BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR: 1999/2000

REPORT #:

PAP 99-11

NAME:

GARY POLISCHUK

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations 15 to 17, page 6.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

	79/200	10-19/
Jame Sary Volischuk	Reference Number	1916
OCATION/COMMODITIES	,	
roject Area (as listed in Part A) Carposh or Thuis or, L	Countan MINFILE No. if applicable	
ocation of Project Area NTS 92 J 9E	Lat 50° 36 N Long 122°	08'n
Description of Location and Access 2 areas were through	posted the being bountain	creck
and the second was a village between a	Payorsh creek & Phais Ore	2. St.
aces is gained via highway 99 south	fromtillover.	
Main Commodities Searched For Whole Silves An	NOWOTH C	
Inown Mineral Occurrences in Project Area Phodonic	a selver and gold	
	<u></u>	
VORK PERFORMED		
. Conventional Prospecting (area)		
. Geological Mapping (hectares/scale)		
. Geochemical (type and no. of samples) <u>62 soil</u>	acomplies 4. stream sectional,	48 1200
. Geophysical (type and line km)		
. Physical Work (type and amount) <u>hand charchi</u>	ng 30 cubic meters	
. Drilling (no. holes, size, depth in m, total m)	1	
. Other (specify)		
IGNIFICANT RESULTS	in Name Office and H	
Commodities Silves Clair Clair Clair Clair Cocation (show on map) Lat 50° 34/V Long	im Name Climan # /	
Best assay/sample type <u>AR99+12 crasocyes</u> =	2.51 9/1 gold sond 2/50.6	<u>9]]sil</u>
yrab of rock	1.1.6.	
Description of mineralization, host rocks, anomalies <u>selver</u>	sulphiles, galena, shalir	ysyn
plyali hosted by quark veins in i	Minalone	
		

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

Prospecting Assessment Report

Prospectors Assistance Grant Number: 99/2000-P19

On The

Aumax Mineral Claims

NOV 0 8 1999

PROGRA-

PROSPL

Lillooet Mining Division
Canada

N.T.S. 92J/9E

Lat.50 ° 34' N Long. 122° 04' W

Property owned by Gary Polischuk

Author:
Gary Polischuk, Prospector
Box 792
Lillooet, B.C.
VOK 1VO

Date September 25/99

Table of contents

1.0 Introduction
1.1 Location and Access 1
1.2 Land status I
1.3 Physiography 4
1.4 Exploration History 4
2.0 Regional Geology 5
2.1 Property geology5
2.2 Mineralization 5
3.0 97 Zone and Area 8
4.0 98 Zone and Area
5.0 Geochemistry
5.1 Sample number legend
6.0 Aumax rock sample description
6.1 Aumax soil sample locations
7.0 Statement of Costs
8.0 Conclusions and Recommendations
9.0 Prospecting experience
Figure 1: Property Location
Figure 2: Claim Map
Figure 3: Regional Geology map6
Figure 5: 97 Zone hand trenching
Figure 6: 97 Zone grid
Figure 7: 98 Zone sample locations map13
Figure 8: Random rock and soil sample locations 15
Rack and Geochemistry assays 20

1.0 Introduction

This report summarizes a prospecting program along a ridge between Phair creek and Cayoosh creek. Work was conducted on the Aumax #1 and Aumax #2 mineral claims and was carried out intermittantly between June 15/99 to Sept 15/99.

1.1 Location and access

Access to this area is gained via highway 99 south to a point 20.5 km south of Lillooet, where the Pamco logging road commences to the east. This area is located on map sheet N. T. S. 92J 9E at latitude 50° 34' N. Longitude 122° 04' W. The Pamco logging road accesses the western portion of the Aumax #1 mineral claim. A new logging road has been built up Phair creek and penetrates the Aumax #2 mineral claim on the north boundary by 300m. A further 4km of road is slated to be built, extending well past the central portion of the Aumax #2. This logging road is an extension of the Enterprise creek logging road that turns south off Highway 99 South at a point 1.5km south west of seton lake drainage. See Figure 1:

1.2 Land status

This particular area where prospecting took place is at present staked and owned by Gary Polischuk. The claims are adjoining and form a contiguous group of 39 units. See Figure 2:

Table 1: Anmax Mineral Claims 4 post

Record Number	Claim Name	Units	Record Date	Expiry Date
368966	Aumax #1	20	May 9/99	May 9/00
368967	Aumax #2	15	May 9/99	May 9/00

Table 2: Aumax Mineral Claims 2 post.

Record Number	Claim name	Units	Record Date	Expiry Date
371390	Aumax #3	1	Sept 1/99	Sept 1/00
371391	Aumax #4	1	Sept 1/99	Sept 1/00
371392	Aumax #5	1	Sept 1/99	Sept 1/00
371393	Aumax #6	1	Sept 1/99	Sept 1/00

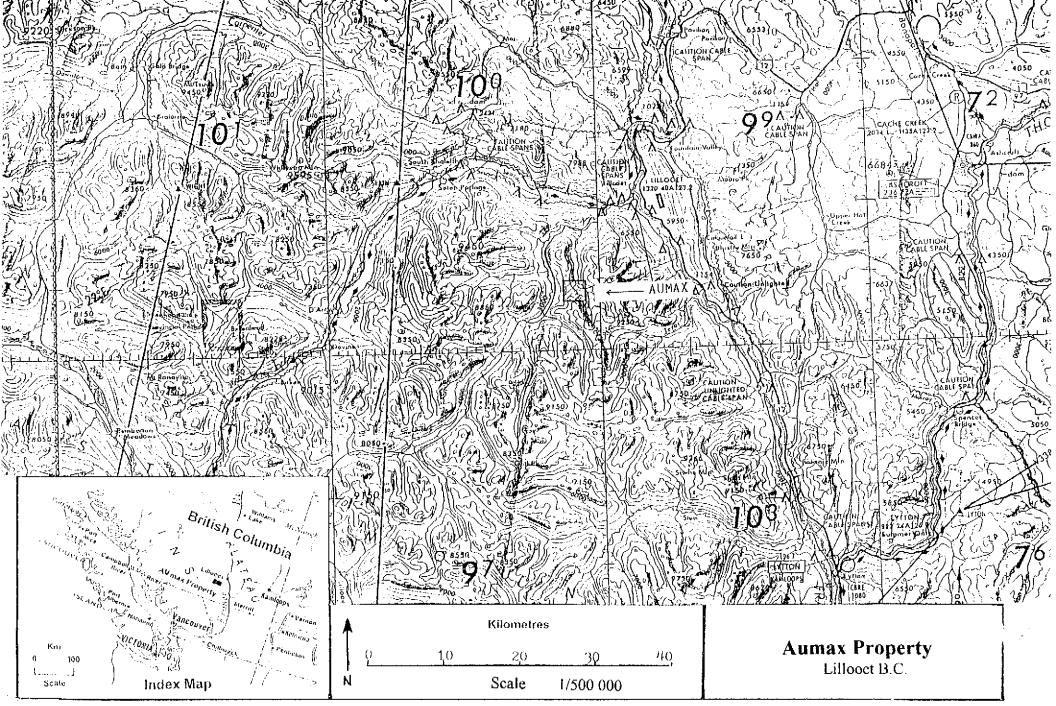


Figure 1: Property Location

1.3 Physiography

The Aumax property is for the most part heavily timbered with fir, pine and spruce trees. Rock bluffs are found along the Aumax #1 and #2 boundary line and along the south portion of the claims. The remainder of the claim area is in moderately steep hillsides that are easily accessible on foot. Outcrop in the moderately steep areas is obscured by a thick layer of overburden making prospecting difficult. Two recent logging cut blocks on the northwest portion of the Aumax #1 mineral claim has helped in gaining access to this area.

1.4 Exploration History

Mining exploration in the region began as placer mining activity in the mid 1800's, both along the Fraser river and several of its local tributaries, most notably Cayoosh creek. The placer success led to fairly extensive land-based exploration, with two past-producing mines located near the Aumax area.

The most recent mining activity is on the Ample Goldmax property, situated 5.25 km north of the Aumax mineral claims. Since 1994 until the present time, 35 holes totalling 5400 meters has been drilled on the Ample Goldmax ground along with 2400 meters of road access.

During the fall of 1997, logging road construction was started by Randy Polischuk in the Aumax area. During the course of this construction several qtz filled shear zones were uncovered, the best being at the 8km on this new road. A trench was dug by a cat 225 excavator on the qtz vn at the 8km revealing a zone 1.2m wide striking southeasterly. This zone had to be filled in as it was found in the road grade. A grab sample from this zone assayed 0.18 oz gold, 76.12 oz silver and 0.23% copper. The qtz vein found here exhibited a strong ribbon structure with pyrite, silver sulphides, malachite and azurite easily visible. Due to this discovery, the Aubot mineral claims were staked to cover this ground.

During 1998, prospecting on this ground led to the discovery of another zone located on the crest of the ridge between Cayoosh creek and Phair creek at the 2100 m elevation. Two soil samples collected from this zone assayed 650ppb gold and 0.13 oz gold. With the late in the fall season discovery and lack of funding for assessment work these claims were allowed to lapse.

In early June, I was a fortunate recipient of a \$10,000.00 prospectors assistance grant with part slated to be spent in this area.

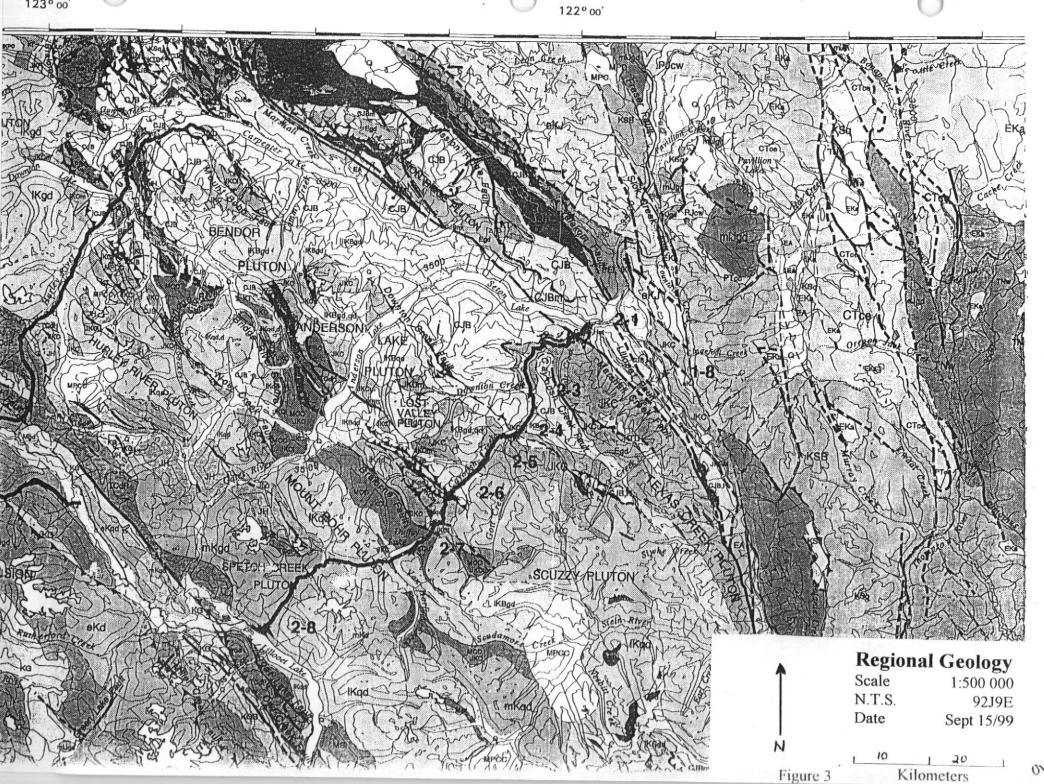
On May 9/99 I restaked this ground when the weather permitted and named the claims Aumax #1 and Aumax #2, consisting of 35 units.

Sept 1/99, I staked four 2 post claims named Aumax 3, Aumax 4, Aumax 5 and Aumax 6 along the west boundary of Aumax #1. These claims were staked to cover an area where abundant quartz float carrying silver sulphides is found. For zone locations see Figure 8:.

2.0 Geology

The Aumax mineral claim group is dominated by rocks of Middle Jurassic Bridge River Complex. The Bridge River Complex is comprised of Greenstone, Chert, Argillite and Phyllite. Immediately south of the claims a small quartz diorite stock of late Cretaceous age is noted. See Figure 3:

2.1 Property Geology


The Aumax mineral claim group is underlain for the most part by Bridge River Greenstones. Numerous felsic and feldspar porphyry dikes cut this sequence and except for the 97 zone, they generally contain little mineralization. In the area of the 97 zone a large felsic dike appears to be hosting the silver bearing quartz veins. This dike is a light grey color, well mineralized with pyrite along with up to 1cm layers of chlorite. The greenstone on the property is highly deformed with fracturing seen trending in a northeast-southwest direction.

2.2 Mineralization

Mineralization is found in quartz veins of the structural controlling shear zones that cut the greenstones. The mineralized quartz veins of the 97 zone area exhibit ribbon structure and quartz breccia with spalled blocks of altered greenstone. Quartz veinlets and pervasive silicification is noted in most hand trenches along the hanging wall and foot wall of each vein. Mineralization consists of silver sulphides, chalcopyrite, galena and pyrite, with malachite azurite and hematite alteration.

The 98 zone appears as a stockwork system of quartz veins from 2mm to 10cm wide with listwanitized greenstone partings. Quartz mineralization consists of pyrite and small 1mm to 3mm blebs of arsenopyrite, with hematite and sericite alteration.

CAYOOSH ASSEMBLAGE: undifferentiated graphitic phyllite, tuffaceous phyllite, siltatone thinly laminated ailtatone/sandatone turbicite; volcaniclastic sandatone, shale; arkosic sandatone, quartzose sandatone, thinly laminated phyllitic quartzite; minor limestone, volcanic tuffs, brecciae and intermediate to mafic flows; includes rocks previously mapped as BREW GROUP, LILLOOET GROUP and, locally, RELAY MOUNTAIN GROUP

Upper Member: graphitic siltstone, shale, phyllite, arkosic sandstone, quartzose sandstone, thinly laminated phyllitic quartzite (Unit 4); thin-bedded graphitic phyllite, siltstone, volcaniclastic sandstone, and calcareous sandstone (Unit 5), locally containing Neocomian bivalves

Middle Member: thin- and thick-bedded volcaniclastic sandstone, graphitic siltstone, minor limestone (Unit 3)

Lower Member: graphitic phyllite, siltatone, thin laminated siltatone/sandstone turbidite (Unit 1); tuffaceous phyllite, minor lapilli tuff and tuff breccia (Unit 2)

Sedimentary Rock of Vedder Mountain: blocks of Upper Jurassic radiolarian chert, sandstone, basalt and limestone in a matrix of graphitic argillite and phyllite

Recommended citation:

J.M. Journeay and J.W.H. Monger

1994: Geology and crustal structure of the southern Coast and Intermontane Belts, southern Canadian Cordillera, British Columbia; Geological Survey of Canada, Open File ????, scale 1:500 000

CARBONIFEROUS to MIDDLE JURASSIC

CJB

BRIDGE RIVER COMPLEX: undifferentiated chert, pelite and malic volcanio rocks; minor clistostromal carbonate; gabbro and associated ultramalic rocks; local mélange and talo-carbonate schist

CJBs

Radiolarian chert, sittstone, argillite, sandstone; minor amounts of greenstone, limestone and serpentinite

CJBg

Pillowed and massive greenstone and limestone (Lower Norian); lesser amounts of radiolarian chert, argillite, diabase, sandstone and pebbly mudstone

CJBb

Blueschist, greenschist, phyllite, metachert, also includes non-schistose pillowed and massive greenstone containing minor blue amphibole and minor limestone

CJBm

Light to dark grey phyllite, quartz phyllite, calcareous phyllite, metachert, green chlorite schiat, greenstone, marble and biotite-quartz schiat; metamorphosed equivalents of BRIDGE RIVER COMPLEX

FIGURE 4

3.0 97 Zone and area

The 97 zone is located at the 1600m elevation on the west central portion of the Aumax #1 mineral claim. Access to this area is by logging road to two new cut blocks that were logged in 1998. The 97 zone was discovered while road building was taking place along the upper-most road in the highest cut block. Prospecting commenced in this area because of the recently discovered mineralization along the logging road. A soil geochem grid was established using a baseline cut east-west with stations every 25m and lines cut north-south with stations every 15m.

The grid started at T12 where the 97 vein was first discovered on the logging road at; (L00+00). During the course of establishing L1W a large area of quartz float was noticed at Sta. L1W+45N. A hand trench (T2) was dug at this location revealing a quartz vein with minor silver sulphides. True width of the zone remains unknown here because a large fir stump sits over the vein. One grab sample was taken at this location, (AR99+1) that assayed 8.07 g/t gold and 95.1 g/t silver. Four hand trenches have been excavated along this zone to date, each of which has cut this vein. Sample AR99+14, a channel sample taken at T1 Assayed 100 ppb gold and 68.4 g/t silver across .5m. Sample AR99+13, a channel sample taken at T3 assayed 5.3 g/t gold and 583.6 g/t silver across .8m. Sample AR99+8, a grab sample taken at T4 assayed 1.72 g/t gold and 1615 g/t silver. The vein here was later trenched more thoroughly and was found to be 1.2m wide but resampling was not done.

