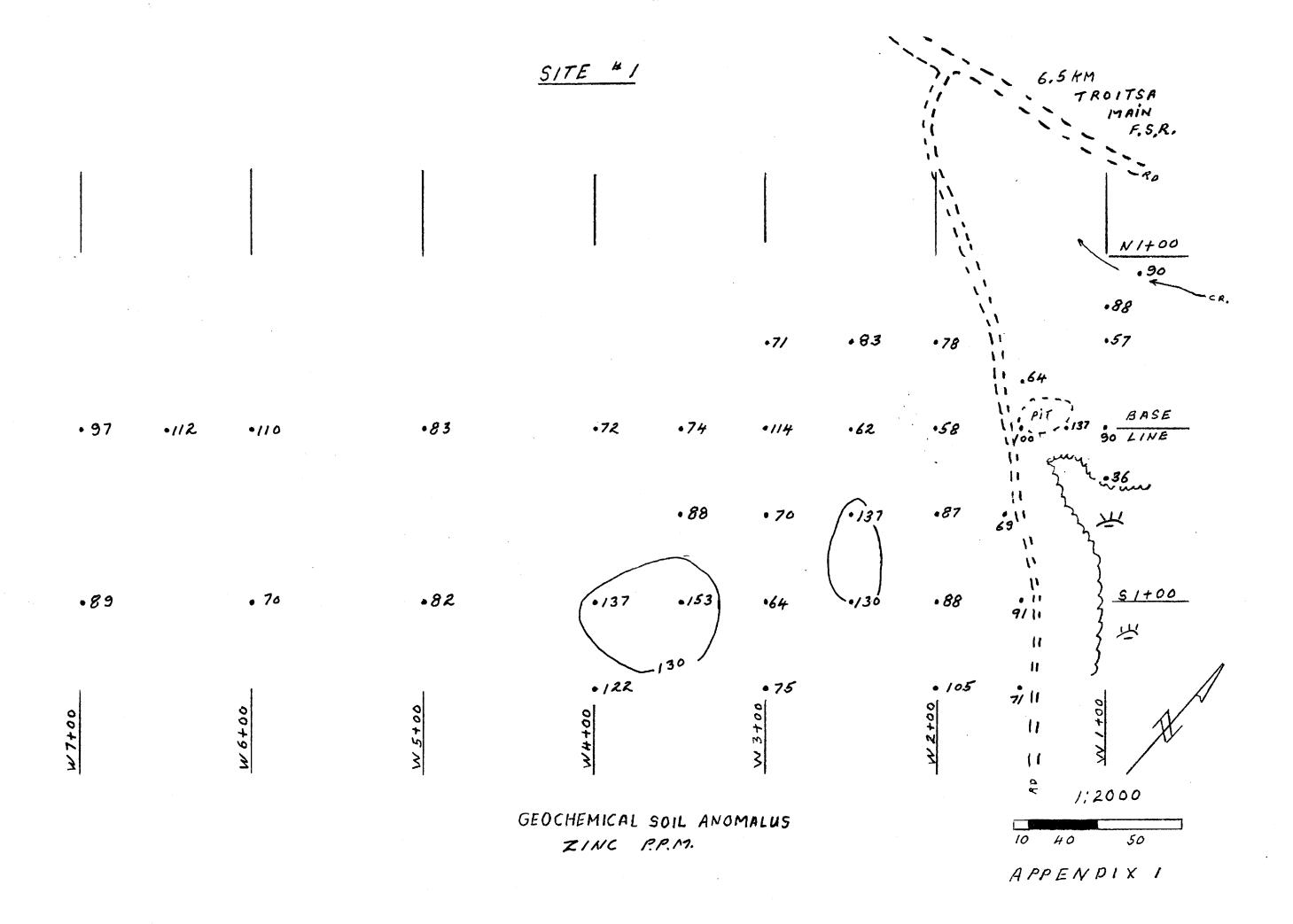
The area East of Whiteing Creek is interesting due to the mixed rock types.

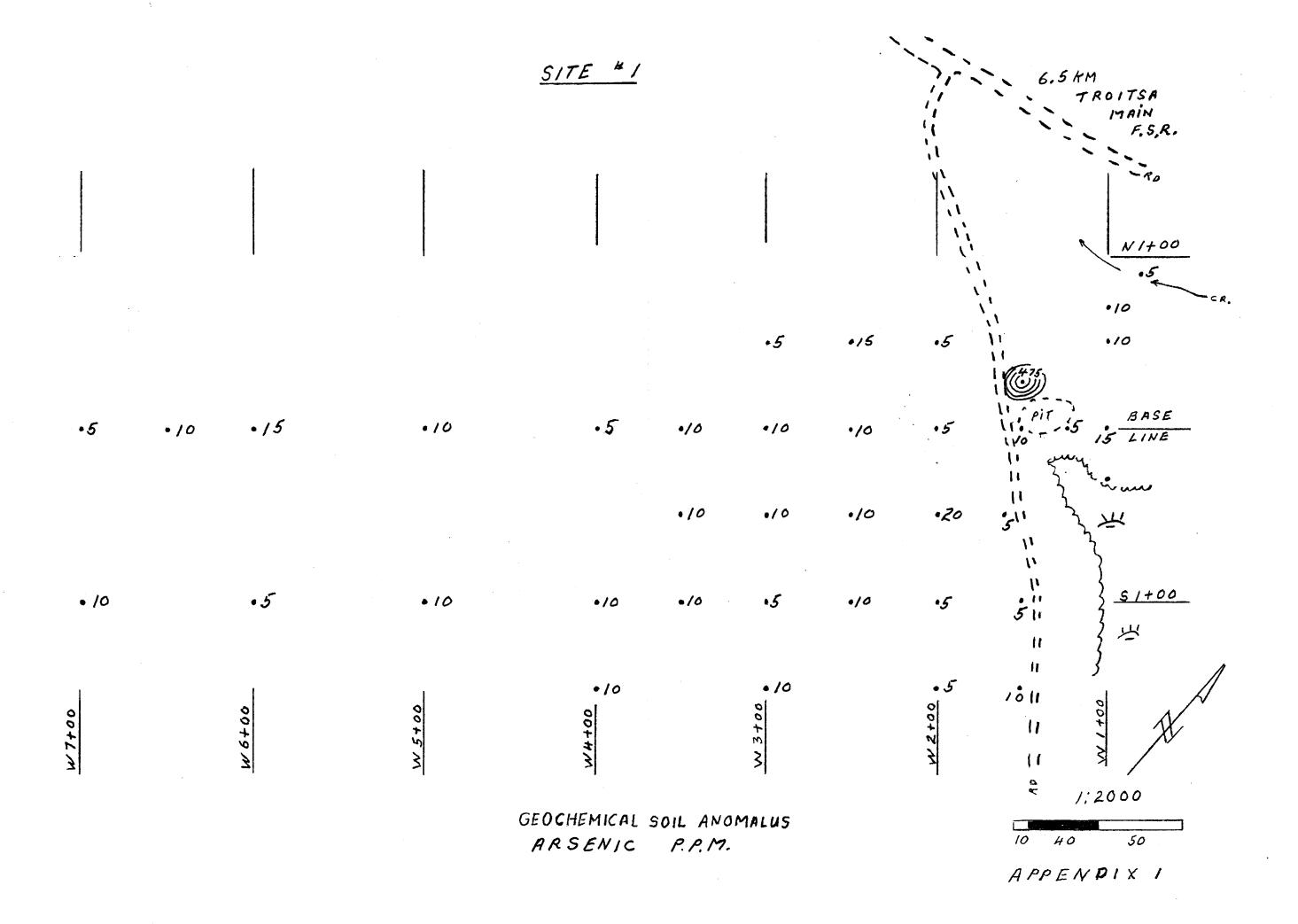
Mosquito Hills was not very interesting, as most rock was sedimentary, on the North and West slopes. Only on the South side is there an intrusion of granodiorite.

