BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1999/2000REPORT #:PAP 99-23NAME:SHAWN TURFORD

P

	MINISTRY OF ENERGY & MINES
BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM	REC'D
B. TECHNICAL REPORT	SMITHERS, BC
Name: Shawn A. Turford Ref #: P - 47	
LOCATION/COMMODITIES-	

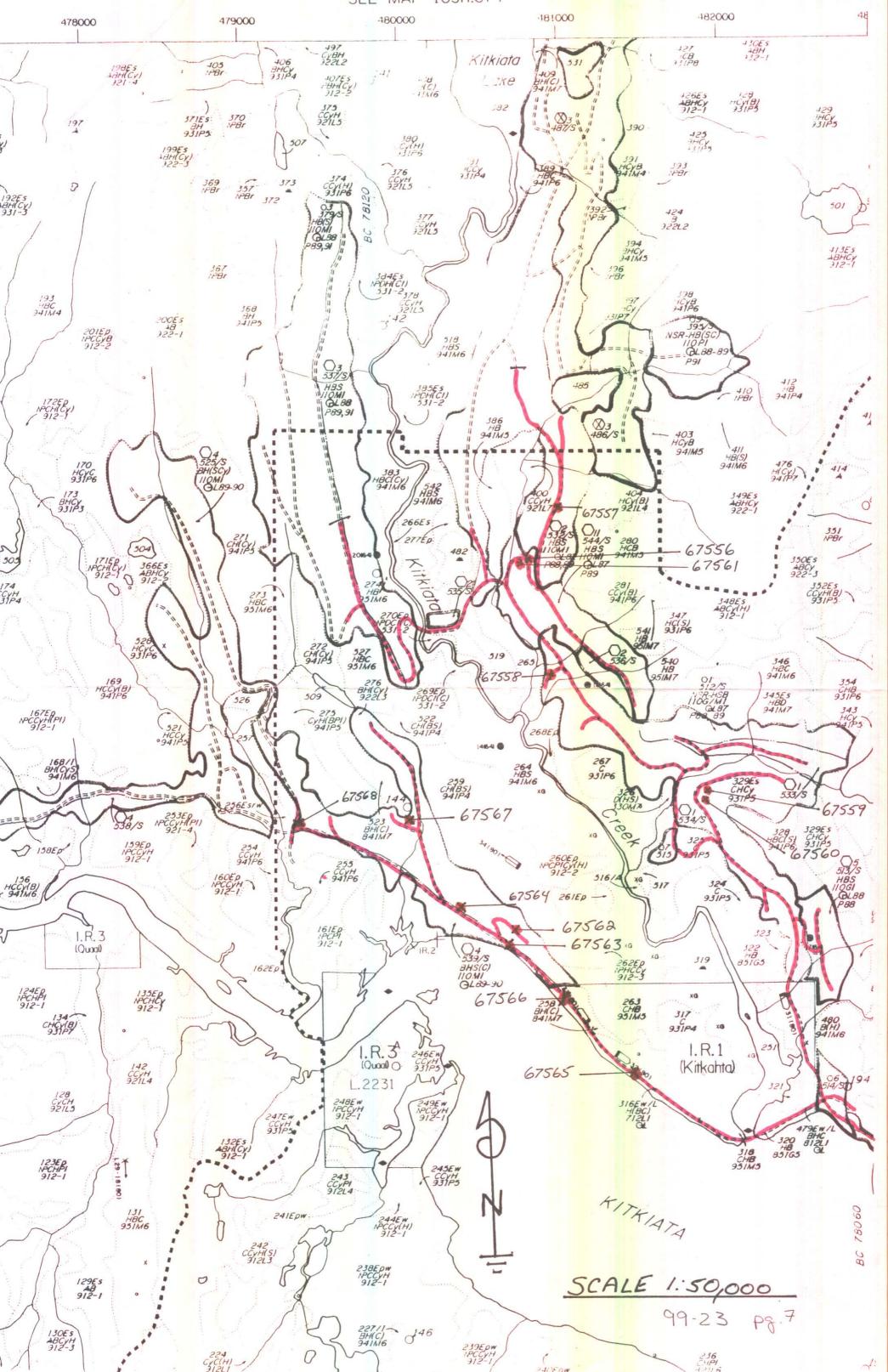
5

ŝ

ł

1 ł

í


1

1

ì

Project Area: <u>Bell</u> Minfile #: <u>n/a</u> Location of Area NTS: 103H/7W Lat: 59 39' Long: 129 21' Description of location & access: <u>Hwy 16 from Francois Lk</u> to Terrace, thence to Kitimat, From M.K. Marina with 24' boat down Kitimat arm, Douglass Channel to Kitkiata Bay. Main Commodities Searched for: Au., Ag., Cu. Known Mineral Occurrences in Project Area: <u>Nil</u> WORK PERFORMED-1.Conventional prosp. road const. & log blocks in Kitkiata and Ouaal river systems. 2.Geological Mapping in connection with above. 3.Geochemical <u>13 rock & silt samples.</u> 4.Geophysical <u>nil</u> 5.Physical Work <u>nil</u> 6.Drilling _____nil_____ 7.Other _____ SIGNIFICANT RESULTS- nil Commodities _____ Claim Name: _____ Location/Lat: _____ Long: ____ Elevation: _____ Best assay/sample type: Description of mineralization, host rocks, anomalies:

Two road systems were visited and prospected Kitkiata and Quaal river. Only the lower sections were done because of snow. No significant sulfides were found. A large amount of mineralized gneiss float rock was observed with visible pyrites. The source of the float rock has yet to be determined. A sample of gneiss float rock #67558 assayed out to 2001ppb Au. Several quartz veins in rockquarries on road spurs were sampled. A large mineralized gneiss zone exsists along the lower Quaal river road (500 meters long) but lies within the Indian reserve. The host rock is either a gneiss or schist zone with visible pyrite and minor chalcopyrite.

ACM	E ANALYTICAL	LAP	ORA	TOR	IES	LTD	•		852	E.	HAS	TIN	GS	ST .	V	NICO	UVE	RB	c	V6A	1R6		F	HON	B (6)	04)	253	-31!	58 1	7 A X (604	1)25	53-17	716
A	(150 9002 Ad	cre	dit	ed	Ço.)	vi	Exp 105 -	1.	& I)ev		20.	Ŀt	d.	PR	oj	ECT	в	FIC ELL nitted	F	ile	₽ # EEF8	99	016	572							4	4
<u> </u>	SAMPLE#	Ho ppos			Zn	_			Mn ppma		As PPN		Au ppm				Slo PPR0		V ppm	Ca %		La PPIII				11 %	B ppm	Al X	Na %	K ‰ç		Au* PPb		
	067556 DR 067558 DR 067559 DR 067559 DR 067560 DR 067561 DR	164 2 1		134 <3 <3	12 10	<.3 5	2 4 1 5 3	20 <1	41 56	1.27 5.22 .31 3.37 .77	<2	<8 <8 <8 <8 <8	<2 <2 <2	????????????????????????????????????	2 1 4	3.4 <.2 <.2 <.2 <.2	र ए. अ	<3 7 <3		.14	.010 .001 .043		5 9 16 14 17	.06 .01 .29	<1< 44 31< 117 22	.01 .01 .01	<3 4 7	.03 .21 .04 .45 .20	.01 .01 .04	.14 .02 .14		_	15 <10 10	
	067562 DR 067563 DR RE 067563 DR 067564 DR 067565 DR	1 2 2 1 1	42 21 21	2 5 10 10 10 3	28 32 33 5 14	5 < 3	2 2	31 10 11 <1 2	783 792 54	2.92 2.99 3.02 .36 1.11	5 4 2	<8 <8 <8	<7 <2	<2 <2 <2 <2 <2 <2 <2 <2	14	<.2 .3 .4 <.2 <.2	3 3 <3	<3 <3	13 13	.67 .68 .01	.078 .078	2		. 53	162 104 104 5< 26	.02 .02 .01	3	.63 .024	,04 .06 .07 .01< .01	. 19 , 19 , 01	6 5 4 5 6	14 13 1	<10 10 10 15 <10	
	067566 DR 067567 DR Standard C3/AU-R Standard G-2	1 2 26 1	129 416 64	5 <3	s 1		4 13 37 9	12 60 10 4	55 781	2.02 4.43 3.41 2.07	5 57	<8 26	<2 4	<2 19	1 Z6	<.2 <.2 23.5 <.2	دة. 22	20		.12< .57	.001 .088	1 1 19 7	17 25 170 77	-	<1< 141	.01 .01 .09 .13	<3 17		¢.01∙ .05	15	8 6 20 3	9 510	<10 10 935 10	

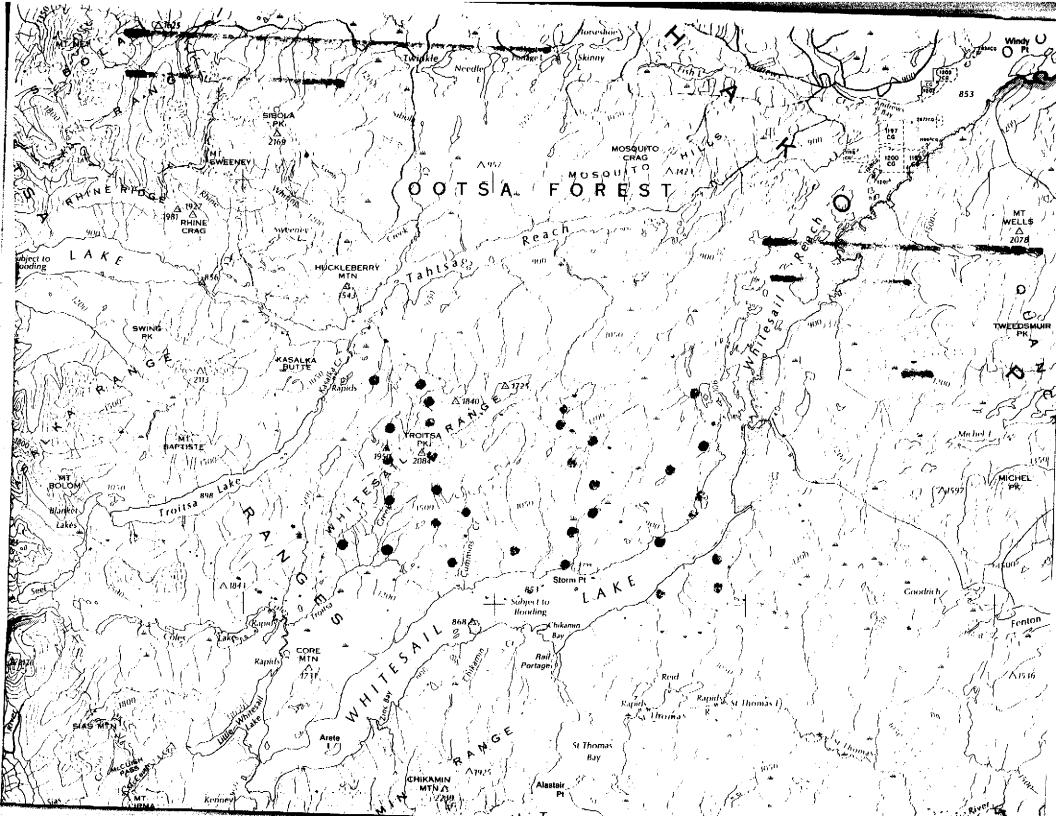
ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HNO3-HZO AF 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 WL WITH WATER. THIS LEACH IS PARTIAL FOR MH FE SR CA P LA CR MG BA TI B W AND NASSIVE SULFIDE AND LIMITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU P8 ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU* - IGNITED, AQUA-REGIA/MIBK EXTRACT, GF/AA FINISHED. (10 gm) HG ANALYSIS BY FLAMELESS AA. - SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JUN 9 1999 DATE REPORT MAILED: June 15/99 SIGNED BY C. T. D. TOYE, C.LEONG, J. HANG; CERTIFIED B.C. ASSAYERS Assay in progress for Cu. Ag for 067556 DC Au for 067558 Dr.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

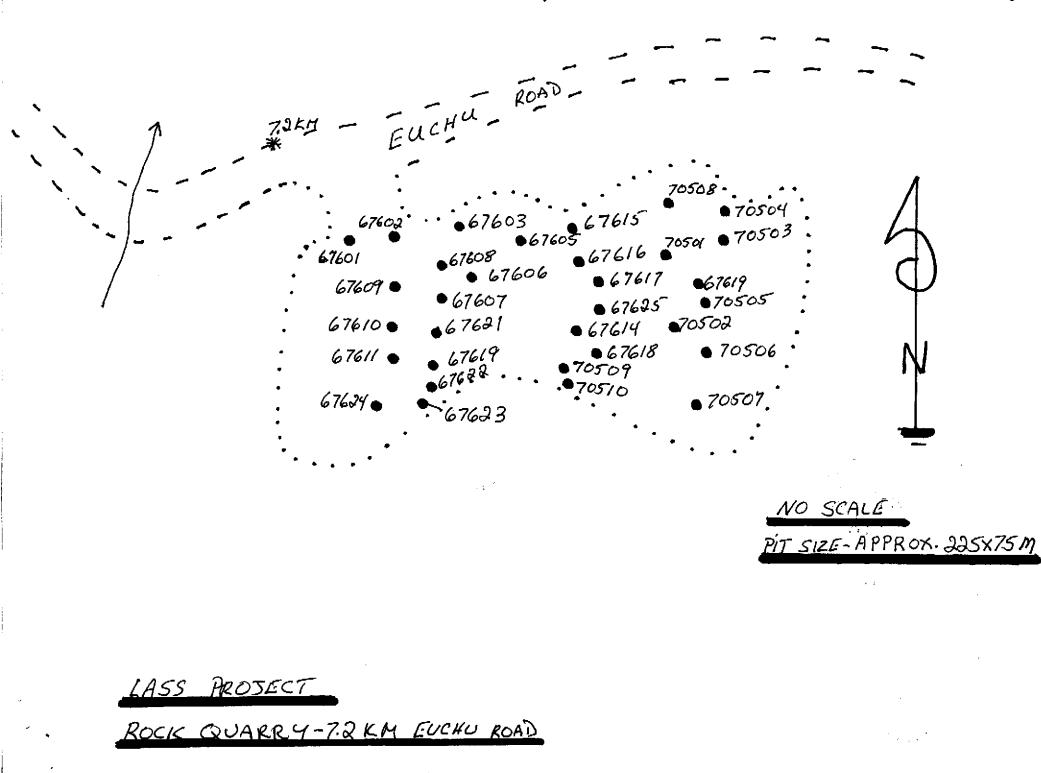
Data di FA

	SO 90							•	03			ASTII EMI(* **1		(001)					•,~	-1710 A	
tt		_		!	<u>Hud</u>	<u>son</u>	<u>_Ba</u>	<u>y Ex</u> 405	<u>xpl</u>	5 70 Gr	<u>Der</u> anvil	v. (le St	<u>Co.</u> ., Y:	<u>Lt</u> ancouv	d. /er BC	PRO	<u>JEC</u> 1v5	T B. Subm	ELL itte	F iby:	ile RR KE	# Efe	990	167	3				·		[
SAMPLE#	No	Cu ppiii	Pb ppn	2л рряі			C o PPPM	Ма ррал	fe X	As ppn	U PP@	Au ppin	Th ppm	Sr ppm	Cd PFm	d2 mqq	8i PPm	V ppai	Ca %	P %	La ppon	Cr ppm	Mg X	8a PP®	Ti %	В ррн.	Al _%	Na _%	к <u>% р</u> р	N A⊔* o ppo	H <u>e</u> Ppk
267557 DR	1 1	13	7	70	. 3	3	11	605 3	ŝ.02	<2	<8	<2	<z< td=""><td>22</td><td>.4</td><td><3</td><td>3</td><td>51</td><td>.27</td><td>.058</td><td>2</td><td>-</td><td>1.00</td><td></td><td>. 16</td><td>31</td><td></td><td>D1 .</td><td></td><td>2 7</td><td>4</td></z<>	2 2	.4	<3	3	51	.27	.058	2	-	1.00		. 16	31		D 1 .		2 7	4
-	1	10	5	35	<.3	10	•	550 1		<2	<8	<2	<2		.2	•	3			.071	5		.51	54	.07	े दे ।	• • • •		07 <		3
067568 DR				~ .	<.3	10	~	564 1	4 12 2	<2	<8	<2	<2	20	2	<3	٦.	- 43	- 40	.070	•	21	.52	- 55	.07	4 1	.20 .	62 .	07 <	2 1	- 2


ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR NN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LIMITED FOR NA K AND AL. - SAMPLE TYPE: SILT AU* - AQUA-REGIA/NIBK EXTRACT, GF/AA FINISHED. (10 gm) HG ANALYSIS BY FLAMELESS AA. Samples beginning 'RE' are Regins and 'RRE' are Reject Regins.