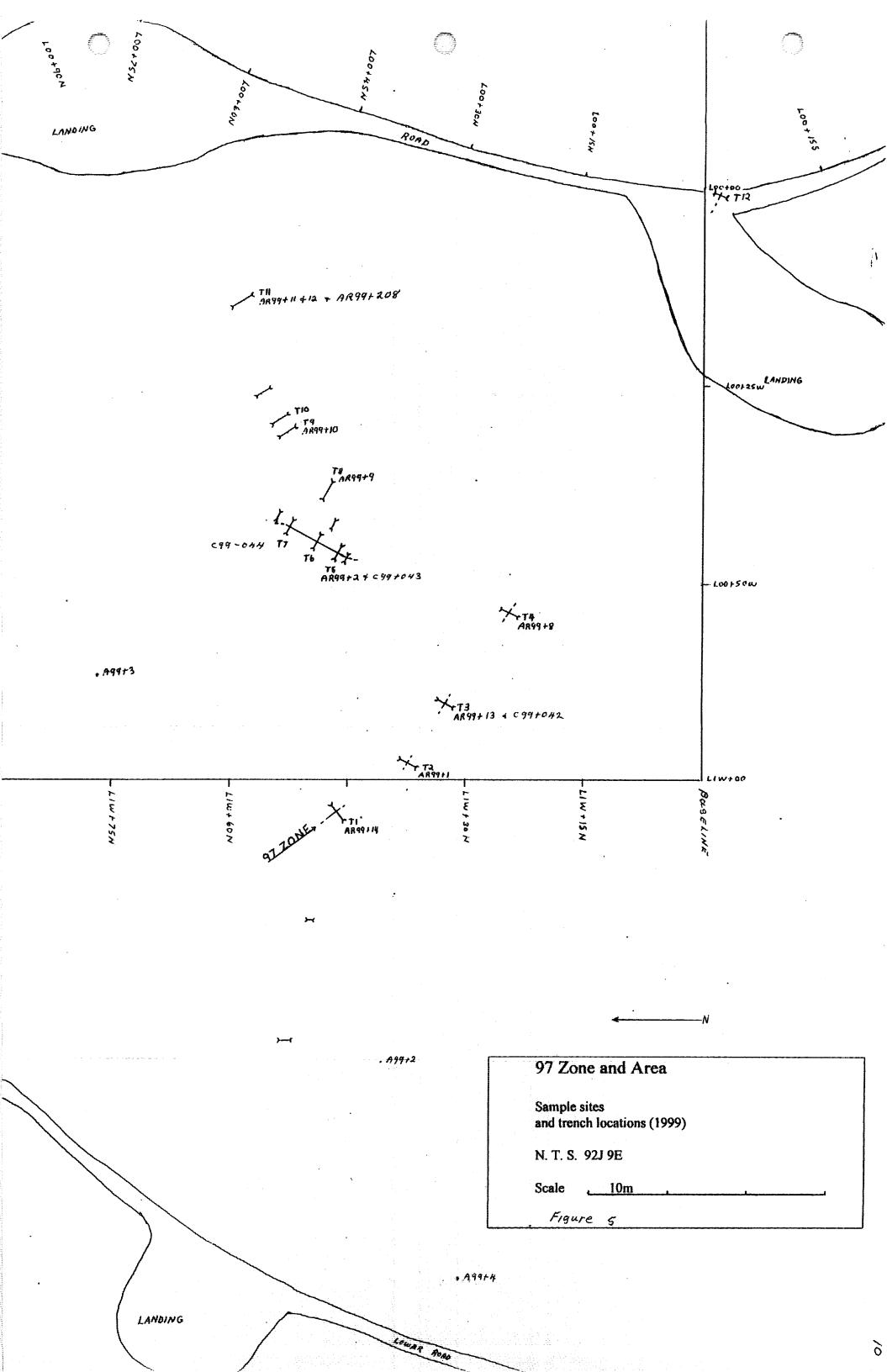
Two other veins have been discovered, the first being thirty three meters east of Sta. L1W+45N, has an average width of 1m and has been traced in four hand trenches for a distance of 10m. This vein striking at 30° N, dipping 50° E, is well mineralized with silver sulphides, galena, chalcopyrite and pyrite with malachite, azurite and hematite alteration. The ribbon structure of this vein is readily visible along its full strike length with mineralization in the partings and in the quartz. Grab Sample AR99+2 collected at T5, assayed 1.16 g/t gold and 1100.0 g/t silver.

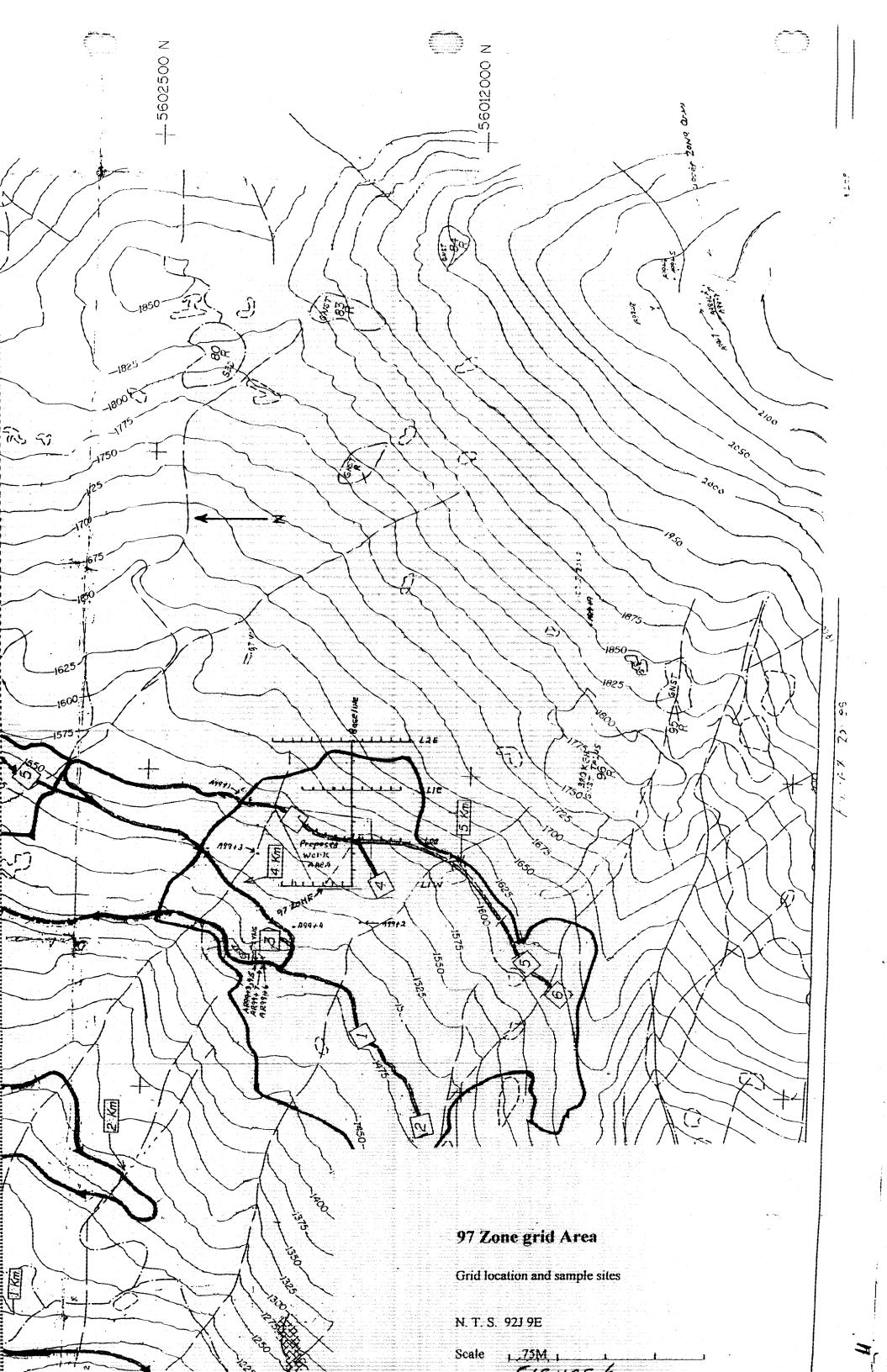
Seven meters above T6, mineralized quartz float was noted on the surface and again another trench (T8) was dug, but bedrock was not encountered. A layer of quartz 35 cm wide can be seen in the soil indicating the presence of a quartz vein nearby. A grab sample from this trench assayed 3.25 g/t gold and 2520 g/t silver.

T9 was dug 9m from T8 at 55°, without encountering bedrock. Another layer of quartz .6m wide is seen in the soil from which grab sample AR99+10 was gathered. AR99+10 assayed 4,56 g/t gold and 2706 g/t silver.

T10 was dug 2m from T9 with the same quartz layer seen in the soil, but no sample was taken here.

T11 was dug 16m from T10 where the vein was finally uncovered. The vein here is 1m wide and well mineralized with silver sulphides, galena, chalcopyrite and pyrite with malachite azurite and hematite alteration. The vein appears to strike at 65° and dips 60° E. Samples AR99+11 a channel taken here, assayed 340 ppb gold and 420 g/t silver. AR99+12 a grab assayed 2.51 g/t gold and 2750.0 g/t silver.


The 97 vein exposed in hand trenches T1, T2, T3 and T4 is thought to be part of the same zone found at T12, as the alignment, mineralization and vein structure are similar in appearance. The two veins located north of T4, are structures that will probably join the 97 vein in the area near T4. This 97 vein strikes at 300 degrees and dips north at 60 degrees.


Several other hand trenches were excavated in this general area but were deleted from the accompanying map because bedrock was not found. These trenches all contained pieces of mineralized quartz float indicating the presence of other vein systems in this area.

A total of 44 soil samples were collected from the grid at the B horizon. A total of seven stations were found to be anomalous for gold and silver but the overburden is too deep for hand trenching. See Figure 6:

Four random geochem soils were gathered in this area also, two of which were found to be anomalous for gold and silver. Random soil samples were labeled as A99+1.

Nine rock samples were gathered from trenches located in this vicinity and were labeled as AR99+1. See Figure 5:

4.0 98 zone and area

The discovery of the 98 zone came about by prospecting along the crest of the ridge between Phair creek and Cayoosh creek late in the season of 1998. Two soil samples taken off the lower portion of the 98 zone assayed 650 ppb gold and 0.13 oz gold respectively. The lower most portion of this zone is located at the 2100m elevation and extends upward along the crest of the ridge for 150 meters where it is obscured by talus. An easily noticeable red oxidization from 10m to 15m wide covers its entire length. This zone strikes at 160° and dips to the west at approximately 45°.

Examination of the oxidized talus revealed small pieces of quartz mineralized by remnant pyrite and blebs of arsenopyrite in association with altered greenstone. Where bedrock is visible, quartz stockwork with altered greenstone is seen.

July 10/99, I prospected the 98 zone, but a large snow drift was still covering the entire zone. Random soil samples A99+5, 6, 7 and 8 were collected at this time around the perimeter and all were anomalous for gold, silver and arsenic. A99+7, which was taken on the western edge of the 98 zone carried the highest values with 1.94 g/t gold and 20.2 ppm ag.

August 8/99, Wayne Pickett from Gold Ore Resources and myself flew in by helicopter to look at the 98 zone. By this time two thirds of the showing was visible but the lower portion where the two geochems were taken in 1998 was still buried in snow. A total 0f 7 soil samples and 7 rock samples were gathered from the area in and around the 98 zone by Wayne. All seven soil samples were anomalous for gold and silver, three of which were >1000 ppb gold. These three samples were fired assayed and returned values; A99+102- 1.79 g/t gold and 27.6 g/t silver; A99+103- 4.30 g/t gold and 15.8 ppm silver and A99+104- 2.95 g/t gold with 30.9 g/t silver. The seven rock samples were rather low in gold and silver values, the highest assaying 220 ppb gold and 1.2 ppm silver. Wayne gathered one grab sample from T11 on the 97 zone, sample number A99+208 that assayed 2450 ppb gold and 2700 ppm silver. See Figure 5:.

August 23/99 regional geologist Mike Cathro along with Bruce Madu visited the 97 and 98 zones on the Aumax ground. Numerous samples were collected but at this time 1 had not received any results. Mike suggested I apply for a notice of work to trench the 97 zone with an excavator where grades of silver could be found rich enough to ship to Trail. An application has been submitted for trenching.

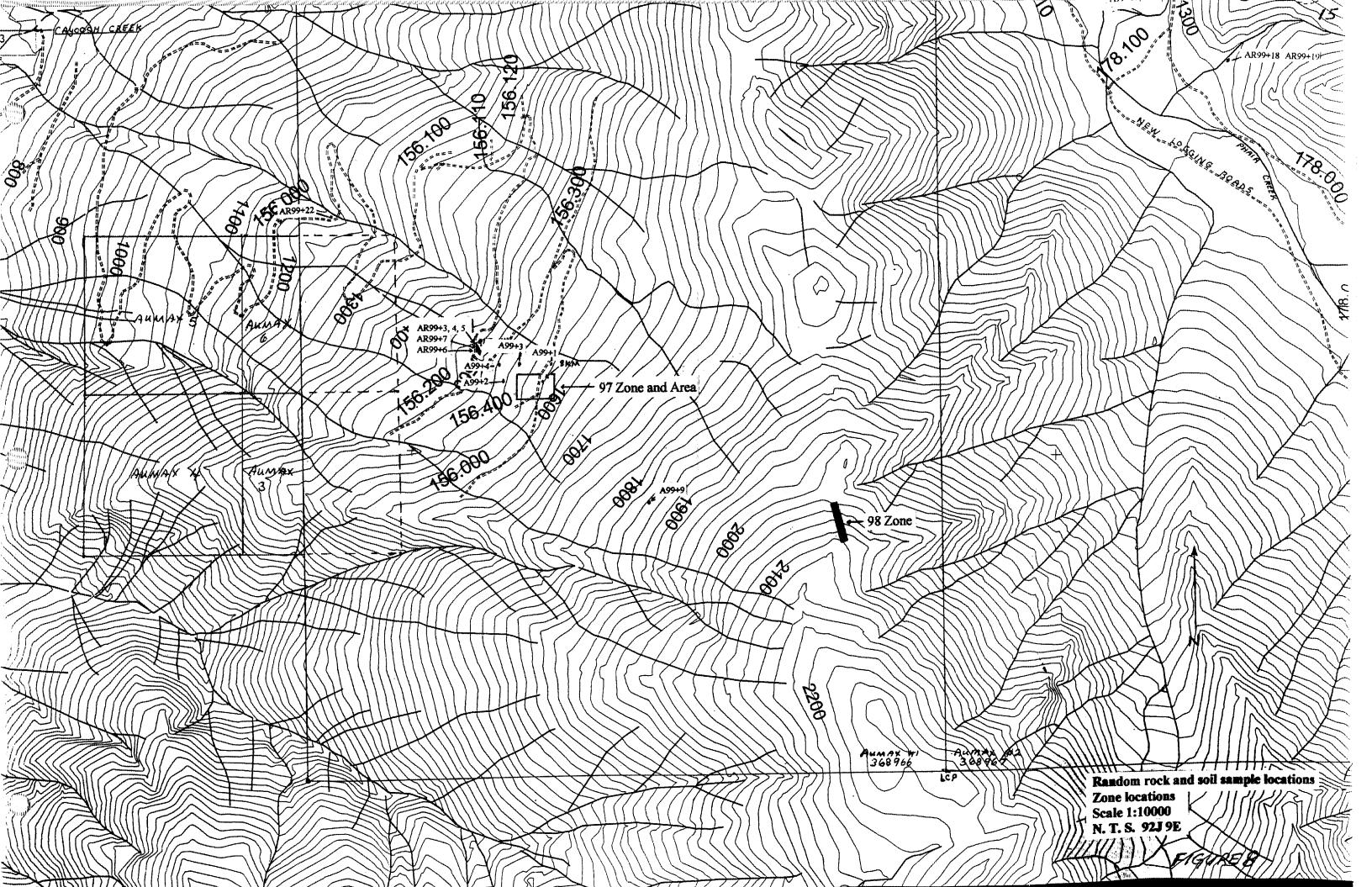
Sept 7/99 Jim Miller-Tait from Cross Lake Minerals also visited the 97 and 98 zones on the Aumax #1 mineral claim. Samples were collected from the 98 zone after we extended the #1 trench located 10m south of Wayne Pickett's A99+103 and A99+104 soil geochems. Two channel samples taken across 2m and one grab sample of quartz were taken from this trench by Jim; sample #'s 385770 to 774. One 1m channel sample and one grab of quartz were also taken at T1 by me; sample #'s AR99+20 and AR99+21. See Figure 7:. Channel samples were also collected by Jim, from the 97 zone at T2, T3, T4, T5 and T11. See Figure 5:.

NAR99+206 FIGURE 7

5.0 Geochemistry

Geochemistry on the Aumax ground is a useful tool for prospecting with Gold, silver, arsenic and copper being the best pathfinder elements to assay for. Several trenches were excavated by hand on anomalous geochems and although bedrock was not reached pieces of mineralized quartz float were found. All soil samples collected from the Aumax claims were sent to Echo-Tech laboratories in Kamloops and assayed for Gold along with a 30 element ICP. No stream sediment samples were gathered as there are no streams in the area of the Cayoosh facing slope.

