BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1999/2000REPORT #:PAP 99-15NAME:ARND BURGERT

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGR PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

- One technical report to be completed for each project area. •
- Refer to Program Requirements/Regulations 15 to 17, page 6. •
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the • supporting data (see section 16) required with this TECHNICAL REPORT.

Name Arnd Burgert Re	ference Number <u>99/2000</u> -P35
LOCATION/COMMODITIES	,
Project Area (as listed in Part A) Sunshine Coast M	INFILE No. if applicable
Location of Project Area NTS 92K1 Lat 5	0"11 N Long 124° 10 W
Description of Location and Access Access was via Ge	oat Loke Mainline and
helicopter except Torget E which was	s accessed by boat
on Fought Lake: Main Commodities Searched For Cu. Pla Zin Ac Au	
Known Mineral Occurrences in Project Area <u>Humminghird</u> , D.	adem
WORK PERFORMED	
1. Conventional Prospecting (area) 260 ha	
2. Geological Mapping (hectares/scale) Sha at 1:1500; 1	30ha at 1:10000
3. Geochemical (type and no. of samples) 3/9 Scit Sanples;	38 rick samples
4. Geophysical (type and line km)	
5. Physical Work (type and amount)	
6. Drilling (no. holes, size, depth in m, total m)	
7. Other (specify)	
SIGNIELCANT DESLITE	
Commodities C.C. Ph Zip Ag AL Claim Name	Lorax 1
Location (show on map) Lat. 50° 10.9 N Long 128° 18.0	W Elevation 5250
Best assay/sample type Schohide snecimens returned int	lak values of
1.90% Pb, 7.38% Zn, 2119/6 Ag, 2590 pb A	U, 7110ppmCu
Description of mineralization, host rocks, anomalies Two lenses	of massive sclubides
are hosted by a metamorphic roof,	cendant of Gampier
Group rocks. A soil geochemistry grid	indicates anomalies
For the base metals and silver.	
	······································
Supporting data must be submitted with this TECHNICAL REI	PORT

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

NOV 0 8 1999 PROSPECTORS PROGRAM

MEMPR

臣

Î

匠 (C

ASSESSMENT REPORT

describing

PROSPECTING, MAPPING AND GEOCHEMICAL SURVEYS

on the

LORAX MINERAL GROUP

Latitude 50° 11'N; Longitude 124° 18'W

٠,

NTS 92K/1

in the

VANCOUVER MINING DIVISION

BRITISH COLUMBIA

ARND BURGERT OCTOBER 21, 1999

TABLE OF CONTENTS

PAG	Е
TRODUCTION	1
OPERTY, LOCATION AND ACCESS	2
OMORPHOLOGY	5
GIONAL GEOLOGY	6
GIONAL MINERALIZATION	8
GIONAL GEOCHEMISTRY	9
GIONAL GEOPHYSICS	9
OPERTY GEOLOGY	0
OPERTY MINERALIZATION 1	4
OPERTY GEOCHEMISTRY 1	7
NCLUSIONS AND RECOMMENDATIONS	9
FERENCES	0

FIGURES

NO.	DESCRIPTION P	AGE
1	PROPERTY LOCATION	3
2	CLAIM LOCATION	4
3	REGIONAL GEOLOGY	7
4	PROPERTY GEOLOGY	. 11
5	1999 SHOWING	.16
6	REGIONAL SOIL GEOCHEMISTRY HISTOGRAMS	.18
7	SOIL SAMPLE LOCATIONS	.20
8	COPPER SOIL GEOCHEMISTRY	.21
9	LEAD SOIL GEOCHEMISTRY	. 22
10	ZINC SOIL GEOCHEMISTRY	.23
11	SILVER SOIL GEOCHEMISTRY	.24
12	COBALT SOIL GEOCHEMISTRY	.25
13	BARIUM SOIL GEOCHEMISTRY	.26
14	ARSENIC SOIL GEOCHEMISTRY	. 27

APPENDICES

APPENDIX	
TATEMENT OF QUALIFICATIONS I	AUTHOR'S STATEMENT OF
ES OF ASSAYII	CERTIFICATES OF ASSAY
INERALIZATION IV	REGIONAL MINERALIZATI

INTRODUCTION

The Lorax mineral property was staked during October, 1998, to protect a previously unstaked zinc-copper-silver sulphide lens that was discovered by prospecting during September, 1998. Eleven claims aggregating thirty units were staked. Follow-up work resulted in the discovery of a second, thicker lens which contains ore grade concentrations of copper, lead, zinc, silver and gold. Both showings are hosted by metamorphic rocks of the Gambier Group.

Gambier Group rocks host the Britannia deposit on Howe Sound as well as the Northair deposit near Whistler, BC. In the Powell River region, uneconomic base metals occurrences lying within the Gambier Group include the Mt. Diadem workings overlooking Jervis Inlet and the Hummingbird past producer on Goat Island in Powell Lake. However, no previous work was recorded on ground covered by the Lorax claims, and no evidence of previous prospecting was observed in the field.

Field exploration was conducted from a helicopter-supported fly camp located near the centre of the property. All work was conducted personally by the author, whose Statement of Qualifications appears in Appendix I.

CLAIMS, LOCATION AND ACCESS

The property is located in southwest British Columbia at latitude 50°10.9'N and longitude 124° 18.0'W on NTS map sheet 92K/1 (Figure 1). It comprises one four-post and ten contiguous two-post mineral claims (Figure 2) registered with the Vancouver Mining Recorder in the name of Arnd Burgert. All eleven claims are grouped, and claim registration data is listed below.

Claim N	ame	Claim	Туре	Tenure Number	Expi	Expiry D	
Lorax	1	Four	Post	366446	Oct.	21,	2001
Lorax	2	Two	Post	366447	Oct.	20,	2001
Lorax	3	Two	Post	366448	Oct.	20,	2001
Lorax	4	Two	Post	366449	Oct.	20,	2001
Lorax	5	Two	Post	366450	Oct.	20,	2001
Lorax	6	Two	Post	366451	Oct.	20,	2001
Lorax	7	Two	Post	366452	Oct.	21,	2001
Lorax	8	Two	Post	366453	Oct.	21,	2001
Lorax	9	Two	Post	366454	Oct.	21,	2001
Lorax	10	Two	Post	366455	Oct.	21,	2001
Lorax	11	Two	Post	366456	Oct.	21,	2001

*If credit for all work described in this report is granted.

In 1999, work was conducted from a helicopter-supported flycamp, which was located near the centre of the property on the Lorax 1 claim. Work consisted of geologic mapping, prospecting and soil sampling.

 \langle

GEOMORPHOLOGY

The Lorax property is situated in mountainous terrain of the Coast Ranges. Topography is steep, with slopes of typically 20° to 50°, and elevations ranging from 800m to 2091m. Impassable cliffs are common.

Streams draining the eastern part of the property flow eastward into a tributary of the Eldred River, while those draining the western part flow west into Powell Lake.

Vegetation on the valley floor consists of very thick growths of alder and salmonberry, and on the lower slopes consists of mature stands of old growth fir, douglas fir, western red cedar and hemlock interspersed with dense patches of alder, willow, buckbrush and salmonberry. These give way to old growth yellow cedar scrub above 1070m. Above 1370m, scattered buckbrush, dwarf balsam, moss and grasses dominate, while steep talus slopes and cliffs are vegetated only by lichen.

REGIONAL GEOLOGY

The Lorax Property lies within steeply dipping blocks, or pendants, of metasedimentary and metavolcanic rocks that lie engulfed in the main mass of the Coast Plutonic Complex (Figure 3). Pendants of Gambier Group, named for their type locality on Gambier Island in Howe Sound, were the focus of this project's exploration. They extend discontinuously from North Vancouver in the southeast to north of Loughborough Inlet in the northwest.

These pendants are thought to represent fault slices along which plutonic rock was thrust upwards (Roddick, 1976). The bounding shear zones in places still exist, and in many places are flanked by diorite. The dioritic rocks may represent remnants of a primitive granitoid basement upon which sedimentary and volcanic rocks were deposited.

The metamorphic rocks have undergone burial and subsequent deformation, probably in response to compressive forces transmitted through the North America Plate against oceanic crust. With the eventual onset of subduction, plutonic masses, formed during the compressive stage, began their movement upwards bounded by synplutonic faults.

REGIONAL MINERALIZATION

Regional mineralization is described in seperately bound Appendix IV.

REGIONAL GEOCHEMISTRY

A regional stream sediment survey published by the Geological Survey in 1988 indicates geochemical anomalies in streams that drain the Lorax property. The anomalies are summarized in the following table.

stream(s) weakly	<pre>stream(s) moderately</pre>
anomalous for	anomalous for
As	Cu, Zn, Pb, Ba, Co, Mo

REGIONAL GEOPHYSICS

In 1988, the Geological Survey published an airborne magnetometer survey as a series of 1:250,000 and 1:50,000 scale maps.

The Lorax property is located in a zone of relatively low magnetic gradient, increasing to the south. The magnetic signature in the area appears to be largely controlled by topography.

PROPERTY GEOLOGY

The Lorax property covers a large part of a pendant of metamorphic rocks of upper Triassic Karmutsen Group and lower Cretaceous Gambier Group (Figure 3). The area appears on a regional scale geology map published by the Geological Survey in 1976. Rocks mapped include low grade metamorphic rocks derived from volcanic and sedimentary sources.

The area on the ridge top near the sulphide showings was mapped in detail during 1999 (Figure 4). The easternmost rock mapped is **bedded quartzite** with interbeds of argillaceous quartzite. The beds, which vary in thickness from 0.5cm to 5cm, are discrete and give the rock a distinctive striped appearance. The purer beds are white or light brown, sometimes with an orange tinge, and very fine grained. The argillaceous beds are dark grey, sometimes with a purplish tinge, and also very fine grained. They weather slightly recessive. An approximately equal proportion of light to dark beds was observed. The quartzite contains small (to 10cm) lensoid pockets of sulphides and commonly weathers rusty. It is moderately foliated, particularly in the argillaceous beds. The quartzite unit hosts the 1998 sulphide showing.

To the west of the quartzite is a unit of metamorphosed and **banded amphibolite + felsite** which represents volcanics of varying compositions. The quartzite contact with this unit appears conformable. This unit has an irregular thickness and is moderately to strongly foliated. It commonly weathers rusty.

Both the quartzite and the banded amphibolite + felsite units are intruded by **mafic dykes**. The dykes are composed of 65% fine grained black groundmass in which 30% medium-grained (to 0.4cm long) amphibole laths and 5% fine-grained feldspar phenocrysts are suspended. The dykes exhibit a weak lineation, best seen on weathered surfaces, which may represent the intersection of syngenetic mineral alignment and overprinted regional foliaton. The dykes weather medium grey.

Also contacting the quartzite unit at its western margin is a felsic **porphyry** body. During 1999, only a small outcrop of this unit was protruding from the thick snow pack, but it appears to be a mappable unit. The rock is composed of 60% fine-grained grey groundmass which, upon close examination, exhibits a speckled "salt and pepper" coloring. 40% of the rock is coarse (to 0.4cm) anhedral white feldspar phenocrysts. Both fresh and weathered surfaces are light grey. Because of the limited outcrop exposure,

the type of contact with the quartzite unit could not be determined.

The next rock type mapped to the west is a black to very **dark** grey volcanic rock that is fine grained. It is composed of 80% fine dark groundmass and 20% fine white feldspar phenocrysts. Ιt contains <1% very fine grained pyrrhotite as sporadic disseminations, resulting in an irregularly magnetic rock. Freshly broken surfaces exhibit a fine sparkle, presumably from cleavage faces of fine olivine or amphibole phenocrysts in the groundmass. Feldspar weathers slightly recessively in this rock, resulting in a gently pitted surface. Overall, the rock weathers dark grey. The unit is the most extensive mapped, and is host to the 1999 sulphide showing. In the western portion of the area mapped, approaching the sulphide showing, this rock exhibits pervasive low grade chlorite or clay alteration, resulting in a slightly lighter coloured rock. Small (to 2cm) veins of quartz, calcite or epidote are common in the altered zone.

The volcanic rock and others are cut by a **fine grained dark grey dyke** that weathers light grey. The dyke rock is slightly magnetic and bears very fine grained pyrrhotite disseminations.

PROPERTY MINERALIZATION

Prospecting and hand trenching in 1999 resulted in the discovery of a 0.7m thick bed of massive sulphides on the ridge top near the centre of the property. 1998 work had located a 0.2m thick sulphide lens 175m further north.

Specimens of the sulphides were submitted to Chemex Labs in North Vancouver, BC, where they were crushed and pulverized to 150 mesh, split, digested in a nitric aqua regia solution and analyzed for 32 elements using an induced coupled plasma (ICP) technique. Selected samples were further analysed for any of copper, zinc, lead, silver, gold or a combination of these elements by direct assay. Certificates of Analysis appear in Appendix II.

The two lenses differ from one another in that the 1999 sulphide lens is zoned and contains pyrite, chalcopyrite, sphalerite and galena, while the 1998 lens is devoid of galena, and exhibits no zoning. The 1999 showing contains 1844ppb gold across the 0.7m width of the sulphide lens, including 2590ppb gold across 0.3m, while the 1998 showing contains 25ppb gold.

Specimens collected from subcrop beside the 1999 showing returned values of up to 7110ppm copper, 211 g/t silver, 7.38%

zinc and 1.90% lead. Chip samples taken across the 1999 showing are shown in Figure 5. It is significant to note that hand trenching over the sulphide lens did not attain fresh sulphides, and that as a result nearly all of the material in the chip samples is strongly weathered rock that has been leached in situ. It is likely that metals grades in the underlying fresh sulphides are considerably higher than those obtained from the leached material. The specimen from the 1998 showing returned values of 1.43% zinc, 0.45% copper, 19ppm silver, 139ppm cobalt and 120ppm cadmium.

The sulphide beds are fine to coarse grained and weathered black, orange or red. The 1998 showing is hosted by quartzite, while the 1999 showing is hosted, with a coarse grained calcite lens, by massive to weakly foliated mafic volcanic rock.

PROPERTY GEOCHEMISTRY

On the east side of the ridge, 110 soil samples were collected from a grid with a sample density of 50 by 25 metres. That portion of the grid that had been planned for the west side of the ridge was abandoned due this winter's record snow pack. It was replaced by a single reconnaissance soil line along which six soil samples are irregularly spaced. All soil samples were submitted to Chemex Labs Ltd. in North Vancouver, BC where they were screened to 150 mesh, split, digested in a nitric aqua regia solution and analyzed for 32 elements by an induced coupled plasma (ICP) technique. Certificates of Analysis appear in Appendix II.

A statistical analysis was performed on a population of soil samples collected during a regional exploration program conducted in the Powell River region during 1998 and 1999. A total of 522 soil samples are included in the analysis, all of which were collected over roof pendants of metamorphic Gambier Group rocks. The resulting data were used to establish thresholds for geochemical anomalies. A summary of the data and histogram plots for elements of primary interest are shown in Figure 6, while the threshold values are summarized in the following table.

Figure 6: Regional Soil Geochemistry Histograms Horizontal Axes: geochemical value range; Vertical Axes: number of values in range Number of samples n=522

Element	Anomalous threshold (ppm)						
	Background	Weak	Moderate	Strong	Peak		
Cu	25	45	90	180	1775		
Zn	15	30	60	120	3650		
Ag	<0.2	0.3	0.6	1.0	48.8		
Со	4	6	12	25	83		
Ba*	75	150	300	600	1510		
As	7	15	30	60	750		
Pb	2	5	10	20	584		

ANOMALOUS THRESHOLDS FOR 522 SOIL SAMPLES

*partial digestion

The grid soil samples indicate anomalous zones for a number of base metals and silver (Figures 7-14). The geochemical patterns for some elements cannot be explained by downhill dispersion from a point source, suggesting that the mineralization observed in outcrop at the ridgetop extends beneath overburden. For instance, anomalous copper and lead values near the southern corner of the grid are not a result of downhill dispersion from the ridgetop, nor are anomalous zinc values near the northeastern ends of lines 29700N, 29750N, 29800N, 29850N.

Arsenic values are extremely anomalous on lines 20700N and 20750N at 30050E. This location is directly on strike with the 1998 showing. The sulphides in that showing contain considerable arsenic (260ppm), while the sulphides in the 1999 showing contain very little arsenic. This suggests continuity of the 1998 lens. Arsenic is an indicator mineral in numerous sulphide occurrences.

 $_{\rm o}^{1.2}$ Soil sample location with silver value in ppm $_{\rm o}^{<}$ Soil sample location with silver value below detection limit

1500

FIGURE 11

LORAX PROPERTY SILVER SOIL GEOCHEMISTRY

DRAWN BY: AB PRODUCED AT: 1:5000 DATE: OCT 12, 1999 FILE: LORAX\5SAM.DWG

The barium soil geochemistry pattern near the 1999 showing supports the possibility of existence of a barite-rich zone adjacent to the sulphides. Barite is an accessory mineral at the Britannia Deposit (Payne et al, 1980), the Red Dog Deposit in Alaska (Koehler et al, 1991) and other VMS occurrences (Hoffman, 1986). The barium values are likely understated due to incomplete digestion of barite by the nitric aqua regia.

CONCLUSIONS AND RECOMMENDATIONS

The sulphide showings and adjacent soil geochemical anomalies represent a significant VMS target which has been protected by the Lorax 1 through Lorax 11 mineral claims. Due to poor access, it is suggested that a helicopter-supported flycamp again be employed for future work.

Additional mapping and prospecting are recommended for the west side of the ridge, where work could not be conducted during 1999 due to an extreme snow pack. During normal years, the ridge is free of snow by mid to late August. The soil geochemistry grid should also be extended down the west side of the ridge.

Once the soil grid has been extended, a ground geophysical survey is recommended. Due to their massive nature, the sulphides will likely respond to electromagnetic susceptibility, induced polarization and possibly magnetic field surveys.

Respectfully submitted,

and Br

Arnd Burgert BSc. Geology

REFERENCES

Geological Survey of Canada, 1988: Stream sediment and water geochemical survey, northern Vancouver Island and adjacent mainland, Geological Survey Open File 2039

----, 1988: Aeromagnetic total field map, Map 9760 G

- Hoffman, S. J., 1986: The volcanogenic massive sulphide target, in Exploration geochemistry: design and interpretation of soil surveys, James M. Robertson, ed., Reviews in economic geology, Society of economic geologists, pp. 139-146.
- Koehler, George F., and George D. Tikkanen, 1991: Red Dog, Alaska: Discovery and definition of a major zinc-leadsilver deposit, Economic Geology, Monograph 8, pp. 268-274.
- Payne, J. G., J. A. Bratt and B. G. Stone, 1980: Deformed mesozoic volcanogenic Cu-Zn sulphide deposits in the Britannia district, British Columbia, Economic Geology, Volume 75, pp. 700-721.
- Roddick, J. A., 1976: Notes on the stratified rocks of Bute Inlet map-area, Geological Survey of Canada Open File 480.
- Roddick, J. A., W. W. Hutchison and G. J. Woodsworth, 1976: Geology of Bute Inlet map area, Geological Survey of Canada Open File 480.
- Roddick, J. A., and Woodsworth, G. J., 1979: Geology of Vancouver, west half, and mainland part of Alberni, Geological Survey of Canada Open File 611.
- Woodsworth, G. J., 1977: Geology of Pemberton map-area, Geological Survey of Canada Open File 482.

APPENDIX I

AUTHOR'S STATEMENT OF QUALIFICATIONS

AUTHOR'S STATEMENT OF QUALIFICATIONS

I, Arnd Burgert, geologist, with business and residential address in Port McNeill, British Columbia, do hereby certify that:

- I graduated from the University of British Columbia in 1995 with a B.Sc. in Geology.
- From 1989 to present, I have been actively engaged in mineral exploration in British Columbia, the Northwest Territories and the Yukon Territory.
- 3. I have personally performed the work reported herein.

and B

A. Burgert, B.Sc. Dated this 21st day of October, 1999

APPENDIX II

CERTIFICATES OF ASSAY

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

P.O. BOX 1208 PORT MONEILL, BC VON 2R0

Page Number ;1-A Total Pages :4 Certificate Date: 09-SEP-1999 Invoice No. :19927561 P.O. Number 1 Account GHB

Project : OLD IRONSIDES Comments: ATTN: ARND BURGERT CC: ARND BURGERT

·····										ÇE	RTIFI	CATE	OF A	ANAL	YSIS		19927	561		
SAMPLE	PREP CODE	Ag ppm	А1 %	As ppm	B	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
L20000N 19400E L20000N 19500E L20000N 19600E L20000N 19700E L20000N 19800E	201 229 201 229 201 229 201 229 201 229 201 229	0.8 0.2 0.2 0.2 0.2	4.71 3.22 2.49 3.37 3.06	8 14 4 12 28	< 10 < 10 < 10 < 10 < 10	160 180 80 200 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.24 0.20 0.11 0.22 0.06	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 14 10 13 9	14 27 4 6 52	32 33 16 28 43	4.92 4.32 2.97 4.22 5.75	10 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1	0.53 0.58 0.23 0.43 0.27	< 10 < 10 < 10 < 10 < 10	1.28 1.14 0.81 1.27 0.67	525 600 730 720 285
L20000N 19900E L20000N 20000E L20000N 20100E L20000N 20200E L20000N 20350E	201 229 201 229 201 229 201 229 201 229 201 229	0.2 0.2 0.4 0.2 0.2	2.89 2.67 3.24 4.09 3.72	22 18 14 4 8	< 10 < 10 < 10 < 10 < 10 < 10	120 110 180 220 140	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.06 0.17 0.24 0.67 0.06	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 11 12 20 7	53 59 57 9 57	37 32 43 30 34	4.08 4.24 4.38 4.66 5.44	< 10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.20 0.29 0.61 0.37 0.28	< 10 10 < 10 < 10 < 10	0.53 0.73 0.93 2.15 1.14	410 475 445 740 350
L20100N 19400E L20100N 19500E L20100N 19500E L20100N 19500E L20100N 19500E	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 0.4 0.2 0.2 0.2	1.64 3.22 6.41 5.14 2.87	2 14 8 2 12	< 10 < 10 < 10 < 10 < 10 < 10	230 150 310 260 200	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.20 0.25 1.09 0.50 0.19	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 20 33 18 15	1 21 9 8 45	9 31 12 28 26	2.09 4.37 4.95 4.86 4.50	10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.49 0.40 0.52 0.62 0.36	< 10 < 10 < 10 < 10 < 10 < 10	0.80 1.14 2.77 2.21 0.93	165 1150 735 835 705
L20100N 19900E L20100N 20000E L20100N 20100E L20100N 20200E L20100N 20300E	201 229 201 229 201 229 201 229 201 229 201 229	0.2 0.2 0.2 0.2 0.6	3.50 3.24 2.77 1.51 2.40	24 20 14 120 20	< 10 < 10 < 10 < 10 < 10 < 10	170 90 170 30 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.22 0.03 0.18 0.01 0.03	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 B 14 3 5	57 65 38 16 56	48 40 37 17 25	4.51 4.71 3.75 3.51 6.20	< 10 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.39 0.26 0.54 0.05 0.13	< 10 < 10 < 10 10 < 10	0.91 0.74 0.76 0.12 0.24	835 245 635 75 115
L20100N 20350E L20200N 19600E L20200N 19700E L20200N 19800E L20200N 19900E	201 229 201 229 201 229 201 229 201 229 201 229 201 229	0.2 0.6 0.2 0.4 0.6	3.80 5.31 2.79 5.02 4.80	20 14 4 10 14	< 10 < 10 < 10 < 10 < 10 < 10	40 140 60 270 150	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.07 0.42 0.10 0.19 0.11	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 28 10 18 28	62 < 1 6 7 46	54 38 31 48 52	6.25 5.54 3.19 4.29 5.54	10 < 10 10 10 10	1 < 1 < 1 < 1 < 1 < 1 < 1	0.13 0.27 0.09 0.62 0.20	< 10 < 10 < 10 < 10 < 10 < 10	0.54 0.51 1.03 1.36 0.67	175 1275 420 585 1000
L20200N 20000E L20200N 20100E L20200N 20200E L20200N 20200E L20200N 20300E L20200N 20400E	201 229 201 229 201 229 201 229 201 229 201 229	0.2 0.2 0.4 0.2	4.64 2.72 4.61 5.50 2.24	14 20 14 16 4	< 10 < 10 < 10 < 10 < 10 < 10	120 170 150 130 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.13 0.16 0.07 0.11 0.03	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 16 16 15 3	21 48 95 84 27	44 42 87 98 8	4.11 3.86 4.80 5.26 3.44	10 < 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.33 0.59 0.26 0.39 0.06	< 10 < 10 < 10 < 10 < 10 < 10	1.24 0.74 0.88 1.04 0.15	375 805 385 380 55
L20200N 20500E L20200N 20600E L20200N 20650E L20200N 20650E L20300N 19700E L20300N 19800E	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 < 0.2 0.4 0.2 < 0.2	1.02 1.52 5.54 5.60 4.43	< 2 2 < 2 6 12	< 10 < 10 < 10 < 10 < 10 < 10	30 20 60 170 280	< 0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.03 0.04 0.04 0.26 0.29	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 3 9 19 23	7 1 54 7 5	3 < 1 46 39 47	3,48 4.08 4.26 4.22 4.28	< 10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.03 0.08 0.14 0.29 0.74	< 10 < 10 < 10 < 10 < 10 < 10	0.12 0.30 0.30 1.54 1.55	140 425 160 660 660
L20300N 19900E L20300N 20000E L20300N 20100E L20300N 20200E L20300N 20300E	201 229 201 229 201 229 201 229 201 229 201 229	0.4 0.2 0.2 0.2 0.2	2.20 2.71 3.78 3.07 2.10	8 22 12 16 14	< 10 < 10 < 10 < 10 < 10 < 10	40 70 80 140 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.04 0.04 0.04 0.16 0.04	< 0.5 < 0.5 < 0,5 0.5 < 0.5 < 0.5	4 5 9 20 6	8 41 79 41 15	31 24 53 49 13	2.36 4.51 4.99 3.62 3.61	< 10 10 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.05 0.08 0.20 0.48 0/20	< 10 < 10 < 10 < 10 < 10 < 10	0.26 0.35 0.65 0.70 0.40	80 190 210 760 450
														·					7	