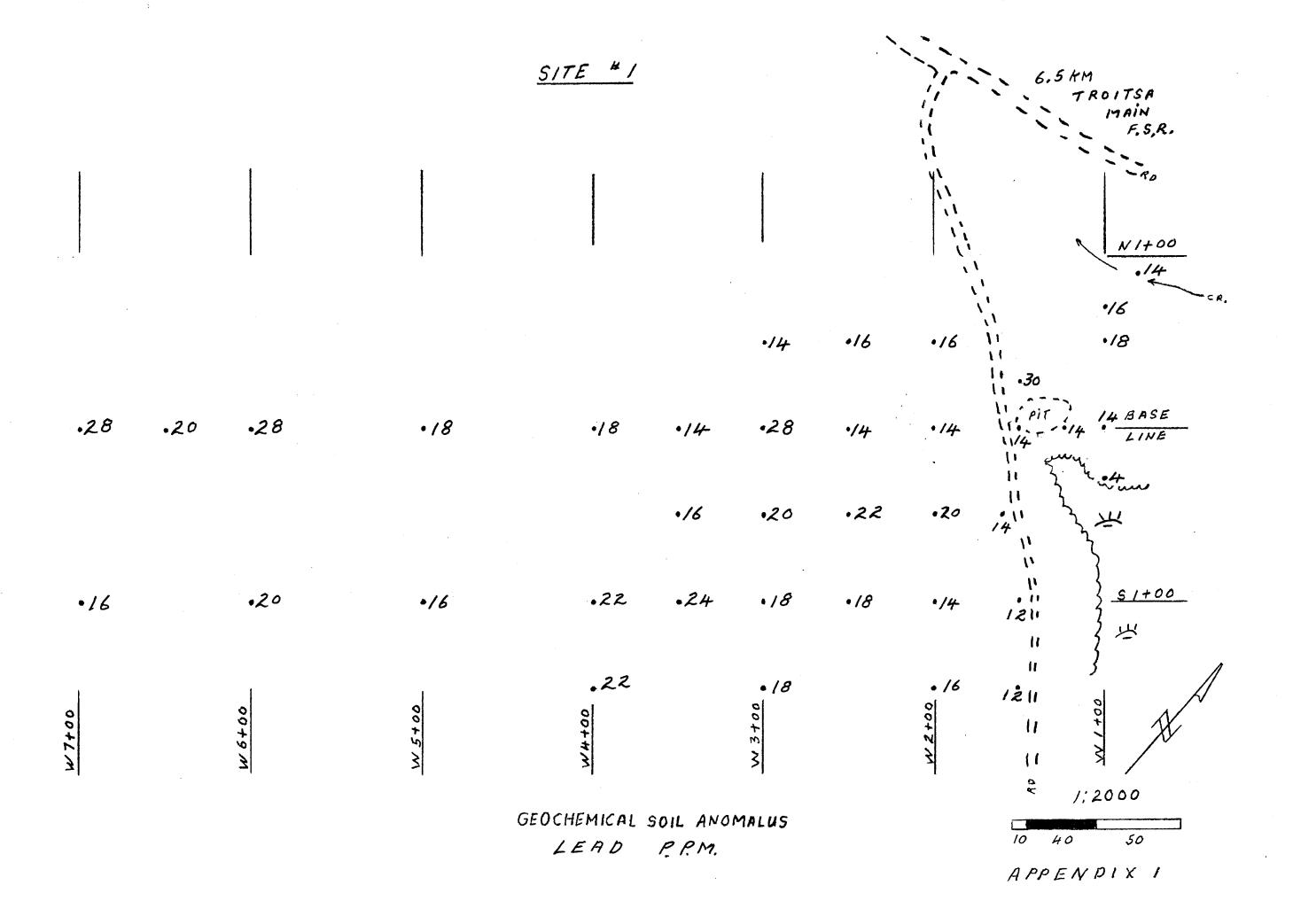


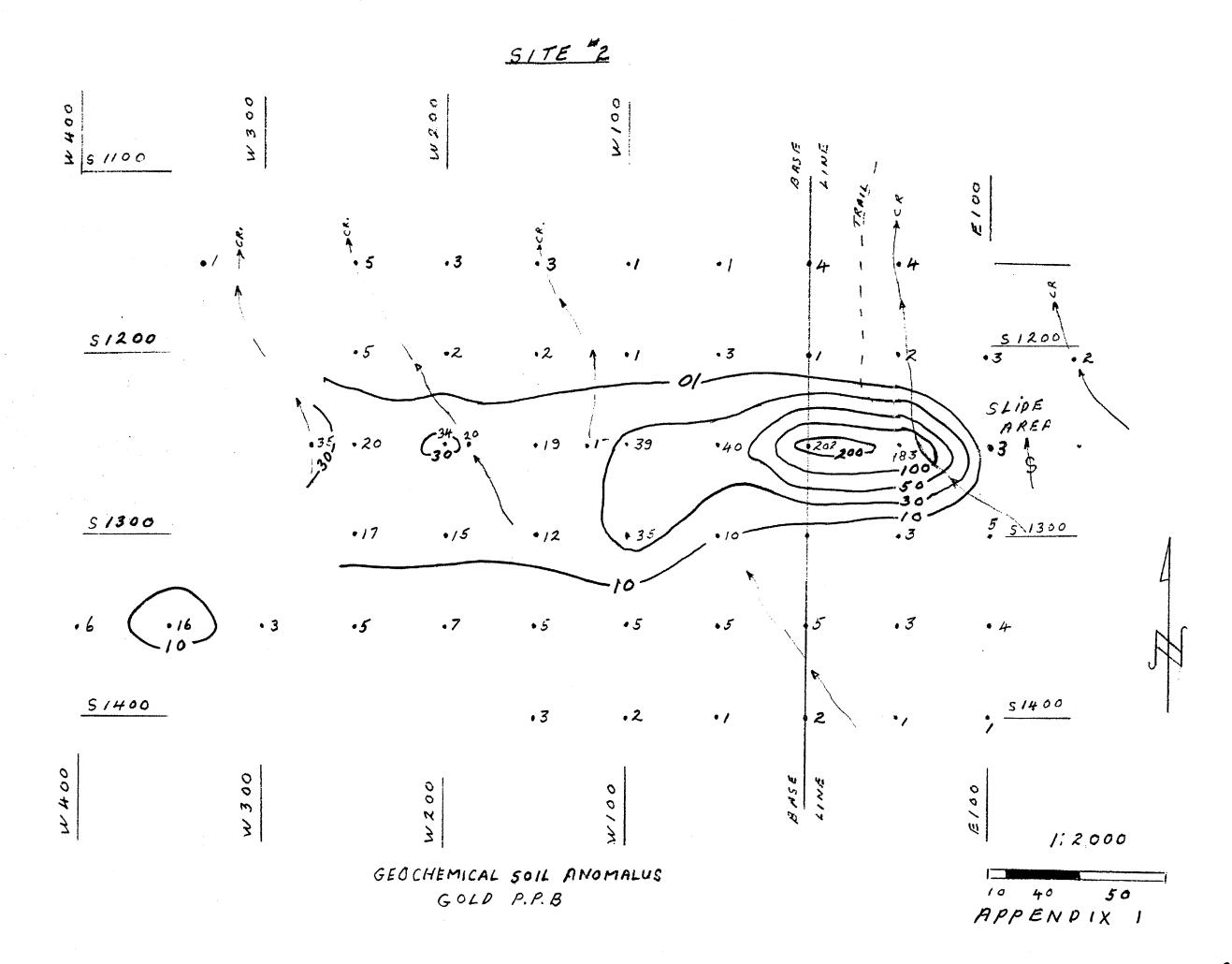

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

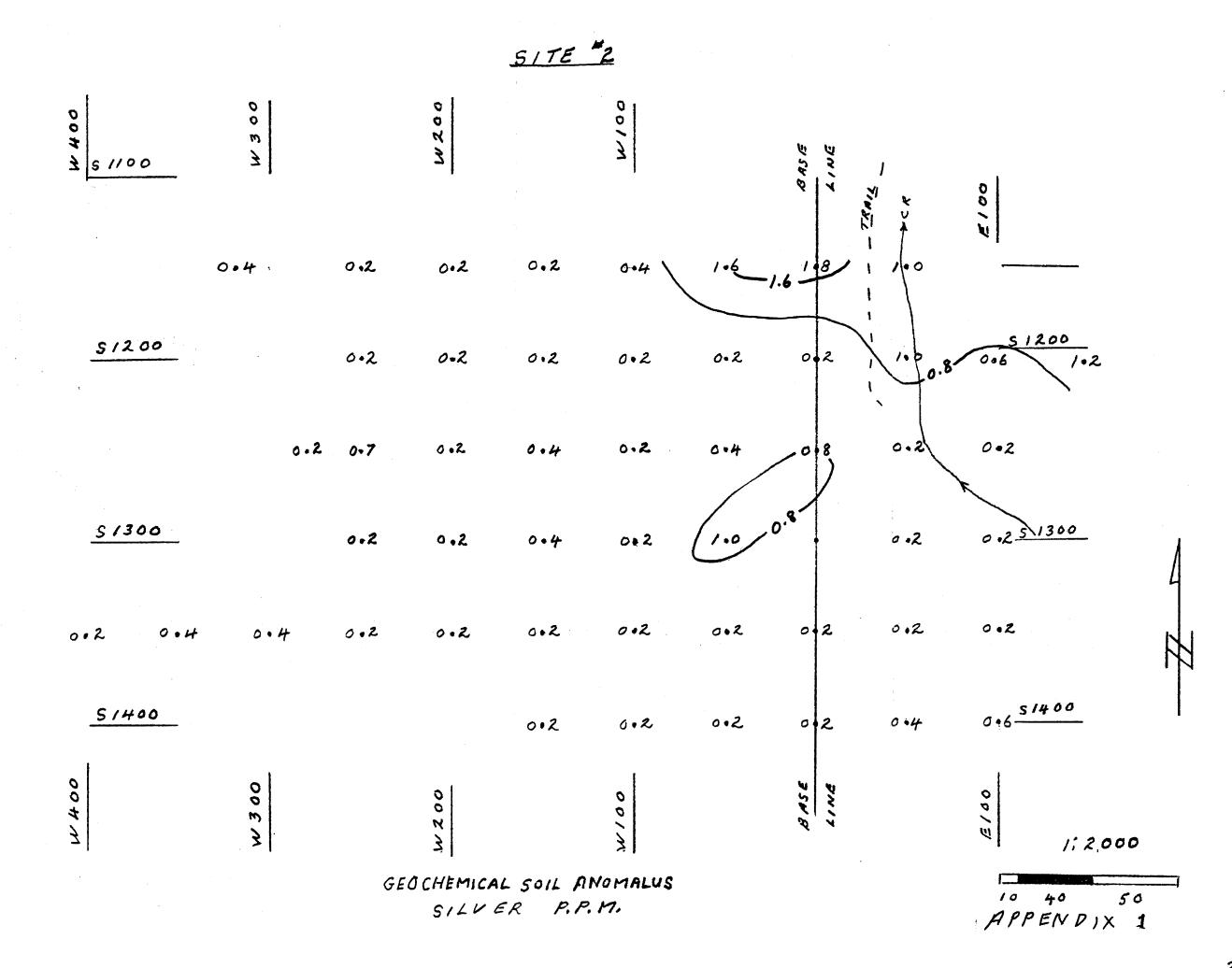

B. TECHNICAL REPORT

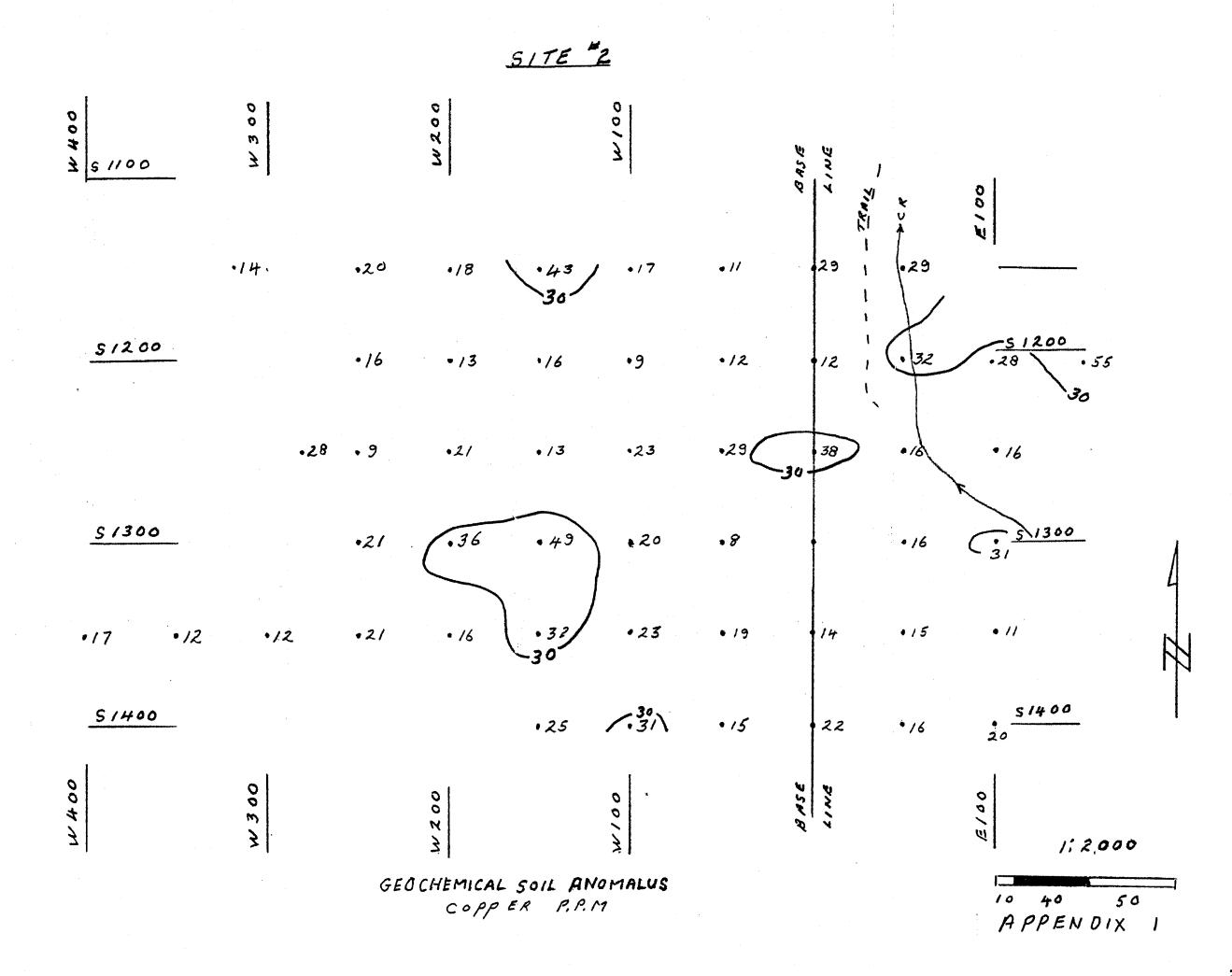

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations 15 to 17, page 6.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

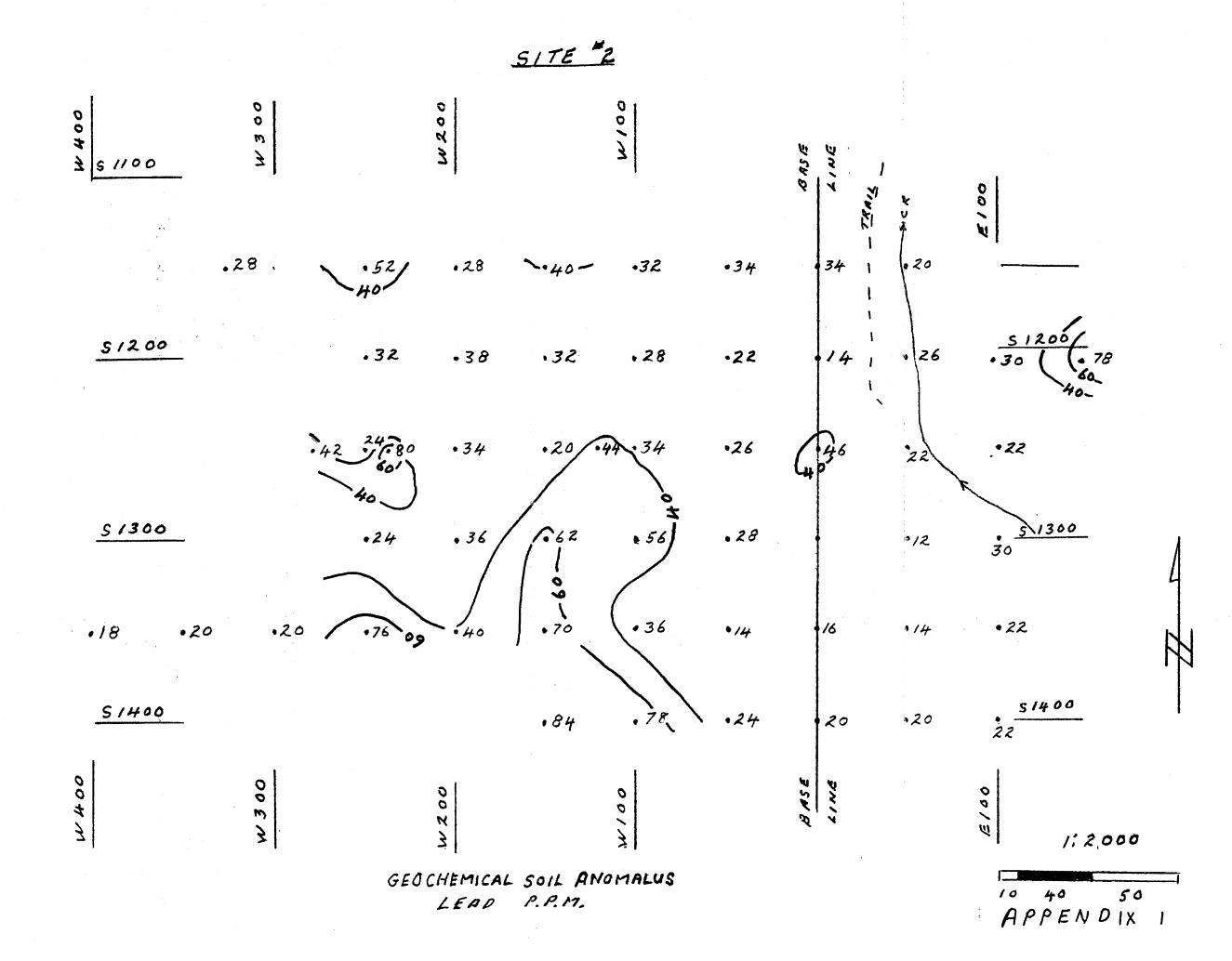

Name RUPERT SEEL		Reference	e Number <u>93</u>	9/00 P5
LOCATION/COMMODITIES				•
Project Area (as listed in Part A) WHITE SAIL		_ MINFII	E No. if applica	ıble
Location of Project Area NTS 936	I	_at	Long	g
Description of Location and Access TRUCK TO CREEK, THEN BY ATV. WE RIR Main Commodities Searched For GOLD C	TAHTSA ST END	REACH OF AR	BOAT T	O KASALHA IX WING
Main Commodities Searched For GoLD C	OPPER			
Known Mineral Occurrences in Project Area	LPHE,	HUCKE	EBERRY	Mive
WORK PERFORMED				
1. Conventional Prospecting (area) 50 KM				
2. Geological Mapping (hectares/scale) with				
3. Geochemical (type and no. of samples) 1.56 S.	ils SA	MPLES		
4. Geophysical (type and line km)				
4. Geophysical (type and line km) 5. Physical Work (type and amount) 7. Company of the company	F TRAIL	- CUT		
6. Drilling (no. holes, size, depth in m, total m)		··		
7. Other (specify)	···-		_=	
				