5.1 Sample Number Legend


A99+1 Random soil sample

AR99+1 Rock sample L00+00 Grid soil sample

44 grid soil samples were collected

11 random soil samples were collected. Sample locations see Figure 8:.

22 rock samples were collected

6.0 Aumax rock sample description

- AR99+1 Float sample taken of qtz float in T2 hand trench on a new discovery, located 5m above grid soil sample sta. L1W+45N. Qtz, py, malachite, and azurite.
- AR99+2 Grab sample taken from qtz vn at T5. Well mineralized with silver sulphides, galena, malachite and azurite. Zone outcrop is 1m wide here.
- A99R+3, 4, 5 Samples are adjoining channel samples from north to south. Each sample taken across 1m of a bluish colored qtz vn. Aspy, py hem and sericite. Qtz vn located at lowest fork of the road in the upper logging block.
- AR99+6 Channel sample across 1m of qtz vn located 5m south of A99+3, 4, 5.Aspy, py, hem and sericite.
- AR99+7 Grab of qtz vn taken 3m west of A99+3, 4, 5 sample location. Qtz, py, aspy and hem.
- AR99+8 Grab of qtz vn located at T4. Qtz, hem and silver sulphides.
- AR99+9 Grab of qtz from T8. Qtz is well mineralized with Silver sulphides 5%.
- AR99+10 Float sample of hygrade taken from T9 an incompleted hand trench located 9m north east of AR99+9. Ribbon qtz with 5% silver sulphides, galena, chalcopyrite, malachite and azurite.
- AR99+11 This is a channel sample across 1m taken from a qtz vein at T11. Qtz, with 2% silver sulphides, chalcopyrite, galena, malachite and azurite.
- AR99+12 This is a grab sample taken at the same trench AR99+11came from. Qtz is ribbon structure with 5% silver sulphides, chalcopyrite, pyrite, malachite and azurite.
- AR99+13 Channel sample taken across .8m from T3. Small bleb of silver sulphide and pyrite.
- AR99+14 Channel sample taken at T1 across .5m. Small blebs of silver sulphides and pyrite.
- AR99+15 Grab of quartz float from 98 zone. Pyrite, arsenopyrite and hematite.
- AR99+16 Grab of quartz float from 98 zone. Pyrite, arsenopyrite and hematite
- AR99+17 Grab of quartz float from 98 zone. Pyrite, arsenopyrite and hematite.

6.0 Aumax rock sample description continued

- AR99+18 Grab of quartz float from the end of the logging road being built in Phair creek.

 Near the Aumax #2 north boundary. Chalcopyrite, bornite, pyrrhotite and pyrite.
- AR99+19 Grab of quart float from the end of the logging being built in Phair creek. Near the Aumax #2 north boundary. Chalcopyrite, bornite, pyrrhotite and pyrite.
- AR99+20 Channel sample across 1m taken at T1 on the 98 zone. Red oxide.
- AR99+21 Grab of quartz from same place as AR99+20. Pyrite, arsenopyrite and hematite.
- AR99+22 Quartz float taken from ditch line at 5km of Pamco road. Pyrite and silver sulphides

6.1 Aumax soil sample locations

- A99+1 Sample taken 60m north of sta. L00+90N along the upper logging road. Qtz float with pyrite and silver sulphide seen in this area.
- A99+2 Sample taken 15m southwest of AR99+2.
- A99+3 Sample taken 25m northeast of sta. L1W+90N.
- A99+4 Sample taken 15m above road at #3 log landing.
- A99+5 Sample collected from 98 zone at 2100 m elevation.
- A99+6 Sample collected from 98 zone 18m west of A99+5.
- A99+7 Sample collected 50m southwest of A99+6.
- A99+8 Sample collected 65m north of A99+7.
- A99+9 Sample collected on the way down to lower showing at the 6200 foot elevation. Quartz float with hem and pyrite visible on surface.
- A99+10 & 11 Soil samples taken along north boundary of Aumax #2. Samples were collected from a redish colored cut bank of the new Phair creek logging road.

8.0 Conclusions and Recommendations

A total of 43 days were spent prospecting the Aumax mineral claims during the 1999 season. Three areas of interest have been located where more work is required due the to appreciable Gold and silver values received from assays. Given these three new discoveries a grid should be established covering the area between the 97 and 98 zones to test for other mineralized systems. A grid with lines 100m apart and 20m stations over an area 1.5 km x 1 km would be ideal.

The 97 zone has had enough preliminary work done to bring in an excavator for surface trenching. Four days would probably be sufficient time to get enough surface information, when if successful, another follow-up program could be recommended. This area is in a logged off timber block with a gentle relief where a machine can move around with ease and not disrupt large hillsides or timber stands.

The 98 zone located on the crest of the ridge between Phair creek and Cayoosh creek has had only minimal work due to the snow conditions and its remoteness. More hand trenching and sampling is required to better understand the geology of this zone.

One other area of interest was discovered near the halfway point between the 97 and 98 zones. One random soil geochem taken at the 6200 foot elevation was collected in an area where red soil and bits of quartz were seen on the surface. Sample number A99+9 assayed 245 ppb au, 4.2 ppm ag and 2995 ppm as. Several random soil geochems along with hand trenching is required in this area to test the extent of the mineralization in this zone. The overburden does not appear to be very deep on this part of the hillside.

9.0 Prospecting Experience

I have been a prospector for 20+ years with most of my prospecting experience in the Lillooet mining district. Approx., 30% of my time spent prospecting in the last 5 years has been for mining companies such as; Bralome Pioneer Mines, Homestake Canada Inc., and Gold Ore Resources Ltd. I have taken one geology course, but most of my geological knowledge comes from practical work with geologists in the field.

I would like to thank the Ministry of Mines for the funding I received through the Prospectors assistance program. I would also like to thank regional geologist Mike Cathro and Bruce Madu for their assistance during my 1999 prospecting season.

I would also like to thank Wayne Pickett of Gold Ore Resources and Jim Miller-Tait of Cross Lake Minerals for the information gathered from their sampling.

Sary Polischuk

Geological analysis and assay certificates

Samples collected by Gary Polischuk Samples collected by Regional geologist Mike Cathro Samples collected by Wayne Pickett of Gold Ore Resources Ltd. 30-Jun-99

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 99-180

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0

Phone: 604-573-5700 Fax : 604-573-4557

ATTENTION: GARY POLISCHUK

No. of samples received: 2 Sample type: Rock PROJECT #: AUMAX SHIPMENT #: 1

Samples submitted by: G. Polischuk

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi (Ca %	Cd	Co	Cr	Сu	Fe %	La Mg %	Mn	Mo Na%	Ni	P	РЬ	Sb	Sn	Sr	Ti %	11	V	w	V	7-
1	AR99+1	>1000	>30	0.03	45	<5	<5	0.10	<1	1	342	167	0.70	<10 <0.01	119	8 < 0.01	8	20	16	80	<20		<0.01	<10	2	<10	<1	<u>Zn</u>
2	AR99+2	-	>30	0.02	195	<5	<5 <	<0.01	2	<1	202	1149	0.44	<10 <0.01	6 6 .	8 <0.01	5		1104	1405	<20		<0.01	<10	<1	<10	<1	10 130
OC DA	AIA:															•												
Respl	it:	•																										
1	AR99+1	>1000	>30	0.02	45	<5	<5	0.09	<1	1	312	171	0.62	<10 <0.01	110	8 <0.01	8	10	20	80	<20	<1	<0.01	· <10	<1	<10	<1	10
Repea	at:																											
1	AR99+1	>1000	>30	0.02	50	<5	<5	0.09	<1	2	331	172	0.66	<10 <0.01	110	9 <0.01	8	1 0	18	80	<20	<1	<0.01	<10	1	<10	<1	10
Stand	ard:																											
GEO'9	8	120	1.4	1.82	65	160	5	1.80	<1	19	64	79	3.71	<10 0.94	682	<1 0.02	23	620	20	10	<20	55	0.09	<10	78	<10	7	66

df/168 XLS/98

B.C. Certified Assayer

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
email: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ASSAY AK 99-180

GARY POLISCHUK

30-Jun-99

BOX 792 LILLOOET, BC VOK 1V0

ATTENTION: GARY POLISCHUK

No. of samples received: 2

Sample type: Rock PROJECT #: AUMAX SHIPMENT #: 1

Samples submitted by: G. Polischuk

		Au	Au	Ag	Ag
ET #.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)
1	AR99+1	8.07	0.235	95.1	2.77
2	AR99+2	1.16	0.034	1100.0	32.08

QC DATA:

Resplit: 1	AR99+1	6.30	0.184	-	
Repeat: 2	AR99+2	1.17	0.034	-	-
Standard: STD-M MPla		1.38	0.040	- 69.6	2.03

ÉCO-TECH LABORATORIES LTD.

prirank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/99

KAMLOOPS, B.C.

Phone: 250-573-5700 Fax : 250-573-4557

V2C 6T4

ECO-TECH LABORATORIES LTD.

10041 East Trans Canada Highway

ICP CERTIFICATE OF ANALYSIS AK 99-181

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0

ATTENTION: GARY POLISCHUK

No. of samples received: 39

Sample type: Soils

PROJECT #: Aumax - 97 zone quel

SHIPMENT #: 1

Samples submitted by: G. Polischuk

Values in ppm unless otherwise reported

		Mesh										_	_					na 11 5/		_	D.	C.L	6 -	C-	T : 0/		v	NA.	V	7 _
Et #.	Tag #	Size	Au(ppb)	Ag_	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La 1	Mg %	Mn	Mo Na%	Ni	P	Pb	Sb	Sn		Tì %	U	<u></u>	W	<u> </u>	Zn
1	L00+00	-60	145	23.4	1.86	1610	155	<5	0.40	<1	36	41	166	7.64	<10	0.73	1270	8 <0.01	86	7 9 0	30	20	<20			<10		<10		
2	L00+25 <i>E</i>		55	7.6	2.05	1140	105	<5	0.18	<1	35	41	126	7.63	<10	0.94	819	8 <0.01	82	580	18	<5	<20			<10		<10	-	144
3	L00+50 €		10	1.0	2.39	160	140	<5	0.35	<1	28	46	84	6.83	<10	0.91	1002	7 <0.01	62	1140	16	<5	<20				_	<10	•	140
	L1E+00		20	0.4	2.58	. 150	110	<5	0.16	<1	35	53	111	8.16	<10	1.29	705	10 <0.01	81	810	12	< 5	<20 .			<10		<10	-	158
	L1E+25		10	0.4	2.93	90	200	10	0.39	<1	28	51	73	6.68	<10	0.85	651	9 <0.01	58	1120	18	<5	<20	19	0.02	<10	91	<10	<1	170
6	L1E+50		20	0.4	3.42	90	165	10	0.25	<1	37	45	104	7.30	<10	1.19	839	9 < 0.01	79	890	20	< 5	<20	9	0.01	<10			<1	155
7	L2E+00 '		80	1.2	1.37	460	110	5	0.16	<1	38	28	157	9.33	<10	0.32	891	18 <0.01	113	940	14	<5	<20	5		<10	48	<10	<1	222
8	LG0+25 W		20	0.2	2.29	120	155	10	0.40	<1	32	73	62	6.42	<10	0.81	970	6 <0.01	83	930	10	15	<20	10	0.01	<10	81	<10	<1	127
q	L00+50 W		20	0.6	2.64	80	195	10	0.25	<1	22	44	49	6.05	<10	0.77	1422	7 <0.01	60	1690	18	<5	<20	10	0.01	<10	67	<10	<1	142
10		-60	10	0.8	1.77	155	195	<5	0.26	<1	35	35	118	7.73	<10	0.54	828	12 <0.01	84	1420	18	<5	<20	14	<0.01	<10	62	<10	2	188
11	L1W+15 N		.5	0.4	2.14	75	160	< 5	0.43	<1	24	35	· 51	5.46	<10	0.49	1211	6 <0.01	51	1400	16	<5	<20	16			62	<10	<1	130
12			45	0.4	3.76	260	160	15	0.38	<1	50	136	121	8.91	<10	1.94	1012	3 <0.01	118	1050	14	<5	<20	12			122	<10	<1	159
13			15	8.0	2.11	240	115	15	0.25	<1	33	53	103	7.20	<10	0.99	586	8 <0.01	76	510	12	<5	<20	7	0.03	<10	80	<10	<1	134
14			15	1.6	3.45	305	170	<5	0.85	<1	51	127	172	7.69	<10	1.25	841	5 <0.01	110	550	18	<5	<20	27			101	<10	8	139
	L1W+75 N		5	<0.2	2.98	135	165	10	0.44	<1	38	94	72	6.47	<10	1.13	1067	3 <0.01	81	610	16	<5	<20	10	0.08	<10	93	<10	<1	143
16	L1W+90 N		10	0.8	2.34	185	155	10	0.43	<1	62	115	140	>10	<10	0.63	724	9 < 0.01	170	570	4	80	<20		<0.01		93	<10	<1	127
17	L00+15 N	- 4 8	<5	1.0	2.21	150	240	20	7.39	1	43	42	111	9.17	10	1.20	2660	8 <0.01	59	660	8	<5	<20	60	<0.01	<10	97	10	104	83
18	L00+30 N			1.6		305	115	<5	0.35	<1	33	55	111	7.48	<10	1.03	807	8 <0.01	80	420	12	<5	<20	7	0.04		73	<10	7	135
19	L00+45 N	-48		2.8			275	<5	0.59	<1	48	140	173	9.04	<10	1.73	4096	7 <0.01	119	850	18	<5	<20	27	0.03	<10	115	<10	52	127
20		-48		1.0			165	10		<1	37	70	109	8.45	<10	1.40	860	10 <0.01	97	1730	24	<5	<20	10	0.01	<10	118	<10	<1	144

Et#	t. Tag#		Au(ppb)	Ag	Al %	As	Ba	Bì	Ca %	Cd	Co	Cr	Cu	Fe %	1 -	NA 9/	14-	14.	NI_ 0/		_			_					
21	L00+75 N		200	>30			145		6.28	<1	35	28	148			Mg %			Na %	Ni Ni	P	Pb	Sb	Sn	Sr Ti		V	W	Y Zn
22	L00+90 N		25	1.6		170	105		0.48	<1	42	63	163				2378		<0.01		1120	32	45	<20	34 < 0.0	1 <10	33 <	<10	13 158
23	L00+15 S		65	6.4		765	65	-	0.25	<1	37	38	148		10		1924		<0.01	87	900	14	<5	<20	21 <0.0	1 <10	98 <	<10	27 164
24	L00+30 S	-48	10	1.0	2.28	245	190		0.25	<1	30	37			10	0.86			<0.01	85	530	20	5	<20	6 0.0	3 <10	55 <	<10	28 174
25	L00+45 S		40	2.2	1.82		110		0.40	<1	36	36	112		20	0.87			<0.01	1 4	640	20	<5	<20	23 0.0	3 <10	55 <	<10	44 149
							110	``J	0.70	71	30	30	147	8.39	20	1.07	1683	11	<0.01	82	820	12	<5	<20	16 <0.0	1 <10	57 <	<10	51 168
26	L00+60 S	-48	20	0.8	2.64	40	145	5	0.36	<1	37	F 2	450	0.05	45														
27	L00+75 \$	-48	5	0.6	2.06	10	215	-	0.58	<1	49	53	159		40		1871		<0.01	87	650	16	<5	<20	13 0.0	1 <10	80 <	<10	70 167
28	L00+90 S		<5	1.2	2.59	40	240		0.50	~ I	4 9 64	34	151		40		1588		<0.01	88	610	22	<5	<20	26 < 0.0	1 <10	81 <	<10	108 210
29			<5	<0.2	2.84	50	195	•	0.35	<1		78 54	236		30	1.33			<0.01	146	720	22	<5	<20	26 0.0	1 <10	94 <	<10	92 218
30	L1E+30 N		< 5	0.2	3.92	60	180	10	0.29	<1	27	54	-59		<10	0.95	671		<0.01	53	1510	18	<5	<20	17 0.0	2 <10	92 <	<10	<1 139
				0.2	0.52	00		10	U.28	~1	40	69	131	8.70	10	2.21	1025	10	<0.01	94	1320	22	<5	<20	14 <0.0	1 <10	109 -	<10	1 181
31	L1E+45 N		<5	0.4	2.36	65	195	10	0.33	-1	20	40	40	F 05				_											
32	L1E+60 N		<5	0.4	3.37	100	160			<1	28	46	46		<10	0.73			<0.01	52	1150	12	<5	<20	13 0.0	2 <10	78 <	<10	<1 128
33			<5	0.4	3.37	95	250		0.18 0.32	<1 4	35	62	151		10	1.52			<0.01		1060	18	<5	<20	17 <0.0	1 <10	101 <	<10	2 172
34	L1E+15 S		5	0.8	2.05	225	140		0.32	<1	27	46	82		<10	0.82	624		<0.01	77	2270	18	<5	<20	19 0.0	2 <10	78 <	<10	<1 159
35	L1E+30 S		5	4.6	2.47	250	155			<1	32	46	100		<10	0.92	737	7	<0.01	67	890	10	<5	<20	10 0.0	3 <10	80 <	<10	<1 140
			Ū	7,0	2.77	200	100	10	0.34	<1	25	42	53	5.73	<10	0.58	683	6	0.01	63	1290	16	<5	<20	14 0.0	3 <10	72 <	<10	<1 126
36	L1E+45 S		15	0.2	0.65	15	105	<5	0.27	-4	25	45	400					•											
37	L1E+60 S		10	0.4	2.22	35	240		0.27	<1	35	15	132		<10		551		<0.01	85	1180	12	<5	<20	13 <0.0	1 <10	41 <	<10	<1 172
38	L1E+75 S		15	0.4	1.78	95	165		0.23	<1 1	37	42	125		10	0.90			<0.01	88	930	20	<5	<20	11 <0.0	1 <10	72 <	<10	10 172
39	A99+1		75	4.6	2.70	320	145	_	0.23	<1	33	40	120		<10	0.73	902		<0.01	80	510	12	<5	<20	6 0.0	1 <10	65 <	<10	<1 154
				7.0	2.70	520	145	~5	U.Q.1	<1	39	69	146	8.35	<10	1.59	1320	.8	<0.01	83	490	12	<5	<20	17 0.0	4 <10	97 <	<10	44 127
QC D	ATA:																												
Repe	at:																					4							
1	L00+00		290	24.4	1.86	1550	140	<5	0.39	<1	37	41	162	7.60	-10	. 0.74	4004												
10	L1W+00		10	0.6	1.78	130	205		0.28	1	35	35	118			0.71	1264		<0.01	88	810	30	25	<20		2 <10		<10	18 226
19	L00+45 N		<5	2.8	3.60	300	280		0.59	<1	49	143	179		<10	0.54	821		<0.01	85	1420	16	<5	<20	18 <0.0	l <10	63 <	<10	2 189
28	L00+90 S		<5	1.4	2.46	40	225	_	0.59	1	63	74		9.25	<10	1.78	4083		<0.01	120	820	18	<5	<20	29 0.0	3 <10	118 <	<10	53 128
36	L1E+45 S		10	0.4	0.67	25	100		0.27	<1	35		226	>10	30	1.26	1933		<0.01	143	740	24	<5	<20	24 0.0	1 <10	90 <	<10	86 217
				U . 1	0.07	~~	,00		U.Z.1	~1	35	15	131	8.37	<10	0.12	566	14	<0.01	83	1190	12	<5	<20	10 <0.0	1 <10	42 <	<10	<1 175
Stand	dard:																												
GEO'			115	1.2	1.69	65	150	10	1.84	<1	10	ee	90	4.00	-45	A 00													
			,,,,	1			, 55	10	1.04	~1	19	66	80	4.23	<10	0.98	672	<1	0.02	22	630	20	<5	<20	58 0.1	0 <10	74 <	<10	10 70

df/181 XLS/99 ECO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

ECO-TECH LABORATORIES LTD.