CERTIFICATION:

Villet

Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC VON 2R0

Page Number : 1-B Total Pages :4 Certificate Date: 09-SEP-1999 Invoice No, P.O. Number :19927561 QHB Account

Project : OLD IRONSIDES Comments: ATTN: ARND BURGERT CC: ARND BURGERT

	· · · · · · · · · · · · · · · · · · ·	-	· · · · · ·							CE	RTIF	CATE	E OF A	NAL	YSIS		A9927561	
SAMPLE	PREP CODE	Мо ррт	Na %	N1 ppm	P ppm	Pb ppm	9 %	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm		
L20000N 19400E L20000N 19500E L20000N 19600E L20000N 19600E L20000N 19800E	201 229 201 229 201 229 201 229 201 229 201 229	< 1	0.07 0.04 0.03 0.04 0.02	7 13 3 5 23	670 760 430 850 510	< 2 < 2 < 2 < 2 6	0.06 0.06 0.05 0.08 0.05	< 2 < 2 < 2 < 2 < 2 < 2	9 9 5 8 6	14 13 9 15 14	0.22 0.19 0.17 0.16 0.20	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	120 107 93 114 115	< 10 < 10 < 10 < 10 < 10 < 10	74 B0 42 96 74		
L20000N 19900E L20000N 20000E L20000N 20100E L20000N 20200E L20000N 20350E	201 229 201 229 201 229 201 229 201 229 201 229	< 1	0.01 0.03 0.03 0.08 0.05	25 30 35 8 10	520 590 730 620 210	4 10 4 < 2 2	0.06 0.05 0.04 0.05 0.05	< 2 < 2 < 2 < 2 < 2 < 2 < 2	5 6 8 14 10	10 12 21 28 12	0.14 0.13 0.17 0.27 0.29	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	73 65 75 165 142	< 10 < 10 < 10 < 10 < 10 < 10	70 88 104 102 86		
L20100N 19400E L20100N 19500E L20100N 19600E L20100N 19600E L20100N 19800E	201 229 201 229 201 229 201 229 201 229 201 229	<pre></pre>	0.05 0.04 0.38 0.13 0.03	< 1 12 7 4 19	580 730 580 520 710	2 2 < 2 6 2	0.06 0.07 0.03 0.05 0.06	< 2 < 2 < 2 < 2 < 2 < 2	9 B 12 12 7	13 15 107 32 23	0.15 0.19 0.30 0.26 0.16	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	69 112 185 155 106	< 10 < 10 < 10 < 10 < 10 < 10	50 80 128 94 84		
L20100N 19900E L20100N 20000E L20100N 20100E L20100N 20200E L20100N 20300E	201 229 201 229 201 229 201 229 201 229 201 229	<pre> < 1 < 3 </pre>	0.02 0.01 0.03 0.01 0.01	36 29 22 8 15	830 480 920 240 410	4 4 8 8	0.08 0.06 0.05 0.01 0.03	< 2 < 2 < 2 < 2 < 2 < 2 < 2	7 7 6 1 4	18 9 16 3 5	0,15 0,18 0,15 0,09 0,26	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	93 100 53 64 129	< 10 < 10 < 10 < 10 < 10 < 10	102 78 82 30 38		
L20100N 20350E L20200N 19600E L20200N 19700E L20200N 19800E L20200N 19900E	201 229 201 229 201 229 201 229 201 229 201 229	<pre> < 1 <</pre>	0.02 0.07 0.04 0.04 0.02	24 < 1 3 7 34	570 990 410 600 1000	8 4 8 < 2 6	0.05 0.27 0.05 0.05 0.05 0.08	< 2 < 2 < 2 < 2 < 2 < 2 < 2	6 7 6 10 5	10 31 10 16 15	0.21 0.17 0.28 0.21 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	128 77 132 128 87	< 10 < 10 < 10 < 10 < 10 < 10	78 48 50 90 134		
L20200N 20000E L20200N 20100E L20200N 20200E L20200N 20300E L20200N 20400E	201 229 201 229 201 229 201 229 201 229 201 229	1 < 1 < 1 < 1 < 1 < 1	0.03 0.03 0.01 0.02 0.01	12 28 55 61 5	490 850 670 1040 170	< 2 6 6 2	0.03 0.05 0.04 0.06 0.02	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	8 6 8 3	7 13 12 7 3	0.23 0.15 0.22 0.19 0.22	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	118 55 114 116 103	< 10 < 10 < 10 < 10 < 10	74 116 126 134 18	-	
L20200N 20500E L20200N 20600E L20200N 20650E L20200N 20650E L20300N 19700E L20300N 19800E	201 229 201 229 201 229 201 229 201 229 201 229	<pre>< 1 < 1</pre>	0.01 0.01 0.01 0.06 0.05	< 1 < 1 17 5 6	210 150 340 470 510	2 2 8 < 2 < 2	0.02 0.01 0.04 0.04 0.04	< 2 < 2 < 2 < 2 < 2 < 2	1 3 4 10 11	3 1 5 16 18	0.24 0.28 0.15 0.28 0.23	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	39 16 73 149 134	< 10 < 10 < 10 < 10 < 10 < 10	16 30 52 80 110		
L20300N 19900E L20300N 20000E L20300N 20100E L20300N 20200E L20300N 20300E	201 229 201 229 201 229 201 229 201 229 201 229	1 1 1 1 < 1	0.01 0.01 0.02 0.01 0.01	10 14 35 36 6	210 430 420 860 220	< 2 2 2 4 2	0.03 0.04 0.03 0.05 0.02	< 2 < 2 < 2 < 2 < 2 < 2	2 4 8 6 4	6 10 5 12 7	0.14 0.17 0.25 0.12 0.25	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	60 89 130 53 39	< 10 < 10 < 10 < 10 < 10 < 10	22 52 92 176 48	\bigcirc 1	
	<u> </u>												c	ERTIFIC	CATION:_		Navelle]

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC VON 2R0

Project : OLD IRONSIDES Comments: ATTN: ARND BURGERT CC: ARND BURGERT Page Number : 2-A Total Pages : 4 Certificate Date: 09-SEP-1999 Invoice No. : 19927561 P.O. Number : Account : QHB

·····		.			·					ĊE	RTIF	CATE	YSIS		49927	'561				
SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	B1 ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe X	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
L20300N 20350E L20400N 20000E L20400N 20100E L20400N 20175E L20400N 20300E	201 22 201 22 201 22 201 22 201 22 201 22	9 0.2 9 0.4 9 0.2 9 0.2 9 0.2	3.82 4.39 4.71 3.82 3.90	10 30 32 18 10	< 10 < 10 < 10 < 10 < 10 < 10	90 140 240 100 200	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.05 0.06 0.08 0.06 0.15	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 13 22 9 19	75 64 50 61 30	60 54 88 77 90	6.85 4.83 4.97 5.41 4.14	10 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1	0.24 0.25 0.54 0.24 0.51	< 10 < 10 < 10 < 10 < 10 < 10	0.75 0.74 1.01 0.79 1.06	290 345 500 235 595
L20400N 20350E L20500N 19850E L20500N 19900E L20500N 20000E L20500N 20100E	201 22 201 22 201 22 201 22 201 22 201 22	9 < 0.2 9 0.2 9 0.2 9 0.2 9 0.2 9 < 0.2	1.46 3.60 1.97 3.73 3.67	< 2 12 14 4 18	< 10 < 10 < 10 < 10 < 10	80 70 90 100 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.06 0.04 0.10 0.04 0.03	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 5 8 9 6	4 32 39 64 89	5 44 24 41 27	2.35 6.09 2.91 4.71 5.63	< 10 10 < 10 10 10	< 1 < 1 < 1 < 1 < 1	0.25 0.16 0.14 0.20 0.17	< 10 < 10 10 < 10 < 10	0.30 0.57 0.36 0.66 0.67	450 185 325 270 155
L20600N 19950E L20600N 20000E L20600N 20100E L20600N 20200E L20600N 20300E	201 229 201 229 201 229 201 229 201 229 201 229	9 0.2 9 0.2 9 0.2 9 < 0.2 9 < 0.2 9 < 0.4	5.21 4.40 4.00 0.90 3.66	14 10 12 2 2	< 10 < 10 < 10 < 10 < 10	140 60 70 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.05 0.04 0.05 0.01 0.06	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	17 9 9 < 1 5	62 41 51 4 40	66 21 28 4 10	4.77 5.07 5.30 3.28 7.59	10 10 10 10 20	< 1 < 1 < 1 < 1 < 1	0.34 0.22 0.18 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	1.04 0.58 0.58 0.04 0.28	410 240 150 45 115
L20600N 20400E L20600N 20500E L20600N 20600E L20600N 20600E L20600N 20800E	201 229 201 229 201 229 201 229 201 229 201 229	<pre> < 0.2 < 0.2 </pre>	1.01 0.43 0.36 1.95 2.00	< 2 < 2 10 < 2 < 2	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 20 40	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.04 < 0.01 0.03 0.05 0.09	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 < 1 < 1 4 6	13 3 35 13 9	7 2 1 11 3	4.41 0.51 1.55 6.04 1.58	10 < 10 < 10 20 10	< 1 < 1 < 1 < 1 < 1 < 1	0.02 0.01 0.01 0.05 0.07	< 10 20 10 < 10 < 10	0.12 0.01 0.03 0.29 0.57	90 5 45 135 170
L20600N 20900E L20700N 19750E L20700N 19800E L20700N 19900E L20700N 20000E	201 229 201 229 201 229 201 229 201 229 201 229	<pre> < 0.2 0.2 0.4 0.2 0.4 0.2 0.2 0.2 0.2 </pre>	1.96 1.01 2.41 1.80 1.10	2 4 20 26 14	< 10 < 10 < 10 < 10 < 10	30 10 20 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.10 0.02 0.06 0.02 0.03	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 2 4 3 2	16 12 14 11 11	15 6 17 11 10	4.79 3.41 5.10 4.80 3.59	10 10 10 10 10	< 1 < 1 < 1 < 1 < 1	0.09 0.01 0.05 0.02 0.03	< 10 10 < 10 < 10 < 10 < 10	0.35 0.04 0.25 0.09 0.09	215 40 125 65 65
L20700N 20050E L20700N 20075E L20700N 20100E L20700N 20200E L20700N 20300E	201 229 201 229 201 229 201 229 201 229 201 229	0.4 0.2 0.4 0.2 0.2 < 0.2	3.14 1.76 2.35 1.44 0.98	40 8 12 6 < 2	< 10 < 10 < 10 < 10 < 10	20 30 20 50 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	0.03 0.04 0.03 0.03 0.08	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 4 3 4	14 4 9 10 7	9 9 13 5 16	8.50 5.66 4.50 2.08 1.47	30 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.04 0.10 0.03 0.13 0.15	< 10 < 10 < 10 < 10 < 10	0.32 0.23 0.24 0.25 0.37	155 305 115 200 265
L20700N 20400E L20700N 20500E L20700N 20600E L20700N 20600E L20700N 20800E	201 229 201 229 201 229 201 229 201 229 201 229	<pre>< 0.2 < 0.2 < 0.2 0.2 < 0.2 0 < 0.2 0 < 0.2</pre>	0.54 0.52 1.91 0.89 1.72	2 < 2 4 2 < 2	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 30 < 10 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.02 0.08 0.06 0.02 0.12	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	1 2 5 2 9	5 1 10 6 5	5 4 17 8 2	1.21 1.16 4.27 2.81 2.09	< 10 < 10 20 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.01 0.09 0.13 0.01 0.42	< 10 < 10 < 10 < 10 < 10 < 10	0.01 0.16 0.55 0.04 0.81	35 210 215 35 330
L20700N 20900E L20800N 19625E L20800N 19700E L20800N 19800E L20800N 19900E	201 229 201 229 201 229 201 229 201 229 201 229	0.8 < 0.2 0.2 0.2 0.2	0.46 1.06 2.21 3.09 1.86	< 2 18 < 2 42 70	< 10 < 10 < 10 < 10 < 10 < 10	10 10 30 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.83 0.02 0.03 0.03 0.04	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 1 3 4 5 4	1 16 24 16 6	2 9 12 17 8	0.08 4.71 4.01 5.75 3.45	< 10 20 10 10	< 1 < 1 < 1 < 1 < 1	0.01 0.03 0.03 0.07 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.04 0.09 0.25 0.41 0.18	20 55 85 210 170

CERTIFICATION:

auc

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC VON 2R0

Page Number :2-B Total Pages :4 Certificate Date: 09-SEP-1999 Invoice No. :19927561 P.O. Number : Account :QHB

Project : OLD IRONSIDES Comments: ATTN: ARND BURGERT CC; ARND BURGERT

										CE	RTIF		E OF A	NAL	YSIS		A9927561
SAMPLE	PREP CODE	Mo ppm	Na %	Nİ ppm	q mqq	Pb ppm	9 %	Sb ppm	Sc ppm	Sr ppm	Ti ¥	T1 ppm	U mqq	V ppm	W	Zn ppm	
L20300N 20350E L20400N 20000E L20400N 20100E L20400N 20175E L20400N 20300E	201 229 201 229 201 229 201 229 201 229 201 229	1 < 1 1 < 1 1	0.03 0.02 0.02 0.02 0.02 0.03	38 36 65 42 26	530 560 1090 830 670	8 4 2 6 2	0.04 0.05 0.05 0.08 0.03	< 2 < 2 < 2 < 2 < 2 < 2 < 2	7 7 7 7 5	6 13 10 7 25	0.26 0.20 0.18 0.15 0.19	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	107 103 91 96 73	< 10 < 10 < 10 < 10 < 10 < 10	82 88 118 82 106	
L20400N 20350E L20500N 19850E L20500N 19900E L20500N 20000E L20500N 20100E	201 229 201 229 201 229 201 229 201 229 201 229	5 < 1 1 < 1 < 1	0.02 0.01 0.01 0.02 0.03	2 16 20 34 22	510 480 620 460 390	6 4 2 6 6	0.06 0.04 0.05 0.03 0.04	< 2 < 2 < 2 < 2 < 2 < 2	3 5 4 8 8	10 13 13 5 4	0.16 0.13 0.13 0.23 0.24	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	19 70 60 100 142	< 10 < 10 < 10 < 10 < 10 < 10	30 56 44 82 66	
L20600N 19950E L20600N 20000E L20600N 20100E L20600N 20200E L20600N 20300E	201 229 201 229 201 229 201 229 201 229 201 229	< 1 2 < 1 1 < 1	0.02 0.01 0.02 0.01 0.02	40 24 22 < 1 3	450 560 390 190 340	6 2 2 4 2 8	0.02 0.03 0.04 0.01 0.04	< 2 < 2 < 2 < 2 < 2 < 2 < 2	10 7 8 < 1 2	6 5 3 1 1	0.22 0.19 0.19 0.21 0.32	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	123 87 107 41 128	< 10 < 10 < 10 < 10 < 10	112 70 54 4 18	
L20600N 20400E L20600N 20500E L20600N 20600E L20600N 20700E L20600N 20800E	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< 1 < 1 < 1 < 1 < 1	0.02 < 0.01 0.01 0.03 0.02	< 1 < 1 1 3	150 190 130 270 130	6 < 2 2 2 4	0.01 0.01 0.03 0.05	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 < 1 < 1 2 3	1 1 2 3 5	0.31 0.04 0.07 0.37 0.25	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	125 17 59 144 60	< 10 < 10 < 10 < 10 < 10 < 10	8 < 2 < 2 16 26	
L20600N 20900E L20700N 19750E L20700N 19800E L20700N 19900E L20700N 20000E	201 229 201 229 201 229 201 229 201 229 201 229	3 2 2 1 1	0.02 0.01 0.02 0.01 0.01	2 2 3 3 1	220 200 360 330 360	2 6 2 4 8	0.04 0.02 0.04 0.04 0.03	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 < 1 3 1 1	5 3 4 4 2	0.31 0.31 0.27 0.19 0.20	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	130 171 134 80 69	< 10 < 10 < 10 < 10 < 10 < 10	18 8 20 12 12	
L20700N 20050E L20700N 20075E L20700N 20100E L20700N 20200E L20700N 20300E	201 229 201 229 201 229 201 229 201 229 201 229	1 1 1 4	0.03 0.02 0.01 0.01 0.01	< 1 < 1 1 7 2	390 400 320 180 100	6 8 2 6 2	0.05 0.03 0.04 0.01 0.01	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 3 2 3 1	3333	0.38 0.38 0.19 0.18 0.16	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	112 89 73 40 42	< 10 < 10 < 10 < 10 < 10 < 10	24 22 20 30 30	
L20700N 204008 L20700N 205008 L20700N 206008 L20700N 206008 L20700N 207008	201 229 201 229 201 229 201 229 201 229 201 229	< 1 < 1 1 < 1	0.01 0.01 0.02 0.01 0.02	< 1 < 1 2 < 1 2	80 80 270 170 130	6 - < 2 4 6 < 2	0.01 0.03 0.02 0.04	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 < 1 4 < 1 2	3 2 3 2 6	0.21 0.11 0.28 0.27 0.23	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	74 33 152 129 66	< 10 < 10 < 10 < 10 < 10 < 10	2 20 28 6 36	
L20700N 20900E L20800N 19625E L20800N 19700E L20800N 19800E L20800N 19800E	201 229 201 229 201 229 201 229 201 229 201 229	3 1 < 1 1 1	0.01 0.02 0.01 0.01 0.01	1 1 6 1 1	570 240 190 200 260	< 2 8 2 12 8	0.46 0.01 0.02 0.04 0.03	< 2 < 2 < 2 < 2 < 2 < 2	< 1 1 4 3 1	38 2 4 3 2	0.01 0.32 0.21 0.26 0.18	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	3 163 133 116 71	< 10 < 10 < 10 < 10 < 10 < 10	8 12 22 34 18	\cap
													c	ERTIFIC	CATION:_		· Nauel Tep

Analytical Chemists * Geochemists * Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC V0N 2R0