SIGNIFICANT RESULTS	Oleim Nam		•	
Commodities Gold Copper Silver Location (show on map) Lat. 53 37 Best assay/sample type Gold 202 PPB,	Claim Nam	e <u> 322</u>	The state of the s	- FT
Location (snow on map) Lat. 33 3/	Long / 2 7	- 05 - CPM	Elevation #	000
Best assay/sample type Gold 202 FPB	SILVER	1.8	ARS ENIC	473 777
Description of minoralization, best racks, anomalies	accania		- 1/20TC	
Description of mineralization, host rocks, anomalies				
WITH VEINLETS OF PYRITE	NEAL	<i>M</i> C.5	NIKACI	ZONE
			·- <u> </u>	<u> </u>
		·		
		-		

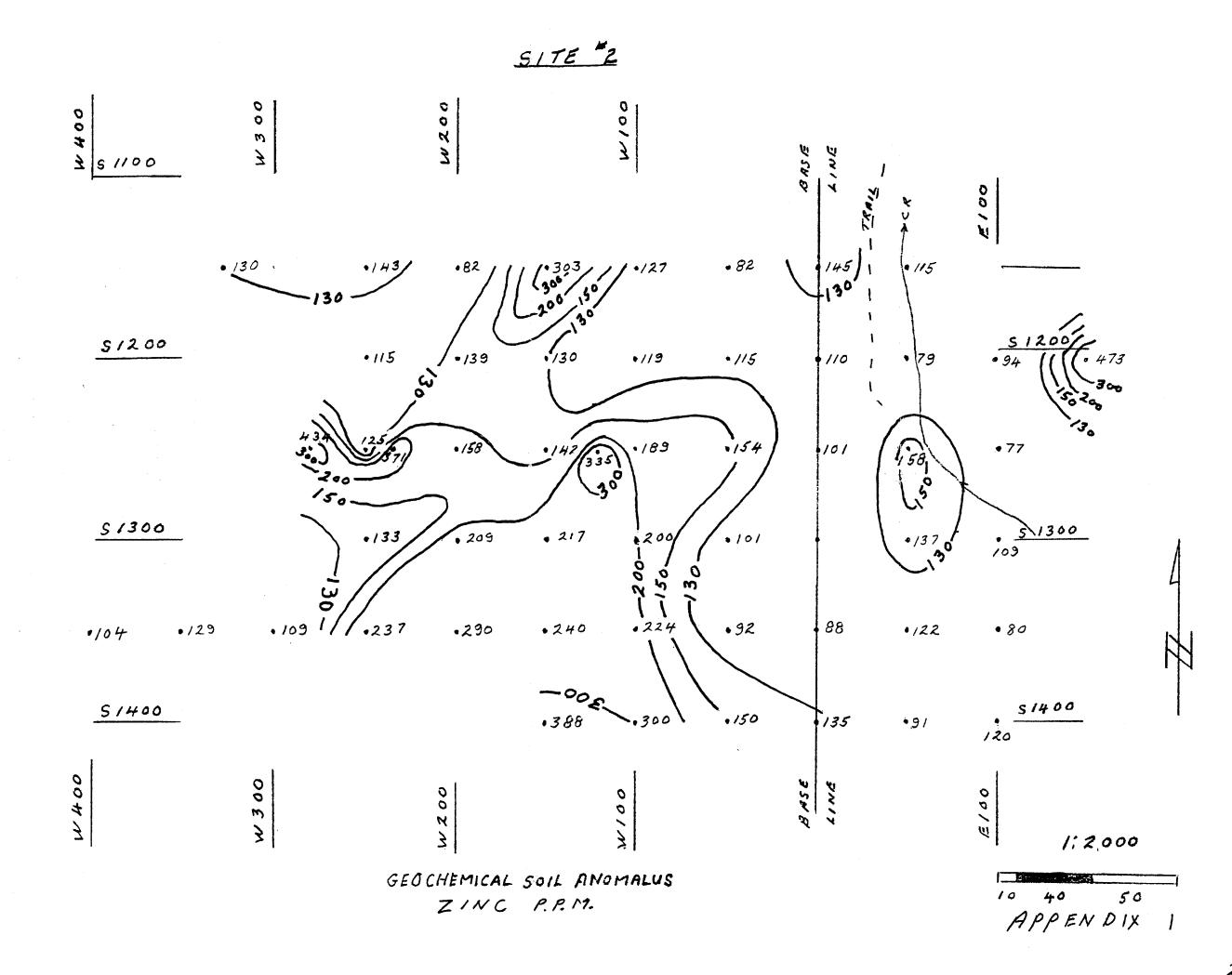


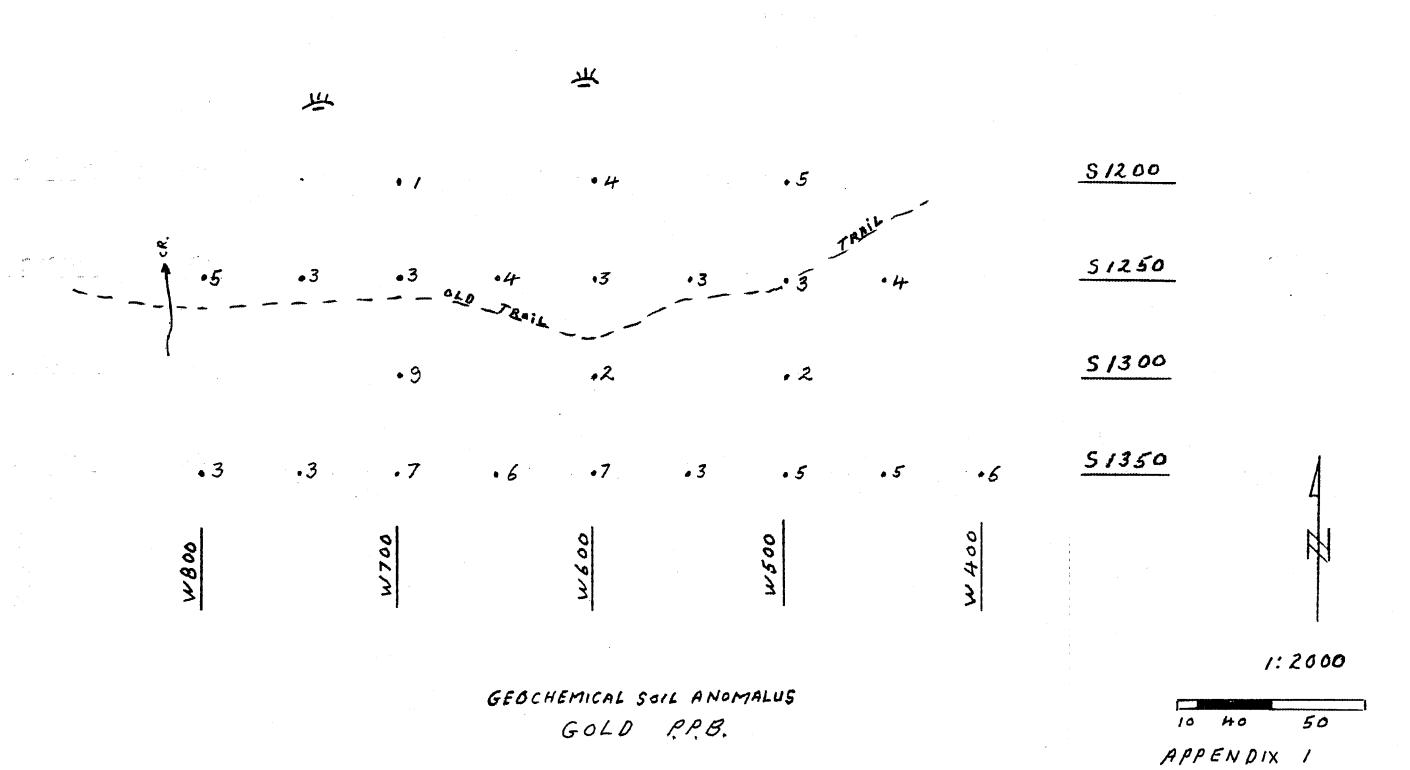












SITE #3


SITE #3

业 些 5/200 0.2 0.2 0.2 51250 0.2 0.2 0.2 0.2 5/300 0.2 0.2 0.2 5/350 0.2 0.2 0.2 0.2 0.2 0.4 0.2 0.2 W700

> GEOCHEMICAL SOIL ANOMALUS SILVER P.P.M.

1:2000

10 HO 50 APPENDIX 1

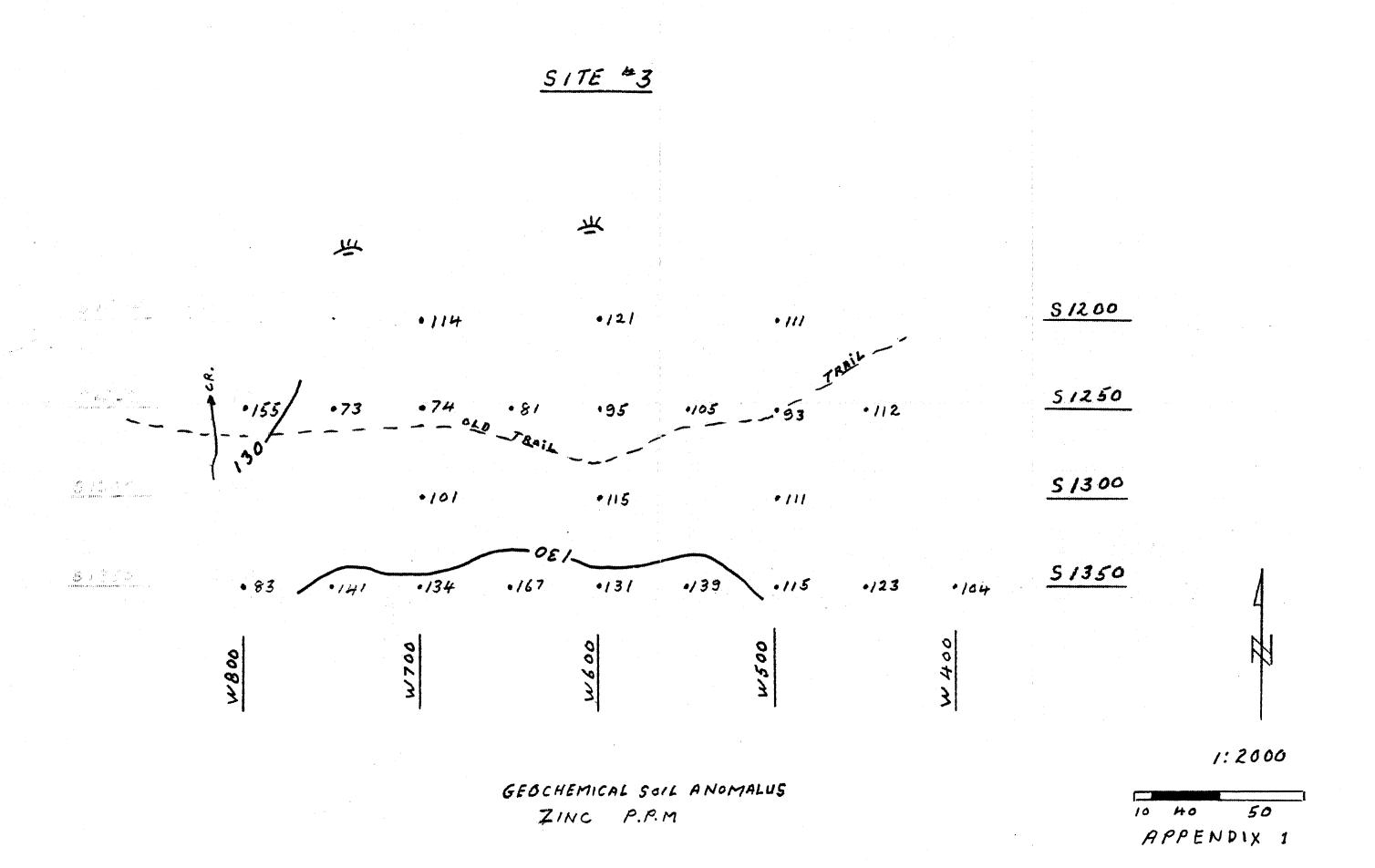
坐 些 \$ 1200 •24 •18 •17 51250 •17 • 22 5/300 • 18 . 15 •14 5/350 .26 •/3 • 14 .16 .17 .24 .21 •16 1/2 W800

> GEOCHEMICAL SOIL ANOMALUS COPPER P.P.M.