10041 East Trans Canada Highway

ICP CERTIFICATE OF ANALYSIS AK 99-234

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0

Phone: 604-573-5700 Fax : 604-573-4557

KAMLOOPS, B.C.

V2C 6T4

ATTENTION: GARY POLISCHUK

No. of samples received: 6 Sample type: Soil

PROJECT #: AUMAX
SHIPMENT #: 3

Samples submitted by: G. Polischuk

Values in ppm unless otherwise reported

Et#		Au(ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr Ti%	U	٧	W	Υ	Zn
1	A-99+5	290	1.4	2.12	800	205	<5	0.33	5	41	40	211	9.65	30	0.53	2149	17 <0.01	100	1140	14	<5	<20	25 <0.01	<10	64	<10	19	251
2	A-99+6	235	1.0	2.30	1160	190	<5	0.29	3	37	36	172	8.33	30	0.58	2909	15 0.01	91	2250	12	<5	<20	26 0.01	<10	54	<10	47	230
3	A-99+7	>1000	20.2	0.19	>10000	. 135	<5	0.13	33	52	<1	165	9.78	20	<0.01	2673	10 <0.01	58	710	12	10	<20	17 ≤0.01	<10	11	<10	38	178
4	A-99+8	480	4.0	0.88	1020	235	<5	0.55	5	38	15	214	8.66	30	0.09	3486	14 <0.01	94	1090	10	<5	<20	17 <0.01	<10	34	<10	107	208
5	A-99+9	245	4.2	0.79	2995	90	<5	0.11	8	52	14	183	7.84	20	0.13	576	15 <0.01	119	600	12	5	<20	5 < 0.01	<10	27	<10	<1	287
6	SG99+7	10	<0.2	2.59	155	130	<5	0.30	<1	38	83	141	6.50	20	1.22	870	6 < 0.01	108	670	8	<5	<20	31 0.06	<10	70	<10	21	143
QC D	ATA:																											
Repe 1	at: A-99+5	405	1.4	2.12	795	195	<5	0.32	4	41	40	213	9.58	30	0.53	2144	17 <0.01	103	1130	16	<5	<20	21 <0.01	<10	64	<10	20	248
Stand GEQ'		135	1.0	1.81	65	155	<5	1.86	<1	19	60	80	3.75	<10	0.94	702	<1 0.02	24	720	18	10	<20	59 0.11	<10	78	<10	9	76

df/235 XLS/99 ECD-TECH LABORATORIES LTD.

B.C. Certified Assayer

ECO-TECH LABORATORIES LTD.

10041 East Trans Canada Highway

ICP CERTIFICATE OF ANALYSIS AK 99-237

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0

Phone: 604-573-5700 Fax : 604-573-4557

KAMLOOPS, B.C.

V2C 6T4

ATTENTION: GARY POLISCHUK

No. of samples received:6 Sample type: Rock PROJECT #: AUMAX SHIPMENT #: 3

Samples submitted by: G. Polischuk

Values in ppm unless otherwise reported

																						•					
Et #		Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La Mg %	Mn	Mo Na%	Ni	P	Pb	Sb	Sn	Sr Ti%	Ü	v	w	v	7 _
1	AR99+3	65	0.4	0.06	650	15	<5	0.02	<1	1	217	4	0.48	<10 <0.01	94		- 7	44.0							77		Zn
2	AR99+4	20	<0.2	0.03	485	10	<5	0.01	4	<1	188	, ,				5 < 0.01	- 1	<10	4	<5	<20	2 <0.01	<10	<1	<10	<1	<1
3	AR99+5	90	1.2	0.13	1080				<u>'</u>	~ 1		4	0.34	<10 <0.01	83	4 <0.01	6	<10	<2	<5	<20	<1 <0.01	<10	<1	<10	<1	<1
1	AR99+6					60		0.04	2	5	185	15	1.21	<10 0.01	693	6 < 0.01	10	<10	<2	<5	<20	<1 <0.01	<10	2	<10	4	16
-		60	3.2	0.09	850	30	<5	0.03	<1	2	198	11	0.83	<10 <0.01	372	6 < 0.01	10	<10	<2	<5	<20	<1 <0.01	<10	-4		l sal	
5	AR99+7	25	<0.2	0.02	495	15	<5 ⋅	<0.01	<1	<1	157	3	0.31	<10 <0.01	80	4 < 0.01	5	<10	<2					<1	<10	<1	12
6	SGR 26	150	<0.2	0.03	4415	<5	<5 ⋅	< 0.01	7	1	176	43		<10 <0.01	65		•			<5	<20	<1 <0.01	<10	<1	<10	<1	<1
							_		•	•		70	1.10	10.07	05	6 <0.01	6	20	<2	<5	<20	<1 <0.01	<10	1	<10	<1	3
QC D	AIA:																										
Resp	lit-																										
1	AR99+3	60	0.4	0.04	655	10	<5	0.02	<1	1	173	4	0.43	<10 <0.01	90	4 <0.01	6	<10	2	<5	<20	<1 <0.01	<10	<1	<10	<1	<1
Repe	at•																										
1	AR99+3	60	0.4	0.05	650	5	<5	0.02	1	<1	211	4	0.46	<10 <0.01	89	5 <0.01	7	<10	<2	<5	<20	<1 <0.01	<10	<1	<10	<1	<1
Stand	lard:																										-
GEO'		-	0.8	1.83	60	150	10	1.80	<1	18	63	84	3.85	<10 0.94	645	<1 0.02	25	680	16	15	<20	54 0.10	<10	71	<10	8	70

df/235 XLS/99 ECO-TECH LABORATORIES LTD.

Brank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 99-301

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0

Phone: 604-573-5700 Fax : 604-573-4557

ATTENTION: GARY POLISCHUK

No. of samples received: 3 Sample type: Rock PROJECT #: Aumax SHIPMENT #: 4

Samples submitted by: G. Polischuk

Values in ppm unless otherwise reported

Et#	. Tag#	Au(ppb)	Ag	Al %	As	Ва	Bi Ca%	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr Ti%	IJ	V	w	v	7
1	AR99+8	>1000	>30	0.01	210	<5	<5 <0.01	2	<1	158	1413	0.45	<10 <0.01	55	3 <0.01	5	<10	898	1555	<20						Zn
2	AR99+9	>1000	>30	0.03	300	<5	<5 0.03	9	2	174	4365	0.69	<10 <0.01	131	6 < 0.01	9					<1 <0.01	<10	<1	<10	<1	124
3	AR99+10	>1000	>30	0.05	1125	20	<5 0.01	3	3	212			<10 <0.01	57		•				<20	<1 <0.01	<10	2	<10	<1	460
							0 0.01	•	Ü		1017	1.00	~10 ~0.01	57	7 <0.01	12	10	2610	2675	<20	9 <0.01	<10	2	<10	<1	223
QC D	ATA:																									
Resp	lit:																									
1	AR99+8	>1000	>30	0.01	205	<5	<5 <0.01	3	<1	161	1444	0.45	<10 <0.01	62	3 <0.01	6	<10	908	1580	<20	<1 <0.01	<10	<1	<10	<1	127
Repe	a <i>t:</i>																									
1	AR99+8	>1000	>30	0.01	195	<5	<5 <0.01	2	<1	152	1376	0.43	<10 <0.01	51	4 <0.01	4	<10	872	1525	<20	<1 <0.01	<10	<1	<10	<1	119
Stand	lard:																									
GEO'	99	115	1.4	1.63	55	160	<5 1.54	<1	19	57	89	3.57	<10 0.93	674	-d 0.00	00	240	4.5								
					30		U 1.0-1	- 1	10	Ji	OS	0.07	<10 0.93	φ/4	<1 0.03	26	740	18	10	<20	61 0.10	<10	74	<10	18	61

df/300 XLS/99 ECO-TECH LABORATORIES LTD. Frenk J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
email: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ASSAY AK 99-301

GARY POLISCHUK

18-Aug-99

BOX 792 LILLOOET, BC

V0K 1V0

ATTENTION: GARY POLISCHUK

No. of samples received: 3

Sample type: Rock PROJECT #: Aumax SHIPMENT #: 4

Samples submitted by: G. Polischuk

ET #.	Tag #	Au (g/t)	Au (oz/t)	Ag (g/t)	Ag (oz/t)	
1	AR99+8	1.72	0.050	1615.0	47.10	14
2	AR99+9	3.25	0.095	2520.0	73.49	T8
3	AR99+10	4.56	0.133	2706.0	78.92	79
QC DATA	<u>:</u>					
Resplit: 1	AR99+8	2.38	0.069	•	-	
Repeat:	AR99+8	3.85	0.112		-	
Standard: Med		1.32	-		<u>.</u>	

ECO-TECH LABORATORIES LTD.

Rank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/99

ICP CERTIFICATE OF ANALYSIS AK 99-302

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557 GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0

ATTENTION: GARY POLISCHUK

No. of samples received:9
Sample type:SOIL
PROJECT #: AUMAX 9730000
SHIPMENT #:4
Samples submitted by: GARY POLISCHUK

Values in ppm unless otherwise reported

		-																						Ų.	arripro	s subili	med by	GAR	Y POLIS	SCHUP	(
	Et #.	Tag #	Au(ppb)	Ag		As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na	/ a	Ni	Р	Pb	Sb	Sn	Sr	Ti %	ย	v	10/		
		AR 99+2	30	3.2		280	240	<5	0.56	<1	36	69	259	6.04	<10	0.98	964	3 0.0	2	89	1020							V	<u>W</u>	Y	Zn
	2	AR 99+3	25	0.2	2.12	110	180	10	0.25	<1	35	67	137	9.29	<10	0.20	334	9 <0.0			1030	34	10	<20	32	0.09	<10	83	<10	17	211
	3	AR 99+4	30	1.8	2.30	525	135	<5	0.29	<1	33	59	101	5.76	<10	0.77			_	12	980	10	100	<20	11	<0.01	<10	96	<10	<1	100
	/4	L2E+15\$	10	<0.2	3.23	50	170	<5	0.30	<1	37	54					492	5 0.0		88	560	22	10	<20	15	0.06	<10	80	<10	<1	127
	∫ 5	L2E+30S	20	<0.2		135	145	10	0.19	4			103	5.52	20	1.08	1106	5 0.0	2 8	81	1460	30	<5	<20	19	0.07	<10	88	<10	13	
				·	1.40	100	140	10	U. 19	I	28	42	99	6.17	10	0.46	546	8 <0.0	1 (65	950	12	<5	<20	10	0.05	<10	72			199
یہ آلا	6	L2E+45\$	45	~O O	0.04	250	400																		. •	0.00	-10	12	<10	<1	153
) -		15	<0.2		250	180	10	0.27	<1	27	56	49	4.71	<10	0.68	522	2 0 0	1 4	47	1140	20	<5	<20	14	0.00	.45				
	1 6	L2E+60S	20	<0.2		130	175	10	0.27	<1	29	58	60	5.82	<10	0.63	633	5 0.0			1080	18				0.09	<10	88	<10	<1	150
	(8	L2E+75S	10	<0.2	2.85	75	150	5	0.24	1	25	63	55	5.57	10	0.68	497	4 0.0		54	870		<5 -5	<20	17	0.06	<10	99	<10	<1	145
	√ 9	L2E+90\$	15	0.4	2.83	40	205	5	0.24	<1	20	50	46	4.83	10	0.46	527					20	<5	<20	12	0.08	<10	108	<10	<1	134
														,,,,,	.0	0.40	J27	2 0.0	1 4	40	2150	18	<5	<20	16	0.05	<10	84	<10	<1	173
	QC DA	TA:																													
	Repeat	ha .a																													
	1	AR 99+2	_	3.0	3.98	280	240	<5	0.50	_																					
	6	L2E+45S	100	0.0	0.50	200	240	~:	0.53	2	35	66	220	5.85	<10	0.94	934	9 0.0	2 9	92	980	28.	35	<20	33	0.08	<10	81	-40		
	Ū	LZL 1400	טטו	-	-	-	-	-	-	-	•	-	-	-	-	-	-	-	_	_	-				-	0.00	~10	01	<10	15	190
	C4																							-	•	-	-	-	•	-	-
	Standa																														
	GEO'99)	125	1.4	1.75	70	170	<5	1.84	1	20	66	82	4.10	<10	0.94	740	2 0.0	, ,	20	700	00	_								
												-				V.J-	, 40	2 0.0	• •	20	720	20	5	55	35	0.08	<10	81	<10	7	74

df/302 XLS/99 ECD-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

10041 E. Trans Canada Hwy., H.R. #2, Kamloops, B.C. V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
email: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ASSAY AK 99-234

GARY POLISCHUK

19-Aug-99

BOX 792 LILLOOET, BC V0K 1V0

ATTENTION: GARY POLISCHUK

No. of samples received: 6

Sample type: Soil PROJECT: # AUMAX SHIPMENT: # 3

Samples submitted by: G. Polischuk

		Au	Au	
ET #.	Tag #	(g/t)	(oz/t)	
3	A-99+7	1.94	0.057	

QC/DATA:

Standard:

STD-M

1.08

0.031

ECO-TECH LABORATORIES LTD.

Rrank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/99

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
email: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ANALYSIS AK 99-380

GARY POLISCHUK

27-Aug-99

BOX 792 LILLOOET, BC V0K 1V0

ATTENTION: GARY POLISCHUK

No. of samples received: 9

Sample type: Rock PROJECT #: AUMAX SHIPMENT #: 5

Samples submitted by: G. Polischuk

		Au	Ag	As	Cu	Pb
ET #.	Tag #	(ppb)	(ppm)	(ppm)	(ppm)	(ppm)
1	AR99+11	340	>30	255	329	314
2	AR99+12	>1000	>30	915	3361	3050
3	AR99+13	>1000	>30	305	640	436
4	AR99+14	100	>30	150	90	34
5	AR99+15	55	4.4	460	30	<2
6	AR99+16	45	4.0	510	4	<2
7	AR99+17	80	4.4	730	4	2
8	AR99+18	15	3.6	<5	180	4
9	AR99+19	<5	3.0	<5	60	8
QC DA	TA:					
Repeat						
1	AR99+11	-	>30	240	306	296
Resplit						
1	AR99+11	-	>30	230	319	302
Standa	rd:					
GEO'99)	120	1.2	65	. 89	22

CO-TECH LABORATORIES LTD

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
email: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ASSAY AK 99-380

GARY POLISCHUK BOX 792

LILLOOET, BC

V0K 1V0

30-Aug-99

ATTENTION: GARY POLISCHUK

No. of samples received: 9

Sample type: Rock

PROJECT #: AUMAX 97 3011

SHIPMENT #: 5

Samples submitted by: G. Polischuk

ET#.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	
1	AR99+11	-	-	420.0	12.25	TP
2	AR99+12	2.51	0.073	2750.0	80.20	T11
3	AR99+13	5.30	0.155	583.6	17.02	T3
4	AR99+14	-	-	68.4	2.00	TI
QC/D	<u>ATA:</u>					
Stano	lard:					
STD-M	√I	1.57	0.046	-	-	
MPia		-	-	70.0	2.04	

Αu

Αg

Αg

ECФ-TECH LABORATORIES LTD.