DATE RECEIVED: JUN 9 1999 DATE REPORT MAILED: JUN 15/99 SIGNED BY. C. T. J. D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data 🔨 / FA


		MINISTRY OF ENERGY & MINES
E. TECHNICAL REPO	BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM	REC'D SMITHERS, BC
Name: <u>Shawn Turfo</u> :	rdRef #: <u>P47 1999/00</u>	
LOCATION/COMMODIT:	IES-	3
Project Area: <u>Lass</u> Location of Area I	Minfile #: <u>n/a</u> MTS: <u>93/F 5/E</u> Lat: <u>53 29'</u> Lo	ng: <u>125 40'</u>
floatplane from Fr Two; by truck and	cation & access: <u>Two trips, one; wi</u> ancois Lake to the North shore of trailer to the South shore of Chel logging roads and West Fraser's :	<u>Chelaslie Arm.</u> aslie Arm from
Main Commodities S	Searched for: <u>Au, Ag, Cu.</u>	}
Known Mineral Occu	arrences in Project Area: <u>nil</u>	
WORK PERFORMED-		•••••
1.Conventional pro Chelaslie Arm area Chelaslie river 2.Geological Mappi 3.Geochemical <u>68</u> 4.Geophysical <u>5.Physical Monh</u> 6.Drilling <u></u>	osp. <u>Road construction and log block</u> a, also North shore Chelaslia Arm a ng as per map sheets rock and silt samples nil nil nil nil	and portion of ,
SIGNIFICANT RESULT	Claim Name: Long: Elevation:	
	type:	
	eralization, host rocks, anomalies	
Rd. Visible pyrit large mineralized Kms upstream on t mineralized (visib	given to a rockquarry at the 7.2 k es within the volcanics (Rhyolite) Tuff; Rhyolite outcrop was sample the Chelaslie River. A large amon ole pyrite, chalcopyrite) fill r	was tested. A ed approx. 2.5 unt of highly rock noted in
nearby creek, at 7 a later date to asc project).	<u>l Km Euchu Rd. Investigation was t</u> ertain it's origin. (check Ralph I	<u>o follow up at</u> Keefe's "Ches"

CHELASLIE ARM A

MAP #2

									GEU	эсн	EM.	LCA	.u /	ANA	rra	13	CE	RT:	IFI	CAT	E										
		ł	luð	isor	<u>n P</u>	Bay_	Ex	pl.	6	De	γ.	Ço	, <u> </u>	<u>Ltd</u>	<u>і. Р</u>	RO	JEÇ	T	LAS	S	F'il	e 1	H 9	901	674	1					
							405	· 47	70 Gre	envii	ile S	St., '	Venc	couver	r BC '	VốC 1	1 V 5	Sub	bin1 t t i	ed by	: RR 1	KEEF	ε			-					
SAMPLE#	Mo	Cu.	Pb	Zn	Aa	NĪ	Co	Mn	. Fr	• A s		 Ј. Ан	71		 Сл	 €h 	а I	V			1. 102 - 20 1. n					· : : : .	•	· .			
	opm	ррл	ppn	ррл	ppm	ppm	opm	PPM	. 7	, ppp	i ppr	i ppm	ррп	i ppm	ppm	opm	ppin,	ррт	X	X	ra ppnn∦	opm	mg X	i Ba (ppm			A1 X	Na X			u∙ H apb pp
021465 DR						168								••••				•••							• • •			• • •			
021466 DR	2	160	6	17 .	<.3	18	16	88	2.54	. 61	. d	1 0	- 2		<.2	- 24	- 1	40	1.43	.123	15	2	4.20	04	. 23	;	2.71	. 44	, 05	< <u>2</u>	_
021467 DR				47	.8	17	, õ	1030	2.9	1 211	e e e	1 0		25		· 5	1	37	5 05	.079		0 /1		1						ĩ	31
021468 DR		_		67	. 3	95	30	855	6.25	<u>ن</u> ر	. 18	0	ó	108	<.2	Ś	- 21	4A	1 71	.00¢	11	4.3	3.16	45	וע. דר	() .1	.81	.04	,09	3	29 5
RE 021468 DR	2	44	۲>	90	<.3	97	41	917	6.73	εū	<8	- (2	0	115	.5	j	4	52	1.86	.094	10	77	3.10	40	. 25	د» 3	1.04	.41	.04		त । तत्व
021469 DR						1012																								_	
021470 DR	1 +	54	j.	78	<3	213	45	1066	6.06	s L	. <Ē	1 0		100	()	- 1	2	17	1 61	045	9 9	07 : 71	12.92	15	.04	<u>ر</u> >	. /0	.08	.02	< <u>2</u>	
021471 DR	<1	5	3	6	<.3	2	<	40	.37	4 J	- <f< td=""><td>4 7</td><td>2</td><td>17</td><td><.2</td><td>1</td><td></td><td>1</td><td>16</td><td>1005</td><td>16</td><td>41</td><td>4.14</td><td>ξΥ 1 \ 1</td><td>.07</td><td><) </td><td>2.25</td><td>.42</td><td>.06</td><td><2 .2</td><td>2 1</td></f<>	4 7	2	17	<.2	1		1	16	1005	16	41	4.14	ξΥ 1 \ 1	.07	<) 	2.25	.42	.06	<2 .2	2 1
021472 DR	11	48	4		.5			1001	5.09	, ,	1 4	1 0		129				141	7 70	260	21	05	2.23	1431	<.UT	<u>د</u> >	.50	.04	. 21	×2	<1 2
021473 DR	1	Z	<3	5		2	<1	33	.30) kž	. 16	, <u>,</u> ,2	3	15	.2	3	đ	2	.19	.002	15	3							,08 ,23		<1 1 1 <1
021474 OR	13	17	Ŷ	7	.7	1	a	38	.60	5 1F	i «F	s <2	2	, 1	٢. ٢	4	71		0 3	0.0.2	17	10	A7		. 01	-				-	
021475 DR	2	23	3	43 -	<.3	10	13	730	4.41	10	, e	\$ <2	<2	60	<.Z	3	ä	\bar{n}	1 76	077			1.49	25 •						3	9 1
067551 DR	1	265	<3	9	.5	8	54	448	5.27	7 47	/ <8	3 (2)	<2	2 57	<.2	4	<1	5	6 22	022	- 1	12	26	129	- 12		12 + 1 F L L	. 23	- I¥	2	1 1
067552 DR	3	30	- · ·		.4	8	31	298	9.57	/ 33	5 19) ~2	' <2	2 40	<.2	9	<3	77	1.33	. 105	5								.12	4	<1 1
067553 DR	4	4	3	9	1.5	5	1	393	. 83	i 6	<8	<2	<5	26	<.2	<Ś	đ	3	1.75	. 008	7			4						9	2 3
			,	26		4.7	~	170	2.01	0 ≺Z	, .r				-						5										
067554 DR	1 4	23	- 4	20	د.		8	1/5	- Z. UG		· (b.	• • • •	· • • •	· • • •										¥ /		~ / ·		4 -	.09		1 1

04/04

Д.

6893480

0 H

1716

253

604

LABS

АСМЕ

16:50 FR

JUN-15'99

ICP - .500 GRAM SAMPLE IS DIGESTED WITH 3ML 2-2-2 HCL-KN03-H20 AT 95 DEG, C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WATER. THIS LEACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TI B W AND MASSIVE SULFIDE AND LINITED FOR NA K AND AL. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZH AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* - IGNITED, AQUA-REGIA/MIDX EXTRACT, GF/AA FINISHED. (10 gm) HG ANALYSIS BY FLAMELESS AA. Samples beginning 'RE' are Retuins and 'RRE' are Reject Retuins.

Date___ FA

AUNE ANJ ATTICAL LAPORAMONIES LED. NO.2 B. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 25)-3158 FAX (604) 253-1/16

i,

đ

구 : 다

. U

Π.

10 - 11 - 11

9969999 996

н 22 00

.

L ABG

∃ион

12:15 FP

66.23 1

זמר

GROCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Bxp1 & Dev. Co. Ltd. PROJECT LASS File # 9901787 Page 1

067601	pm.	ppm	p pe	61bm	p pm	kabur -	p pn	Nn ppm	X	ppm	E NOVIO	to lo u	r;pili	, icini	pr n	()Pm	k p in	ppn	, X	P X	00M	ppm	<u>,</u> X		X	ppm	.*			ррав н	Aur 19 1 5 (
RE 067601 067602 047603 067604	3 <1 4	11 11 5 128 51	27 26 10	120 53 84	.8 .4 .7	1	4	560 565 1592	1.39 1.40 1.68 2.81 4.37	8 11 16	<8 <8 -(<2 <2	3 2 2	21 22 79	1.0 .3 .7	- <u>5</u> 5 - 11	3 3 3	8 13 55	1.03 .76 5.35	,038 ,039 ,058 ,033 ,038	7 8 4	17 B 16	.52 .74 1.81	46 31 33	.03 .03 .08	<3 <3 <3	.86 1.04	.05 .07 .04	.17	4 2 5	1 7 ~1	20 30
^67605 067606 ^67607 067608 047608	17 13 4	71 39 46 79 15	8 11 20	48	۵. 1.2 8.	5	10 12 8	496 367 755	3.35 2.94 4.10 3.33 2.26	28 29	<8 <8 <8	<2 <2 <2	<2 <2 <2	44 51 38	<.2 .2 .2	<3 10 3	ය ය ය	31 88 75	2.46 1.15 1.74	.055 .015 .102 .068 .021	4 6 6	17 13 16	.62 1,08 76.	16 36 33	.17 .12 .14	ও 3 ও	.85 .80 1.79 .85 1.39	.06 .17 06	.02 .11 .20 .07 .20	3 2 2	6 4 3	20 <10 20 20 10
067610 067611 067612 067613 067614	57	6 9 207 106 18	258 10	51 45 32	.9 1.9 .9	- 3	10 11 1	1233 316 364	3.34 7.64 4.74 2.49 3.14	60 88 21	<8 <8 <8	<2 <2 <2	く2 く2 く2	62 19 19	6 < 2 < 2	12 11 <3	ठ ३ े	68 20 16	2.60 94 1.29	.250	19 4 7	10 16 12	2.16 92. 68.	41 29	.26 .12 .13	ও ও ও	1.00 1.88 1.12 .63 .86	.06 .03 .08	. 10 . 06 . 18 . 10 . 20	254	5 4 1	<10 10 15 10 10
067615 067616 067617 067618 067619	27 16 6	13 37 33 12 167	6 7 5 9 8			5 4 2 8	8 6 6	701 273 1016	2,14 9,11 2,12 2,80 4,23	68 74 27	<8 <8 -8	<2 <2 <2	2 <2 <2	30 16 88	<.2 <.2	5 3 4	<3 <3 <3	38 14 26	1.23	.017	11 3 5	B 10	1.12 .24 .86	29 11	.04 .05 .07	<3 <3 <3	1.17 .57 1.10	.07 .03 .02 .03 .09	. 05 . 14 . 14	222	13 5 2	20 25 25 10 10
067623	101 179	294 78	6 29 10	20 19 19		3	5 1 <1	313 689 425	8.37 4.90 16.55 3.40 8.49	93 234 36	<8 <8 <8	<2 <2 <2	~2	10 10 11	. S . B	10 11 <3	<3 6 <3	305 21 14	7.44 .21 .39	.089 .082 .050 .062 .048	15 19 4	14 8 16	.28 .50 .30	213 34 18	.25 10 .11	43 <3 <3	3.37 1.59 .86	1.65 .02 .05	. 23 . 25	8 2 5	13 18	30 < 10
067625 070501 070502 070503 070504	7 10 14 8 9	:7 9 9	16 13 12 31 10	43 57 63	1.2 .5 .6	3 4 5 5 3	10 8 3	371 437 388	2.64 4.42 3.82 1.69 2.57	76 10 12	<8 <8 <8	<2 <2 <2	<2 2	38 13 19	.2 <.2	6 6 <3	ও ও ও	25 39 22	2.45 .41 1.46	.021 .044 .041 .047 .039	4 9 24	7 14 17	.57 .93 .36	16 27 95	.11 .13 .20	<3 <3 <3	.88 1.12 1.15	.07	.20 .14 .40	<2	14 - 2 3	15 <10 15 20 <10
070505 070506. 070507 070508 STANDARD C37AU-R		5 6 19 67 64	5 9 7	18 39	.9 .6 .5	3 2 4 37	8 2 7	405 181 383	1.15 7.73 2.39 2.90 3.42	50 80 30	<8 <8	<2 <2 2	2 2	54 17 18	.5 <.2 < 2	11 <3 x	<3 <3 ~3	60 10 34	16.17 1.36 .57	.013 .553 .104	3 23 11	11 8 20	.49 1.45 .20	11 27 27	.06 .12 .10	33	.53 1.54 .46	.03 .07 .09	.06 .09 .09 .08	6	1 4 3 3	< 10 15 <10 <10
ASS · S	IS LE Say R Sampl Sampl	ECON E TY	GRAM IS P MEND PE: Inni	SAM ARTI ED F Rock	IPLE AL F OR R HE'	15 D OR M OCK AU* 815	IGES N FÉ And - Li Rotu	TED W SR C. Core GNITE <u>N9 an</u>	2.02 ITH 3M A P LA SAMPLE D, AG J 1RRE)L 2- L CR IS IF M-RE <u>1 A</u> !	2+2 MG B. CU (GLA/I	RCL-I A TI PB 21 M3BK	HNOC3 BW NAS EXT	H20 AND > 12 RACT	AT 9 Mass 4. Ag , GF/ 2	5 DE IVE : > 3 AA F	G, C Sulf O PP Ints	FOR IDE /	ONE H ND LI NU > 1 (10)	HOUR A IMITEC 1000 P gm) F	UND I D FOR PPB IG AN	S DII NA I Alysi	UTEC (ANC Is by	TO AL.	10 M	L WE SS AJ	TH WA			a an		

ACHE JANN VICEA	H	ud	sor	ı E	Зау	Ē.	ւթե	<u>,</u> δι	Der	₹.	Co.	ь	td	. f	ROC	IBC.	T I	եռե	S	F.I	44	łł	99(17	87			Fa	ge	2		
SAMPLE#	Mo pipini							Mn ppm			U PPIR				Cd ppm	Sb छिप्रम		V	Ca X		l,a	Lr ppm	Mg	8a	11 X p	8	31 (2) AL X	Na Xa	ĸ	ил ppm p		Hg ppb
070509 070510 070514 070515 070515	52 81 3 <1 4	6 46 5 4 7	6	13 44 14	.4 .5 <.3 <.3 <.3	52	6 2 6 1 1	106 294 199 47 29	5.68 5.67 1.37 .34 .24	69 74 4 2 3	<8 <8	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13 15	51 15	.3 <.2 <.2 <.2 <.2 <.2	4 <3	-	9 13 7	.45 .16 .18	.119 .049 .015 .036 .006	-33	12 13 5	.23 .09 .14	115	. 11 . 01 . 02	4 7 3 3 3	.62 .79 .40 .38 .37	.01 .04 .04	. 13 . 12 . 14		5 7 1 <1	40 15 105 395 9525
070517 070518 070519 070520 070521	2 1 4 1	5 4 6 5 4	7 8 6	37 45	<.3 <.3 <.3 <.3 <.3 .3	1	5 4 3	239 1499 1726 1255 529	70 .98 2.95 1.94 1.70	4 4 2 2 6	6>	\$ \$ \$ \$ \$ \$	15 12		<.2 <.2 .6 .2 <.2	<3 <3 <3	े उ उ	8 12 12	.21 .19 .17	.026 .031 .015 .017 .025	31 30 26	4 4 9	,11 ,13 ,10	185 120	.02 .02 .02 .02 .02 .01	⊲ ⊲	.48 .46 .47 .39 ,43	04 03 04 03	. 15 . 13 . 16 . 13	å S S S S S S S S S S S S S S S S S S S	<1 1 3 2 1	315 905 145 205 205
 070522 070523 070524 070525 070525 070525	<1 3 19 2 11	1 2 3 375	9 18 6	26 41	<.3 <.3 <.3 <.3 <.4	3 1 6	3 3 1 8 116	241 64 38 637 264	1.03 .39 .25 1.06 20.20		<8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	14 13	43	<.2 <.2 <.2 ,2	4 4	4 -3 -3	7 6 11	. 18 . 14 . 28	.066 .033 .022 .053 .041	33 30 30	6 3	.11 .13 .10	135 137 211	.03 .02	उ ठ ठ	.45 .57 .50 .49	04 06 04	. 18 .22 , 17	<2	11	260 2105 2720 2810 25
 RE 070525B 070525C Standard 03/ nº-a Standard 0.2	11 6 26 2	67	30	72 168	.4 .4 5.9 <.3	17 4 36 7		262 177 807 568	20.13 16.54 3.41 2.11	51	≺8 ≺8 17 18	<2 <2 3 <2	2	8	1.2 <.2 23.5 3	7	<3	13 82	39 58	.041 .083 .088 .098	6 7 19 8	8 170	. 10 . 61		.07 .10	4 21 1		04 04	.09 .16	3 <2 15 5 3	54	20 35 970 <10

La type: ROUK. Semples beginning (RE' are Reisins and (RPE) are Reject Reruns. -

r.80/24

1 ZOJESSOJES

 \mathcal{O}_{L} °0

834 255 1.1

i i

LABS

ĤСМЕ

ը։ Ա

12:16

ភ្លាំ ស្រុំ

JUL

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data / FA

भग अमेर क

								•	HEO(HE	MIC	CAL	A	NAL	x S I	S	ER	rti	PIC	ATE	2											
		Hų	da	on_	Ba	Y <u>)</u> 40'	Exp	1. 70 (& I Carivi) <u>av</u> lle	; (3 ; , ,	Co. Van		td, er Bi	PF.	0.J i 1V5	<u>2(7'1</u> St	<u>L</u> Abm1	ASS Lend	J. DV: R	11 .R.	e Keef	∤ 9 F	901	.78	8						
SAMPL*#	Mo	Cei Ispint p				NÌ	Ça	Mn	Fe	As .	 U	Au	Th	Sr	D:0 M:4q		tsinta Bri	 ۷	 Се	P	le	- 6, 20, 10, 10	Mg	₿a pcm	ri X	e B DCM	Al X	Na X				
070511 070512 070513 RE 070+13 STANDARO 037A9+5	1 3 3	25 31 29	17 9 9	76 52 51	.4 .4	17 9 10	14 7 7	1845		2 4 10 5	<8 <8 <8 <8	\$ \$ \$ \$	<2 3 <7 <2	77 55 73 64	<.2 .2 .5	स उ उ र	3333	61 35 39 41	.85 .76 1.91 1.66 .58	.082 .089 .087 .079	15 30 11 10	28 13 13	.49 .42 .38	1 19 182 102 97	. 13 . 02 . 04	<3 5 3	1.08	.02 .02	- 06 - 08 - 08	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	5 80 5 21 5 60	• •

/CP - 1500 GRAM SAMPLE IS DIGESTED WITH 340 2-2 2 HCL-BHO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 10 ML WITH WITH H THIS CLACH IS PARTIAL FOR MN FE SR CA P LA CR MG BA TE B W AND MASSIVE SULFIDE AND LEMITED FOR NA K AND AL. SANFLE TYPE: SILT AUA - AQUA-REGIA HIBK EXTRACT, GETAA FINISHED. (10 gm) HG ANALYSIS BY FLAMELESS AA. Samples beginning /RE/ are Reguns and /RRE/ are Reject Reguns.