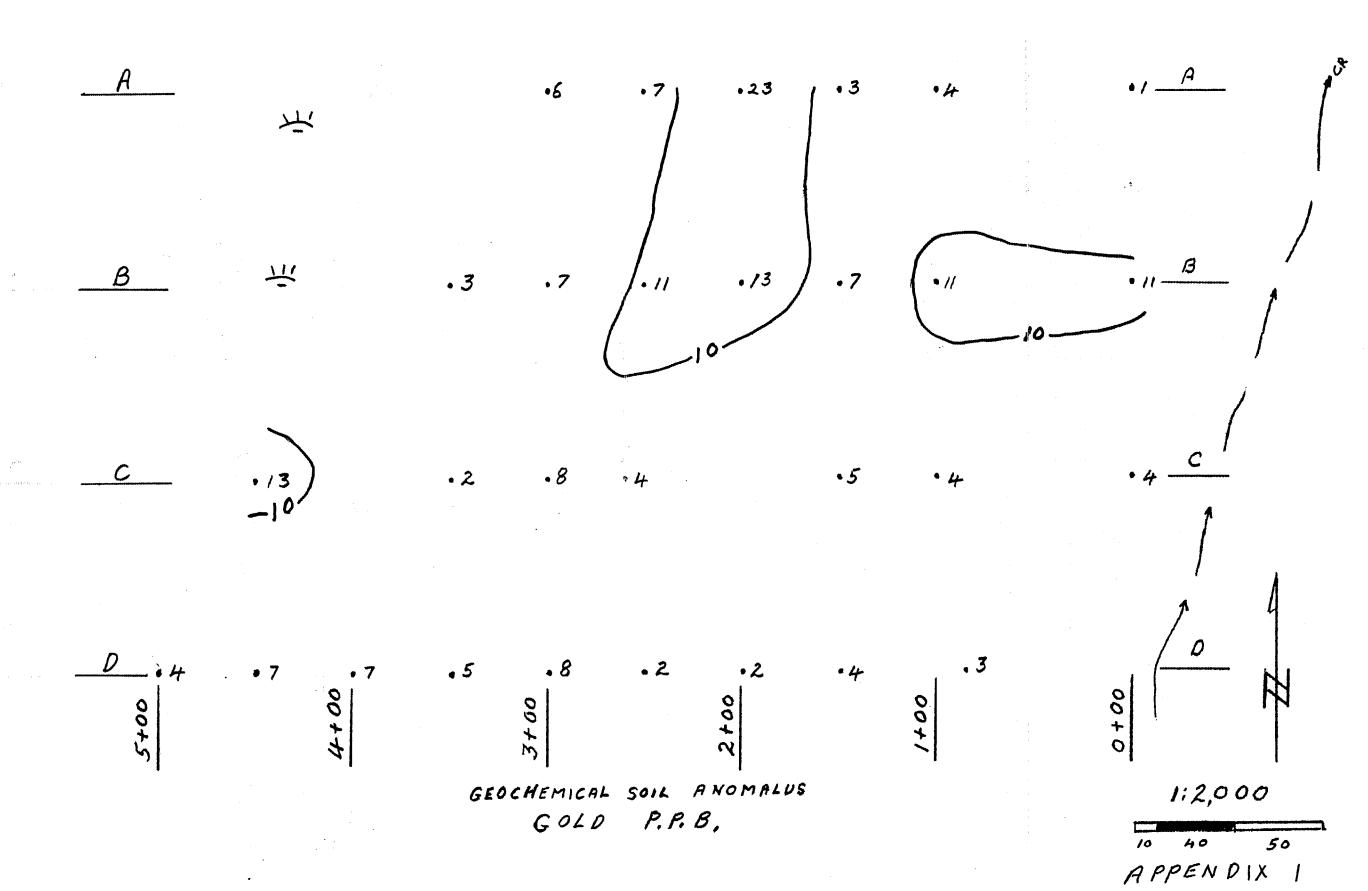
1:2000 10 40 50 APPENDIX 1

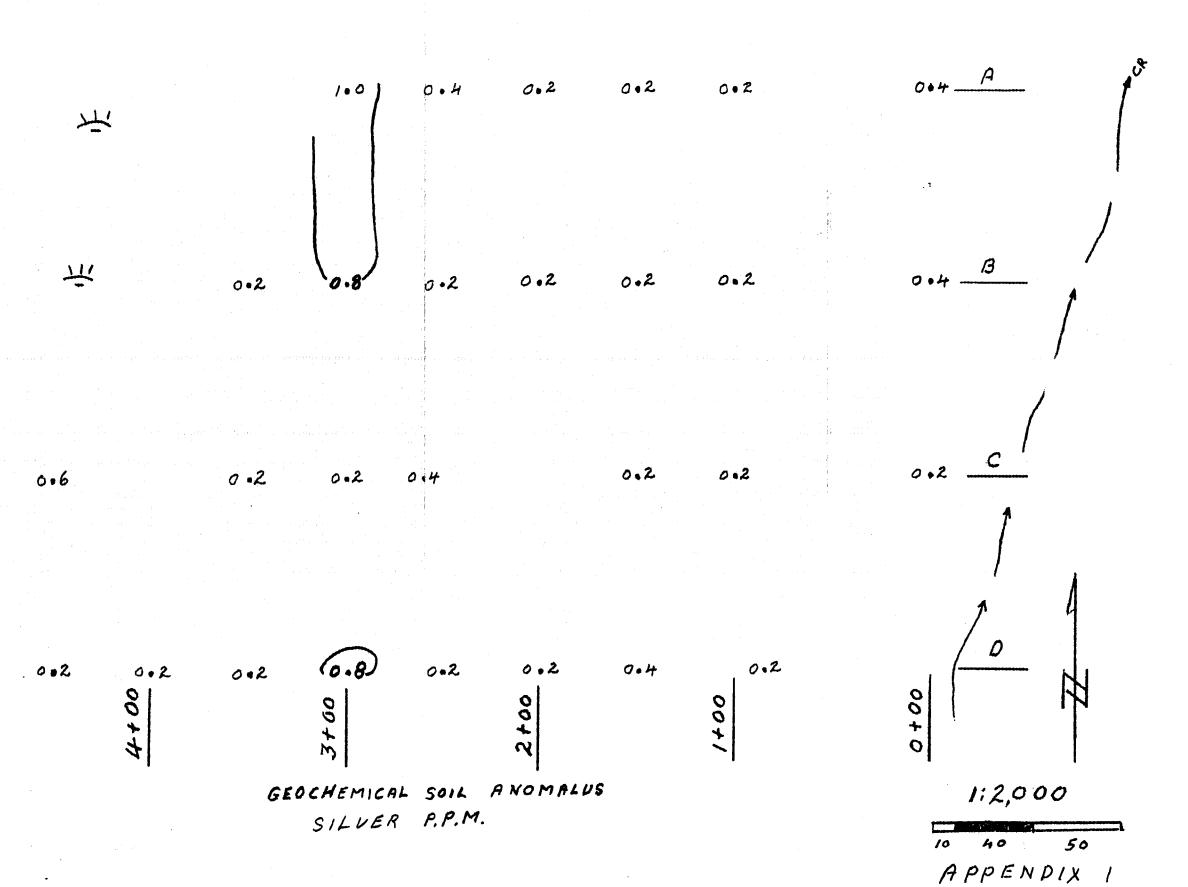
SITE #3

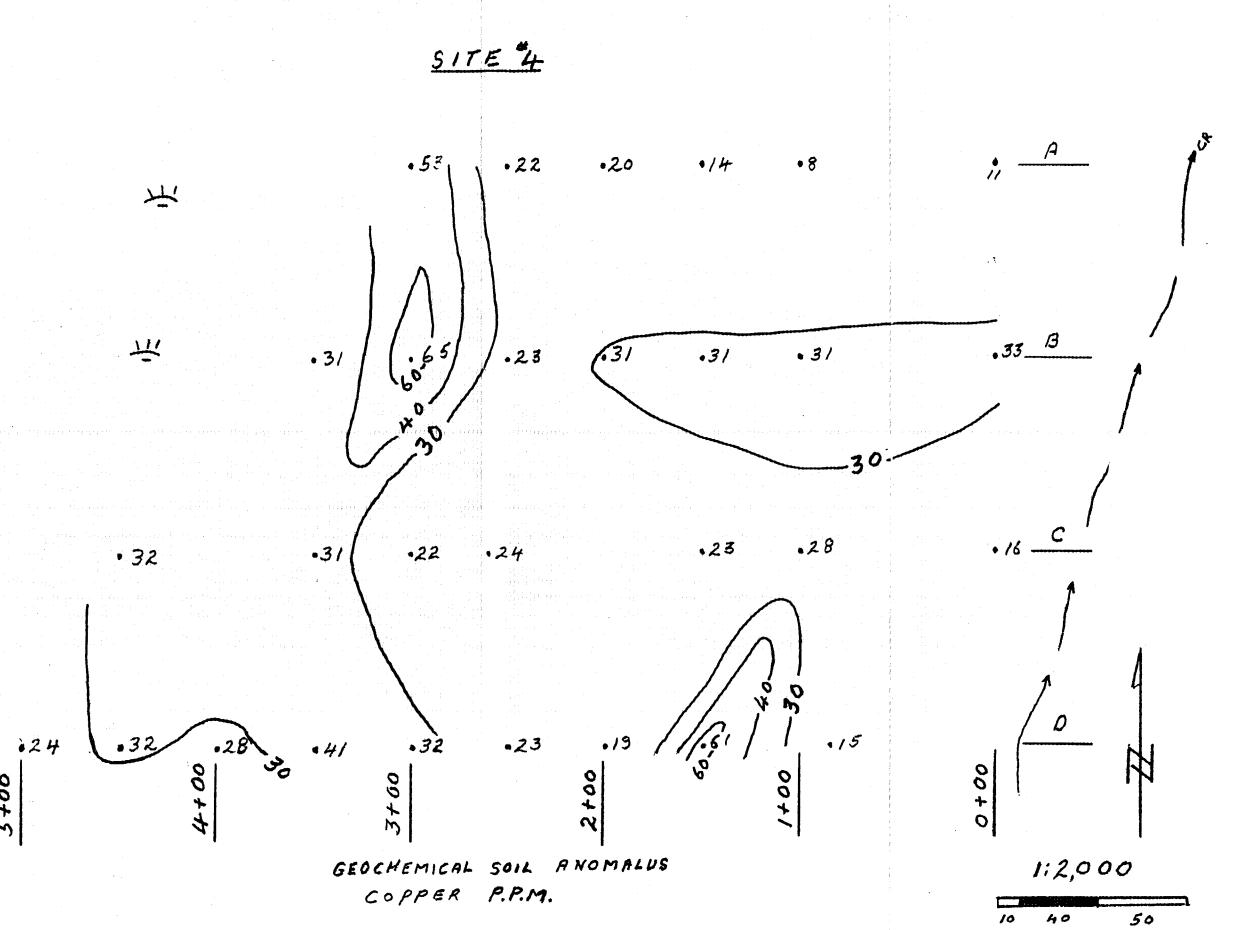
PE

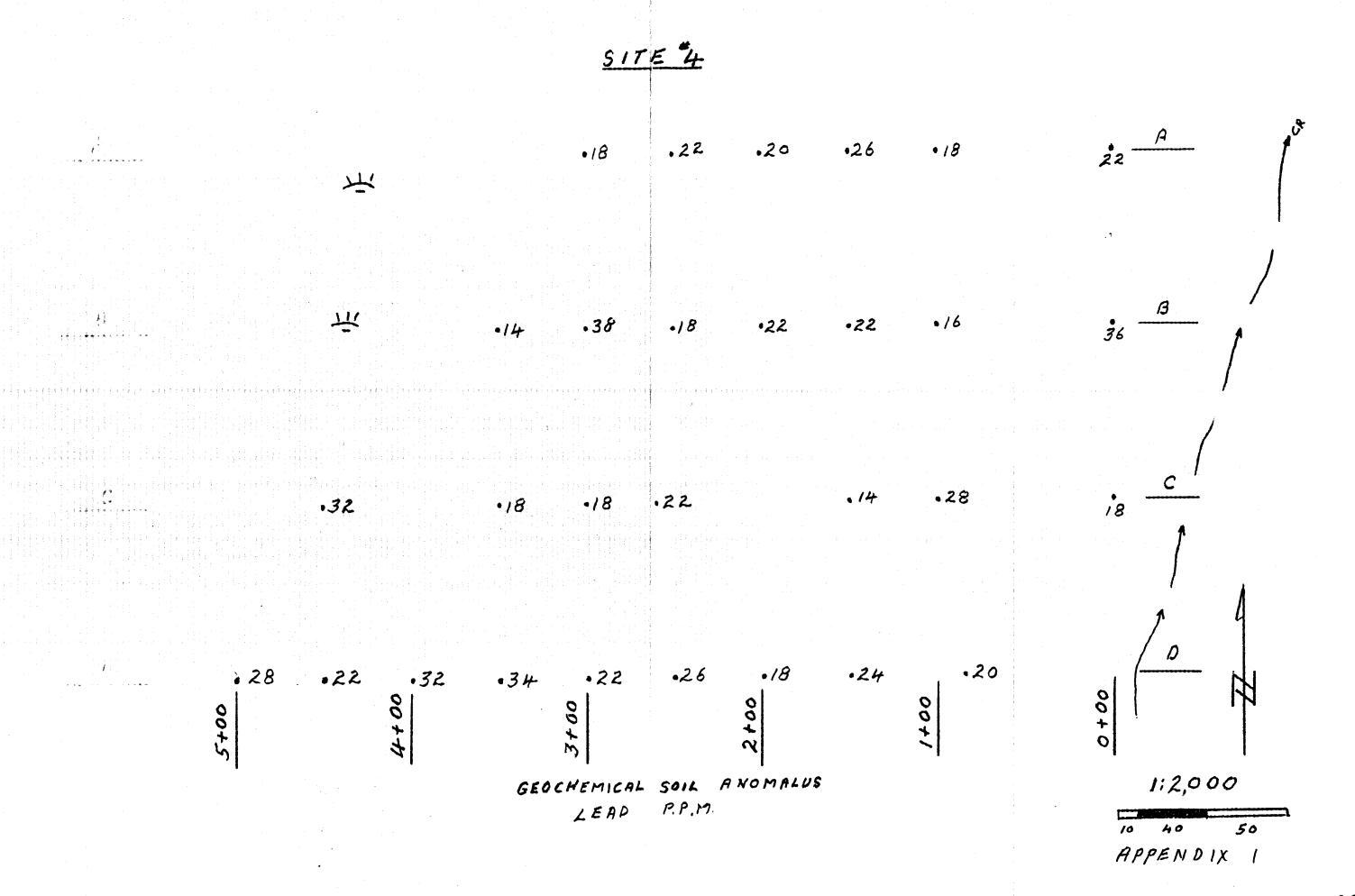

坐 些 \$ 1200 • 18 •22 .20 51250 • 18 .22 .26 .18 .22 -18 5/300 G F F H d) del +12 +22 .24 51350 The state of the s .20 .24 .22 .14 .24 .30 .20 .18 .24 W800