Prank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/99

ECO-TECH LABORATORIES LTD.

10041 East Trans Canada Highway

GARY POLISCHUK BOX 792 LILLOOET, BC **V0K 1V0**

ATTENTION: GARY POLISCHUK

No. of samples received: 3 Sample type: Rock PROJECT #: Aumax SHIPMENT #: 6 Samples submitted by: G. Polischuk

P Pb Sb Sn 8r Ti %

Phone: 604-573-5700 Fax : 604-573-4557

KAMLOOPS, B.C. V2C 6T4

Values in ppm unless otherwise reported

Et	Ř. Tag#	Au(ppb)"	Ag	AJ %	As	RS	ظ	U2 70	- Cu	CU.	VI			- 10	0.07	4004		0.01	68	1660	<2	-5	<20	95 < 0.01	<10	14	<10	15	95
	AR99+20 AR99+21		2.2		>10000 2265 150	85 20 <5	20 10 <5	1,14 0.74 0.01	26 2 4	38 9 1	88 172 215	47 11 1697	7.20 1.78 0.38		0.07 0,02 <0,01		9 <	:0.01	21 7	380	2	<6 1705	<20 <20	14 <0.0°	<10	3 ≺1	<10 <10	3 <1	20 187
_	DATA: split: AR99+20)	13.8	0.38	>10000	75	15	1.09	30	36	69	48	6,89	<10	0.07	1311	11 •	<0.01	64	1590	4	<5	<20	B7 <0.0	1 <10	13	<10	18	88
	indard:		19	1 78	70	155	10	1.83	<1	20	64	76	3.88	<10	0.97	680	<1	0.01	21	630	18	5	<20	54 0 .0	7 <10	74	<10	8	70

La Mg % Mn Mo Na % Ni

NOTE: * = Au results still to come

1.2 1.78

d#488 XLS/99

GE0'99

Frank J. Pezzotti, A.Sc.T.

24-Sep-99

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 99-491

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0

ATTENTION: GARY POLISCHUK

No. of samples received: 3

Sample type: Rock PROJECT #: Aumax SHIPMENT, #: 6

Samples submitted by: G. Polischuk

Phone: 604-573-5700 Fax : 604-573-4557

Values in ppm unless otherwise reported

=	Et #.	Tag#	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La Mg %	Mn.	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	w	Υ	Zn
	1	AR99+20	>1000	13.2	0.42	>10000	85	20	1.14	26	38	88	47	7.20	<10 0.0	7 1394	11 0.01	68	1660	<2	<5	<20	95	<0.01	<10	14	<10	15	95
	2	AR99+21	190	2.2	0.08	2265	20	10	0.74	2	9	172	11	1.78	<10 0.0		9 < 0.01	21	380	2	< 5	<20		< 0.01	<10	3	<10	3	20
	3	AR99+22	>1000	>30	0.01	150	<5	<5	0.01	4	1	215	1697	0.36	<10 <0.0	59	10 < 0.01	7	<10	984	1705	<20		<0.01	<10	<1	<10	<1	187
Ω	DC DA	TA:															·			-									
F	Respli 1	t: AR99+20	>1000	13.8	0.38	>10000	75	15	1.09	30	36	89	48	6.89	<10 0.0	7 1311	11 <0.01	64	1590	4	√ < 5	<20	87	<0.01	<10	13	<10	18	88
	Standa SEO'99		-	1.2	1.78	70	155	10	1.83	<1	20	64	76	3.88	<10 0.9	7 680	<1 0.01	21	630	18	5	<20	54	0.07	<10	74	<10	8	70

df/488 XLS/99 ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ASSAYING
GEOCHEMISTRY
ANALYTICAL CHEMISTRY
ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy.. R.A. #2, Kamloops, B.C. V2C 674 Phone (250) 573-5700 Fax (250) 573-4557 entail: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ASSAY AK 99-491

GARY POLISCHUK BOX 792 LILLOOET, BC VOK 1V0 23-Sep-99

ATTENTION: GARY POLISCHUK

No. of samples received: 3

Sample type: Rock PROJECT #: Aumax SHIPMENT #: 6

Samples submitted by: G. Polischuk

		Ag	Ag	As	
ET#.	Tag #	(g/t)	(oz/t)	(%)	
1	AR99+20	-	-	1.51	
3	AR99+22	1212.0	35.35	-	

QC DATA:

Standard:

Mpla

71.0

2.07

0.84

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/99

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kambops, B.C. V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
email: ecotech@mail.wkpoweflink.com

CERTIFICATE OF ASSAY AK 99-491

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0 28-Sep-99

ATTENTION: GARY POLISCHUK

No. of samples received: 3

Sample type: Rock
PROJECT#: Aumax
SHIPMENT#: 6

Samples submitted by: G. Polischuk

		Au	Au	Ag	Ag	As
ET#.	Tag#	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)
1	AR99+20	1.07	0.031	-	•	1, 51
3	AR99+22	2.03	0.059	1212.0	35.35	-

QC DATA:

Standard:

STD-M Mpla 1.39 0.041

•

71.0

2.07

0.84

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

Assay Results
Samples taken by Mike Cathro
Regional Geologist
Mines Branch, Kamloops

Cathro, Mike EM:EX

From:

Cathro, Mike EM:EX

Sent:

Thursday, September 23, 1999 10:51 AM

To:

Ray, Gerry EM:EX

Subject:

Aumax claims - sampling results

Gелту,

t just faxed to you some assays from samples I collected from the "97" and "98" zones, Allmax claims.

Unfortunately, I wrote the wrong trench numbers on the assay sheets.

Sample C99-043 was a grab sample from Trench 5 (not Trench 2) Sample C99-044 was a grab from Trench 7 (not Trench 5)

*

These should now agree with the map and field notes I mailed down last week.

Mike Cathro Regional Geologist Mines Branch, Kamloops

tel. 250 828-4566 fax 250 828-4726 Email: Mike.Cathro@gems2.gov.bc.ca

P. B

0

PACE. BI

```
27-Sep 99
Eco-tech Laboratories LTD.
```

10:07

ICP CERTIFICATE OF ANALYSIS AK 99-487

MINISTRY OF ENERGY & MINES #200-2965 AIRPORT DRIVE KAMLOOFS, BC V28 FW6

Phone: 250-570-5700 Fex: : 250-573-4557

KAMLOOPS, B.C. V2C 6T4

10041 East Trans Canada Highway

ATTENTION: MIKE CATHRO

No. al semples received: 13 Semple type: Rock PROJECT #: None Given SkipMENT #: None Given Semples submitted by: M. Cethro

Values in ppm unless otherwise reported

E1 8.	tag # Au(ppb)	As Al %	A <u>s</u>	B4	OI CI %	Cđ	Co	Ç¢	Cu	F+ % .	<u>la 1</u>	/lg ¼	No	Me	N <u>a %</u>	_₩.	_ <u>P</u>	_Pb	Sb	Sn	51	71 %	u	¥	₩	Y	IΛ
no somulo () 10 12 12 13	2000 C99-039 C99-040 C89-041 C99-042 C99-044 C99-044 C99-044	<0.2 1.47 1.2 0.60 1.0 0.36 >30 0.05 >30 0.02 >30 0.04	<5 1475 345 210 345 655	65 70 65 10 10 20	30 0.15 15 5.48 10 5.62 <5 0.10 45 0.05 45 0.03	<1 5 2 2 7 13	17 27 42 2 2	80 37 64 183 139 166	70 48 50 304 2640 4902	6,69 G,00 7,58 0,72 0,60 1,85	<10 <10 <10 <10 <10 <10	0.48 5.06	1218 1306 150 42	6 5 3	0.04 0.63 0.91 <0.01 <0.01		<10	·2 <2	20 205 2640	<20 <20 <20	26J <1 <1	0.40 0.02 =0.01 =0.01 +0.01 <0.01	<10 <10 <10 <10	18 18 2	<10	40 22 <1 41 41 41	57 56 54 52 238 477

Ministry of Energy and Mines Kambagas, B.C.

Rec'd SEP 2 3 1999

ASSAYING
GEOCHEMISTRY
ANALYTICAL CHEMISTRY
ENVIRONMENTAL TESTING

22-Sep-99

10041 E. Trans-Garlada Hwy., R.R. 42 Kamloops, B.C. V2C 674 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@mail.wkpowertink.com

CERTIFICATE OF ASSAY AK 99-487

MINISTRY OF ENERGY & MINES #200-2985 AIRPORT DRIVE KAMLOOPS, BC V2B 7W8

ATTENTION: MIKE CATHRO

No. of samples received: 13

Sample type: Rock
PROJECT #: None Given
SHIPMENT #: None Given
Samples submitted by: M. Cathro

	ET#.	Tag #	Au (g/t)	Au (az/t)	Ag (gft)	Ag (02/t)	Te (%)
-	GIR.	. 49 7					
= 14 · -	. 11	C99-042 T 7 60 cm chip	1.16	0.034	251.4	7.33	-
through .	12	C99-042 T 3 60 cm chip C99-043 T 2 9:06	14.65	0.427	2170.0	63.28	-
47 Pare	(13	C99-044 T5 grab	2.49	0.073	2820.0	82.24	•
	QC DATA	: ·					
#	Repeat:	-	L				
,	Standard:	•					
	STD-M		1,38	0.040	-	-	-
	MPla		•	-	70.0	2.04	<0.01

XLS/99

ECO-TECH LABORATORIES LTD.

Righk J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

Page 1

Aumax assays from Gold Ore Resources Taken by J. Wayne Pickett, M.Sc., P.Geo

ICP CERTIFICATE OF ANALYSIS AN 99-363

GOLD-ORE RESOURCES LTD. 1540-756 WEST PENDER STREET VANCOUVER, BC V6C 2T8

ATTENTION: WAYNE PICKETT
98 gone
No. of samples received 7
Sample type: Soil
PROJECT # AUMAX
SHIPMENT# [

Sample's outsmitted by. W. Pickett

ECG-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C V2C 6T4

Pfrone: 750-573-5700 frax 250-573-4557

Values in ppm unless otherwise reported

Et #	Tag#	Au(ppb)	Ag	A1%	AS	Ba	81	ca%	Cd	Co	Gr	Cu	Fe%	La Mg	% Ma	Mo Na %	Ná	P	Pb	Sb	Sn	Sr	Ti%	u	V	W	Y	ZA
1	A99+101	190	4.0	1.25	2135	140	₹5	0.38	8	40	21	118	6.29	10 0,	18 1958	12 <0.01	89	1090	14	. <5	020	32	0.01	<10	31	£10	27	165
2	A99+182	>1000	>30	061	> 10000	150	20	0.44	58	187	5	141	>10	20 <0.	509H	13 <0.01	305	2180	28	₹5	<20	53	<0.01	<10	13	<10	70	2.07
3	A99+103	>1000	15.8	14	>10000	145	25	0.82	93	85	4	115	210	10 40,	01 4845	14 60,01	131	1700	12	<5	<20	86	<0.0t	<10	14	<10	16	182
4	A99+104	>1000	>30	. 0.27	>10000	185	20	1.31	99	95	<1	178	710	20 €0.	st 6061	15 <0.01	183	4030	16	10	<20	159	<0.01	<10	19	<10	56	328
5	A99+105	700	66	0.72	7810	135	35	0.16	28	69	4	362	>10	<10 <0.	21 2757	12 <0.01	72	970	16	<5	<20	18	<0.01	<10	32	<10	<1	144
6	A99+106	205	6.2	1.43	845	120	5	0.12	A	15	21	77	6.33	10 0.	20 610	9 50,01	. 39	1810	12	<5	<20	16	<0.01	<10	27	<10	1	123
7	A99+107	250	2.0	2.47	1645	155	<5	0.17	6	46	44	134	7.86	20 0,	34 1861	9 < 0.01	92	1790	12	55	<20	17	0.02	<10	65	40	28	154
														_														
					•																-							
																												*.
													-										1					•
QÇ DA	IA:												-						_				1					•
													~										//					•
GC DA																							1)					•
			3.8	1.27	2090	140	5	0:37	10	40	20	121	6.25	10 6.	19 1956	13 <0.01	88	1070	14	€5	<25	29	40,01	<10	31	40	25	152
	t:	>1000	3.8	1.27	2090	140	5	0:37	10	40	20	121	6.25	10 6.	1956	13 <0.01	88	1070	14	≪5	<20	23	40,01	el0	31	410	25	
Repea 1	#: A99+101	71000	3.8	1.27	2090	140	5	0:37	10	40	20	121	6.25	10 6.	1956	13 <0.01	88	1070	14	< 5	<25	29	40,01	e10	31	410	25	
Repea 1	A99+101 A99+102	>1000	3.8	1.27	2090	140	5	0:37	10	40	20	121	6.25	10 6.	1956	13 <0.01	88	1070	14	<5	<20	29	40,01	40	31	410	25	
Repea 1 2	t: A99+101 A99+102	>1000 115	3.8	/		140	5	0:37	10	40	20	121	6.25		1956 16 648	13 <0.01	38		14	<5 10	<20	29	40,01	<10 <10	31	∠10 <10	25	

df/344 XLS/99 ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

26-Aug-99

19941 E. Trans Canada Hwy., P.R. #2, Kamioops, B.C. V2C 6T4 Phone (280) 573-5700 Fax (250) 573-4557 email: ecotech @mail wkpowerlink.com

CERTIFICATE OF ASSAY AK 99-363

GOLD-ORE RESOURCES LTD. 1540-750 WEST PENDER STREET VANCOUVER, BC V6C 2T8

ATTENTION: WAYNE PICKETT

No. of samples received: 7

Sample type: Soil PROJECT #: AUMAX

SHIPMENT #: 1

Samples submitted by: W. Pickett

ET	#. Tag#	Au (g/t)	Au (02/t)	Ag (glt)	Ag (02/1)	As (%)
2	A99+102	1.79	0.052	27.6	0.81	2.22
3	A99+103	4.30	0.125		-	2.65
4	A39+104	2,86	0.086	30.9	0.99	2.74
QC/	DATA.					

Standard: STD-M

MO-VA

1.35 0.089

89.6

2.93

0.87

XLS/99

D.TECH LABORATORIES LTD.

rahk J. Pezzotti, A.Sc.T. Certified Assayer

horks All Long 97 your no sample locations may	
Au Ag Ag<	0 -2. 0 -20 0 -20
house Agizone 97 your no sample locations maps	
Au Ay Ag Ag Ag Ag Ag Ag Ag	ώ - 20; ω - 20; ω - 20; ω - 20;
AU A9 A9 A9 A9 A9 AP9 PPM 02 H5M AS SED CU PE IN COL MO BI A190 1196 F096 M9 96 Ca 96 Na 96 MN P V NI C+ Col Ba Sr Ba V W CAR99+201 30 <0.02 805 <5 6 <2 18 4 5 <5 0.10 <0.001 1.34 0.09 1.97 <0.01 225 840 3 16 165 7 25 52 <10 9 <10 <11 AR99+201 II 35 0.4 815 <5 8 <2 18 4 5 <5 0.09 <0.01 1.32 0.09 1.97 <0.01 818 650 3 17 154 6 20 47 <10 <10 <11 AR99+201 II 35 0.4 825 <5 6 <2 18 3 5 <5 0.10 <0.01 1.36 0.09 1.97 <0.01 329 900 4 17 167 6 15 46 <40 4 <10 <11 AR99+262 220 1.2 1499 <5 27 <2 12 6 3 <5 0.16 <0.01 3.68 0.32 3.96 <0.01 822 890 5 20 126 10 40 81 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	0 <20 0 <20 0 <20 0 <20 0 <20
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 420

111

.0 10 10

Aumax assays from Cross Lake Minerals Ltd. Taken by J. Miller-Tait, P.Geo.

Tel: (604) 688-5448 Fax: (604) 688-5443

E-mail: crosslak@intergate.bc.ca

September 27, 1999

Mr. Gary Polischuk Box 792 Lillooet, B.C. V0K-1V0

Gary,

The samples are very interesting, especially the 97-zone with the high silver and the one half ounce gold kick. I am sending a set of photos, assays, and a list below of the sample locations with descriptions, its amazing how computer literate or illiterate I am.

97-ZONE;

Sample #	Gold (ppb or g/t)	Silver (ppm)	Description
385776	105	12.0	T-2, W=2m. Gal, Arg, Py, Mal, Az. In qtz.
385777	55	30.6	40m below T-1. Grab bull qtz, minor Sx.
385778	15.07	65.0	T-3, W=1m. Vuggy qtz, epithermal, Py.
385779	6080	921	T-3, Grab. Vuggy qtz, Py, Gal, Mal/Az.
385780	155	65.2	T-4, W=0-0.8 N. side. Vuggy qtz, minor sx.
385781	280	4.8	T-4, W=0.8-1.6m. Stockwork qtz stringers.
385782	2160	1555	T-5, W=1.25m. Gal, Py, Mal/Az in qtz.
385783	565	770	T-11, W=1.5m. Py, Gal, Cpy banded qtz.
385784	1770	2570	T-11. Gary's grab.
385785	265	588	Halfway down road and slope at culvert. Qtz
			with same mineralogy as T-11
Average	2650.5 ppb	658.2 ppm	

At \$300 US gold and \$5/oz. US silver the average = $119 \times 1.5 \text{ CDN}$. = 178.5 CDN. /tonne

<u>98-ZONE:</u>

Sample #	Gold (ppb)	Silver (ppm)	Description
385770	170	2.2	Float grab at T-99-1. Oxid. Qtz.
385771	25	1.4	W=30 cm. At T-99-1. Mn + oxid. Vuggy qtz.
385772	105	2.0	W. side of T-99-1. Oxid. Qtz.
385773	1020	14.8	T-99-1, W=0-1.5m. Samples west – east.
385774	945	6.2	T-99-1, W=1.5 – 3.0 m.
385775	1085	9.6	Grab of red oxid. Layer with qtz frags.
Average	558	6.0	

SOIL SAMPLES:

There were three soil samples collected. Soil sample A99-301 was collected along strike to the south of the 98-zone. Sample A99-302 was collected below T-99-1. Sample A99-303 was collected down in the timber halfway between zones 97 & 98. The gold in the 98-zone is associated with arsenopyrite that is reflected in the high soil arsenic numbers. The samples A99-301 & 302 are anomalous in gold, arsenic and silver.