Project : OLD IRONSIDES Comments: ATTN: ARND BURGERT CC: ARND BURGERT Page Number :3-A Total Pages :4 Certificate Date: 09-SEP-1999 Invoice No. :19927561 P.O. Number : Account :QHB

	r										ÇE	RTIFI	CATE	OF A	NAL	YSIS	ļ	\992 7	′561		
SAMPLE	PREP CODE		Ag ppm	л1 %	As ppm	B Pom	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррт	Cr ppm	Cu ppm	Fo %	Ga ppm	Hg ppm	K %	La ppn	Mg %	Mn ppm
L20800N 20000E L20800N 20100E L20800N 20200E L20800N 20300E L20800N 20300E	201 2 201 2 201 2 201 2 201 2 201 2	29 29 29 29 29	< 0.2 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.35 3.01 0.45 0.74 1.29	234 < 2 < 2 < 2 2	< 10 < 10 < 10 < 10 < 10 < 10	30 40 < 10 10 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.04 0.04 0.01 0.06 0.05	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 4 4 1 4 3	11 11 2 11 10	9 16 3 6 7	5.68 5.26 0.12 4.28 1.30	10 10 < 10 10 10	< 1 < 1 < 1 . < 1 < 1	0.07 0.09 0.01 0.04 0.05	< 10 < 10 10 < 10 < 10	0.43 0.47 < 0.01 0.10 0.36	190 210 30 75 175
L20800N 20500E L20800N 20600E L20800N 20700E L20800N 20800E L20800N 20800E	201 2 201 2 201 2 201 2 201 2 201 2	29 29 29 29 29 29	0.2 0.8 0.2 0.2 0.2 0.2	1.82 2.28 7.48 4.83 3.86	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 10 < 10 < 10 < 10 < 10 < 10	10 120 10 20 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.07 0.16 0.01 0.06 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 7 8 6 8	8 15 4 26 4	13 18 9 17 19	3.40 1.72 6.14 5.09 4.36	10 < 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.52 0.05 0.06 0.32	< 10 < 10 < 10 < 10 < 10 < 10	0.26 0.93 0.77 0.57 1.36	105 390 375 235 315
L20900N 19700E L20900N 19800E L20900N 19875E L20900N 20000 L20900N 20100E	201 2 201 2 201 2 201 2 201 2 201 2	29 29 29 29 29 29	0.6 < 0.2 0.2 0.6 1.0	2.89 2.32 3.90 3.07 3.59	2 6 14 < 2	< 10 < 10 < 10 < 10 < 10	10 40 40 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.03 0.03 0.03 0.03 0.03	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 3 4 5 3	15 5 9 13 8	12 11 13 17 20	6.80 5.63 5.47 5.91 5.53	30 10 10 10 10	1 < 1 < 1 < 1 < 1 < 1	0.03 0.10 0.08 0.10 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.10 0.33 0.41 0.57 0.21	60 230 240 230 105
L20900N 20200E L20900N 20300E L20900N 20400E L20900N 20500E L20900N 20600EA	201 2 201 2 201 2 201 2 201 2 201 2	29 29 29 29 29	0.4 0.8 0.2 0.2 0.6	2.16 2.11 1.40 1.15 2.11	2 8 12 < 2 6	< 10 < 10 < 10 < 10 < 10 < 10	20 40 10 10 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.02 0.02 0.01 0.06 0.04	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 3 1 5 3	9 9 5 9 25	14 9 5 6 15	7.59 4.98 2.57 3.72 7.58	20 10 < 10 10 20	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.09 0.11 0.08 0.03	< 10 < 10 10 < 10 < 10	0.21 0.25 0.21 0.32 0.16	130 190 135 160 90
L20900N 20600EB L20900N 20700E L20900N 20800E L20900N 20900E L20900N 20900E L2100N 19600E	201 2: 201 2: 201 2: 201 2: 201 2:	29 29 29 29 29	1.2 0.8 0.2 < 0.2 0.4	3.48 4.01 3.11 2.86 2.67	< 2 < 2 < 2 < 2 < 6	< 10 < 10 < 10 < 10 < 10 < 10	100 10 20 30 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.12 0.06 0.10 0.07 0.03	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 5 9 6 3	22 21 32 24 13	42 16 33 15 13	3.58 6.28 4.94 4.69 4.92	< 10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.31 0.03 0.06 0.11 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.96 0.34 1.01 0.64 0.26	425 155 290 240 145
L2100N 19700E L2100N 19800E L2100N 19800E L2100N 20000E L2100N 20100E	201 22 201 22 201 22 201 22 201 22 201 22	29 29 29 29	0.6 0.2 0.2 1.4 0.8	2.41 2.24 1.98 3.41 1.40	4 274 6 < 2 < 2	< 10 < 10 < 10 < 10 < 10 < 10	20 40 10 70 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.04 0.01 0.04 0.02 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 3 3 6 1	15 35 8 4 6	15 13 12 96 39	6.04 5.97 5.58 8.90 8.50	10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.08 0.03 0.24 0.07	< 10 < 10 < 10 < 10 < 10 < 10	0.45 0.18 0.20 0.55 0.10	140 80 120 555 110
L2100N 20200E L2100N 20300E L2100N 20400E L2100N 20500E L2100N 20500E	201 22 201 22 201 22 201 22 201 22 201 22	19 29 29 29 29	0.4 0.2 0.2 0.2 0.2	2.49 1.32 3.48 3.55 2.80	< 2 < 2 < 2 < 2 < 2	< 10 < 10 < 10 < 10 < 10 < 10	50 20 60 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.01 0.01 0.03 0.05 0.07	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 3 8 7 5	7 7 25 17 18	16 9 16 12 33	6.96 4.19 5.14 4.37 2.48	20 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1	0.15 0.05 0.13 0.11 0.16	< 10 < 10 < 10 < 10 < 10 < 10	0.39 0.21 1.11 0.61 0.49	185 110 440 295 310
L2100N 20700F L2100N 20800F L2100N 20900E S137 S138	201 22 201 22 201 22 201 22 201 22 201 22	19 19 19 19	< 0.2 0.2 < 0.2 0.2 < 0.2 < 0.2	2.94 4.74 2.60 3.83 0.85	< 2 < 2 20 28	< 10 < 10 < 10 < 10 < 10 < 10	20 30 120 180 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.08 0.06 0.08 0.05 0.01	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 6 10 3 1	15 20 12 20 4	12 19 11 17 7	4.26 4.64 3.46 3.76 2.65	10 10 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.10 0.09 0.41 0.28 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.69 0.50 1.01 0.99 0.08	300 230 440 355 65
		_																1		-1	

CERTIFICATION:___

,

die

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC V0N 2R0 Page Number :3-8 Total Pages :4 Certificate Date: 09-SEP-1999 Invoice No. :19927561 P.O. Number : Account :QHB

Project : OLD IRONSIDES Comments: ATTN: ARND BURGERT_CC: ARND BURGERT

	·					<u>i</u>				CE			OF A	ANAL'	YSIS	4	1992756	1	
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	р тад	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W M	Zn ppm			
L20800N 20000E L20800N 20100E L20800N 20200E L20800N 20300E L20800N 20300E	201 22 201 22 201 22 201 22 201 22 201 22	9 1 9 < 1 9 < 1 9 1 9 2	0.02 0.02 < 0.01 0.03 0.01	2 1 < 1 < 1 2	280 270 110 240 140	2 2 < 2 4 8	0.03 0.03 0.01 0.02 0.01	< 3 < 3 < 2 < 2 < 2	3 4 < 1 1 2	3 3 1 3 4	0.29 0.23 0.02 0.39 0.20	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	86 103 5 190 57	< 10 < 10 < 10 < 10 < 10 < 10	30 34 < 2 6 20	·		
L20800N 20500E L20800N 20600E L20800N 20700E L20800N 20800E L20800N 20900E	201 22 201 22 201 22 201 22 201 22 201 22	9 2 9 < 1 9 < 1 9 < 1 9 < 1 9 < 1	0.02 0.03 0.02 0.02 0.02	< 1 7 < 1 4 1	150 220 260 240 280	< 2 < 2 6 2 2	0.02 0.10 0.06 0.04 0.03	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 4 6 4 9	4 12 < 1 3 1	0.31 0.17 0.28 0.23 0.18	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	98 49 78 94 108	< 10 < 10 < 10 < 10 < 10 < 10	18 58 26 30 44			
L20900N 19700E L20900N 19800E L20900N 19875E L20900N 20000 L20900N 20100E	201 22 201 22 201 22 201 22 201 22 201 22	9 < 1 9 < 1 9 < 1 9 < 1 9 < 1 9 < 1	0.03 0.02 0.02 0.01 0.01	< 1 < 1 1 < 1 < 1	380 440 400 320 430	8 2 8 2 8	0.04 0.03 0.05 0.04 0.06	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 4 3 4 3	1 3 3 2 4	0.42 0.26 0.20 0.21 0.22	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	182 62 65 93 101	< 10 < 10 < 10 < 10 < 10 < 10	10 28 34 38 20			
L20900N 20200E L20900N 20300E L20900N 20400E L20900N 20500E L20900N 20600EA	201 22 201 22 201 22 201 22 201 22 201 22	9 < 1 9 < 1 9 2 9 1 9 1	0.02 0.02 0.01 0.03 0.02	1 < 1 < 1 1 3	470 230 200 280 420	2 10 2 < 2 8	0.05 0.05 0.02 0.02 0.03	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 4 1 1 2	3 3 1 3 2	0.25 0.28 0.16 0.35 0.26	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	149 113 45 155 163	< 10 < 10 < 10 < 10 < 10 < 10	26 22 10 14 18	We		
L20900N 20600EB L20900N 20700E L20900N 20800E L20900N 20900E L20900N 20900E	201 22 201 22 201 22 201 22 201 22 201 22	9 4 9 < 1	0.03 0.02 0.03 0.02 0.02 0.01	9 2 9 5 3	280 270 180 250 340	2 4 2 2 8	0.04 0.13 0.01 0.03 0.03	< 2 < 2 < 2 < 2 < 2 < 2	4 4 5 3 3	9 3 5 4 3	0.19 0.28 0.31 0.25 0.20	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	75 112 116 84 93	< 10 < 10 < 10 < 10 < 10 < 10	56 20 50 30 24			
L2100N 19700E L2100N 19800E L2100N 19900E L2100N 20000E L2100N 20100E	201 229 201 229 201 229 201 229 201 229 201 229	1 < 1 < 1 < 1 < 1 < 1 < 1	0.02 0.01 0.02 0.02 0.01	1 16 < 1 < 1 < 1	300 500 280 680 610	4 10 8 10 10	0.03 0.04 0.02 0.07 0.05	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 2 1 7 1	3 4 3 4 1	0.28 0.19 0.27 0.22 0.22	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	149 72 133 127 102	< 10 < 10 < 10 < 10 < 10 < 10	34 26 14 82 16			
L2100N 20200E L2100N 20300E L2100N 20400E L2100N 20500E L2100N 20500E	201 229 201 229 201 229 201 229 201 229 201 229	<pre>< 1 1 < 1 < 1 < 1 1 < 1 1</pre>	0.02 0.01 0.02 0.01 0.01	< 1 < 1 4 4	450 390 270 260 280	6 4 4 < 2	0.04 0.03 0.04 0.03 0.04	< 2 < 2 < 2 < 2 < 2 < 2	4 1 9 3 2	3 3 2 1 7	0.30 0.22 0.21 0.26 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	160 109 122 108 48	< 10 < 10 < 10 < 10 < 10 < 10	38 12 50 32 42	u	<u> </u>	
L2100N 20700E L2100N 20800E L2100N 20900E \$137 \$138	201 229 201 229 201 229 201 229 201 229 201 229	< 1 < 1 < 1 < 1 < 1 < 1	0.03 0.02 0.03 0.02 0.01	4 3 5 3 1	270 320 200 490 230	< 2 2 4 2 6	0.03 0.06 0.02 0.10 0.02	< 2 < 2 < 2 < 2 < 2 < 2	2 4 3 9 1	3 6 3 14 3	0.30 0.19 0.30 0.14 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	92 78 88 75 48	< 10 < 10 < 10 < 10 < 10 < 10	32 28 40 58 8	\cap	,	
																	1		

CERTIFICATION:__

.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC V0N 2R0 Page Number : 4-A Total Pages : 4 Certificate Date: 09-SEP-1999 Invoice No. : 19927561 P.O. Number : Account : QHB

Project : OLD IRONSIDES Comments: ATTN: ARND BURGERT CC: ARND BURGERT

	_		<u> </u>				 -			ĊE	RTIFI	CATE	OF A	NAL	YSIS	ŀ	\9927	561		
SAMPLE	PREP CODE	Ag ppm	л1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Min
S139 S140 S141 S142 S143	201 229 201 229 201 229 201 229 201 229 201 229	0.8 0.8 0.2 0.2 < 0.2	2.38 2.21 3.49 3.51 1.66	< 2 < 2 < 2 < 2 < 2 < 2 < 2	< 10 < 10 < 10 < 10 < 10	40 40 120 90 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.12 0.03 0.05 0.05 0.09	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	3 3 6 5	24 51 3 26 9	28 13 25 101 41	3.68 4.91 4.33 4.32 2.10	< 10 < 10 10 10 < 10	< 1 < 1 < 1 1 < 1	0.11 0.20 0.41 0.32 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.47 0.59 1.28 1.37 0.53	145 135 300 365 195
\$144 \$145 \$146 \$147 \$148	201 229 201 229 201 229 201 229 201 229 201 229	0.2 0.2 < 0.2 0.2 < 0.2	4.25 4.00 3.94 3.88 0.27	< 2 < 2 < 2 136 < 2	< 10 < 10 < 10 < 10 < 10 70	120 130 190 100 20	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	18 < 2 < 2 < 2 < 2 < 2	0.11 0.14 0.10 0.06 6.25	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 8 11 11 1	9 12 3 15 9	195 80 174 15 24	7.48 4.53 5.85 4.65 0.31	10 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1 1	0.41 0.38 0.47 0.28 8.34	< 10 < 10 < 10 < 10 < 10 < 10	1.00 0.99 0.96 0.67 1.42	465 255 355 965 120
			0.03	< 4	10	40	< 0.5	< 2	1.89	< 0.5	< 1	2	3	0.16	< 10	< 1	0.08	< 10	0.27	145

CERTIFICATION:_

.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

P.O. BOX 1208 PORT MONEILL, BC VON 2R0

Page Number :4-B Total Pages :4 Certificate Date: 09-SEP-1999 Invoice No. :19927561 P.O. Number Account QHB

Project : OLD IRONSIDES Comments: ATTN: ARND BURGERT_CC: ARND BURGERT

											CE	RTIF		OFA	NAL	YSIS	A	9927561	
SAMPLE	PRE	IP DE	Мо ррш	Na %	Ni ppm	P PPm	Pb ppm	S %	Sb ppm	Sc ррш	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W mqq	Zn ppm		
\$139 \$140 \$141 \$142 \$143	201 201 201 201 201 201	229 229 229 229 229 229	5 < 1 3 3 < 1	0.01 0.01 0.03 0.01 0.01	5 16 1 10 5	1020 680 530 400 570	2 4 < 2 2 2	0.07 0.07 0.09 0.07 0.07	< 2 < 2 < 2 < 2 < 2 < 2 < 2	4 3 6 5 1	5 7 6 5	0.07 0.10 0.19 0.16 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	67 50 93 98 45	< 10 < 10 < 10 < 10 < 10 < 10	22 40 34 54 30		
8144 8145 8146 8147 8148	201 201 201 201 201 201	229 229 229 229 229 229	10 13 7 < 1 4	0.03 0.04 0.03 0.01 0.80	3 1 1 5 13	740 730 850 440 7460	< 2 < 2 < 2 6 < 2	0.08 0.09 0.16 0.05 3.34	< 2 < 2 < 2 < 2 < 2 < 2	4 2 5 7 < 1	10 13 11 4 145 <	0.25 0.17 0.17 0.19 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 10	113 108 95 74 7	< 10 < 10 < 10 < 10 < 10 < 10	76 48 60 84 76		
8149	201	229	1	0.01	1	610	< 2	0.43	< 2	< 1	75 <	0.01	< 10	< 10	3	< 10	18	<u></u>	<u></u>
																		\cap	j
	•			, <u>_</u> .,						<u> </u>				 CI	ERTIFIC			·Lissel	$\frac{1}{2}$

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC V0N 2R0 Page Number : 1-A Total Pages : 1 Certificate Date: 10-SEP-1999 Invoice No. : 19927530 P.O. Number : Account : QHB

Project : OLD IRONSIDES Comments: ATTN: ARND BURGERT CC: ARND BURGERT

	- <u>r</u>		1								CE	RTIF	CATE	OFA	ANAL	YSIS		49927	'530		
SAMPLE	PR	ep De	Ag ppm	A1 %	As ppm	B PPm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	К %	La ppm	Mg X	Mn ppm
P197001 P197002 P197003 P197004 P197005	205 205 205 205 205	226 226 226 226 226 226	1.0 0.2 < 0.2 < 0.2 < 0.2 0.8	5.75 2.70 1.57 1.33 2.73	8 < 2 < 2 4 176	< 10 < 10 < 10 < 10 < 10 < 10	10 120 70 30 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	3.08 0.06 0.04 0.18 0.15	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 5 25 12 27	24 01 56 46 35	65 26 36 28 45	8.28 3.33 3.17 4.27 3.32	10 < 10 < 10 < 10 < 10	1 < 1 < 1 1 < 1	0.31 0.41 0.44 0.41 1.20	< 10 10 < 10 < 10 < 10	0.43 0.59 0.68 0.85 1.32	280 125 240 250 430
2197006 2197007 2197008 2197009 2197009 2197010	205 205 205 205 205	226 226 226 226 226 226	0.2 0.2 < 0.2 < 0.2 0.2	4.86 1.41 3.10 1.23 1.57	6 ≺ 2 30 94 34	< 10 < 10 < 10 < 10 < 10 < 10	140 80 90 120 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.96 0.03 0.78 0.01 0.02	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 < 1 8 1 < 1	85 68 28 48 62	21 1 16 8 7	3.14 2.06 2.82 2.75 1.96	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.74 0.83 0.62 0.34 0.36	< 10 < 10 < 10 < 10 < 10 < 10	1.18 1.13 1.08 0.51 0.60	345 320 310 105 90
P197011 P197012 P197013 P197014 P197015	205 205 205 205 205	226 226 226 226 226 226	< 0.2 < 0.2 0.2 < 0.2 4.0	1.65 4.00 0.58 2.50 0.49	2 6 2 6 8	< 10 < 10 < 10 < 10 < 10 < 10	170 220 60 260 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 2 2	0.02 1.76 0.54 0.32 0.07	< 0.5 < 0.5 < 0.5 < 0.5 0.5	4 7 13 13 2	87 96 38 70 202	5 8 80 20 1305	1.48 3.57 1.25 3.26 7.27	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.48 0.67 0.07 0.81 0.06	20 < 10 < 10 < 10 < 10 < 10	0.72 0.80 0.15 1.17 0.13	230 370 105 410 195
P197016 P197017 P197018 P197019 P197019 P197020	205 205 205 205 205	226 226 226 226 226	0.6 < 0.2 0.8 69.4 1.4	1.15 1.59 3.50 0.06 1.30	6 2 < 2 32 4	< 10 < 10 < 10 < 10 < 10 < 10	70 20 180 10 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.03 1.72 0.40 0.01 0.04	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 8 16 2 8	83 43 54 101 77	35 22 179 22 24	5.55 5.13 6.28 3.94 2.15	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.23 0.08 0.55 0.04 0.10	< 10 < 10 < 10 < 10 < 10 10	0.53 0.26 1.05 < 0.01 0.86	150 270 505 5 205
P197021	205	226	1.0	1.90	10	< 10	80	< 0.5	< 2	0.06	< 0.5	9	57	29	4.53	< 10	< 1	0.10	< 10	1.05	895
																		(Î)	-10	

CERTIFICATION:

__\/_

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC VON 2R0 Page Number :1-B Total Pages :1 Certificate Date: 10-SEP-1999 Invoice No. :19927530 P.O. Number : Account :QHB

Project : OLD IRONSIDES Comments: ATTN: ARND BURGERT CC: ARND BURGERT

											ĊE	RTIFI	CATE	OF A	NAL	(SIS	A	9927530)	
SAMPLE	PRI CO	ep De	Mo ppm	Na %	Ni ppm	P	Pb ppm	S %	Sb ppm	Sc ppm	Sr yym	Ti %	Tl ppm	U ppm	V ppm	W ppm	Zn ppm			
P197001 P197002 P197003 P197004 P197005	205 205 205 205 205	226 226 226 226 226 226	6 < 1 < 1 < 1 < 1 < 1	0.27 0.02 0.02 0.07 0.03	2 14 7 3 17	790 390 200 530 650	6 2 ~ 2 ~ 2 ~ 2	2.01 0.55 2.68 2.60 0.65	8 < 2 < 2 < 2 < 2	3 3 1 19 8	139 11 6 < 7 3	0.12 0.05 0.01 0.06 0.15	< 10 < 10 < 10 < 10 < 10	10 10 < 10 < 10 < 10 < 10	34 27 8 136 102	< 10 < 10 < 10 < 10 < 10 < 10	38 58 46 64 66			
P197006 P197007 P197008 P197009 P197010	205 205 205 205 205	226 226 226 226 226 226	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.39 0.04 0.12 0.02 0.03	9 < 1 5 2 < 1	230 60 320 280 130	2 2 4 4 2	1.18 0.31 0.82 0.34 0.27	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	7 4 5 < 1 1	168 68 68 8	0.06 0.07 0.06 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	78 106 42 6 9	< 10 < 10 < 10 < 10 < 10 < 10	64 28 46 12 12			
P197011 P197012 P197013 P197014 P197015	205 205 205 205 205	226 226 226 226 226 226	< 1 3 < 1 < 1 11	0.03 0.15 0.09 0.07 0.04	3 11 1 6 4	60 290 1620 1010 160	2 < 2 < 2 < 2 < 2 10	0.40 0.77 0.51 0.72 2.59	2 < 2 < 2 2 8	< 1 10 3 11 1	13 < 159 21 15 10	0.01 0.17 0.05 0.11 0.04	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 10	3 73 15 105 5	< 10 < 10 < 10 < 10 < 10 < 10	40 66 20 62 50			
P197016 P197017 P197018 P197019 P197020	205 205 205 205 205	226 226 226 226 226 226	8 < 1 < 1 12 2	0.04 0.07 0.13 < 0.01 0.01	14 8 3 4 3	570 1130 1040 10 70	< 2 < 2 < 2 < 2 < 2 < 2	0.67 0.01 0.87 3.36 0.84	< 2 4 2 8 2	2 3 10 < 1 1	23 158 38 3 < 15 <	0.03 0.14 0.10 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	10 10 10 < 10 < 10	27 85 88 < 1 8	< 10 < 10 < 10 < 10 < 10 < 10	36 32 96 2 36			
2197021	205	226	B	0.05	6	240	2	1.01	ł	2	11 <	0.01	< 10	< 10	16	< 10	34			
	1																	\cap	1	

CERTIFICATION:

 ωc

.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC VON 2R0

Project : OLD IRONSIDES Comments: ATTN: ARND BURGERT_CC: ARND BURGERT Page Number : 1 Total Pages : 1 Certificate Date: 22-SEP-1999 Invoice No. : 19929087 P.O. Number : Account : QHB

······	r		 	CERTIFIC	ATE OF A	NALYSIS	A99	29087	
SAMPLE	PREP CODE	Au ppb FA+AA							
P197019	244	1700							
				Ĩ					

CERTIFICATION:_

والمسكوبين مناريهم وتركيلوا لأكبر

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC V0N 2R0

Page Number : 1-A Total Pages ;2 Certificate Date; 28-SEP-1999 Invoice No. ; 19929088 P.O. Number Account :QHB

Project : SUNSHINE COAST Comments: ATTN: ARND BURGERT CC: ARND BURGERT

										CE	RTIF	CATE	OF A	NAL'	YSIS		49929	088		
SAMPLE	PREP CODE	Ag ppm	л1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm	Mg %	Mn ppm
\$150 \$151 \$152 \$153 \$154	201 229 201 229 201 229 201 229 201 229 201 229	<pre> < 0.2 < 0.2 </pre>	5.78 3.78 4.15 1.31 3.08	4 4 < 2 18	< 10 < 10 < 10 < 10 < 10	70 90 50 20 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.20 0.40 0.23 0.33 0.22	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 10 7 4 33	26 26 25 14 15	13 9 12 6 86	3.35 3.94 3.81 2.98 7.49	< 10 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 2	0.05 0.04 0.03 0.03 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.78 0.73 0.62 0.12 0.23	490 435 270 145 920
8155 8156 8157 8158 8159	201 229 201 229 201 229 201 229 201 229 201 229	<pre> < 0.2 </pre>	3.53 3.47 4.32 3.97 2.54	34 102 10 10 64	< 10 < 10 < 10 < 10 < 10 < 10	60 110 130 100 40	0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.23 0.24 0.47 0.23 0.05	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	49 58 66 27 3	24 23 17 13 10	22 24 41 27 25	5.22 6.38 5.54 5.22 5.13	10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.06 0.10 0.05 0.04	< 10 < 10 < 10 < 10 < 10	0.84 0.42 0.48 0.51 0.18	810 1740 1515 1755 170
\$160 \$161 \$162 \$163 \$164	201 229 201 229 201 229 201 229 201 229 201 229	0.2 0.2 0.2 < 0.2 < 0.2	3.08 3.72 2.55 3.28 3.12	24 8 18 4 2	< 10 < 10 < 10 < 10 < 10 < 10	40 50 60 60	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.09 0.14 0.11 0.19 0.12	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	13 9 15 20 20	17 32 15 19 15	38 59 31 31 31	6.25 5.35 5.86 4.97 6.48	10 < 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.07 0.09 0.06 0.07	< 10 < 10 < 10 < 10 < 10 < 10	0.29 0.50 0.27 0.37 0.34	390 215 400 325 485
\$165 \$166 \$167 \$168 \$169	201 229 201 229 201 229 201 229 201 229 201 229	<pre>< 0.2 < 0.2</pre>	2.13 2.58 2.92 3.80 4.44	2 4 6 8 12	< 10 < 10 < 10 < 10 < 10 < 10	90 90 90 80 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0,59 0.45 0.28 0.30 0.29	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	37 25 12 20 26	20 20 24 24 25	26 25 14 42 51	4.29 3.34 3.43 4.19 3.75	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.07 0.07 0.04 0.04 0.04 0.08	< 10 10 < 10 < 10 < 10	0.34 0.48 0.73 1.18 1.08	1470 1150 1485 770 1505
S170 S171 S172 S173 S174	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.39 3.70 2.34 3.09 3.08	< 2 4 4 2 2	< 10 < 10 < 10 < 10 < 10 < 10	70 50 80 40 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.29 0.22 0.32 0.20 0.10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 8 12 16 3	19 22 20 22 21	4 9 7 14 5	2.49 3.28 3.34 3.51 3.79	< 10 < 10 < 10 < 10 < 10 10	< 1 < 1 < 1 1 < 1	0.03 0.03 0.03 0.03 0.03 0.01	< 10 < 10 < 10 < 10 < 10 < 10	0.38 0.49 0.56 0.36 0.18	665 500 1530 385 110
S175 S176 S177 S178 S179	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.51 4.67 1.31 1.81 1.62	2 4 < 2 8 2	< 10 < 10 < 10 < 10 < 10 < 10	30 20 30 110 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 2 2 < 2	0.09 0.09 0.17 0.20 0.43	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 3 1 9 13	19 26 7 10 27	17 14 9 8 10	3.71 4.20 1.65 3.12 3.88	10 10 < 10 < 10 < 10 10	1 < 1 < 1 < 1 < 1 < 1	0.05 0.03 0.02 0.03 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.34 0.30 0.20 0.16 0.57	245 110 140 965 1235
\$180 \$181 \$182 \$183 \$184	201 229 201 229 201 229 201 229 201 229 201 229	0.2 < 0.2 < 0.2 1.2 0.2	3.07 3.51 3.44 3.14 3.67	2 < 2 6 < 2 4	< 10 < 10 < 10 < 10 < 10 < 10	50 100 90 60 60	0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.40 0.19 0.25 0.22 0.16	1.0 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	22 10 8 9 10	19 33 74 52 23	20 35 30 8 38	3.37 4.96 5.58 4.71 4.24	< 10 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.06 0.03 0.03 0.04 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.69 0.77 0.79 0.81 0.62	625 430 430 305 360
\$185 \$186 \$187 \$188 \$189	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.24 2.69 2.38 2.56 2.36	< 2 2 12 8	< 10 < 10 < 10 < 10 < 10 < 10	80 60 40 80 220	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.25 0.26 0.30 0.27 0.31	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 14 83 6 13	18 28 26 27 24	19 21 42 44 10	3.86 5.10 4.33 5.12 4.33	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.04 0.04 0.17 0.16	< 10 < 10 < 10 < 10 < 10 < 10	0.68 0.93 0.68 0.98 1.15	435 1030 845 290 520
	- L											<u> </u>	c	ERTIFIC	CATION:_		·	aul	Ī₽	i

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC VoN 2R0

Page Number :1-B Total Pages :2 Certificate Date: 28-SEP-1999 Invoice No. :19929088 P.O. Number Account QHB

Project : SUNSHINE COAST Comments: ATTN: ARND BURGERT CC: ARND BURGERT

	- <u></u>							<u> </u>		ĆE	RTIF	ICATE	OF A	NAL'	YSIS		A9929088
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	9 ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
\$150 \$151 \$152 \$153 \$154	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< 1 < 1 3 - 3	0.01 0.01 0.01 < 0.01 < 0.01	10 8 2 14	1350 900 310 500 1330	10 8 6 24 12	0.04 0.04 0.04 0.06 0.04	< 2 < 2 < 2 < 2 < 2	3 3 1 3	19 33 17 28 16	0.17 0.25 0.27 0.15 0.17	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	72 81 82 52 91	< 10 < 10 < 10 < 10 < 10 < 10	70 68 40 42 106	et an angelen and
8155 8156 8157 8158 8159	201 229 201 229 201 229 201 229 201 229 201 229	< 1 < 1 < 1 1 1	0.04 0.02 0.01 0.02 < 0.01	10 14 13 11 5	570 720 920 620 680	8 10 12 10 16	0.04 0.04 0.07 0.06 0.04	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	5 4 5 3	23 20 35 19 6	0.16 0.15 0.15 0.17 0.10	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	98 104 88 108 90	< 10 < 10 < 10 < 10 < 10 < 10	76 156 152 118 44	
8160 8161 8162 8163 8164	201 229 201 229 201 229 201 229 201 229 201 229	< 1 2 6 < 1 < 1	0.01 0.01 0.01 0.01 0.01	8 13 10 10 8	790 670 700 370 400	26 10 18 10 8	0.05 0.04 0.07 0.02 0.02	< 2 4 < 2 < 2 < 2 < 2	4 5 3 5 6	6 12 12 15 8	0.14 0.16 0.12 0.18 0.21	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	91 96 104 107 126	< 10 < 10 < 10 < 10 < 10 < 10	62 54 62 66 86	
8165 8166 8167 8168 8169	201 229 201 229 201 229 201 229 201 229 201 229	< 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	8 8 9 13 13	420 350 320 430 1170	14 8 8 10 12	0.04 0.06 0.02 0.04 0.04	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	3 2 2 2 3	35 28 21 35 29	0.17 0.19 0.22 0.19 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	71 62 74 71 59	< 10 < 10 < 10 < 10 < 10 < 10	106 34 72 104 112	
\$170 \$171 \$172 \$173 \$174	201 229 201 229 201 229 201 229 201 229 201 229	< 1 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	4 7 6 3	380 1110 860 340 3750	6 6 8 8 8	0.01 0.04 0.03 0.03 0.02	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	1 2 3 2	22 19 27 19 10	0.19 0.15 0.13 0.21 0.15	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	57 63 61 67 76	< 10 < 10 < 10 < 10 < 10 < 10	38 54 76 44 36	
9175 9176 9177 9178 9179	201 229 201 229 201 229 201 229 201 229 201 229	< 1 < < 1 < < 1 < < 1 < 3 < < 1	0.01 0.01 0.01 0.01 0.01 0.01	3 5 2 4 7	1090 1440 310 570 350	4 10 20 22 10	0.01 0.03 0.01 0.02 0.02	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	3 3 1 1 2	7 7 22 26 29	0.19 0.18 0.13 0.10 0.29	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	89 76 26 36 84	< 10 < 10 < 10 < 10 < 10 < 10	34 36 28 92 88	
\$180 \$181 \$182 \$183 \$184	201 229 201 229 201 229 201 229 201 229 201 229	< 1 < 1 < 1 < 1 1	0.01 0.01 0.01 0.01 0.01	11 9 11 12 9	740 1830 1010 380 540	12 10 18 226 4	0.06 0.04 0.07 0.05 0.06	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 3 4 3 3	36 19 17 22 16	0.17 0.25 0.27 0.28 0.26	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	73 85 114 103 86	10 < 10 < 10 < 10 < 10 < 10	62 104 64 56 48	······································
5185 5186 5187 5188 5189	201 229 201 229 201 229 201 229 201 229 201 229	< 1 1 1 < 1	0.01 0.01 0.01 0.01 0.02	8 9 10 7 6	560 750 430 1190 1150	6 14 12 10 4	0.05 0.03 0.04 0.11 0.19	< 2 < 2 2 4 < 2	1 2 1 3 1	21 22 20 23 57	0.22 0.26 0.20 0.19 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	74 99 85 97 63	< 10 < 10 < 10 < 10 < 10 < 10	66 104 94 68 92	\cap ,
						*** *							с	ERTIFIC	ATION:_		· Naul

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 North Vancouver V7J 2C1 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC VON 2R0

Page Number : 2-A Total Pages : 2 Certificate Date: 28-SEP-1999 Invoice No. : 19929088 P.O. Number Account CHB

Project : SUNSHINE COAST Comments: ATTN: ARND BURGERT_CC: ARND BURGERT

		¶								CE	RTIFI	CATE	OF A	NAL	YSIS	/	49929	880		
SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	B Dow	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррт	Cr ppm	Сц ррш	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
s190 s191 s192 s193 s194	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.44 2.33 1.96 2.42 2.38	< 2 2 4 6	< 10 < 10 < 10 < 10 < 10 < 10	50 70 40 50 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.30 0.34 0.86 0.66 0.33	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 13 12 15 8	19 22 26 25 21	6 14 17 16 20	2.75 3.47 3.19 3.34 2.76	< 10 < 10 < 10 < 10 < 10 < 10	< 1 2 1 1 < 1	0.02 0.08 0.14 0.10 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.55 0.80 1.18 1.26 0.70	245 645 675 860 300
8195 8196 8197 8198 8199	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 < 0.2 0.2 < 0.2 < 0.2 < 0.2	4.10 5.77 5.23 4.39 10.65	8 6 4 6	< 10 < 10 < 10 < 10 < 10 < 10	80 30 30 40 30	< 0.5 < 0.5 < 0.5 0.5 1.5	< 2 < 2 < 2 < 2 < 2 < 2	0.39 0.08 0.10 0.11 0.09	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	20 11 10 40 9	37 42 14 20 25	39 18 30 30 15	4.05 4.44 4.94 2.88 2.75	< 10 < 10 10 < 10 < 10	< 1 1 < 1 1 < 1	0.06 0.02 0.03 0.05 0.03	< 10 < 10 < 10 < 10 < 10 < 10	1.05 0.48 0.56 0.46 0.31	1155 265 265 395 145
8200 8201 5202 5203 5204	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.78 3.34 6.72 2.27 1.62	2 4 4 < 2 < 2	< 10 < 10 < 10 < 10 < 10 < 10	30 30 40 60 60	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 2	0.16 0.23 0.14 0.49 0.27	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 6 12 10 28	21 21 20 17 19	7 9 25 12 19	3.41 3.26 3.42 4.37 2.55	< 10 10 < 10 10 < 10	1 < 1 < 1 < 1 < 1 < 1	0.04 0.03 0.03 0.05 0.04	< 10 < 10 < 10 < 10 < 10 < 10	0.36 0.32 0.31 0.48 0.37	130 175 195 405 915
8205 8206 8207 8208 8209	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.66 4.51 3.86 4.54 5.33	< 2 4 4 8	< 10 < 10 < 10 < 10 < 10 < 10	110 80 50 60 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.16 0.26 0.24 0.22 0.22	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 12 14 16 23	22 21 59 91 82	12 21 16 17 19	6.41 4.31 4.39 6.02 5.39	10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.05 0.05 0.03 0.05	< 10 < 10 < 10 < 10 < 10 < 10	1.18 0.74 1.36 1.82 1.96	560 415 660 695 955
S210 S211 S212 S213 S214	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 < 0.2 0.2 0.2 0.2 < 0.2	5.33 3.39 4.65 3.79 3.97	8 2 4 2 < 2	< 10 < 10 < 10 < 10 < 10 < 10	70 100 240 60 70	< 0.5 < 0.5 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.26 0.53 0.93 0.38 0.25	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	17 30 37 18 20	55 45 29 49 49	20 35 35 24 20	5.42 4.69 3.66 4.70 4.61	10 10 < 10 10 10	2 < 1 3 1 1	0.09 0.09 0.06 0.05 0.04	< 10 < 10 < 10 < 10 < 10 < 10	1.37 1.14 0.98 1.15 1.02	680 1285 2630 915 365
S215 S216 S217 S218 S219	201 229 201 229 201 229 201 229 201 229 201 229	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.07 4.19 4.42 2.76 5.08	< 2 < 2 4 4	< 10 < 10 < 10 < 10 < 10	70 50 40 70 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.44 0.35 0.36 0.60 0.33	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	11 11 9 13 14	36 40 30 46 31	12 14 14 12 20	3.10 3.96 4.16 3.50 4.12	10 10 10 10	< 1 < 1 1 < 1 < 1 < 1	0.03 0.04 0.04 0.03 0.05	< 10 < 10 < 10 < 10 < 10 < 10	0.88 1.05 0.85 1.25 0.97	335 320 300 475 415
\$220 \$221 \$222 \$223 \$224	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.47 3.38 4.01 3.61 3.68	< 2 2 4 < 2	< 10 < 10 < 10 < 10 < 10 < 10	40 70 60 70 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.29 0.37 0.27 0.39 0.43	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 14 13 14 16	31 34 31 35 31	18 12 19 14 18	3.82 4.34 3.65 3.80 4.03	10 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.04 0.03 0.06 0.06 0.10	< 10 < 10 < 10 < 10 < 10 < 10	0.86 0.78 0.95 1.26 1.39	310 310 610 690 825
\$225 \$226 \$227 \$228 \$229	201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.83 2.68 1.83 2.99 2.77	< 2 2 < 2 < 2 < 2 < 2	< 10 < 10 < 10 < 10 < 10 < 10	50 50 40 40 50	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.56 0.52 0.59 0.48 0.22	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	14 10 9 15 7	34 39 29 34 29	9 8 3 12 9	3.29 3.08 2.49 3.68 3.65	10 10 < 10 10 10	< 1 < 1 1 < 1 3	0.03 0.03 0.03 0.05 0.04	< 10 < 10 < 10 < 10 < 10 < 10 < 10	1.31 0.79 0.89 1.67 0.46	500 355 330 540 180
		· · · · · · · · · · · · · · · · · · ·											¢	ERTIFIC	ATION:_		·2	lauch		

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MONEILL, BC VON 2R0

Project : SUNSHINE COAST Comments: ATTN; ARND BURGERT CC: ARND BURGERT Page Number :2-B Total Pages :2 Certificate Date: 28-SEP-1999 Invoice No. : [9929088 P.O. Number : Account :QHB

PI PI SAMPLE CC \$190 201 \$191 202	REP ODE 1 229 1 229 1 229	Mo ppm < 1	Na. %	Ni ppm	P	Πħ													
S190 201	1 229 1 229 1 229	< 1			ррш	ppm	S %	Sb ppm	Sc ppm	Sr ppm	Tİ X	T1 ppm	U mqq	V ppm	W mqq	Zn ppm			
\$192 201 \$193 201 \$193 201 \$194 201	1 229 1 229	< 1 < 1 < 1 < 1	0.01 0.01 0.02 0.02 0.01	6 7 12 11 8	640 660 850 590 660	6 8 12 6	0.01 0.04 0.04 0.04 0.04	< 2 < 2 < 2 < 2 < 2 < 2	3 2 3 3 2	24 29 61 61 34	0.22 0.19 0.15 0.15 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	54 68 50 55 51	< 10 < 10 < 10 < 10 < 10 < 10	72 58 70 78 56			
\$195 201 \$196 201 \$197 201 \$198 201 \$199 201	1 229 1 229 1 229 1 229 1 229 1 229	< 1 3 < 1 < 1	0.02 0.01 0.01 0.01 < 0.01	20 8 5 8 6	1620 810 700 800 810	10 16 70 14 10	0.03 0.04 0.04 0.04 0.05	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 3 3 2 4	35 9 12 11 10	0.16 0.18 0.26 0.12 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	72 73 101 53 46	< 10 < 10 < 10 < 10 < 10 < 10	92 56 110 70 38			
\$200 201 \$201 201 \$202 201 \$203 203 \$204 201	1 229 1 229 1 229 1 229 1 229 1 229	< 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	6 7 6 5 7	230 320 580 240 290	8 6 9 12 14	0.03 0.03 0.04 0.01 0.02	2 < 2 < 2 < 2 < 2 < 2	2 2 3 4 1	17 21 12 46 27	0.19 0.20 0.18 0.33 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	66 67 61 95 43	< 10 < 10 < 10 < 10 < 10 < 10	24 36 66 92 54	<u> </u>		
\$205 201 \$206 201 \$207 201 \$208 201 \$209 201	1 229 1 229 1 229 1 229 1 229 1 229	7 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.03 0.01 0.01	8 8 17 26 23	980 1170 1170 860 920	12 10 10 10 8	0.03 0.04 0.04 0.06 0.08	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	4 3 3 3 3	14 26 21 16 22	0.22 0.20 0.20 0.27 0.19	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	94 88 76 108 89	< 10 < 10 < 10 < 10 < 10 < 10	96 70 82 86 74			
S210 201 S211 201 S212 201 S213 201 S214 201	1 229 1 229 1 229 1 229 1 229 1 229	1 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	16 16 19 18 20	1070 1300 560 740 410	6 16 8 6 8	0.09 0.07 0.05 0.04 0.01	< 2 < 2 < 2 < 2 < 2	4 3 2 2	27 55 100 36 22	0.28 0.23 0.20 0.24 0.31	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	99 79 62 93 95	< 10 < 10 < 10 < 10 < 10 < 10	60 116 74 74 72	<u>.</u>		
\$215 201 \$216 201 \$217 201 \$218 201 \$219 201	1 229 1 229 1 229 1 229 1 229 1 229	< 1 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	11 15 9 15 14	1080 610 930 300 560	< 2 < 8 < 6 < 2	0.01 0.01 0.01 0.01 0.01 0.02	< 2 < 2 < 2 < 2 < 2 < 2	3 3 4 3	40 40 39 52 41	0.25 0.33 0.33 0.37 0.28	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	66 88 92 94 86	< 10 < 10 < 10 < 10 < 10 < 10	72 58 54 68 62			
\$220 201 \$221 201 \$222 201 \$223 201 \$224 201	L 229 L 229 L 229 L 229 L 229 L 229	< 1 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01 0.01	11 14 13 14 13	360 330 650 450 460	6 6 1 2 4	0.01 0.02 0.03 0.03 0.04	< 2 < 2 < 2 < 2 < 2 < 2	3 3 3 3 3 3	27 36 30 40 47	0.29 0.34 0.25 0.25 0.26	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	85 96 71 71 73	< 10 < 10 < 10 < 10 < 10 < 10	50 64 60 64 74			
\$225 201 \$226 201 \$227 201 \$228 201 \$229 201	229 229 229 229 229 229	< 1 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.01 0.01 0.01	10 13 8 15 8	610 520 430 460 330	4 < 6 < 2 < < 2 < 6	0.01 0.01 0.01 0.01 0.01 0.02	< 2 < 2 < 2 < 2 < 2 < 2	4 4 4 2	42 45 47 35 17	0.31 0.27 0.33 0.33 0.25	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	85 70 70 82 90	< 10 < 10 < 10 < 10 < 10 < 10	78 64 44 90 32	\cap	,	

CERTIFICATION:_

. /

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC VON 2R0

Project : SUNSHINE COAST Comments: ATTN: ARND BURGERT CC: ARND BURGERT Page Number :1-A Total Pages :1 Certificate Date: 28-SEP-1999 Invoice No. :19929089 P.O. Number : Account :QHB

			<u></u>								CE	RTIFI	CATE	OF A	NAL	YSIS		49929	08 9		
SAMPLE	PR CO	ep De	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
P197022 P197023	205	226 226	ppm 2.2 < 0.2	3.36 3.82	ppm 4 6	ppm < 10 < 10	90	ppm < 0.5 < 0.5	ppm < 2 < 2	% 2.38 0.40	ppm < 0.5 < 0.5	ppm 6 8	ppm 55 151	9pm 89 10	% 5.19 4.89	ppm < 10 10	ppm < 1 4	% 0.06 0.50	ppm < 10 < 10	% 0.92 3.65	ppm 810 870
																		\cap		1	

CERTIFICATION:

Vac- L

,

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC VON 2R0

Project : SUNSHINE COAST Comments: ATTN: ARND BURGERT CC: ARND BURGERT Page Number :1-B Total Pages :1 Certificate Date: 28-SEP-1999 Invoice No. : 19929089 P.O. Number : Account :QHB

[<u></u>								CE	RTIF	CATE	OF A	NAL	YSIS		A9929089	
SAMPLE	PREP		Mo ppm	Na *	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	ti L	T1 ppm	U mqq	V ppm	M M	Zn ppm		
₽197022 2 ₽197023 2	05 2:	26	< 1 < 1	0.05	21 34	880 960	8 < 2	0.02	< 2 4	6 5	351 56	0.26	< 10 < 10	< 10 < 10	79 103	< 10 < 10	64 78		
																		\wedge	

CERTIFICATION:

446

Analytical Chemists " Geochemists " Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC V0N 2R0

Project : SUNSHINE COAST Comments: ATTN: ARND BURGERT CC: ARND BURGERT Page Number :1 Total Pages :1 Certificate Date:23-SEP-1999 Invoice No. :19929091 P.O. Number : Account :QHB

			CERTIFIC	ATE OF ANALYSIS	A99	29091
SAMPLE	PREP CODE	Au ppb FA+AA				
s73 s74	225 225	5 < 5	·			_
		f				

CERTIFICATION:_

Inacher Could

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

P.O. BOX 1208 PORT MONEILL, BC VON 2R0

Page Number : 1-A Total Pages : 3 Certificate Date: 14-OCT-1999 Invoice No. : 19930451 P.O. Number : Account :QHB

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

		··								CE	RTIF	CATE	OF /	ANAL	YSIS		49930	9451		
SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Ве ррш	Bi ppm	Ca %	Cđ ppm	Со ррш	Cr ppm	Cu ppm	Fe %	Ga ppm	Ħg ppm	K %	La ppm	Mg %	Mn ppm
L29600N 29975E L29600N 30000E L29600N 30025E L29600N 30050E L29600N 30075E	201 229 201 229 201 229 201 229 201 229 201 229	0.4 0.4 0.2 < 0.2 0.2	2.64 2.35 2.48 2.50 2.22	42 36 22 26 50	< 10 < 10 < 10 < 10 < 10	700 580 560 180 470	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.68 0.35 0.21 0.29 0.28	< 0,5 < 0.5 < 0.5 0.5 0.5	28 10 11 15 11	61 43 38 33 54	365 180 195 71 160	3.19 2.76 3.41 3.94 3.03	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.27 0.21 0.22 0.17 0.25	< 10 < 10 < 10 < 10 < 10	1.12 0.80 0.82 0.90 0.90	275 150 110 385 175
L29600N 30100E L29600N 30125E L29600N 30150E L29600N 30175E L29600N 30200E	201 229 201 229 201 229 201 229 201 229 201 229	0.2 0.4 0.4 1.0 0.2	2.38 2.22 2.38 3.03 2.23	40 32 44 44 18	< 10 < 10 < 10 < 10 < 10 < 10	400 800 190 320 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.20 0.18 0.09 0.24 0.22	< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5	7 11 8 23 6	46 45 34 38 28	141 184 125 335 95	3.53 5.01 3.84 3.66 2.70	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1 < 1 < 1	0.17 0.29 0.10 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	0.86 0.91 0.64 0.68 0.65	135 160 175 250 150
L29600N 30225E L29600N 30250E L29600N 30275E L29600N 30300E L29600N 30325E	201 229 201 229 201 229 201 229 201 229 201 229	0.2 0.2 < 0.2 0.6 0.2	3.35 3.03 2.35 3.09 2.58	26 16 14 16 54	< 10 < 10 < 10 < 10 < 10 < 10	220 200 80 210 290	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.12 0.14 0.12 0.23 0.35	0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	7 4 5 5 7	37 44 42 41 36	103 95 29 92 133	2.90 2.22 2.47 1.83 2.49	< 10 < 10 < 10 < 10 < 10	< 1 1 < 1 < 1 < 1 < 1	0.12 0.08 0.22 0.10 0.15	< 10 < 10 < 10 < 10 < 10 < 10	0.61 0.69 0.82 0.68 0.63	125 130 195 135 145
L29600N 30350E L29600N 30375E L29600N 30400E L29600N 30425E L29600N 30450E	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 0.2 1.4 0.2 0.6	3.51 2.80 5.89 2.20 4.14	24 12 24 < 2 12	< 10 < 10 < 10 < 10 < 10 < 10	170 240 280 30 810	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.24 0.36 0.12 0.02 0.13	0.5 1.0 < 0.5 1.0 1.0	6 20 16 2 8	39 37 39 21 73	128 91 183 28 119	2.33 3.47 3.16 14.70 4.27	< 10 < 10 < 10 10 10	< 1 1 < 1 < 1 < 1	0.09 0.28 0.11 0.01 0.24	< 10 < 10 < 10 < 10 < 10	0.57 1.07 0.63 0.07 1.50	145 345 230 30 175
L29650N 29975E L29650N 30000E L29650N 30025E L29650N 30050E L29650N 30075E	201 229 201 229 201 229 201 229 201 229 201 229	0.4 0.6 0.6 0.8 0.2	2.76 2.35 2.91 3.15 2.73	48 56 58 76 66	< 10 < 10 < 10 < 10 < 10 < 10	410 620 390 490 450	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.19 0.35 0.21 0.31 0.17	0.5 < 0.5 0.5 0.5 0.5	8 13 8 14 10	61 44 47 47 48	166 182 257 328 193	4.09 4.03 4.12 4.15 3.77	< 10 < 10 < 10 < 10 < 10 < 10	1 < 1 < 1 4 < 1	0.12 0.23 0.11 0.19 0.20	< 10 < 10 < 10 < 10 < 10 < 10	0.96 0.93 0.89 0.92 0.89	135 170 135 190 175
L29650N 30100E L29650N 30125E L29650N 30150E L29650N 30175E L29650N 30200E	201 229 201 229 201 229 201 229 201 229 201 229 201 229	0.6 0.2 < 0.2 0.2 0.6	2.93 2.70 2.33 2.02 3.27	30 8 6 10 14	< 10 < 10 < 10 < 10 < 10 < 10	230 110 80 60 140	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.17 0.06 0.15 0.05 0.05	0.5 < 0.5 0.5 1.0 0.5	8 4 1 < 1 3	23 42 49 22 40	168 40 26 14 50	2.45 2.56 3.10 5.95 3.84	< 10 < 10 < 10 10 10	< 1 < 1 1 3 1	0.15 0.03 0.08 0.09 0.16	< 10 < 10 < 10 < 10 < 10 < 10	0.58 0.70 0.78 0.29 0.81	175 130 55 50 150
L29650N 30225E L29650N 30250E L29650N 30275E L29650N 30300E L29650N 30325E	201 229 201 229 201 229 201 229 201 229 201 229	0.6 0.2 0.2 0.4 0.6	3.10 3.02 2.39 2.27 2.82	34 14 42 8 18	< 10 < 10 < 10 < 10 < 10 < 10	350 120 160 250 420	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.20 0.16 0.13 0.14 0.24	0.5 < 0.5 1.5 0.5 < 0.5	15 10 10 8 16	39 31 31 42 51	114 57 65 73 117	2.50 3.34 3.32 3.37 3.60	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1 < 1 < 1	0.19 0.31 0.20 0.16 0.21	< 10 < 10 < 10 < 10 < 10 < 10	0.79 0.91 0.79 0.85 1.04	175 250 180 155 220
L29650N 30350E L29700N 29950E L29700N 29975E L29700N 30000E L29700N 30025E	201 229 201 229 201 229 201 229 201 229 201 229	0.8 0.4 0.2 < 0.2 0.2	2.91 2.29 1.86 1.90 1.95	14 70 64 48 12	< 10 < 10 < 10 < 10 < 10 < 10	860 440 400 200 170	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.23 0.45 0.29 0.27 0.15	0.5 0.5 < 0.5 < 0.5 0.5	11 10 9 11 8	63 34 29 24 22	176 185 175 114 97	5.61 2.79 2.32 2.69 2.35	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.33 0.20 0.15 0.18 0.14	< 10 < 10 < 10 < 10 < 10 < 10 < 10	1.29 0.78 0.63 0.71 0.56	215 120 110 215 210
L											*		(CERTIFIC	CATION:_			Laure	Tel Laf	

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC VON 2R0 Page Number : 1-B Total Pages :3 Certificate Date: 14-OCT-1999 Invoice No. : 19930451 P.O. Number : Account :QHB

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

	,									CE	RTIF	CATE	OF A	NAL	YSIS	A	9930451		
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	b b b	РЬ ррш	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U Dem	v ppm	W ppm	Zn ppm			c
L29600N 29975E L29600N 30000E L29600N 30025E L29600N 30050E L29600N 30075E	201 229 201 229 201 229 201 229 201 229 201 229	1 < 1 3 5 < 1	0.06 0.03 0.03 0.01 0.03	45 23 21 15 20	730 870 820 690 730	< 2 4 2 4	0.03 0.04 0.07 0.07 0.04	2 < 2 < 2 < 2 < 2	4 3 1 3 4	46 24 15 18 14	0.15 0.13 0.11 0.27 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	72 60 58 103 69	< 10 < 10 < 10 < 10 < 10 < 10	36 28 26 42 28			
L29600N 30100E L29600N 30125E L29600N 30150E L29600N 30175E L29600N 30200E	201 229 201 229 201 229 201 229 201 229 201 229	3 < 1 3 5 < 1	0.03 0.03 0.01 0.02 0.03	15 23 11 21 11	890 840 460 700 470	10 16 6 4 < 2	0.05 0.08 0.06 0.09 0.09	< 2 < 2 < 2 < 2 < 2 < 2	4 3 2 3	15 22 6 11 9	0.13 0.16 0.14 0.13 0.16	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	67 69 70 72 70	< 10 < 10 < 10 < 10 < 10 < 10	30 30 28 34 28			
L29600N 30225E L29600N 30250E L29600N 30275E L29600N 30300E L29600N 30325E	201 229 201 229 201 229 201 229 201 229 201 229	< 1 3 < 1 < 1 2	0.01 0.01 0.02 0.02 0.04	14 16 11 15 17	410 410 370 460 690	< 2 < 2 < 2 < 2 < 2 < 2	0.08 0.11 0.05 0.04 0.03	< 2 < 2 2 2 < 2	2 3 5 3 3	5 10 7 10 13	0.16 0.14 0.21 0.17 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	70 66 92 61 64	< 10 < 10 < 10 < 10 < 10 < 10	26 30 40 32 30			
L29600N 30350E L29600N 30375E L29600N 30400E L29600N 30425E L29600N 30450E	201 229 201 229 201 229 201 229 201 229 201 229	1 4 8 3 < < 1	0.03 0.04 0.01 0.01 0.03	13 14 16 3 17	530 640 840 340 510	< 2 8 < 2 6 2	0.04 0.08 0.14 0.06 0.05	< 2 < 2 < 2 < 2 < 2 < 2	3 4 2 1 4	9 12 10 2 9	0.14 0.18 0.10 0.17 0.21	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	64 106 72 98 125	< 10 < 10 < 10 < 10 < 10 < 10	26 54 44 2 42	а <u>н тараан</u> а		
L29650N 29975E L29650N 30000E L29650N 30025E L29650N 30050E L29650N 30075E	201 229 201 229 201 229 201 229 201 229 201 229	< 1 < 1 3 1	0.03 0.04 0.03 0.04 0.02	17 22 19 25 22	670 610 590 680 690	< 2 4 6 8 4	0.05 0.06 0.06 0.06 0.05	4 2 2 2 < 2	5 3 4 4	10 19 13 18 11	0.14 0.14 0.14 0.15 0.15	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	76 66 71 78 73	< 10 < 10 < 10 < 10 < 10 < 10	26 28 28 39 34			
L29650N 30100E L29650N 30125E L29650N 30150E L29650N 30175E L29650N 30200E	201 229 201 229 201 229 201 229 201 229 201 229	1 < 1 < < 1 < < 1 < < 1 < < 1 <	0.01 0.01 0.01 0.01 0.01	16 13 13 5 9	600 320 180 650 520	2 2 6 8 2	0.06 0.07 0.04 0.08 0.09	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 4 5 2 6	14 6 3 3 8	0.16 0.18 0.20 0.12 0.13	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	63 75 85 115 106	< 10 < 10 < 10 < 10 < 10 < 10	32 24 32 24 44			
L29650N 30225E L29650N 30250E L29650N 30275E L29650N 30300E L29650N 30325E	201 229 201 229 201 229 201 229 201 229 201 229	3 1 < 1 5 8	0.01 0.03 0.01 0.01 0.02	30 17 20 20 29	660 410 600 440 600	22 2 6 < 2 6	0.13 0.10 0.11 0.07 0.10	< 2 < 2 2 < 2 4	3 4 2 2 3	16 9 12 9 17	0.12 0.26 0.20 0.21 0.19	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	69 118 105 95 106	< 10 < 10 < 10 < 10 < 10 < 10	56 48 40 40 70			
L29650N 30350E L29700N 29950E L29700N 29975E L29700N 30000E L29700N 30025E	201 229 201 229 201 229 201 229 201 229 201 229	2 < 1 < 1 < 1 < 1	0.03 0.04 0.03 0.01 0.01	32 30 26 16 16	1250 610 720 740 650	20 20 6 < 2 4	0.13 0.04 0.03 0.03 0.05	< 2 < 2 < 2 < 2 < 2 < 2	5 2 2 2 1	25 29 20 11 7	0.20 0.14 0.12 0.18 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	115 58 49 74 64	< 10 < 10 < 10 < 10 < 10 < 10	60 32 26 46 36	\cap		
		•															1 1	-1	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

P.O. BOX 1208 PORT MONEILL, BC

Page Number :: 2-A Total Pages :3 Certificate Date: 14-OCT-1999 Invoice No. :19930451 P.O. Number OHB Account

Project : LORAX Comments: ATTN: ARND BURGERT CC; ARND BURGERT

·		1								CE	RTIFI	CATE	OF /	ANAL	YSIS		49930	9451		
SAMPLE	PREP CODE	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg PPM	K %	La ppm	Mg %	Mn ppm
L29700N 30050E L29700N 30075E L29700N 30100E L29700N 30125E L29700N 30150E	201 229 201 229 201 229 201 229 201 229 201 229	0.4 0.2 0.2 0.2 2.0	2.46 3.01 3.22 3.45 6.02	58 262 32 24 114	< 10 < 10 < 10 < 10 < 10	450 410 570 490 390	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.51 0.45 0.32 0.23 0.28	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 11 16 13 69	31 27 55 51 40	152 187 193 152 242	2.25 2.78 3.15 3.17 2.02	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 < 1	0.11 0.12 0.25 0.19 0.15	< 10 < 10 < 10 < 10 < 10 10	0.56 0.52 1.09 1.13 0.61	130 160 230 170 590
L29700N 30175E L29700N 30200E L29700N 30225E L29700N 30250E L29700N 30275E	201 229 201 229 201 229 201 229 201 229 201 229	0.8 0.8 1.2 1.4 2.4	3.05 2.62 3.06 3.20 3.58	30 < 2 18 < 2 16	< 10 < 10 < 10 < 10 < 10 < 10	250 310 510 460 640	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.14 0.17 0.21 0.12 0.28	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 10 13 6 14	43 43 62 51 57	89 87 162 101 191	3.74 2.99 3.94 3.95 4.12	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.21 0.11 0.17 0.12 0.28	< 10 < 10 < 10 < 10 < 10 < 10	0.91 0.87 1.09 0.77 1.24	140 130 180 130 215
L29700N 30300E L29700N 30325E L29700N 30350E L29750N 29950E L29750N 29975E	201 229 201 229 201 229 201 229 201 229 201 229	0.6 0.6 0.2 0.6	3.65 3.43 3.63 2.15 2.96	22 64 52 12 68	< 10 < 10 < 10 < 10 < 10	440 280 250 480 650	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.28 0.23 0.22 0.48 1.19	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 12 13 14 18	53 45 41 21 39	125 79 71 182 220	4.75 5.01 5.02 2.88 2.36	< 10 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.34 0.72 0.54 0.41 0.18	< 10 < 10 < 10 < 10 < 10 < 10	1.27 1.09 1.00 0.75 0.68	295 325 295 270 215
L29750N 30000E L29750N 30025E L29750N 30050E L29750N 30075E L29750N 30125E	201 229 201 229 201 229 201 229 201 229 201 229	0.6 0.4 0.6 0.6	3.56 3.15 3.00 4.14 3.18	94 10 2 406 < 2	< 10 < 10 < 10 < 10 < 10	550 640 1510 1270 1460	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 3	1,27 0,27 0,28 0,62 0,36	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	27 14 19 11 19	41 52 63 47 66	312 212 219 230 232	2.13 3.35 5.59 5.10 5.85	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.12 0.30 0.78 0.29 0.63	< 10 < 10 < 10 < 10 < 10 < 10	0.64 1.16 1.67 0.91 1.51	210 195 245 150 230
L29750N 30150E L29750N 30175E L29750N 30200E L29750N 30225E L29750N 30250E	201 229 201 229 201 229 201 229 201 229 201 229	0.6 1.0 2.6 1.8 0.6	2.87 3.21 4.95 4.88 3.78	14 12 68 50 50	< 10 < 10 < 10 < 10 < 10 < 10	1410 480 750 600 450	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.32 0.22 0.36 0.37 0.22	< 0.5 0.5 0.5 0.5 < 0.5	15 8 10 24 7	69 60 67 58 58	172 130 237 204 60	4.95 4.40 4.09 3.94 2.75	< 10 10 10 < 10 < 10	1 < 1 < 1 3 < 1	0.62 0.15 0.22 0.21 0.19	< 10 < 10 10 < 10 10	1.41 1.07 1.09 0.94 0.87	255 135 205 430 190
L29750N 30275E L29750N 30300E L29750N 30325E L29750N 30350E L29800N 30025E	201 229 201 229 201 229 201 229 201 229 201 229 201 229	< 0.2 0.6 0.6 0.2 0.6	3.23 4.23 3.75 2.98 3.18	94 48 68 38 4	< 10 < 10 < 10 < 10 < 10 < 10	90 260 280 140 1390	< 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.16 0.19 0.25 0.06 0.23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	18 18 20 11 13	38 41 42 50 70	27 101 87 55 206	5.21 5.18 5.12 5.56 4.72	10 10 < 10 10 < 10	2 < 1 < 1 1 < 1	0.18 0.62 0.64 0.30 0.42	< 10 < 10 < 10 < 10 < 10 < 10	0.69 1.05 1.08 1.12 1.44	735 350 405 365 180
L29800N 30050E L29800N 30075E L29800N 30100E L29800N 30125E L29800N 30150E	201 229 201 229 201 229 201 229 201 229 201 229	0.6 1.2 1.2 0.6 0.4	2.83 2.88 2.90 3.01 3.06	6 22 18 50 50	< 10 < 10 < 10 < 10 < 10 < 10	1260 1200 870 230 280	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.27 0.31 0.32 0.36 0.34	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 8 7 7 13	78 77 62 51 39	187 164 137 105 114	5.19 5.14 5.19 4.27 2.56	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.40 0.40 0.31 0.16 0.12	< 10 < 10 < 10 < 10 < 10 < 10	1.45 1.39 1.41 0.76 0.66	185 200 180 160 205
L29800N 30175E L29800N 30200E L29800N 30225E L29800N 30250E L29850N 29950E	201 229 201 229 201 229 201 229 201 229 201 229	0.2 0.2 1.0 0.6 1.2	3.98 4.07 4.46 4.69 2.97	54 90 84 62 8	< 10 < 10 < 10 < 10 < 10 < 10	670 180 170 360 1160	< 0.5 0.5 < 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.31 0.30 0.12 0.25 0.35	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	23 B 10 33 9	68 40 47 78	75 46 65 112 174	3.89 2.90 4.91 5.88 5.47	< 10 < 10 < 10 < 10 10 10	< 1 3 < 1 < 1 1 1	0.30 0.10 0.51 0.87 0.38	< 10 < 10 < 10 < 10 < 10 < 10	1.18 0.52 0.86 1.19 1.42	620 255 270 480 185
													c	ERTIFIC	ATION:_		·	lose-f.	70	*

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

> P.O. BOX 1208 PORT MONEILL, BC

Page Number : 2-B Total Pages :3 Certificate Date: 14-OCT-1999 Invoice No. ; 19930451 P.O. Number Account ;QHB

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

	- <u>F</u>	-								CE		ICATE	E OF A	NAL	YSIS		A9930451	
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	р mqq	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W ppm	Zn ppm		
L29700N 30050E L29700N 30075E L29700N 30100E L29700N 30125E L29700N 30150E	201 229 201 229 201 229 201 229 201 229 201 229	3 2 < 1 1 < 1	0.06 0.05 0.04 0.03 0.02	24 22 39 33 53	460 680 870 610 1840	24 10 6 6 10	0.09 0.13 0.05 0.09 0.08	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	3 2 4 3 2	35 42 27 17 22	0.13 0.13 0.22 0.21 0.12	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	54 56 79 85 53	< 10 < 10 < 10 < 10 < 10 < 10	26 28 44 38 94		
L29700N 30175E L29700N 30200E L29700N 30225E L29700N 30250E L29700N 30275E	201 229 201 229 201 229 201 229 201 229 201 229	6 8 12 5 7	0.02 0.01 0.03 0.01 0.03	17 20 29 12 31	410 490 500 590 810	4 6 4 8	0.15 0.13 0.11 0.11 0.11	< 2 < 2 < 2 < 2 < 2 < 2 < 2	6 3 5 4 5	11 13 12 8 18	0.17 0.16 0.20 0.21 0.22	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	91 88 115 110 119	< 10 < 10 < 10 < 10 < 10 < 10	68 50 76 42 76	10-10	
L29700N 30300E L29700N 30325E L29700N 30350E L29750N 29950E L29750N 29950E	201 229 201 229 201 229 201 229 201 229 201 229	5 < 1 < 1 < 1 < 1	0.03 0.03 0.02 0.05 0.14	20 26 25 20 39	1080 810 770 1020 680	6 10 6 40 124	0.08 0.08 0.07 0.04 0.04	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 11 9 3 4	13 20 18 49 143	0.25 0.24 0.20 0.23 0.14	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	125 128 117 79 57	< 10 < 10 < 10 < 10 < 10 < 10	76 126 124 48 42		
L29750N 30000E L29750N 30025E L29750N 30050E L29750N 30075E L29750N 30125E	201 229 201 229 201 229 201 229 201 229 201 229	< 1 < 1 < 6 1	0.11 0.03 0.04 0.03 0.04	58 38 43 33 47	650 900 1130 1000 1020	36 6 22 6 12	0.03 0.06 0.10 0.15 0.11	< 2 < 2 < 2 < 2 < 2 < 2 < 2	4 4 5 4 5	295 19 36 179 51	0.10 0.22 0.31 0.20 0.28	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	48 86 117 91 115	< 10 < 10 < 10 < 10 < 10 < 10	36 42 56 50 68		
L29750N 30150E L29750N 30175E L29750N 30200E L29750N 30225E L29750N 30250E	201 229 201 229 201 229 201 229 201 229 201 229	3 8 7 8 1	0.04 0.04 0.03 0.03 0.03	33 17 30 28 21	1240 780 1210 1280 750	22 4 10 14 6	0.11 0.13 0.11 0.11 0.11	< 2 < 2 < 2 < 2 < 2 < 2	5 4 6 6	28 14 18 17 12	0.29 0.21 0.18 0.16 0.21	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	125 133 137 121 96	< 10 < 10 < 10 < 10 < 10 < 10	58 38 106 100 50		
L29750N 30275E L29750N 30300E L29750N 30325E L29750N 30350E L29800N 30025E	201 229 201 229 201 229 201 229 201 229 201 229	3 1 2 1 2	0.01 0.02 0.03 0.01 0.04	17 33 29 16 36	910 730 800 640 970	8 6 4 6 6	0.10 0.06 0.06 0.08 0.07	< 2 < 2 < 2 < 2 < 2 < 2	6 10 10 10 5	11 15 22 8 22	0.15 0.21 0.22 0.31 0.27	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	111 123 122 167 115	< 10 < 10 < 10 < 10 < 10 < 10	100 144 128 68 50		
L29800N 30050E L29800N 30075E L29800N 30100E L29800N 30125E L29800N 30150E	201 229 201 229 201 229 201 229 201 229 201 229	5 3 5 8 < 1	0.04 0.04 0.04 0.03 0.03	23 25 22 20 36	1150 1090 1060 1760 650	12 20 20 24 6	0.12 0.11 0.11 0.07 0.03	< 2 < 2 < 2 < 2 < 2 < 2 < 2	8 8 5 4	21 19 20 20 11	0.26 0.27 0.24 0.16 0.16	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	144 144 131 125 68	< 10 < 10 < 10 < 10 < 10 < 10	52 64 62 64 74		
L29800N 30175E L29800N 30200E L29800N 30225E L29800N 30250E L29850N 29950E	201 229 201 229 201 229 201 229 201 229 201 229	3 < 1 < 1 < 1 5	0.03 0.02 0.02 0.03 0.03	33 35 16 55 25	1130 960 860 810 1370	6 8 6 4 32	0.05 0.08 0.08 0.07 0.12	< 2 < 2 < 2 < 2 < 2 < 2	8 5 9 12 7	19 22 11 24 25	0.25 0.13 0.18 0.24 0.24	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	113 62 108 132 142	< 10 < 10 < 10 < 10 < 10 < 10	96 76 106 192 56	$\hat{0}$	
													c	ERTIFIC	ATION:_		· Davil T	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC VON 2R0 Page Number :3-A Total Pages :3 Certificate Date: 14-OCT-1999 Invoice No. : 19930451 P.O. Number : Account :OHB

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

	r		۹								CE	RTIFI	CATE	OF	ANAL	YSIS		49930	451		
SAMPLE	PR CC	EP DE	Ag ppm	A1 *	Ая шор	B	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
L29850N 29975E L29850N 30000E L29850N 30025E L29850N 30050E L29850N 30075E	201 201 201 201 201	229 229 229 229 229	0.8 0.8 0.2 0.6	2.91 1.97 3.08 3.19 3.17	10 10 16 32 34	< 10 < 10 < 10 < 10 < 10 < 10	990 120 340 1190 190	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.34 0.05 0.25 0.57 0.76	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 3 15 12 6	65 83 48 65 47	155 88 292 153 124	5.20 3.27 6.55 3.33 4.41	< 10 < 10 < 10 < 10 < 10 < 10	< 1 1 < 1 3 < 1	0.31 0.04 0.11 0.17 0.13	< 10 < 10 < 10 < 10 < 10	1.30 1.10 1.04 1.04 0.68	175 70 225 165 150
L29850N 30100E L29850N 30150E L29850N 30175E L29850N 30200E L29900N 30000E L29950N 29925E	201 201 201 201 201 201 201	229 229 229 229 229 229	0.6 0.2 0,6 0.4 < 0.2 2.0	4.23 2.98 4.17 2.30 1.15 3.13	32 104 54 32 14	< 10 < 10 < 10 < 10 < 10 < 10	300 560 120 130 120 780	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.44 0.56 0.16 0.09 0.30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 18 12 8 7	70 50 42 32 25	63 63 48 25 51	4.74 3.05 3.76 3.99 2.01	10 < 10 < 10 < 10 < 10 < 10	1 < 1] 3 < 1	0.34 0.28 0.21 0.28 0.14	< 10 < 10 < 10 < 10 < 10 < 10	1.41 0.86 0.61 0.60 0.38	390 560 435 380 150
L29950N 29950E L29950N 29975E L29950N 30000E L29950N 30025E	201 201 201 201	229 229 229 229 229	0.6 0.4 < 0.2 < 0.2	3.01 3.32 2.52 2.41	12 34 30 26	< 10 < 10 < 10 < 10 < 10	560 210 160 120	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 12	0.42 0.29 0.23 0.26	0.5 < 0.5 < 0.5 < 0.5	11 12 9 9 9	87 75 38 44	109 117 79 83	4.86 3.65 3.75 3.10 3.34	< 10 < 10 10 < 10 < 10	< 1 < 1 < 1 < 2	0.32 0.26 0.15 0.14 0.16	< 10 < 10 < 10 < 10 < 10	0.85 1.08 1.13 0.67 0.75	405 205 230 175 265
L29950N 30050E L29950N 30075E L30000N 29875E L30000N 29900E L30000N 29925E	201 201 201 201 201 201	229 229 229 229 229 229	< 0.2 0.4 48.8 3.2 2.6	2.40 2.10 1.00 3.86 3.55	10 26 12 6 8	< 10 < 10 < 10 < 10 < 10	80 250 160 1290 1090	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.09 0.27 1.87 0.36 0.23	< 0.5 < 0.5 10.5 1.5 0.5	7 3 17 11 8	31 25 10 112 94	57 55 1775 : 150 130	3.12 6.37 >15.00 4.94 4.53	< 10 < 10 < 10 < 10 10 10	< 1 < 1 19 < 1 < 1	0.10 0.26 0.08 0.51 0.41	< 10 < 10 < 10 < 10 < 10 < 10	0.80 0.96 0.17 1.38 1.21	220 180 1735 410 305
L30000N 29950E L30000N 30000E L30000N 30025E L30000N 30050E L30000N 30075E	201 201 201 201 201 201	229 229 229 229 229 229	1.0 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	3.67 2.51 2.61 2.00 1.47	16 14 8 2 40	< 10 < 10 < 10 < 10 < 10 < 10	470 150 40 30 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	0.70 0.39 0.09 0.08 0.10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 11 5 4 4	58 36 35 26 35	111 70 30 19 13	2.75 3.36 3.30 2.83 5.20	< 10 < 10 10 10 < 10	< 1 < 1 1 < 1 < 1 < 1	0.25 0.39 0.09 0.10 0.03	< 10 10 10 < 10 < 10	0.97 0.95 0.54 0.46 0.25	205 320 160 130 75
L30000N 30100E L30000N 30125E S230 S231 S232	201 201 201 201 201	229 229 229 229 229 229	1.0 0.2 1.4 0.6 0.2	2.26 2.22 2.42 2.58 1.96	30 50 < 2 50 6	< 10 < 10 < 10 < 10 < 10 < 10	340 50 450 290 340	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.20 0.30 0.28 0.61 0.59	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 4 4 7 8	90 48 104 51 21	41 27 56 64 38	B.37 2.35 5.55 3.29 3.57	< 10 < 10 < 10 < 10 < 10 < 10	3 1 < 1 < 1 < 1 < 1	0.26 0.07 0.72 0.34 0.24	10 < 10 < 10 < 10 < 10 < 10	0.90 0.48 2.00 1.02 0.73	170 120 240 270 290
\$233 \$234 \$235 \$236 \$237	201 201 201 201 201 201	229 229 229 229 229 229	0.2 0.6 < 0.2 0.4 0.2	2.82 2.82 2.93 2.64 2.37	102 44 30 8 < 2	< 10 < 10 < 10 < 10 < 10 < 10	250 230 310 430 620	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.78 0.66 0.55 0.77 1.10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	15 7 18 11 9	24 36 69 45 30	42 48 82 128 186	2.83 3.73 3.82 3.58 3.06	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 1 1	0.45 0.55 0.81 0.31 0.09	< 10 < 10 < 10 < 10 < 10 < 10	0.80 0.85 1.32 0.99 0.49	370 275 390 295 165
\$238	201	229	0.2	2.43	< 2	< 10	690	< 0,5	< 2	1.08	< 0.5	11	30	193	2.93	< 10	< 1	0.09	< 10	0.48	160

CERTIFICATION:

17

1

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC VON 2R0

Page Number :3-B Total Pages :3 Certificate Date: 14-OCT-1999 Invoice No. P.O. Number :19930451 Account :QHB

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

										CE	RTIF		E OF A	NAL	YSIS		A9930451
SAMPLE	PREP CODE	Mo ppm	Na %	Nİ ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W ppm	Zn ppm	
L29850N 29975E L29850N 30000E L29850N 30025E L29850N 30050E L29850N 30075E	201 229 201 229 201 229 201 229 201 229 201 229	9 6 9 2 9 4 9 < 1 9 8	0.04 0.01 0.03 0.05 0.03	21 6 28 36 16	1190 650 1030 560 1430	12 4 6 8 12	0.11 0.06 0.09 0.05 0.08	< 2 < 2 < 2 < 2 < 2	7 10 3 5 4	24 5 11 20 28	0.22 0.09 0.16 0.22 0.19	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	128 101 83 90 131	< 10 < 10 < 10 < 10 < 10 < 10	54 36 140 32 58	
L29850N 30100E L29850N 30150E L29850N 30175E L29850N 30200E L29900N 30000E	201 229 201 229 201 229 201 229 201 229	39 39 39 39 39 39 39 4 30 39 4 30 4 30 4	0.06 0.04 0.01 0.01 0.02	21 67 25 14 12	1370 910 1010 1090 1000	12 18 8 6 10	0.06 0.03 0.10 0.13 < 0.01	< 2 < 2 < 2 < 2 < 2	B 6 4 2	37 46 10 10 10	0.24 0.19 0.13 0.11 0.09	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	195 77 82 96 61	< 10 < 10 < 10 < 10 < 10 < 10	100 86 114 74 32	
L29950N 29925E L29950N 29950E L29950N 29975E L29950N 30000E L29950N 30025E	201 229 201 229 201 229 201 229 201 229 201 229	13 1 1 < 1 < 1 < 1	0.04 0.04 0.03 0.03 0.02	36 31 24 18 18	1410 1080 1440 1010 810	8 16 20 16 6	0.20 0.05 0.05 0.06 0.03	< 2 < 2 < 2 < 2 < 2 < 2	6 5 7 3 4	29 13 12 13 9	0.18 0.22 0.17 0.15 0.16	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	141 109 122 81 84	< 10 < 10 < 10 < 10 340	172 74 90 42 44	
L29950N 30050E L29950N 30075E L30000N 29875E L30000N 29900E L30000N 29925E	201 229 201 229 201 229 201 229 201 229 201 229	<pre>< 1 1 < 1 20 14</pre>	0.01 0.02 < 0.01 0.02 0.01	11 7 36 45 33	490 740 360 1530 1310	6 14 584 8 12	0.06 0.22 0.82 0.21 0.13	< 2 2 2 < 2 < 2 < 2	4 7 1 11 8	8 27 < 1 16 13	0.22 0.09 0.05 0.28 0.25	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 30 < 10 < 10	90 55 17 287 220	< 10 < 10 < 10 < 10 < 10 < 10	38 22 3650 208 170	
L30000N 29950E L30000N 30000E L30000N 30025E L30000N 30050E L30000N 30075E	201 229 201 229 201 229 201 229 201 229 201 229	3 < 1 < 1 < 1 5	0.03 0.03 0.01 0.01 < 0.01	25 18 12 8 12	1190 1630 740 590 1280	12 2 8 8 6	0.05 0.01 0.08 0.06 0.03	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	7 4 3 3	20 19 7 9 4	0.17 0.18 0.23 0.21 0.22	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	102 105 85 79 137	< 10 < 10 < 10 < 10 < 10 < 10	112 58 40 26 40	
L30000N 30100E L30000N 30125E S230 S231 S232	201 229 201 229 201 229 201 229 201 229 201 229	< 1 < 1 < 1 3 < 1	0.01 < 0.01 0.09 0.08 0.04	17 16 10 16 11	2020 530 580 890 730	16 2 8 6 6	0.19 0.06 0.64 0.09 0.06	< 2 < 2 2 < 2 < 2 < 2 < 2	4 5 10 7 5	27 9 20 29 21	0.21 0.18 0.27 0.19 0.16	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	83 67 167 81 58	< 10 < 10 < 10 < 10 < 10 < 10	52 80 68 60 42	
\$233 \$234 \$235 \$236 \$237	201 229 201 229 201 229 201 229 201 229 201 229	< 1 < 1 < 1 3 < 1	0.07 0.07 0.06 0.09 0.12	23 14 21 25 31	650 600 1260 1110 910	6 14 2 12 < 2	0.01 0.05 0.03 0.04 0.03	2 < 2 < 2 < 2 < 2 < 2	B 8 7 7 5	59 46 30 29 58	0.18 0,19 0.30 0.25 0.27	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	80 98 132 99 71	< 10 < 10 < 10 < 10 < 10 < 10	76 60 64 76 26	
s238	201 229	< 1	0.11	36	900	2	0.03	< 2	5	62	0.25	< 10	< 10	69	< 10	24	\cap
								-			<u>u-u</u>		с	ERTIFIC	ATION:		·North

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC VON 2R0 Page Number : 1-A Total Pages : 1 Certificate Date: 14-OCT-1999 Invoice No. : 19930426 P.O. Number : Account : QHB

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

[r					<u> </u>					CERTIFICATE OF ANALYSIS A9930426										
SAMPLE	PREP CODE	;	Ag ppm	А1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррш	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
M500380 M500381 M500382 M500383 M500384	205 2 205 2 205 2 205 2 205 2 205 2	26 26 26 26 26	26.6 48.8 1.0 0.2 1.2	0.07 0.04 0.86 2.37 3.05	< 2 < 2 130 96 22	< 10 < 10 < 10 10 < 10	10 10 10 10 2500	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	1.98 2.69 13.75 3.10 1.12	397 >500 31.0 1.5 1.5	82 55 3 8 15	< 1 < 1 51 112 132	3810 7110 84 28 152	>15.00 >15.00 0.57 0.59 3.99	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	< 0.01 < 0.01 < 0.01 0.01 1.28	< 10 < 10 < 10 < 10 < 10	< 0.01 < 0.01 0.03 0.03 1.85	970 1435 175 125 400
M500385 M500386 M500387 M500388 M500388	205 2 205 2 205 2 205 2 205 2 205 2	26 26 26 26 26 26	59.2 46.2 >100.0 12.0 9.2	0.67 0.43 4.34 0.05 2.02	< 2 < 2 12 < 2 6	< 10 < 10 < 10 < 10 < 10 < 10	120 40 130 180 100	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 8 < 2	0.24 1.17 0.27 >15.00 1.03	24.0 139.5 24.0 23.0 2.5	21 45 184 < 1 13	5 < 1 66 4 113	2590 4050 5930 546 308	>15.00 >15.00 13.00 1.25 5.10	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	< 0.01 < 0.01 0.01 < 0.01 < 0.01 0.27	< 10 < 10 < 10 < 10 < 10 < 10	< 0.01 < 0.01 0.83 0.12 0.65	850 1985 ≻10000 2580 1235
M500390 M500391 M500392 M500393 M500394	205 2 205 2 205 2 205 2 205 2 205 2	26 26 26 26 26	6.8 5.0 2.4 27.0 0.8	2.97 4.64 0.20 0.88 2.10	< 2 < 2 2 < 2 2 26	< 10 < 10 < 10 < 10 < 10 < 10	30 40 110 30 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 716 < 2	0.73 2.60 0.47 0.65 3.32	0.5 0.5 14.5 4.5 2.0	63 53 14 71 19	118 61 76 28 96	327 256 236 4900 65	6.82 6.60 3.18 9.37 2.76	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.91 0.34 0.05 0.06 0.06	< 10 < 10 < 10 < 10 < 10 10	2.43 0.87 0.08 0.04 0.38	320 220 80 130 180
																					<u> </u>
																		(}	1	

CERTIFICATION:

.

Analytical Chemists * Geochemists * Registered Assayers North Vancouver

212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE; 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC VON 2R0

Page Number : 1-B Total Pages : 1 Certificate Date: 14-OCT-1999 Invoice No. : 19930426 P.O. Number : Account QHB

Project : LORAX Comments: ATTN: ARND BURGERT_CC; ARND BURGERT

	-r							CERTIFICATE OF ANALYSIS							A9930426							
SAMPLE	PR CC	EP DE		Mo ppm		Na %	Ni ppm	ppm 9	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U ppm	V ppm	M Mđđ	Zn ppm			
NS00380 NS00381 M500382 M500383 M500384	205 205 205 205 205	226 226 226 226 226 226		< 1 < 1 7 23 5	< 0. < 0. 0. 0.	01 01 01 06 06	208 150 40 22 44	< 10 < 10 220 580 930	26 38 6 22	>5.00 >5.00 0.36 0.18 0.14	20 10 2 < 2 2	< 1 < 1 < 1 < 1 5	< 1 < < 1 < 88 137 27	<pre>< 0.01 < 0.01 0.03 0.06 0.45</pre>	10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 216 29 188	< 10 < 10 < 10 < 10 < 10 < 10	>10000 >10000 1365 72 286			
M500385 M500386 M500387 M500388 M500388 M500389	205 205 205 205 205	226 226 226 226 226 226		< 1 < 1 < 1 < 1 < 1 12	< 0. < 0. 0. < 0. 0.	01 01 01 01 09	31 69 80 5 14	120 10 360 50 930	870 1835 >10000 338 586	0.64 4.04 0.38 0.89 0.73	22 2 6 < 2 < 2	< 1 < 1 1 < 1 6	< 1 1 < 3 236 < 37	0.01 0.01 0.03 0.01 0.17	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 9 < 1 138	< 10 < 10 < 10 < 10 < 10 < 10	6130 >10000 3310 2350 284			
M500390 M500391 M500392 M500393 M500394	205 205 205 205 205	226 226 226 226 226 226		< 1 < 1 25 < 1 17	0. 0. 0. 0.	14 33 05 01 14	94 83 75 24 45	400 420 1320 170 7690	46 38 46 < 2 14	4.42 4.68 2.02 4.72 0.79	2 < 2 < 2 10 < 2	11 2 1 2 3	23 81 5 36 98	0.17 0.09 0.11 0.06 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10 10	173 65 26 17 84	< 10 < 10 < 10 < 10 < 10 < 10	88 96 664 194 130			
										_			_									
																						Ē
																				\cap	,	

CERTIFICATION:_

.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC VON 2R0 Page Number :1 Total Pages :1 Certificate Date: 14-OCT-1999 Invoice No. :19931130 P.O. Number : Account :QHB

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

CERTIFICATION:

CERTIFICATE OF ANALYSIS A9931130 PREP Ag FA Pb Zn SAMPLE CODE g/t % % M500380 212 -------4.91 ____ M500381 212 ___ ____ 7.38 ____ M500386 212 --____ ____ 1.71 M500387 212 --211 1.90 ____

Analytical Chemists * Geochemists * Registered Assayers North Vancouver

212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: BURGERT, ARND

P.O. BOX 1208 PORT MCNEILL, BC V0N 2R0

Page Number 11 Total Pages 11 Certificate Date: 27-OCT-1999 Invoice No. P.O. Number :19931794 1 Account :QHB

L

Project : LORAX Comments: ATTN: ARND BURGERT CC: ARND BURGERT

CERTIFICATE OF ANALYSIS A9931794

SAMPLE	PREP CODE	Au ppb FA+AA						
M500380 M500381 M500385 M500386 M500387	244 244 244 244 244	165 290 480 245 2590						
			ſ	1				
					3			
							 /	

REGENCED NOV (1 8 1999 PROSPECTORS PROGRAM

APPENDIX IV

REGIONAL MINERALIZATION

I

A number of significant base metals deposits occur within pendants of Gambier group (Figure 1). Some of those that are known or suspected to be volcanocenic in origin are described in this section. The descriptions are taken from the British Columbia Ministry of Energy and Mines Minfile database, where references can be found.

The most valuable deposit discovered to date in rocks of the Gambier group is the Britannia Deposit at Britannia Beach on Howe Sound. The Britannia district is underlain by a roof pendant of mid- Mesozoic volcanic and sedimentary rocks, within the Cenozoic-Mesozoic Coast Plutonic Complex. A broad, steeply south dipping zone of complex shear deformation and metamorphism, the Britannia shear zone, crosses the pendant in a northwest direction; all orebodies are in the shear zone. A narrow zone of foliated rocks, the Indian River shear zone, is subparallel to the Britannia shear zone and transects the northeast part of the Britannia pendant. The deformed rocks are cut by dacite dykes and several major sets of faults. The Britannia roof pendant is one of many northwest trending bodies within, and in part metamorphosed by, the Coast Plutonic Complex. The pendant is comprised of fresh to weakly metamorphosed rocks with sharp contacts against plutonic rocks,

(

and belongs to the Lower Cretaceous Gambier Group. The Coast plutonic rocks consist of older, commonly foliated bodies ranging from diorite to granodiorite and younger quartz diorite to quartz monzonite intrusions (Squamish pluton). The plutonic rocks have produced contact metamorphic aureoles up to a hundred metres wide in the Britannia pendant.

The Britannia mine area within the Britannia shear zone is dominated by strongly foliated pyroclastic rocks of dacitic to andesitic volcanism intercalated near the top and overlain by dark marine shales and siltstones. Extensive units of fine-grained andesitic rocks were formed in the mine area during hiatuses in dacitic volcanism; one hiatus occurred during the period of formation of massive sulphides and related deposits after extrusion of a dacite tuff breccia. The lower pyroclastic sequence and the upper shale-siltstone sequence are cut by many dacitic and andesitic dykes. The lower sequence is composed of pyroclastic dacite tuff breccia (locally called the Bluff tuff breccia) that commonly grades to dacitic crystal and lithic tuffs. This unit contains prominent dark, wispy fragments and grades at the top into distinctive beds which consist of intercalated black argillite and plagioclase

crystal tuffs. These may be regularly interbedded, convoluted or disaggregated by soft rock deformation. Within the pyroclastic sequence there are also minor intercalations of black or green argillite or volcanic sandstone; fragments of argillite also form a normal component of the pyroclastic flow rocks. Overlying the dacite tuff breccias are a sequence of andesitic tuffaceous sediments, andesitic tuffs and cherty andesitic sedimentary rocks. The overlying black argillite and siltstone are relatively featureless, poorly bedded, but commonly displays cleavage. Intercalations of greywacke may show graded bedding, shale sharpstones and minor slump structures. Although gross stratigraphic units can be defined over much of the area, numerous lateral lithologic variations, the scarcity of marker units in the mine area, and complex deformation hampers detailed stratigraphic and structural interpretation.

Intruding this package are two major dyke sequences and a group of small mafic dykes. The early dyke intrusions are composed of dark grey-green andesites that commonly have a slightly mottled texture that reflects a fragmental nature; they may also contain abundant quartz and chlorite amygdules. They are clearly almost contemporaneous with the

pyroclastic flow rocks and may be highly deformed and mineralized. The second group are massive grey-green porphyritic dacites, which show no deformation or slight deformation on their margins. Their emplacement postdates major mineralization but they have a close spatial and structural relationship to orebodies. Late dykes are common but volumetrically insignificant and include lamprophyre, basalt and andesite.

Sulphide and genetically related deposits of anhydrite, quartz, silicified rock, cherty andesitic sedimentary rocks, bedded chert, and minor barite formed from volcanogenic hydrothermal solutions after formation of the dacite tuff breccia and during deposition of the overlying andesitic sedimentary and tuffaceous rocks. Sulphides occur as massive and stringer deposits and as disseminations and bedding plane concentrations. Massive deposits are mainly along and slightly above the upper contact of the dacite tuff breccia and commonly in or near cherty andesitic rocks. Stringer deposits are mainly in silicified dacite tuff breccia below the massive sulphide deposits. The ratio of stringer (80 per cent of ore) to massive deposits is much greater at Britannia than in most volcanogenic sulphide deposits. Original deposits and

alteration halos are modified by shear deformation and segmented by faults. The massive sulphide-type orebodies mined were: Jane, Fairview Zinc (1.5 per cent of total ore mined); No. 8 (top), Beta, 040, Bluff (4.5 per cent of total ore mined); and No. 8 (bottom), No. 10, Empress, Victoria, West Victoria (15 per cent of total ore mined). Stringer-type orebodies mined were the Bluff, East Bluff, Jane, No. 4 (Bluff), No. 5, No. 10 and Fairview Veins (79 per cent of total ore mined). Other zones within and near the mine area include the Daisy, Homestake, Robinson, Furry Creek, Fairwest and 074.

The sulphide orebodies of Britannia are highly heterogeneous mixtures of sulphides, remnant altered host rocks, and discrete veins. The main mineralogy of orebodies is simple and fairly constant. Pyrite is by far the most abundant mineral, with less chalcopyrite and sphalerite and minor erratically distributed galena, tennanite, tetrahedrite and pyrrhotite. The main nonmetallic minerals include quartz and muscovite (chlorite), anhydrite and siderite. The main massive orebodies, the Bluff, East Bluff, No. 5, No. 8 and 040 all show a marked zonal structure in which they have one or more high-grade chalcopyrite cores enveloped successively by a lower-grade
zone and overlapping pyrite and siliceous zones. Zinc-rich ore tends to occur in the upper central parts of massive bodies and as almost sheet-like masses, like the Fairview Zinc vein. In section, the main orebodies have a crude lens-like shape oriented within the schistosity and are commonly connected to a steeply plunging root which may or may not be of ore grade. The other orebodies such as the Fairview Veins are stringer lodes and veins composed of thin sheet-like masses of chalcopyrite and pyrite with some quartz that appear generally parallel to the schistosity but actually cut across schistosity in plan at a small angle. Trace realgar, orpiment, scheelite, fluorite and pyrolusite occur in post-dacite, northeast trending gash quartz-carbonate veins in the No. 10 orebody.

The ore contains thin layers of sphalerite, pyrite and barite parallel to the bedding planes (So). Galena forms irregular intergrowths in sphalerite and is abundant in a few thin layers in zinc and zinc-copper ore. Gold is abundant in scattered narrow veins in the Homestake showing, in high-grade quartz veinlets in the No. 8 orebody and throughout the No. 5 and East Bluff orebodies. Massive ore in the No. 10 mine contains pyrrhotite and argentite inclusions within the chalcopyrite-rich massive orebody.

Many of the orebodies contain several types of sulphide concentrations; the No. 8 massive orebodies grade from zinc-copper to copper. The No. 8 and No. 8A ore zones contain more zinc than the No. 8B. In the Bluff deposit, sphalerite is abundant only above the 1800 level; locally in this region siliceous copper-zinc stringer ore grades into massive zinc-copper ore toward the structural footwall (stratigraphic top).

A broad zone of pervasively silicified rock surrounds all stringer orebodies in the dacite tuff breccia except the Fairview veins. Quartz and quartz-pyrite veins occur throughout the silicified halos and increase in abundance and sulphide content toward an orebody. Pyrite is abundant as beds and nodules in andesitic sedimentary rocks above the Fairview Zinc orebody and locally pyritic layers show slumping features characteristic of soft sediment deformation. Anhydrite is abundant in pyritic andesitic sedimentary rocks and less abundant in the dacite tuff breccia in a broad elongate tabular halo around ore centres. Locally anhydrite forms massive deposits in tuffaceous sedimentary rocks, flanking and above orebodies, and is also found as distinct crosscutting veins in tensional zones. Locally the anhydrite has been converted

to gypsum, especially near permeable zones where the gypsum occurs as narrow replacement veinlets. Within 60 to 90 metres of surface the conversion of anhydrite to gypsum is complete. James (1929) reports the presence of native sulphur in the mine. While the native sulphur may have gypsum or anhydrite associated with it none is present in the large gypsum masses (Open File 1991-15, page 35). Barite is disseminated and/or well bedded in zinc ore and nearby zinc-rich sedimentary rocks. Cherty andesitic sedimentary rocks and tuffs, locally with abundant pyrite, occur in and near massive sulphide bodies and host most of the No. 8 ore lenses.

Structure at the Britannia mine is complex; the earliest

deformation (Do) produced widespread, open, concentric, flexural-slip folds (Fo) with subhorizontal to gently plunging, west-northwest trending axes. A major anticline was formed in the dacitic pyroclastic rocks and a major syncline was formed in argillite to the north. Further flexural-slip deformation was localized along the Britannia anticline, which became overturned to the north. Under continued stress, deformation consisting of several episodes of inhomogeneous strain produced the Britannia and

other shear zones. Rocks were crystallized to S-tectonites with phase assemblages the same as those of lower greenschist facies regional metamorphism. East of the Jane basin, the axis of the Britannia shear zone follows the axis of the Britannia anticline; from the Jane basin to the west, the shear zone cuts across the south limb of the Britannia anticline. On the surface, the shear zone narrows to a single fault west of the Jane basin, whereas at depth and to the east it widens.

The first episode of shear deformation (D1) was the most intense. Parallel orientation of recrystallized chlorite and sericite plates and flattened lithic fragments define a foliation (S1). Numerous isoclinal folds (F1) were formed with S1 as an axial plane cleavage. In the second episode of shear deformation (D2), some sericite which had formed parallel to S1 during D1 was recrystallized to define S2 into steeply dipping west plunging mesoscopic and microscopic folds (F2). A critical factor regarding the origin of the Britannia sulphide deposits is whether they are pre- or post- D1 (and D2). Recent observations support the hypothesis that sulphide and related deposits at Britannia were deformed during D1 (see Economic Geology, Payne, et. al. 1980, for extensive discussion). The

existence of stratabound ore lenses within a felsic volcanic sequence, including pyroclastic breccias, suggests that the Britannia area was a structural locus for all initial and subsequent geological processes. Volcanism, hydrothermal activity, shear deformation, faulting, and metamorphism were all dynamic forces centred along the axis presently known as the Britannia shear zone.

Rocks were altered by volcanogenic hydrothermal solutions during sulphide deposition and by metasomatic hydrothermal solutions during shear deformation. Near orebodies, alteration during deformation was superimposed on ore-stage alteration such that the two are indistinguishable. Alteration is more pronounced in andesitic than in dacitic rocks. Andesitic rocks were altered to an assemblage of quartz-chlorite-sericite (epidote-albite-potassium feldspar-calcite). Some strongly altered andesitic rocks are distinguished from strongly altered dacitic rocks by the andesite's much higher TiO₂ content. Studies of rocks near several of the orebodies show that much of the variation in chemical composition in all rock types is produced by ore-stage introduction of quartz, sulphides and sulphates.

A major compressional event (ending with D2) was followed by a period of relaxation of stress during which dacitic magma was intruded into dilated zones within the shear zone and surrounding rocks. In the shear zone, dacite formed dykes subparallel to S1 mainly in or near the dacite tuff breccia. Near the axis of the Britannia anticline, dykes coalesce upward and to the west and appear to cap some of the orebodies. Thin continuous andesite dykes are subparallel to S1 and cut the dacite dykes. Outside the shear zones, sills, dykes and irregular bodies of several varieties of dacite cut the Gambier Group rocks. The evidence suggests that most of the dykes at Britannia were intruded in the late stages of D2 deformation.

A third metamorphic foliation (S3) was formed locally, possibly following the dacite intrusion. It is parallel to northeast trending gash fractures in and near the dacites and to a set of northeast trending faults. The faults cut the dacite dykes and late andesite dykes and commonly contain vuggy quartz-carbonate veins. They have sideritekaolinite alteration halos that are most intensely developed in rocks with abundant chlorite. A fourth metamorphic foliation (S4) is a widespread strain-slip

cleavage and may have formed from a release of compression perpendicular to the shear zone.

A major set of post-dacite dyke faults cuts the Britannia shear zone subparallel to its margins and to S1. The faults converge upward and to the west to form one major fault. To the east, successive faults branch off a major footwall zone and cut diagonally across the shear zone subparallel to S1. These faults are characterized by a few centimetres to metres of gouge and/or strongly sheared rock. Many are braided and coalesce. In the major fault blocks, minor faults of a similar nature are abundant. Some show more than one age of movement. All the orebodies are cut by the minor faults and many are bounded by, or are near, one or more major faults.

Because many orebodies have contacts at or near major east striking faults and because most appear to be parts of a typical volcanogenic sulphide deposit, the present orebodies may represent faulted segments of a few original major sulphide deposits. A predeformation reconstruction suggests that the orebodies are segments of two original massive sulphide deposits; this requires a near vertical displacement along one fault zone followed by sub-

horizontal offset with a cumulative right-lateral displacement of a couple of thousand of metres (Economic Geology, Payne et. al., 1980).

In summary, the Britannia ore deposits were formed from hydrothermal solutions genetically related to dacitic volcanism. Massive zinc, zinc-copper and copper deposits were formed near the contact of dacite tuff breccia and overlying fine andesitic tuff and sedimentary rocks. Siliceous stringer zones were formed in the dacitic tuff breccia and grade upward into massive deposits. Massive to disseminated bodies of anhydrite, pyrite, and minor barite were formed near the orebodies from exhalite solutions. Cherty andesitic sedimentary rocks are common near the orebodies. A northeast trending compressive stress couple produced the following events: a) Broad concentric folds, under continued stress, became tighter and slightly overturned at Britannia. The early part of deformation overlapped the late stages of dacitic volcanism and hydrothermal activity, and produced a series of subparallel fractures which acted as channelways for hydrothermal solutions. b) With continuing stress, several episodes of inhomogeneous strain produced the schistose rocks which define the Britannia shear zone. Rocks were recrystallized

into S-tectonites and sulphide deposits were deformed in part by fracture and in part by plastic flow, and were segmented into a series of en echelon stringers parallel to S1. Sulphides and quartz in the orebodies show typical deformation textures similar to those of the enclosing rock. c) Ore-stage hydrothermal solutions and deformation stage solutions caused chemical alteration. Andesitic rocks were effected more than dacitic rocks and show increases in Al_2O_3 , K_2O_1 , SiO_2 and H_2O and decreases in CaO, FeO and MnO. TiO₂ remains relatively constant and its content can be used to distinguish some strongly altered andesitic rocks from similarly altered dacitic rocks. d) Orebodies were deformed during several periods of faulting. Following an early period of right-lateral movement, dacite dyke swarms were intruded into the shear zone generally parallel to S1 and concentrated in the dacitic tuff breccia. Dykes were cut by northeast trending quartz-carbonate gash fractures, which near orebodies contain sulphides, mainly chalcopyrite and pyrrhotite, remobilized from the orebodies. e) A major set of late east faults displaces the rock and orebodies with a cumulative right-lateral horizontal component of motion to a maximum of 2438 metres (Economic Geology, Payne, J.G. et. al., 1980).

Measured and drill indicated reserves in the No. 10 mine at the time of closure were 1,424,147 tonnes grading 1.9 per cent copper (Property File -- Northcote, K.). Past work consisted of extensive underground and surface development. Between 1905 and 1977, the Britannia orebodies yielded approximately 52.7 million tonnes of ore grading 1.1 per cent copper, 0.65 per cent zinc, 6.8 grams per tonne silver and 0.6 grams per tonne gold. The mine site became the B.C. Museum of Mining, a National Historic Site in 1975.

The Northair Deposit is located in a Lower Cretaceous roof pendant of Gambier Group volcanic and sedimentary rocks within the southern Coast Plutonic Complex. This particular pendant, known as the Callaghan Creek pendant, is comprised of variably metamorphosed northwest trending volcanic and volcanically-derived sedimentary rocks, commonly characterized by a strong northwest foliation. The pendant rocks exhibit regional lower greenschist facies metamorphism, except near their contact with intrusive bodies, where they have locally undergone contact metamorphism.

The plutonic rocks in the area have a compositional range which varies from quartz monzonite to diorite. The plutonic rocks vary in age from Early Tertiary to Late Jurassic. Pendant contacts with adjacent plutonic rocks are often sharp and commonly marked by narrow shear zones which are parallel to the foliation within the pendant rocks.

Previous mapping in the Northair mine area has divided the geology of the 5000-metre thick Gambier Group into two major units. Unit 1 is a lower, volcanic-derived, sedimentrich unit characterized by well-sorted wacke with low fragment (clast) variation and minor volcanic tuffs, indicating a relatively long depositional history. Sedimentary features such as graded bedding and crossbedding are present with indicated tops to the northeast. Thin magnetite beds are locally present in wacke sediments. The stratigraphy appears to have a north to northwest strike and a steep dip to the northeast.

Unit 2 is comprised of a volcanic tuff of predominantly andesitic composition which stratigraphically overlies unit 1. Most of the southern contact between these two units is a fault which locally is occupied by a Tertiary felsic dyke. The upper 2500 metres of unit 2 is

characterized by a high variability of clast size (ash tuff to block breccia) representing a rapid depositional environment. Depositional cycles are evident by the northeastward and southward fining of these fragmentals. Locally emergent conditions are indicated by features such as hematitic clasts which are well-rounded and similar in size. This is found particularly in the upper portion of the stratigraphy (northwest part of the property).

A proximal environment is indicated for the lower 1000 metres of unit 2, which is characterized by the absence of sediments, almost chaotic and locally clast-supported angular block and ash tuffs, volcanic breccias and lapilli tuffs which represent a brief, rapid depositional history. The significance of the lower unit lies in the fact that it hosts more of the ore.

Recent workers have interpreted the Gambier Group rocks on the property as a homoclinal succession (Assessment Report 18402). No minor fold structures have been observed. The bedding varies in strike from 160 to 200 degrees and dips from 45 to 89 degrees east. A pervasive cleavage is moderately well-developed and is common in the volcanic rocks; it has a strike of 160 to 180 degrees and

is steeply inclined. Rock analyses show that the volcanics are calc-alkaline basalt to dacite in composition, with the majority of the samples falling into the andesite to dacite fields (Assessment Report 18402). Host rocks to the ore deposits at the Northair mine are andesitic pyroclastic breccia and lapilli tuffs. The ore deposits are comprised of 3 or 4 steeply dipping, fault-dismembered tabular zones, 1 to 7 metres wide and approximately 1200 metres long. They dip steeply southwest and are known to extend downdip at least 300 metres. The four mineralized segments are separated by north trending faults and are named from south to north as: Manifold, Warman, C and Discovery.

The mineralized segments are generally small bodies. The sulphides comprise pyrite, galena, sphalerite and minor chalcopyrite disseminations, veins and locally discontinuous, banded segregations in quartz-calcite gangue. Anastomosing veins of pyrite, galena and sphalerite are common; often they are irregular sulphide pods and lenses, separated by barren, brecciated country rock (horses). Locally, spectacular ribbon-banded, quartzchlorite-pyrite veins (with minor lead-zinc sulphides) are present in the ore zone. The vein zone which comprises most of the ore, as a whole has a steep southwest dip which is

broadly discordant to the perceived northeast dip of the volcanic stratigraphy. A general pattern of sulphide mineralogy indicates silver-rich, base metal-poor mineralization in the Manifold zone, progressing to more base metals and less silver toward the northwest (through Warman, C and Discovery zones). The width of the mineralization increases from the south to the northwest. Local banded, massive sphalerite and galena were reported at the Discovery zone. Other minerals reported at the mine are tetrahedrite, argentite, bornite, pyrargyrite and electrum with trace amounts of gold and stromeyerite (Geology in British Columbia 1977-1981, page 100).

At the northwest end of the "Northair horizon" (C and Discovery zones), where highest base metal values are indicated, the tested extent of mineralization is essentially less than 150 metres below surface. This locality was considered to have the best chance for massive sulphides discovery because of reported local occurrences of banded sulphides and shallow testing by previous exploration (Assessment Report 18402).

A consistent black, biotite/chlorite hydrothermal alteration zone is closely associated with the

mineralization. This alteration forms an envelope to the sulphide vein zone, and is in some cases asymmetrical; more often it appears to be broadest in the structural hanging wall. The biotite content increases toward the sulphide vein system; it is a pervasive, fine-grained overprint of dark green chlorite. A gradation exists from a dark green, pervasive chlorite-altered tuff to a black, biotitedominant tuff, most strongly altered nearest the mineralization. The biotite forms 6 to 7-millimetre clumps or aggregates in the altered host rock very close to, and within the mineralized vein system. Pervasive sericite alteration is also evident, but it appears to be an earlier event, and much more extensive; it is not directly related to the mineralization. Near the sulphide vein system within the alteration is a quartz-calcite stockwork which contains weak metal sulphides.

A long standing controversy has existed regarding the origin of the Northair mineralization. Two views are that the sulphides represent (1) volcanogenic massive sulphide mineralization or (2) that it is vein-type mineralization, related either to a synvolcanic hydrothermal system, or to nearby intrusions of the Coast Plutonic Complex; the latter genesis is proposed (Assessment Report 18402).

Production at the Northair mine began in 1974 and was suspended in mid-July, 1982 due mainly to low grades and low gold prices. Indicated reserves are 59,071 tonne grading 26.73 grams per tonne silver, 9.08 per tonne gold and 2 per cent combined lead-zinc (Canadian Mines 1986-87, page 285).

The **Hummingbird**-Romana Copper showing is located on the north side of Goat Island on Powell Lake.

The showing was extensively worked in the late 1920s including numerous opencuts, a gloryhole and 2 tunnels exceeding a total of 183 metres. Romana Copper Mines Ltd. acquired Hummingbird and nine other claims in 1928. The Hummingbird claim was Crown granted in 1929. A tramway was constructed in 1928. Tunnels were driven in 1929 and 1930. The property lay dormant until 1983 when explored by Corinth Resources. In 1988, Ashworth Explorations Ltd. conducted a geochemical exploration program on the Humming Bird (Lot 4815a) Reverted Crown grant and Clover claims covering the property. The property was owned by J. Fleishman.

The area of interest consists of a roof pendant which forms a 100-metre wide belt of highly altered volcanic and sedimentary rocks unconformably overlying diorite, quartz diorite and granodiorite of the Cretaceous Coast Plutonic Complex. The apparent strike of the belt, thought to be part of the Lower Cretaceous Gambier Group, is about 220 degrees.

Within this roof pendant is a contact metamorphosed zone containing garnetite, epidote and mineralization. The mineralization, manifested by rusty zones and malachite stain, consists of pods, streaks, veins and lenses of massive sulphides composed of varying proportions of pyrite and chalcopyrite. Most samples were moderately magnetic, and magnetite was identified in some specimens.

The best silver values occur in the opencut from which previous ore shipments were made. In 1983, a chip sample over unknown length assayed 17.40 per cent copper and 320.17 grams per tonne silver (Assessment Report 11884). Eight rock chip samples were taken during property exploration in 1988. Sample CL88-R2 yielded 3.08 per cent copper, 52.80 grams per tonne silver and 0.27 gram per tonne gold (Assessment Report 18531). The sample was a 100-

centimetre chip sample across malachite stained, heavily altered metavolcanics striking 160 degrees and dipping vertical.

One hundred and forty tonnes of ore are quoted as being mined and shipped several years before 1928 assaying 8 to 11 per cent copper, 240 to 685 grams per tonne silver and minor gold (Minister of Mines Annual Report 1928).

Mineralization in the **Mount Diadem** area became known in 1928, when several massive sulphide showings containing pyrite, pyrrhotite, chalcopyrite and sphalerite were discovered near the headwaters of No Man's Creek. Both Britain River Mining Co. Ltd. and Mount Diadem Mines Ltd. staked claims west and north of Mount Diadem. Numerous trenches were excavated where sulphide showings occurred in altered limestone and other sedimentary rocks. Some adits were driven and work continued sporadically over the years. The original claims lapsed and were restaked in 1947 by Nickel Mining Company of Canada Ltd. The new claims were optioned to Bralorne Mines Ltd. in 1949. Considerable work has been carried out since 1949 by various operators. Geological mapping, limited diamond drilling and sampling of old adits and trenches were performed by Sphere

Development Corp. in 1967. In 1970, Tiger Silver Mines Ltd. performed geophysical magnetic and geochemical soil surveys. Britain River Syndicate performed geological, geophysical and geochemical surveys in 1971. Some new anomalies were discovered. Minor rock sampling was conducted by Fury Explorations in 1980. The claims were transferred to Fury Explorations Ltd. in the early 1980s. In 1983, Anaconda Ltd. optioned these claims and conducted a drilling program, consisting of nine holes and 899 metres. In the late 1980s, Covenant Resources staked the Diadem claims, surrounding the claim owned by Fury Exploration and the Fox claim owned by R. Schmidt.

Immediately above the head of No Man's Creek on the northern slopes of Mount Diadem an old adit is located at an elevation of 900 metres. The adit lies within the Cretaceous Coast Plutonic Complex near its western boundary with the Insular Belt. The complex consists mainly of diorites, granodiorites, gneisses and migmatites enclosing a northwest trending belt (pendant) of Lower Cretaceous Gambier volcanic and sedimentary rocks. Only in the eastern and possibly basal part of the belt are mafic flows and interbedded tuff evident. These rocks have been metamorphosed to greenschist and less commonly amphibolite

grade. Structural deformation has been intense with the early development of tight, moderate to steep, north plunging folds characterized by an axial planar cleavage. This has been overprinted with later, open style folds. Two shear orientations predominate, both of which appear to locally control massive sulphide mineralization. One is subparallel to regional banding and parallel to the penetrative foliation. The other set strikes 060 to 100 degrees and is steeply dipping.

Seven rock units have been defined locally. These are: (1) tuffaceous sandstone, siltstone and argillite; andesitic flows, lapilli tuff and chloritic schist and massive diorite, (2) green-grey, chlorite-rich tuff, tuffaceous sandstone; felsic lapilli and vesicular flows and breccias and massive diorite, (3) rusty to black weathering, thinly bedded argillite, (4) well banded, greygreen interbedded argillite, siltstone, sandstone, black chert and lapilli tuffs, (5) siliceous argillite, tuffaceous siltstone, chert and lapilli tuff, (6) andesitic breccia and (7) feldspar-rich diorite, quartz diorite and granite. The adit is collared at the contact of the volcanic rocks with the intrusive rocks. The adit penetrates the silicified, recrystallized volcanics for 12

metres, at which distance a 0.61-metre shear is intersected. Pods consisting of galena, sphalerite, pyrite and small amounts of chalcopyrite are exposed in the shear.

A 0.25-metre wide sample of the shear southeast of the adit assayed 0.017 per cent copper, greater than 1 per cent lead, greater than 1 per cent zinc, greater than 200 grams per tonne silver and 0.18 gram per tonne gold (Assessment Report 11641). A grab sample from the adit assayed 4.9 grams per tonne gold, 264 grams per tonne silver, 8.89 per cent lead, 8.62 per cent zinc and 0.02 per cent copper (Assessment Report 11641).

Diamond drilling completed under option to Anaconda has tested up to 175 metres along strike, the contact between sheared argillite - chloritized volcanics. Three zones were believed intersected; the North, Central and South. The best drilling results were obtained from the Central zone. Diamond-drill hole 84-3 intersected 0.79 per cent copper, 2.74 per cent lead, 1.61 per cent zinc and 148.80 grams per tonne silver over 12.0 metres (Assessment Report 18207). The Central zone was also intersected by drillholes 84-1, 84-5, 84-6, and 84-8. The South zone was intersected in drillhole 84-9, approximately 60 metres

below the surface. A 7.7-metre section yielded 0.1 per cent copper, 1.48 per cent lead, 1.53 per cent zinc and 44.91 grams per tonne silver (Assessment Report 18207). Mineralization in all intersections is hosted in intensely deformed argillite.

PROSPECTING,	MAPPING AND GEOCHEMICA	RECEIVED L SURVEYS NOV U 8 1999
	on the	PROSPECTORS PROGRAM

MEMPR

OLD IRONSIDES PROPERTY

OLD IRONSIDES OLD IRONSIDES 2 OLD IRONSIDES 3

CLAIMS

Tenure Nos. 364066 369542 369543

Latitude 50° 13'N; Longitude 124° 07'W

NTS 92K/1

in the

VANCOUVER MINING DIVISION

BRITISH COLUMBIA

ARND BURGERT OCTOBER 30, 1999

TABLE OF CONTENTS

PAG	Ε
INTRODUCTION	1
PROPERTY, LOCATION AND ACCESS	2
GEOMORPHOLOGY	5
REGIONAL GEOLOGY	6
REGIONAL MINERALIZATION	8
REGIONAL GEOCHEMISTRY	9
PROPERTY GEOLOGY 1	0
PROPERTY MINERALIZATION 1	4
PROPERTY GEOCHEMISTRY 1	6
CONCLUSIONS AND RECOMMENDATIONS	7
REFERENCES	8

FIGURES

NO.	DESCRIPTION PAGE
1	PROPERTY LOCATION
2	CLAIM LOCATION
3	REGIONAL GEOLOGY
4	PROPERTY GEOLOGY 11
5	GEOCHEMISTRY HISTOGRAMS17
6	SAMPLE LOCATIONS
7	COPPER SOIL GEOCHEMISTRY
8	BARIUM SOIL GEOCHEMISTRY
9	ZINC SOIL GEOCHEMISTRY
10	SILVER SOIL GEOCHEMISTRY
11	ARSENIC SOIL GEOCHEMISTRY25

APPENDICES

			APPENDIX
AUTHOR'S	STATEME	NT OF	QUALIFICATIONS I
CERTIFICA	ATES OF	ASSAY	. <i></i>

INTRODUCTION

The Old Ironsides property consists of three mineral claims which were staked in June, 1998 and June, 1999 to protect a previously unstaked volcanogenic massive sulphide (VMS) base and precious metals target identified during prospecting during the summer of 1998. The claims cover rocks of the lower Cretaceous Gambier group.

Gambier group rocks host the Britannia deposit on Howe Sound as well as the Northair deposit near Whistler. In the Powell River region, uneconomic base metals occurrences lying within the Gambier group include the Mt. Diadem workings overlooking Jervis Inlet and the Hummingbird past producer on Goat Island in Powell Lake.

All work was performed personally by the author, whose Statement of Qualifications appears in Appendix I.

PROPERTY, LOCATION AND ACCESS

The Old Ironsides property is located in southwest British Columbia at 50° 13'N latitude and 124° 07'W longitude on NTS mapsheet 92K/1 (Figure 1). It consists of three mineral claims aggregating 33 units (Figure 2) registered with the Vancouver Mining Recorder's Office. The Old Ironsides claim was staked in June, 1998 to protect favorable geology. The Old Ironsides 2 claim was staked during June 1999 to protect a geochemical soil anomaly indicated by reconnaissance soil sampling during a 1998 exploration program. The Old Ironsides 3 claim was staked at the same time to protect a chalcopyrite showing, also discovered during the 1998 program. All claims are contiguous, but none are grouped. Claim registration data is summarized below.

Claim Name		Units	Tenure Number	Expiry Date*
Old Ironsides		16	364066	June 29, 2001
Old Ironsides	2	16	369542	June 20, 2002
Old Ironsides	3	1	369543	June 20, 2002

*if assessment credit for work described in this report is granted

Exploration was conducted from June 21, 1999 to August 29, 1999 from a helicopter-supported fly camp near the property's southern boundary. The work, which was delayed due to an extreme snow pack, consisted of prospecting, soil sampling and geological mapping.

GEOMORPHOLOGY

The Old Ironsides property is situated in mountainous terrain of the Coast Ranges. Topography is steep, typically 20° to 30°, with the exception of a broad U-shaped valley at the claim's southern end. Elevations range from 760m in the valley to 1905m along the ridge near the northern claim boundary.

Creeks draining the northern end of the claim are part of the Barkshack Creek watershed, which in turn flows into the Skwakwa River and eventually Jervis Inlet. Creeks draining the southern slope drain into a tributary of the Eldred River, which flows into Goat Lake and eventually Powell Lake.

Vegetation consists of sparse stands of juvenile second growth fir, douglas fir, hemlock and western red cedar on the valley floor. The lower valley slope is covered with old growth fir and hemlock, giving way to old growth yellow cedar scrub above 1150m. In the old growth, density of underbrush varies, and with increasing elevation, vegetation gradually becomes sparser. Above 1370m, scattered buckbrush, dwarf balsam and moss dominate, while steep talus slopes and cliffs are vegetated only by lichen. Vegetation on the ridge top is limited to grasses, moss and scattered clumps of dwarf conifers.

REGIONAL GEOLOGY

The Old Ironsides Property covers steeply dipping blocks or pendants of metasedimentary and metavolcanic rocks which lie engulfed in the main mass of the Coast Plutonic Complex (Figure 3). Pendants of Gambier Group, named for their type locality on Gambier Island in Howe Sound, extend discontinuously from North Vancouver in the southeast to north of Bella Bella in the northwest.

These pendants are thought to represent fault slices along which plutonic rock was thrust upwards (Roddick, 1976). The bounding shear zones in places still exist, and in many places are flanked by diorite. The dioritic rocks may represent remnants of a primitive granitoid basement upon which sedimentary and volcanic rocks were deposited.

The metamorphic rocks have undergone deep burial and subsequent deformation, probably in response to compressive forces transmitted through the North America Plate against oceanic crust. With the eventual onset of subduction, plutonic masses, formed during the compressive stage, began their movement upwards bounded by synplutonic faults.

 $\left(\right)$

 $\left(\right)$

REGIONAL MINERALIZATION

Regional mineralization is described in separately bound Appendix IV.

.

REGIONAL GEOCHEMISTRY

A regional stream sediment survey published by the Geological Survey of Canada in 1988 indicates geochemical anomalies in streams that drain the Old Ironsides property. Streams are moderately anomalous for molybdenum and weakly anomalous for copper, zinc and lead.

and the second sec

PROPERTY GEOLOGY

Much of the Old Ironsides 2 Claim was mapped in detail during 1999 (Figure 4). A soil geochemistry grid (Figure 6) was used for control over most of the ground mapped, while elevation was used for control in outlying areas. With the exception of a small portion in its southwestern corner, the property covers Gambier group metamorphic rocks that strike northwest and dip steeply to vertically.

The southernmost rock type mapped on the property is medium to coarse grained, unfoliated granodiorite. It is a part of the **Coast Mountain intrusive** suite, and has not been subjected to regional metamorphism. Its occurrence on the property is limited to a small area south of the creek in the property's southwestern corner. The remainder of the rocks mapped belong to Gambier group.

The next rock type to the north is fine grained black **amphibolite**. It is massive to weakly foliated and sometimes contains a small amount of fine grained and evenly disseminated pyrite. This rock weathers grey to light grey.

To the north of the amphibolite lies a thick package of interlayered **schist** and **felsite**. The contact between this package

and the amphibolite appears to be conformable. The schist is very dark grey and moderately to strongly foliated. It is composed of 50% anhedral black grains, 1mm to 2mm in size, which have not been positively identified, in a very fine grained black matrix. This rock often contains up to 2% very fine grained pyrite in disseminations and thin bands, and usually weathers rusty. Near L20700N, 19800E, interbeds to 50mm in thickness of medium grained greywacke were noted.

The felsite is fine to medium grained and white. It is mostly unfoliated to weakly foliated, except in rare localities where it is strongly foliated and schistose. The felsite commonly contains up to 5% very fine to fine grained pyrite as irregular disseminations, thin bands and fracture coatings. Near L20200N, 20100E, a 3m thick section contains mica flakes and has an intrusive texture that is distinct from most occurrences of this rock. Near L20800N, 20600E, the felsite hosts a 0.4m thick quartz vein which contains sporadically disseminated medium grained pyrite. A specimen of sulphide-bearing vein was analysed and returned an anomalous gold value of 1700ppb.

A medium grained, **granodiorite gneiss** lies within the schistfelsite assemblage near the northern end of the control grid. It is weakly to moderately foliated and inequigranular with brownish
quartz grains and biotite flakes, both up to 3mm in size, in a light-coloured fine grained groundmass. This rock may be a partially recrystallized grit or immature sandstone.

The felsite grades into a rapidly changing **mixed unit** composed of felsic and mafic volcanics, some of which appear intrusive, and minor interbeds of schist and grit. Near the ridgetop north of rock sample P197016 is an exposure of boulder conglomerate.

At the top of the ridge is a grey weathering **mafic** agglomerate which is dark grey to black, rarely with a very dark greenish tinge. It consists of 35% very fine grained black groundmass and 65% fine grained dark grey to black angular to subangular clasts. The clasts range in size from 2mm to 70mm. To the north of the claim boundary, on ground covered by the Old Ironsides 3 claim, the agglomerate is host to an occurrence of pyrite and chalcopyrite.

On the ridgetop, the agglomerate is intruded by granodiorite dykes which have not been affected by regional metamorphism and are probably of the same age as the Coast Plutonics diorite to the north of the property.

PROPERTY MINERALIZATION

Fine bands of pyrite are common within the felsics at numerous localities. This style of mineralization resembles that observed at many known VMS occurrences. Samples of the pyritebearing felsics were submitted to Chemex Labs in North Vancouver, BC, where they were crushed, split and pulverized to -150 mesh, digested in nitric aqua regia and analysed for 32 elements using an induced coupled plasma (ICP) technique. Certificates of Analysis appear in Appendix II. Sample P197015, a sulphidebearing specimen of felsite, returned values of 1305ppm Cu and 4ppm silver.

Near L20800N, 20600E, the felsite hosts a 0.4m thick quartz vein which contains sporadically disseminated medium grained pyrite. A specimen (P197019) of sulphide-bearing vein was analysed and returned a value of 69.4 ppm silver. A 30 gram sample of the rock was subsequently analysed for gold by fire assay with atomic absorption finish and returned a value of 1700ppb gold. VMS deposits account for a considerable proportion of gold and silver production in Canada (Franklin, 1996), and the gold produced at the Britannia deposit was recovered from quartz veins (Payne et al, 1980).

At the top of the ridge, on ground now protected by the Old Ironsides 3 claim, an occurrence of pyrite and chalcopyrite was found during 1998. The sulphide occurs as coarse grained blobs in the matrix of a mafic agglomerate and comprises about 20% of the rock. Two mineralized specimens were analyzed and and returned values of 1055ppm and 1140ppm copper.

PROPERTY GEOCHEMISTRY

On the Old Ironsides 2 claim, 123 soil samples were collected from a grid with a sample density of 100 by 100m. The grid was established using flagging tape and aluminum tags inscribed with grid coordinates. The tags were fastened either to foliage with wire or to lath pickets with staples. To mark the grid location permanently, a 50cm long, 12mm diameter steel pin was inserted into the ground to a depth of 40cm at each end of baseline 20000E. All soil samples were submitted to Chemex Labs in North Vancouver, BC, where they were dried, screened to -150 mesh, split, digested in nitric aqua regia and analysed for 32 elements using an induced coupled plasma (ICP) technique. Certificates of analysis appear in Appendix III.

An elementary statistical analysis was performed on a population of soil samples collected during a regional exploration program conducted in the Powell River region during 1998 and 1999. A total of 522 soil samples is included in the analysis, all of which were collected over roof pendants of metamorphic Gambier group rocks. The resulting data were used to establish thresholds for geochemical anomalies. A summary of the data and histogram plots for elements of primary interest is shown in Figure 5, while the threshold values are summarized in the following table.

Figure 5: Regional Soil Geochemistry Histograms Horizontal Axes: geochemical value range; Vertical Axes: number of values in range Number of samples n=522 NB: outliers trimmed from histograms but included in calculations

2 8 8 8 8 8 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 Ø đ 48.8 mean

14 15 18

ANOMALOUS THRESHOLD	S FOR	522	SOIL	SAMPLES
---------------------	-------	-----	------	---------

Element	Anomalous threshold (ppm)						
	Background	Weak	Moderate	Strong	Peak		
Cu	25	45	90	180	1775		
Zn	15	30	60	120	3650		
Ag	<0.2	0.3	0.6	1.0	48.8		
Со	4	6	12	25	83		
Ba*	75	150	300	600	1510		
As	7	15	30	60	750		
Pb	2	5	10	20	584		

*partial digestion

Overburden is considered largely residual or colluvial, and usually of thickness of less than two metres. It was observed that soil development north of L20600N is extremely poor, with no differentiable horizons. Material commonly sampled was a browngrey C horizon. The poor soil development suggests that the soil geochemistry may not reflect an accurate signature of bedrock mineralization. South of L20600N, red-brown or orange-brown B horizons were most commonly sampled.

The grid covers the area around two 1998 reconnaissance soil lines (Figure 6) which had returned anomalous values for copper and barium. It covers a zone in which the volcanics change in composition from predominantly mafic to predominantly felsic. A considerable portion of the area of geochemical interest could not be sampled because of cliffs.

()

 $\langle \rangle$

The grid soil samples confirm and partially define the 1998 copper and barium anomalies on the lower portion of the hillside (Figures 7,8). Peak values are 181ppm copper and 400ppm barium. Anomalous values for zinc (Figure 9) were also returned over an extensive area. Barium values are likely understated because of incomplete solution of barium sulphate by the aqua regia. Barite is an accessory mineral at the Britannia deposit (Payne et al, 1980) and the Red Dog deposit in Alaska (Koehler et al, 1991), as well as numerous other VMS deposits (Hoffman, 1986).

North of L20600N, where the slope of the hillside decreases, there is a sharp drop in geochemical background for most metals, and soil horizons are more poorly developed. There are several subtle anomalies in this portion of the grid.

Twelve samples in the northeast corner of the grid returned subtly but distinctly anomalous values for any of copper, zinc, barium, silver (Figure 10), or a combination of these elements. This is the area where pyritic felsic volcanics host a quartz vein which contains anomalous amounts of silver and gold.

Another significant anomaly occurs at L21000N, 20000E, where silver, copper and zinc values are anomalous. Arsenic values (Figure 11) are extremely anomalous 200m to the south and also to

20

(

)

 $\langle \gamma \rangle$

()

)

(

the west of this site, with a peak value of 274ppm.

On the Old Ironsides 3 claim, seven soil samples were collected from a single reconnaissance contour line. Sample spacing along the line is 50m. Overburden is largely residual or colluvial, and often of thickness of less than one metre. It was observed that soil development at almost all sample sites is poor, with no differentiable horizons. Material commonly sampled was a brown-grey C horizon.

At various sites along the soil line, geochemical response was anomalous for copper, zinc, barium and arsenic.

CONCLUSIONS AND RECOMMENDATIONS

The Old Ironsides mineral property was staked to protect a VMS base and precious metals target lying within a metamorphic roof pendant of Gambier Group rocks. During 1999, prospecting, geological mapping and soil sampling were carried out. 130 soil samples and 21 rock samples were collected. 1999 exploration resulted in the discovery of a gold-silver bearing quartz vein, partial definition of a copper-barium soil geochemical anomaly and the discovery of three new soil geochemical anomalies. Due to poor access, helicopter support is recommended for future work.

It is recommended that the soil grid on the Old Ironsides 2 claim be extended to the north to define two anomalies at the northern end of the current grid. The soil samples in the northeastern quadrant of the current grid should be reanalyzed for gold, as a gold-silver bearing vein was found in that area. A small soil grid is warranted over the anomalous soil sites on the Old Ironsides 3 claim. Geologic mapping and prospecting should also be extended northward.

Respectfully submitted,

Ind Br

Arnd Burgert

REFERENCES

Franklin, J. M., 1996: Volcanogenic-associated massive sulphide base metals; in Geology of Canadian Mineral Deposit Types, (ed.) O. R. Eckstrand, W. D. Sinclair, and R. I. Thorpe; Geological Survey of Canada, Geology of Canada, no. 8, p. 158-183

Geological Survey of British Columbia: Minfile Database

- Geological Survey of Canada, 1988: Stream sediment and water geochemical survey, northern Vancouver Island and adjacent mainland, Geological Survey Open File 2039
- Hoffman, S. J., 1986: The volcanogenic massive sulphide target, in Exploration geochemistry: design and interpretation of soil surveys, Reviews in economic geology, (ed.) James M. Robertson, Society of economic geologists, pp. 139-146.
- Koehler, George F., and George D. Tikkanen, 1991: Red Dog, Alaska: Discovery and definition of a major zinc-lead- silver deposit, Economic Geology, Monograph 8, pp. 268-274.
- Payne, J. G., J. A. Bratt and B. G. Stone, 1980: Deformed mesozoic volcanogenic Cu-Zn sulphide deposits in the Britannia district, British Columbia, Economic Geology, Volume 75, pp. 700-721.
- Roddick, J. A., 1976: Notes on the stratified rocks of Bute Inlet map-area, Geological Survey of Canada Open File 480.
- Roddick, J. A., W. W. Hutchison and G. J. Woodsworth, 1976: Geology of Bute Inlet map area, Geological Survey of Canada Open File 480.
- Roddick, J. A., and G. J. Woodsworth, 1979: Geology of Vancouver, west half, and mainland part of Alberni, Geological Survey of Canada Open File 611.
- Woodsworth, G. J., 1977: Geology of Pemberton map-area, Geological Survey of Canada Open File 482.

APPENDIX I

AUTHOR'S STATEMENT OF QUALIFICATIONS

.

AUTHOR'S STATEMENT OF QUALIFICATIONS

I, Arnd Burgert, geologist, with business and residential address in New Westminster, British Columbia, do hereby certify that:

- I graduated from the University of British Columbia in 1995 with a B.Sc. in Geology.
- From 1989 to present, I have been actively engaged in mineral exploration in British Columbia, the Northwest Territories and the Yukon Territory.
- 3. I have personally performed the work reported herein.

and Br

A. Burgert, B.Sc. Dated this 30th day of October, 1999

RECEIVED
NOV (181999
PROSPECTORS PROGRAM MEMPR

FINAL REPORT

describing

PROSPECTING, MAPPING AND GEOCHEMICAL SURVEYS

of the

SUNSHINE COAST PROJECT PROSPECTOR'S ASSISSTANCE PROGRAM GRANT No. 99/2000-P35

NTS 92K/1

ARND BURGERT OCTOBER 30, 1999

TABLE OF CONTENTS

P7	4GE
NTRODUCTION	. 1
ROJECT GEOMORPHOLOGY	. 4
EGIONAL GEOLOGY	. 5
EGIONAL MINERALIZATION	. 7
EGIONAL GEOCHEMISTRY	. 7
EGIONAL GEOPHYSICS	. 7
ROJECT GEOCHEMISTRY	. 8
ARGET A	10
ARGET B	10
ARGET C	11
ARGET D	11
ARGET E	12

FIGURES

NO.	DESCRIPTION PA	GΕ
1	PROJECT LOCATION	. 2
2	TARGET LOCATIONS	. 3
3	REGIONAL GEOLOGY	. 6
4	REGIONAL SOIL GEOCHEMISTRY HISTOGRAMS	. 9
5	TARGET E SAMPLE LOCATIONS	13
6	TARGET E LEAD SOIL GEOCHEMISTRY	14
7	TARGET E SILVER SOIL GEOCHEMISTRY	15
8	TARGET E ZINC SOIL GEOCHEMISTRY	16

APPENDICES

	APPENDIX
AUTHOR'S STATEMENT OF QUALIFICATIONS	I
CERTIFICATES OF ASSAY	II
MAJOR EXPENDITURES	III
REGIONAL MINERALIZATON	IV

INTRODUCTION

The Sunshine Coast Project was initiated during Summer 1998 to evaluate volcanogenic massive sulphide (VMS) base and precious metals mineralization potential of metamorphic roof pendants of Gambier group rocks. During the 1999 field season, the Sunshine Coast Project received funding through the Prospector's Assistance Program, Grant No. 99/2000-P35. This report describes 1999 work. All work was conducted personally by the author, whose Statement of Qualifications appears in Appendix I. Receipts for major expenditures appear in Appendix III.

Gambier group rocks host the Britannia deposit on Howe Sound as well as the Northair deposit near Whistler, BC. In the Powell River region, uneconomic base metals occurrences lying within the Gambier group include the Mt. Diadem workings overlooking Jervis Inlet and the Hummingbird past producer on Goat Island in Powell Lake. However, no previous work was recorded on any of the ground evaluated, and no evidence of previous prospecting was observed in the field. Gambier group pendants were examined north of Powell River in southwest BC, on NTS mapsheet 92K/1 (Figure 1).

To date, five targets have been evaluated. They are referred to as Targets A through E and are shown on Figure 2.

 \mathbb{C}

С

The selection of targets to be explored during 1999, and the timing of the work were, to a considerable extent, dictated by this year's extreme snow pack.

PROJECT GEOMORPHOLOGY

The Sunshine Coast Project was conducted in mountainous terrain of the Coast Ranges. With the exception of the bottoms of broad, U-shaped valleys, topography is steep, with slopes of typically 20° to 50°, and elevations ranging from 56m at Powell Lake to 2091m at a peak on the Lorax Property. Impassable cliffs are common.

Streams draining the eastern part of the project area flow eastward into the Jervis Inlet, while those draining the western part flow west into Powell Lake.

Vegetation on the valley bottoms and lower slopes consists of juvenile stands of second growth fir, douglas fir, western red cedar, hemlock and sitka spruce. These give way to old growth yellow cedar scrub above 1000m. Above 1300m, buckbrush, dwarf balsam, moss and grasses dominate, while steep talus slopes and cliffs are vegetated only by lichen.

REGIONAL GEOLOGY

Exploration was carried out within steeply dipping blocks, or pendants, of metasedimentary and metavolcanic rocks that lie engulfed in the main mass of the Coast Plutonic Complex (Figure 3). Pendants of Gambier Group, named for their type locality on Gambier Island in Howe Sound, were the focus of this project's exploration. They extend discontinuously from North Vancouver in the southeast to north of Loughborough Inlet in the northwest.

These pendants are thought to represent fault slices along which plutonic rock was thrust upwards (Roddick, 1976). The bounding shear zones in places still exist, and in many places are flanked by diorite. The dioritic rocks may represent remnants of a primitive granitoid basement upon which sedimentary and volcanic rocks were deposited.

The metamorphic rocks have undergone deep burial and subsequent deformation, probably in response to compressive forces transmitted through the North America Plate against oceanic crust. With the eventual onset of subduction, plutonic masses, formed during the compressive stage, began their movement upwards bounded by synplutonic faults.

 $\left(\right)$

C

REGIONAL MINERALIZATION

Regional mineralization is described in seperately bound Appendix IV.

REGIONAL GEOCHEMISTRY

A regional stream sediment survey published by the Geological Survey in 1988 indicates geochemical anomalies in streams that drain certain targets of the Sunshine Coast Project. The anomalies are summarized in the following table.

	stream(s) weakly	st	ream	(s) I	nodei	rate.	ly
Target	anomalous for an			malo	us f	or	
А	As	Cu,	Zn,	Pb,	Ba,	Co,	Мо
В	Cu, Zn, Pb			Mo	C		
С	Pb, Ba, As, Mo						
D	Cu, Zn, Pb, Co, Mc	>					

REGIONAL GEOPHYSICS

In 1988, the Geological Survey of Canada published an airborne magnetometer survey as a series of 1:250,000 and 1:50,000 scale maps.

Part of the ground examined by the Sunshine Coast Project is covered by the survey. No compelling magnetic signatures were

recognized. The magnetic signature in the area appears to be largely controlled by topography.

PROJECT GEOCHEMISTRY

All soil samples were submitted to Chemex Labs Ltd. in North Vancouver, BC where they were screened to 150 mesh, split, digested in a nitric aqua regia solution and analyzed for 32 elements by an induced coupled plasma (ICP) technique. Certificates of Analysis appear in separately bound Appendix II.

A statistical analysis was performed on a population of soil samples collected by the Sunshine Coast Project in the Powell River region during 1998 and 1999. A total of 522 soil samples are included in the analysis, all of which were collected over roof pendants of metamorphic Gambier group rocks. The resulting data were used to establish thresholds for geochemical anomalies. A summary of the data and histogram plots for elements of primary interest is shown in Figure 4, while the threshold values are summarized in the following table.

Figure 4: Regional Soll Geochemistry Histograms Horizontal Axes: geochemical value range; Vertical Axes: number of values in range Number of samples n=522 NB: outliers trimmed from histograms but included in calculations

Anomalous Thresholds for 522 soil samples

Element		Anomalo	ous threshol	d (ppm)	
	Background	Weak	Moderate	Strong	Peak
Cu	25	45	90	180	1775
Zn	15	30	60	120	3650
Ag	<0.2	0.3	0.6	1.0	48.8
Co	4	6	12	25	83
Ba	75	150	300	600	1510
As	7	15	30	60	750
Pb	2	5	10	20	584

TARGET A

Target A has been staked as the Lorax mineral group and is described fully in a separately bound assessment report. 1999 highlights include discovery of a second, thicker, lens of massive pyrite, chalcopyrite, sphalerite and galena in addition to partial definition of a strong multi-element soil geochemical anomaly.

TARGET B

Target B has been staked as the Old Ironsides property and is described fully in a separately bound report. Highlights of this summer's work include the discovery of a pyrite bearing quartz vein which returned values of 69.4ppm silver and 1700ppb gold, in addition to partial definition of a copper-barium soil geochemical anomaly and the discovery of two new multi-element anomalies.

TARGET C

Target C lies to the north of Target B and represents its northern extension. Target C's steep northern aspect conspired with this year's extreme snow pack to prevent any work from being carried out in the area. 1998 soil sampling on Target C had returned anomalous barium values from two side by side samples, one of which also returned an extremely anomalous arsenic value of 750ppm. During 1999, a 30 gram sample of each of these two soil samples was reanalyzed for gold by fire assay with an atomic absorption finish. Sample S73 returned the detection limit of 5ppb, while sample S74 did not reach the detection limit.

Target C still warrants further prospecting and more detailed soil sampling to attempt to explain the current anomaly.

TARGET D

As 1998 soil sampling on Target D did not return any compelling anomalies, it is considered a low priority target and was not evaluated during 1999. No further work is recommended at this time.

11

ĺ

TARGET E

Target E is a new target which has not been previously evaluated. It was selected partially because its low elevation allowed it to escape this year's heavy snow cover, and because its proximity to Powell Lake allowed low-cost access. The target, which was accessed by boat, is located along Powell Lake's eastern shore around latitude 50° 07' N.

80 soil samples were collected along two reconnaissance sample lines with a sample spacing of 50m (Figure 5). In addition, two samples of pyritic volcanic rock were collected.

The most promising geochemical result was sample S183's extremely anomalous lead value of 226ppm (Figure 6). This is nearly the highest lead value obtained among all the soil samples collected during 1998 and 1999, second only to a sample collected immediately adjacent to a galena showing on the Lorax Property (Target A). S183 also returned an anomalous silver value of 1.2ppm (Figure 7). Lead and silver are spatially associated in numerous VMS deposits. On the Lorax Property (Target A), about 7km to the north, a lens of massive sulphide discovered this year contains 1.90% lead and 211g/t silver in addition to 5930ppm copper and 3310ppm zinc.

The three sample series S156-S158 returned anomalous zinc values (Figure 8) with a peak value of 156ppm. In some environments, zinc can be extremely mobile, resulting in weakly anomalous zinc concentrations in soil a good distance from its source.

Two significant anomalies were found at Target E, both of which warrant follow-up. Prospecting and further soil sampling are recommended. Attitude of underlying geology should be confirmed by large-scale mapping around the area of interest.

Respectfully submitted,

And Bun

Arnd Burgert BSc. Geology

APPENDIX I

AUTHOR'S STATEMENT OF QUALIFICATIONS

•

AUTHOR'S STATEMENT OF QUALIFICATIONS

I, Arnd Burgert, geologist, with business and residential address in Port McNeill, British Columbia, do hereby certify that:

- I graduated from the University of British Columbia in 1995 with a B.Sc. in Geology.
- From 1989 to present, I have been actively engaged in mineral exploration in British Columbia, the Northwest Territories and the Yukon Territory.
- 3. I have personally performed the work reported herein.

And B____

A. Burgert, B.Sc. Dated this 21st day of October, 1999