DATE RECEIVED: JUN 16 1999

All rea

DATE REPORT MAJ LEDI) UN 28/99 SIGNED BY M. P. D. YOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

MIN	ISTRY OF	ENi	RGY &	MINES
RECID		: 4	2000	
	SMITH	IER:	S, BC	

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM

B. TECHNICAL REPORT

Name: <u>Shawn Turford</u> Ref #: <u>P47 1999/00</u>

LOCATION/COMMODITIES-

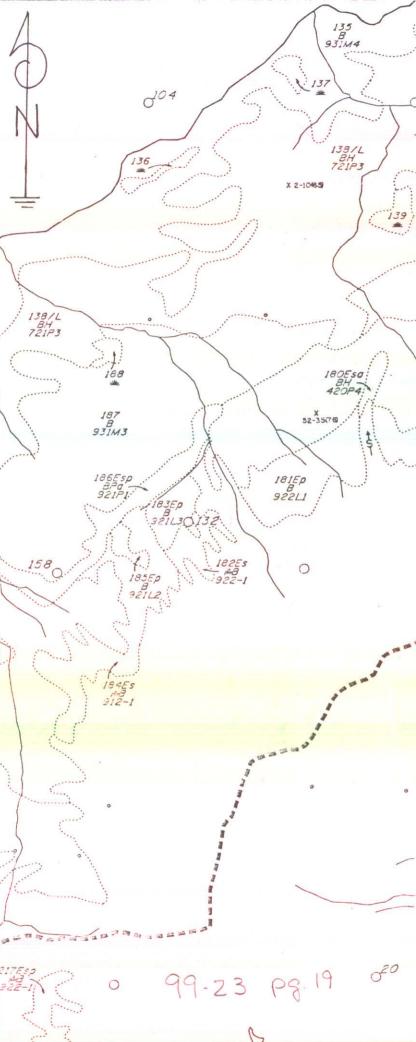
Project Area: TSA Minfile #: <u>93E-003</u> Location of Area NTS: <u>93E 11W</u> Lat: <u>53 32</u> Long: <u>127 27</u>

Description of location & access: <u>By Cessna 180 floatplane from</u> Francois Lake to a point on the Southwest shore of Troitsa Lake

Main Commodities Searched for: <u>Cu., Au., Ag.</u>

Known Mineral Occurrences in Project Area: <u>Cu, in the Troitsa Lake</u> <u>showing. 93E-003</u>

WORK PERFORMED-


1.Conventional prosp.	Prospect	gossano	u <u>s area</u>	and	<u>eastern</u>	<u>creek</u>
2.Geological Mapping	as per at	t <u>atched</u>	map sh	eet _		
3.Geochemical 32 roc	k and sil	t sampl	es			
4.Geophysical <u>nil</u>						
5.Physical Work nil	·					
6.Drilling nil						
7.0ther						
SIGNIFICANT RESULTS- Commodities	none at t	his tim	e	-		
Location/Lat:						

Best assay/sample type:_____

Description of mineralization, host rocks, anomalies:

The gossanous area, Southwest end of Troitsa Lake was the given the majority of our attention. The West side of gossan appears to be a highly altered Rhyolite, and mid; Eastern, portion seems to be a highly altered sediment. Visable sulphides: calcophyrite, bornite, sphalerite weis noted and samples tested. A feldspar porphyry dyke intersects the creek (main zone) 200 meters South of the lake. Also in the main zone by the" waterfall", visible azurite, malachite staining was sampled and high grade Cu., assays were returned. The "waterfall" was a heavy slide, erosion area. This area, I suspect, has not previously been prospected. The eastern creek area was prospected to best of our ability with the high water and poor weather hampering our progress, was not completed. We hope to try again in 2000.I shall note that Hudsons Bay Mining And Exploration Co., have shown interest in this project and would like to view in year 2000.

: 94Ep B(H) 931M**3** X 52-22(76) 126 8 931P3 111 BFO(H) 722P1 128 R 105Ep B(H) 931M3 129EP B(PaH) 931P**4** 6 6 6 5 5 127 - R X 52-23178 116 112 Nar 119 0^{108.} X 1-865 BC 4166 0'06 4 0 0 117 120EAN O 620P3 - SUP16050 118550 B(H) 931P**3** 0 (156) 0 0 104Esp.N BH 610L2 R. 60 9 569 103Ep 37 931F4 TROITSA 0 0 102 133 Nº51 134 #5 +204EspN 620P2X 206Esp 8 922P1 #12 #8 × 52-33176 9 7185 #11 #7 202Esp 922P1 135 B 931M4 207Esp B 922P1 203Esp B(H) 931P3 205Esp 921L2 201 N 620P2 @ 167430 -167938 --167937 700 \$10 ·#4 167928. \$ 167926 67945 2-948**.5** X 167935-0 0 167936 \$ 167927 190 Graval Bar 200 B 931143 20 167932 BC 7737 0¹²⁸ 动 BBB 0130 \$ 16793 sp #2 30 -1 0156 1995sp B 931P**3** 167942 191 0 0 BC 4166 167940 1.81 221 16794 967944 (9350) 2(73) 93:22 167943 197Ep B 921L**3** 192 1 X 52-1-47-61 195Esp 48 912-1 25 1948sp 33 922-1 125E50 9:2-1 0 215 SCALE: 1:20,000 221 Caller and And Alter and A 024 025 BC 4167 0 221

			•										27.5	1 A A A			- CONT	IIS			11 1 1 1 1	1. V. C.	1	. 1 N			5.1									
LE		Huć	<u>180</u>	<u>n</u> J	Bay	<u>· E</u> 40	<u>кр</u>] 5 -	<u>L .</u> 470	<u>Gra</u>	De mvi	ile.	<u>.C</u> St.	<u>o.</u> , v	L' anco	td we	r BC	PR ve	OJE	<u>307</u>	<u>Su</u>	<u>(S</u>]	∆ ted	Fi by:	le R.f	, # х. к	9 cefi	90	31	.67	1.		(;	a)			
	SAMPLES	His DCM	ت. مر	Po pune	Zn (4,4)	Aq 1 (200	in the second se	Co ppa	ир рри	te L	45 pon	U	-	(h \$ 99≣ 90		ζu	Sia Maga	B a	V	C4	P	ta (ppa pp	Cr H	Mg 8	84 T	T1 8	Ð AF		 4a r 2	* 0			49 5 ** 3	 *	 le (
	167926	25 30	19.21	2.01	5.8	9 67	11	4		53	20		1.5	19.	········															_		• v=	- Mar.			· · ·
	16/927	1 91 F	1029.97	194 (132.5.4	4 2011	194 5	36.4	30)6 20	20,70	27	.2 257	575	1 4 33	31 յաս	GU 37	E1	34, 14	23 T	1.46	202 4	4 1 104		07 00								∦ ∢ 	5 7	1.0	<i>1</i> 8 •	. 9
	15/928				- ve	- 270	12.4	40.9		022.	34	- 4 /	1.1	2.4 /1	19	- 64	40	4 31	. 77 1	1 16 1	100 1	1 7 76		1.5 44												
	10 1929	- 03 13	1200 24		4V 7	7 1044	12 2	10.1	130	• 80 .		4 10	10 0 3	2029	91	06	68	21 74	43	87 1	17 . 1	27 70		71												
	167939	ીવા ઃ	249-4J	1 12 7	7.5 C.	53 3 7	119 \$	02	2+8 -2/	.2.19	14 - <	< 1 B?	3.1	5 14	3 47!	1 19	LÓ	8 59	24	.84	465	6 189	1 1	53 (1 0.	3Z <	115	4 02	7 Đ	28	1.n 5.1	12 10	ь I з 13 с Г	111.	34 IZ	÷ :5
	(6793)	Z 53	40 52	ь.Ю	39 5	39	19	2.0	103	.74	37	19	2.4	71 /	2.0	20	55	78	. 1	11	100	• • • •														
	10/932	5 48	o39 54	6 43	03) 18 0	ot B L	19.2	18 0	3ani	# B1	90	. 1	12.	1957	2 . 2 Q	20	. 22	46 4.08	че 114	د. ډل ده	306 12	911	, y	76 51.	.04.00	્રો ≮1 	42	.057	2 16	4 B7	2 94	8 5	3 5	2 1	4 17	4
	167933	3 .0	8 75	2 19	18 C	40	3.5	3.7	20	1.68	1.4	8	1.4	530	2 4 1		94. 16	= 06 1 86	27	80 / A)	41/ 4	.0.357 17	.613 • •	-3 134	8 25	. 주 43 ~~	4 2.36	- 132	2 87	15 5	5 74	₽ ₹	6 J	3-17	30-31 Ø	ŧ
	167934	v / •	41 22		4 0	2 QQ	,	1.0	12 3	101	2.0	. G Z	Z.D 5	534.	4.6 <	<.01	.30	1 99		- A1- A	006 B			02 22	3 A. 04											
	167935	13 43 4f	621.9S	18 58	79-6	/465	28.1	17.3	\$7.1	9 83 2	2.7 1	1 9 BF	5.9	3 8 15	9	. 40	1.48	2.80	2	12	.005	7 18	8 u	13 9 2 / 3	44.00 7.3<.01	1 <⊓ ≱1 <'	- 30 -1 -31	.025 1.02	.24 .6 2	63 5 8	1.09 1.1) - 13 13	5 1 6 57	2	# 1.1 # ·	.1 9
	167936	6.27	20.24	5 11	14 D	66	23	1.1	70	1 30	1.7	19	,,	7417	4.6	Λ.g	13	67	- 3	47	-47	- v							_							
	RE 167936	4.39	21 48	4 96	14-3		26	3 8	76	1.30	16	17	14	6 A 16	4 . 4	, Una TNG	- NA	-44	-4	47.9 46	A47 a A47	.2 н	.) U	1 1/1	.3< 00	1 1		, 0 50	J .Z1	- 11.7	1 05	5 5	ś 3	3 7	A .7	.7
	167937	1.10 2	2333.67	2 69	123 5	1050	194 6	189.9	583 2	17 15	1.6	147	и. 1	2.45	7 - 6	05 85	- 14 18	.00 44 33	×2 , 167	-,440.,γ - Δ19	406 a	.] i≉. ••• ₽7	2.0		8.00	,1 ∎ 	4 .27	049	/ 20	10.7	5 . F	A 7	/ 3	J J	A .)	3
	167938			J. Q1	JJ (J	2,20	20 2	29.7	- 206 J	2 1 2 1	16.	.2 144	44 4 J	1.9 /0.).6 .	. 10	14	66	120	81 1	128 6		7 1 14	12.360	0 4 333											
	167919	8.29 35	s45.5 0	3 62	81.71	11/26	23 4	13.7	398 7	7 10 7	679	1.5 344	4.0	1.1 56	\$.21	.75	15.57	132	57	120 s. 132 4	4 57 . 4 29	7 1.42 .9 1.6	2 159 20 70	6 22) 13 19	/ ≤1 M ≤1	2.32	166) 117	69 4 1 17	4.4 7. 46.1	.26 .3.9	л Л) 23 8 27	1 4 7 4	3 8 2 12 11.'	2 ,.2
	167940	3.76 27	272 19	4 43	72-8 07-1-1	2321	20 7	16 6	512 1	5.62.7	10 G '	1 2 2	a.i	1 5 57	. 7	21	4 10	1.91	128	49	19E /		• • /	17												
	167941					rates 1	66.7	14 9	422 3	3.00 /		4 9 90	AUZ I	1445.	. ال ا		87	2.20	- 131 - 1	51 3	374 4	4 11	4 1 54	E4 1A4	3 1 184									-27		
	16/942				/• •				000 2	2 II 6	6 U J	31 11.	11.0	1 1 85 4	4.	.11 1	1.01	4 28	160	97	159	. درد اد عدم ز	- 4-1.av - ≤ ⊃ 7	-106 -106	2.10-		7.25	. 100	1.21	95.≱ ∵n	3 90 • • • •	1 13	15	2 U	444	ł
	167943	•		2.26	AT 1	1.12	24 7		307 1	1.37 3	3.3 6	6 4 134	94 U I	1261.		15 1	2 10 10	en chi	170 3	- #1 I.	146 8	A 41 5	E 0.84													
	167944	8 41 561	₅ 74 91	4 07	198 5	8450	23 4	13 9	534 5	3.65 7	7.2 3	j.) 160	19.7	1.1.69	8	34	.77	14.15	169	.91 .1	148 5	1 38	.318	/7 1 29	2 2.90 6 26	5 1	2 55	115 130	12/ 11.25	74,7 117.5	.95 1 9	. • ₁ <	23 59	12.97 1 6.7	2137 20137	2 - 3
	16/945	19 08 519	194-17	2.22	66.7	3850 2	29 G	19 7	395 3	3.62 i	10	3 48	8.0 3	36143	7	11	18	1.64	74	1 4 n	R40 Q															
	STANDARD 052	14.23	431-36	31,79	170 0	750	37 é	13.0	635 *	3.40 E	al 4 22	2 9 214	4 2	3 9 32	6 P	L An 1/	A 47	11.44		67	17 m. 184 iz	A 17A	· · · ·	, LEW.,	يمت. 2. بر م		1.0/	.05/	. Şi	50	, .2r	. 1	21	.8	i 7.3	.3

100

9.99 15:48 FR ACME LABS

SEP.

All results are considered the confidential property of the client. Acme assumes the Liabilities for actual cost of the analysis only.

Data LFA

ACHE A	80 90	02	Acc	LABC L'ac	SRA LLL	TOR ed	Co Co	s : - }	LTD.	•		852				os :	. 21 S									P	8000	(60	4) 2	53-	315	8 73	X (6	04)2	73
44		÷			Hu	lds	on	B	av	Ex	ml					'AL			1.1	1.11.11.1		1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	C	en 11 - 11 - 11 - 11 - 11 - 11 - 11 - 11		μ 4	<u>елэ</u>	168			- 1	•			
lin lin										405	- 4	70 Gr	anv i	lles	St.,	Vance	ouver	BC	Véc	11/5	su	anit:	id by	/= R	5. 1 8. 1	t 7 (cefe	503	100		{	a)				•
SAMPLE	Мо рря		Cu pm	Pb ppm		n A mipp			Co ppm	Mn ppm	Fe \$		s n pp			h Si na ppi		Cd pmj			V DÇAN	Ca 1	P (T pi	La pm	Cr ppm	Mg Si	Ba ppm	T1 t	B ppm	A) T	Na I	K I X ppi	i T Ppi	ìHg ∎ppba	se sc
1	1.31	51.	831	6 09	126	2 10	2 45	5.6	19.5	925	4.08	35. (29. j	1	52	11.	1 15.) 4 24.)	4 .:	33 3 35 3	31 32	. 41	58 68	26 .04 32 .0	57 6 18 7	.7	14.3	- 59 70	97.5	.033	11	.44	.021	.08	3 .09	9 21	3
3 4 5	1 92	35.	43 1	1.59	110.	7 19	1 30	4	16.2	2556	3.27	21 9 25 6	6	56 83	.03. .21.	7 20.1 3 39.4	7. 41.	25 1 18 1	18	.36	90. 57.	39.01 51.01	16 7. 16 8.	.1 : .8 :	31.4 26.7	. 59	79.4 187.5	.066 020	11	.13. 89	.040 . 026	.131	1.0X	9 16	- 4
6												20.9				3 21.4 6 34 ·		231.	00	.93	7 7 .	39 .U	14 <i>I</i> .		36.0	.61	80.0	. 067	<11	15.	. 039	. 12 1 !	5 09	22	.4
7 8	5.15 27.68	115. 316.:	41 1 82 1	6.06 7.46	96. 120.)	7 22 6 23	223 114	352 4.62	23.6 23.8	992 643	4 43 4.63	39.7 14.9	73. 97.	26. 718	44.	031.3 038.9	1.4	46 L.	¢/ 3	5.44]	112 .	52 .17	211	.2 3	38.4		21.1	095	<11	47	A23	.08 .17 1.3 .17 1.3	10	2 73 1 5 34 1	1 2
RE 8 9	28.14	318.1	89 I-	6.85	121	7 22	1 14	17:	23.6	643	4 61	16 1	9 9	1 20	5.6	1 20 6	<u>م</u>	47 55 6	98 Z 94 19	. 66 . 64	65 66	38 11 50 .00	5 16 7 23	.8 2	20.4	.79	113.4 192.3	.068	11	. 50 . . 63 . . 21 .	.014 .015 .022	.17 1.3 .17 1.3 .17 .4	(.15) .15 .25	5 33 1 5 33 1 5 48 2	1.5 1.7 1.8
10 11	4.04 27.56	82. 226.3	16 2 95 1	4.14	124.3	3 25 ⁰ 8 15 ⁰	9 42 9 15	2.3 2	27.0	1209	4.33	46.3	31. 34	0 13. 9 9	.0.	9 81.4	4.7	221	39 2	2.56	72.	64 .13	28.	94	10.8	1.21	166.1	. 050	12	. 35	042 .	.16 .6	i .14	51	.8
12 STANDARD DS2	27.56 28.68 13.71	239. 129	41 1 59 2	0.02 9.18	57. 165.9	7 23	8 19 4 36	9.6 2 5.9 1	29.9 12 5	694 844	4.50	39.2 62.3	2 12.	5 14. 2 202.	45.	7 24.3 3 29.9	L .4	ir 1. Ne	00 2		93 .	CA .03	a to:	31	L/.8	./5	13.8	. 681	<11	.28.	016 .	. 19 1. () . 10	17	.1
	PPER LI SAMPLE																																		16
DATE R																																			lss
																																			155
																																			ISS
																																			ISS
																																			ISS
																																			ISS
																																			ISS
																																			ISS
																																			ISS
																																			ISS
																																			151
	e cei v	ΈD:	•	UG 3	0 19	99	Dł	ATS	3 RH	SPOF		4AIL	BD:	Se	nt.	9/	99		SIG	NED	<u>-</u> ВХ	<u><u> </u></u>	L				YE, C	LEO	4G, J						15

С. У.

and a state of the state and the state of th

.-

the start

web to

MINISTRY OF ENERGY & MINES

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM

REC'D 1 1 2000	
----------------	--

B. TECHNICAL REPORT

Name: Shawn Turford Ref #: P47 1999/00

LOCATION/COMMODITIES-

 Project Area:
 COMB
 Minfile #: n/a

 Location of Area NTS:
 93E 14/E
 Lat:
 53 58'- 53 52'

 Long:
 126 50'- 127 08'
 Lat:
 53 58'- 53 52'

Description of location & access: <u>Travel by truck and trailer from</u> <u>Francois Lake to Owen East F.S.R.</u>, then Morice Tahtsa F.S.R. to <u>Hill Tout F.S.R. then prospecting west and north of Hill Tout Lake</u>

Main Commodities Searched for: Cu, Mo.