Cross Lake can't offer anything at this time but if you "borrow" Randy's 225 hoe I'll come and examine the Property again.

Yours truly,

CROSS LAKE MINERALS LTD.

J. Miller-Tait, P.Geo.

₩. Exploration

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: CROSS LAKE MINERALS LTD.

210 - 800 W. PENDER ST. VANCOUVER, BC V6C 2V6

Project: DUFFY Comments: ATTN: JIM MILLER - TAIT

Page Number : 1-A Total Pages : 1 Certificate Date: 16-SEP-1999 Invoice No. : 19928201 P.O. Numi

Account

nedm!		
IIIOCI		
1	:NWT	
	· LA A A 1	

	-						- 	-				CI	ERTIFI	CATE	OF A	NAL	YSIS		49928	3201	·-··	
	SAMPLE 301	_ _	PREP	Au ppb FA+AA	Ag ppm	λ1 %	As ppm	B ppm	Ва Ррш	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
A99	302 303	120	01 20: 01 20: 01 20:	6850	21.8 33.4 0.6	1.23 0.23 3.70	4160 10000 240	< 10 < 10 < 10	140 110 140	< 0.5 < 0.5 < 0.5	< 2 < 2 < 2	1.03	< 0.5 < 0.5 < 0.5	30 • 70 26	22 < 1 75	100	7.69 13.30 4.82	< 10 < 10 10	< 1 1 < 1	0.09 0.07 0.10	10 < 10 < 10	0.34 0.05 1.44
																		٠.				
										·												
					4-2-														ſ)	ممهد	

CERTIFICATION:_

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: CROSS LAKE MINERALS LTD.

210 - 800 W. PENDER ST. VANCOUVER, BC V6C 2V6

Project: DUFFY

Comments: ATTN: JIM MILLER - TAIT

Pagenber :1-B Total Pages :1 Certificate Date: 16-SEP-1999 Invoice No. :19928201 Invoice No. P.O. Number

Account

:NWT

_		1										ÇE	RTIF	CATE	OF A	NAL	/SIS	I	19928	201	
	Sample	PREP		Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	ppm ppm	S %	Sb ppm	Sc ppm	5r ppm	Ti %	Tl ppm	ngq mgq	V ppm	W ppm	Zn ppm		
A S	9 301 9 302 9 303	201 2 201 2 201 2	102 102 102	1515 3480 1050	1	0.13 < 0.01 0.07	64 59 46	620 640 750	38 14 4	0.39 0.01 0.01	44 54 < 2	14 43 9	76 81 37	0.03 0.01 0.15	< 10 < 10 < 10	< 10 < 10 < 10	41 19 102	< 10 < 10 < 10	142 142 128		
	· .																				
	·																		()	4	

14.5

CERTIFICATION:

· Z Vasc

Prospecting report

Prospector's Assistance Grant Number: 99/2000-P19

On the

Southern Gem claims and area east

Lillooet Mining Division British Columbia Canada

N.T.S. 92J/9E

Lat.50 36' N Long. 122 08' W

Property owned by Gary Polischuk and unclaimed ground.

Author: Gary Polischuk, prospector Box 792 Lillooet, B.C. VOK 1VO

> Date July 28/99

Table of contents

1.0 Introduction
1.1 Location and Access 1
1.2 Land status
1.3 Physiography 1
1.4 Exploration History 1
2.0 Geology
2.1 Regional geology4
2.2 Property geology 4
3.0 Mineralization 4
4.0 Geochemistry
4.1 Sample number legend 5
5.0 Rhodonite showings
6.0 Southern Gem rock sample descriptions 8
7.0 Statement of costs
7.1 Conclusions and recommendations
7.2 Prospecting Experience
Figure 1: Property Location
Figure 2: Claim map
Figure 3: Regional geology map6
Figure 5: Rhodonite showing map Sample locations
Figure 6: Rhodonite zone #1 sample locations11
Rock and Geochemistry assays

1.0 Introduction

This report summarizes a prospectors assistance program allocated to Downton creek in the Lillooet mining division. Prospectors assistance No. 99/2000-P19. The total area prospected will be referred to as the southern Gem area in this report.

1.1 Location and access

The area prospected under this grant was along the south facing slope of Downton creek, from the Cayoosh creek Downton creek confluence west to the eastern boundary of the Raven claim. Access to this area is gained via highway 99 south to a point 20 KM south of Lillooet, where the Downton creek logging road commences to the west. This area is located on N.T.S. mapsheet 92J/9E at latitude 50° 36' longitude 122° 8'. See Figure 1 and 2.

1.2 Land status

This particular area where prospecting took place is at present unclaimed except for two 2 post claims. The two claims here are adjoining units and are owned by Gary Polischuk. See Figure 2.

Southern Gem #1 Record #364227 Expiry date July 22/01.

Southern Gem #2 Record #364228 Expiry date July 22/01.

1.3 Phisiography

The Southern Gem area is located along a rugged rock bluffed ridge that extends up to 7,000 feet on the north edge. Rock outcrop is readily visible along the steep escarpments, but rock slides obscur most outcrops in the lower areas.

1.4 Exploration History

Mining exploration in the region began as placer mining activity in the mid 1800's, both along the Fraser river and several of its local tributaries, most notably Cayoosh creek. The placer success led to fairly extensive land-based exploration, with two past-producing mines located near the Southern Gem area.

The most recent mining activity is on the Ample Goldmax property situated 8KM to the northeast of the Southern Gem prospecting area. Since 1994 until the present time, 35 holes totaling 5400 meters has been drilled on the Ample Goldmax ground along with 2400 meters of road access.

During the spring of 1998, rhodonite float was discovered be me in a small tributary of Downton creek at the 5.4km mark. This discovery led to the staking of two 2 post mineral claims, Southern Gem #1 and Southern Gem #2. Prospecting upstream led to the discovery of two separate areas of rhodonite in place along with numerous quartz veins. See Figure 5.

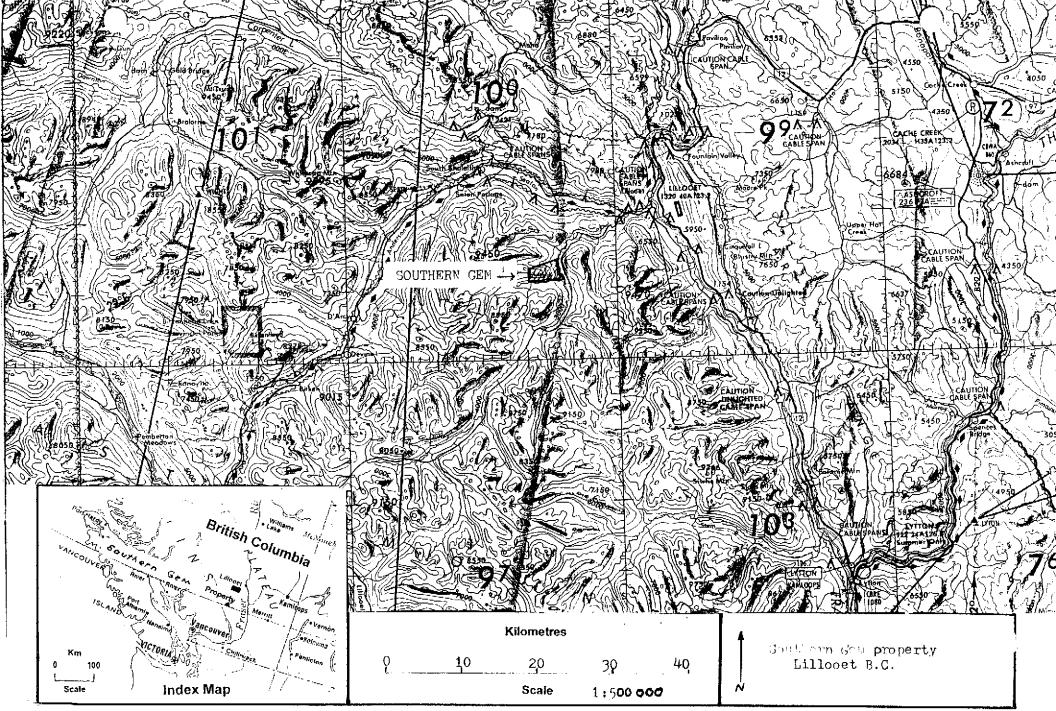
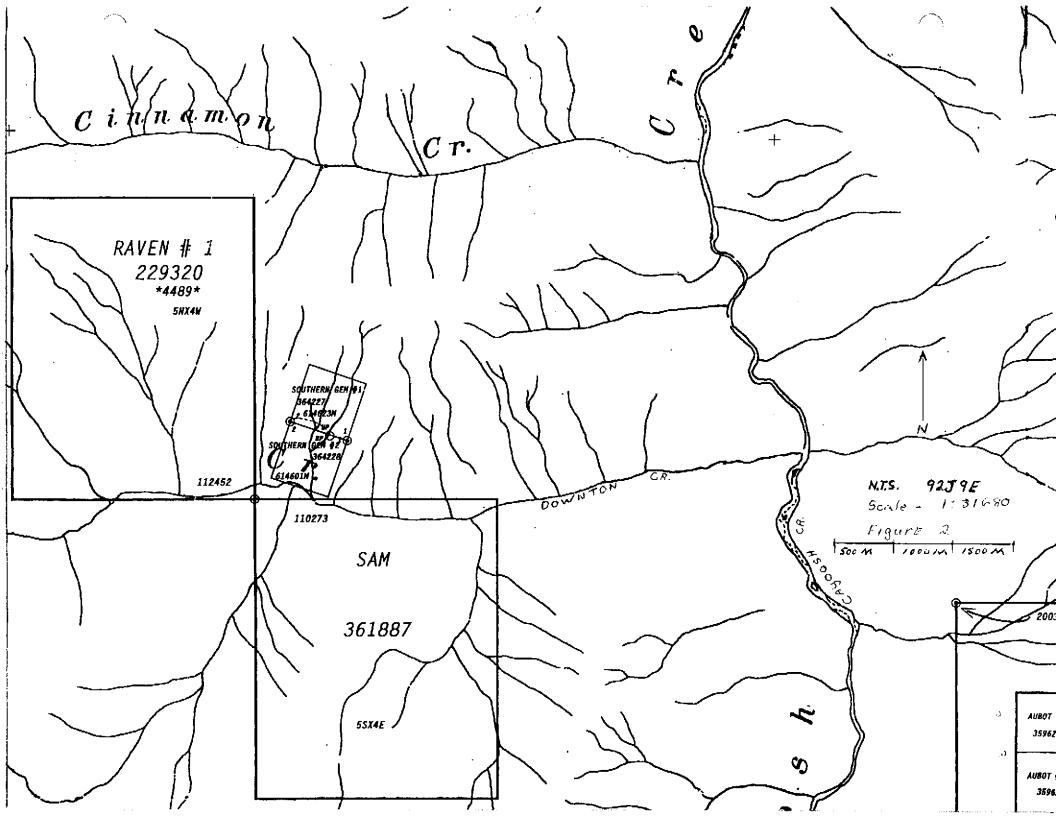



Figure 1: Property Location

2.0 Geology

2.1 Regional Geology

The regional geology of the Southern Gem area is dominated by two units, Middle Jurassic Bridge River Complex and early Cretaceous clastic sedimentary rock of Cayoosh Assemblage. The Bridge River Complex is comprised of mafic volcanic flows, chert, siltstone conglomerate, limestone, gabbro and ultramafic rocks. Rocks relating to The Cayoosh assemblage are made up of phyllite, siltstone, volcaniclastic sandstone, shale, limestone, tuff and breccia. Locally, irregular blocks of greenstone are noted here also. See Figure 3.

2.2 Property Geology

The Southern Gem prospecting area hosts a block of Bridge River Terrane, flanked on the east and west by Cayoosh assemblage. The Bridge River Terrane here is comprised of greenstone, chert with lesser amounts of phyllite and listwanite. The Cayoosh assemblage on the west flank of the Bridge River Terrane is a fine grained layered sedimentary rock, consisting of argillite, siltstone, sandstone and conglomerates. The Cayoosh assemblage on the east flank is much the same only with more limestone and chert noted along with blocks of greenstone.

The Bridge River terrane is about 3km wide with a north-south strike and a steep westerly dip. Numerous large faults trending north-south cut this complex and can be easily seen extending from the valley floor to the ridge tops on both sides of the valley. These faults also trend north-south and dip between 35 and 60 degrees to the west.

3.0 Mineralization

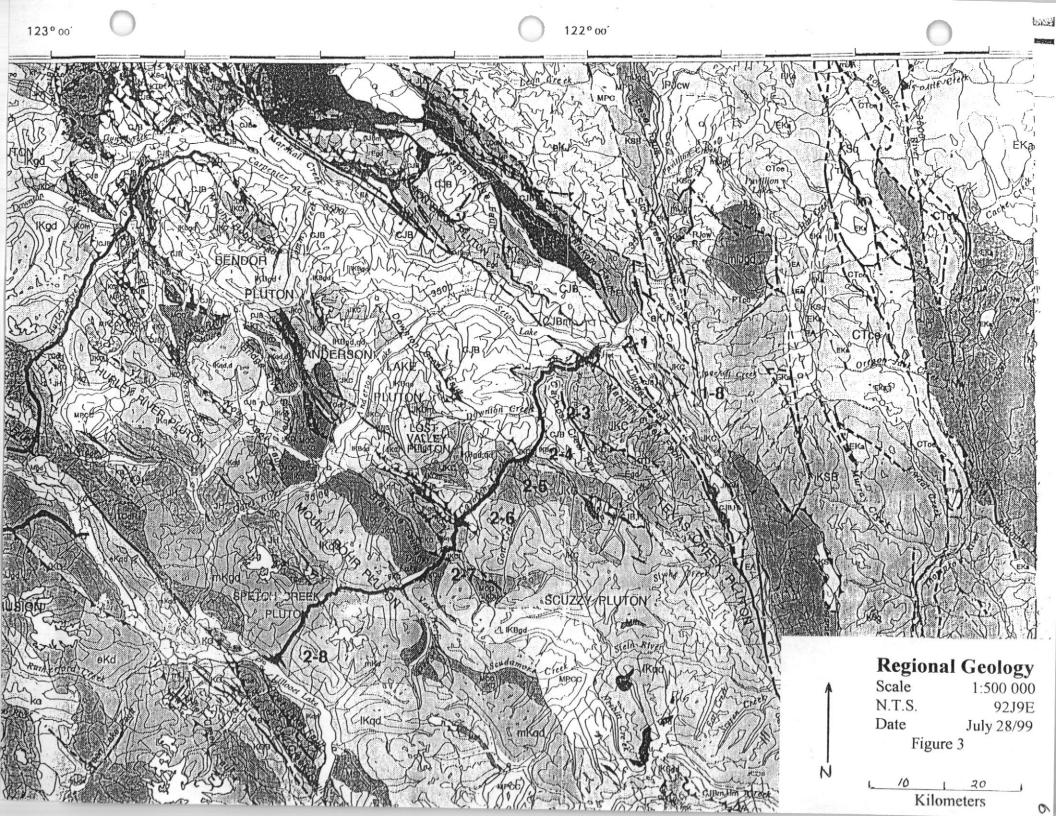
Mineralization is found in quartz veins of the structurally controlled fault zones that cut the greenstones. The quartz veins for the most part exhibit a stylolitic appearance but are irregular in shape and discontinuous in strike. Pyrite, chalcopyrite and arsenopyrite are the main sulphides found in these veins. In the area of the rhodonite showing a large north striking fault dipping 55 degrees west is followed uphill to the 4500 foot elevation. At this point an east-west cross fault is encountered. It is at this point the best grade of rhodonite is found. The rhodonite is perched on the west side of a precipitous black spire of altered greenstone that gracefully hangs over the stream used as foot access to this outcrop. Quartz veins are numerous but highly irregular and discontinuous with no discernible attitudes inspite of its abundance. The fault zone leading up to the area of the rhodonite contains many small quartz veins and lenses, but here

again they are irregular and discontinuous with less then 1% pyrite. A total of 10 rock samples and 1 soil sample were collected here. The highest assay obtained in this area was SGR+22, which carried 2.06 g/t gold taken across a six inch seam of rusty gouge found at the base of the black spire. See fig.4 sample locations map with assays following.