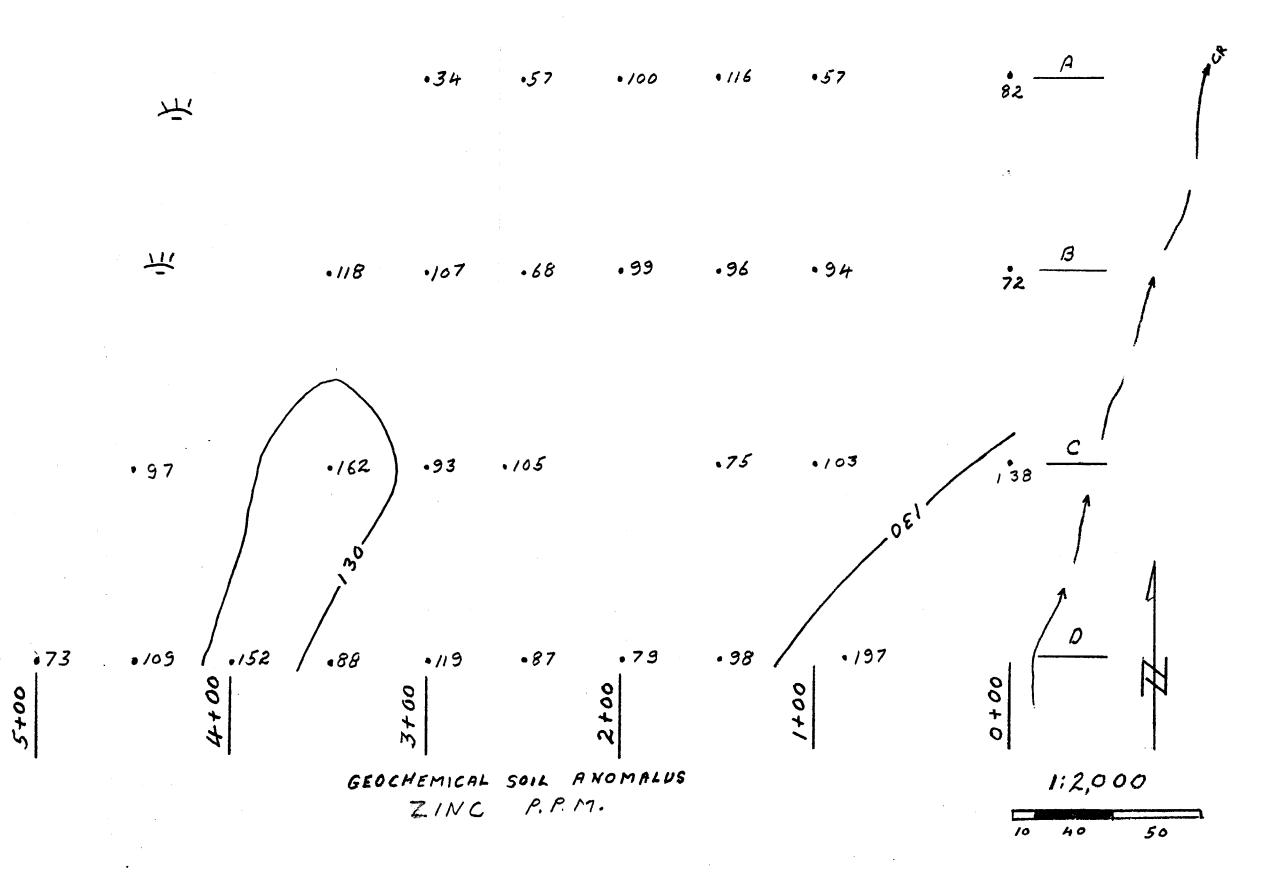
-


1:2000


GEOCHEMICAL SOIL ANOMALUS LEAD P.P.M.


10 HO 50 APPENDIX I


SITE 4



APPENDIX 1

SITE 4

8282 Sherbrooke St. Vancouver, B.C.

V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

9V-0300-SG2

Company:

Rupert Seel

Aug-31-99

Project:

Attn:

Rupert Seel

We hereby certify the following geochemical analysis of 6 soil samples submitted Aug-24-99 by Rupert Seel.

Sample Name	Au PPB	
P S 0+50 W 2+00	4	
P S 0+50 W 2+50	7	
P S 0+50 W 3+00	9	
P S 0+50 W 3+50	11	
P N 0+50 W 1+00	17	
P N 0+70 W 1+00	8	

Certified by

TSL Assayers Vancouver 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

TSL Assayers Saskatoon #2 - 302 East 48th Street Saskatoon, Saskatchewan S7K 6A4

Tel: (306) 931-1033 Fax: (306) 242-4717

TSL Assayers Swastika 1 Cameron Ave. Swastika, Ontario **POK 1TO**

Tel: (705) 642-3244 Fax: (705) 642-3300

TSL Assayers Vancouver 8282 Sherbrooke St. Vancouver, B.C.

Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

9V-0300-RG1

Company:

Rupert Seel

Aug-31-99

Project:

Attn:

SITEI

Rupert Seel

We *hereby certify* the following geochemical analysis of 4 rock samples submitted Aug-24-99 by Rupert Seel.

Sample Name	Au PPB
99-1	4
99-2	2
99-3	7
P N 0+25 W 1+50	6

Certified by

Hic

TSL Assayers Vancouver 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423 TSL Assayers Saskatoon #2 - 302 East 48th Street Saskatoon, Saskatchewan S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

TSL Assayers Swastika 1 Cameron Ave. Swastika, Ontario POK 1T0 Tel: (705) 642-3244 Fax: (705) 642-3300

8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

9V-0305-SG2

Company:

Rupert Seel

Sep-03-99

Project:

Attn:

Rupert Seel

We *hereby certify* the following geochemical analysis of 1 sample submitted Aug-27-99 by Rupert Seel.

Sample

Au

Name

PPB

P W7+00 S1+00

4

Certified by

766-

TSL Assayers Vancouver 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423 TSL Assayers Saskatoon #2 - 302 East 48th Street Saskatoon, Saskatchewan S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717 TSL Assayers Swastika 1 Cameron Ave. Swastika, Ontario P0K 1T0 Tel: (705) 642-3244 Fax: (705) 642-3300

8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

9V-0305-SG1

Company:

Rupert Seel

Sep-03-99

Project:

Attn:

Rupert Seel

We hereby certify the following geochemical analysis of 24 soil samples submitted Aug-27-99 by Rupert Seel.

Sample	Au	
Name	PPB	
99-4	7	
99-5	7	
99-6	8	
P B/L W4+00	15	
P B/L W5+00	5	
P B/L W6+00	5	
P B/L W6+50		
P B/L W7+00	4 3 6	
P W0+80 N0+90	6	
P W2+00 N0+50	6	
P W2+50 N0+50	11	
P W3+00 N0+50	7	
P W1+50 S1+00	3	
P W1+50 S1+50	4	
P W2+00 S1+00	5	
P W2+00 S1+50	8	
P W2+50 S1+00	3	
P W3+00 S1+00	6	
P W3+00 S1+50	5	
P W3+50 S1+00	7	
P W4+00 S1+00	1	
P W4+00 S1+50	5	
P W5+00 S1+00	2	
P W6+00 S1+00	2	
		<u></u>

Certified by_

tu

TSL Assayers Vancouver 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

TSL Assayers Saskatoon #2 - 302 East 48th Street Saskatoon, Saskatchewan S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717 TSL Assayers Swastika 1 Cameron Ave. Swastika, Ontario P0K 1T0 Tel: (705) 642-3244 Fax: (705) 642-3300

8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

9V-0300-SG1

Company:

Rupert Seel

Aug-31-99

Project:

Attn:

Rupert Seel

We *hereby certify* the following geochemical analysis of 24 soil samples submitted Aug-24-99 by Rupert Seel.

Sample Name	Au PPB	
L2-1	183	
L2-2	202	
L2-3	40	
L2-4	39	
L2-5	19	
L2-6	34	
) L2−7	20	
L2-175	17	
L2-240	20	
L2-330	35	
L3-3	17	
L3-4	15	
L3-5	12	
T3-6	35	
L3-7	10	
B/L P 1+00	11	
B/L P 1+25	6	
B/L P 1+50	5 8 6	
B/L P 2+00	8	
B/L P 2+50	6	
B/L P 3+00	8 9	
B/L P 3+50	9	•
P S 0+30 W 1+00	10	
P S 0+50 W 1+60	11	

Certified by_

The

TSL Assayers Vancouver 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423 TSL Assayers Saskatoon #2 - 302 East 48th Street Saskatoon, Saskatchewan S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717 TSL Assayers Swastika 1 Cameron Ave. Swastika, Ontario POK 1T0 Tel: (705) 642-3244 Fax: (705) 642-3300

TSL Assayers Vancouver 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

9V-0372-SG1

Company:

Rupert Seel

Oct-14-99

Project: Attn:

Rupert Seel

We hereby certify the following geochemical analysis of 24 soil samples submitted Oct-05-99 by Rupert Seel.

Sample Name	Au PPB	
S800 E50	3	
S1150 E50	4	
S1150 B/L	4	
S1150 W50	1	
S1150 W100	1	
S1150 W150	3	
S1150 W200	3	
S1150 W250	5	
\$1150 W335	1	
S1200 E150	2	
S1200 E100	3	
S1200 E50	2	
S1200 B/L	1	
S1200 W50	3	
S1200 W100	1	<u></u>
S1200 W150	2	
S1200 W200	2	
S 1200 W 250	5	
S1200 W 500	5	
S1200 W600	4	
S1210 W700	1	
S1250 E100	3	
S1250 W450	4	
S1250 W500	3	

Certified by

TSL Assayers Swastika

TSL Assayers Vancouver 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

9V-0372-SG3

Company:

Rupert Seel

Oct-14-99

Project:

Attn:

Rupert Seel

We hereby certify the following geochemical analysis of 24 soil samples submitted Oct-05-99 by Rupert Seel.

Sample Name	Au PPB		
s1350 w550	3	 	
S1350 W600	7		
S1350 W650	6		
S1350 W700	7		
S1350 W750	3	 	
S1350 W800	3		
S1400 E100	1		
S1400 E50	1		
S1400 W0	2		
S1400 W50	1		
S1400 W100	2		
S1400 W150	3		
A 0+00	1		
A 1+00	4		
A 1+50	3	 · 	
A 2+00	23		
A 2+50	7		
A 3+00	6		
B 0+00	11		
в 1+00	11	 	
B 1+50	7		
B 2+00	13		
B 2+50	11		
B 3+00	7		

Certified by

TSL Assayers Vancouver 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

TSL Assayers Saskatoon #2 - 302 East 48th Street Saskatoon, Saskatchewan \$7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

1 Cameron Ave. Swastika, Ontario P0K 1T0 Tel: (705) 642-3244 Fax: (705) 642-3300

TSL Assayers Swastika

TSL Assayers Vancouver 8282 Sherbrooke St.

Vancouver, B.C.

V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

9V-0372-SG2

Company:

Rupert Seel

Oct-14-99

Project:

Attn:

Rupert Seel

We hereby certify the following geochemical analysis of samples submitted Oct-05-99 by Rupert Seel.

Sample Name	•	Au PPB			
\$1250	W550	3		 -	
S1250	W600	3			
S1250		4			
S1250		3 3			
	W750 m		 		
S1250	₩800 \	3			
S1300	E100 🛴	5			
S1300		3			
S1300	W500 '	2 2			
, S1300	W 600	2	 		
	W 700	9			
	E100	4			
S1350		3 5 5			
S1350		5			
<u> 5135</u> 0	W50	5	 		
S1350	W100	5			
S1350		5			
	W200	7			
	₩250	5 3			
S1350	W300	3	 	<u> </u>	
S1350	W350	16			
S1350	W400	6			
	W450	5			
S1350	W500	5			

Certified by

TSL Assayers Vancouver 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

TSL Assayers Saskatoon #2 - 302 East 48th Street Saskatoon, Saskatchewan S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

1 Cameron Ave. Swastika, Ontario P0K 1T0 Tel: (705) 642-3244 Fax: (705) 642-3300

TSL Assayers Swastika

TSL Assayers Vancouver 8282 Sherbrooke St.

Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Cuality Assaying for over 25 Years

Geochemical Analysis Certificate

9V-0372-SG4

Company:

Rupert Seel

Oct-14-99

Project:

Attn:

Rupert Seel

We hereby certify the following geochemical analysis of 24 soil samples submitted Oct-05-99 by Rupert Seel.

Sa Na	mple ime	Au PPB			
В	3+50	3	 		
С	0+00	4			
С	1+00	4			
С	1+50	5			
С	2+60	4			
C	3+00	8			
	3+50	2			
	4+50	13			
D	0+80	3			
D	1+50	4			<u></u>
D	2+00	2			
	2+50	2			
D	3+00	8			
D	3+50	5			
D	4+00	7	 	 	
D	4+50	7			
	5+00	4			
	0+30	2			
Х	1+00	2			
X	2+00	2	 	 	
Х	3+00	2			
	4+00	3			
	5+00	1			
	6+50	5			

Certified by

TSL Assayers Vancouver 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

TSL Assayers Saskatoon #2 - 302 East 48th Street Saskatoon, Saskatchewan S7K 6A4 Tel: (306) 931-1033 Fax: (306) 242-4717

TSL Assayers Swastika 1 Cameron Ave. Swastika, Ontario POK 1TO Tel: (705) 642-3244 Fax: (705) 642-3300

8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

9V-0372-SG5

Company:

Rupert Seel

Oct-14-99

Project:

Attn:

Rupert Seel

We hereby certify the following geochemical analysis of 1 soil sample submitted Oct-05-99 by Rupert Seel.

Sample Name

Au PPB

99-7

33

Certified by

Rupert Seel 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Report No : 9V0305 SJ

Tel: (604) 327-3436 Fax: (604) 327-3423

Project:

Sample: .

Attention: Rupert Seel

Date

Sep-03-99

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag	AI %	As	Ba	Be	. Bi ppm	Ca %		Co	Cr Ci	11.0	Fe ::	K %	Mg %	Mn	Mo ppm	Na %	Ni P ppm ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W	Y ppm		Zr ppm
Number	ppm	70	ppm	ppm	ppm	PPIII		ppin į	ppm	ppiii ppi		<i>™</i> .		70	Phin	PPIII		bbin bbin	PP	.ppiii	PPIII	bbin	ppiii		PPIII	bb	PPIII	PP'''	PPIII
99-4	<0.2	1.82	· ·	140	< 0.5	<5	0.13	<1	9	23	17	3.58	0.05	0.41	395	<2	0.01	12 680	14	≺S	4	<10	13	0.12	72	<10	6.	76	7
99-5	< 0.2	2,67	5	70	≺0. 5	<5	0.11	<1	11	29	31	3.99	0.05	0.51	445	2	D.01	17 1480	14	∹ ≺5	4	<10	11	0.11	75	<10	3	126	7
99-6	<0.2	2.47	10	110	1,0	√ 5	0.18	<1 ∴	12	25 : :	32	6.44	0.06	0.53	720	6	0.01	15 1730	. 20	S	6	<10	16	0.06	100	<10	14	212	5
P B/L W4+00	<0.2	1.87	5	100	<0.5	· <5	0.11	<1	- 6	19	17	3.53	0.05	0.30	295	2	D.01	10 690	18	≺S	3	<10	16	0.09	68	<10	3 :	.72	4
P B/L W5+00	<0.2	2.33	10	60	<0.5	· <5	0.12	<1	9	22	37	3.50	0.04	0.34	325	2	0.01	12 670	18	≺5	4	<10	11	0.10	60	<10	6	83	5
	*********		Minali.					9.7 9.5	5,635		111	1			lant.								1	355					
P B/L W6+00	<0,2	2.29	15	110	<0.5	<5	0.10	<1	9	22	30	3.62	0.06	0.41	320	2	0.01	14 500	28	<5	4	<10	10	0.1D	66	<10	4	11D	5
P B/L W6+50	< 0.2	1.88	10	60	<0.5	<5	0.12	<1	7	20	19	3.49	0.04	0.36	345	2	0.01	10 590	20	≺5	3	<10	11 ;	0.11	63	<10	5	112	3
P B/L W7+00	0.2	1.80	5	90	<0.5	<5	0.17	<1∷	8	21	23	3.35	0.05	0.24	715	2	0.01	8 640	28	<5	3	<10	16	0.17	71.	<10	5 }	97	3
P W0+80 N0+90	< 0.2	1.94	5	120	<0.5	<5	0.14	<1	8	21	23	2.91	0.05	0.38	355	<2	0.01	13 480	14	<5	4	<10	17	0.11	58	<10	5	90	4
P W2+00 N0+50	< 0.2	1.30	5	90	<0.5	≺ 5	0.15	<1	6	18	11	3.53	0.06	0.23	450	2	0.01	7 890	16	<5	2	<10	13	0.13	73	<10	2	78	3
																							3						
P W2+50 N0+50	<0.2	2.09	15	. 80	≮0.5	< <5	0,20	<1	7	22	ZZ	3.83	0.04	0.34	455	2.	0.01	10 770	16	<5	3	<10	15	0.13	71.	<10	6.	84	4
P W3+00 N0+50	< 0.2	2.46	5	70	<0.5	. <5	0.14	<1	7	20	12	3,44	0.03	0.27	265	<2	0.01	9 670	14	<5	3	<10	13	0.11	59	<10	4	71	4
P W1+50 S1+00	<0.2	1.80	5	110	<0.5	. ≺2	0.20	<1	8.	20	18	3.02	0.05	0.42	425	2	0,01	10 470	12	<5	4	<10	20 :	0:14	61	<10	5	91	4
P W1+50 S1+50	<0.2	1.37	10	130	< 0.5	<5	0.49	<1	7	17	10	2.43	0.15	0.44	640	2	0.03	9 760	12	<.5	4	<10	39 :	0.12	57	<10	5	71	7
P W2+00 S1+00	<0,2	1.75	5	140	<0.5	· <5	0.12	<1	7	21	24	3.89	0.06	0.33	555	2 .	0.01	10 890	14	≺5	3	<10	14	0.11	76	<10	3	88	3
								•																					
P W2+00 S1+50	<0.2	1.51		120	<0,5	≺ 5	0.38	<1	8	22 :	20	3.09	0.06	0.47	530	<2	0.01	11 500	16	< 5	5	<10	26	0.13	62	<10	7	105	3
P W2+50 S1+00	<0.2	2.61	10	90	0.5	<5	0.12	<1	10	22	25	4.02	0.04	0.34	490	2	0.01	12 1360	18	<5	3	<10	12	0.12	69	<10	4	130	5
P W3+00 S1+00	<0.2	2.57	5	80	₹0.5	√5	0.08	<1	6	23	14	4.36	0.04	0.29	230	2	0.01	9 1790	18	< 5	4	<10	9	0.11	80	<10	3.	64	6
P W3+00 S1+50	<0.2	2.20	10	160	0.5	< 5	0.15	<1	9	22	43	3.51	0.05	0.43	330	2	0.01	13 420	18	<5	5	<10	16	0.11	65	<10	10	. 75	5
P W3+50 S1+00	< 0.2	2.49	10	90	0.5	< 5	0.12	<1	7	22	50	3.89	D.D5	0.46	320	4	0.01	14 600	24	<5	5	<10	10.	0.09	62	<10	9 :	153	6
																		. 4.				137							
P W4+00 S1+00	0.2	3.60	10	80	0.5	< 5	0.07	<1 .	8	22	28	4.76	0.06	0.35	270	2	0.01	14 930	22	<5	4	<10	9	0.09	73.	<10	5	137	8
P W4+00 S1+50	0.2	2.29		120	<0.5	<5	0.13	<1	8	22	27	3.90 -	0.05	0.34	340	. 2	0.01	12 710	22	≺5	4	<10	12	0.13	72	<10	5	122	4
P W5+00 51+00	≺0.2	1.99	10	70	<0.5	< 5	0.11	<1	7	20	26	3.29	0.04	0,32	270	2	0.01	10 600	16	<5	3	<10	10	0.10	59	<10	3	82	3
P W6+00 S1+00	<0.2	1.75	, 5	70	< 0.5	< 5	0.11	<1	5	16	14	3.05 .	0.04	0.24	235	2	0.01	7 540	20	<5	2	<10	11	0.10	57	<10	2	70	3
P W7+00 S1+00	<0.2		10	90	< D.S	. < 5	0.09	<1	9	22	17	3.41	D.04	0.36	310	2	0.01	15 770	16	≺5	4	<10	11	0.09	58	<10	4	89	5
					٠.							- :																	

A .5 gm sample is digested with 10 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Rupert Seel

Report No : 9V0300 SJ

Tel: (604) 327-3436 Fax: (604) 327-3423 Date

Project:

Sample: soil

Attention: Rupert Seel

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag	Al %	As ppm	Ba ppm	Be ppm	Bi Ca	Cd Co	Cr Cu ppm ppm	Fe %	K %		Mn ppm	Mo ppm	Na %	Ni P	Pb Sb	Sc ppm	Sn ppm	Sr :	Ti %	V ppm	W	Y ppm	Zn ppm	Zr ppm
Time Time Time	1.00			1. 1.		20.20.00							• •	18,3%			• •								•
L2-1	<0.2	2.76	10	190	0.5	<5 0.23	<1 9	17 16	4.33	0.10	0.42	570	<2		11 2740	22 <5	5	<10	25	0.12	79	<10	6.		5
L2-2	0.8	1.25	25	80	<0.5	<5 0.08	<1 6	24 38	6.02	0.06	0.20	430	<2 ∶	0.01	11 2650	46 5	2	<10	15	0.05	108	<10	2	101	4
L2-3	0.4	1.95	10	250	1,0	<5 0.33	1 9	18 29	3.98	0.08	0.33	1515	<2	0.02	9 1210	26 ≺5	4	<10	50	0.11	75	<1D	13	154	3
L2-4	0.2	1.03	20	150	<0.5	<5 0,13	<110	23 23	4.48	D.09	0.25	1630	2	0.01	10 1250	34 5	3	<10	12	0.03	91	<10	2	189	3
L2-5	0.4	2.07	10	170	< 0.5	<5 0.09	<1 9	21 13	4.58	0.06	0.30	745	<2.	0.01	9 1870	20 ≼5	4	<10	14	0.15	90	<10	3	142	4
	4.6762														531.3			347 J.							
L2-6	< 0,2	2,78	25	190	0.5	<5 0.12	<1 13	19 21	4.50	0.08	0.42	640	<2:	0.01	13 1270	34 5	5	<10	21	0.09	81	<10	8,	158	5
L2-7	0.4	1.92	10	170	<0.5	<5 0.19	<1 9	20 9	4.00	0.05	0.26	275	< 2	0.02	7 580	24 ≺5	. 3	<10	17	0.28	90	<10	3	125	7
L2-175	<0.2	1.51	35	510	0.5	<5 0.59	<1 17	34 62	5.41	0.10	0.74	1945	2	0.02	23 1220	44 <5	. 9	<10	60 :	0.07	89	<10	14	335	4
L2-240	< 0.2	1.57	60	280	0.5	<5 0.77	<1 15	21 40	5.89	D.08	0.54	1440	<2	0.02	15 1260	80 5	. 8	<10	33	0.07	101	<10	18	371	4
L2-330	< 0.2	1.83	25	320	0.5	<5 0.84	3 12	25 28	4.06	0.08	0.41	1810	2	0.02	13 1290	42 5	- 5	<10	48	0.06	69	<10	26	434	3
	12.00		- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1				i shini								4.4.54										
L3-3	< 0.2	2.20	15	190	<0.5	<5 0.26	<1 10	19 21	4.54	0.07	0.31	890	<2	0.02	10 2350	24 <5	3	<10	26	0.13	83	<10	5	133	5
L3-4	< 0.2	1.51	25	210	0.5	<5 0.38	<1 9	25 36	5.22	0.06	0.37	1360	2	D.01	13 880	36 S	4	<10	22	0.02	87	<10	6.	209	3
L3-5	0_4	1.97	30	280	0.5	<5 0.77	2 11	21 49	5.23	0.06	0.35	1410	<2	0.01	13 1920	62 <5	2	10	47	0.03	87	<10	16	217	3
L3-6	<0.2	1.64	40	350	0.5	<5 0.28	<1 11	18 20	4.97	0.05	0.30	1315	<2	0.01	9 950	56 < 5	3	<10	22	0.04	83	-10	5	200	3
L3-7	1.0	3.74	15	120	0.5	<5 0.09	<1 5	228	5.93	0.04	0.26	250	2	0.01	6 1530	28 - 5	. 3	<10	11	0.14	96	<10	2	101	8
					2000													3.4541				- 4			
B/L P 1+00	<0.2	1.98	15	60	< 0.5	<5 0.07	<1 9	18 13	3.92	0.05	0.29	400	<2	0.01	11 930	14 <5	4	<10	7	0.11	67	<10	3	90	5
B/L P 1+25	<0.2	2.63	5	ВО	<0.5	<5 0.09	<1 1D	24 13	3.38	0.06	0.35	405	<2	0.01	15 1350	14 <5	4	<10	10	0.16	65	<10	4	137	10
B/L P 1+50	< 0.2	2.26	10	100	<0.5	<5 0.12	<1 9	24 15	3.46	D.06	0.39	410	<2	0.01	13 950	14 <5	4	<10	11	0.15	71	<10	5	100	8
B/L P 2+00	<0.2	1.00	5	60	< 0.5	<5 0.20	<1 5	18 7	2.93	0.06	0.25	310	2	0.01	7 580	14 ≺5	3	<10	14	0.14	73	<10	2	58	5
B/L P 2+50	< 0.2	1.43	10	80	<0.5	<5 0.0	<1 6	19 12	3.64	0.04	0.19	340	2	0.01	7 690	14 <5	; 3	<10	9	0.10	81	<10	2	62	3
					1, 1947.	4 34																			
B/L P 3+00	0.2	2.36	10	120	<0,5	<5 0.10	} <1 9	24 26	4.49	0.06	0.42	345	4	0.01	11 520	28 ≺5	. 4	<10	13	0.19	88	<10	3	114	7
B/L P 3+50	< 0.2	1.73	10	100	< 0.5	<5 0.1	3 <1 6	21 12	3.64	0.04	0.31	300	2	0.01	10 500	14 5	; 3	<10	13	0.13	72	<10	3	74	4
P S 0+30 W 1+00	<0.2	0.74	<5	. 90	<0.5	<5 0.2)	<1 2	6 <1	1.03	0.04	0.13	205	≺ 2	0.01	4 250	4 <5	2	<10	16	0.02	24	<10	1	36	1
P S 0+50 W 1+60	<0.2		5	100	< 0.5	<5 0.1	s <1 8	22 21	3.59	0.05	0,37	380	2	0.01	11 780	14 <5	i 4	₹10	18	0.15	70	<10	5	69	5
P 5 0+50 W 2+00		2,39	20	120	0.5	<5 0.1	3 <1 10	24 25	4.72	0.06	0.43	375	2	0:01	14 930	20 <5	5	<10	14	0.15	85.	<10	5	B7	7
										11.5														÷	
P S 0+50 W 2+50	0.4	2.11	. 10	130	0.5	<5 0.2	l <1 11	24 29	4.15	0.05	0.46	1330	4	0.02	14 570	22 <5	i 4	<10	24	0.13	73	<10	6	132	3
P S 0+50 W 3+00	0.2			70		<5 0.1	<1 5	25 19	3.95	0.04	0.30	365	2	0.01	10 830	20 . <9	i 3	<10	11	0.16	82	<10	3	70	5
P S 0+50 W 3+50		2.37				<5 0 .0		24 26	3,54	0.05	0,42	325	2	0.01	14 700	16 <5	. 4	<10	11	0.13	68	<10	4	88	10
PN 0+50 W 1+00		2.55				<5 0.0	9 <1 7	23 20	3.47	0.05	0.30	275	<2	0.01	12 980	18 <5	i 4	<10	11	0.12	58	≺10	3	57	6
P N 0+70 W 1+00		2.21				<5 0.1	_	23 13	4.34	0.04	0.33	295	2	0.01	9 2060	16 <5	. 3	<10	15	0.14	84	<10	3	68	7
				•										¥									_		

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Aug-31-99

Page 1 of 1

Rupert Seel 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Report No : 9V0300 RJ

Tel: (604) 327-3436 Fax: (604) 327-3423

Date : Aug-31-99

Project:

Sample: rock

Attention: Rupert Seel

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm				Ca %	Cd Co ppm ppm	Cr Cu ppm ppm	Fe %	К %		Mn ppm	ppm	Na %	ppm	P P	Pb ppm	Sb ppm	Sc Sn ppm ppm	Sr Ti ppm %	1	W pm	Y Zn ppm ppm	
99-1	<0.2	1.94	< 5	260	1.5	<5	1.50		25 131	7.11	0.13	1.07	880			39	4860	20	≺5	11 <1	J 181 0.34	201	<10	31 143	10
99-2	<0.2	0.35			<0.5	<5	0,09	<1 3	57::::<1	1.64	0.18	0.12	685	<2	0.06		310		< 5	4 <1		. 8 .	< 10	17 68	69
99-3	< 0.2	0.28	10		≺0.5	<5	0.50	<1 6	119 13	2.71	0.02	0.20	88D	≺2	0.04		340		≮5	8 <1		38	<10	11 30	4
P N 0+25 W 1+50	<0.2	0.46	475	30	~0.5	<5	0.02	<1 4	43 10	5.03	0.14	0.02	20	<2	0.01	11	350	30 :	95			17	<10	4 54	4

A .5 gm sample is digested with 10 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

49

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No

: 9V0372 SJ

Date : O

Oct-15-99

Project:

Sample: soil

Rupert Seel

Attention: Rupert Seel

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Aġ ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
S1300 E100	0.2	1.40	30	80	<0.5	<5	0.04	<1	6	16	31	4.09	0.06	0.13	720	<2	0.01	10	2660	30	<5	1	<10	9	0.03	69	<10	6	109	4
S1300 E50	0.2	3.14	25	160	0.5	5	0.11	<1	7	14	16	3.72	0.07	0.43	445	<2	0.01	13	980	12	5	4	<10		0.05	64	<10	8	137	6
51300 W500	<0.2	2.32	40	110	<0.5	<5	0.15	<1	9	15	15	3.98	0.07	0.36	635	<2	0.01	11	1210	24	5	3	<10	22	0.05	70	<10	9	111	5
51300 W600	0.2	1.39	30	140	<0.5	<5	0.04	<1	7	16	18	4.96	0.04	0.20	695	<2	0.01	9	1180	22	5	2	<10		0.08	84	<10	2	115	4
S1300 W700	<0.2	2.69	35	140	<0.5	≺ 5	0.12	<1	7	16	14	3.72	0.05	0.37	410	<2	0.01	12	1170	12	5	4	<10	-	0.06	72	<10	7	101	5
											7.1.7				:		13						- " "					•		
51350 E100	<0.2	1.53	10	90	<0.5	< 5	0.04	<1	6	15	11	4.38	0.07	0.25	320	<2	0.01	14	1930	22	<5	1	<10	6	0.07	75	≺10	5	80	5
S1350 E50	< 0.2	2.32	20	180	<0.5	<5	0.14	<1	8	17	15	3.93	0.07	0.38	485	<2	0.01	12	960	14	<5	3	<10	22	0.07	71	<10	6	122	4
S1350 B/L	<0.2	2.33	10	110	<0.5	<5	0.11	<1	9	13	14	3.24	0.06	0.27	920	<2	0.01	11	1540	16	<5	2	<10	12	0.05	58	<10	5	. 88	5
S1350 W50	<0.2	2.27	15	160	0.5	<5	0.21	<1	- 6	17	19	4.02	0.06	0.29	370	<2	0.01	10	880	14	<5	2	<10	30	0.08	67	<10	11	92	4
S1350 W100	<0.2	2.05	45	200	0.5	<5	0.33	<1	10	17	. 23	4.91	0.07	0.40	1220	<2	0.01	11	2680	36	5	3	<10	26	0.04	79	<1D	5	224	4
											1.1								1.5											
S1350 W150	<0.2	1.53	95	210	0.5	5	0.26	<1	13	16	32	5.61	0.04	0.36	1770	<2	0.01	11	1160	70	<5	3	<10	18	0.02	81	<10	6	240	4
S1350 W200	0.2	1.69	50	270	0.5	<5	0.21	<1	5	16	15	4.09	0.05	0.27	355	<2	0.01	10	970	40	<5	2	<10	27	0.02	68	<10	11	290	3
S1350 W250	0.2	2.25	110	130	<0.5	5	0.04	<1	9	21	21	6.42	0.05	0.29	405	<2	0.01	12	1380	76	. 5	5	<10	10	0.05	90	<10	3	237	11
S1350 W300	0.4	2.06	10	110	<0.5	<5	0.06	<1	7	23	12	4.31	0.05	0.29	265	<2	0.01	9	1730	20	5	2	<10	8	0.18	81	<10	2	109	9
S1350 W350	0.4	3.33	25	200	<0.5	<5	0.08	<1	7	13	12	4.02	0.05	0.35	240	<2	0.01	11	820	20	. 5	4	<10	17	0.05	63	<10	3	129	6
																			·											
S1350 W400	0.2	2.19				<5	0.06	<1	9	22	12	5.80	0.05	0.30	625	<2	0.01	9	1920	18	5	2	<10	9	0.21	96	<10	2	104	6
S1350 W450	<0.2	1.98				<5	0.17	<1	6	16	16	4.15	0.06	0.33	410	<2	0.01	9	3360	24	5	2	<10	19	0.06	68	<10	2	121	3
S1350 W500	0.2	2.71	30	130	<0.5	<5	0.20	<1	6	15	21	4.44	0.05	0.26	475	<2	0.01	10	1390	20	<5	2	<10	30	0.05	70	<10	5	115	5
S1350 W550	0.4	2.39	35	180	<0.5	<5	0.12	<1	9	16	26	4.09	0.07	0.29	1570	<2	0.01	10	1490	22	S	2	<10	29	0.05	75	<10	8	139	5
S1350 W600	0.4	2.27	25	240	0.5	<5	0.39	<1	9	16	24	3.58	0.06	0.37	995	2	0.01	10	1510	30	5	3	<10	60	0.04	67	<10	19	131	5
						_			_																					
S1350 W650	0.2	2.44	35			5		<1	8	17	17	4.97	0.06	0.36	680	2		10		24	5	4	<10	17	0.07	83	<10	4	167	4
S1350 W700	<0.2	2.31	40			<5	0.14	<1	7	17	16	5.03	0.06	0.40	420	2	0.01	11	900	24	5	4	<10	33	0.05	81	<10	4	134	4
51350 W750	0.2	3.18				< 5	0.08	<1	7	18	13	4.65	0.04	0.31	315	2	0.01	10	960	14	5	3	<10	15	0.08	79	<10	3	141	6
51350 W800	<0.2	2.05	50		<0.5	< 5	0.34	<1	7	15	14	3.77	0.05	0.30	445	2	0.01	9		20	10	3	<10	52	0.05	69	<10	8	83	5
51400 E100	0.6	2.53	25	120	<0.5	<5	0.08	<1	8	22	20	4.12	0.05	0.28	745	2	0.01	9	1190	22	5	2	<10	15	0.09	72	<10	4	120	5
\$1400 E50	0.4	2.76	25	160	0.5	<5	0.13	<1	8	11	16	3.13	0.06	0.29	730	< 2	0.01	ŧΩ	1650	20	5	2	<10	26	0.04	49	-10	6	D4	9
S1400 W0	0.2	1.75			0.5		0.28	<1	8	17	22		0.06	0.33	675	<2	0.01	9	850	20	5	3	<10	45	0.07	79	<10	16	91	-
S1400 W50	<0.2	2.49			<0.5		0.21	<1	11	19	15		0.05	0.29	715	2	0.01	9	5850	24	5	2	<10	20	0.07	85	<10		135	4 7
S1400 W100	<0.2	1.68			0.5		0.54	<1	15	16	31	5.21	0.06	0.38	1870	<2	0.01	12		78	5	3	<10	27	0.03	80	<10	4	150 300	5
S1400 W150	0.2	2,53						<1	9	20	25	5.47	0.06	0.33	510	2	0.01		1510	84	5	2	<10	25	0.03	84	<10	12	388	5
	U.E		143	220	0.5	3		~.	•			D-1-77	0.00	0.33	310	-	0.01	12	-714	04	,	,	~10	23	Ų.Ų4	04	<10	4	286	5

Page 2 of 4

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No

: 9V0372 SJ

Date :

Oct-15-99

Project:

Sample: soil

Rupert Seel

Attention: Rupert Seel

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	Al %	As ppm	Ba ppm	Be opm	Bi ppm	Ça %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W	Y ppm	Zn ppm	Zr ppm
5800 E50	2,2	3.07	10	100	<0.5	<5	0.09	<1	9	15	63	6.70	0.10	1.36	940	<2	0.01	10	1870	20	<5	A	<10	11	0.17	170	<10	3	128	5
S1150 E50	1.0	1.94		110		<5	0.13	1	7	14	29	3.70	0.08	0.22	1000	2	0.01	10	1950	20	<5	1	<10	18	0.04	60	<10	4	115	4
S1150 E50 S1150 B/L	1.8	1.63		110		<5	0.04	<1	7	15	29	4.62	0.05	0.23	545	<2	0.01	9		34	5	4	<10	13	0:03	77	<10	3		4
51150 W50	1.6	1.31	-	70		₹ 5	0.02	<1	6	13	11	4.92	0.04	0.15	380	<2	0.01	6		34	< 5	,	<10	7	0.10	88	<10	1	82	4
S1150 W100	0.4	1.78		200	0.5	<5	0.22		. 7	14	17	3.05	0.06	0.25	590	<2	0.01	7		32	<5	3	<10	40				15		3
31130 #100	0.4	1.70	10	Luo	0.5	12	UILL		,	- '		3.03	0.00	0.23	,	7.	0.01	,	000	72	~3	,	~10	40	0.09	62	<10	13	127	3
S1150 W150	0.2	1.08	35	410	0.5	<5	0.50	<1	14	32	43	4.56	0.10	0.65	1555	4	0.01	21	1410	40	<5	7	<10	47	0.03	73	<10	11	303	4
S1150 W200	0.2	1.51	15	120	<0.5	<5	0.06	<1	6	16	18	3.81	0.06	0.23	205	2	0.01	6	1130	28	<5	3	<10	15	0.16	82	<10	3	82	7
S1150 W250	<0.2	1.74	75	120	<0.5	<5	0.02	<1	. 7	15	20	7.76	0.04	0.22	460	2	0.01	9	1140	52	5	3	<10	11	0.07	120	<10	2	143	7
S1150 W335	0.4	1.23	30	110	<0.5	<5	0.04	<1	7	14	14	4.38	0.05	0.25	380	<2	0.01	9	1200	28	5	2	<10	11	0.06	77	<10	2	130	4
S1200 £150	1.2	0.99	40	250	0.5	<5	0.53	1	17	35	55	5.94	0.11	0.83	2830	₽	0.01	27	930	78	5	11	<10	27	0.01	66	<10	14	473	5
\$1200 E100	0.6	1.24	20	70	<0.5	<5	0.06	<1	6	17	28	4.28	0.07	0.21	430	<2	< 0.01	12	2010	30	<5	1	<10	10	0.05	79	<10	4	94	4
S1200 E50	1.0	2.36	15	80	<0.5	<5	0.07	<1	6	17	32	3.78	0.06	0.14	300	<2	0.01	8	2800	26	<5	1	<10	12	0.06	63	<10	4	79	4
S1200 B/L	0.2	1.67	15	110	<0.5	<5	0.06	<1	6	14	12	3.67	0.07	0.24	325	2	0.01	8	1080	14	<5	3	<10	14	0.08	71	<10	2	110	6
51200 W50	0.2	1.73	10	130	<0.5	<5	0.07	<1	7	17	12	4.46	0.06	0.23	290	<2	0.01	9	2550	22	<5	3	<10	13	0.12	85	<10	3	115	6
51200 W100	0.2	2.12	10	150	<0.5	<5	0.09	1	5	14	9	3.31	0.04	0.25	215	<2	0.01	7	1930	28	<5	2	<10	18	0.08	63	<10	3	119	4
S1200 W150	<0.2	2.82	35	120	<0.5	<5	0.04	<1	9	16	16	5.52	0.05	0.27	485	<2	0.01	9	1870	32	<5	3	<10	13	0.06	76	<10	2	130	8
S1200 W200	0.2	2,13	35	140	<0.5	<5	0.11	<1	8	21	13	5.86	0.05	0.32	370	2	0.01	9	3470	38	<5	3	<10	17	0.09	102	<10	3	139	7
S1200 W250	<0.2	2,50	35	120	<0.5	<5	0.08	<1	7	15	16	4.72	0.04	0.31	260	<2	0.01	11	1640	32	5	4	<10	12	0.05	73	<10	2	115	7
51200 W500	<0.2	2.77	25	160	<0.5	<5	0.12	<1	7	14	17	4.11	0.04	0.37	285	<2	0.01	10	1020	20	5	4	<10	21	0.04	64	<10	4	111	5
S1200 W600	<0.2	1.64	30	170	<0.5	<5	0.23	<1	10	16	18	3.71	0.07	0.38	890	2	0.01	11	1230	22	5	3	<10	37	0.05	70	<10	13	121	5
S1210 W700	0.2	2.08	30	170	<0.5	<5	0.12	<1	8	16	24	4.12	0.06	0.30	385	2	0.01	10	2430	18	<5	3	<10	21	0.09	76	<10	3	114	5
S1250 E100	0.2	4.45	20	50	<0.5	<5	0.03	<1	6	23	16	4.17	0.04	0.16	655	<2	0.01	6	2050	22	<5	3	<10	9	0.05	61	<10	10	77	12
S1250 W450	<0.2	2.07	15	220	<0.5	<5	0.27	<1	8	14	11.	3.39	0.07	0.44	560	2	0.01	11	1210	18	<5	4	<10	40	0.06	54	<10	10	112	4
S1250 W500	0.2	1.70	30	150	<0.5	<5	0.23	<1	6	14	22	4.37	0.06	0.33	445	<2	0.01	9	1230	24	<5	2	<10	40	0.04	72	<10	12	93	4
S1250 W550	<0.2	2.18	30	160	0.5	<5	0.21	<1	7	17	16	4.52	0.06	0.46	450	<2	0.01	13	910	22	5	4	<10	31	0.05	72	<10	12	105	5
S1250 W600	0.4	2.05	30	150	<0.5	<5	0.18	<1	6	16	35	3.57	0.05	0.32	340	⊀ 2	0.01	11	710	18	5	2	<10	29	0.06	63	<10	12	95	3
S1250 W650	<0.2	1.54	20	150	<0.5	<5	0.24	<1	6	12	14	3.03	0.05	0.30	420	<2	0.01	8	1040	14	5	2	<10	26	0.04	58	<10	8	81	4
S1250 W700	<0.2	1.78	40	140	<0.5	≺ 5	0.12	<1	5	17	17	5.43	0.04	0.24	260	<2	0.01	9	4750	26	5	1	<10	17	0.05	89	<10	2	74	4
S1250 W750	0.2	1.55	35	130	<0.5	< 5	0.12	<1	5	17	22	5.13	0.05	0.25	310	<2	0.01	10	4690	22	<5	1	<10	19	0.06	84	<10	2	73	4
\$1250 W800	0.2	1.60	45	140	<0.5	≺ 5	0.21	<1	8	14	17	4.16	0.06	0.28	910	<2	0.01	9	1820	18	5	3	<10	17	0.06	78	<10	3	155	3
																											·	_		-

Page 1 of 4

A .5 gm sample is digested with 10 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.1.H20.

Signed:_

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Rupert Seel

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No

Date

: 9V0372 SJ

Oct-15-99

Project:

Sample: soil

Attention: Rupert Seel

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu	Fe %	K %	Mg %	Mn	Mo ppm	Na %	Ni ppm	ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
A 0+00	0.4	2.66	15	50	<0.5	<5	0.05	<1	6	25	11	4.57	0.02	0.35	315	2	0.01	7	860	22	5	3	<10	7	0.10	B4	<10	1	82	5
A 1+00	<0.2	2.09	10	50	<0.5	< 5	0.05	<1	4	19	8	4.34	0.02	0.27	420	<2	0.01	7	1960	18	5	2	<10	7	0.06	77	<10	1	57	5
A 1+50	0.2	2.38	60	60	<0.5	<5	0.19	<1	7	26	14	5.15	0.05	0.46	370	2	0.01	11	2530	26	5	3	<10	13	0.06	76	<10	2	116	5
A 2+00	0.2	2.29	20	80	<0.5	<5	0.06	<1	8	27	20.	4.47	0.03	0.35	425	2	0.01	11	530	20	<5	3	<10	7	0.10	81	<10	2	100	4
A 2+50	0.4	1.85	15	90	<0.5	<5	0.09	<1	5	19	22	4.48	0.04	0.32	215	<2	0.01	7	590	22	- 5	2	<10	14	0.08	69	<10	9	57	4
											- 3																			
A 3+00	1.0	1.53	10	70	0.5	<5	0.05	<1	2	13	53	1.12	0.03	0.15	70	2	0.01	5	1150	18	5	1	<10	13	0.03	22	<10	18	34	1
B 0+00	0.4	2.76	20	50	<0.5	<5	0.05	<1	8	37	13	8.05	0.03	0.41	310	2	0.01	12	4700	36	5	3	<10	6	0.15	139	<10	2	72	7
B 1+00	0.2	1.37	25	50	<0.5	<5	0.07	<1	5	16	31	3.56	0.03	0.35	250	4	0.01	8	540	16	5	2	<10	13	0.04	51	<10	7	94	3
B 1+50	<0.2	2.43	30	50	<0.5	<5	0.10	<1	7	20	31	4.41	0.04	0.40	335	4	0.01	8	720	22	5	3	<10	12	0.05	63	<10	10	96	3
B 2+00	<0.2	2.08	30	70	<0.5	5	0.07	<1	6	20	31	4.68	0.04	0.41	345	2	0.01	9	670	22	. 5	3	<10	12	0.04	67	<10	7	99	4
											- 2								1.1 1.											
B 2+50	0.2	1.56	25	70	<0.5	<5	0.08	<1	5	19	23	4.73	0.03	0.32	275	2	0.01	7	510	18	5	2	<10	14	0.05	76	<10	2	68	3
B 3+00	8.0	1.56	20	70	<0.5	<5	0.08	<1	5	20	65	4.22	0.04	0.29	360	2	0.01	10	690	38	5	3	<10	15	0.07	70	<10	9	107	3
B 3+50	<0.2	1.71	25	70	<0.5	<5	0.13	<1	7	21	31	4.88	0.04	0.47	365	2	0.01	11	390	14	-, <5	4	<10	18	0.06	80	<10	7	118	4
C 0+00	< 0.2	2.38	25	70	<0.5	<5	0.08	<1	8	25	16	6.24	0.04	0.37	790	<2	0.01	10	4380	18	<5	3	<10	8	0.06	91	<10	2	138	5
C 1+00	0.2	1.66	25	100	< 0.5	<5	0.06	1	. 8	23	28	6.06	0.04	0.19	870	<2	0.01	9	890	28	< 5	3	<10	10	0.13	103	<10	7	103	5
											٠.																			
C 1+50	0.4	5.48	15	60	< 0.5	<5	0.08	<1	6	26	23	4.21	0.03	0.18	495	2	0.01	8	1670	14	<5	3	<10	8	0.10	46	<10	6	75	7
C 2+60	<0.2	1.57	25	60	<0.5	<5	0.11	<1	6	16	24	4.39	0.04	0.31	385	<2	0.01	10	930	22	<5	3	<10	15	0.04	74	<10	4	105	4
C 3+00	<0.2	1.32	30	70	<0.5	≺5	0.14	<1	6	17	22	4.12	0.03	0.32	305	2	0.01	9	420	18	<5	2	<10	19	0.04	81	<10	5	93	3
C 3+50	<0.2	1.37	20	140	<0.5	<5	0.37	<1	11	20	31	3.80	0.04	0.42	1275	<2	0.01	11	620	18	< 5	3	<10	21	0.05	65	<10	8	162	4
C 4+50	0.6	1.74	35	100	<0.5	<5	0.56	<1	10	18	32	5.08	0.04	0.32	915	2	0.01	9	1390	32	<5	2	<10	31	0.04	75	<10	14	97	4
D 0+80	0.2	1.56	25	90				<1	- 10			5.80	0.07	0.34	1180	<2	0.01	11	3290	20	<5	3	<10	10	0.07	99	<10	2	197	4
D 1+50	0.4	1.87	20	90	<0.5	<5	0.07	<1	6	20	61	4.44	0.04	0.28	435	2	0.01	8	850	24	<5	3	<10	13	0.08	74	<10	7	98	3
D 2+00	0.2	1.54				-	0.06	<1	6	17	19	4.33	0.05	0.22	380	<2	0.01	9	400	18	<5	3	<10	10	0.05	79	<10	2	79	5
D 2+50	0.2	1.55	40	80	<0.5	<5	0.07	<1	6	20		5.14	0.03	0.29	395	<2	0.01	9	1240	26	<5	2	<10	11	0.04	83	<10	4	87	4
D 3+00	0.8	3.21	30	120	<0.5	<5	0.14	<1	10	18	32	4.08	0.04	0.35	780	2	0.01	12	1150	22	5	4	<10	20	0.04	59	<10	7	119	5
5.4.55								. •	_									4-			_		_	_						
D 3+50	0.2	0.74					0.34			18		4.26	0.05	0.12		<2	0.01	10		34	<5	1	<10	21	0.05	85	<10	1	88	3
D 4+00	0.2	4.39					0.09		14			4.35	0.05	0.32		<2	0.01	16		32	5	5	<10	12	0.04	62	<10	8	152	9
D 4+50	<0.2	2.47					0.08		9	18		3.61	0.05	0.35	655	<2	0.01	11	550	22	<5	4	<10	11	0.04	59	<10	5	109	5
D 5+00	<0.2	1.33					0.18		-	15	_	4.37	0.03	0.20	200	2	0.01	8	340	28	<5	2	<10	14	0.04	80	<10	2	73	3
X 0+30	0.4	0.39	45	140	0.5	< 5	0.39	1	12	4	49	4.56	0.08	0.18	1975	6	0.01	12	920	60	5	7	<10	15	0.01	29	<10	11	412	4

Page 3 of 4

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No

: 9V0372 SJ

Date

Oct-15-99

Project:

Sample: soil

Rupert Seel

Attention: Rupert Seel

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
X 1+00	<0.2	1.79	50	200	0.5	<5	0.79	<1	12	9	13	3.55	0.07	0.59	845	2	0.01	12	2180	22	20	4	<10	60	0.05	68	<10	7	161	22
X 2+00	<0.2	1.93	15	210	<0.5	<5	0.73	<1	10	9	10	3.15	0.15	0.59	2260	<2	0.01	9	2920	10	10	2	<10	62	0.08	72	- •	3	175	5
X 3+00	<0.2	0.85	35	160	0.5	<5	0.15	<1	6	6	22	3.74	0,05	0.14	1120	6	0.01	8	1080	38	5	4	<10	12		35		6	188	3
X 4+00	<0.2	3.11	50	80	<0.5	<5	0.21	<1	10	11	12	3.97	0.05	0.44	340	2	0.01	10	3140	16	15	4	<10	17	0.09	86		5	141	23
X 5+00	<0.2	2.89	45	90	<0.5	<5	0.29	<1	12	9	11	4.02	0.06	0.54	545	<2	0.01	10	2440	14	20	5	<10	38	0.09	83	<10	6	143	30
X 6+50	<0.2	1.35	60	240	1.0	<5	1.27	<1	13	8	15	3.24	0.14	0.87	860	2	0.03	15	2290	10	20	6	<10	175	0.05	61	<10	23	68	11
99-7	<0.2	1.06	10	110	<0.5	<5	0.36	1	6	19	12	2.61	0.06	0.41	540	<2	0.02	11	780	48	<5	3	<10	24	0.04	49	<10	7	219	3

A .5 gm sample is digested with 10 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.