Known Mineral Occurrences in Project Area: Nil

WORK PERFORMED-

1.Conventional prosp. prospecting local logging roads and blocks 2.Geological Mapping <u>as per map sheet</u>

3.Geochemical <u>silting all creeks around Hill Tout Lake and area-24</u> rock and silt samples taken

 4.Geophysical
 nil

 5.Physical Work
 nil

 6.Drilling
 nil

 7.Other
 nil

SIGNIFICANT RESULTS- nil

Comodities Claim Name: ______ Location/Lat: _____ Long: _____ Elevation: _____

Best assay/sample type:_____

Description of mineralization, host rocks, anomalies:

To the Southwest of Hill Tout Lake outcrops are mainly volcanic. Three samples were taken out of an altered volcanic which produced some very high Cu, Ag, and Au assays but were contained only in small vien structure. On a log block, West of Hill Tout Lake, a highly altered Ryolite out crop was prospected and visible malichite staining was noted. The out crop was well weathered and dificult to obtain good fresh samples without the aid of machinery. The silt samples show some interesting Ag anomolies. More investigation in this area is needed as a mineralised ore body probably does exist.

AA									GR	SOCI	155	AT.	-141	जन्म हा			24 F	<u> </u>	्याः	- A & J	453	هيديد.		æ		•		•		-						
		Hud	<u>.son</u>	<u>L B</u>	<u>,ay</u>				Grar	anvill	lle S	\$t.,	, Van	ancour	uvéri	BC V	V6C 1	175	5 5	Submi	nitte	ed b	by: I	R.R.	R. Ke			31	.67	1		(i	(a)			
	SANH EN	Maj Dium	Cu pper	Pits Dius	201 (4.44	Ag Dipb	N' N'	<u>со</u> руш		te i	45	u /	Au F	in Sr	Sr Ci Official PE	ca s	Sh I	Bo	¥ c	Ca P	P La		(r Hg	HQ E	Ba F	-	-	J N	ia 6	1 r	4 4 409 (1) (1) (1)	ug j βρααρ	ік 18 дя	Te G	ан толотоности. 14 Дан
1	167926	25 50 14	19 21	່	58	8,	• •	. 4	18	.53	2 0	7	1.5	397	7 4	¢.	17	79	٠2	33 O	JO6 17	37	7.6 /	02 Y	11 De F	201	<u> </u>	30- 0.	,39	21 1	4 5	97	~	2	.02	9
1	15/927	1 9t 101	1 56 650	i 61 19	,275 4	721-1	104-5	3e-4	346-7	20.76	27	.2 25*	251	f • 33	1 100 1	37	11 38	3 7 9	73 t.	46 Z	.07 4	1 104	210	07 2°	.07 e	J53	1.3.0	43 OP	.d3	0£ 31	14 - 1	1,	15 Z	21.24	الانفاء	, 9
)	15-1928	3 39 2	246 02 2	2.03	37.4	336	15 4	40.9	2/4	6 ZZ	1 A	۰ ۵	7.4 2	24.71	9 1	04	40 8	a.03	72 i	ច រា	209 B.1	3 26	, a i -	10 47	62))	411	119	£.12	73 2	38 LZ	2.1	, ie	•5]	13.2	2 63 - 8	, •
\$	161925	a (S. 134	349-54-5	s 35	46 4	1044	$1 \neq 2$	17 1	18.1	4 60 °	31	4 12	.6 6 2	2.0.24	1 1	de'	88 22	2.75	43 1	87 .17	.26 2 '	57 7	, B 7	21 8°	,0 1 Q	. 36	112	27 07	34 Z	/5 9	14.	. 15	- S 1	(\pm,\pm)	-6 C	, 9
L ^r	16,1430	1917/	/34 43 1	. N. 2	1940	N83 I	េន	52	2-3 /	257	$1 \neq \beta$	< 1 HZ	31	5 14 1	3 471 1	19 .	10 ģ	19	24 7	8 1 08	45 I.F	8 189	15	ឆ ៖	8 A 07	.32	4115/	,4 - 0 2	,i u	2 8	, 5 - '	12 V	.93 - 4	1 11	3.63	5
;	le MI	Z 53	dù 52 io	க பி	39-3	.ક્રમ	1.9	2.0	103	74 3	3 2 1	1.9	2.9 7	717	9	20	55	78	~2	13 .57	<i>1</i> 08 12	a 11		05 5	31.04.C	301	•1 7	42 .05	<i>.</i> 52	.o f	á 2	35	ទ	2	40 1	2. 4
1	10-932	2.98 0	na9.54 m	a 40	65 A	8.Jo	12 2	LS Ü	366	5 da -	প ব	6 V	.24 1	i 9.57.1	.9 î	20 1	62 4	- 08 - 2	314	.80 i'	217 - 4 Z	6 33	.61%	53-137	A 8 7	266 - Z	×1-2.9	30 12	.32 🛛 🤌	27 - 18	ء د	79	~	3-1	730.117	, e
j	107923	3.19	8 76 2	2/19	18 0	46	3.5	1.7	2ü	1 68 I	14	δ,	14 5	a 3-9	A = Z	.08 ′	.15 1	¥ 00	s/ 7	02 SA	,06 13 1	Z 10	, 9 - P	07 l5r	09.0	.4)	1 2	a 0	,43 - X	13 B	47 C	.06	خ,	2	26 L.′	
)	191977	b /0	11.99.2	2.25	4 u	50	9	10	15	3 26 2	28	ý T	2.0 5	i 3 4	6 47	.01 (30 1	i 99	*2 . <i>1</i>	.01 .07	.06 8 .7	.5 6	18 P	02 71	.3 4 ≤,0∕	201 ·	SE 2	34 . 07	.26 7	21 6	a 3	0 9	4	4	36 I	, 1
þ.	167935	13 41 467	671 95 18	7.58	/9 o	/465	2 8 1	47.3	57	9 83 22	2.2-1	2 9 BC	j.9 3	3. 8 1 5 1	9.7	40 1.4	48 2	. 60	2	12 60	ль з [.]	7 18	4 D	J 3 9	1.3 0	.01 ×	<1 .3	A 02	<i>1</i> 6 ?	8 6.	11	ы	é S	. ż	部 「	۹
. 1	167936	4 22	20.24 5	á 11	14 0	66	23	1.7	70	1 30	12.1	13	2.2 -	7 4 17	0	.08	.13	67	~2	47 .19	JG7 8	2 14	1.3 - 6	61 17	/1 35 /	001	i 7	28 0'	.50 .1	21 P	t I	05	5	3	20.7	.7
R'	RE 167936	4 39 1	21 48 4	1.96	14-3	60	2 6	38	/6	130 1	1.6 2	12 1	1.4 1	6 8 lb (. 9 7	. 09	. [4	. 66	-2	46 0	8 6 8]]4	1.2 P	01 16/	x6 ₽	JU 1	1.7	27 02	,4 9 7	20 10	3 E	<u>04</u>	1	3	19	,
)			333 67 2																																	
J	167938	24 89 568	.83 34 3	3 92	55 6	2429	28 5	20.9	252	242	1.2	.2 14/	4.4.2	1.9.70	.6 .1	. 10	14	.65 '	120	.81 .11	.28 S.	.4 57		12 15r	,967	227	<1 7 ¹	12 17	.66 .7	<u>4</u> 9 🔮	4.4	2t	8 2	/3	19 d î	. 2
V	167939	B 29 354	545 50 3	, p2	8177	11726	Z3 4	13.7	398	7 IO <i>4</i>	619	1 2 JW	4.0 1	156	5 .7	21 ^{~~}	75 15	, 57 - 1	132 '	57 L7	.32 4 /	4 29	.91 é	ó0 70	03 V	.9	<1 2 ₩	40 11	(4-1-1	,7 46	,3 ./	.91	82	77.0	, 12 H (2
ŗ			272 19 4																																	
			278 94 - 2																																	
	167942		771-09 - 5		rê û												.01 4																			
			949.19 9.														10 163								-											
V	167944	6 41 567	674 91 4	- D. ²	108 5	£450	23-4	13.9	534	5.65 7	1.2 3	3.7 160	J.9 t	, L 49 F	8.7	JM .7	/7 14	15 F	<u>(</u> на т	91 L4'	48 5 '	1 38	318	12 129	16.2 ⁶	.65 •	<1.2.6	A .17	JO 1.2	.5 117	1.7	.91	Ś	9 ĉ	.24 B 1	J
,	167945	19 08 519	194 17 - 2	2.22	58 /	3850	<i>2</i> , 0	157	395	3 62	10	ş •	48 0 -	3614	. 7	11	18 1	1 54	73	34 0	J49 3	03:	571	12 12	20 8 .	182	a 17	.67 .0	157 ./	61 f	56	.27	77	2.1		1.3
,	STANDING US2																																			

•

15:48 FR ACME LABS

66.6

SEP

GROUP 1F30 - 30.00 GM SAMPLE, 180 MLS 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU,, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2000 PPM; CU, PB, ZN, NI, MN, AS,V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

AUG 30 1999 DATE REPORT MAILED: Sept 9/99 DATE RECEIVED:

Data IFA

ppm ppm <th>L 405 - 470 Granville St., Vancouver BC V6C 1V3 Submitted by: R.R. Keefe SAMPLER MG Cu Pb Zi Ag N1 Co MG Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Ng Ba Al Na K W Th Ng Das Th B Al Na K W Th Ng Das Th B Al Na K W Th Ng Das Th Th Na K W Th Ng Das Th Na Na K W Th Ng Das Da Da Da</th> <th>a fin i a</th> <th>1.1</th> <th></th> <th>•</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>GI</th> <th>loci</th> <th>HEM.</th> <th>ICA</th> <th>L A</th> <th>INAL</th> <th>YS:</th> <th>IS</th> <th>CEI</th> <th>TI</th> <th>FIC</th> <th>AT!</th> <th>8</th> <th>•</th> <th></th> <th></th> <th></th> <th>•</th> <th></th> <th></th> <th></th> <th></th>	L 405 - 470 Granville St., Vancouver BC V6C 1V3 Submitted by: R.R. Keefe SAMPLER MG Cu Pb Zi Ag N1 Co MG Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Ng Ba Al Na K W Th Ng Das Th B Al Na K W Th Ng Das Th B Al Na K W Th Ng Das Th Th Na K W Th Ng Das Th Na Na K W Th Ng Das Da Da Da	a fin i a	1.1		•									GI	loci	HEM.	ICA	L A	INAL	YS:	IS	CEI	TI	FIC	AT!	8	•				•				
SAMPLE# MG CU PD ZI Ag N1 CO MF Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B AI Na K V Ppm <	SAMPLE# MG Cu PD Zi Ag N1 Co MF Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B AI Na K V Ppm <	11					3	Hug	180	n l	Bay																		168	l	()	a)			
2 1 31 51 83 16 99 126 2 42 <t< th=""><th>2 1 31 51 83 16 99 126 2 42 4 4 35 3.32 40 68 32 0.78 7.6 37.1 70 107.1 0.24 2 1.59 0.22 11 3 13 4 68 17 65 12 13 5 2 42 4 35 3.32 40 68 32 0.78 7.6 37.1 170 107.1 0.24 2 1.59 0.22 11 3 13 4 0.68 32 0.78 7.6 37.1 170 107.1 0.24 2 1.59 0.22 11 3 13 4 0.68 32 0.78 7.6 37.1 10 107.1 0.24 2 1.59 0.22 11 1.31 4 0.68 32 0.78 7.1 31 4 0.66 17 1.31 31 4 1.64 31 4 1.4 23 1.60 1.7 1.1 4.11 1.1 1.1 1.6</th><th>SAMPLE#</th><th></th><th>-</th><th></th><th></th><th></th><th>-</th><th>-</th><th></th><th></th><th></th><th></th><th>-</th><th>U ppm</th><th>Au</th><th>Th</th><th>Sr</th><th>Cđ</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>~</th></t<>	2 1 31 51 83 16 99 126 2 42 4 4 35 3.32 40 68 32 0.78 7.6 37.1 70 107.1 0.24 2 1.59 0.22 11 3 13 4 68 17 65 12 13 5 2 42 4 35 3.32 40 68 32 0.78 7.6 37.1 170 107.1 0.24 2 1.59 0.22 11 3 13 4 0.68 32 0.78 7.6 37.1 170 107.1 0.24 2 1.59 0.22 11 3 13 4 0.68 32 0.78 7.6 37.1 10 107.1 0.24 2 1.59 0.22 11 1.31 4 0.68 32 0.78 7.1 31 4 0.66 17 1.31 31 4 1.64 31 4 1.4 23 1.60 1.7 1.1 4.11 1.1 1.1 1.6	SAMPLE#		-				-	-					-	U ppm	Au	Th	Sr	Cđ								-								~
7 5.15 115.41 16.06 96 7 222 23 5 23.5 992 4 43 39 7 3.2 6.4 4.0 31.1 48 1.67 3.44 112 52 122 11.2 38.4 .61 121 1 095 <1 1.47 .023 17 1.3 15 30 8 27.66 316.82 17.46 120.6 231 14.6 23.8 643 4 53 14 9 7.7 18.4 5.0 38.9 46 1.00 2.77 65 .38 .116 16.1 20.3 .78 111.2 .065 <1 1.58 .014 .17 1.2 .15 33 RE B 28 14 318.89 16 85 121 7 221 14 7 23.6 643 4.61 15.1 8 1 20 5 5.1 39.8 .47 .98 2.66 65 .38 115 16.8 20.4 .79 113.4 .068 <1 1 63 .015 .17 1.3 .15 39 9 22 63 144.63 80 39 274.3 566 57 2 38.4 2227 6.54 302.6 5.1 37.2 5.8 58.3 1 55 6.94 19.64 66 50 .087 23 5 42.8 .83 192.3 016 2 2.21 022 .17 4 .25 48 10 4.04 82 16 24.14 124 3 259 42.3 27.0 1209 4.33 46.3 1.0 13 0 .9 81.4 .72 1.39 2.56 72 .64 .112 8 9 40.8 1.21 166.1 .050 1 2.35 042 .16 .6 .14 51 11 27.56 226.95 10.09 74.8 159 15 4 17.7 518 4.05 23.3 4.9 8.5 4.3 33.1 .27 1.08 2.26 65 .29 .099 10.3 17.8 .75 113.8 .081 <1 1.28 .016 19 1.0 .10 17 12 28.68 239.41 10.02 57.7 238 19.6 29.9 694 4.50 39.2 12 6 14.4 5.7 24.3 .25 .85 4.75 63 .36 .144 14.0 17.4 .82 109.9 .074 <1 1.25 .010 .20 2.4 12 25 5TANDARD DS2 13 71 129 59 29 18 165 5 224 36.9 12 5 844 3.22 62.3 19.2 202.6 3.3 29 5 11 00 9.43 10.48 80 .56 .083 12 1 172.3 .60 143.2 115 2 1.79 .039 16 6.9 1.66 23 GROUP 1F30 - 30.00 CM SAMPLE, 180 MLS 2-2-2 MCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND 1S DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, S8, BI, TH, U, 8 = 2000 PPM; CU, P8, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM	7 5.15 115.41 16.06 96 7 222 23 5 23.5 992 4 43 39 7 3.2 6.4 4.0 31.1 48 1.67 3.44 112 52 .122 11.2 38.4 .B1 121 1 095 <1 1.47 .023 .17 1.3 15 30 8 27.66 316.82 17.46 120.6 231 14.6 23.8 643 4 53 14 9 7.7 18.4 5.0 38.9 46 1.00 2.77 65 .38 .116 16.1 20.3 .78 111.2 .065 <1 1.58 .014 .17 1.2 .15 33 RE B 28 14 318.89 16 85 121 7 221 14 7 23.6 643 4.61 15.1 8 1 20 5 5.1 39.8 47 .98 2.66 65 .38 115 16.8 20.4 .79 113.4 .068 <1 1.63 .015 .17 1.3 .15 39 9 22 63 144.63 80 39 274.3 566 57 2 38.4 2227 6.54 302.6 5.1 37.2 5.8 58.3 1 55 6.94 19.64 66 50 .087 23 5 42.8 .83 192.3 016 2 2.21 022 .17 4 .25 48 10 4.04 82 16 24.14 124 3 259 42.3 27.0 1209 4.33 46.3 1.0 13 0 .9 81.4 .72 1.39 2.56 72 64 .112 8 9 40.8 1.21 166.1 .050 1 2.35 042 .16 .6 .14 51 11 27.56 226.95 10.09 74.8 159 15 4 17.7 518 4.05 23.3 4.9 8.5 4.3 33.1 .27 1.08 2.26 65 .29 .099 10.3 17.8 .75 113.8 .081 <1 1.28 .016 19 1.0 .10 17 12 28.68 239.41 10.02 57.7 238 19.6 29.9 694 4.50 39.2 12 6 14.4 5.7 24.3 .25 .85 4.75 63 .36 .144 14.0 17.4 .82 109.9 .074 <1 1.26 .010 .20 2.4 12 25 5TANDARD DS2 13 71 129 59 29.18 165 5 224 36.9 12 5 844 3.22 62.3 19.2 202.6 3.3 29 5 11 00 9.43 10.48 80 .56 .083 12 1 172.3 .60 143.2 115 2 1.79 .039 16 6.9 1.66 236 GROUP 1F30 - 30.00 CM SAMPLE, 180 MLS 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND 1S DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, S8, BI, TH, U, 8 = 2000 PPM; CU, P8, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.	3 4	1 4 1	1 31 1.68 1 1.92	51.80 117-65 35.40	3 16 5 12 3 11.	09 1 47 59 1	126-2 58-0 118.7	102 235 191	45.6 15.9 30.4	19.5 15.2 16.2	925 586 2556	4,08 3,89 3,27	29 1 21 9 25 6	5 25 8	24 60 32	2.4 2 3.7 2 1 3 1	24 4 20.7 39.4	. 35 . 25 1. 18	3.32 1.74 1.18	40 181 36	68 98 5 57	32 39 51	.078 .096 .096	7.6 7.1 8.8	37.1 31.4 26.7	. 70 59 62	107.1 79.4 187.5	. 024 . 066 . 020	2 1 1 1 2 1	i.59 1.13 1.88	. 022 . 040 . 026	11 3 1314 114	13 .06 .11	41 15 90
11 27.56 226.95 10.09 74.8 159 15 4 17.7 518 4.05 23.3 4.9 8.5 4.3 33.1 .27 1.08 2.26 65 .29 .099 10.3 17.8 .75 113.8 .081 <1 1.28 .016 19 1.0 .10 17 28.68 239.41 10.02 57.7 238 19.6 29.9 694 4.50 39.2 12.6 14.4 5.7 24.3 .25 .85 4.75 63 .36 .144 14.0 17.4 .82 109.9 .074 <1 1.25 .010 .20 2.4 12 25 STANDARD DS2 13 71 129 59 29.18 165 5 224 36.9 12.5 844 3.22 62.3 19.2 202.6 3.3 29 5 11 .00 9.43 10.48 80 .56 .083 12 1 172.3 .60 143.2 115 2 1.79 .039 16 6.9 1.65 236 GROUP 1F30 - 30.00 GM SAMPLE, 180 MLS 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND 1S DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU,, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, S8, B1, TH, U, G = 2000 PPM; CU, P8, ZN, NI, MN, AS,V, LA, CR = 10,000 PPM	11 27.56 226.95 10.09 74.8 159 15 4 17.7 518 4.05 23.3 4.9 8.5 4.3 33.1 .27 1.08 2.26 65 .29 .099 10.3 17.8 .75 113.8 .081 <1 1.28 .016 19 1.0 .10 17 28.68 239.41 10.02 57.7 238 19.6 29.9 694 4.50 39.2 12.6 14.4 5.7 24.3 .25 .85 4.75 63 .36 .144 14.0 17.4 .82 109.9 .074 <1 1.25 .010 .20 2.4 12 25 STANDARD DS2 13 71 129 59 29.18 165 5 224 36.9 12.5 844 3.22 62.3 19.2 202.6 3.3 29 5 11 .00 9.43 10.48 80 .56 .083 12 1 172.3 .60 143.2 115 2 1.79 .039 16 6.9 1.65 236 GROUP 1F30 - 30.00 GM SAMPLE, 180 MLS 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND 1S DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU,, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, S8, B1, TH, U, B = 2000 PPM; CU, PB, ZN, NI, MN, AS,V, LA, CR = 10,000 PPM.	7 8 RE B	5 27 26	5.15-1 7.60-3 3-14-3	115.4) 316.82 318.89	1 16. 2 17. 9 16	.06 .46 .85	96-7 120.6 121-7	222 231 221	23 5 14.6 14 7	23.6 23.8 23.6	992 643 643	4 43 4 53 4.61	39-7 14-9 15.1	3.2 7.7 8 1	6.4 18.4 20.5	4.0 (5.0 (5.1 (31.1 98.9 89.8	. 46 . 46 . 47	1.67 1.00 .98	3.44 2.77 2.66	112 / 65 5 65	.52 .38 .38	. 122 . 116 . 115	11.2 16.1 16.8	38.4 20.3 20.4	.81 .78 .79	121 1 111.2 113.4	095 065 068	<1 1 <1 1 <1 1	L.47 L.58 L.63	.023 .014 .015	17 1.3 17 1.2 17 1.3	15 2 . 15 1 . 15	30 33 33
GROUP 1F30 - 30.00 GM SAMPLE, 180 MLS 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU,, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2000 PPM; CU, PB, ZN, NI, MN, AS,V, LA, CR = 10,000 PPM	GROUP 1F30 - 30.00 GM SAMPLE, 180 MLS 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU,, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, S8, BI, TH, U, 8 = 2000 PPM; CU, P8, ZN, NI, MN, AS,V, LA, CR = 10,000 PPM.	11 12	27 28	7.56 2 3.68 2	226.99 239.4.	5 10. 1 10.	.09 .02	74.8 57.7	159 238	15 4 19 6	17.7	518 694	4.05 4.50	23.3 39.2	4.9 12.6	8.9 14.4	54.3 5.7 (33.1 24.3	.27 . 2 5	1.08	2.26 4.75	5 65 5 63	. 29 . 36	.099 .144	10.3 14.0	17.8 17.4	. 75 . 82	113.8	.081 .074	<11 <11	1.28 . 1.25 .	.016 .010 .	19 1 0 .20 2 4) .10 12	17 25
					TYPE	: 51						-			B D.	\mathcal{O}_{μ}	A.	ald	20		T (1) T	273 8	. (<u>n</u> .	L										_
		DATE			TYPE	: 51 AU	G 3(0 19	99	DAT	rs R	EPO:	RT Þ	L	BD;	Sej	rt a	3/4	79	S	IGNI	SD E	ач	∕ ∵:.	<u>ب</u> ب:	••••]	.D. T	OYE,	C.LEC	DNG,	J. W	ANG;	CERTII	FIED E	.c.
		DATE			IYPE	2 SI	G 31	0 19	99	DAT	rs R	BPO:	RT Þ	LAIL:	ZD;	Sep	rt i	9/4	79	S	IGNI	SD E	ач	∕ ∵:.	Ļ.	,	.D. T	OYE,	C.LE(DNG,	J. 14	ANG;	CERTII	FIED E	.c.
		DATE			TYPE	2 SI	G 30	0 19	99	DAT	rs R	BPO:	RT Þ	LI L	ED;	Sep	r i	a/4	29	. 5	IGN	SD E	эч	∕ ∵:.	Ļ.	·	.D. T	OYE,	C.LE	DNG,	J. W	ANG;	CERTII	FIED E	c .
		DATE			IYPE	au	G 31	0 19	99	DAT	rs R	BPO:	RT Þ	LATL:	8D;	Sep	rt i	3 /4	79	. 5	IGNI	SD E	ач.	? 	Ļ.	·	.D. T	OYE ,	C.LE	DNG,	J. 14	ANG;	CERTII	FIED E	I.C.
		DATE			IYPE	AU	G 3(0 19	99	DAJ	75 R	BPO:	RT Þ	AIL:	ED:	Sej	r i	3/4	79	. 5	IGN	SD E	(3¥	∕? 	Ļ.	· · · · · · · · · · · · · · · · · · ·	.Ð. T	OYE,	C.LE(ONG,	J. W	ANG;	CERTII	FIED E	I.C.
		DATE			TYPE	AU	G 3(0 19	99	DAT	rs R	BPO:	RT Þ	LAIL:	ED;	Sep	× ·	9/4	29	. 5	IGNI	KD F	(эч	∕) 	,	·	.D. T	OYE,	C.LE	ONG,	H. I.	ANG;	CERTII	FIED E	I.C.
		DATE			TYPE	AU	G 34	0 19	99	DAJ	ת פי	₿₽O.	RT N	EAIL:	ZD:	Sep	× ·	3/4	29	. S	IGN	ED F	ору. Эх.		ļ	·	.D. T	OYE,	C.LE	DNG,	J. W	ANG;	CERTII	FIED E	c.
		DATE			TYPE	AU	G 3	0 19	99	DAJ	א פי	₿₽O.	RT N	EAIL:	ZD:	Sep	× ·	3 4	29	. 5	IGN	ED F	эч		[ر	.D. T	OYE,	C.LE	DNG,	J. W	ANG;	CERTII	FIED E	I.C.

		. 10							GE	ι UC	nC.	a T	نجي	ų Д	71.17	, Ta T	or	s c	۰Cir	CT.T	E 1.	ų. Η	L Di														: D	
	<u>H</u> ų	i <u>đac</u>	<u>m</u>	<u>Ba</u>	<u>y</u>													ECT c 1v									03	74(5		(a)						
SAME () #			 ;u	Pb	2n	٨	₽ ₩1	(o	Hin	Fe	٨	s U		u Th	5	- (c	5	n Bi	v V	Ca	P	i a	۲r	Ma	Ba	Ti	R	A) H	, I	L I	v 1	1 16	9 5	in 1	le Ga	1	 	
		•	yai 👘	pon	ppm	pp)	pp#	ppn	D) va		ΠO.	pp#	25	ð ppill	- 00	n ppe		n ppr	PPP			ppæ	994	*	pist		рр е	<u></u>	· ·	Г.	n no	а орч	b pq	# \$4	nt ppr	.	 	
	19	0 25126.	18 1185	-32 K	3 8 50	02999	544 4	1204-3	693	27.56	3827	4.3	2133	5 2	4.	2 6.53	12.3	7 64.02	1.8	01	617	9	66 8	92 2	31	126	ai	48 00	1].	3 4	010	1 43	7.74	16:	11 10 E	5		
67570		6 1408																																				
6/5/1	1.20	D 215.	25 14	64 3	502.6	410	17-3	24.4	843	7 13	4	5.2	20	5 4	24	9 2 84	3	11 41	174	<u>6</u> 8	.020	1.7	29.5 1	54 4	9.1	123	-11	94 04	ь <u>а</u>	3-1	111	ι s	5 2	122	59 9 1	3		
57572		4 332																																				
67572	ĥ	ə 591.	× 4	75 1	109 6	1613	9 J	is 1	632	5 77	5	03	24	3 8	24	4 .2	3	/ 6.88	79	1.71	03.1	3.8	13 5 1	28 2	5.9.	154	11	€ s 1 0	6 2	7 2	7 4	1 1	6	8) {	91 97	1		
65514	1.4	7 238	95 45	. 27 1:	<u>193.0</u>	4064	2.8	12-1	1901	6 74	64	74	55	26	. 9	6 9 05	i 1.C	1 163 86	54	56	10 J	5.2	6.2.1	56-11	1.4	011	<1 à	64 00	a <u>2</u>	72.	6.1	1 -	5	• 4 I	21 0 13	9		
67575		1 32.																																				
RF 675-71	.61	0 23.	78 21	.58	105.3	136	8.6	12.8	896	2.53	9 .	1.7	2	1 2.2	354.	5 2.13	5. 8	7 Q	43	7.74	127	9.5	98	45 36	9.6.	033	3	53 05	οι	3	6.Z	7 5	0	1	05 Z.4	6		
16/972	8	3 270.	LL 20	.93	292.9	1376	10 0	30 0	1064	i 68	68.	4 < 1	67	3 5	. 10.	1	1.8	5 16 1	73	.41	.093	4.4	28.0 1	. LD 7	÷ 0 .	C35	41	86 01	8 Z	0 1.	8.1	ه ۱	s i	66.	51 7.2	2		
167973	8	7 163	09 10	0.00 1	58 8 . S	816	4 6	15.0	1012	6.47	18.	9.1	38.	з 6	5 17.	4 8.9	3.7	0 21.1	8 41	1,64	084	5.3	6.1	98 É	8.2 .	C30	વા	87.10	2 1	4 1.	3.1	0 <	5 !	.8 4.	73 7.	1		
16/4/4	.7	0 91.	58 69	. 48	405.6	1947	2.5	3 9	3046	8.41	119.	4.1	150	2 ,4	15.	0.5	9-1.7	5 14.0	2 61	.06	. 06 9	3.1	6.5 }	.66 4	8.7 .	00 8	<1.2	.23 .00	4.1	83.	0.0	10 Z	1	.9.2.5	57 10 1	6		
standard da	2 14.0	7 101.	19 32	46	165 4	260	38.4	17.2	828	3.19	60	8 21 0	169	3 3.2	36	5 11 4	2 10 4	z 11.2	e 83	1.56	.091	17.5	174.7	61 14	5.3	116	2.1	78 .03	2 1	1 1.	5 1.5	1 22	2 2	.5 1.4	90 6.	2		

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BJ, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCI 4 1999 DATE REPORT MAILED:

ANALYTICAL LABORATORIE (ISO 9002 Accredited Co	S LTD.						VER BC CERTI		2	PHONE (4	504)253-	3128 R	AA (004)	
Hudson	Bay Ex	p]. &	Dev. Granvi	Co.	<u>Ltd.</u> Vancouve	PROJE	CT COM 1v5 Subi		le # 9 /: R. Keef		6 (b)		
SAMPLE#	Cs ppm	Ge ppm	Nb ppm	Rb ppm	Sc ppm	Sn ppm	S %	Zr ppm	Y ppm	Ce ppm	In ppm	Re ppb	Li ppm	
67569 67570 67571 67572 67573	$ \begin{array}{c} 1.94\\ 2.41\\ 6.16\\ 1.62\\ 4.31 \end{array} $.5 .3 .1 <.1 .1	.31 .11 .07 .11 .09	10.5 34.0 69.1 8.7 23.6	5.7 8.8 11.5 7.7 8.1	4.9 1.6 1.4 .5 1.1	19.313.864.331.262.54	.9 1.6 1.2 1.4 1.5	1.86 7.40 8.89 14.20 9.32	1.6 3.5 3.9 11.0 7.4	18.32.32.241.09.21	<1 <1 2 <1	10.3 7.5 8.8 9.2 11.8	
67574 67575 RE 67575 167972 167973	1.3113.0313.37.773.20	<.1 <.1 <.1 <.1 <.1	.07 .10 .08 .10 .09	7.4 7.7 8.1 7.0 5.3	7.5 5.4 5.7 8.6	.7 .34 .5 .6	1.54 .02 .02 3.04 3.67	4.1 3.7 3.7 1.1 .7	12.7215.8916.189.3814.48	9.6 20.0 20.5 8.8 11.0	1.46 .02 .03 .21 .97	<1 <1 <1 2 2	8.9 3.3 7.7 7.9	
167974 STANDARD DS2	.54 2.81	<.1 <.1	.08 2,21	$6.6 \\ 15.2$	6.7 3.2	.7 26.1	1.11 .02	1.9 3.6	3.53 8.26		.37 5.25	1	6.6 13.7	

GROUP 1730 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

DATE RECEIVED: OCT 4 1999 DATE REPORT MAILED: OUt 18/99 SIGNED BY D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

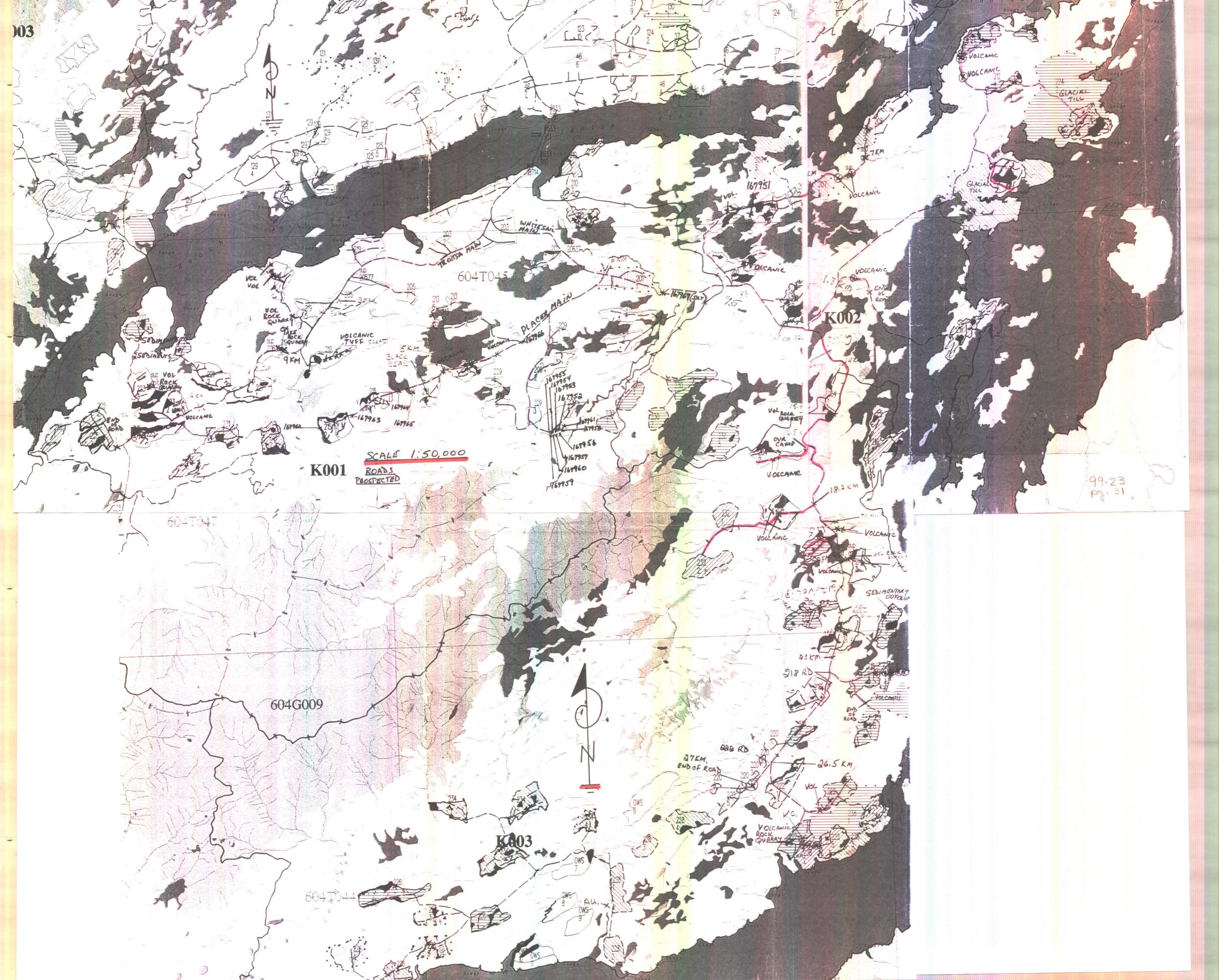
Data 🖡 FA

ACHY AN	ALYTI 0 900	CAL 2 Ac	LAP	ORAI	OR:	IES Co.	L])	D.		1.1	: :	an e e e	·		ST. . AN		8 . j. j. j.			2,7-3		- 3. -		PHC)NE (604)	25	3-31	158	FAX (604)	25	9-1	716
Ê				Hud	<u>so</u> :	n I	<u>ay</u>	<u> </u>	<u>xpl</u> 405	• 47	O Gra	anvil	le St	. I . V	std.	ver B		CVF -	CON Sub			ile »y: R	# Kee	99(fe	374	15		{a)				T	
SAMPLE	Mo ppm	Cu ppm	р рр	b Zr na ppr		- -	ייייי≕ או קיקע	Co ppm	Mn ppm	Fe		U Inqq		Th ppm	5г ррт	Cd ppଲ	Sb ppm	Bi ppm		Ca X	۹ ۲		Сr ppm	Mg X	Ва рряп	11 1	B ppm	A1 ¥	Na X	к W * ррл		Hg ppb	Se ppm 	Te Ga ppm ppm
T-1 f-2 T-3 T-4 T-5	4.98 1.95 1.90	79.04 104.37 61.12 67.88 56.89	14 9 11.5 13.2	5 206. 6 270. 4 191.	13 82 03	01 1) 79 1(22 19	1.21 5.12 5.31	14.6 22.8 18.4	2298 3059	3.16 3-39 3-17	25.0 14.5 14.7	.6 .5	8.6 48.4 3.9 10.6 5.5	.6 .7 .6	27.9 294	1 14 1 50 1 53	1 46 .70 .89		54 49 48	. 58 . 45 . 62	.065 .072 .081	12.0 8.5 10.7 12.0 17.9	19.7 16.5 19.8	. 43 . 39 . 35	157.8 230.6 242.9	035 .018 .024	1 1 1	1.42	013 010 011	10 8 07 2 2 04 < 2 05 < 2 08 < 3	18 15	40 60 79	1.0 .5 .6	40 4.3 30 4.2 14 3.5 15 3.3 26 3 4
T-6 T 7 1-8 T-9 T-10	5.27 1.08 1.26	72.73 153.39 28.88 44.74 20.54	17.2 41.0 21.7	8 598 0 312. 2 192.	4 4 2 13 7 10	77 2 46 1 55 1	9.8 3.6 8.7	87.9 11.4 12.0	9617 4480 2500	5.42 3.46 4.34	39 0 16.5 17.2	1.1 1.0 1.1	<.2 9.0	.9 .8 1.4	24.3 53.5 113.3 66.6 82.7	7.90 2.31	1.29	.98 .06 .23	48 50 1 66 1	. 69 1. 39 1. 12	.103 .095 .093	13.6 16.4 14.7 19.1 18.0	15 2 18 0 27 6	. 35 . 35 . 41	401 2 769.2 510.3	.019 .012 .012	1 <1 <1	2.57	.011 .013 .014		. 46 11 . 15	38 103 113 94 92	ġ	10 3.4 .30 4.8 03 4.0 08 5 8 .04 5.3
RE T-6 T-11 T-12 T-13 T-14	. 44 . 92 . 53 . 95	74.06 22.27 23.36 13.82 102.37	12.1 22.1 14.1	30 130. 16 143. 51 156. 10 148.	3 2 3 2 8 13 8 3	149 1 184 1 161	07 1.1 9.4 0.9	5.0 10.9 5.6 11.2	255 1802 3353 10809 1586	1.23 3.19 2.04 3.60 2.93	6.1 14.2 10.2 16.4 22.3	.7 .6 .9 .5 1.7	2.0 8.1 25.2	1.1 .8 .9 1.2	39.5 49.8 102.5 33.8	. 66 . 99 . 74 2. 13	. 72 1.14	10 09 10 1.50	50 52	59 68 75 63	.083 .057 .057 .091	13.1 11.0 14.7 8.6 20.8	16.9 11.2 11.7 18.8	.31 .22 .30 .39	241.8 422.2 820.4 270.8	.040 .008 .020 .014	1 1 1 1	1.64 1.23 2.00	.014 .006 .008 .009	.06 < / .05 < / .04 < /	08 09 12 12	46 82 64 94	.1 .2 .6 .5	.36 4.8
STANDARD OS2	13.98	126.17	29.6	36 162	2 2	248 3	87.6	12.1	816	3.13	59.5	20.3	296.7	3.2	29.7	11.15	9.35	10.06	81	. 54	.083	17.0	169.3	. 60	142.4	. 113	2	1.74	.032	.16-7.1	5 1.82	244	2.6	1.95 5 9

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, 81, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SILT <u>Samples beginning 'RE' are Reruns and 'RRE' are Refect Reruns.</u>

DATE RECEIVED: OCI 4 1999 DATE REPORT MAILED: Out 18/99

ACME ANALYTICAL LABORATORIES (ISO 9002 Accredited Co.	LTD.				• . • *	NCOUVE		VGA 1R		PHONE (6	04) 253	-3158	FAX (604)	253-1716
Hudson E	lay Exp 4(1. &	Dev.	Co. L	td. P			<u>B</u> Fi	le # 9		5	(b)		ťť
SAMPLE#	Cs ppm	Ge ppm	Nb ppm	Rb ppm	Sc ppm	Sn ppm	S %	Zr ppm	Y ppm	Ce ppm	In mקק	Re ppb	Li ppm	
T - 1 T - 2 T - 3 T - 4 T - 5	2.96 2.27 2.74 2.11 2.71	<.1 <.1 <.1 <.1	.86 .39 .42 .41 .75	$9.2 \\ 11.0 \\ 7.6 \\ 7.2 \\ 9.1$	3.4 2.8 3.5 3.5 5.5	. 4 . 5 . 4 . 4	.15 .05 .08 .09 .12	1.1 1.6		13.7 18.1 19.4	.05 .06 .04 .04	4 4 3	12.1 7.8 10.4 9.1 11.3	
T - 6 T - 7 T - 8 T - 9 T - 10	2.28 3.46 3.89 4.37 1.84	<.1 <.1 <.1 <.1	.45 .60 .72 1.26 1.13	4.5 11.2 12.6 14.1 7.4	3.0 3.7 5.9 8.8 4.9	45368	.05 .12 .09 .07 .12	.9 1.2 2.3 4.4 2.2	12.66 20.94 24.70 33.84 22.31	21.0 38.8 20.5 24.5 31.6	.04 .06 .03 .06 .04	37457	9.2 11.5 14.7 15.7 11.9	
RE T-6 T-11 T-12 T-13 T-14	2.27 1.95 2.66 2.67 2.91	<.1 <.1 <.1 <.1	.45 .47 .62 .49 .95	4.4 5.3 7.2 9.5 9.5	2.9 4.6 5.9 4.3	. 4 . 4 . 4 . 4 . 7	.05 .03 .04 .04 .05	1.1 2.3 1.6	13.15 12.37 21.42 11.36 23.85	20.6 17.1 15.2	.04 .03 .03 .03 .09	32 32 32 32 5	9.3 6.9 9.6 9.6 10.4	
STANDARD DS2	2.64	<,1	2.14	14.0	3.1	27.5	.02	3.8	8.13	30.Z	5.91	3	13.1	


DATE RECEIVED: OCT 4 1999 DATE REPORT MAILED: Oct 18/99 SIGNED BY. C.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Data

		MINISTRY OF ENDOGY & MINES
B. TECHNICAL REPO	BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM RT	PECE SMITHERS, BC
Name: Shawn Turfo	rd Ref #: <u>P47 1999/0</u>	0
LOCATION/COMMODIT	IES-	
Project Area: <u>Rea</u> Location of Area D	chMinfile #: NTS: <u>93 E 10/E</u> Lat: <u>53 36</u>	Long: 126 49
<u>roads to the North</u> <u>Pro. barge, to th</u> <u>Tahtsa Lake . Also</u>	cation & access: From Francois Li shore of Tahtsa Reach, crossing or a logging roads and blocks on the all roads and blocks North of Wh	Houston Forest South shore of hitesail reach.
Main Commodities	Searched for: <u>Au, Ag, Cu.</u>	
Known Mineral Occu	urrences in Project Area: <u>Nil in</u>	<u>immediate area</u>
WORK PERFORMED-		••••••••
2.Geological Mapp: 3.Geochemical 4.Geophysical 5.Physical Work 6.Drilling	nil	
SIGNIFICANT RESULT	ag- nil	
	Claim Name: Long: Elevation	:
	type:	
	neralization, host rocks, anomali	
investigated and p basalt. On a spur rockquarry. It was taken with no sign desired area beca	cted was mainly volcanic. All roved to be either Andistic volca road off of the Placer main was highly altered with visible pyrit ificant results. We were not able use of poor weather conditions that point. This project will be c	nic or volcanic s a mineralised e. Samples were to prospect the delaying road

of 2000.

÷ .

ASME ANALYTICAL LABORATORIES LTD. (180 9002 Accredited Co.)

652 E. HASTINGS ST. VANCOUVER BC V6A 1R5

PHONE(604)253-3158 FAX(604)253-1216

Qata 🔨 FA

(a)

GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT REACH File # 9903394 405 - 470 Granville St., Vancouver BC V&C 1V5 Submitted by: R. Keefe

L																	_		_			_											
SAMPLED	Ho	ບັນ	Pb	Zn	: Ag	Ni	Со	ŧIπ	Fe	As	IJ	∧u T	h Sr	Cu	\$b	Bi	٧	Ca	P	La	Cr	Mg	fia	11	B	A)	Na	ĸ	W	TI	 Hg	Se	Te
	្រក្រក	рряп	titau	ti tati	i bbp	рряя	<u>b</u> ter	hbu	<u>, 1</u>	ррлі	ррил	ppb pp	m ppm	ррт	ppm	ppm	ррнп	Ű,	:	Dtxm	្រំព្រោ	¥	ррял	3,	ppm	ł	2	x	ncan	μ pfi	բթն	ρpm	ypm (
167951	3.07	7.14	15.51	57.9	15	17.1	12.2	204	7.03	1074.8	.1	2.0 .	646	15	18.26	15	58	n	030	12	0.11	Ð5	31.7	001		.61	 	E I	- 15	2.22	1047		
167952	4.93	4.55	7.58	1.0	15	3.9	-			109.7	.4	<.2.1.			3.28						15.5<				ĩ		.010			49			. DZ
167953	7.24	19.58	4.93	4.9	24	7.1	LI	20		75.7	4	<.21			4.45						17.3				,		003				178		.02
167954	19.90	40.23	14.35	93.4	259	16.7	3.0	32		37.5	4	< 2			5 20]7.8<				í	.51							.02
167955	10.60									45.9	.4		0 5.7	-	3.40						11.3				i		005			-			.00 11
																									-							• •	
167956	42.27	60.29	32.80	166.9	162	35.1	1.1	45 3	2 96	10.2	.9	.3 .	8 13.2	. 59	1.63	. 39	55	.03	.066	11 8	14.44	.01	64.2	.002	1	67	.004	0B	4.6	21	131	31	06
167957	3.25	12.93	6.30	167.9	61	2.3	14.4	1947 9	5.94	12.2	.5	<.Z Z.	4 11.7	.41	1.46						2.3						055						.15 2
167958	4.18	72.17	5.15	100.A	60	3.0	13.7	[404]	515	3.2	.1	1.3 2.	6 14.5	. 29	.67				.218			-	174 5		_		.040			15		3	.03 (
RE 167958	4.08	23.03	4.78	103.6	58	2.9	13.2	1433 !	5.48	J .C	6	.6.2.	5 14.0	. 30	.68		64		.223			05	70.6	001			Q 4 D	~ ~	• •	14	107	3	D2 :
167959	3. LA	40.08	6.72	168.1	58	1.4	11.2	1835-5	5.08	3.8	.6	.5 2.	4 11.6	. 37	.90	.08	5/	. 60	.227	4.6	7.3	.39	54.6	.001	2	.70				.07	109	.4	< 02 (
1.67964	3.70	27.16	d >1	329.7	42	4.1	18.2	2247 (5.27	29.3	.5	582.	2 10.9	Ł.48	3.00	. 03	60	.58	. 223	25.2	5.5	. 2B	42.6	.002	1	.55	.052	. D6	2.1	.20	304	1.1	<.02.2
167961	2.29	48.68	6.33	119.8	46	13.9	18.9	3166	1.68	20 J	1.0	2.7.2.	7 32.3	.27	1.02	. 09	88	.26	. 151 .:	22.9	19.7	.50	136.9	.132	i	1.84	.072	13	7	17	79		< 02 /
STANDARU 1852	14.24	128.83	. 10 . 91	164.5	274	36.7	12.7	840 .	3.19	62.5	21.1	181.3 3.	3 30,5	11.24	9.35												041	.16	6.9	I 34	23D		1.83 (

GROUP 1F30 - 30.00 GH SAMPLE LEACHED WITH 180 NL 2-2-2 HCL-HNC3-H2O AT 95 DEG, C FOR ONE KOUR, DILUTED TO 600 ML, AMALYSED BY (CP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPN; MG, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NT, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Sept 27/99 DATE RECEIVED: DATE REPORT MAILED: SEP 10 1999

ACMB ANALYTICAL LABORATORIES (ISO 9002 Accredited Co.)	y Expl	G . & D	EOCHE ev. C	MICAL	ANAL	ANCOUVE JYSIS (COJECT BC V6C 1V	ERTI REAC	FICAT	" E 1e #	990330		(b)	FAX (60)	•) 253 - 1716 Å Å
SAMPLE#	Cs ppm	Ge ppm	ND PPm	Rb ppm	Sc ppm	Sn ppm	c) ale	Zr ppm	Y ppm	Ce ppm	In ppm	Re ppb	Li ppm	
167951 167952 167953 167954 167955	1.66.441.30.761.74	.1 .1 <.1 <.1 <.1	<.02	3.6 .8 3.1 2.2 4.6	$7.3 \\ .5 \\ 1.0 \\ 1.0 \\ .8$.11 ·2 .41	.70 .65 .70 .62 .98	1.22.21.72.32.3	2.27 2.14 2.60 3.70 8.81	2,7 18.9 17.0 8.2 16.1	.05 <.02 .02 .03 .02	2 <1 <1 40 9	2.53.12.31.83.0	· · · · · · · · · · · · · · · · · · ·
167956 167957 167958 RE 167958 167959	.62 .62 1.70 1.65 .92	,1 <.1	<.02 .10 .02 <.02 <.02	1.9 2.5 4.4 4.4 4.2	2.3 6.0 7.0 6.9 5.5	.3	.09 .34 .33 .33 .59	4.5 2.8 2.8	14.15 29.79 29.56 28.85 27.38	$50.6 \\ 51.3 \\ 48.9$.03 .06 .07 .06 .07	49 <1 6 2	3,5 1,4 1,3 1,4 1,8	
167960 167961 STANDARD DS2	$.58 \\ 1.38 \\ 2.77$	<.1 .1 .1	.02 .19 2.15	$ \begin{array}{r} 1.9 \\ 6.3 \\ 15.5 \\ \end{array} $	5.9 7.2 3.0	.32 23.0	.43 .05 .01		29,22 22.07 8.20	49.4 65.7 31.4	.07 .04 5.11	2 1 <1	1,6 8.4 13.5	

GROUP 1F30 - 30.00 GM SAMPLE LEACKED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR DNE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TN, U, B = 2,000 PPN; CU, PB, ZN, NI, HN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK <u>Samples beginning (RE1 are Returns and (RRE1 are Reject Returns.</u>

(ISO 9002 Accredited Co.)	D. COL S. HASTIN	GS ST. VANCOUVER BC	V6A 1R6 PHONE (604)253-3150 F	AX (604) 253-1716
	GEOCHEMIC	CAL ANALYSIS CERTI	FICATE		· 🔺 👗
TL Hudson Bay	Expl. & Dev. Co. 405 - 470 Granville St.	Ltd. PROJECT REACH	I File # 990339 Atted by: R. Koefe	95 (a)	
SAMPLE# Νο Cu Po Zn Ag Ni ργκα ρινα μινα μινα μου ροπιρ	Со Нл Ге Аз U Ац Th ки ррип 8 рил ррин ррb рри			Li B Al Na K ≮ppma X X ≵	W 11 Hq Se Te Ga ррт цем ррб перт ррт рухо
167967 .73 20.49 52.95 181.1 164 13.2 14 167963 .80 21.85 16.00 111.2 351 9.2 7 167964 .67 24 /3 10 74 77.1 54 32.2 14 167964 .67 24 /3 10 74 77.1 54 32.2 14 167965 73 21.44 7.80 86 8 11.5.2 12 167965 12.00 17.49 8.08 192.9 92 9.5 10	.3 708 2.53 14.8 6 6.6 .2 9 1070 3.00 11.7 1.5 .7 3.9 9 1018 3.55 18.3 .6 2.4 1 0	2 49.2 .55 1.40 .21 58 .57 9 67.3 .24 .85 .14 74 .67 0 36.5 .21 1.37 .09 93 .45	177 25.6 15.7 .59 386.6 .076 16.4 14.8 .36 200.6 .107 19 4 9 3 48 199.9 1 .088 12 1 22.3 .47 115.2 .4 .091 12.1 13.5 .43 215.0 .4	078 3186.024.14 027 21.73.014.06 086 21.19.020.13 086 2.98.017.407	 .7 .35 84 <.1 .05 5.0 .2 .11 .77 .1 .04 5.0 2 16 .28 .1 .05 4.0 4 12 .55 .7 .02 .2
167967 96 15.14 9.91 104.4 49 13.6 12 RE 16/967 93 15.12 10.07 105.4 95 13.7 12 STANDARD DS2 14.59 131.03 31.99 167.3 270 37.3 12	9 954 4 15 11 4 1 2 2 9 2 0	55 7 37 1 20 10 min cu	.169 22.9 25.3 46 153 7 . .171 22.9 22.4 .47 156 8 . .083 16.6 175.9 .62 146.7		
GROUP 1F30 - 30.00 GM SAMPLE, 18D MU UPPER LIMITS · AG, AU,, HG, W, SE, - SAMPLE TYPE: SILT <u>Samples beg</u> :	ic, (L, GA, SN = 100 PPM; MD inning 'RE' are Recurs and //	, CO, CO, S8, S(, TH, U, B = 2 2057 pro Bolect Portuge	009 PPM; CU, P8, ZN, N1.	MM, AS,V, LA, CR =	
DATE RECEIVED: SEP 10 1999 DATE	REPORT MAILED: Sept	t 25/99 signed by	tore, c.L	EONG, J. WANG; CERT	IFTED B.C. ASSAYERS
			3		
				、	
					1

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

.

Data FA

(ISO 9002 Accredited Co.)

852 B. HASTINGS ST. VANCOUVER BC V6A 1R6 GEOCHEMICAL ANALYSIS CERTIFICATE

PHONE (604) 253-3158 FAX (604) 253-1715

(b)

A

Data 🖡 FA

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT REACH File # 9903395 405 - 470 Granville St., Vancouver BC V6C 1V5 Submitted by: R. Keefe

 							-		Y: K. Keer	e				
 SAMPLE#	Cs ppm	Ge ppm	NP Dbu	Rb ppm	Sc ppm	Sn ppm	S \$	Zr ppm	Y PPm	Ce ppm	În ppm	Re ppb	Li ppm	
167962 167963 167964 167965 167965 167966	19.75 2.84 3.38 5.99 2.40	<.1 <.1 <.1 <.1 <.1	.09 .67 .22 .26 .21	18.8 8.0 15.2 7.8 6.5	4.7 2.9 4.9 3.9	95855 	.01 -02 <.01 .01 .04	$11.4 \\ .6 \\ 16.3 \\ 1.4 \\ 1.0$	15.40 14.43	56.2 20.5 40.8 22.9 24.4	.05 .04 .04 .04 .03	<1 <1 <1 <1 <1 2	$ \begin{array}{c} 6.3\\ 11.3\\ 4.8\\ 10.2\\ 9.2 \end{array} $	
 167967 RE 167967 STANDARD DS2	$1.66 \\ 1.67 \\ 2.81$.1 <.1 <.1	.12 .11 2.09	7.0 7.0 14.5	3.6 3.3	.8 .9 25.8	.01 .02 .02	$\begin{array}{c}10.2\\10.2\\4.3\end{array}$	16.64 16.56 8.41	$51.5 \\ 51.0 \\ 31.3$.04 .04 6.07	<1 2 1	$\begin{array}{c} 6.1\\ 5.7\\ 14.0\end{array}$	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-HZO AT 95 DEG. C FOR ONE HOUR, DILUTED TO 60D ML, ANALYSEO BY 1CP/ES & MS. UPPER LINITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CO, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NJ, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SILT <u>Samples beginning (RE' are Repubs and (RRE' are</u> Reject Repubs.

DATE RECEIVED: SEP 10 1999 DATE REPORT MAILED:

SIGNED BY......D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

MINI	STRY OF	ENE	RGY & M	MINES
RECIDI	14 M	11	2000	i
	SMIT	HER	S, BC	

)

1

:

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM

B. TECHNICAL REPORT

Name	Shaun	Turford	Pof #	 n 47	1999/00	
name.	_ <u>DIIGWII</u>	TULLOLU	Rel f	E447	TAAA\00	

LOCATION/COMMODITIES-

Project Area: <u>BREE</u> Minfile #:<u>n/a</u> Location of Area NTS: <u>93 L 4E</u> Lat: <u>54 15' Long: 127 23'</u>

Description of location & access: From Francois Lake by truck and trailer to the Owen East F.S.R., then Morrice Owen F.S.R. to the Morrice West F.S.R., then 86 kms north on the Thautil F.S.R. to Gabriel Creek.

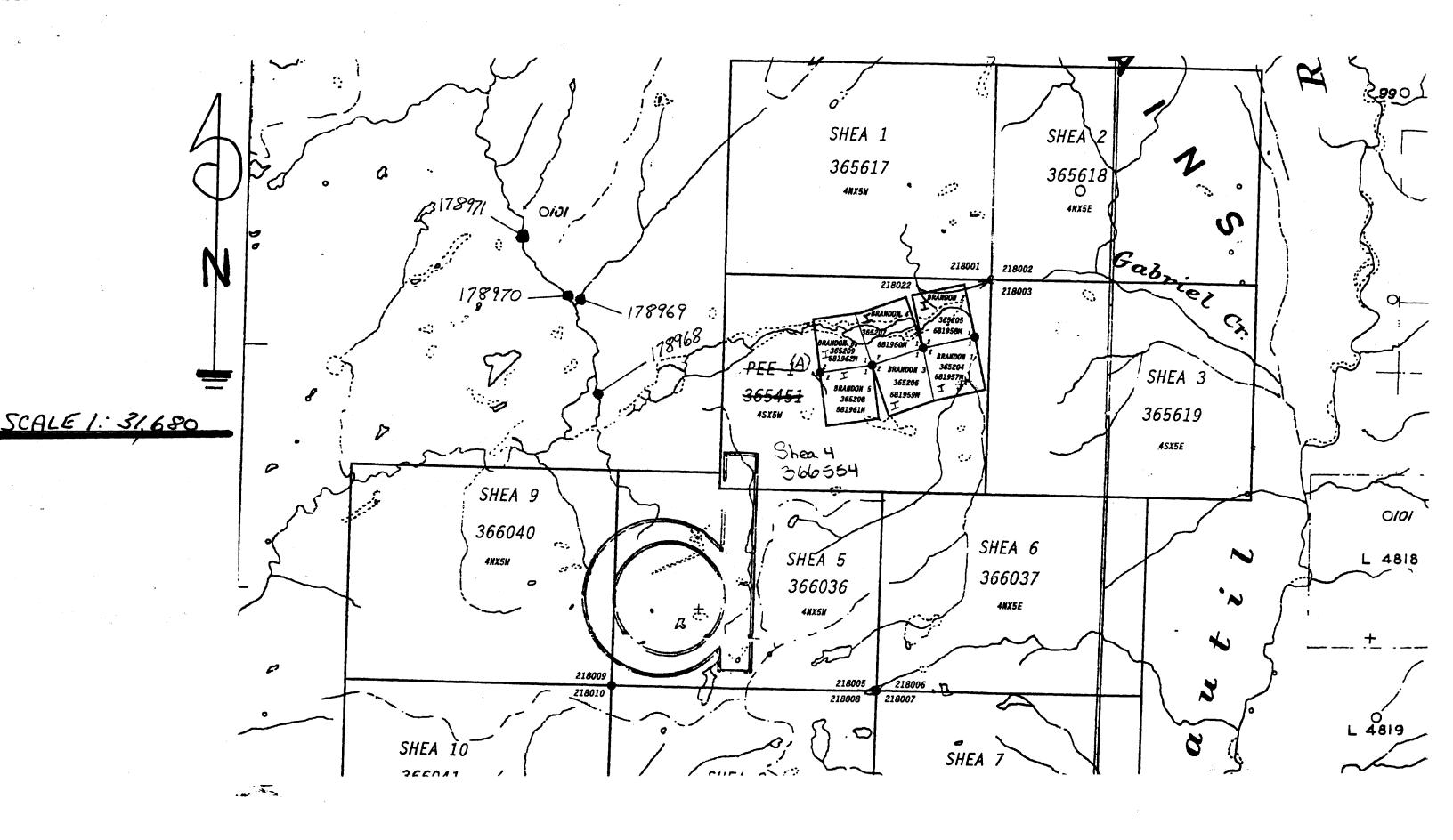
Main Commodities Searched for: Porphry Cu., Au.

Known Mineral Occurrences in Project Area: <u>Nil</u>

WORK PERFORMED-

1.Conventional prosp. Prospecting drainage and area north of Shea claims

2.Geological Map	ping <u>as</u>	per map	sheet	
3.Geochemical	<u>4 silt</u>	samples	taken.	
4.Geophysical	nil			
5.Physical Work	nil			
6.Drilling	nil			
7.0ther	nil			
	* * * * * * * * *			


SIGNIFICANT RESULTS- nil

Commodities_____Claim Name:_____ Location/Lat:____Long:____Elevation:_____

Best assay/sample type:_____

Description of mineralization, host rocks, anomalies:

The creek drainage and area west of the Shea claims proved to have a heavy volcanic capping. The area prospected did not reveal any porphyry float or out crops. Only rocks of volcanic origin were noted. The four silt samples proved this. I will not be pursuing this project any further.

-

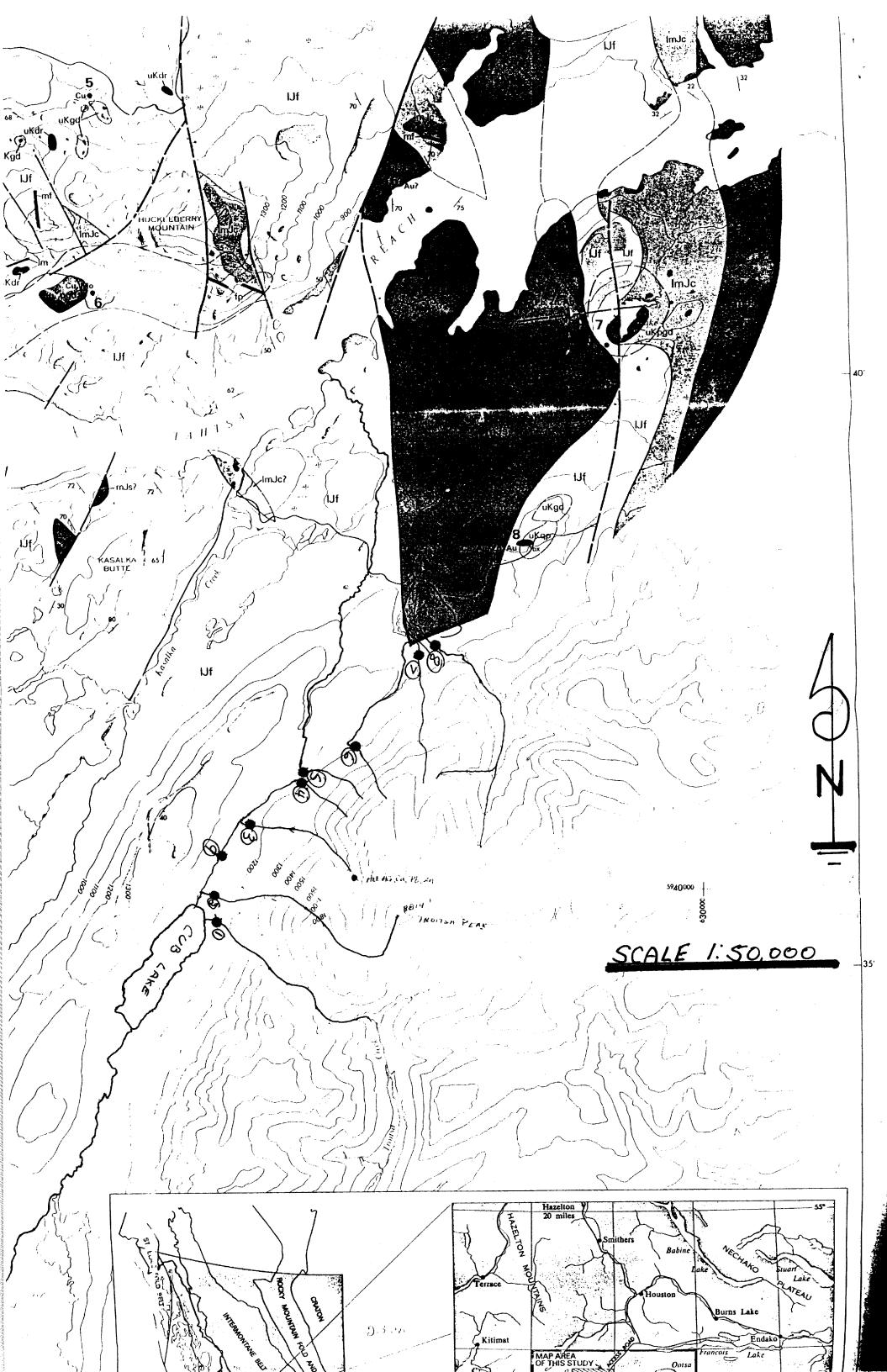
	ANA 1 (150	90(02	A CC	Ĉże	ed i	ter	d C	io.)											V									PHO	NE (504)	253	-31	58	гах (604) 25	3-1	716	
	È.						·							GE	00	HE)	MIC	CAL	A	NAI	'YS	IS	CE	RT	ÍFI	CA.	ГВ						·							44
LL	1					Hu	<u>ids</u>	ion	B	ay	Ex	<u>p1</u> 405	- 4	D	ev		Ĉo .	. 1	td	Ť	PRO	TE	CITY .	DD	710		ile y:R.	#	990	339	6		(a)		÷		.*		A	F
PLE#	Мо	 . 	<u>с.</u>	Pb	 ,	Zn	۸g	174.7 1 N	li (Mn		As			***	Th											Kei	efe 	·				• •					, L	
ka ka da ang ang ang ang ang ang ang ang ang an	ppm	PI	pm	ppm										ppm	19	pb l	ppm	ppm		id s xna pp		ßi ppm	Y pom	Ca X	г *	La pom			ין די קס לא	.i li m ∄	B Ppm		l Na K X		W ppm		Hg			
)68)69	30 21	26 f	86 19	9.68	148	8.2	177	11	0 13	4 18	805 4	. 20	13.6				.7 2	29.8	.5	8.6	2	. 10	94	52			<u> </u>		1 303									ppm		
970	. 21 22	25.1	46 LE	8.96	- 140	0.3	165	10	1 12	6 16	5R2 A	10	12.2	۲.			.74 .82	48.9	. 3	13.5	8	. 05	116	- 89	.066	10.3	35.2	7 1 5	7 702	6 11 1	3	1.23	3 .018 5 .018		< 2 < 2	.04	25 43		-	
971 1 7 8971	.24	23 9	97 ZC	0.71	-141	11	179	10.0	2 12	9 16	(Q1 A	46	12 6	6	2.	.2	.8 2		.4 .4		13 17	.08. .09	88	. 40	- 0°58 -	8.2	15.5	56	7 266 3 309	6 024	2	1 03	1.015	5 .O7	<.2	. 02	20	.1	. 02	
	. 26														1.			24.5	. 4	7 . 7	1	. 08	99	.4/	067	9.1	- 11.4	6	3 316 1	5 101	2	98 1.00	8 .015 018		< Z <.2	. 02 02				
idard dsz	14.59]	.31.0	13 31	99	167	<u>′.3</u>	270	37	3 12	58	342 3	.20 €	53.4	21.0	201.	1 3	3.5 3	31.2	11.5	79.7	9 10.	.94	83	. 56	083	16.6	175.9	. 6	2 146.	7.116	2	1 79	. 035	.17	7.6			2.5		
																																						2.3	1.09	
	group Upper - Samp	LIM	ITS	- AI	G,	AU,	, HC	·ιε, 3, W	, SE	, TE	5 2-2 2, Tl	2-2 1 ., G/	HCL-1 N, 51	1NO.5- N = '	- H20 100	AT PPN,	95 E : NO,	DEG. . CO	CF .CD	'or o). S8	NE H	OUR Th	AND II.	IS D	LUTE 2000	ED TO	600	ML,		SIS E	Y IC	P/ES	& MS							
	- 3APR	'LE	ITPE	i: Si	ILT		<u>Sa</u>	amp l	<u>es b</u>	<u>egi</u> r	ning	<u>'R</u>	- a	re Re	eruni	5 80	d (RRE	вге	Rej	ect	Reru	<u>ns,</u>	0 -		0	j uu,	, 10	, ZN,	WI, P	₩, A:	5,V,	LA,	CR =	10,00	00 PP	Μ.		÷	
DATE	RECE	IVE	D:	SF	6D -	10.4	1999	. r	<u>```</u>	- 5	-	תהבי	141	ÎLEI	_ <	\bigcirc) - ~		.10	10				(2]	Ī.														
			μ.	96	<u>.</u> r	10 .	ואא		JAI	5 R	BPU.	RT	MA.	LE	D:	\geq	pr	21	14	17	S]	EGN	BD 1	BY.		\sim		₽ 0.	TOYE	C.11	EONG,	J. 1	JANG;	CERI	IFIE	D 8.C	I. AS	SAYER	IS	
																		,	/									l i											-	
																											,													
										,											•																			
								•																																
																																•								
																						5																		
All resu	its ar		onei	dace	.	the		ماء ت ک	meir							_																								

Hudson E	2019 <u>BAN</u> 41	05 - 470	Granvil	CO.L.	ncouver	BC VAC 1	<u>T BRF</u> V5 Sub) <u>E</u> F mitted b	ile # >y: R. Keef	99033: le	96	(b)	
SAMPLE#	Cs ppm	Ge ppm	Nb ppm	Rb ppm	Sc ppm	Sn ppm	Ş.	Zr ppm	Y mqq	ē. mag	In ppm	Re ppb	
178968 178969 178970 178971 5 RE 178971	1.151.661.031.031.18	<.1 <.1 <.1 .1	.24 .34 .20 .22 .30	5.4 6.5 4.0 3.9 4.7	7.1 9.5 6.2 6.6	.6 .6 .5 .5 .6	.01 .01 <.01 .03 .03	2.4 2.0 2.4	15.14 22.84 12.85 12.92 13.29	18.5 17.8 16.9	.05	<1 <1 1 <1	13.5 24.7 11.9
STANDARD DS2	2.97	< . 1	1.95	14.5	3.3	25.8	.02		7.99				11.4 14.0

DATE RECEIVED: SEP 10 1999 DATE REPORT MAILED: Sept 27/99 SIGNED BY. C. T. D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data FA


B. TECHNICAL REPO	BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM RT	NEWISTRY OF ENERGY & MINES RECT. 2.11 1 2000 SMITHERS, BC
Name: Shawn Turfo	rd Ref #:2471999/	00
LOCATION/COMMODIT	IES-	
Project Area: <u>CUB</u> Location of Area	Minfile #: n/a NTS:93 E 11E Lat:53 36' 1	ong: <u>127 08'</u>
Description of lo Troitsa Lake to C	ocation & access: <u>By Cessna 180</u> ub Lake	floatplane from
Main Commodities	Searched for: <u>Au., Cu.</u>	
Known Mineral Occ	urrences in Project Area: <u>Nil</u>	
Lake 2.Geological Mapp 3.Geochemical 9 4.Geophysical 5.Physical Work 6.Drilling 7.Other	· · · · · · · · · · · · · · · · · · ·	
Commodities Location/Lat:	Claim Name: Long:Elevatio	n:
Best assay/sample	type:	
Description of min	neralization, host rocks, anomal	ies:
volcanic talas and South of the creek locating annomalou possible miss? H	ample and alteration zone was not d avalanch debris covered most o c. Silting of all drainages was is Au sample. Assays proved to h owever there are some elevated i ion will be required if follow i	f suspected area done in hopes of pe quite poor. A Ag values in the

ł.

;

ł

ŗ,

	(190 9	OQZ.	ACC		C8 0																				• • • •	PE											
À À							,				GI	EOC	CHE	MI	CAI	A	INA	LY	SIS	C	ER7	FIF	IC	ATE													
Ē				H	ud	80)	n I	Bay		<u>pl.</u> - 47																	031	69		(a)				4	Ľ	Ľ
																																				· · · · · · · · · · · · · · · · · · ·	
E	oM Ngg			bi ∂r ≡ pp≯		-	№1 ррил	Co ppm	Мп рұри	fe X		NS MΠ β	U pilt	-	Th ppm			d na p		ו⊎ תקק	¥ ppm	(a X		£a ppmt	ç bbw	Mg X	Ba opr		і В. Гррпі	A1 %	Na T	K V X ppr		n Hç Xqq mç	-		∶Ga ∶ppm
	1.17	46.5	5 39.5	8 288.	1 18	81	833	158	2732	5.16	32.	ı	.3	3.1	.7	13.8	. 8	0 2.	.21	11	96	. 38	. 098	8.3	4.8	. 38	213.1	020)	. 95	.015	. 08 .4	4.1	10 76	5 .Z	<. 62	3.4
										6.49 13.98				49 5.8			.9 2.4	03.									216.2 1129.7				.011 .009	.07 .07		16 17(18 185			
	5.62	14 9	1 12.8	H 157 :	3 40	51 -	5.5	13.2	5354	6 94 4.98	244.	2 1	1		.2 -	37.2		11	99	10	52	1.04	. 144	17.0	8.3	.16	262.6	.015	5 2	. 90	010	. 94 – .2	2 . 1	11 152 58 139	2-3.6	. 02	
															_																						
	4.71	28.9	5 4 2.9		6 125	90 1	24	12.4	1311	1.71	306.	6	.7	16.9	.8	22 4		4 3.	. 8Z	. 38	90	. 47	.111	15-1	22.8	. 51	150.8	.074		ω?	014		2 1	14-158	55	03	2.5 6.6
										4.95 4.88				2.0 3.0				14 2. 13 2.									121.7 110.7					.05 . .05 .:				. 03	
										3.96			.4	5.1	5	20.0	.7	75	.51	- 26	70	. 48	. 107	12.2	8.7	. 38	131.5	5 . 020) [1.1	.(13	. 07 . 4	4]	13 86	6.6	. 06	4.1
ard d	2 13.71	129 5	9 29.1	8 165.	<u>5 2</u>	24-3	6.9	12.5	844	3.22	62	3 19	1.2 Z	02.6	3.3	29.5	11.0	10 9	.43 1	0.48	80	. 56	.083	12-1	172.3	. 60	143.2	2.11	<u>5 2</u>	1.79	. 039	. 16 6.9	91.6	65 236	5 2.7	1.96	5.9
																_																					
										2 HCL GA.																						= 10,1	00 0	P₽N.			
	- SAM							<i></i> .		1051		Dee		المشم	IDDE	ما م آ ا	• • [•] • •								-	-	-				-	-					
																		_) 7	-													
													1	7			/					1	' [
DATE	RECE	[730]	: /	us 30	1999	•	DAT	'E R	EPOI	RT M	AIL	ED :) Sy	t	9/	'99	;	SIG	ned	BY	<u>,C</u>	h	· · · ·		. то	YE, C	.LEO	NG, J.	. WAN	4G; C	ERTIFI	ED E	3.C.	ASSA	YERS	
ATE	RECE		: /	ug 30	1999	? :	DAT	'E R	EPOI	RT M	AIL	ED :	5	Sep.	t	9/	'99	;	SIG	ned) BY	<u>,C</u>	h	· · · ·	70	. TO	YE, C	.LEOI	NG, J.	. WAN	iG; C	ERTIFI	ED E	3.C.	ASSA	YERS	
ATE	RECE		: A	us 30	1999	? :	DAT	'ER	EPO)	RT M	AIL	ED :	. 5	Sep	ot	9/	'99)	SIG	ned) BY	Ċ	h	· · · ·	70	. TO	YE, C	.LEOI	NG, J.	. WAN	4G; C	ERTJFI	EÐ E	3.C.	ASSA	YERS	
ATE	RECE	[7]])	: /	us 30	1999	2	DAT	'ER	EPOI	RT M	AIL	. E D :	. <u>_</u>	Sep	ot	9/	'99	;	SIG	ned) BY	Ċ	h	· · · ·		. TO	YE, C	LEO	NG, J.	. WAN	4G; C	ERTJFI	ED E	3.C.	ASSA	YERS	
ATE	RECE		: A	ue 30	1999	? :	DAT	'E R	EPO	RT M	AIL	ED:		Sep	ot	9/	'99	,	SIG	ned	BY	<u>, C</u>	i.h		70	. TO	YE, C	.LEOI	NG, J.	. WAR	iG; C	ERTJFI	EÐ E	3.C.	ASSA	YERS	
)ATE	RECE	[7][0	: /	ue 30	1999	2	DAT	'ER	:EPO)	RT M	AIL	ED:	. 5	}y	ot	9/	'99	1	SIG	ned) BY	<u>, C</u>	. h	·		. TO	YE, C	.LEO	4G, J.	. WAN	₩G , C	ERTJFI	EÐ E	3.C.	ASSA	YERS	
)ATB	RECE:		: A	ue 30	1999	9	DAT	'E R	EPO	RT M	AIL	ED:	. 5	Sep	ot	9/	'99	,	SIG	ned) BY	<u>, </u>	i h	·		. 10	YE, C	. LEOI	NG, J.	. WAN	IG; C	ERTIFI	EÐ E	3.C.	ASSA	YERS	
ATE	RECE		: A	us 30	1999		DAT	'ER	:EPO)	RT M	AIL	BD:	. 5	Sep	ot	9/	'99	•	SIG	ned) BY	<u>, </u>	i h	·		. το	YE, C	. LEOI	NG, J	. WAR	IG; C	ERTIFI	EÐ E	3.C.	ASSA	YERS	
ATE	RECE	(VIED	: A	uig 30	1999	2	DAT	'E R	:EPO)	RT M	AIL	ED:		Sep	ot	9/	199		SIG	ned) BY	<u>, C</u>		·		. το	YE, C	.LEO	NG, J	. WAN	4G; C	ERTJFI	ÉÐ E	3.C.	ASSA	YERS	
À TE	RECE	(710)	: A	ue 30	1999	;	DAT	'ER	:EPO)	RT M	AIL	ED:		3q	ot	9/	'99	•	SIG	ned	BY	<u>, C.</u>	i.h			. το	YE, C	.LEO	NG, J	. WAR	4G; C	ERTJFI	EÐ E	3.C.	ASSA	YERS	
ATE.	RECE	[720]	: A	ue 30	1999	9	DAT	'Ë R	EPO)	RT M	AIL	ED :		3ep	<i>it</i>	9/	199	,	SIG	ned) BY	<u>, C</u>	. h	<u> </u>	··/•	. το	YE, C	.LEO	NG, J.	. WAN	IG; C	ERTJFI	EÐ E	3.C.	ASSA	YERS	
AT R	RECE	[730]	: A	uie 340	1999	;	DAT	'É R	:EPO)	RT M	AIL	ED :		Sep	t	9/	199	•	SIG	ned) BY	<u>, C.</u>	í h	·	··/•	. TO	YE, C	.LEO	4G, J.	. WAR	4G; C	ERTJFI	ED E	3.C.	A55 A	YERS	
A TR	RECE	[730]	: A	us 30	1999	;	DAT	Ϋ́Ε R	:EPO)	RT M	AIL	ED:		Sep	t	9/	199		SIG	NED) BY	<u>, C.</u>	a h	·		. TO	YE, C	.LEO	4G, J.	. WAN	ιG; C	ERTJFI	ED E	3.C.	ASSA	YERS	
AT E	RECE	(VE)	: A	us 30	1999	2	DAT	ΈR	EPO	RT M	AIL	ED:	. 5	Sep	t	9/	199		SIG	NED) Ву	<u>, C</u>	in h	~ 		. το	YE, C	LEO	₩G, J.	. WAN	ιG; C	ERTJFI	ED E	3.C.	ASSA	YERS	
DATE	RECE		: A	us 30	1999	? :	DAT	'E R	EPO	RT M	AIL	ED:		Sep	, t	9	199	,	SIG	NED) BY	<u>, </u>	a h	·		. то	YE, C	.LEO	4G, J.	. WAN	<i>ι</i> G; C	ERTJFI	EÐ E	3.C.	ASSA	YERS	
JATE	RECE		: A	us 30	1999	9 :	DAT	'E R	EPO)	RT M	AIL	ED:		Sep	, t	9/	199	,	SIG	INED) BY	<u>, </u>	i h	~ 		. то	YE, C	LEO	4G, J.	. WAN	KG; C	ERTJFI	EÐ E	3.C.	A55A	YERS	
DATE	RECE	(VE)	: A	us 30	1999		DAT	'E R	EPO)	RT M	AIL	ED:		Sep	, t	9/	199	,	SIG	INED) В <u>у</u>	<u>, </u>	i h	·		. TO	YE, C	LEO	4G, J.	. WAN	4G; C	ERTJFI	EÐ E	3.C.	A55A	YERS	
DATE	RECE	(VE)	: A	us 30	1999		DAT	"E R	EPO)	RT M	AIL	ED:		Sep	, t	9/	199	•	SIG	ned	, В Л	<u>, C</u>	a h	·		. TO	YE, C	LEO	4G, J.	. WAN	4G; C	ERTJFI	EÐ E	3.C.	A55A	YERS	
DATE	RECE		: A	us 30	1999		DAT	"E R	EPO	RT M	AIL	ED:		Sep	, t	9/	199	;	SIG	ned	, В <i>л</i>	Ċ	i h	·		. то	YE, C	LEO	NG, J	. WAN	4G; C	ERTJFI	ÉÐ E	3.C.	A55A	YERS	
DATE	RECE		т А	us 30	1999		DAT	'E R	EPO	RT M	AIL	ED:		Sep	, t	9/	199	•	SIG	INED	, В л	<u>, C</u>	i h	·		. то	YE, C	LEO	4G, J.	. WAN	<i>i</i> G; C	ERTJFI	ÉÐ E	3.C.	ASSA	YERS	
DATE	RECE	(VE)	: A	us 30	1999		DAT	'E R	EPO)	RT M	AIL	ED:		Sep	, t	9/	199	•	SIG	INED) В <u>у</u>	<u>, </u>		~		. το	YE, C	LEO	4G, J.	. WAN	4G; C	ERTJFI	EÐ E	3.C.	A55A	YERS	
	RECE:																199	3													4G; C	ERTJFI	EÐ E	3.C.	ASSA	YERS	

ANE INLATICAL LABORATORIES	LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716
(150 9002 Accredited Co.)	GEOCHEMICAL ANALYSIS CERTIFICATE
Rudson F	Bay Expl. & Dev. Co. Ltd. PROJECT CUB File # 9903169 (b)
SAMPLE#	Cs Ge Nb Rb Sc Sn S Zr Y Ce In Re Li ppm ppm ppm ppm ppm * ppm ppm ppm ppm pp
A B C D E	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
F G H RE H I	2.45 .1 .85 2.5 3.1 .3 .54 1.3 18.02 15.0 .03 10 4.6 6.86 <.1 2.00 7.4 7.6 .5 .07 1.5 16.10 27.6 .07 <1 16.5 2.99 <.1 .38 7.7 3.7 .4 .05 .2 5.86 17.3 .05 2 9.7 2.97 .1 .40 7.8 3.6 .4 .05 .2 5.73 16.7 .04 1 9.8 5.42 <.1 .22 9.8 5.4 .2 .04 .3 12.03 26.2 .05 1 11.8
STANDARD DS2	2.98 <.1 1.96 14.6 3.1 22.1 .02 3.6 5.72 27.5 5.14 2 13.0
	beginning 'RE' are Reruns and 'RRE' are Reject Reruns. TE REPORT MAILED: Syst 9/99 SIGNED BY
·	
All results are considered the confident	ntial property of the client. Acme assumes the limbilities for actual cost of the analysis only. Data $\frac{L}{FA}$

4