4.0 Geochemistry

Geochemistry in this particular area was not a useful tool in prospecting the Southern Gem. Too much material from the rock bluffs above has covered the soils that would reflect anomalous zones at the lower elevations. Only 7 soil samples were taken and all were taken near obvious mineralized outcrops. No soil samples revealed any anomalous values. All soil samples were taken from the B horizon. Four stream sediment samples were collected along with 27 rock samples. SGR+6 was found to be anomalous for silver and copper and SGR+22 was anomalous for gold, silver and arsenic with all others being around background. Samples collected were sent to Eco-Tech laboratories in Kamloops and assayed for gold along with a 30 element ICP.

4.1 Sample Number Legend


SGS+1 Stream sediment sample

SG99+1 Soil sample

SGR+1 Whole rock sample

5.0 Rhodonite Showings

Three Zones of Rhodonite have been located in the Southern Gem prospecting area, the most interesting being the Rhodonite zone #1. The Rhodonite here is colored light pink to red and is frequently cut by thin lines of dense black manganese oxide and narrow white quartz and amythst veinlets. Float Specimens of Rhodonite up to 60kg have been found in the creek bottom. No samples have been collected from this showing due to its hazardous location. The lower Rhodonite zone is located 150m below the #1 zone along a large shear. This Rhodonite is hosted by a kidny shaped zone of chert 2m wide and 6m in length. Here it is a medium pink color and is seen as small blebs and splays. The Rhodonite zone #2, is located directly above the second crossing Dowton creek, on the south facing slope. Here the Rhodonite is found in association with altered brownish greenstone and chert. This Rhodonite is seen as blebs and splays of up to 6cm wide and 14cm in length. The color is light pink to bright pink grading to yellow then black. See Figure 5.

LOWER JURASSIC to LOWER CRETACEOUS

CAYOOSH ASSEMBLAGE: undifferentiated graphitic phyllite, tuffaceous phyllite, siltstone thinly laminated siltstone/sandstone turbidite; volcaniclastic sandstone, shale; arkosic sandstone, quartzose sandstone, thinly laminated phyllitic quartzite; minor limestone, volcanic tuffs, brecciae and intermediate to mafic flows; includes rocks previously mapped as BREW GROUP, LILLOOET GROUP and, locally, RELAY MOUNTAIN GROUP

Upper Member: graphitic siltstone, shale, phyllite, arkosic sandstone, quartzose sandstone, thinly laminated phyllitic quartzite (Unit 4); thin-bedded graphitic phyllite, siltstone, volcaniclastic sandstone, and calcareous sandstone (Unit 5), locally containing Neocomian bivalves

Middle Member: thin- and thick-bedded volcaniclastic sandstone, graphitic siltstone, minor limestone (Unit 3)

Lower Member: graphitic phyllite, siltatone, thin laminated siltatone/sandstone turbidite (Unit 1); tuffaceous phyllite, minor lapilli tuff and tuff breccia (Unit 2)

Sedimentary Rock of Vedder Mountain: blocks of Upper Jurassic radiolarian chert, sandstone, basait and limestone in a matrix of graphitic argiilite and phyllite

Recommended citation:

J.M. Journeay and J.W.H. Monger

1994: Geology and crustal structure of the southern Coast and Intermontane Belts, southern Canadian Cordillera, British Columbia; Geological Survey of Canada, Open File ????, scale 1:500 000

CARBONIFEROUS to MIDDLE JURASSIC

BRIDGE RIVER COMPLEX: undifferentiated chert, pelite and mafic volcanic rocks; minor clistostromal carbonate; gabbro and associated ultramafic rocks; local mélange and talo-carbonate schist

CJBs

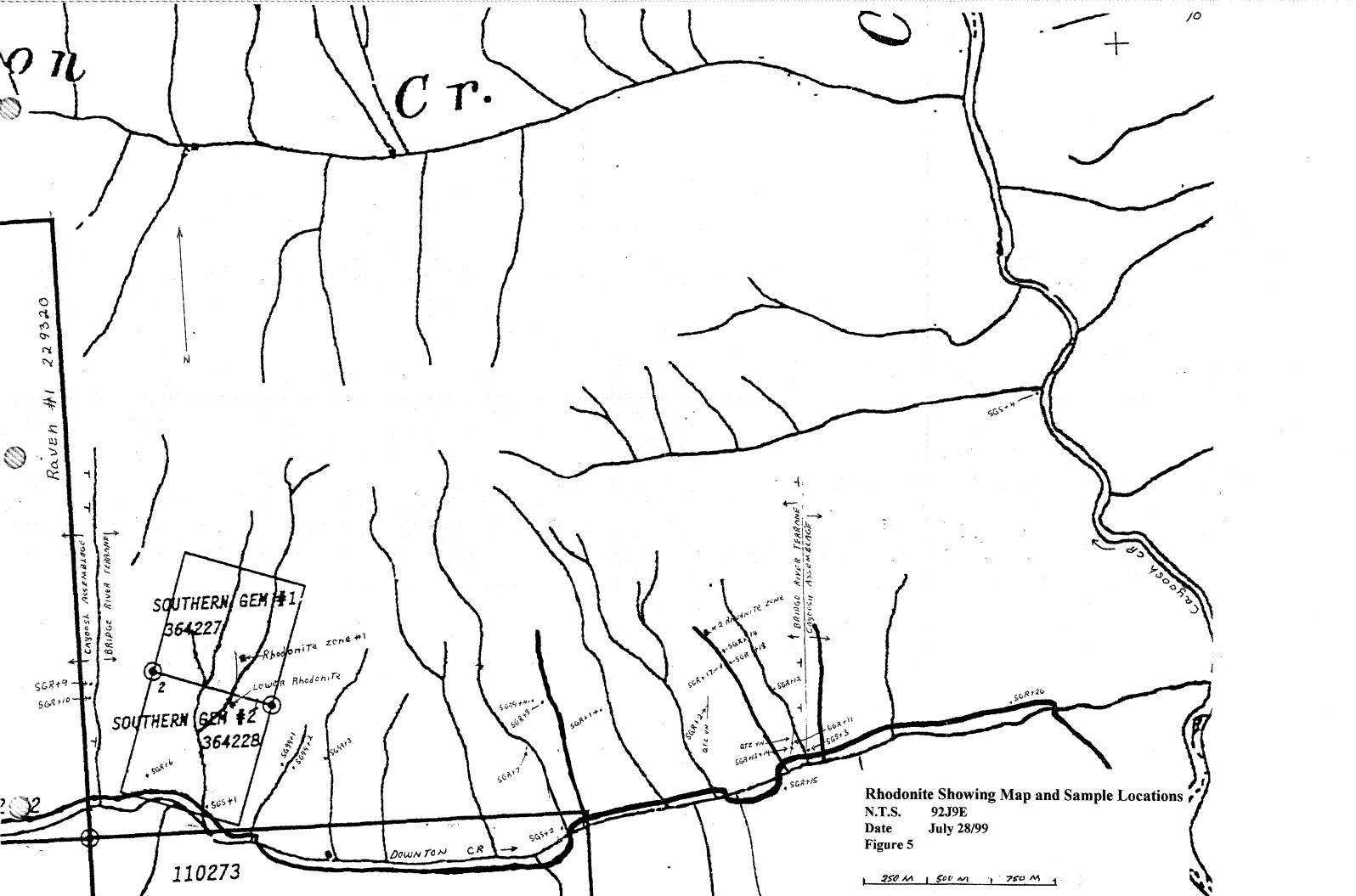
Radiolarian chert, sittstone, argillite, sandstone; minor amounts of greenstone, limestone and sementinite

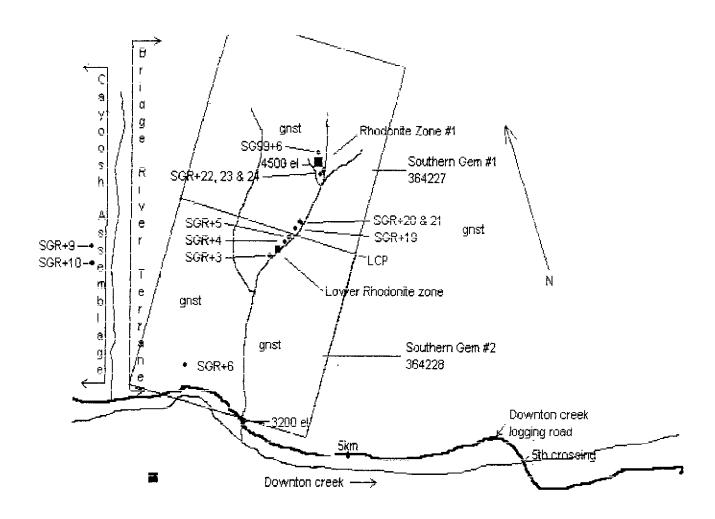
CJBg

Pillowed and massive greenstone and limestone (Lower Norian); lesser amounts of radiolarian chert, argillite, diabase, sandstone and pebbly mudstone

CJBb

Blueschist, greenschist, phyllite, metachert; also includes non-schistose pillowed and massive greenstone containing minor blue amphibole and minor limestone


CJBm


Light to dark grey phyllite, quartz phyllite, calcareous phyllite, metachert, green chlorite schist, greenstone, marble and biotite-quartz schist; metamorphosed equivalents of BRIDGE RIVER COMPLEX

6.0 Rock Sample Descriptions

- SGR+1 Float sample of qtz breccia. Sample from rusty ledge 150M up on sheer rock bluff. Altered greenstone, qtz, sericite, hem, py and aspy. Sample taken at 3600 foot elevation, directly north of fourth Crossing, Downton creek logging road.
- SGR+2 Channel sample of 2 foot qtz vein that dips west at 60 degrees Sample taken 350m east of SGR+1 at the 3500 foot elevation. Qtz, hem and <1% py.
- SGR+3 Sample is a channel across .7M from shear zone on Southern Gem #2, Sample taken at 4000 ft. Elevation. 10% qtz, <1% py and crushed greenstone.
- SGR+4 Sample taken at 4075 ft elevation, same shear as SGR+3. Grab of qtz with 1%py.
- SGR+5 Sample taken at 4175 ft elevation, same shear as SGR+3. Grab of qtz with<1%py.
- SGR+6 Sample taken from a rock slide 100M above Downton creek at the 5.6km point Downton creek logging road. Metamorphosed greenstone with qtz stringers, 2% chalcopyrite, malachite and azurite. Grab.
- SGR+7 Float sample taken above fourth crossing, Downton creek. 3500 ft elevation. Sample is similar in appearance as SGR+1 and is coming from the same rusty ledge. Altered greenstone, qtz, sericite, hem, py and aspy.
- SGR+8 Float sample taken above fourth crossing 100m east SGR+7. Sample is similar in appearance as SGR+1. Altered greenstone, qtz, sericite, hem, py and aspy.
- SGR+9 Sample taken on east boundary of Raven claim at the 3600 ft elevation. Channel across 1m of qtz with <1% py.
- SGR+10 Float sample taken 50m south of SGR+9. Qtz, hem, sericite and 1% py.
- SGR+11 Grab sample of qtz vein 50m above the 2km point, Downton creek logging road. Vein here dips 40 degrees west and about 15 degrees north. Qtz, <1%py and <1% chalcopyrite.
- SGR+12 Float sample taken at 3000 ft elevation, same draw as SGR+11. Rusty red qtz, sericite, 1% py and <1% chalcopyrite.
- SGR+13 Im channel sample taken 3m below SGR+11, same vein. Qtz, sericite, hem, py, cu and aspy.
- SGR+14 Sample is a grab of rusty red qtz, same place and description as SGR+13.

- SGR+15 Sample taken 90m from second crossing, Downton creek, on north facing slope. Grab of qtz from a large shear zone that dips at 40 degrees west, strike not determined. Vuggy qtz, sericite, hem and <1% py.
- SGR+16 Sample taken 80m below second rhodonite showing. Qtz vein .2m wide in sediments. Grab of qtz, hem and 1py.
- SGR+17 Channel across 1m taken 80m below SGR+16 at 4000 foot elevation. Numerous small qtz veins in a shear zone that dips at 20 degrees west and strikes at 330 degrees. 50 % qtz, hem and 1% py.
- SGR+18 Float sample of rhodonite taken from draw same place as SGR+17. <1%py.
- SGR+19 Sample is a 1.2m channel from same shear zone as SGR+3. Elevation 4225 feet. Black gouge, qtz, hem, sericite and 1% py.
- SGR+20 Im channel sample from same shear as SGR+3. Elevation 4250 feet. Black gouge, qtz, hem and <1% py.
- SGR+21 Sample is a grab from same shear zone as SGR+3. Elevation 4255 feet. Qtz, hem, 1% py and <1% aspy.
- SGR+22 Sample is a grab of rusty red gouge from the base of the rock spire near the rhodonite. Sampled zone is only about 10cm wide and 3m in length. 4500 ft elevation.
- SGR+23 Im channel sample of qtz vein that adjoins the footwall side of SGR+22. Qtz, hem, sericite and <1% py. 4500 ft elevation.
- SGR+24 1m channel sample of qtz vein that adjoins the footwall side of SGR+23. Qtz, hem, sericite and <1% py. 4500 ft elevation.
- SGR+25 Sample is a channel across 1m of qtz vein taken 5m north of SGR+22. Qtz, hem, 1py and <1% aspy. 4500 ft elevation.
 - SGR+26 Sample of float qtz taken at 1km along Downton creek logging road. Vuggy qtz, 2%aspy and 1%py.

Southern Gem #1 and #2 Sample Locations

750 M

N.T.S.

92J9E

Date

July 28/99

Figure 6

250 m , 500m ,

7.1 Conclusions and Recommendations

A total of 15 days were spent by me in prospecting the Southern Gem area during the 1999 season. Rhodonite was noted in three different locations including the Rhodonite zone #1. Assaying of the samples collected for precious metals were disappointing with Au <35ppb the norm. Three whole rock samples gathered at the base of the Rhodonite zone #1 were anomalous for gold and silver, the higest being SGR+22 carrying 2.06g/t gold and 19.2 ppm silver across 8cm.

With the amount of effort put in here and such low assay returns I cannot recommend any further work in this particular area. Efforts could be rewarded by prospecting these fault systems north toward the Ample Goldmax where gold bearing structures are noted.

Note: on July 26/99, I phoned Mike Cathro the regional geologist and related to him about the low assay values. During this discussion, it was aggreed that I should spend more time prospecting the other the other area covered by my prospectors assistance grant.

7.2 Prospecting Experience

I have been a prospector for 20+ years with most of my prospecting experience in the Lillooet mining district. Approx., 30% of my time spent prospecting in the last 5 years has been for mining companies such as; Bralorne Pioneer mines, Homestake Canada and Gold Ore Resources Ltd. I have taken one geology course, but most of my geological knowledge comes from practical work with geologists in the field.

Sary Tolischuk

Geological analysis and assay certificates

Samples collected by Gary Polischuk

13-Jul-99

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4 ICP CERTIFICATE OF ANALYSIS AK 99-196

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0

Phone: 604-573-5700 Fax : 604-573-4557

ATTENTION: GARY POLISCHUK

No. of samples received: 25

Sample type: Rock

PROJECT #: SOUTHERN GEM

SHIPMENT #: 2

Samples submitted by: G. Polischuk

Values in ppm unless otherwise reported

	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr Ti%	U	٧	w	Υ	Zn
	20	0.4	0.40	210	15	15	7.18	<1	18	35	7	4.25	<10	1.29	889	4 0.04	24	8180	<2	10	<20		<10	15		56	28
	<5	0.4	0.22	10	<5	<5	0.69	<1	4	114	32	0.99	<10	0.18	426	3 < 0.01	14	130	2	<5				. •			16
	<5	<0.2	2.47	10	50	5	1.52	<1	38	114	111	5.84	20	1.71	1500	8 <0.01	87	530	12	-			. –	•		•	168
	. 5	0.4	0.77	5	15	<5	4.27	<1	9	126	72	2.80	10	0.62	1323	6 < 0.01	20	340	6	_			_		=		45
SGR + 5	5	0.4	0.39	<5	15	<5	4.53	<1	6	126	37	0.95	<10	0.27	995	4 <0.01	21	110	4	<5	<20	341 <0.01	<10	10	<10	12	46
SGR + 6	35	5.4	0.12	≺ 5	60	< 5	0.35	<1	9	101	5174	2.16	<10	0.07	435	12 <0.01	11	<10	6	<5	<20	16 <0.01	<10	3	e10	<i>~</i> 1	19
SGR + 7	10	0.4	0.46	110	20	5	4.76	<1	4	32	19	2.84	<10	0.54	673		<1		_					_		•	18
SGR + 8	5	<0.2	0.97	5	15	10	>10	<1	16	49	77	3.02	<10		799		7		_	•						•	34
SGR + 9	5	1.0	0.20	<5	25	<5	1.87	<1	4	145	32	0.94	<10	0.19	4301		12		-	_				-		7	18
SGR + 10	5	0.2	0.03	<5	<5	<5	>10	<1	<1	71	3	0.47			526		<1		•	_				-	-	10	10 <1
																			_	•		1125 (0.01	-10	7	-10	12	~1
SGR + 11	10	0.6	0.32	5	40	<5	0.25	· <1	4	141	41	0.93	<10	0.27	450	1 <0.01	13	170	6	<5	<20	9 <0.01	<10	6	· <10	<i>~</i> 1	9
		0.2	0.07	<5	<5	<5	0.21	<1	<1	128	7	0.35	<10	0.07	138	7 < 0.01	2							_			4
SGR + 13	10	9.8	0.26	<5	45	<5	0.06	<1	4	218	38	0.96	<10	0.15	141	2 < 0.01	14	210	4	-				7			11
		0.6	0.78	20	65	<5	0.14	<1	10	160	116	2.70	<10	0.34	224	20 < 0.01	30	470	12	_				31		•	49
SGR + 15	<5	0.8	0.11	<5	30	<5	0.39	<1	4	169	17	0.75	<10	0.02	404		18			_				- :		•	15
																			_	•		0 .0.01	-10	-	~10	J	13
SGR + 16	5	0.2	0.44	<5	40	<5	<0.01	<1	9	121	38	1.17	<10	0.17	153	8 < 0.01	26	280	4	<5	<20	<1 <0.01	<10	10	<10	e 1	25
SGR + 17	5	0.4	0.97	<5	75	<5	0.22	<1	18	129	119	2.08			436				-	-					. –	•	58
SGR + 18	5	9.0	0.05	20	<5	<5	2.76	<1	12	89	106	0.24	<10	0.05	<1				-				_	_		•	70
SGR + 19	5.	0.6	0.91	20	35	<5	2.38	3.	15	135	94	3.24			1376					_				-		•	100
SGR + 20	5	<0.2	1.23	<5	25	<5	2.10	1	17	144	59	3.28				9 <0.01	33	340	4	5	<20		<10			∠1 <1	168 70
	SGR + 1 SGR + 2 SGR + 3 SGR + 4 SGR + 5 SGR + 6 SGR + 7 SGR + 8 SGR + 9 SGR + 10 SGR + 11 SGR + 12 SGR + 13 SGR + 14 SGR + 15 SGR + 16 SGR + 17 SGR + 18 SGR + 18 SGR + 19	SGR + 1 20 SGR + 2 <5 SGR + 3 <5 SGR + 4 5 SGR + 5 5 SGR + 6 35 SGR + 7 10 SGR + 8 5 SGR + 9 5 SGR + 10 5 SGR + 11 10 SGR + 12 5 SGR + 13 10 SGR + 14 20 SGR + 14 20 SGR + 15 <5 SGR + 16 5 SGR + 17 5 SGR + 18 5 SGR + 18 5 SGR + 19 5	SGR + 1 20 0.4 SGR + 2 <5	SGR + 1 20 0.4 0.40 SGR + 2 <5	SGR + 1 20 0.4 0.40 210 SGR + 2 <5	SGR + 1 20 0.4 0.40 210 15 SGR + 2 <5	SGR + 1 20 0.4 0.40 210 15 15 SGR + 2 <5 0.4 0.22 10 <5 <5 SGR + 3 <5 <0.2 2.47 10 50 5 SGR + 4 <5 0.4 0.77 <5 15 <5 SGR + 5 <5 0.4 0.39 <5 15 <5 SGR + 6 35 5.4 0.12 <5 60 <5 SGR + 7 10 0.4 0.46 110 20 5 SGR + 8 <5 <0.2 0.97 <5 15 10 SGR + 9 <5 1.0 0.20 <5 25 <5 SGR + 10 <5 0.2 0.03 <5 <5 <5 SGR + 11 10 0.6 0.32 <5 <5 <5 SGR + 13 10 0.8 0.26 <5 <5 <5 SGR + 14	SGR + 1 20 0.4 0.40 210 15 7.18 SGR + 2 <5 0.4 0.22 10 <5 <5 0.69 SGR + 3 <5 <0.2 2.47 10 50 <5 1.52 SGR + 4 <5 0.4 0.77 <5 15 <5 4.27 SGR + 5 <5 0.4 0.39 <5 15 <5 4.27 SGR + 5 <5 0.4 0.39 <5 15 <5 4.27 SGR + 5 <5 0.4 0.39 <5 15 <5 4.27 SGR + 6 35 5.4 0.12 <5 60 <5 0.35 SGR + 7 10 0.4 0.46 110 20 5 4.76 SGR + 8 <5 <0.2 0.97 <5 15 10 >10 SGR + 9 <5 1.0 0.20 <5 25 <5 >10	SGR + 1 20 0.4 0.40 210 15 15 7.18 <1 SGR + 2 <5	SGR + 1	SGR + 1 20 0.4 0.40 210 15 15 7.18 <1	SGR + 1 20 0.4 0.40 210 15 15 7.18 <1	SGR + 1 20 0.4 0.40 210 15 15 7.18 <1 18 35 7 4.25 SGR + 2 <5	SGR + 1 20 0.4 0.40 210 15 15 7.18 <1 18 35 7 4.25 <10 SGR + 2 <5 0.4 0.22 10 <5 <5 0.69 <1 4 114 32 0.99 <10 SGR + 3 <5 <0.2 2.47 10 50 5 1.52 <1 38 114 111 5.84 20 SGR + 4 5 0.4 0.77 5 15 <5 4.27 <1 9 126 72 2.80 <10 SGR + 5 5 0.4 0.39 <5 15 <5 4.27 <1 9 126 72 2.80 <10 SGR + 5 5 0.4 0.39 <5 15 <5 4.27 <1 9 126 72 2.80 <10 SGR + 6 35 5.4 0.12 <5 60 <5 0.35 <1 9 101 5174 2.16 <10 SGR + 7 10 </td <td>SGR+1 20 0.4 0.40 210 15 15 7.18 <1 18 35 7 4.25 <10 1.29 SGR+2 <5 0.4 0.22 10 <5 <5 0.69 <1 4 114 32 0.99 <10 0.18 SGR+3 <5 <0.2 2.47 10 50 5 1.52 <1 38 114 111 5.84 20 1.71 SGR+4 <5 0.4 0.77 <5 15 <5 4.27 <1 9 126 72 2.80 <10 0.62 SGR+5 <5 0.4 0.39 <5 15 <5 4.27 <1 9 126 72 2.80 <10 0.62 SGR+5 <5 0.4 0.39 <5 15 <5 4.27 <1 9 126 72 2.80 <10 0.62 SGR+6 <35 5.4 0.12 <5 60 <5 0.35 <1 9 101</td> <td>SGR + 1 20 0.4 0.40 210 15 7.18 <1 18 35 7 4.25 <10 1.29 889 SGR + 2 <5</td> 0.4 0.22 10 <5	SGR+1 20 0.4 0.40 210 15 15 7.18 <1 18 35 7 4.25 <10 1.29 SGR+2 <5 0.4 0.22 10 <5 <5 0.69 <1 4 114 32 0.99 <10 0.18 SGR+3 <5 <0.2 2.47 10 50 5 1.52 <1 38 114 111 5.84 20 1.71 SGR+4 <5 0.4 0.77 <5 15 <5 4.27 <1 9 126 72 2.80 <10 0.62 SGR+5 <5 0.4 0.39 <5 15 <5 4.27 <1 9 126 72 2.80 <10 0.62 SGR+5 <5 0.4 0.39 <5 15 <5 4.27 <1 9 126 72 2.80 <10 0.62 SGR+6 <35 5.4 0.12 <5 60 <5 0.35 <1 9 101	SGR + 1 20 0.4 0.40 210 15 7.18 <1 18 35 7 4.25 <10 1.29 889 SGR + 2 <5	SGR + 1	SGR +1	SGR+1 20 0.4 0.40 210 15 15 7.18 <1 18 35 7 4.25 <10 1.29 889 4 0.04 24 8180 <2 10 <20 285 <0.01	SGR+1 20 0.4 0.40 210 15 15 7.18 <1 18 35 7 4.25 <10 1.29 889 4 0.04 24 8180 <2 10 <20 285 <0.01 <10 <10 <10 <10 <10 <10 <10 <10 <10 <	SGR + 1	SGR + 1	SGR + 1				

Et :		Au(ppb)	Ag	Al %	As	Ва	Bi	Ca %	Cd	Co	Сг	Cu	Fe %	La Mg %	Mn	Mo Na	%N	li_	P P	b Sb	Sr	S	r Ti%	U	٧	W	Υ	Zn
21		5	0.4	0.18	<5	<5	<5	2.51	<1	2	141	11	0.68	<10 0.1	3 565	<1 0.0)2	7 65	70	8 <5	<20	16	3 < 0.01	<10	5	<10	71	3
22			19.2	0.12	3475	220	50	0.27	19	125	74	188	>10	60 < 0.0	492	74 <0.0	1 14	6 13	30 14	4 <5	· <20	7	8 0.02	10	62	<10	<1	54
23			3.6	0.84	530	160	5	0.19	5	23	131	280	>10	30 0.2	1227	20 <0.0	1 3	6 3	10 3	6 <5	<20	3	2 0.03	<10	70	<10	<1	66
24			0.4	0.65	30	65	5	0.30	<1	7	129	57	2.68	10 0.3	7 1187	2 <0.0)1 1	9 2	70	8 <5			1 0.03	<10	23	<10	1	28
25	SGR + 25	165	2.6	0.10	520	90	10	0.10	5	6	123	80	6.05	10 <0.0	226	16 <0.0)1	6 3:		6 <5	<20)	8 <0.01	<10	16	<10	<1	20
20	DATA:																											
_																												
Resi																												
1	SGR + 1	20	0.2	0.38	190	15	10	6.75	1	18	31	7	3.99	10 1.2	5 805	4 0.0	04 2	3 77	40 <	:2 5	<20	25	8 <0.01	<10	14	<10	53	26
Rep	eat:																											
1	SGR + 1	25	0.2	0.40	190	20	10	7.60	2	18	37	7	4.22	10 1.3	3 881	4 0.0)4 2	3 84	3O <	:2 10	<20	31	3 <0.01	<10	15	<10	60	28
10	SGR + 10	5	0.2	0.02	. <5	<5	<5	>10	<1	<1	65	2		<10 0.0		2 0.0				2 5			0 <0.01	<10	3	<10	10	20 <1
٠.																							. 3		•	,.		
GEC GEC	idard: 0'99	110	1.2	1.76	60	145	<5	1.87	<1	18	66	82	3.88	<10 0.9	670	<1 0.0	02 2	3 7:	20 2	22 10	<20) 5	8 0.09	<10	77	<10	7	64

df/192 XLS/99 ECO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

ECO-TECH LABORATORIES LTD.

10041 East Trans Canada Highway

ICP CERTIFICATE OF ANALYSIS AK 99-197

GARY POLISCHUK BOX 792 LILLOOET, BC V0K 1V0

Phone: 604-573-5700 Fax : 604-573-4557

KAMLOOPS, B.C.

V2C 6T4

ATTENTION: GARY POLISCHUK

No. of samples received: 7

Sample type: Soil

PROJECT #: SOUTHERN GEM

SHIPMENT #: 2

Samples submitted by: G. Polischuk

Values in ppm unless otherwise reported

ELH		Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	V	W	Υ	Zn
1	SGS + 1	20	0.6	1.64	30	70	<5	1.63	1	29	51	127	5.31	<10	1.18	1602	8 <0.01	79	660	12	<5	<20	61	0.07	<10	56	<10	9	120
2	SG99 +1	25	0.2	3.44	65	75	<5	0.69	2	62	123	318	8.21	<10	2.19	1275	6 < 0.01	112	330	14	10	<20	21	0.14	<10	88	<10	13	149
3	\$G99 +2	<5	0.4	3.39	110	115	<5	0.63	1	71	151	244.	8.77	<10	1.60	1036	6 < 0.01	140	380	8	.<5	<20	29	0.05	<10	95	<10	5	130
4	SG99 +3	<5	0.6	2.59	40	120	<5	0.73	1	47	89	200	6.63	<10	1.14	1249	7 0.01	113	590	12	<5	<20	42	0.06	<10	64	<10	6	128
5	SG99 +4	5	0.6	3.46	25	90	<5	5.44	2	44	76	230	7.56	<10	1.87	864	5 < 0.01	66	480	<2	<5	<20	75	0.08	<10	104	<10	31	84
6	\$G99 +5	15	0.4	2.60	25	195	<5	0.66	2	32	55	195	6.80	10	1.51	1323	8 < 0.01	77	310	16	<5	<20	47	0.13	<10	73	<10	20	126
7	SG99 +6	<5	1.8	3.29	105	210	<5	1.60	3	93	133	270	8.39	<10	2.64	9724	12 < 0.01	220	480	4	5	<20	72	0.03	<10	123	<10	<1	112
<u>oc r</u>	AIA:																												
Rep e	eat: SGS + 1	<5	0.6	1.63	25	70	<5	1.58	2	30	50	127	5.19	<10	1.17	1648	8 <0.01	77	670	12	5	<20	59	0.07	<10	56	<10	10	116
Stan GEO	dard: '99	130	1.4	1.80	65	145	<5	1.85	<1	18	63	75	3.76	<10	0.97	690	<1 0.02	23	690	20	<5	<20	56	0.11	<10	72	<10	8	69

df/184 XLS/99 ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T B.C. Certified Assayer

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ASSAY AK 99-196

GARY POLISCHUK BOX 792 LILLOOET, BC

14-Jul-99

V0K 1V0

ATTENTION: GARY POLISCHUK

No. of samples received: 25

Sample type: Rock

PROJECT #: SOUTHERN GEM

SHIPMENT #: 2

Samples submitted by: G. Polischuk

		Au	Au	
ET#.	Tag #	(g/t)	(oz/t)	
22 6	GR + 22	2.06	0.060	

QC/DATA:

Repeat:

22 SGR + 22

0.066

Standard:

STD-M

1.47

2.25

0.043

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

ICP CERTIFICATE OF ANALYSIS AK 99-234

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700

Fax : 604-573-4557

ATTENTION: GARY POLISCHUK

No. of samples received: 6 Sample type: Soil

PROJECT #: AUMAX SHIPMENT #: 3

GARY POLISCHUK

BOX 792

V0K 1V0

LILLOOET, BC

Samples submitted by: G. Polischuk

Values in ppm unless otherwise reported

	lu(ppb)	Ag	AI%	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr Ti%	U	٧	W	Y	Zn
1≻ A-00+5			2.12	800	205	<5	0.33	5	41	40	211	9.65	30	0.53	2149	17 <0.01	100	1140	14	<5	<20	25 <0.01	<10	64	<10	19	251
2 - ~A-99+0			2.30	- 1100	190	<5	0.29	3	37	36	172	8.33	30	0.58	2909	15 0.01	91	2250	12	<5	<20	26 0.01	<10	54	<10	47	230
3 A-99+7	≥1000 .			-10000	. 135	<5	0.13	33	52	<1	165	9.78	20	<0.01	2673	10 <0.01	58	710	12	10	<20	17 <0.01	<10	11	<10	38	178
-4 A-99+8			0.88	-1020	235	<5	0.55	5	38	15	214	8.66	30	0.09	3486	14 <0.01	94	1090	10	<5	<20	17 < 0.01	<10	34	<10	107	208
5 A=99+9			0.79	299 5	90	<5	0.11	8	52	14	183	7.84	20	0.13	576	15 <0.01	119	600	12	5	<20	5 < 0.01	<10	27	<10	<1	287
6 SG99+7	10	<0.2	2.59	155	130	<5	0.30	<1	38	83	141	6.50	20	1.22	870	6 <0.01	108	670	8	<5	<20	31 0.06	<10	70	<10	21	143
QC DATA:																											
Repeat: 1 A-99+5	405	1.4	2.12	795	195	<5	0.32	4	41	40	213	9.58	30	0.53	2144	17 <0.01	103	1130	16	<5	<20	21 <0.01	<10	64	<10	20	248
Standard: GEO'99	135	1.0	1.81	65	155	<5	1.86	<1	19	60	80	3.75	<10	0.94	702	<1 0.02	24	720	18	10	<20	59 0.11	<10	78	<10	9	76

df/235 XLS/99 ECD-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway

ICP CERTIFICATE OF ANALYSIS AK 99-303

GARY POLISCHUK BOX 792 LILLOOET, BC VOK 1V0

Phone: 604-573-5700 Fax : 604-573-4557

KAMLOOPS, B.C.

V2C 6T4

ATTENTION: GARY POLISCHUK

No. of samples received: 3 Sample type: STREAM PROJECT #: AUMAX SHIPMENT #: 4

Samples submitted by: G. POLISCHUK

Values in ppm unless otherwise reported

Et #.	Tag#	Au(ppb)	<u>Ag</u>	Al %	As	Ba	Bi Ca ?	6 Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Р	РЬ	Sb	Sn	Sr	Ti %	u	V	w	Y	Zn
1	SGS+2	20	<0.2	2.60	55	85	10 4.5	8 <1	47	57	160	6.07	<10	1.80	1485	<1	0.01	71	1150	10	10	<20	102	0.22	<10	84	<10	34	118
2	SGS+3	35	<0.2	2.47	50	85	<5 2.4	9 <1	42	61	171	6.03	20	1.71	1379	5	<0.01	82	1150	16	10	<20	74	0.15	<10	75	<10	36	143
3	SGS+4	10	<0.2	1.46	5	50	10 9.9	8 <1	22	31	57	3.13	<10	1.23	699		<0.01	33	1090	4	10	<20	150	0.19	<10	58	<10	19	61
QC DA	ATA:																												
Repea 1	<i>t:</i> SGS+2	10	<0.2	2.51	60	75	< 5 4.5	2 2	46	56	154	5.96	<10	1.74	1462	<1	0.01	69	1140	12	15	<20	96	0.22	<10	82	<10	32	119
Standa GEO'9		125	1.0	1.77	65	160	<5 1.8	3 <1	19	64	88	3.65	<10	0.94	679	<1	0.03	20	680	24	5	<20	70	0.12	<10	81	<10	7	69

df/302 - XLS/99 Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer