BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1999/2000REPORT #:PAP 99-35NAME:DAVID MOLLOY

REPORT ON THE 1999 PROSPECTORS ASSISTANCE PROGRAM:

1. ON A REGIONAL STREAM SEDIMENT GEOCHEMICAL AND GEOLOGICAL EVALUATION OF HAZELTON GROUP AND COVERED HAZELTON GROUP LITHOLOGIES IN THE STEWART GOLD CAMP:

LATITUDE 56° 30' NORTH

LONGITUDE 130° 00' WEST

NTS 104 A, B, G, H; 103 O, P

2. ON DETAILED GEOCHEMICAL AND GEOLOGICAL SURVEYS TO PRIORITIZE DRILL TARGETS ON THE DELTA WEST PROJECT OF THE STEWART PROPERTY, DELTA PEAK AREA:

LATITUDE 56° 36' NORTH

LONGITUDE 129° 38' WEST

NTS 104 A/12

Malvis	THY OF ENERGY & MINES
REC'D	H_8 - 2 2000
	SMITHERS, BC

SKEENA MINING DIVISION,

STEWART GOLD CAMP,

NORTHWESTERN BRITISH COLUMBIA

BY

DAVID E. MOLLOY

JANUARY 2000


BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- * Refer to Program Requirements/Regulations 15 to 17, page 6.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Reference Number Name SEE LOCATION/COMMODITIE MINFILE No. if applicable ATIM Project Area (as listed in Part 56°36 Location of Project Area NTS Long(2) Description of Location and Access Main Commodities Searched For 604 Known Mineral Occurrences in Project Area WORK PERFORMED 80 STREAMS 1. Conventional Prospecting (area) 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 5 // 4. Geophysical (type and line km) 5. Physical Work (type and amount) _ KOAD 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify) SIGNIFICANT RESULTS Claim Name Commodifies Location (show on map) Lat. Best assay/sample type _52 Songel Description of mineralization riority Supporting data must be submitted with this TECHNICAL REPORT

Prospectors Assistance Program - Guidebook 1999

TABLE 1A 1999 BC PROSPECTORS ASSISTANCE PROGRAM ACTIVITY CODES AND AREAS FOR SUMMARY OF PROSPECTING ACTIVITY

.

GENERAL ACTIVITY CODES:

PROJECT AND ACTIVITY AND AREAS:

LOGISTICS, EQUIPMENT, PACK
 MOB-DEMOB
 DAILY EXPLORATION SCENARIO ON TOPOG MAPS
 ROAD RECON, 4B. REGIONAL STREAM SED GEOCHEM, GEOL SURVEYS
 LOG SAMPLES
 DATA PLOT, ENTRY
 PACK, SHIP SAMPLES AT STEWART, SMITHERS
 RAINOUT: LABEL SAMP BAGS, FLAGS; SUPPLIES, TRUCK MAINT
 CLAIM RESEARCH, CLAIM STAKE, CLAIM EXPLORE, CLAIM RECORD
 FOREST ROAD RESEARCH - AT LOC DIST OFFICES
 DETAILED SOIL GEOCHEM, GEOLOGICAL, STRUCTURAL SURVEYS
 MEET BC GOVT GEOLOGISTS
 REPORT

The second secon

A: REGIONAL RECONNAISSANCEGEOCHEMCIAL, GEOLOGICAL PROJECT: AC1:RECONAISSANCE STREAM SEDIMENT AND GEOLOGICAL SURVEYS

· •

AR1: HWY 37A VALLEY STEWART - SURPRISE CREEK AR2: MEZIADIN JUCTION - BOWSER LAKE AREA AR3: MEZIADIN LAKE AREA AR4: BELL 1 TO BELL 2 AR5: MEZIADIN LAKE - WHITE RIVER AREA AR6: BELL 2 TO BOB QUINN AREA

B: FOLLOW-UP GEOCHEMICAL, GEOLOGICAL SURVEYS OF ANOMALOUS RESULTS AND CLAIM STAKING

• •

· · ·

*

٦

AC2: CLAIM STAKING AC3: INITIAL PROPERTY EVALUATION SURVEYS

> B1: POLY CLAIMS, ENTRANCE PEAK AREA B2: RED CLAIMS, BITTER CREEK VALLEY

C: DETAILED FOLLOW-UP SURVEYS

AC4: DETAILED SOIL GEOCHEMICAL SAMPLING OVER PRINCIPAL IP/MAZMIN/GEOCHEM DRILL TARGETS AC5: PROSPECTING, GEOLOGICAL, STRUCTURAL SURVEYS

CD: DELTA WEST GRID, STEWART PROJECT

REPORT ON THE 1999 PROSPECTORS ASSISTANCE PROGRAM:

1. ON A REGIONAL STREAM SEDIMENT GEOCHEMICAL AND GEOLOGICAL EVALUATION OF HAZELTON GROUP AND COVERED HAZELTON GROUP LITHOLOGIES IN THE STEWART GOLD CAMP:

LATITUDE 56° 30' NORTH

LONGITUDE 130° 00' WEST

NTS 104 A, B, G, H; 103 O, P

2. ON DETAILED GEOCHEMICAL AND GEOLOGICAL SURVEYS TO PRIORITIZE DRILL TARGETS ON THE DELTA WEST PROJECT OF THE STEWART PROPERTY, DELTA PEAK AREA:

LATITUDE 56° 36' NORTH

LONGITUDE 129° 38' WEST

NTS 104 A/12

SKEENA MINING DIVISION,

STEWART GOLD CAMP,

NORTHWESTERN BRITISH COLUMBIA

BY

DAVID E. MOLLOY

JANUARY 2000

SUMMARY, 1999 PROSPECTORS ASSISTANCE PROGRAM:

The 1999 Prospectors Assistance program comprised of three field components:

- 1. A regional stream sediment geochemical and geological evaluation of Hazelton Group and postulated covered Hazelton Group lithologies.
- 1.A. Follow-up surveys and claim staking of some targets generated by activity 1.
- 2. Detailed geochemical and geological surveys to further prioritize drill targets on the Delta West Project of the Stewart Property (Molloy, 1998).

1., 1.A.: REGIONAL STREAM GEOCHEMICAL/GEOLOGICAL PROGRAM, AND FOLLOW-UP ACTIVITIES:

As part of component 1., a total of 127stream sediment samples and 14 rock samples were collected in 6 target areas, in and on the fringes of the Stewart Camp. The specific areas include: 1. Stewart to Surprise Creek (Hwy 37A); 2. Meziadin Junction - Bowser Lake; 3. Meziadin Lake; 4. Bell 1 to Bell 2; 5. Meziadin Lake - White River; and, 6. Bell 2 to Bob Quinn. In order not to bias the density of the sampling, the work was initially undertaken without reference to the locations of known mineral occurrences in the camp.

The work was carried out in July, August and September as rather abnormal weather conditions ("the worst summer ever", according to many long time Stewart residents) allowed. Persistent rain entailed high flow rates in mountain streams, which made the collection of fines extremely difficult, if not impossible in a number of streams. Streams in flatter topography, particularly in lumbered areas, were often flooded some distance upstream from road culverts. Such conditions, including a number of impassable logging roads, hindered progress and thus negated an even larger survey area, which had been researched prior to initiation of field activities.

In spite of the aforementioned conditions that can also entail significant dilution of sediment anomalies, the regional exploration technique described herein is deemed to constitute an important, low cost evaluation and re-evaluation tool for the prospective Stewart Camp geological environments. In view of the current decline in exploration activity and the lapse of many mining claims, such a program is considered particularly important and potentially rewarding, in preparation for the next upturn in the mining industry.

An example of the rationale and importance of the application of the program is demonstrated in Table A. Stream sediment 160201SS (also used as check material in this program) was taken from Bitter Creek about 200 m upstream from the bridge on Hwy 37A, about 12 km east of Stewart. The analytical results epitomize the anomalous polymetallic signatures that are often indicative of significant mineralization hosted by altered Hazelton Group rocks in the

TABLE A: AN EXAMPLE OF THE RATIONALE AND APPLICATION OF THE REGIONAL GEOCHEMICAL/GEOLOGICAL PROGRAM:

and a second second

the second se

	Sample Name, No., Loc, Colour: Type:	DESCRIPTION:	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 NI ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 ВА ррт	11.00 НС ррт	12.00 МО ррт	13.00 SB ppm
AREA 1	106201SS SD, BLK TOP MAP 104 A4 HWY 37A & BITTER CRK 200 S BRD; CHECK MATERIAL FOR SURV	FI GR, MAINLY RD MAFIC VOL (20%). FEL VOL (20%). QTZ (15%); OX MAT (5%); FELD (5%); MINOR BIOTITE, SERKITE; NO MAGNETITE	40.00	1.20	126.00	43.00	24.00	48.00	178.00	2.50	82.00	70.00	<1	5.00	4.00
AREA 1	106202SS SD, BRN TOP MAP 104 A4 ~3KM UP BIT CRK RD	FI-MED GR, 50% MAFIC VOL, 30% QTZ, FELD; 10% QX MAT; 10% HETRO FRAGS INCL ALT VOL; NO MAGNETITE	35.00	0.80	108.00	35.00	24.00	24.00	112.00	0.50	56.00	230.00	≮1	3.00	8.00
AREA 1	106206SS CL-SD-GR TOP MAP ORG, BRN 104 A4 -2.5KM UP BIT CRK RD AT 106204RF		20.00	0.60	219.00	17.00	23.00	12.00	80.00	<0.5	22.00	60.00	<1	9.00	4.00
4.00 AREA 1	106207SS SD-HET TOP MAP GR, BRN 104 A/4 ~1KM UP BIT CRK RD AT CULVERT	MED-CO, RD-ANG HETRO FRAGS-MAFIC VOL, OXID MAT, MIN ORG	50.00	8.00	1325. 00	31.00	37.00	372.00	346.00	2.00	40.00	160.00	(1	8.00	<2
1.00 RED CLAIMS	0 180332SS CL, SD 60 M S OF ORG BRN 180207SS, DITCH ON E SIDE OF BITTER CRK RD	CL, FI-CO 10% CL 55% FI, ORG BRN OXID MAT 30% GRY, BLK, ANG VOL & OXID MAT 5% GRY, WH QTZ	215.00	2.40	965.00	19.00	25.00	36.00	84.00	<0.5	46.00	190.00	<1	5.00	<2
2.00 RED CLAIMS) 16033655 CL, SD 75 M S OF ORG BRN 16020755, DITCH ON E SIDE OF BITTER CRK RD	CL, FI • CO 10% CL 40% FI, ORG BRN OXID MAT 46% GRY, BLK, ANG VOL & OXID MAT 6% GRY, WH QTZ	45.00	1.60	1130.00	25.00	29.00	62.00	130.00	0.50	40.00	100.00	<1	6.00	5.00
3.00 RED CLAIMS	0 16033655 SD, BRN 30 M S OF 16020755, DITCH ON E SIDE OF BITTER CRK RD	FI-CO 80% OXID ANG FRAGS, 5% QTZ, 19% HETRO FRAGS OXID MAT, AND GRY GR VOL	530.00	2.00	2950.00	31.00	35.00	58.00	182.00	2.00	46.00	280.00	<1	4.00	<2
4.00 RED CLAIMS	0 16033965 AS 16020 RETAKE OF 16020755 ON BITTER CRK RD	755	60.00	17.00	2040.00	36.00	58.00	1020.00	764,00	5.00	36.00	160.00	<1	9.00	8.00

Stewart Camp. Elemental associations e.g., Au-Cu-As and Zn-Cd-Ag-Ba often characterize such signatures. The prospectiveness of such associations, whether partly or wholly present, can be greatly enhanced by the anomalous presence of one or more of key indicator elements i.e., Pb, Ni, Hg, Mo and Sb values.

Of the 13 elements referenced in Table A, 11 of them are interpreted to have anomalous contents in sample 160201SS. The results are not entirely unexpected as Bitter Creek drains the area of the Red Mountain Cu-Au deposit. However, the coarse rock fraction of sample 160201SS was particularly interesting, with the presence of some favourably altered felsic volcanic rocks. The program was thus extended up Bitter Creek Valley, and Area 1 sediment samples 2-4 (Table A) located a similar, but more localized polymetallic signature, with Cu and Pb values ranging up to 1325 ppm and 372 ppm, respectively. As a result, the Red Claim Group was staked (many historic claims in the area had recently lapsed), and follow-up sediment samples 1-4 (Red Claims, Table A) continued to confirm the target.

Only a few of the interpreted sediment anomalies discovered in the program have the near complete package of anomalous values returned by the samples in Table A. While this report generally utilizes the same elemental threshold values in the initial interpretation of anomalies i.e., Au: 10 ppb; Ag: 0.6 ppm, Cu: 30 ppm, Ni: 25 ppm; Co: 20 ppm; Pb: 10 ppm; Zn: 150 ppm; As: 20 ppm; Ba: 140 ppm; Hg, Mo, Sb: 2 ppm, it should be noted that such values are dependent on a number of specific factors (e.g., geological environment, overburden cover, possible dilution by high energy run-off), and can vary accordingly from area to area.

For example, unaltered to highly altered Hazelton lithologies can have sediment geochemical signatures from nondescript to elevated to very anomalous, such as the samples in Table A. In contrast, stream sediments collected in areas underlain by Bowser Group sediments generally have a rather "anomalous", regional Cu-Ni signature, which may however, just reflect the inherent composition of the rocks, as opposed to exploration potential. In the interpretation of the geochemical data, such anomalies could thus be dismissed as normal, background values.

However, it is also known that such Cu-Ni signatures in soils overlying in Bowser Group rocks on the Delta West Project flank very interesting Zn-Cd-Ag-Ba anomalies postulated to be associated with altered Hazelton rocks. Moreover, similar Cu-Ni soil anomalies on the project also appear to be associated with altered Hazelton rocks. In such prospective Hazelton Group rocks in the Stewart Camp, zinc often haloes Au-Cu mineralization, which often has an anomalous As-Ni-Mo association. For the purpose of this report, Cu-Ni sediment anomalies from areas of Bowser lithologies and without additional anomalous elemental associations, are generally designated as low priority follow-up targets, pending further information.

As a result of the program, a number of stream sediment anomalies have been identified and initially classified as low, medium or high priority follow-up targets. Such a classification must be on going, as the specific factors noted above are referenced, and as follow-up fieldwork is carried out. For example, the acquisition of two claim groups (Red and Poly; 71 units) during the1999 program was based on both geochemical and geological information, including 37 follow-up samples, and on the presence of interesting historical mineralization on the claims. Many anomalies remain to be followed-up and the ultimate success of the program will be dependent on the results of ongoing work. Based on the apparent initial success, it is recommended a much more ambitious program utilizing helicopter access be used to assess the much larger area of the camp, which remains inaccessible by road.

2. DETAILED GEOCHEMCIAL AND GEOLOGICAL SURVEYS TO PRIORITIZE DRILL TARGETS ON THE DELTA WEST PROJECT, STEWART PROPERTY:

The Delta West Project is located on the Stewart Property, situated about 70 km north of Meziadin Junction, in Area 4 referenced above. Historical work, which is described in the Report on 1998 Prospectors Assistance Program (Molloy, 1998), outlined a number of apparently stratabound zones of Zn-Cd-Ag-Ba soil anomalies that have both IP and EM anomaly associations. The targets are located in close proximity to Hwy 37, but occur in overburden that ranges up to over 10 m in depth.

The widening and construction of the Hwy 37 hindered access to, and work on the historic Delta West Grid, which strattles the highway. Activities consisted of the restoration of Grid Lines 30+00N, 28+00N, 26+00N, and 22+00N; and, the collection of a total of 86 fill-in soil samples (generally taken at 10 m intervals) and check samples, which were analyzed by 32 element ICP by Chemex Labs in Vancouver. Prospecting and mapping were carried out to locate additional outcrops and apparent structures, and to ascertain whether the axes of the most important HLEM anomalies located in 1998 have any apparent overburden association.

۰.

The project rationale was advanced by both the regional geochemical program described above and by the work on the project. As noted above, sediments from streams draining Bowser Group lithologies are generally characterized by rather elevated Cu and Ni contents. Soil samples overlying Bowser sediments near Hwy 37 appear to have the same Cu-Ni signature, which thus appears to be a useful tool in mapping the contact of the Bowser Group and altered d Hazelton Group rocks. The latter rocks are postulated to host wide, stratabound zones of Zn-Cd-Ag-Ba mineralization. This type of mineralization often halos significant Cu-Au mineralization in the Stewart Camp e.g., the Red Mountain Au-Cu deposit; and, the Deltaic Grid Cu-Au mineralization located on the Stewart Property about 5 km east of the Delta West Grid.

From the integration of the historical and current geophysical, geological and soil Cu, Ni, Zn, Cd and Ba geochemical information, the Highway and Central/East Zn Zones are interpreted to offer high priority polymetallic, year round drill targets in close proximity to Hwy 37. The Highway Zn Zone, as outlined by threshold Zn, Cd and Ba contours of 300 ppm, 1.5 ppm and 200 ppm, respectively, ranges up to over 150 m in width. Historical work indicates the zone

has a strike length of over 2 km and moderate IP correlation on the three lines (L26+00N, 22+00N, 14+00N) that have been run with IP.

The Central/East Zn Zone offers a similar, if not more important target, since stronger soil Cu and Ni values, in this case believed associated with altered Hazelton Group rocks, have a overlapping relationship with the east side of the Zn zone. The zone also exhibits an apparent flexure that is associated with some of the strongest soil Zn, Cu and Ni values. A strong IP anomaly is correlative with the zone on L28+00N (the only grid line in the 1999 detailed followup area on which the historic IP survey was done). At least two HLEM anomaly axes are associated with the wide zone (up to over 200 m) as outlined by threshold contours of 300 ppm Zn, 200 ppm Ba and 1.5 ppm Cd. Based on the historical work, the zone has a strike length of over 2 km.

The two initial diamond drill holes now recommended total 550 m and represent a revision of the 1998 drill proposal. Hole DW01-00 would be collared on L28+00N at 55+50E and drilled for 250 m at an azimuth of 60° and a dip of 45° to test the East/Central Zn Zone. Dependent on the success of the first hole, Hole DW02-00 could be immediately drilled under Hole DW01 - 00 from the same set-up. Or, Hole DW02-00 could be collared at 47+50 E on L24+00N to test the Highway Zn Zone, i.e., drilled at an azimuth of 60° and a dip of 45° under Hwy 37, for about 300 m.

TABLE OF CONTENTS

. .

٠

e.

Ϊ.

, [,]

, . .

.

.

.

.-

.

.

•

•

.

` .

	TITLE: PAGE:
	SUMMARYii
	TABLE OF CONTENTSvii
1.	INTRODUCTION:1
2.	STEWART PROPERTY4
з.	LOCATION, ACCESS:
4.	TOPOGRAPHY, DRAINAGE, CLIMATE, WILDLIFE AND VEGETATION:
5.	EXPLORATION HISTORY:8
6.	STEWART CAMP GEOLOGY10
7.	STEWART CAMP MINERALIZATION13
8.	GEOLOGY, DELTA WEST PROJECT17
9.A 9.A 9.A 9.A 9.A 9.A 9.A 9.A 9.B 10.	1999 PROSPECTORS ASSISTANCE PROGRAM.18. REGIONAL PROGRAM.181. AREA 1: STEWART TO SURPRISE CREEK.191.a. RED CLAIMS.191.b. POLY CLAIMS.252. AREA 2: MEZIADIN JUNCTION - BOWSER LAKE AREA.363. AREA 3: MEZIADIN LAKE.364. AREA 4. BELL 1 - BELL 2.415. AREA 5. MEZIADIN JUNCTION - WHITE RIVER.466. AREA 6. BELL 2 - BOB QUINN.46. SIGNIFICANCE OF THE REGIONAL PROGRAM.51DETAILED FOLLOW-UP SURVEYS TO PRIORITIZE DRILL TARGETS ON THE DELTA WEST PROJECT.52A. SIGNIFICANCE OF THE DETAILED FOLLOW-UP SURVEYS, DELTA WEST PROJECT.55
11.	CONCLUSIONS, RECOMMENDATIONS
13. 14.	REFERENCES

LIST OF FIGURES

- --

ь.

1

-

.. .

. '

-

. .

•

<u>.</u>

.. .

۰.

.

•

-

•

۰.

~

. .

` •

· .

	TITL	Ε:															P	AG	Е:
1.	LOCATIO	N MAP		• • • •	• • • •	• • •	• • •			•••		• •				•••	•••	••	.2
2.	STEWART	GOLD C	CAMP.			• • •	• • •	•••	•••	••	• • •	•••						••	. 3
з.	ROAD MA	P			• • • •	• • •	•••	• • •	• • •	••	• • •	• •	• •					••	. 6
4.	RELIEF I	MAP					• • •	• •		•••		••	••		•••	•••	••	••	.7
5.	STEWART	COMPLE	x			• • •	• • •	••	• • •	••		••	• •	••	•••		••		11
6A.	UNUK RI	VER FOR	MAT 1	ION.		• • •	•••	•••	• • •		• • •			••		• • •	••	••	12
6B	STEWART	VOLCAN	IC E	BELT.	• • • •	• • •	• • •		• • •	••	• • •	•••	•••			• • •		••	14
6C .	GENETIC	MODEL	FOR	MINE	RAL	DE	POS	SIT	s,	STI	ewa	RT	Cž	AMI	Ρ				15

LIST OF TABLES

TITLE: PAGE:	
E 1. DELTA WEST MINERAL CLAIMS5	TABLE
E A: AN EXAMPLE OF THE APPLICATION OF THE PROGRAM20	TABLE
E STRSDA1: AREA 1 STREAM SEDIMENT DESCRIPTIONS21 E STRSARA1: AREA 1 STREAM SEDIMENT ANALYTICAL RESULTS22	
E RKSDA1: AREA 1 ROCK SAMPLE DESCRIPTIONS	
E RCFUSTRSDA1: RED CLAIMS FOLLOW-UP STREAM SAMPLE DESCRIPTIONS26 E RCFUSTRSARA1: RED CLAIMS FOLLOW-UP STREAM SAMPLE ANALYTICAL RESULTS27	
E RCFURKSDA1: RED CLAIMS FOLLOW-UP ROCK SAMPLE DESCRIPTIONS	
ANALYSES	

LIST OF TABLES (CONT)

	T	11 1	Ψ.	-	
		· I ·		. H	•
-	-	-	-		

~

•

7 12 4

2

٩.

r .

٠

/

.

۳

. .

•

.

.

~

.

.

1

-

-

1

PAGE :

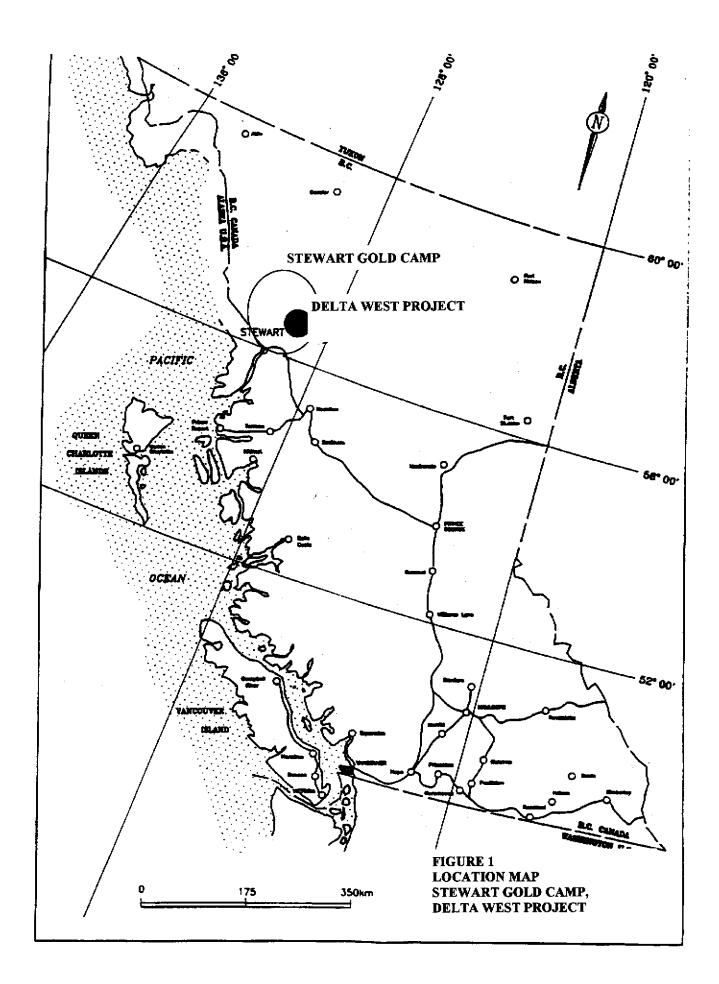
TABLE RCFUSOSDA1: RED CLAIMS FOLLOW-UP SOIL SAMPLE DESCRIPTIONS
TABLE RCFUSOSARAI: RED CLAIMS FOLLOW-UP SOIL SAMPLE ANALYTICAL RESULTS
TABLE PCFUSOSDA1: POLY CLAIMS FOLLOW-UP SOIL SAMPLE DESCRIPTIONS
TABLE PCFUSOARA1: POLY CLAIMS FOLLOW-UP SOIL SAMPLE ANALYTICAL RESULTS
TABLE PCFURKSDA1: POLY CLAIMS FOLLOW-UP ROCK SAMPLE DESCRIPTIONS
TABLE PCFURKSARA1: POLY CLAIMS FOLLOW-UP ROCK SAMPLE ANALYTICAL RESULTS
TABLE STRSDA2: AREA 2 STREAM SEDIMENT SAMPLE DESCRIPTIONS37 TABLE STRSARA2: AREA2 STREAM SEDIMENT ANALYTICAL RESULTS38
TABLE STRSDA3: AREA 3 STREAM SEDIMENT SAMPLE DESCRIPTIONS39 TABLE STRSARA3: AREA 3 SREAM SEDIMENT ANALYTICAL RESULTS40
TABLE STRSDA4: AREA 4 STREAM SEDIMENT SAMPLE DESCRIPTIONS42 TABLE STRSARA4: AREA 4 STREAM SEDIMENT ANALYTICAL RESULTS43
TABLE RKSDA4: AREA 4 ROCK SAMPLE DESCRIPTIONS
TABLE STRSDA5: AREA 5 STREAM SEDIMENT SAMPLE DESCRIPTIONS47 TABLE STRSARA5: AREA 5 STREAM SEDIMENT ANALYTICAL RESULTS48
TABLE STRSDA6: AREA 6 STREAM SEDIMENT SAMPLE DESCRIPTIONS49 TABLE STRSARA6: AREA 6 STREAM SEDIMENT SAMPLE DESCRIPTIONS50
TABLE STUDGSO1: DELTA WEST PROJECTSOIL SAMPLE DESCRIPTIONS53TABLE STUDGSOAR1: DELTA WEST PROJECT SOIL SAMPLE ANALTICAL RESULTS

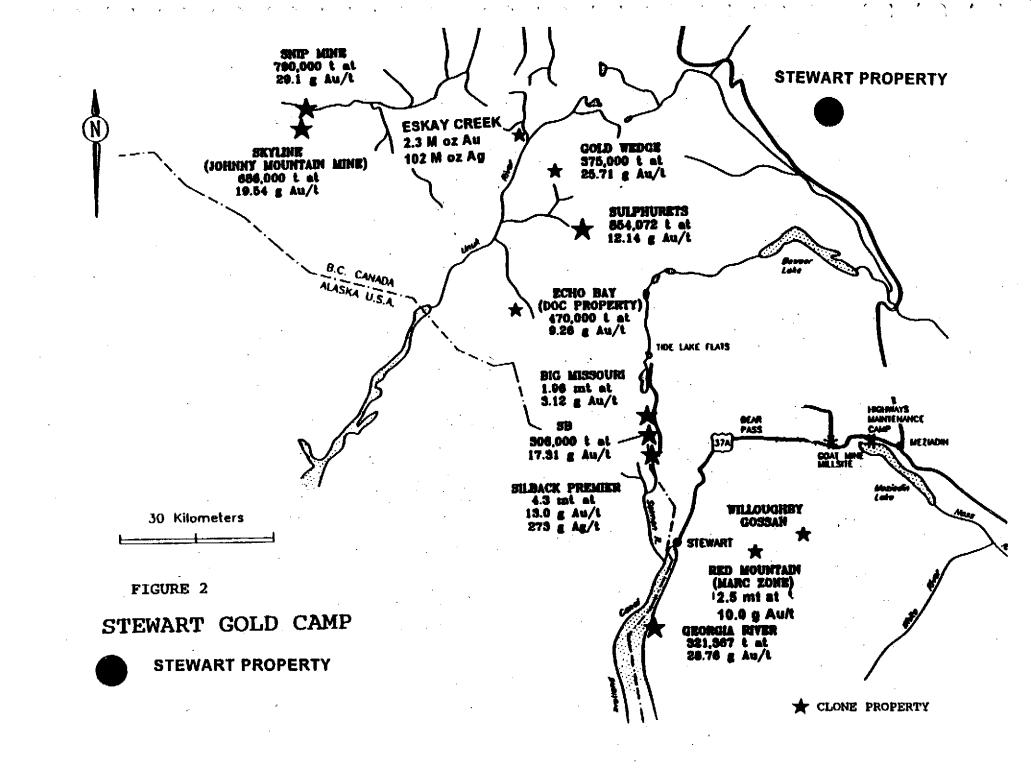
LIST OF MAPS: TITLE: APPENDIX 1 LOCATION: 1. AREA 1: TOPOGRAPHIC MAP NTS 104 A/4POCKET A 2. AREA 1: TOPOGAPHIC MAP NTS.103 P/13.....POCKET A 3. AREAS 1, 2, 3 TOPOGAPHIC MAP 103 A/3.....POCKET A 5. AREA 4: BELL 2 FORESTRY ROAD......POCKET B 6. AREA 4: TOPOGRAPHIC MAP NTS A/12.....POCKET B 7. AREA 4: TOPOGRAPHIC MAP NTS A/6W......POCKET B 8. AREA 5: WHITE RIVER FORESTRY ROAD MAP......POCKET C 9. AREA 6: TOPOGRAPHIC MAP NTS 104 A/13.....POCKET C 10. AREA 6: TOPOGRAPHIC MAP NTS.104 B/16E.....POCKET C S1. STEWART PROPERTY CLAIM MAP......POCKET D S3. 1999 DELTA WEST GRID, INTEGRATED SOIL SAMPLE LOC..... POCKET E S4. 1999 DELTA WEST GRID, INTEGRATED SOIL ZINC VALUES.... POCKET E S5. 1999 DELTA WEST GRID, INTEGRATED SOIL COPPER VALUES.. POCKET F S6. 1999 DELTA WEST GRID, INTEGRATED SOIL NICKEL VALUES.. POCKET F S7. 1999 DELTA WEST GRID, INTEGRATED SOIL BARIUM VALUES.. POCKET G S8. 1999 DELTA WEST GRID, INTEGRATED SOIL CADMIUM VALUES. POCKET G S9. 1999 DELTA WEST GRID, INTEGRATED GEOLOGICAL DATA..... POCKET H

х

REPORT ON THE 1999 PROSPECTORS ASSISTANCE PROGRAM CARRIED OUT IN THE STEWART GOLD CAMP,

SKEENA MINING DIVISION,


NORTHWESTERN BRITISH COLUMBIA


1. INTRODUCTION:

The following report reviews the work carried out on the 1999 Prospectors Assistance Program in the Stewart Gold Camp (Figures 1, 2), Northwestern British Columbia. Exploration activities mainly entailed: 1., a regional stream sediment geochemical/geological evaluation of Hazelton Group and covered Hazelton Group lithologies, and 1.A., initial follow-up of the results; and 2., the further prioritization of drill targets on the Highway and Central/East Zn Zones of the Delta West Project.

The rationale for the regional program focused on the favourable Hazelton Group lithologies, which host most of significant Au and Cu mineralization in the camp and which are regarded by the author as extremely prospective for the discovery of new, world-class polymetallic deposits. In view of the high energy drainage regimes, extensive overburden and Bowser Group cover on the margins of the camp, and limited road access, the successful application of the program in Stewart Camp involves considerable patience, careful interpretation of often subtle anomalies, and detailed follow-up surveys with relevant Stewart Camp deposit models in mind. In view of the current lack of exploration activity and the lapse of many claims groups in the camp, it is obviously an opportune time to generate new targets for the soon anticipated major upturn in the mineral industry in BC.

Relevant Stewart Camp exploration models hosted by altered Hazelton Group rocks include the Eskay Creek VMS deposit (Figure 2) with 1999 reserves of about 1.4 million tonnes grading 57.7 g gold/t, and 2493 g silver/t, and with a total deposit size of 7.1 M oz gold equivalent; the historic Silbak-Premier deposit (Figure 2), which produced 56,000 kg of Au and 1,281,400 kg of Ag from 1918 to 1976; and, the Marc Zone, Red Mountain (Figure 2) type mineralization (auriferous pyrite and chalcopyrite in fracture controlled, often brecciated zones associated with Jurassic intrusions), which totals about 1 M oz grading about 10 g Au/t.

2. STEWART PROPERTY:

ς.

Component 2.of the 1999 program was carried out on the Delta West Project (Figures 1, 2; Map 1) of the Stewart Property. David R. Kennedy, Janine Calder, Dr. Graeme Wallace and the author each have a 25% ownership interest in the property, which comprises 18 claim units (Table 1) that cover 86 square km.

3. LOCATION AND ACCESS:

The Stewart Camp and the Stewart Property are located in the Skeena Mining Division of Northwestern British Columbia (Figures 1, 2). The camp comprises a large area, which extends from the Portland Canal area in the southwest to beyond the White River Area in the southeast, to beyond Iskut in the northeast, and to beyond the Snip Mine in the northwest. It is located on NTS Map Sheets 104/A, B, G, H and 104/O, P and centred at about Latitude 56°, 30'N; Longitude 130°, 00'W.

In view of the generally rugged mountainous terrain, helicopter access is currently required to most areas of the camp e.g., from the Vancouver Island Helicopters' base in Stewart. As shown in Figure 3, Hwy 37A from Meziadin Junction to Stewart; Hwy 37 north and south from Hwy 37; and, some lumber, mine and First Nation community roads provide the only vehicle access. Project access on the aforementioned roads was often restricted and hindered by construction and lumbering activities, washouts, mudslides and downed trees.

The Delta West Project is situated in the Delta Peak Area, about 80 km northeast of Stewart, and about 70 km by road north of Meziadin Junction (Figures 1, 2). The project is centred on NTS Map Sheet 104A/12 at Latitude 56°36N'; Longitude 129°38'W. Hwy 37 generally trends northwest through the Deltaic Grid, and along with some old lumber roads, provides excellent access. However, in 1999 a major road corridor widing project at times restricted access ("no stopping in the construction zone") to the grid, and actually obliterated a segment of all the grid lines.

4. TOPOGRAPHY, DRAINAGE, CLIMATE, WILDLIFE & VEGETATION:

The Stewart Camp is located within the Boundary Ranges of the northern British Columbia Coastal Mountains (Figure 4). The regional topography is characterized by generally rugged terrain that comprises mountains up to over 2000 m in elevation and V shaped valleys that host high-energy drainage regimes. The heads of valleys are often occupied by glaciers with are currently receding at rates of tens of meters per year. Broader valleys are associated with rivers on the flanks of the camp, e.g., Bell-Irving (Figure 3), along which highway accesses have been constructed.

The Delta West Project is located in and on the east side of the rather gentle topography of the

TABLE 1

DELTA WEST PROJECT AREA, FOX/PAT CLAIMS

DELTA PEAK SHEET, 104 A/12

DELTA WEST CLAIMS:

.

.

.

,

.

ς.

-

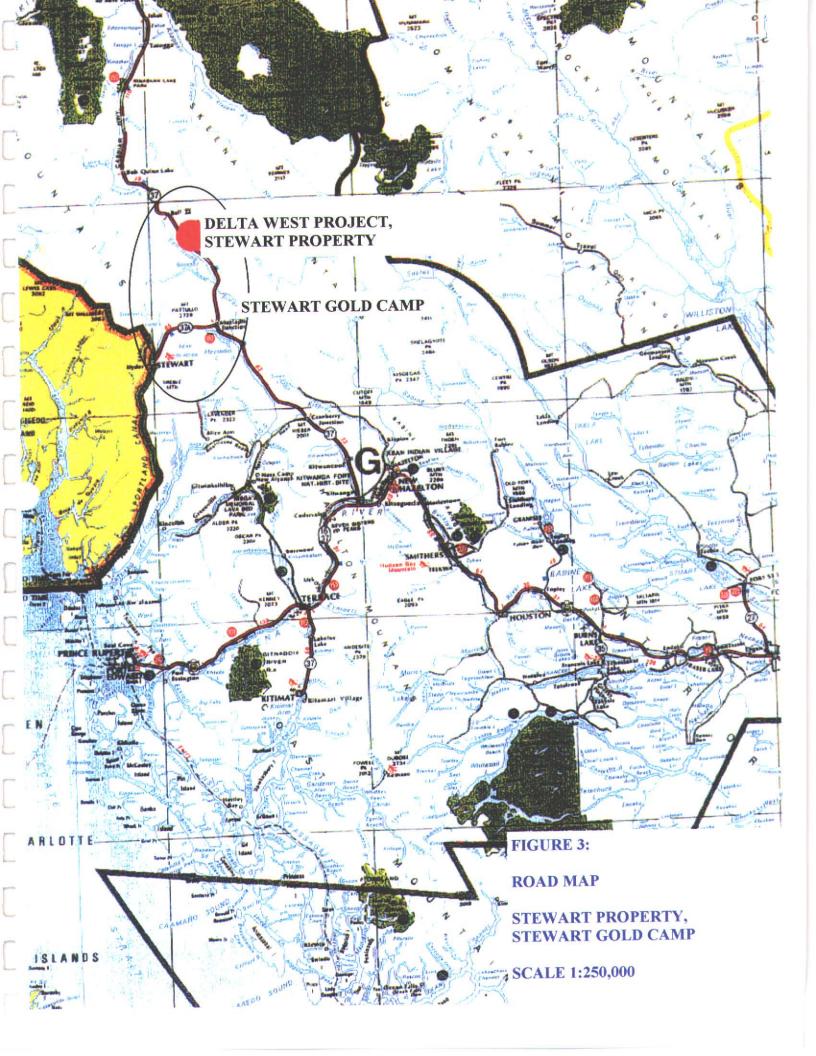
.

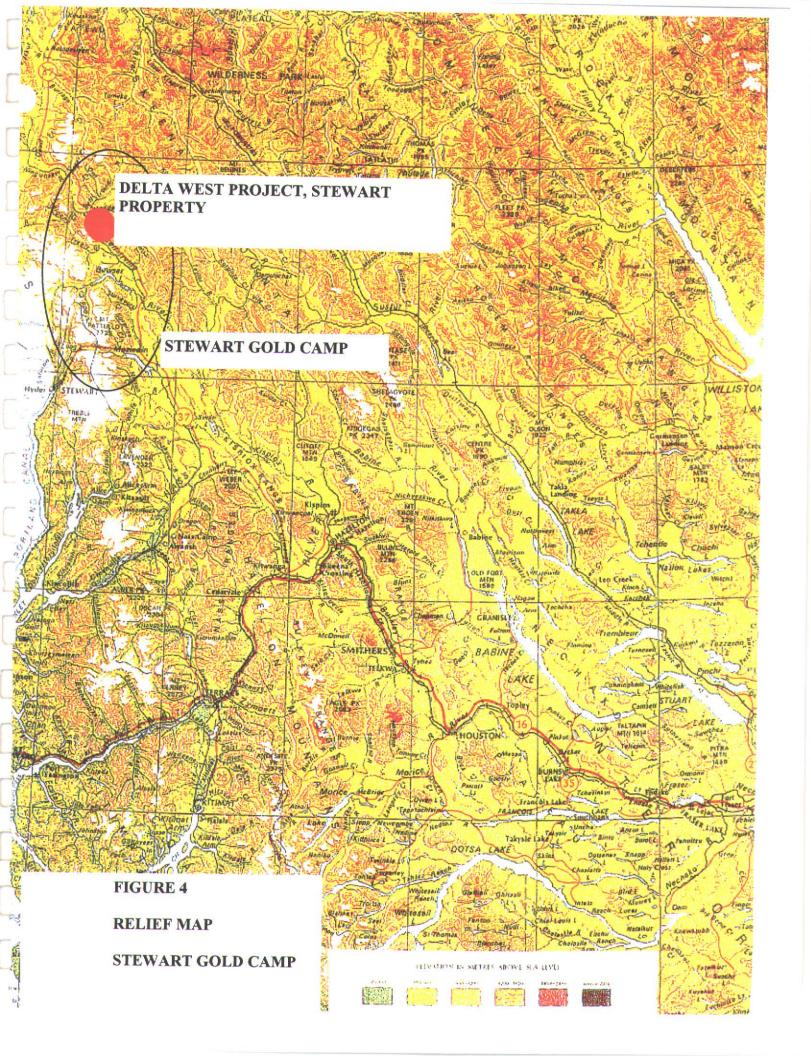
*

. .

.

.


٩,


•

L.

Claim Name	Tag No.	Rec No.	Units	Ann. Date	Expiry Date
FOX 30	233413	347293	20	Jun 21/96	Jun 21, 2001
FOX 31	233414	347294	20	Jun 21/96	Jun 21, 2001
FOX 32	233415	347295	16	Jun 29/96	Jun 29, 2002
FOX 33	233416	347296	20	Jun 24/96	Jun 24, 2001
FOX 34	233417	347297	20	Jun 24/96	Jun 24, 2002
FOX 35	220160	347520	16	Jul 3/96	Jul 3, 2002
FOX 36	233422	347298	16	Jun 24/96	Jun 24, 2002
FOX 37	231403	347299	20	Jul 1/96	Jul 1, 2002
FOX 38	231402	347300	20	Jun 30/96	Jun 30, 2000
FOX 39	233420	347301	20	Jun 29/96	Jun 29, 2002
FOX 40	233421	347302	20	Jun 29/96	Jun 29, 2002
FOX 48	218272	355296	20	Apr 24/97	Apr 24, 2002
FOX 49	218273	355297	20	Apr 24/97	Apr 24, 2002
FOX 50	218274	355298	16	Apr 24/97	Apr 24, 2002
PAT 50	220187	355292	20	Apr 24/97	Apr 24, 2001
PAT 51	220188	355293	20	Apr 24/97	Apr 24, 2002
PAT 52	220189	355294	20	Apr 23/97	Apr 23, 2002
PAT 53	220190	355295	<u>20</u>	Apr 23/97	Apr 23, 2002
			344		

C:\US498\TABLE 1.WK3

Bell-Irving River Valley. Mountainous topography to the east is dominated by Delta Peak and Oweegee Peak, both over 2200 m. The mountain terrain is incised with young, deep valleys that trend northeast and that drain the area to the southwest, into the Bell-Irving River that flows south, parallel to Hwy 37.

The exploration field season in the Stewart Camp generally extends from late June to October. With their good access and low elevation, the Delta West targets can be pursued year round. In the summer of 1999, the Stewart area experienced adverse weather that long time residents have characterized as the "worst in memory". Below normal temperatures with rather constant rain and fog entailed generally negative exploration conditions for most of the field season.

Winters have been getting milder. However, snow can cover higher evaluations in late September and accumulations can total several meters in a 24-hour period. Recorded mean annual snowfalls in the area range from 520 cm at Stewart (sea level) to 1,500 cm at Tide Lake Flats (915 m elevation). Summers are usually characterized by long hours of daylight and pleasant temperatures. However, the proximity to the ocean and relatively high mountains can make for highly changeable weather, including dense morning fog along the coast. Stewart is located on the Portland Canal (Figure 2) and has the distinction of being Canada's most northerly, ice-free seaport.

Wildlife in the camp consists of mountain goats, moose, foxes, black bears, grizzly bears, wolves, coyotes, lynx, marmots, martins, ptarmigan, eagles, hawks, jays, gulls, and crows. Swarms of bees and flocks of robins are not uncommon. Vegetation in the valleys and on their edges ranges from dense tag alders to areas of spruce, pine and poplar forest, to clear cut areas, often densely vegetated with fireweed. Sub-alpine spruce thickets with heather and alpine meadows occur at higher elevations. Bare rock, talus slopes and glaciers with occasional islands of alpine meadow prevail above treeline, at approximately 1,200 m.

5. EXPLORATION HISTORY:

× -

The central area of the Stewart Camp was prospected at the close of the 19th century, mainly for visible gold in quartz veins. The showings were generally located on patented claims, but very little of this work was documented.

The most prominent early discovery was the historic Silbak-Premier gold-silver mine (Figure 2), which produced 56,000 kg of gold and 1,281,400 kg of silver in its original lifetime from 1918 to 1976. The mine was re-opened by Westmin in 1988 with reserves quoted at 5.9 million tonnes grading 2.16 g gold/t and 80.23 g silver/t (Randall, 1988). The mine closed in 1998 and the 2500 t/d mill facility is currently shut down and under care and maintenance.

The Camp, after more recent discoveries (Figure 2) that include the recently closed Snip Mine (total deposit size of 1,055,105 ounces of gold contained in 1.3 M tonnes); the Eskay Creek

Mine (total deposit size of about 7.1 M ounces gold equivalent); and, Red Mountain (with reserves of about 1 M ounces of gold), continues to be regarded as a very prospective environment where discoveries of rich, gold/silver/base metal deposits can be made.

In 1999, it appears that only minor exploration activity took place in the camp, other than some diamond drilling at the Eskay Creek Mine and the current program described herein. The decline in metal prices and in the junior equity markets, along with the uncertainty with regard to natural resource policy in BC, and to the resolution of native land claims settlements, have generally curtailed exploration in the province. Expenditures in the Northwest Region, which extends up to the Yukon in BC, declined to their lowest levels in years, down to about \$5.3 M from the approximately \$8.5 M in 1998 (pers. com., Paul Wojak, BC geologist). However, industry analysts indicate there could be a dramatic increase in activity in the province, with a more favourable political atmosphere.

.

. .

.

p -

P

e . .

بر

Historical exploration activities on the Stewart Property (Figures 1-4) are reported (Annual Report, BC Minister of Mines, 1929) to include Consolidated Mining and Smelting Company of Canada carrying out exploration work on the north side of Treaty Creek, about 58 km from the confluence of the Bell-Irving River with the Nass River. According to the report, "the values are scattered over a large mineralized area and appear to be mainly in gold, silver, and copper, although sufficient work has not been done to form a criterion of the possible value of the property.

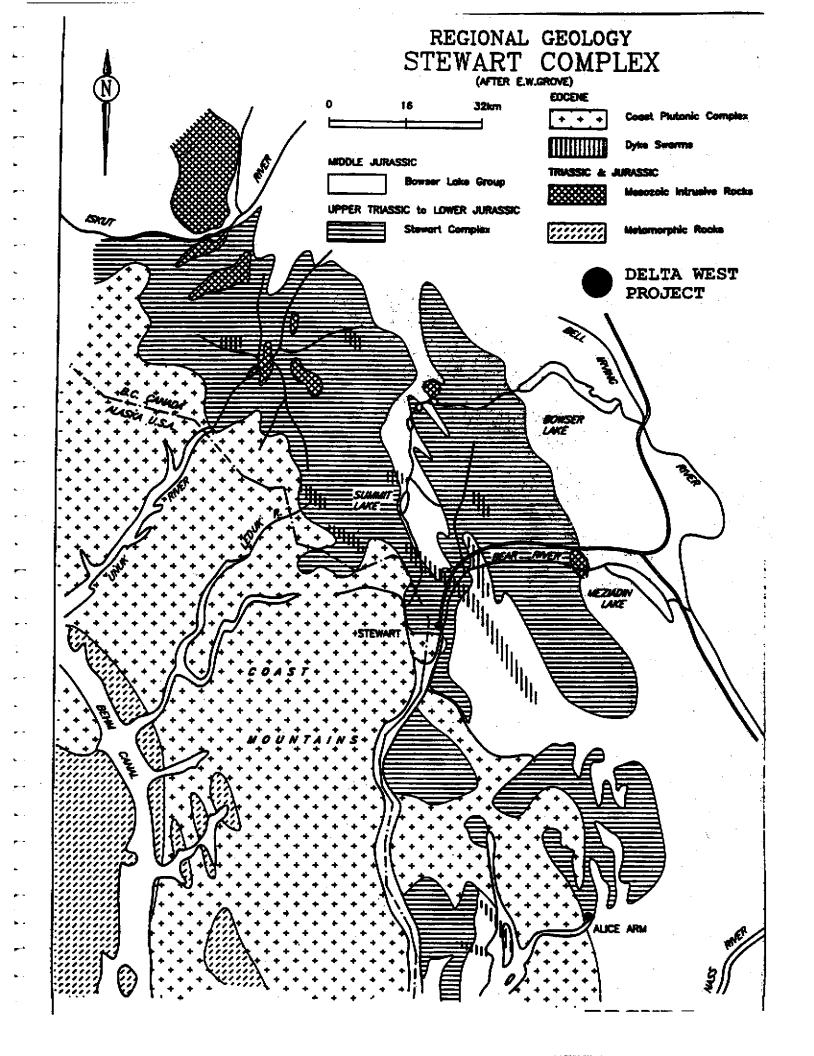
As reported in the Report on the 1998 Delta West Project of the Prospectors Assistance Program, subsequent historical activities included:

- a 1991 airborne magnetometer and VLF-EM survey over the Oweegee Dome by Indigo Mines;
- a 1990 regional geochemical program by Cominco and the staking of the Delta Claims (Map 1) that covered various copper and gold anomalies;
- a 1993 reconnaissance and detailed geochemical, geological and IP program funded by Barrick on the Delta Claims and surrounding ground;
- a 1996 reconnaissance geochemical, geological and claim staking program on the Delta West Project, partly sponsored by the BC Prospectors Assistance Program;
- a 1997 airborne EM and magnetometer survey, and a detailed geological and geochemical follow-up program, along with some IP surveying, funded by Cordal Resources on the Stewart Property;
- a 1998 detailed follow-up geochemical and geological program, and HLEM surveying on the Delta West Grid to locate drill targets, partly sponsored by the BC Prospectors Assistance Program.

6. STEWART CAMP GEOLOGY:

pe - 14

•


The Stewart Gold Camp and the Stewart Property are situated in a broad, north-northwest trending volcanogenic-plutonic belt consisting of the Upper Triassic Stuhini Group and the Upper Triassic to Lower Middle Jurassic Hazelton Group. This belt has been termed the "Stewart Complex" (Figures 5, 6) by Grove (1986) and forms part of the Stikinia Terrane. The Stikinia Terrane, together with the Cache Creek and Quesnel Terranes, constitute the Intermontaine Superterrane, which was accreted to North America in Middle Jurassic time (Monger et al, 1982). To the west, the Stewart Complex is bordered by the Coast Plutonic Complex. Sedimentary rocks of the Middle to Upper Jurassic Bowser Lake Group overlay the Stewart Complex in the east.

The Jurassic stratigraphy was established by Grove (1986, Figure 5) during regional mapping conducted from 1964 to 1968. Formational subdivisions have been made and are currently being modified and refined as regional work continues, most notably by the Geological Survey Branch of the British Columbia Ministry of Energy, Mines and Petroleum Resources (Alldrick, 1984, 1985, 1989); and, by the Geological Survey of Canada (Anderson, 1989; Anderson and Thorkelson, 1990; Lewis, et al, 1993; Creig, et al, 1995). The sedimentological, structural, and stratigraphic framework of the area is being established with some degree of precision.

The Hazelton Group represents an evolving (alkalic/calc-alkalic) island arc complex, capped by a thick turbidite succession (Bowser Lake Group). Grove (1986) divided the Hazelton into four litho-stratigraphic units (time intervals defined by Alldrick, 1987):

- 1. The Upper Triassic to Lower Jurassic Unuk River Formation (Norian to Pliensbachian).
- 2. The Middle Jurassic Betty Creek Formation (Pliensbachian to Toarcian).
- 3. The Middle Jurassic Salmon River Formation (Toarcian to Bajocian).
- 4. The Middle to Upper Jurassic Nass Formation (Toarcian to Oxfordian Kimmeridigian).

Alldrick assigned formational status (Mt. Dilworth Formation, Figure 6A) to a Toarcian rhyolite unit (Monitor Rhyolite) overlying the Betty Creek Formation. Rocks of the Salmon River Formation are transitional between the mostly volcanic Hazelton Group and the wholly sedimentary Bowser Lake Group and are presently regarded as the uppermost formation of the Hazelton or the basal formation of the Bowser Lake Group.

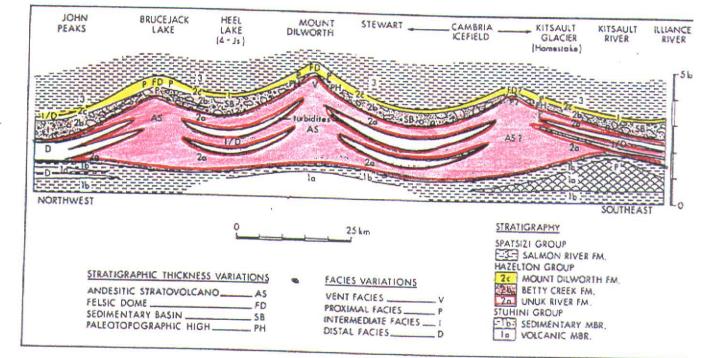


Figure 1-27-4. North-south schematic reconstruction through the Stewart complex

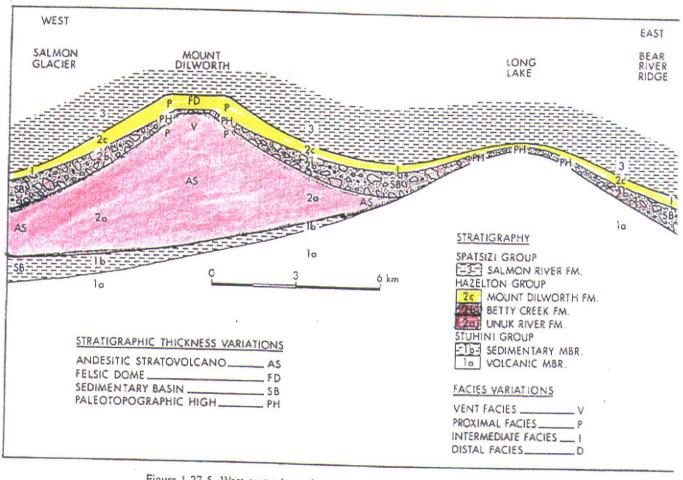
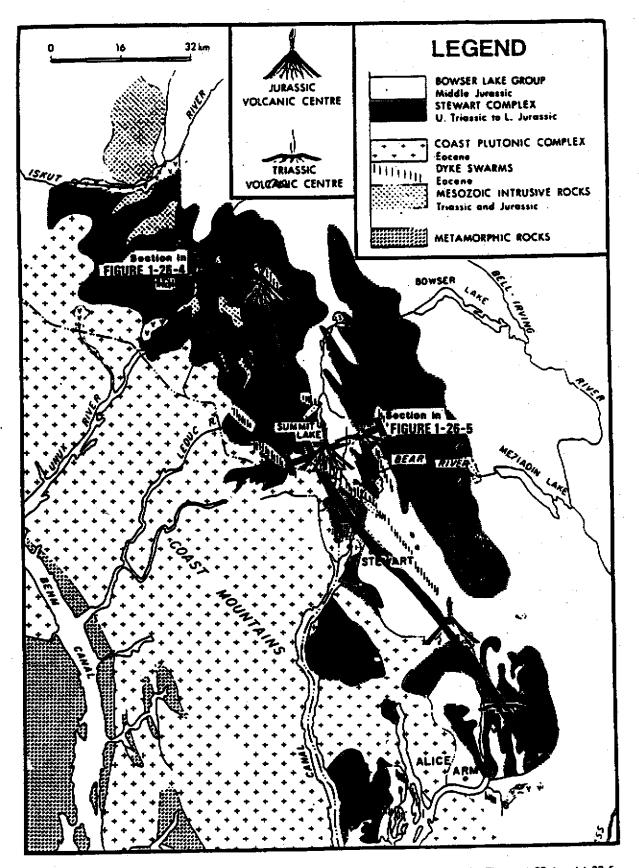
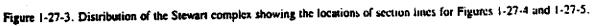


Figure 1-27-5. West-east schematic reconstruction through the Stewart complex.

FIGURE 6A DILWORTH FORMATION IN STEWART COMPLEX STRATIGRAPHY The Unuk River Formation (Figure 6A), a thick sequence of andesite flows and pyroclastic rocks with minor interbedded sedimentary rocks, hosts a number of major gold deposits in the Stewart Camp (Figure 2). The unit is unconformably overlain by heterogeneous, maroon to green, epiclastic volcanic conglomerates, breccias, greywackes and finer grained clastic rocks of the Betty Creek Formation. Felsic flows, tuffs and tuff breccias characterize the Mt. Dilworth Formation (Figure 6A). This formation represents the climatic and penultimate volcanic event of the Hazelton Group volcanism and forms an important regional marker horizon. The overlying Salmon River Formation has been subdivided in the Iskut area into an Upper Lower Jurassic and a Lower Middle Jurassic member (Anderson and Thorkelson, 1990). The upper member has been further subdivided into three north trending facies belts: the eastern Troy Ridge facies (starved basin), the medial Eskay Creek facies (back-arc basin) and the western Snippaker Mountain facies (volcanic arc).


Sediments of the Bowser Lake Group rest unconformably on the Hazelton Group rocks and they include shales, argillites, silt and mudstones, greywackes and conglomerates. The contact between the Bowser Lake Group and Hazelton Group passes between Strohn Creek in the north and White River in the south. The contact appears to be a thrust zone with the Bowser Lake Group sediment "slices" occurring within and overlying the Hazelton Group pyroclastics to the west.


Two main intrusive episodes occurred in the Stewart area: a Lower Jurassic suite of diorite to granodiorite porphyries (Texas Creek Suite) that are comagmatic with extrusive rocks of the Hazelton Group; and, an Upper Cretaceous to Early Tertiary intrusive complex (Coast Plutonic Complex and satellite intrusions). The early Jurassic suite is characterized by the occurrence of coarse hornblende, orthoclase and plagioclase and phenocrysts and locally pot-assium feldspar megacrysts. The Eocene Hyder quartz-monzonite, comprising a main batholith, several smaller plugs and a widespread dyke phase, represents the Coast Plutonic Complex.

Middle Cretaceous regional metamorphism (Alldrick et al., 1987) is predominantly of the lower greenschist facies. This metamorphic event seems to be related to compression and concomitant crustal thickening at the Intermontaine - Insular superterrane boundary (Rubin et al. 1990). Biotite hornfels zones are associated with a majority of the quartz monzonite and granodiorite stocks.

7. STEWART CAMP MINERALIZATION:

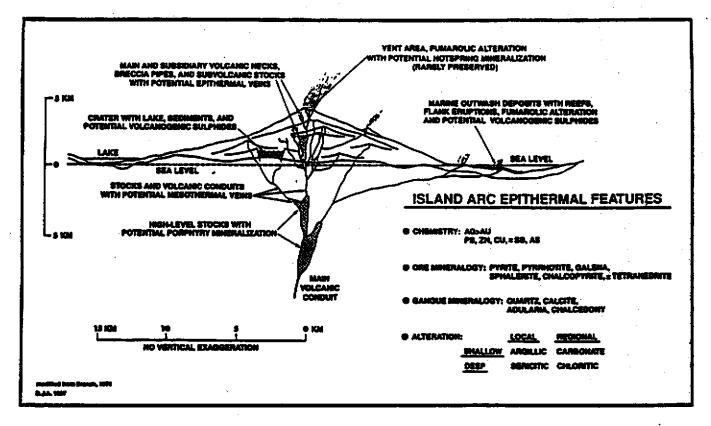

The Stewart Complex is the setting for the Stewart (Silbak-Premier, Silver Butte, Big Missouri, Red Mountain, Iskut (Snip, Johnny Mountain, Eskay Creek) Sulphurets, and Kitsalt (Alice Arm) gold/silver mining camps (Figure 2). Mesothermal to epithermal, depth persistent goldsilver veins form one of the most significant types of economic deposit. There appears to be a spatial as well as a temporal association of gold deposits to Lower Jurassic Calc-alkaline intrusions and volcanic centres (Figures 6B, C). These intrusions are often characterized by

FIGURE 6B

STEWART VOLCANIC BELT

Distribution of ore deposits within a stratovolcano (modified from Branch, 1976).

.

FIGURE 6C

MINERALIZATION TYPES STEWART CAMP 1-2 cm sized, potassium feldspar megacrysts and correspond to the top of the Unuk River Formation.

V.

The most prominent example of this type of mineralization is the historic Silbak-Premier goldsilver mine, which has produced 56,000 kg of gold and 1,281,400 kg of silver in its original lifetime from 1918 to 1976. The mine was re-opened by Westmin in 1988 with reserves quoted at 5.9 million tonnes grading 2.16 g gold/t and 80.23 g silver/t (Randall, 1988). The mine was closed in the summer of 1997 and the mill is currently up for sale.

The ore is hosted by Unuk River Formation andesites and comagmatic Texas Creek porphyritic dacite sills and dykes. The ore bodies comprise a series of en echelon lenses, which are developed over a strike length of 180 m and through a vertical range of 600 m (Grove, 1986; McDonald, 1988). The mineralization is controlled by northwesterly and northeasterly trending structures and their intersections but also occurs locally concordant with andesitic flows and breccias.

Two main vein types occur: silica-rich, low-sulfide precious metal veins and sulfide-rich base metal veins. The precious metal veins are more prominent in the upper levels of the deposit and contain polybasite, pyrargyrite, argentiferous tetrahedrite, native silver, electrum and argentite. Combined sulfides of pyrite, sphalerite, chalcopyrite and galena are generally less than 5%. The base metal veins crosscut the precious metal veins and increase in abundance with depth. They contain 25 to 45% combined pyrite, sphalerite, chalcopyrite and galena, with minor amounts of pyrrhotite, argentiferous tetrahedrite, native silver, electrum and arsenopyrite.

Quartz is the main gangue mineral, with lesser amounts of calcite, barite, and some adularia being present. The mineralization is associated with strong silicification, feldspathization, and pyritization. A temperature range of 250 to 260 degrees C has been determined for the deposition of the base and precious metals (McDonald, 1990).

Middle Eocene silver-lead-zinc veins are characterized by high silver to gold ratios and by spatial association with molybdenum and/or tungsten occurrences. They are structurally controlled and lie within north, northwest, and east trending faults. This mineralization has been less significant in economic terms.

Porphyry molybdenum deposits are associated with Tertiary Alice Arm Intrusions, a belt of quartz-monzonite intrusions parallel to the eastern margin of the Coast Plutonic Complex. An example of this type of deposit is the BC Molybdenum Mine at Lime Creek.

The Eskay Creek Mine (current reserves of 1.4 million tonnes grading 57.7 gold/t and 2493 g silver/t) is planning to increase current production from 150 t/d to 250 t/d in October 2000. The deposit is hosted within Contact Unit carbonaceous mudstone and breccia, as well as the underlying rhyolite breccia. Two styles of mineralization are present. The first is a visually striking assemblage of disseminated to near massive stibnite and realgar within the Contact

Unit. The second style occurs in the adjacent footwall rhyolite, and features a stock work style quartz-muscovite-chlorite breccia mineralized with sphalerite, tetrahedrite and pyrite. Highest gold and silver values are obtained where the Contact Unit is thickest and the immediately underlying rhyolite breccia is highly fractured and altered. Drilling continues to expand the original, approximately 280 m by 100 m zone that has an average thickness of 10 m.

The Eskay Creek 21B deposit is approximately 900 m long, from 60 to 200 m wide and locally in excess of 40 m thick. Contact Unit mineralization comprises a continuous stratiform sheet of banded high grade gold and silver bearing base metal sulfide layers, from 2 to 12 m thick. Mineralization appears to be bedding parallel. Sulfide minerals present include sphalerite, tetrahedrite, boulangerite, bornite plus minor galena and pyrite. Gold and silver are associated with electrum, which occurs as abundant grains associated with sphalerite. Peripheral and footwall to the banded sulfide mineralization, are areas of microfracture, veinlet hosted, disseminated tetrahedrite, pyrite and minor boulangerite mineralization.

No exploration was carried out on Royal Oak's Red Mountain project in 1999, and the property is now in the hands of a receiver. Royal Oak had apparently curtailed work in 1997 as a result of a dispute with the BC government. The Marc Zone and its northerly extension, the AV Zone, occur as sulfide lenses or cylinders associated with a structural junction and the brecciated contact of the Goldslide Intrusion. The mineralization consists of densely disseminated to massive pyrite and/or pyrite stringers and veinlets and variable amounts of arsenopyrite, tetrahedrite and various tellurides. Several phases of mineralization and breccia fragments consisting of pyrite. High grade gold values are usually associated with the semi massive, coarse-grained pyrite aggregates, but also with stock works of pyrite stringers and veinlets. Gold occurs as native gold, electrum and as tellurides. Approximately 1 M ounces have been outlined to date, with an average grade of about 10 g gold/t.

8. GEOLOGY, DELTA WEST PROJECT, STEWART PROPERTY:

The Delta West Project is postulated to cover a tectonic window in which Jurassic Hazelton Group and Palaeozoic Stikine Assemblages have been exposed by the uplift of broad anticlinal features know as the Oweegee and Ritchie Domes, and by the erosion of Upper Jurassic sediments of the Bowser Basin. The evolution of geological thinking with regard to the project is described in the 1993, Phase 1B program report (Molloy, 1993A). The results of the Geological Survey of Canada's mapping of the domes are summarized on Map 2. The west margin of the Oweegee Dome is dominated by Lower Jurassic Hazelton Group rocks: intermediate to mafic plagioclase-pyroxene lapilli tuff-breccia, lapilli, ash and dust tuffs; intermediate and felsic flows and drived debris flow; tuffaceous arkose siltstone and mudstone; and conglomerate. These rocks as mapped via 1996 and 1997 reconnaissance activities are interpreted to extend west to 300 m east of, and across Hwy 37. On the west side of this contact, the Hazelton Group is overlain by the Upper Jurassic Bowser Lake Group sediments, which include silty sandstones, and fine grained sandstone and arkose. Hazelton Group rocks exposed on the east side of the highway include dacite and rhyolitic units.

9. 1999 PROSPECTORS ASSISTANCE PROGRAM

The 1999 exploration program was carried out in July, August and September, as allowed by weather and field conditions. As noted in Section 4. of this report, generally incessant rain entailed "the worst summer in memory" for many long time Stewart residents. Such conditions greatly slowed and hindered the execution of the program: sediment fines were extremely difficult to obtain from high-energy streams; access conditions along streams were onerous; and flooding, slides and fallen trees restricted road access along old lumber roads. Maps of such roads were extremely difficult to obtain, apparently only available from lumber companies on a good will basis. Maps requested for the project area were not received until after the project was completed. As a result of these difficulties, the regional geochemical and geological program in the Iskut area could not be implemented.

Expenditures and daily activities are shown on the government forms, Summary of Activities and Technical Report at the beginning of this report. A total of 263 stream sediment samples, rock, soil and check samples were submitted to Chemex Labs in Vancouver during the coarse of the program. The samples, excluding those from the Delta West project, were analyzed for gold (FA/AA – 1 assay t); and, all the samples were subject to 32 element ICP. The Chemex Certificates of Analyses are included in Appendices A and B at the end of his report.

The 1999 Prospectors Assistance Program comprised three activities:

v

1. A regional stream sediment geochemical and geological evaluation of Hazelton Group and postulated covered Hazelton Group lithologies.

1.A. Follow-up surveys and claim staking of some targets generated by activity 1.

2. Detailed geochemical and geological surveys to further prioritize drill targets on the Delta West Project of the Stewart Property (Molloy, 1998).

9.A. COMPONENTS 1., 1.A.: REGIONAL GEOCHEMICAL/GEOLOGICAL PROGRAM AND FOLLOW-UP ACTIVITIES.

The regional stream sediment geochemical and geological program was carried out in 6 areas of the Stewart camp as weather and field conditions allowed. The stream sediment sample density was not influenced by the locations of historical mineral occurrences. Attempts were made to obtain at least one sample from each accessible stream, but this endeavour proved impossible on a number of streams, due to the field conditions referenced above. A total of 127 stream sediment and 14 rock samples were submitted to the lab from the regional phase of the program, which is summarized below by area. An additional 37 follow-up samples were collected on the Poly and Red Claims, which were staked during Phase 1.A. activities.

An initial classification of the apparent sediment anomalies is presented in the table of analytical results included for each area. The classification is based on the general application of threshold values i.e., Au: 10 ppb; Ag: 0.6 ppm, Cu: 30 ppm, Ni: 25 ppm; Co: 20 ppm; Pb: 10 ppm; Zn: 150 ppm; As: 20 ppm; Ba: 140 ppm; and Hg, Mo, Sb: 2 ppm, all calculated from the author's experience in the camp. However, it should be noted that such values are usually specific to given geological environments and can also vary due to specific conditions such as overburden cover, possible dilution by high energy run-off, etc. The classification of any anomaly must thus be on going and based on the results of detailed follow-work.

9.A1. AREA 1: STEWART TO SUPRISE CREEK AREA, NTS 104 A/3, A/4; 103 P/13:

For the purpose of the program, Area 1 (Maps 1, 2, 3) extends from the town of Stewart east to Surprise Creek. Hwy 37A and a number of old mine, highway and lumber roads provide limited, additional access. The area is generally underlain by favourable Hazelton Group rocks, and hosts many historical mineral showings and old workings. Sample locations are shown on Maps 1, 2, 3, along with the most relevant analyses and an initial classification of anomalies. The stream sediment samples are described in Table STRSDA1, which is integrated with Table STRSARA1 i.e., the analytical results for the 13 most relevant elements referenced above along with the initial classification of apparent anomalies. The rock samples are described in Table RKSDA1, which is integrated with Table RKSARA1, i.e., the analytical results. All the analyses are shown on Chemex Certificates of Analysis in Appendix A.

As shown in Table STRSARA1 and on Map 1, most of the stream samples collected in Area 1 are recommended for follow-up. Some of the most prospective follow-up targets, based on geology and analytical results, are found in the Strohn and Clements Lake areas, in the Glacier Creek area and in the Bitter Creek Valley (Maps 1, 2).

9.A1.a. RED CLAIMS:

١.

· ·

The Bitter Creek Valley work provides an example of the rationale and potential of the application of the regional program. Stream sediment 160201SS (Table A; also used as check material in this program) was taken from Bitter Creek about 200 m upstream from the bridge on Hwy 37A. The analytical results epitomize the anomalous polymetallic signatures that are often indicative of significant mineralization hosted by altered Hazelton Group rocks in the Stewart Camp. Specific elemental associations e.g., Au-Cu-As and Zn-Cd-Ag-Ba often characterize such signatures. However, the interpretation of any prospective geochemical signature is considered particularly enhanced by the anomalous presence of one or more of key indicator elements i.e., Pb, Ni, Hg, Mo and Sb.

Of the 12 elements referenced in Table A, 10 of them are interpreted to have anomalous contents in sample 160201SS. The results are not entirely unexpected as Bitter Creek drains

1	[]]	•	2 1	1	,	1	•	1	ŗ	۲		1	•	7	1	•	٠	2	<i>r</i>	1	•	1	۲	7	1	1	<u> </u>	1 1	1
	•		•	•				•			•	,		,		'						-		•					

NEAR POINT STREET, STRE

TABLE A: AN EXAMPLE OF THE RATIONALE AND APPLICATION OF THE REGIONAL GEOCHEMICAL/GEOLOGICAL PROGRAM:

i.

RECON	Sample Name, No., Loc, Colour: Type:	DESCRIPTION:	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 Ni ppm	5.00 CO ppm	6.00 PB ppm	7.00- ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm
1.00 AREA 1	106201SS SD, BLK TOP MAP 104 AM HWY 37A & BITTER CRK 200 8 BRD; CHECK MATERIAL FOR SURV	FI GR, MAINLY RD MAFIC VOL (30%), FEL VOL (30%), QTZ (15%): OX MAT (6%); FELD (5%); MINOR BIOTITE, SERICITE; NO MAGNETITE	40.00	1.20	126.00	43.00	24.00	48.00	178.00	2.50	82.00	70.00	<1	5.00	4.00
2.00 AREA 1	106202SS SD, BRN TOP MAP 104 A/4 ~3KM UP BIT CRK RD	FI-MED GR, 60% MAFIC VOL, 30% GTZ, FELD; 10% OX NAT; 10% HETRO FRAGS INCL ALT VOL; NO MAGNETITE	35.00	0.80	108.00	35.00	24.00	24.00	112.00	0.50	56.00	230.00	<1	3.00	8.00
3.00 AREA 1	0 106206SS CL-SD-GR TOP MAP ORG, BRN 104 A4 -2.5KM UP BIT CRK RD AT 106204RF	CL-FLANG FRAGS, MAINLY ALL OX MAT FROM OC - TALUS STR SED	20.00	0.50	219.00	17.00	23.00	12.00	80.00	<0.5	22.00	80.00	<1	9.00	4.00
4.00 AREA 1	0 10620788 SD-HET TOP MAP GR, BRN 104 A4 ~1KM UP BIT CRK RD AT CULVERT	MED-CO, RD-ANG HETRO FRAGS-MAFIC VOL, OXID MAT, MIN ORG	50.00	8.00	1325.00	31.00	37.00	372.00	346.00	2.00	40.00	180.00	<1	8.00	<2
1.00 RED CLAIMS) 160332285 CL, SD 60 M \$ OF ORG BRN 16020785, DITCH ON E SIDE OF BITTER CRK RD	CL, FI - CO 10% CL 55% FI, ORG BRN OXID MAT 30% GRY, BLK, ANG VOL & OXID MAT 5% GRY, WH QTZ	215.00	2.40	966.996	19.00	25.00	36.00	84.00	<0.5	48.00	190.00	<۱	5.00	4
2.00 RED Claims	0 16033588 CL, SD 76 M S OF ORG BRN 16020785, DITCH ON E SIDE OF BITTER CRK RD	CL, FI - CO 10% CL 40% FI, ORG BRN 0XID MAT 45% GRY, BLK, ANG VOL & 0XID MAT 5% GRY, WH QTZ	45.00	1.60	1130.00	25.00	29.00	<i>6</i> 2.00	130.00	0.50	40.00	100.00	×1	6.00	6.00
3.00 RED CLAIMS	0 18033655 SD, BRN 30 M 8 OF 18020755, DITCH ON E SIDE OF BITTER CRK RD	FI-CO 80% OXID ANG FRAGE, 6% QTZ, 19% HETRO FRAGE OXID MAT, AND GRY GR VOL	530.00	2.00	2960.00	31.00	35.00	68.00	182.00	2.00	46.00	280.00	<1	4.00	<2
4.00 RED CLAMS	0 16033958 AS 16020 RETAKE OF 16020758 ON BITTER CRK RD	785	60.00	17.00	2040.00	36.00	58.00	1020.00	764.00	ð.00	36.00	160.00	*1	9.00	8.00

TABLE STRSDA1: REGIONAL GEOCHEMICAL PROGRAM: STREAM SEDIMENT SAMPLE DESCRIPTIONS: AREA 1, STEWART: HWY 37A VALLEY AREA REF. NO., SAMPLE NAME, DESCRIPTION: STREAM GEOLOGY: RECON NO., LOC, COLOUR: PERAMATERS: TARGET TYPE: AREA: 1.00 106201SSSD, BLK FI GR, MAINLY RD FAST FLOW NW, MAJ HAZELTON VOL, MAINLY AREA 1 TOP MAP MAFIC VOL (70%); STREAM DRAINING AND TO INT COMP. OFTEN MINERALIZED AREA ALTERED (SIL, CARB, 104 A/4 QTZ (15%); OX MAT

K FELSPAR, LIM); MIN HWY 37A & (6%); FELD (5%); THAT INCLUDES BITTER CRK MINOR BIOTITE. RED MT DEPOSIT MATIC INT WITH DISSEM S BRDG; SERICITE: NO FLOWS NE PY CHECK MAGNETITE MATERIAL FOR SURV 2.00 106202SSSD, BRN FI-MED GR, 50% RD DITCH NEAR CUL ALT MAFIC VOL FLT -AREA 1 TOP MAP MAFIC VOL, AT OXID OUTCROP SEE SAMPLE 16203 30% QTZ, FELD; 104 A/4 ON E SIDE RD - LOW ~3KM UP 10% OX MAT; 10% FLOW BIT CRK HETRO FRAGS FLOWS W INTO RD INCL ALT VOL; BIT CRK NO MAGNETITE 3.00 106206SS CL-SD-GR-CL-FI-ANG FRAGS. RD DITCH NEAR CUL ALT MAFIC VOL. AREA 1 TOP MAP ORG, BRN MAINLY ALL OX MAT AT OXID OUTCROP HNBLD PORPH. FROM OC - TALUS 104 A/4 ON E SIDE RD - LOW SEE SAMP 106205ROC ~2.5KM UP STR SED FLOW BIT CRK FLOWS W RD INTO BIT CRK AT 106204RF 4.00 106207SS SD-HET MED-C0, RD-ANG RD DITCH NEAR CUL: NO OC AREA 1 TOP MAP GR, BRN HETRO FRAGS-MAFICLOW FLOW 104 A/4 VOL, OXID MAT, MIN FLOWS W ~1KM UP ORG INTO BIT CRK BIT CRK RD

5.00 106208SS HETRO SD,MED, 60% QTZ, FELD, DRY STR IN ABUND ANG FRAGS AREA 1 TOP MAP BRN 30% MAFICS, 5% OX GL-FLUV DEP & BO OF MAINLY DIOR. 104 A/4 MAT, MIN EPID, BIOT FLOWS N SOME WELL LIM & DRY CRK FRAC: SOME CHL MAFIC JUST W OF VOL BO, OFTEN EPID., CLEMENTS CW SOME CARB VEIN LAKE AT EDGE OF CLEMENTS L. DIOR INTRUS

AT CULVERT

6.00) 106211SS HETRO S	D,MED, 60% QTZ, FELD, DRY STR IN	ABUND ANG FRAGS
AREA 1	TOP MAP BRN	30% MAFICS, 5% OX GL-FLUV DEP	& BO OF MAINLY DIOR,
	104 A/4	MAT, MIN EPID, BIOT FLOWS N	SOME WELL LIM &
	DRY CRK		FRAC; SOME CHL MAFIC
	JUST W OF		VOL BO, OFTEN EPID.
	CLEMENTS		CW SOME CARB VEIN
	LAKE ABOUT		
	50 M S OF		
	106208SS		

A a	TABLE STRSARA1; MOST RELEVANT ANALYTICAL RESULTS (FOR COMPLETE RESULTS SEE CHEMEX CERTIFICATES OF ANALYSES) & INITIAL RECOMMENDATIONS (BASED ON ANALYTICAL RESULTS AND GEOLOGICAL ENVIRONMENT) :													
4	ND/OR GEO	FINE FOLL	OW-UP ACT	VITIES:		00210 410	02020010		IMENI).					
SAMPLE	1.00 AU	2.00 AG	3.00 CU	4.00 NI	5.00 CO	6.00 PB	7.00 ZN	8.00 CD	9.00 AS	10.00 BA	11.00 HG	12.00 MO	13.00 SB	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES)
NO.	ррь	ppm	ppm	ppm	ppm	AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL &GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 06 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)								
106201SS	40.00	1.20	126.00	43.00	24.00	48.00	178.00	2.50	82.00	70.00	<1	5.00	4.00	HIGH PR POLYMET FU TARG
106202SS	35.00	0.80	108.00	35.00	24.00	24.00	112.00	0.50	56.00	230.00	<1	3.00	8.00	HIGH PR POLYMET FU TARG - SOMEWHAT SIMILAR TO 1.
106206SS	20.00	0.60	219.00	17.00	23.00	12.00	80.00	<0.5	22.00	60.00	<1	9.00	4.00	MED PR FU TARG
106207SS	50.00	8.00	1325.00	31.00	37.00	372.00	346.00	2.00	40.00	160.00	<1	8.00	<2	HIGH PR FU TARGET SEE RED CLAIMS, DETAILED FOLLOW-UPU ACTIVITIES
106208SS	10.00	0.60	84.00	22.00	30.00	32.00	148.00	0.50	44.00	300.00	<1	4.00	2.00	MED - HIGH PRIORTIY FU TARG - INTERESTING ALT IN INTRUS
106211SS	10.00	0.80	126.00	22.00	12.00	44.00	182.00	1.50	62.00	180.00	<1	6.00	2.00	MED - HIGH PRIORTIY FU TARG - INTERESTING ALT IN INTRUS

TABLE STRSDA1 (CONT):	
REGIONAL GEOCHEMICAL PROGRAM:	
STREAM SEDIMENT SAMPLE DESCRIPTIONS:	AREA 1, STEWART: HWY 37A VALLEY AREA

.

,

.

7 1

1

N P

 a production of the second second

•

•

· .

. .

.

. . .

,

۰ ۲

•

	Sample Name, No., Loc, Colour: Type:	DESCRIPTION:	STREAM PERAMATERS:	GEOLOGY:
AREA 1	106213SS OXID CL-S TOP MAP ORG BRN 104 A/4 CRK S OF CLEMENTS L SAMP IN OLD RD		HI ENERG STR, FLOWS N INTO CLEMENTS L.	ABUND ANG FRAGS & BO OF MAINLY DIOR, SOME WELL LIM & FRAC; SOME CHL MAFIC VOL BO, OFTEN EPID., CW SOME QTZ-CARB VEIN AT EDGE OF CLEMENTS L. DIOR INTRUS
AREA 1	106215SS AS 160213 TOP MAP 104 A/4 CRK S OF CLEMENTS L SAMP 100 M W OF 160213SS	SS	HI ENERG STR, FLOWS N INTO CLEMENTS L.	ABUND ANG FRAGS & BO OF MAINLY DIOR, SOME WELL LIM & FRAC; SOME CHL MAFIC VOL BO, OFTEN EPID., CW SOME QTZ-CARB VEIN AT EDGE OF CLEMENTS L. DIOR INTRUS
AREA 1	106217LS SD-GRAV TOP MAP BLK 104 A/4 L SED S SHOR CLEMENTS L	MED-FRAGS; 20% MAINLY ANG FRAGS DI, MAFIC VOL; QTZ, FELD, MICA, OXID MAT	LAKE CLEMENTS, S. SHORE	AT EDGE OF CLEMENTS L. DIOR INTRUS
AREA 1	160218SS SD-GRAV TOP MAP BLK 104 A/4 ARGYLE CRK 120 m N HWY 37A	FI-ANG FRAGS, FRAGS MAINLY MAFIC VOL (60%) & OXID MAT (30%); MINOR QTZ	HI ENERG STR, LIT SED - WITH INCR GRAD, NO SED UPSTR	BO OF GRN MAFIC VOL, BREC; PK MAFIC VOL BRECCIA SOME OXID BO
AREA 1	160219SS ORG MUC TOP MAP BLK 104 A/4 SM E TRIB TO ARGYLE CRK 10 M EAST OF ARGYLE CRK AT HWY 37A	K FISLT & ORG	SMALL TRIB, MOD FLOW DRAINS AREA TO E OF ARGLYE CRK	BO OF GRN MAFIC VOL, BREC; PK MAFIC VOL BRECCIA SOME OXID BO
	160220SS SD, BRN TOP MAP 104 A/4 RUFUS CRK ABOUT 100 M N OF HWY 37A	FI; MAFIC VOL, QTZ, OXID MAT.	HI ENERG STREAM HI FLOW; FEW SEDS	BO OF GRN MAFIC VOL, BREC; PK MAFIC VOL BRECCIA SOME OXID BO

8	TABLE STRSARA1 (CONT); MOST RELEVANT ANALYTICAL RESULTS (FOR COMPLETE RESULTS SEE CHEMEX CERTIFICATES OF ANALYSES) & INITIAL RECOMMENDATIONS (BASED ON ANALYTICAL RESULTS AND GEOLOGICAL ENVIRONMENT) : AND/OR GEOFINE FOLLOW-UP ACTIVITIES:														
Sample NO.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 NI ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)	
10621355	65.00	0.60	72.00	10.00	27.00	18.00	140.00	0.50	136.00	180.00	<1	4.00	12.00	HIGH PR FU TARG - INTERESTING ALT IN DIOR & MV BO	
10621555	10.00	0.60	50.00	17.00	18.00	14.00	100.00	<0.5	18.00	110.00	<1	4.00	<2	MED PR - FU WITH 7.	
106217LS	5.00	0.60	41.00	18.00	13.00	26.00	134.00	<0.5	8.00	140.00	<1	1.00	4.00	WKLY REFLECTS OTHER FU TARG IN AREA- SEE 7., 8.ABOVE	
160218SS	<5	<.2	31.00	5.00	17.00	8.00	104.00	0.50	28.00	190.00	<1	2.00	<2		
160219SS	<5	0.20	74.00	20.00	12.00	34.00	156.00	1.50	18.00	210.00	<1	3.00	<2	LOW PR FU TARGET	
160220SS	<5	0.20	20.00	4.00	14.00	18.00	118.00	1.00	8.00	100.00	<1	<1	<2		

A second seco

TABLE STRSDA1 (CONT): REGIONAL GEOCHEMICAL PROGRAM: STREAM SEDIMENT SAMPLE DESCRIPTIONS: AREA 1, STEWART: HWY 37A VALLEY AREA

and the second second

REF. NO., RECON TARGET AREA:	SAMPLE NAME, NO., LOC, COLOUR: TYPE:	DESCRIPTION:	STREAM PERAMATERS:	GEOLOGY:
13.00 AREA 1	160221SS SD-GRAV TOP MAP GR BRN 104 A/4 CULLEN CRK ABOUT 100 m N OF HWY 37A	FI-FRAGS; MAFIC VOL, QTZ, OXID MAT, MIN EPID; ANG - RD GRN, PK MAFIC VOL, OXID MAT, MIN MAG	HI ENERG STREAM HI FLOW LIT SED	BO OF GRN MAFIC VOL, BREC; PK MAFIC VOL BRECCIA
14.00 AREA 1	160222SS SD-GRAV TOP MAP BLK 104 A/4 S FL CRK W OF STROHN L. ABOUT 100 m N OF HWY 37A	FI-CO-FRAGS MAINLY MAFIC VOL, MINOR QTZ, OXID MA'	HI ENERG STREAM THI FLOW; FEW FINES	BO OF MAFIC VOL & BREC, SOME WITH QTZ CARB VEIN, MIN EPID
15.00 AREA 1	160223SS SD-ORG; TOP MAP BRN 104 A/4 W FL CRK S OF REST AREA, E OF STROHN L	FI HETRO SD FROM MV & OXID MAT; 20% ORG	HI ENERG STREAM HI FLOW; V FEW FINES	ALT MAFIC VOL CLIFFS TO S
16.00	160224SS CHECK SAMPLE AS 160201			
17.00 AREA 1	0 160225SS SD, BRN TOP MAP 104 A/4 CORNICE CRK ABOUT 200 m S OF HWY 37A	FI HETRO SD FROM MV & OXID MAT;	HI ENERG STR HI FL FLOWS N	NO LOC GEOL
18.00 AREA 1) 160226SS SD, BRN TOP MAP 104 A/4 STROHN CRK AT HWY 37A	HETRO SD GRAV FLFRAGS FROM MV & OXID MAT;	HI ENERG STR ON OUTWH PL - MOD FL	HETRO BO - MAINLY HAZ MAFIC VOL AND ALT VAR
19.00 AREA 1) 160227SS SD, GR TOP MAP 104 A/4 STROHN CRK 300 M S OF HWY 37A	HETRO SD FI-MED MAFIC VOL, QTZ, OXID MAT;	HI ENERG STR ON OUTWH PL - MOD FL	HETRO BO - MAINLY HAZ MAFIC VOL AND ALT VAR

8	TABLE STRSARA1 (CONT); MOST RELEVANT ANALYTICAL RESULTS (FOR COMPLETE RESULTS SEE CHEMEX CERTIFICATES OF ANALYSES) & INITIAL RECOMMENDATIONS (BASED ON ANALYTICAL RESULTS AND GEOLOGICAL ENVIRONMENT) : AND/OR GEOFINE FOLLOW-UP ACTIVITIES:														
SAMPLE NO.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 Ni ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)	
160221SS	10.00	2.80	26.00	5.00	8.00	92.00	338.00	3. 00	60.00	200.00	<1	3.00	6.00	HIGH PR FU TARG	
160222SS	<5	0.20	27.00	6.00	12.00	24.00	194.00	1.50	30.00	230.00	<1	3.00	2.00	MED PR FU FOR ZN TARG	
160223SS	<5	1.20	30.00	19.00	11.00	114.00	456.00	4.50	56.00	320.00	<1	6.00	6.00	HIGH PR FU TARG - ZN, PB, BA TYPE	
160224SS	200.00	0.80	93.00	41.00	18.00	50.00	186.00	2.50	66.00	70.00	<1	6.00	6.00		
16022555	<5	0.60	23.00	13.00	10.00	24.00	226.00	1.50	30.00	230.00	<1	2.00	2.00	MED PR FU TARG - ZN, PB, 8A TYPE	
16022655	<5	0.60	26.00	17.00	14.00	32.00	284.00	2.00	40.00	480.00	<1	5.00	<2	MED PR FU TARG - ZN, PB, BA TYPE	
160227SS	5.00	0.40	23.00	14.00	20.00	24.00	192.00	1.50	28.00	210.00	<1	3.00	2.00	MED PR FU TARG - ZN, PB, BA TYPE	

 $\frac{1}{2} + \frac{1}{2} + \frac{1}$

TABLE STRSDA1 (CONT): REGIONAL GEOCHEMICAL PROGRAM: STREAM SEDIMENT SAMPLE DESCRIPTIONS: AREA 1, STEWART: HWY 37A VALLEY AREA

.

r 11 r

~1

.

٦.

REF. NO., RECON TARGET AREA:	SAMPLE NAME, NO., LOC, COLOUR: TYPE:	DESCRIPTION:	STREAM PERAMATERS:	GEOLOGY:
20.00 AREA 1	160228SS SD, GR TOP MAP 104 A/4 CRK AT BR E OF CORNICE CRK - 100 m S OF BR ON HWY 37A	FI, MAINLY MAFIC VOL, QTZ, OXID MAT	HI ENERG STR ON OUTWH PL - MOD FL NE	HETRO BO - MAINLY HAZ MAFIC VOL AND ALT VAR
21.00 AREA 1	0 160229SS SD, ORG TOP MAP MUCK, 104 A/4 BLK CRK NEAR W END OF OLD RD AT WHOUT N OF HWY 37A	FI, MAINLY MAFIC VOL, OXID MAT, ORG	HI ENERG STR FL S, WHOUT OLD HWY	MAFIC VOL BO & BREC SOME OXID MAT
22.00 AREA 1	D 160230SS TAL SD, TOP MAP GR, 104 A/4 BRN ABOUT .7 KM WEST ON OLD HWY BELOW JAR/ALUN ZONES, N SIDE OLD HWY 37A	FI-MED, MAF VOL, OXID, MAT, ALT SIL VOL	TAL SLOPE - DRY STR CHAN	BELOW HIST MIN OF HWY ZONE (QTZ, CARB VEIN ZONE WITH AU, CU, PB, ZN, AG
23.0 AREA 1	D 160232SS TAL SD, TOP MAP GR, 104 A/4 BRN ABOUT .65 KM WEST ON OLD HWY BELOW JAR/ALUN ZONES, N SIDE OLD HWY 37A	FI-MED, MAF VOL, OXID, MAT, ALT SIL VOL	TAL SLOPE - DRY STR CHAN	BELOW HIST MIN OF HWY ZONE (QTZ, CARB VEIN ZONE WITH AU, CU, PB, ZN, AG
24.0 AREA 1	0 160234SS SD, GR, TOP MAP BRN 104 A/3 SURPRISE CREEK 200 m N HWY 37A	FI, MAFIC VOL, QTZ, CARB, MIN OX MAT	HI ENERG CRK, MIN SED FL SE	SOME MAFIC VOL BO, OXID MAT

1. 8

,

,

+ 1

.

8	OST RELEVA INITIAL RECO ND/OR GEOF	NT ANALY	TIONS (BASE	LTS (FOR C	OMPLETE R					LYSES)				
	1.00	2.00	3.00	4.00	5.00	6.00	7.00	8.00	9.00	10.00	11.00	12.00	13.00	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES)
SAMPLE NO.	AU ppb	AG ppm	CU ppm	NI ppm	CO ppm	PB ppm	ZN ppm	CD ppm	AS ppm	BA ppm	HG ppm	MO ppm	SB ppm	AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
160228SS	65.00	1.00	123.00	40.00	20.00	38.00	218.00	2.00	130.00	140.00	<1	4.00	2.00	HIGH PR FU TARG
160229SS	15.00	0.80	126.00	55.00	28.00	34.00	308.00	1.50	102.00	180.00	<1	1.00	6.00	HIGH PR FU TARG
													_	
160230TS	15.00	1.00	61.00	69.00	23.00	22.00	134.00	<0.5	156.00	130.00	<1	3.00	<2	MED PR FU TARG - SEE POLY CLAIMS DETAILED FU ACTIVITIES
160232TS	10.00	0.60	44.00	54.00	16.00	16.00	98.00	<0.5	116.00	110.00	<1	1.00	8.00	MED PR FU TARG INCL 160230SS SEE POLY CLAIMS, DETAILED FU ACTIVITIES
160234SS	20.00	0.80	36.00	43.00	15.00	32. 00	210.00	1.00	62.00	120.00	<1	1.00	<2	MED PR FU TARG

a to the test of test

TABLE STRSDA1 (CONT): REGIONAL GEOCHEMICAL PROGRAM: STREAM SEDIMENT SAMPLE DESCRIPTIONS: AREA 1, STEWART: HWY 37A VALLEY AREA

The second s

REF. NO., RECON TARGET AREA:	SAMPLE NAME, NO., LOC, COLOUR: TYPE:	DESCRIPTION:	STREAM PERAMATERS:	GEOLOGY:
25.00 AREA 1	D 160235SS SD, BRN TOP MAP 104 A/4 AMERICAN CREEK N OF HWY 37A 200 m N OF RAMAR BR ON RD TO MT. BOY PROJ	FI-MED, 50% MAFIC VOL, 35% QTZ-FEL, 10% OXID MAT, LIM AND HEM, MIN EPID, CAL, CHL	HI ENERG CRK, MIN SED FLS	REGIONAL HAZ VOL; GOLD SHOWINGS UP STR
26.00 AREA 1	0 160236SS SD, BRN TOP MAP 104 A/4 SMALL TRIB TO AMERICAN CRK ON RAMAR RD ABOUT 350 M N OF HWY 37A	AS 160235SS	SMALL CRK, LOW FL INTO SWAMPY AREA FL SW	REGIONAL HAZ VOL;
27.00 AREA 1	0 160237SS ORG MUC TOP MAP BLK 104 A/4 FROM POND ON N SIDE HWY 37A ABOUT 300 M W OF OLD HWY NE OF ENT PEAK	KFI GR SIL & ORG	POND DRAINS CRKS THAT FLOW THRU HWY AU ZONE TO N FLOW SE	ALT HAZ VOL TO N HOST AU-POLYMET MIN
28.00 AREA 1	D 16023855 SD, TOP MAP GR WH 104 A/4 ON HWY 37A W OF SURPISE CRK IN GRAN INTRUS	FI-CO, FELD QTZ, BIOT, OXID MAT,	CRK OVER WATFALL ON N SHOULDER OF HWY 97 LOW FL, SE	GRAN INTRUS
29.00 AREA 1	0 160042SS SD, BLK TOP MAP 103P/13 CRK @ BRD TO STEW GARB DUMP 50 M UPSTR FR BRD	FI-MED ANG FRAGS BLK VOL, WH QTZ, MIN OXID MAT	HI FLOW TO SW BEAR FAMILY	NO GEOL

Sample No.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 Ni ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITI AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL &GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 pj
16023555	15.00	0.20	79.00	10.00	35.00	26.00	164.00	1.00	38.00	30.00	<1	1.00	2.00	MED PR FU TARG
160236SS	15.00	0.40	49.00	9.00	15.00	28.00	182.00	0.50	50.00	240.00	<1	2.00	2.00	LOW PR FU TARG
160237SS	<5	0.20	86.00	46.00	10.00	54.00	156.00	1.00	64.00	140.00	<1	4.00	<2	MED PR FU TARG SEE POLY CLAIMS, DETAILED FU ACTIVITIES
160238SS	10.00	<0.2	31.00	18.00	6.00	18.00	94.00	0.50	14.00	50.00	<1	5.00	2.00	

TABLE STRSDA1 (CONT): REGIONAL GEOCHEMICAL PROGRAM: STREAM SEDIMENT SAMPLE DESCRIPTIONS: AREA 1, STEWART: HWY 37A VALLEY AREA

the property of the state of the property of the state of the property of the state of the state

REF. NO., SAMPLE NAME RECON NO., LOC, COLC TARGET TYPE: AREA:		STREAM PERAMATERS:	GEOLOGY:
30.00 160398SS SD, B AREA 1 TOP MAP 103P/13 BARNEY CRK S OF STEW SEWAGE TREATMENT	RN FI, ANG FRAGS QTZ, FELD, BLK VOL, MIN OXID MAT	MOD FLOW TO SW	DI IN WAL CRK BED
31.00 160343SS SD, B AREA 1 TOP MAP 103P/13 BARNEY CRK 200 M UPSTR FR 16039	160398SS	BUT WITH 5% OXII	D MADI IN WAL CRK BED
32.00 598776SS SLT S AREA 1 TOP MAP BLK 103P/13 GLACIER CRK 200 M UPSTR FR 598775SS	D SLT FI 40% OXID MAT, 30% QTZ, 30% SILT	MOD FLOW TO SW	ABUND ALT/BRECC FLT IN CRK
33.00 598775SS SLT S AREA 1 TOP MAP BLK 103P/13 GLACIER CRK 50 M UPSTR FR E END OF LOG OPERATION	SD FI ANG VOL 70%, QTZ 10%, OXID MAT 20% SILT	MOD FLOW TO SW	ABUND ALT/BRECC FLT IN CRK SEE 160342RFL

8	TABLE STRSARA1 (CONT); MOST RELEVANT ANALYTICAL RESULTS (FOR COMPLETE RESULTS SEE CHEMEX CERTIFICATES OF ANALYSES) & INITIAL RECOMMENDATIONS (BASED ON ANALYTICAL RESULTS AND GEOLOGICAL ENVIRONMENT) : AND/OR GEOFINE FOLLOW-UP ACTIVITIES:													
SAMPLE NO.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 Ni ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
160398SS	15.00	0.60	41.00	46.00	14.00	32.00	90.00	2.00	80.00	90.00	<1	3.00	<2	MED PR FU TARG
160343SS	10.00	<0.2	31.00	10.00	11.00	8.00	74.00	<0.5	28.00	100.00	<1	3.00	<2	SEE 30. AU STILL PRES
598776SS	15.00	0.80	94.00	58.00	15.00	16.00	196.00	2.50	52.00	70.00	<1	6.00	<2	HIGH PR FU TARG
59877555	20.00	1.00	88.00	62.00	17.00	32.00	170.00	2.00	80.00	60.00	1.00	7.00	2.00	HIGH PR FU TARF SEE 32.

TABLE RKSDA1: REGIONAL GEOCHEMICAL PROGRAM: ROCK SAMPLE DESCRIPTIONS: AREA 1, STEWART: HWY 37A VALLEY AREA

REF. NO., RECON TARGET AREA:	SAMPLE NO., LOC, TYPE:	NAME, COLOUR:	DESCRIPTION:	COMMENTS:
1.00 AREA 1	0 160203RFLT TOP MAP 104 A/4 -3KM UP BIT CRK RD ANG, OXID FLT AT 160202SS COM SAMP	ALT VOL; W: ORG BRN TO BLK F: GRN GR	FI-APHAN-VUGGY, STR FRAC, STR LIM, SOME JAR, MOD MN, WK - MOD CHL, MOD POT ALT, STR SIL, MAINLY GTZ, OXID MAT; SOME CHL VEINLETS SOME CHL VEINLETS BLEBS OXID PY, MIN SPHAL, CHAL 2-3% FI SULF	
2.00 AREA 1	D 180204RFLT TOP MAP 104 A/4 ~2.5KM UP BIT CRK RD; ANG, OXID FLT COMP SAMP	ALT VOL; W: ORG BRN TO BLK F: WH - GRN GR	AS 160203RFLT, STRONGER SIL, CHL, MN, WELL SHEARED IN PLACES MIN PY AS FI DISSEM VEINLETS	ι.
3.0 AREA 1	0 180205ROC TOP MAP 104 A/4 ~2.5KM UP BIT CRK RD AT 106204RFLT OUTCRP COMP SAMP	ALT VOL TO HNBLD PORPH; W: GR GRN TO ORG BRN F: WH - GRN GR-BLK	ALT VOL: FF-APHAN, LOC WELL OXID, MN; SL; SOME WK-MOD CARB; 1-4% FI DISSE PY & IN VEINLETS HNBLD PORPH: EARTHY - FI GR - POI UP TO 0.5 CM HNBLD IN SIL MATRIX; WK - 1 1-2% DISSEM FY & II WELL FR, JOINTS 33 WELL LIM, MN ON SU	M PHENOS MOD CARB, V VEINLETS Jöbe;
4.0 AREA 1	0 160209RFLT TOP MAP 104 A/4 DRY CRK JUST W OF CLEMENTS LAKE AT 160206SS COMP SAMP	ALT DIOR; F:BUFF WH TO ORG BRN F: GRY WH BLK	CO GR DI: FELD, QTZ BIOT IN SIL, CAR MATRIX; GRAN TO MICAEOUS TEXT; WELL LIM AND LOC WELL LIM AND LOC WELL CARB ON SUR MIN PATCHES EPID, LOC WELL SER; 1-344 PY, MIN CPY	F;
5.0 AREA 1	0 180210RFLT TOP MAP 104 A/4 DRY CRK JUST W OF CLEMENTS LAKE ABOUT 50 M S OF 180208SS COMP SAMP	ALT DIOR W:ORG BRN F:GR WH BLK	FI-APHAN-CO; LOC BREC; GRAN-SUG-VI TEXT; WELL LIM ON W SURF; STR SIL WELL SER, LOC SER FRAGS TO 1.5 CM; LOC MOD CARB & W FRAC CW OT 1.5 CM; VEINS, UP TO .5CM, SOME CW DISSEM S PY, CPY; GEN 1-2% F DISSEM PY	, ALT ELL I TOUR IPHAL,
6.0 AREA 1	0 160212RFLT TOP MAP 104 A/4 DRY CRK JUST W OF CLEMENTS LAKE ABOUT 50 M S OF 160208SS	Dior W:org Brn F:gr WH BLK	Co GR, GRAN TEXT, QTZ, FELD, BIOT, LOC MOD CARB, BIOT; GEN 1-2% FI DI PY	

& I	TABLE RKSARA1; MOST RELEVANT ANALYTICAL RESULTS (FOR COMPLETE RESULTS SEE CHEMEX CERTIFICATES OF ANALYSES) & INITIAL RECOMMENDATIONS (BASED ON ANALYTICAL RESULTS AND GEOLOGICAL ENVIRONMENT) : AND/OR GEOFINE FOLLOW-UP ACTIVITIES:													INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES		
SAMPLE NO.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 NI ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12:00 MO ppm	13.00 SB ppm	AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 pbb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm		
160203RFL	25.00	0.20	133.00	28.00	21.00	4.00	18.00	<0.5	116.00	90.00	<1	9.00	<2	FU WITH WK ON POLY CLAIMS		
160204RFL	15.00	0.20	107.00	8.00	8.00	6.00	22.00	<0.5	<2	30.00	1.00	7.00	<2	FU WITH WK ON POLY CLAIMS		
160205ROC	40.00	<0.2	243.00	25.00	23.00	<2	22.00	<0.5	<2	10.00	1.00	12.00	<2	FU WITH WK ON POLY CLAIMS		
160209RFL	20.00	0.20	375.00	16.00	16.00	2.00	2050.00	21.50	10.00	140.00	<1	6.00	<2	FU WITH WK ON POLY CLAIMS		
160210RFL	<5	<0.2	222.00	8.00	23.00	<2	30.00	<0.5	<2	90.00	<1	7.00	<2	FU OF STR SED RESULTS REQD		
1 6 0212RFL	<5	<0.2	218.00	7.00	12.00	<2	38.00	<0.5	<2	450.00	<1	4.00	<2	FU OF STR SED RESULTS REQD		

TABLE RKSDA1 (CONT): REGIONAL GEOCHEMICAL PROGRAM: ROCK SAMPLE DESCRIPTIONS: AREA 1, STEWART: HWY 37A VALLEY AREA

REF. NO., RECON TARGET AREA:	Sample No., Loc, Type:	NAME, COLOUR:	DESCRIPTION:	COMMENTS:
7.00 AREA 1	160214RFLT TOP MAP 104 A/4 CRK S OF CLEMENTS L SAMP IN OLD RD AT 160213SS	ALT DIOR W:ORG BRN F:GR WH BLK	FI GR, GR TEXT, WELL SIL, SER, WELL LIM ON W SURF; QTZ, FELD, SER, B IOT SOME BREC, FRAGS OVER 3 CM, WITH EPII GRY QTZ, BLEBS, DISSEM PY; SOME MO CARB, WELL FRACT, C QTZ CARB VEINING	D, D
8.00 AREA 1	160216RFLT TOP MAP 104 A/4 CRK S OF CLEMENTS L SAMP IN OLD CRK BED AT 160215SS	ALT DIOR? W: ORG BRN F: GR-BLK-ORG BRN	FI GR, GRAN TEXT; WELL SIL, WELL LIM ON SURF, WELL FRAC PY, LIM, MN IN FRACS, QTZ, FELD, BIOT, MOD LOC WELL SER; TR S IN FRACS; 1-2% DISSE	CARB, PHAL
9.00 AREA 1	160231RFLT TOP MAP 104 A/4 RFLT IN DRY STR CHAN NEAR 160230SS	ALT MAFIC VOL, W:ORG BRN F: PK GR	FI GR, SUG TEXT, WELL LIM ON SUR, WELL SIL, MOD CARB, WELL SER, 1-3% PY LO PY, TR SPHAL IN VUG: AND SMALL FRACS	DC;
10.00 AREA 1	0 160233RFLT TOP MAP 104 A4 RF IN DRY STR CHAN NEAR 160232SS	ALT MAFIC VOL, W:ORG BRN F: PK GR	AS 160231RFLT, BUT MORE SIL, FRAC, EPIC SULFS (MAINLY PY) IN FRACS ASSOC WITH QTZ CARB.	
AREA 1	0 160239ROC AT 160238SS W OF SURPRISE CRK ON HWY 37 0 160244RCHECK CANMET CH3	GRAN INTRU W:ORG BRN WH FR:WH	FI-CO, SUGARY TO PORHY TEXT, FELD, QTZ, MINOR BLEBS BIOT, OXID PY; SOME SURF WLL LIM, SOME WELL FRAC WI PRYRITIC VEINLETS.	
13.00 AREA 1	0 160342RFLT TOP MAP 103P/13 GLACER CRK AT 596776SS	VOL BRECC W: ORG BRN WH F: GRY, ORB BRN	FI-CO, WELL SIL, LIM C SUG TEXT, SOM WEL STWK QTZ CARB VNS SOM LOC WEL CHL, S VUG SECTS; 70% QTZ 20% QTZ, 5% EUHED & IN FRACS AND VN T MIN SPHAL WITH PY	DEV 3 TO .3 CM, 00M 2; 5% CARB, PY IN VUGS,

6	OST RELEVA	NT ANALY	TIONS (BAS	LTS (FOR (COMPLETE	RESULTS SI	EE CHEMEX GEOLOGIC,	CERTIFICA AL ENVIRON	TES OF ANA (MENT) :	NLYSES)				
AI SAMPLE NO.	ND/OR GEOF 1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 NI ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
160214RFL	<5	0.20	91.00	5.00	16.00	6.00	38.00	<0.5	14.00	220.00	<1	10.00	<2	FU OF STR SED RESULTS REQD
160216RFL	<5	<0.2	14.00	7.00	14.00	~2	70.00	<0.5	<2	60.00	<1	<1	2.00	
160231RFL	<5	0.20	20.00	5.00	14.00	<2	36.00	1.00	10.00	180.00	<1	<1	2.00	
160233RFL	<5	0.20	37.00	66.00	14.00	<2	70.00	<0.5	16.00	180.00	<1	<1	<2	FU WITH WORK ON POLY CLAIMS
160239ROC	<5	0.20	5.00	<1	<1	38.00	24.00	0.50	14.00	10.00	<1	1.00	<2	
160244RCF	1320.00	3.20	7930.00	65.00	202.00	6.00	138.00	1.00	122.00	<10	< 1	<1	6.00	
160342RFL	185.00	3.00	24.00	21.00	4.00	232.00	822.00	8.00	30.00	200.00	7.00	<1	<2	HIGH PR FU TARG

the area of the Red Mountain Cu-Au deposit. However, the coarse rock fraction of sample 160201SS was particularly interesting, with the presence of some favourably altered felsic volcanic rocks. The program was extended up the Bitter Creek Valley, and Area 1 sediment samples 2-4 (Table A) located a similar, but more localized polymetallic signature, with Cu and Pb values ranging up to 1325 ppm and 372 ppm, respectively. Initial rock samples (Tables RKSDA1, RKSDAR1) gave indications of anomalous Au and Cu.

As a result, the Red Claim Group (28 units) was staked (Map 1; many historic claims in the area had recently lapsed), and follow-up sediment samples (Red Claims 1-4, Table A) continued to confirm the target. Follow-up rock samples also contained some anomalous Au, Cu and Ni values (Tables RCFURKSDA1, RCFURKSARA1). Detailed follow-up work appears to have located an old mill and shaft on the property. Two soil samples, possibly muck or dump material, returned interesting Au, Ag, Cu and Pb values (Tables RCFUSOSDAI, RCFUSOARA1). The historical and current significance of the facilities requires detailed research; however, the stream sediment samples and favourable geology are indicative of an important exploration target.

9.A1.b. POLY CLAIMS:

The Poly Claim Group (Entrance Peak area; 48 units; Map 1) was also staked in Area 1, primarily on the presence of favourably altered (silicified, sulfidized, carbonatized) float rock and oxidized soils located between old Hwy 37A and the current Hwy 37A. The specific area of interest is located in tag alders, but was apparently exposed during historic road construction activities.

As shown in Tables STRSDAI and STRARAI, initial stream sediment samples (160230SS, 160232SS) from the area had some interesting anomalous contents, including Au, Ag, Cu, Ni, Pb and As. The follow-up soil samples (Map 1; Tables PCFUSOSDA1 and PCFUSOSARAI), also with anomalous values (Au, Ag, Cu, Ni, Pb, Zn, Cd, Ba, etc), and to some extent float rock samples (Tables PCFURKSDA1 and PCFURKSARA1) taken on a small grid, may reflect the southern extension of the Hwy Zone mineralization. The zone is located about 800 m to the north on the mountain side and comprises intensely altered and fractured, silica flooded, carbonatized Hazelton volcanic rocks mineralised with veins and disseminations of galena, sphalerite, arsenopyrite and chalcopyrite. The zone was discovered in 1992 via float boulders, which contained up to 56.85 g Au/t, 520 g Ag/t and 15.2% Zn (Molloy, 1992).

In addition to the aforementioned claim groups, it is apparent that Area 1 offers numerous follow-up targets, many indicative of mineralization, which has yet to be discovered. The results are particularly interesting: only about 70% of the target streams could be sampled because of the adverse 1999 field conditions.

TABLE RCFUSTRSDA1: REGIONAL GEOCHEMICAL PROGRAM: FOLLOW-UP STR SED SAMPLE DESCRIPTIONS: AREA 1, RED CLAIMS, BITTER CRK VALLEY

exercise second s

REF. NO.,SAMPLENAME,DESCRIPTION:STREAMGEOLOGY:CLAIMNO., LOC,COLOUR:PERAMATERS:TARGETTYPE:AREA:

1.00 RED CLAIMS	160332SS CL, SD 60 M S OF ORG BRN 160207SS, DITCH ON E SIDE OF BITTER CRK RD	CL, FI - CO 10% CL 55% FI, ORG BRN OXID MAT 30% GRY, BLK, ANG VOL & OXID MAT 5% GRY, WH QTZ	LOW FLOW NORTH	ALT FELSIC VOL
2.00 RED CLAIMS	160335SS CL, SD 75 M S OF ORG BRN 160207SS, DITCH ON E SIDE OF BITTER CRK RD	CL, FI - CO 10% CL 40% FI, ORG BRN OXID MAT 45% GRY, BLK, ANG VOL & OXID MAT 5% GRY, WH QTZ	LOW FLOW NORTH	ALT FELSIC VOL

3.00) 160336SS SD, BRN	FI - CO	LOW FLOW	ALT FELSIC VOL
RED	30 M S OF	80% OXID ANG FRAG	IS NORTH	
CLAIMS	160207SS,	5% QTZ, 15% HETRC		
	DITCH	FRAGS OXID MAT,		
	ON E SIDE	AND GRY GR VOL		
	OF BITTER			
	CRK RD			

4.00 160339SS AS 160207SS RED RETAKE OF CLAIMS 160207SS

ON BITTER CRK RD

8	IOST RELEVA INITIAL RECO ND/OR GEOF	NT ANALY	TIONS (BASI	LTS (FOR C						llyses)				
SAMPLE NO.	1.00 AU ppb	2.00 Ag ppm	3.00 CU ppm	4.00 Ni ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm A((BASED ON GEOLOGICAL & GEOCHEMICAL PA 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
160332SS	215.00	2.40	965.00	19.00	25.00	36.00	84.00	<0.5	46.00	190.00	<1	5.00	<2	DETAILED FU ON RED CLAIMS REQD
160335SS	45.00	1.60	1130.00	25.00	29.00	62.00	130.00	0.50	40.00	100.00	<1	6.00	6.00	DETAILED FU ON RED CLAIMS REQD
160336SS	530.00	2.00	2950.00	31.00	35.00	58.00	182.00	2.00	46.00	280.00	<1	4.00	<2	DETAILED FU ON RED CLAIMS REQD
16033988	60.00	17.00	2040.00	36.00	58.00	1020.00	764.00	5.00	36.00	160.00	<1	9.00	8.00	DETAILED FU ON RED CLAIMS REQD

and a second second

TABLE RCFURKSDA1: REGIONAL GEOCHEMICAL PROGRAM: FOLLOW-UP ROCK SAMPLE DESCRIPTIONS: AREA 1, RED CLAIMS, BITTER CRK VALLEY

· ·

٦

• •

. .

`

.

.

.

•

7 X 7

`

1

٦

•

1 1

1 -

٦

REF. NO., CLAIM TARGET AREA:	SAMPLE NO., LOC, TYPE:	NAME, COLOUR:	DESCRIPTION:	GEOLOGY:
1.00 RED CLAIMS	160330RFLT AT RUB PILE, 60 M S OF 160207SS, 20 M EAST OF BIT CRK RD	RHY BRECC; W:OB F:GRY, GR, PK	FI - APHAN, SUG, BRECC TEXT, CONCOID FRACT, FI DISSEM, SMALL FR FIL TO SMAL BLEBS SPHAL, PY, TR CPY, BORN; SOM SULF VNS TO 0.5 M VAR COLOUR FR BRECC FRAGS - TO 8 CM OBSER IN RUB	ALT FELSIC VOL
2.00 RED CLAIMS	160331RFLT AT RUB PILE, 60 M S OF 160207SS, 20 M EAST OF BIT CRK RD	RHY BRECC; W:OB F:GRY, GR, PK WH	FI - APHAN, DACITIC TO RHY TO BRECC; FRAGS 8 CM, GEN ANG; SOM GTZ ANK VI 4.00 FRAGS OF BLK TO PK TO GR (FUSCHITIC) SIL MAT CW FI DISSEM OF PY, SPHAL, CPY, BORN; ALSO AS FR FILS, SMAL VNS, & AS BLEBS GEN 2-4% SULFS, GEN INCR IN AREAS OF WH QTZ VN & BRECC FRAGS	ALT FELSIC VOL
3.00 RED CLAIMS	0 160333ROC AT OC 60 M S OF 160207SS, E OF BIT CRK RD OVER 1 M	RHY BRECC; W:08 F:GRY, GR	FI - APHAN, SUG - BREC TEXT, ANG FRAGS TO 6 CM, INCL PK VAR, FI DISSEM, BLEBS PY SPHAL, CPY TO 2-3%; SOM SULFS AS FRAC FILS, & AS FI PATCHES ON FRACS	ALT FELSIC VOL
4.00 RED CLAIMS	9 160334ROC AT OC 75 M S OF 160207SS, E OF BIT CRK RD COMP SAMP	RHY BRECC; W:OB F:GRY, GR, WH, PK	AS 160331RFLT, BUT WITH WH QTZ VN C/W SOM BANDING, TO 2 CM; BRECC FRAGS TO 6 CM; GEN 2-3 % SULFS	ALT FELSIC VOL
5.00 RED CLAIMS	0 160337RFLT AT 12 M S OF 160207SS, E OF BIT CRK RD COMP SAMP	RHY BRECC; W:OB F:GRY, WH	APHAN, RHY BRECC, FRAGS TO 5 CM, SOM GRY BLK QTZ VN TO STRING PY, SPHAL, CPY, SOM FRAC SURFS WITH FI DISSEM OF SPHAL; GEN 3-4% SULFS	ALT FELSIC VOL
6.00 RED CLAIMS	0 160338RFLT AT 160207SS, E OF BIT CRK RD COMP SAMP	RHY BRECC; W:OB F:GRY, GR	APHAN, RHY, RHY BRECC, FRAGS 2-3 CM, ONE SULF FRAC FIL TO 0.3 CM, WITH BLK SPHA, TR CPY	ALT FELSIC VOL
7.00) 160340A CANMET CHECK CH3			

81	TABLE RCFURKSARA1; MOST RELEVANT ANALYTICAL RESULTS (FOR COMPLETE RESULTS SEE CHEMEX CERTIFICATES OF ANALYSES) & INITIAL RECOMMENDATIONS (BASED ON ANALYTICAL RESULTS AND GEOLOGICAL ENVIRONMENT) : AND/OR GEOFINE FOLLOW-UP ACTIVITIES:													
SAMPLE NO.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 NI ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AY (BASED ON GEOLOGICAL & GEOCHEMICAL PA 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
160330RFL	10.00	0.20	325.00	54.00	15.00	2.00	14.00	<0.5	4.00	10.00	<1	6.00	<2	DETAILED FU ON REC CLAIMS REQD
160331RFL	<5	0.20	302.00	49.00	20.00	<2	24.00	<0.5	10.00	30.00	<1	3.00	<2	DETAILED FU ON REC CLAIMS REQD
160333ROC	25.00	<0.2	91.00	56.00	10.00	<2	8.00	<0.5	<2	10.00	<1	2.00	<2	DETAILED FU ON REC CLAIMS REQD
160334ROC	20.00	<0.2	31.00	87.00	9.00	<2	18.00	<0.5	118.00	30.00	<1	<1	<2	DETAILED FU ON REC CLAIMS REQD
1 6 0337RFL	<5	0.20	393.00	77.00	22.00	<2	10.00	<0.5	4.00	<10	<1	3.00	2.00	DETAILED FU ON REC CLAIMS REQD
160338RFL	<5	0.20	109.00	94.00	14.00	6.00	16.00	<0.5	66.00	<10	<1	<1	4.00	DETAILED FU ON REC CLAIMS REQD
160340A	1445.00	3.00	7800.00	69.00	189.00	<2	128.00	0.50	130.00	<10	<1	<1	2.00	

A 1997 THE REPORT OF THE REPORT

TABLE RCFUSOSDA1: REGIONAL GEOCHEMICAL PROGRAM: FOLLOW-UP SOIL SAMPLE DESCRIPTIONS: AREA 1, RED CLAIMS, BITTER CRK VALLEY

,

GEOLOGY:

REF. NO., SAMPLE NAME, DESCRIPTION: CLAIM NO., LOC, COLOUR: TARGET TYPE: AREA:

1 3 1

1.00 160329SO MUCK? **CL - PEBS** ALT FELSIC VOL RED AT 110 M S CL GRAV OF ANG RHY FRAGS CLAIMS OF YEL BRN WITH DISSEM PY, 160207SS, GRY SPHAL, CPY 25 M E OF **RD AT MILL** MUCK LOAD RAMP 2.00 160340SO CL SD CL CO ALT FELSIC VOL

RED AT 60 M S ORG BRN 20% CL, 80% PEBS, CLAIMS OF MAINLY ANG 160207SS, OXID MATERIAL 20 M E OF RD AT OLD ORE PILE?

	MOST RELEV & INITIAL REC AND/OR GEO	ANT ANALY	TIONS (BAS	LTS (FOR (LYSES)				
SAMPLE NO.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 NI ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm A(BASED ON GEOLOGICAL & GEOCHEMICAL PA
16032950	930.00	14.20	911.00	3.00	7.00	98.00	36.00	<0.5	106.00	70.00	<1	37.00	<2	10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm ÅS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
10002300	500.00	14.20	311.00	0.00	1.00	50.00	00.00	10.0	100.00	10.00	-1	01.00	·•	

<1 9.00

<2

× ,

DETAILED FU ON REC CLAIMS REQD

a second and the second s

the first first

15.00 10.00 88.00 50.00 0.50 44.00 160.00

160340SO 525.00 4.60 989.00

TABLE PCFUSOSDA1:	
REGIONAL GEOCHEMICAL PROGRAM:	
FOLLOW-UP SOIL SAMPLE DESCRIPTIONS	AREA 1, POLY CLAIMS, ENTRANCE PEAK AREA

F. T. T. T. T. T. S. F. N. S. N. F. N F. N. F

REF. NO., CLAIM TARGET AREA:	NO., LOC, C	VAME, COLOUR, HORIZ, DEPTH	DESCRIPTION:	COMMENTS	GEOLOGY:
1.00 POLY CLAIMS	160261SO S TOP MAP C 104 A/4 E HWY ZONE DETAILED AREA N OF HWY 37A, N ENTRANCE PK; GRID LOC 85 M N 7 M E	ORG BRN, 3, 20 CM	FI-SILT MIN ORG, SOME OXID FRAGS	HIST HWY ZONE POLYMETAL MIN LOCATED ABOUT 400 M TO NORTH OF SOIL GRID	ALT HAZ VOL & TERT GRAN INTRUS- SEE ROCK SAMPLE DESCRIPT
2.00 POLY CLAIMS	160267SO S TOP MAP C 104 AV4 E HWY ZONE DETAILED AREA N OF HWY 37A, N ENTRANCE PK; GRID LOC 85 M N 12 M E	ORG BRN 3, 15 CM	FI-SILT MIN ORG, SOME FRAGS ALT ROCK E.G., 160262	HIST HWY ZONE POLYMETAL MIN LOCATED ABOUT 300 M TO NORTH OF SOIL GRID	ALT HAZ VOL & TERT GRAN INTRUS
3.00 POLY CLAIMS	160268SO S TOP MAP 104 AV4 HWY ZONE DETAILED AREA N OF HWY 37A, N ENTRANCE PK; GRID LOC 88 M N	ORG BRN B, 20 CM OF	FI-SILT MIN ORG, SOME FRAGS ALT ROCK E.G., 160262	HIST HWY ZONE POLYMETAL MIN LOCATED ABOUT 300 M TO NORTH OF SOIL GRID	ALT HAZ VOL & TERT GRAN INTRUS
4.00 POLY CLAIMS	160270SO S TOP MAP (104 A/4 E HWY ZONE DETAILED AREA N OF HWY 37A, N ENTRANCE PK; GRID LOC 80 M N	ORG BRN B, 24 CM	FI-SILT MIN ORG, SOME OXID FRAGS E.G., 160262	HIST HWY ZONE POLYMETAL MIN LOCATED ABOUT 300 M TO NORTH OF SOIL GRID	ALT HAZ VOL & TERT GRAN INTRUS
5.00 POLY CLAIMS	0 16027450 3 TOP MAP (104 AV4 1 HWY ZONE DETAILED AREA N OF HWY 37A, N ENTRANCE PK; GRID LOC 74 M N	ORG BRN, B, 20 CM	FI-SILT MIN ORG	HIST HWY ZONE POLYMETAL MIN LOCATED ABOUT 300 M TO NORTH OF SOIL GRID	ALT HAZ VOL & TERT GRAN INTRUS

8.	INITIAL RECO	NT ANALYI	ABLE PCFUS TICAL RESUL TIONS (BASE W-UP ACTIV	LTS (FOR CI						LYSES)				
Sample No.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 Ni ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DÉTAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
160261SO	40.00	0.60	242.00	29.00	34.00	54.00	258.00	1.50	72.00	170.00	<1	6.00	4.00	DETAILED FU ON POLY CLAIMS REQD
160267SO	30.00	1.00	229.00	31.00	37.00	56.00	300.00	2.00	66.00	180.00	<1	5.00	6.00	DETAILED FU ON POLY CLAIMS REQD
160268SO	45.00	0.60	256.00	26.00	35.00	56.00	322.00	2.00	90.00	230.00	<1	4.00	<2	DETAILED FU ON POLY CLAIMS REQD
16027050	45.00	0.40	264.00	43.00	35.00	36.00	288.00	2.00	62.00	180.00	<1	7.00	2.00	DETAILED FU ON POLY CLAIMS REQD
16027450	40.00	0.40	273.00	47.00	33.00	52.00	318.00	1.50	68.00	180.00	2.00	6.00	<2	DETAILED FU ON POLY CLAIMS REQD

TABLE PCFUSOSDA1 (CONT): REGIONAL GEOCHEMICAL PROGRAM: FOLLOW-UP SOIL SAMPLE DESCRIPTIONS: AREA 1, POLY CLAIMS, ENTRANCE PEAK AREA

REF. NO., CLAIM TARGET AREA:		NAME, COLOUR, HORIZ, DEPTH	DESCRIPTION:	COMMENTS	GEOLOGY:
6.0	0 160275SS CHECK SA	MPLE AS 1	60201SS		
7.00 POLY CLAIMS		E F N OF E		HIST HWY ZONE POLYMETAL MIN LOCATED ABOUT 300 M TO NORTH OF SOIL GRID	ALT HAZ VOL & TERT GRAN INTRUS
8.00 POLY CLAIMS		E F N OF E		HIST HWY ZONE POLYMETAL MIN LOCATED ABOUT 300 M TO NORTH OF SOIL GRID	ALT HAZ VOL & TERT GRAN INTRUS
9.00 POLY CLAIMS		E F N OF E	FI, SILT, MIN ORG, SOME FRAGS ALT ROCK E.G., 160262	HIST HWY ZONE POLYMETAL MIN LOCATED ABOUT 300 M TO NORTH OF SOIL GRID	ALT HAZ VOL & TERT GRAN INTRUS

8	OST RELEVA INITIAL REC ND/OR GEOF 1.00 AU	NT ANALY	TICAL RESU	ED ON ANAL	COMPLETE I					ALYSES) 10.00 BA	11.00 HG	12.00 MO	13.00 S8	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL.
	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
160275SS	80.00	0.40	139.00	50.00	20.00	30.00	196.00	2.00	90.00	80.00	1.00	6.00	2.00	то рипто, тоо риптан, трипос, то рипто, тео рипос, триппо, 2 рипео, 2 рипос, 2 рипос,
160277SO	25.00	0.60	202.00	28.00	29.00	44.00	260.00	1.50	68.00	220.00	<1	6.00	4.00	DÉTAILED FU ON POLY CLAIMS REQD
160281SO	25.00	0.40	284.00	34.00	29.00	56.00	312.00	1.50	76.00	210.00	41	7.00	6.00	DETAILED FU ON POLY CLAIMS REQD
160284SO	60.00	0.60	343.00	29.00	37.00	62.00	350.00	1.50	86.00	220.00	<1	9.00	2.00	DETAILED FU ON POLY CLAIMS REQD

And a construction of second second

TABLE PCFURKSDA1: REGIONAL GEOCHEMICAL PROGRAM: FOLLOW-UP ROCK SAMPLE DESCRIPTIONS: AREA 1, POLY CLAIMS, ENTRANCE PEAK AREA

.

•

. . .

,

.

1

`

and the second second

v

. . . .

1 14

.

* * *

REF. NO., CLAIM TARGET AREA:	SAMPLE NO., LOC, TYPE:	NAME, COLOUR,	DESCRIPTION:
1.00 POLY CLAIMS	0 160262RFLT TOP MAP 104 A/4 HWY ZONE S, DETAILED AREA N OF HWY 37, N OF ENTRANCE PK; GRID LOC 85 M N 7 M E	ALT ROCK - DISCOV BO: W:ORG BRN F:GR-GRY-BUFF WH	FI-CO-LOC BREC, GRAN TO SUG TO VUGGY TO BRECC TEXT V WELL SIL, WELL CHL, SER WELL LIM ON SUR & FRACS; MAINLY GRY QTZ, IN BLK CHL AND SULF MAT, FI DISSEM PY, TR SPHAL,, TR CPY (1-4%); SOME LARG BLEBS SULF IN VUGS, FRAC FILL, SOME WH QTZ FRAGS WITH SULF BLEBS.
2.00 POLY CLAIMS	D 160263RFLT TOP MAP 104 A/4 HWY ZONE S, DETAILED AREA N OF HWY 37, N OF ENTRANCE PK; GRID LOC 88 M N	ALT ROCK - W:ORG BRN F: GR GRY	MAINLY BRECC TEX V WELL SIL, WELL CHL, SER, SIL, MAINLY GRAN GREY QTZ & FRAGS IN CHL/SUL & NET TEXT MATRIZ; ALSO WH QTZ & FUSCHITE VEINS UP TO 1.5 CM WITH PY, TR SPHAL, TR TR CFY; LOC PK POT ALT COATINGS; FRAGS WH QTZ WITH LARG BLEBS SULFS; OVERALL 5-7% SULF
3.00 POLY CLAIMS	D 160264RFLT TOP MAP 104 A/4 HWY ZONE S, DETAILED AREA N OF HWY 37, N OF ENTRANCE PK; GRID LOC 88 M N	ALT ROCK - W:ORG BRN F: GR GRY BLK	FI-CO TO BRECC TEX V WELL SIL, WELL SER, GR WH QTZ IN BLK CHL/SULF MATRIX: 2-3% SULF; SOME LATTER VEINS CW QTZ, SPHAL, SER; SOME QTZ VEINS UP TO .5 CM WITH BLEBY SULFS; SOME COARSE BLEBS SULF GEN; LOC PATCHES K ALT; PATHES GR FUSCHITE WITH LARGE BLEBS PY, TR SPHAL, CPY OVERALL, 3-5% SULFS
4.00 POLY CLAIMS	D 160265RFLT TOP MAP 104 A/4 HWY ZONE S, DETAILED AREA N OF HWY 37, N OF ENTRANCE PK; GRID LOC 85 M N	ALT ROCK - W:ORG BRN F: GR GRY BLK	FR GR BLK CHL MATRIZ CW LARG WH QTZ FRAGS WITH BLEBS PY, TR SPHAL, GAL; MOR BREC, MOR CHL THAN ABOVE SAMPLES 2-4% SULFS

8	OST RELEVA INITIAL RECO	NT ANALY	TIONS (BASE	LTS (FOR C	OMPLETE F	RESULTS SE	E CHEMEX GEOLOGIC	CERTIFICA AL ENVIRON	TES OF ANA IMENT) :	NLYSES)				
SAMPLË NO.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 NI ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL &GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
160262RFL	35.00	0.60	262.00	12.00	22.00	12.00	98.00	0.50	<2	50.00	<1	23.00	<2	DETAILED FU ON POLY CLAIMS REQD
160263RFL	10.00	0.60	242.00	12.00	25.00	4.00	114.00	1.00	10.00	70.00	<1	11.00	<2	DETAILED FU ON POLY CLAIMS REQD
160264RFL	15.00	0.40	236.00	11.00	22.00	6.00	98.00	0.50	6.00	30.00	<1	<1	6.00	DETAILED FU ON POLY CLAIMS REQD
160265RFL	15.00	0.20	143.00	10.00	24.00	<2	128.00	0.50	6.00	180.00	<1	2.00	10.00	DETAILED FU ON POLY CLAIMS REQD

The second se

TABLE PCFURKSDA1 (CONT): REGIONAL GEOCHEMICAL PROGRAM: FOLLOW-UP ROCK SAMPLE DESCRIPTIONS: AREA 1, POLY CLAIMS, ENTRANCE PEAK AREA

the second se

REF. NO., CLAIM TARGET AREA:	SAMPLE NO., LOC, TYPE:	NAME, COLOUR,	DESCRIPTION:
5.00 POLY CLAIMS	160266RFLT TOP MAP 104 A/4 HWY ZONE S, DETAILED AREA N OF HWY 37, N OF ENTRANCE PK; GRID LOC 85 M N 12 M E	AS 180282FLT WITH LARK BLEBS, PATCHES PY,	G FRAGS WH QTZ CW TR SPHAL, GAL
6.00 POLY CLAIMS	100209RFLT TOP MAP 104 A/4 HWY ZONE S, DETAILED AREA N OF HWY 37, N OF ENTRANCE PK; GRID LOC 80 M N 2 M E	AS 160263RFLT BUT WEI VUGGY SULFS	LL FRACT WITH
7.00 POLY CLAIMS	0 180271RFLT TOP MAP 104 A/4 HWY ZONE S, DETAILED AREA N OF HWY 37, N OF ENTRANCE PK; GRID LOC 80 M N 2 M E	AS 160262FRLT	
8.00 POLY CLAIMS	0 160272RFLT TOP MAP 104 A/4 HWY ZONE S, DETAILED AREA N OF HWY 37, N OF ENTRANCE PK; GRID LOC 75 M N	ALT ROCK - W:ORG BRN F: GRY BLK BLK	FR GR BLK CHL MATRIZ CW LARG WH QTZ FRAGS WITH BLEBS PY, TR SPHAL, GAL; MOR BREC, LOC WELL FRAC, 2-4% SULFS, MAINLY PY IN NAR VEINLETS AND AS LARG BLEBS IN WH QTZ
9.00 POLY CLAIMS	D 180273RFLT TOP MAP 104 A/4 HWY ZONE S, DETAILED AREA N OF HWY 37, N OF ENTRANCE PK; GRID LOC 75 M N	AS160272 BUT WITH 1 CM WIDE CPY	OTZ VEIN WITH PY, TR SPHAL, GAL

		T/	ABLE POFUE	RKSARA1 (C	ONT)									
M	INITIAL REC	ANT ANALY	TICAL RESU	LTS (FOR C	COMPLETE F		EE CHEMEX			LYSES)				
Â	ND/OR GEOF	INE FOLLO	W-UP ACT	VITIES:			02020010							
SAMPLE NO.	1.00 AU	2.00 AG	3.00 CU	4.00 NI	5.00 CO	6.00 PB	7.00 ZN	8.00 CD	9.00 AS	10.00 BA	11.00	12.00	13.00	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES)
	ppb	ppm	HG ppm	MO ppm	SB ppm	AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)								
160266RFL	20.00	0.20	159.00	8.00	22.00	<2	152.00	0.50	10.00	210.00	<1	1.00	<2	DETAILED FU ON POLY CLAIMS REQD
160269RFL	20.00	0.40	166.00	9.00	21.00	<2	94.00	0.50	10.00	60.00	<1	12.00	<2	DETAILED FU ON POLY CLAIMS REQD
160271RFL	<5	0.20	201.00	12.00	27.00	8.00	122.00	1.00	12.00	140.00	<1	3.00	<2	DETAILED FU ON POLY CLAIMS REQD
160272RFL	10.00	0.40	174.00	10.00	23.00	<2	108.00	1.00	8.00	100.00	<1	<1	<2	DETAILED FU ON POLY CLAIMS REQD
160273RFL	40.00	0.20	128.00	12.00	23.00	<2	132.00	<0.5	6.00	180.00	۲۱	<1	<2	DETAILED FU ON POLY CLAIMS REQD

	REGIONAL GEOCHEM		AREA 1, POLY CLAIMS, ENTRANCE PEAK AREA
REF. NO., CLAIM TARGET AREA:	SAMPLE NO., LOC, TYPE:	NAME, COLOUR,	DESCRIPTION:
10.00 POLY CLAIMS	160276RFLT TOP MAP 104 A4 HWY ZONE S, DETAILED AREA N OF HWY 37, N OF ENTRANCE PK; GRID LOC 25 M N	AS160272 BUT WITH LARG PATC SULFS IN QTZ FRAC F	
11.00 POLY CLAIMS	0 160278RFLT TOP MAP 104 A4 HWY ZONE 8, DETAILED AREA N OF HWY 37, N OF ENTRANCE PK; GRID LOC 25 M N	AS160276FLT	
12.0 Poly Claims	0 160279RFLT TOP MAP 104 A4 HWY ZONE S. DETAILED AREA N OF HWY 37, N OF ENTRANCE PK; GRID LOC 25 M N	ALT ROCK W:ORG BRN F:GR GRY	MED-CO GR, GRAN TEXT, MAINLY GR GRY QTZ, SOME CHL MATRIX, WELL SIL, MOD CHL, WELL SER, SOME PATCHES PK K ALT, PY, OFTEN BLEBLY, IN FUSCHITIC QTZ
13.0 POLY CLAIMS	0 180280RFLT TOP MAP 104 A/4 HWY ZONE S, DETAILED AREA N OF HWY 37, N OF ENTRANCE PK; GRID LOC 15 M N	AS 160279RFLT	
14.0 Poly Claims	0 180282RFLT TOP MAP 104 A/4 HWY ZONE S, DETAILED AREA N OF HWY 37, N OF ENTRANCE PK; GRID LOC 15 M N	AS 106272, MORE BR	ec & Vuggy
15.0 POLY CLAIMS	180283RFLT TOP MAP 164 A/4 HWY ZONE S, DETAILED AREA N OF HWY 37, N OF ENTRANCE PK; GRID LOC 80 M N 7 M E	AS 106272, MORE BR	EC & VUGGY

.

81	DST RELEVA NITIAL RECO	NT ANALY	TIONS (BASE	LTS (FOR C	OMPLETE F	RESULTS SE	E CHEMEX GEOLOGIC	CERTIFICA AL ENVIRON	TES OF ANA IMENT) :	LYSES)				
SAMPLE NO.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 NI ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
160276RFL	55.00	0.20	195.00	10.00	23.00	6.00	84.00	<0.5	6.00	90.00	<1	<1	<2	DETAILED FU ON POLY CLAIMS REQD
160278RFL	10.00	0.60	163.00	10.00	22.00	8.00	104.00	1.00	8.00	90.00	<1	20.00	2.00	DETAILED FU ON POLY CLAIMS REQD
160279RFL	<5	0.20	222.00	10. 00	21.00	<2	58.00	<0.5	8.00	50.00	<1	4.00	<2	DETAILED FU ON POLY CLAIMS REQD
160280RFL	10.00	0.60	282.00	12.00	28.00	10.00	108.00	0.50	<2	70.00	<1	3.00	2.00	DETAILED FU ON POLY CLAIMS REQD
160282RFL	30.00	0.20	187.00	9.00	21.00	<2	76.00	0.50	<2	80.00	<1	<1	<2	DETAILED FU ON POLY CLAIMS REQD
160283RFL	70.00	0.60	191.00	10.00	24.00	4.00	108.00	1.00	8.00	110.00	<1	5.00	6.00	DETAILED FU ON POLY CLAIMS REQD

9.A2. AREA 2: MEZIADIN JUNCTION – BOWSER L. AREA, NTS 104 A/3, A/6E, A/5W:

Area 2 work (Maps 3; 4) Tables STRSDA2, STRSARA2) was carried out mainly in the Bowser Lake Area, on the apparently main, northeast trending lumber road. Since no forestry road map was available at the time of the program, the locations of the sediment samples on Map 4 are tentative; however, the kilometerages in Table STRSDA2 are accurate. Conditions on other lumber roads in the area were not generally amenable to straightforward access. Most of the area is underlain by Bowser Group mudstone, sandstone and shale, and most higher energy streams are characterized by a paucity of fines. Slower flowing streams are often flooded for some distance upstream from culverts. As a result, most sampling activities required considerable some time to locate proper material

The descriptions and analytical results for the 21 samples collected are shown in Tables STRSDA2 and STRSARA1. As noted previously, elevated Cu and Ni values generally characterize stream sediment samples collected in Bowser Group terrains. Pending further information, these values are mainly regarded as low priority follow-up targets. As indicated in the Summary of this report, Cu-Ni signatures many of the deposits and exploration targets in the Stewart area, including Red Mountain, the Red Claims, the Poly Claims and the Delta West Project. Anomalous Cu and Ni, +/- anomalous Zn +/- Cd and Ba characterize most anomalous samples that are given some priority for follow-up in Area 2. Samples 160248SS and 160249SS, with anomalous Zn contents ranging up to 1595 ppm, are considered particularly interesting. The Zn may be a seepage anomaly from altered Hazelton Group rocks and may halo Cu-Au mineralization, similar to the targets on the Delta West Project described in Section 10 of this report.

9.A3. AREA 3: MEZIADIN LAKE AREA: NTS 104 A/3:

Work in Area 3 (Map 3; Tables STRSDA3, STRSARA3) was carried via boat from the highways camp on the northshore of Meziadin Lake. While a number of the streams on the north shore flow south across Hwy 37 (Map 3), there are few areas that are conducive for parking on the side of the highway. Bowser Group sediments including mudstone and sandstone underlie most of the area. Higher energy streams on the south side of the lake are characterized by a paucity of fines.

A total of 14 sediment samples were submitted to the lab from Area 3. Most of the samples are characterized by anomalous Cu and Ni values, as is the usual case for Bowser Group terrains. However a number of them also have elevated Zn, Pb, Cd and Ba values and are deemed to offer interesting follow-up targets (Table STRSARA3), again based on the rationale that in the Stewart Camp, Zn is often an excellent pathfinder for gold mineralization in Hazelton Group rocks. Sample 160456SS has a rather interesting gold content – 75 ppb.

	TABLE STRSDA2: REGIONAL GEOCHEMICAL PROGRAM: STREAM SEDIMENT SAMPLE DESCRIPTIONS: AREA 2, BOWSER LAKE AREA												
REF. NO., RECON TARGET AREA:	SAMPLE NAME, NO., LOC, COLOUR: TYPE:	DESCRIPTION:	STREAM PERAMATERS:	geology:									
1.00 AREA 2	160240SS SD, BLK TOP MAP 104 A/3 HANNA CRK ABOUT 200 M UPSTR FR HWY 37 N OF MEZ LAKE	FI-CO, BOW SED,	LARGE CRK FL 100 DEG	BED BOW SEDS IN S BK									
2.00 AREA 2	D 160241SS SD, BRN TOP MAP 104 A/5E BOW L MAIN RD, 23.7 KM W OF SMALL BRIDGE ACROSS BOWSER R	FI-SILT, BOW SED, OXID MAT, 5% QTZ, MIN ORGS	SMALL CRK FL 60 DEG	HETRO BO, MAINLY BOW SEDS									
3.00 AREA 2	D 160242SS SD, BRN TOP MAP 104 A/5E BOW L MAIN RD, 23.3 KM W OF SMALL BRIDGE ACROSS BOWSER R	FI-SILT, BOW SED, OXID MAT, 5% QTZ, MIN FELD	SMALL DRY CRK FL 40 DEG	HETRO BO, MAINLY BOW SEDS									
4.00 AREA 2	D 160244SS SD, BRN TOP MAP 104 A/5E BOW L MAIN RD, 22 KM W OF SMALL BRIDGE ACROSS BOWSER R	MED-CO, MAINLY BOW SED, MIN OXID MAT, ORG	SMALL CRK FL 105 DEG	HETRO BO, MAINLY BOW SEDS									
5.04 AREA 2	0 160243SS CL-SD, TOP MAP BRN 104 A/5E BOW L MAIN RD, 21.9 KM W OF SMALL BRIDGE ACROSS BOWSER R	CL-FRAGS 30% CL, 60% BOWS SEDS; MIN QTZ, OXID MAT	SMALL CRK FLOWS	HETRO BO, MAINLY BOW SEDS									

8	ost relev Initial rec Nd/or geoi	OMMENDAT	NONS (BASE	LTS (FOR C						LYSES)				
SAMPLE NO.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 Ni ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL &GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
160240SS	<5	<0.2	41.00	75.00	41.00	10.00	182.00	<0.5	16.00	130.00	<1	1.00	2.00	LOW RP FU TARG
160241SS	<5	0.20	28.00	52.00	41.00	10.00	94.00	<0.5	6.00	100.00	<1	2.00	<2	
160242SS	<5	1.40	93.00	67.00	32.00	10.00	190.00	<0.5	14.00	60.00	<1	3.00	<2	LOW PR FU TARG
160244SS	<5	0.60	32.00	52.00	10.00	4.00	72.00	<0.5	12.00	60.00	<1	<1	<2	
160243SS	<5	0.60	56.00	75.00	25.00	8.00	118.00	<0.5	10.00	60.00	<1	1.00	2.00	LOW RP FU TARGET

TABLE STRSDA2 (CONT); REGIONAL GEOCHEMICAL PROGRAM; STREAM SEDIMENT SAMPLE DESCRIPTIONS: AREA 2, BOWSER LAKE AREA

*

 $(\mathbf{x} + \mathbf{y} +$

REF. NO., RECON TARGET AREA:	SAMPLE NAME, NO., LOC, COLOUF TYPE:	DESCRIPTION:	STREAM PERAMATERS:	GEOLOGY:
6.00 AREA 2	160245SS SD-GRA TOP MAP BLK 104 A/5E BOW L MAIN RD, 21.7 KM W OF SMALL BRIDGE ACROSS BOWSER R	V, FI-FRAGS, MAINLY BOW SEDS, MIN OXID MAT, QTZ, 10% ORG	MOD CRK, LOW FL, FL 40 DEG	HETRO BO, MAINLY BOW SEDS
7.00 AREA 2	160246SS CL-ORG TOP MAP BRN 104 A/5E BOW L MAIN RD, 20.6 KM W OF SMALL BRIDGE ACROSS BOWSER R	50% CL, 50% ORG	SEEPAGE CRK LOW FL, FL 40% DEG	HETRO BO, MAINLY BOW SEDS
8.00 AREA 2	160247SS CL-SD, TOP MAP BRN 104 A/5E BOW L MAIN RD, 20.3 KM W OF SMALL BRIDGE ACROSS BOWSER R	CL-FRAGS; 70% CL; 20% SD; 5% BOW SED FRAGS; MIN OXID MAT, ORG	SMALL CRK, FL 50 DEG, LOW FL	HETRO BO, MAINLY BOW SEDS
9.00 AREA 2	160248SS ORG MU TOP MAP BLK 104 A/5E BOW L MAIN RD, 20 KM W OF SMALL BRIDGE ACROSS BOWSER R	ICK <u>.</u> CL 70%, ORG	SMALL SEEP CRK, FL 80%	BOW BO
10.00 AREA 2	D 160249SS ORG MI TOP MAP BLK 104 A/6W BOW L MAIN RD, 19.1 KM W OF SMALL BRIDGE ACROSS BOWSER R	ICK,CL 70%, ORG	SMALL SEEP CRK, FL 80 DEG	BOW BO

8	NOST RELEV	ANT ANALYT	ICAL RESU	ED ON ANAL	OMPLETE F					lyses)				
Sample No.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 Ni ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
160245SS	<5	0.20	37.00	67.00	36.00	14.00	152.00	0.50	14.00	150.00	<1	2.00	<2	LOW PR FU TARG
160246SS	<5	<0.2	39.00	57.00	17.00	8.00	90.00	0.50	16.00	120.00	<1	<1	8.00	
160247SS	<5	0.40	38.00	62.00	34.00	10.00	114.00	0.50	4.00	140.00	<1	<1	<2	
160248SS	<5	1.00	56.00	79.00	60.00	6.00	1595.00	2.50	14.00	330.00	<1	3.00	<2	HIGH RP FU TARG
16024955	<5	0.20	16.00	35.00	22.00	<2	392.00	0.50	<2	230.00	<1	<1	<2	MED PR FU TARGET

TABLE STRSDA2 (CONT): REGIONAL GEOCHEMICAL PROGRAM: STREAM SEDIMENT SAMPLE DESCRIPTIONS: AREA 2, BOWSER LAKE AREA

the term of term o

REF. NO., SAMPLE NAME, DESCRIPTION: STREAM GEOLOGY: RECON NO., LOC, COLOUR: PERAMATERS: TARGET TYPE: AREA: 11.00 160250SS CHECK SAMPLE AS 160210SS 12.00 160251SS SD, BRN MED-CO, MAINLY FL 80 DEG BOW OC AND BO AREA 2 TOP MAP BOW SED, MIN ORG, 104 A/6W OXID MAT BOW L MAIN RD, 18.9 KM W OF SMALL BRIDGE ACROSS BOWSER R 13.00 160252SS ORG MUCK CL 70%, ORG SMALL SEEP CRK, BOW OC AND BO AREA 2 TOP MAP BLK FL 350 DEG 104 A/6W BOW L MAIN RD, 18.3 KM W OF SMALL BRIDGE ACROSS BOWSER R 14.00 160253SS SD, BRN FI, MAINLY FL 260 DEG BOW OC AND BO AREA 2 TOP MAP MAFICS - BOW 104 A/6W SED, MIN ORG, BOW L MAIN OXID MAT RD, 17.8 KM W OF SMALL BRIDGE ACROSS BOWSER R 15.00 160254SO CL-SLT CL-SILT. SOIL SAMPLE BOW OC AND BO AREA 2 TOP MAP HEM IN RD BK AT 104 A/6W 160254SO BOW L MAIN RD, 17.8 KM W OF SMALL BRIDGE ACROSS

BOWSER R

& I	NITIAL REC	NT ANALYI		LTS (FOR C	OMPLETE R			CERTIFICAT AL ENVIRON		LYSE5)				
Sample No.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 Ni ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL &GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
15025055	90.00	1.20	133.00	42.00	22.00	40.00	170.00	3.00	78.00	90.00	<1	4.00	2.00	
16025155	<5	0.20	33.00	77.00	33.00	~2	170.00	1.50	2.00	230.00	<1	<1	<2	MED PR FU TARG
16025288	<5	1.00	33.00	30.00	18.00	4.00	65.00	0.50	6.00	190.00	<1	ব	<2	
16025385	<5	0.20	43.00	65.00	22.00	6.00	120.00	0.50	10.00	110.00	<1	<1	<2	LOW PR FU TARG
16025480	<5	<0.2	26.00	17.00	1.00	2.00	42.00	<0.5	2.00	70.00	<1	<1	<2	

TABLE STRSDA2 (CONT): REGIONAL GEOCHEMICAL PROGRAM: STREAM SEDIMENT SAMPLE DESCRIPTIONS: AREA 2, BOWSER LAKE AREA REF. NO., SAMPLE NAME, DESCRIPTION: STREAM GEOLOGY: RECON NO., LOC, COLOUR. PERAMATERS: TARGET TYPE: AREA: 16.00 160255SS ORG MUCK CL 70%, ORG SMALL SEEP CRK, BOW OC AND BO AREA 2 TOP MAP BLK FLS 104 A/6W BOW L MAIN RD, 17.3 KM W OF SMALL BRIDGE ACROSS BOWSER R 17.00 160256SS SD, BRN MED-CO, MAINLY FL 190 DEG BOW OC AND BO AREA 2 TOP MAP BOW SED, MIN ORG, 104 A/6W OXID MAT BOW L MAIN FEW FI RD, 13.95 KM W OF SMALL BRIDGE ACROSS BOWSER R 18.00 160257S9 ORG MUCK CL 70%, ORG SMALL SEEP CRK, BOW OC AND BO AREA 2 TOP MAP BLK FL 210 DEG 104 A/8W BOW L MAIN RD, 12.5 KM W OF SMALL BRIDGE ACROSS BOWSER R 19.00 160258SS CLAY. CL, ORG, MED CRK, BOW OC AND BO AREA 2 TOP MAP BRN MIN BOW FRAGS FEW FINES. 104 A/6W FLS BOW L MAIN RD. 11.75 KM W OF SMALL BRIDGE ACROSS BOWSER R 20.00 16025988 CLAY, CL 90%., ORG. MED CRK. BOW OC AND BO AREA 2 TOP MAP BRN MIN BOW FRAGS FEW FINES, 104 A/6W FL 210 DEG BOW L MAIN RD, 8.9 KM W OF SMALL BRIDGE ACROSS BOWSER R 21.00 18028055 ORG MUCK CL 70%, ORG SMALL SEEP CRK, BOW OC AND BO AREA 2 TOP MAP BLK FL 120 DEG 104 A/6W BOW L MAIN RD, 5.8 KM W OF SMALL BRIDGE ACROSS

с**н**

. .

,

· ·

.

1

.

•

`

٦.

r 7 r

٠.

BOWSER R

6	OST RELEVA INITIAL RECO ND/OR GEOF	VNT ANALYT OMMENDAT	'IONS (BASE	LTS (FOR C	OMPLETE 5	RESULTS SI SULTS AND	EE CHEMEX GEOLOGIC,	CERTIFICAT	TES OF AN/ IMENT):	lyses)				
Sample No.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 NI ppm	5.00 CO ppm	6.00 P8 ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 НС ррт	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
16025555	10.00	0.40	41.00	49.00	24.00	10.00	108.00	0.50	12.00	130.00	<1	3.00	2.00	MED PR FU TARG
16025655	<5	0.20	41.00	72.00	72.00	8.00	228.00	1.50	12.00	280.00	<1	3.00	<2	MED PR FU TARG
160257SS	<5	1.20	48.00	45.00	57.00	6.00	70.00	2.00	8.00	130.00	<1	4.00	<2	MED PR FU TARG
16025855	<5	0.20	5 7.00	74.00	28.00	2.00	126.00	0.50	16.00	140.00	<1	<1	<2	LOW PR FU TARG
160258SS	<5	≪0.2	32.00	59.00	14.00	6.00	84.00	0.50	6.00	110.00	<1	<1	<2	
16026055	<5	0.20	43.00	54.00	18.00	8.00	136.00	1.50	10.00	100.00	«1	<1	2.00	LOW PR FU TARG

 $\frac{1}{2} = \frac{1}{2} + \frac{1}$

REGIONAL GEOCHEMICAL PROGRAM: STREAM SEDIMENT SAMPLE DESCRIPTIONS: AREA 3, MEZIADIN LAKE AREA REF. NO., SAMPLE NAME. DESCRIPTION; STREAM GEOLOGY: RECON NO., LOC, COLOUR: PERAMATERS: TARGET TYPE: AREA: 1.00 160285SS SD, BLK FI-CO, HET LOW F. MIN BOW SED OC IN AREA AREA 3 TOP MAP SD: MAFIC SWAMP AREA NEAR POST HAZEL CONTACT 104 A/3 VOL, OTZ, OXID CRK AT HWY MAT, MIN EPID. 37 NE END OF ORG MEZ L N OF HWY, OXID MAT 37A, E SIDE OF GRAV PIT 2.00 16045155 SD, BLK FI-CO MOD FLOW, NO GEOL AREA 3 TOP MAP BOW SED, OXID FLOW SW 104 A/3 MAT OTZ HANNA MAINLY ANG CRK 70% CO NEAR MEZ L - 50 M UPSTR 3.00 160452SS SD, BLK FI-MED MOD FLOW, NO GEOL AREA 3 TOP MAP BRN 10% QTZ, OXID, FLOW SW 104 A/3 REST TINTINA BOW SED CRK 70% CO NEAR MEZ L ABOUT 50 M UPSTR 4.00 10045365 SD, BRN FI-CO MOD FLOW, BOW SEDS AREA 3 TOP MAP 3% OTZ, 7% OXID FLOW NE 104 A/3 MAT, CRK SW 20% BLK VOL SIDE MEZ L, 10% BOW SED ABOUT 25 M FRL 5.00 10045455 SD, GRAV FI-PEBS HI FLOW, BOW SEDS AREA 3 TOP MAP BRN 5% OTZ, OXIDE FLOW NE 104 A/3 15 FI SD CRK SW 80% BOW SED SIDE MEZ L OPP 160451SS ABOUT 25 M FRL 6.00 160455SS SD, GRAV FLPEBS, HI FLOW, BOW SEDS AREA 3 TOP MAP BRN 5% QTZ, OXID FLOW NE 104 A/3 MA, 15 % ORG CRK SW 80% BOW SED SIDE MEZ L NOF

•

٦ r

.

٦

TABLE STREDAS:

٦.

160454SS ABOUT 25 M FR L e - 14

.

۰ ۲

۰.

.

.

•

. .

.

· · ·

,

.

.

.

· ·

1

F

1

3

J,

8	IOST RELEV INITIAL REC IND/OR GEOI	ANT ANALYI	TIONS (BASE	LTS (FOR C ED ON ANAL	COMPLETE R YTICAL RES	ESULTS SE	E CHEMEX GEOLOGIC	CERTIFICAT AL ENVIRON	(ES OF ANA MENT) :	LYSES)				
SAMPLE NO.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 Ni ppm	5.00 CO ppm	8.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES; (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL, THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
160285555	<5	0.20	58.00	79.00	13.00	32.00	186.00	0.50	16.00	90.00	<1	<1	<2	MED PR FU TARG
16045199	<5	0.20	31.00	79.00	14.00	8.00	126.00	<0.5	10.00	160.00	<1	2.00	<2	
16045255	<5	<0.2	29.00	73.00	14.00	6.00	104.00	<0.5	10.00	120.00	<1	1.00	<2	
160453SS	<5	0.20	39.00	90.00	19.00	10.00	152.00	1.50	<2	270.00	<1	2.00	<2	MED PR FU TARG
16045455	<5	0.40	65.00	93.00	28.00	18.00	214.00	0.50	12.00	160.00	<1	2.00	<2	MED PR FU TARG
16045555	<5	0.40	69.00	92.00	30.00	16.00	222.00	<0.5	12.00	230.00	<1	1.00	<2	MED PR FU TARG

and a second and a second s

TABLE STRSDA3 (CONT): **REGIONAL GEOCHEMICAL PROGRAM:** STREAM SEDIMENT SAMPLE DESCRIPTIONS: AREA 3, MEZIADIN LAKE AREA REF. NO., SAMPLE NAME, DESCRIPTION: STREAM GEOLOGY: RECON NO., LOC, COLOUR: PERAMATERS: TARGET TYPE: AREA: BOW SEDS 7.00 160456SS SD, BRN FI-MED HI FLOW, AREA 3 TOP MAP MAINLY BOW FLOW N 104 A/3 SEDS, OXID FRAGS, CRK SW MIN QTZ, MIN ORG SIDE MEZ L OPP 160450SS ABOUT 30 M FRL BOW SEDS 8.00 160457SS SD. BRN FI-MED HI FLOW. AREA 3 TOP MAP MAINLY BOW FLOW N 104 A/3 SEDS, OXID FRAGS, CRK SW MIN QTZ SIDE MEZ L OPP 160450SS ABOUT 25 M FRL 9.00 160458SS CL SD, HI FLOW. NO GEOL CL - FI AREA 3 TOP MAP GRY 10% CL FLOW E 104 A/3 90% SD MIN QTZ, CRK SW BOW SED, MIN W END OF BLK VOL MEZ L RD - ANG STROHN CRK ABOUT 100 M UPSTR NO GEOL 10.00 160459SS SD GRAV, FI - PEBS MOD FLOW AREA 3 TOP MAP BRN 40% PEBS FLOW E 104 A/3 HETRO PEBS INCL **CRK SW** OXID, BOW SEDS, SOM GRY VOL NW END OF MEZL RD - ANG ABOUT 50 M UPSTR 11.00 16046055 SD GRAV, AS MOD FLOW NO GEOL AREA 3 TOP MAP BRN 16045955 FLOW E 104 A/3 CRK N OF

.

r

۲

.

1 . .

,

.

· ·

-

*

.

· ·

→ #²

٦

1

٦.

160459SS,

NW END OF MEZL ABOUT 50 M UPSTR

4	IOST RELEVA INITIAL RECONDIOR GEOF	INT ANALYT	IONS (BASE	TS (FOR C	OMPLETE F	RESULTS SE SULTS AND	E CHEMEX GEOLOGIC/	CERTIFICAT	(ES OF ANA IMENT) :	LYSES)				
SAMPLE NO.	1.00 AU ppb	2.00 Ag ppm	3.00 CU ppm	4.00 Ni ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 ВА ррм	11.00 НG ррм	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 36 ppm CU, 26 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
16045655	75.00	0.20	45.00	72.00	20.00	12.00	140.00	0.50	14.00	160.00	<1	2.00	42	HIGH PR FU TARG
160457SS	<5	0.20	53.00	76.00	25.00	14.00	154.00	0.50	18.00	160.00	<1	2.00	<2	MED PR FU TARG
16045858	<5	0.60	36.00	38.00	12.00	30.00	190.00	1.00	40.00	160.00	<1	4.00	<2	MED PR FU TARG
16045983	<5	0.80	36.00	67.00	22.00	32.00	244.00	2.50	106.00	390.00	۲۱	5.00	<2	HIGH PR FU TARG
160460SS	<5	0.20	47.00	85.00	19.00	8.00	148.00	0.50	8.00	110.00	<1	2.00	<2	LOW PR FU TARG

TABLE STRSDA3 (CONT): REGIONAL GEOCHEMICAL PROGRAM: STREAM SEDIMENT SAMPLE DESCRIPTIONS: AREA 3, MEZIADIN LAKE AREA

REF. NO.,SAMPLENAME,DESCRIPTION:STREAMGEOLOGY:RECONNO., LOC,COLOUR:PERAMATERS:TARGETTYPE:TARGETTYPE:AREA:FERAMATERS:FERAMATERS:

12.00 AREA 3	0 160461SS SD, BRN TOP MAP 104 A/3 CRK N OF 160459SS, NW END OF MEZ L ABOUT 50 M UPSTR	FI, MIN OXID, QTZ, MAINLY BOW SEDS, SOM MAFIC VOL	MOD FLOW FLOW SW	NO GEOL
) 160462SS AS 160201	SS		
AREA 3	CHECK SAMPLE			
14.00 AREA 3	D 160474SS SD, BRN TOP MAP 104 A/3 GOLDSMITH CRK, E OF HWY CAMP CRK ABOUT 75 M UPSTR	FI-CO, QTZ, MAINLY BOW SEDS, SOM MAFIC VOL	MOD FLOW FLOW SW	NO GEOL

	MOST RELEV INITIAL REC AND/OR GEOI	ANT ANALYT	ICAL RESU	D ON ANAL	OMPLETE F					LYSES)				
Sample No.	1.00 AU ppb	2.00 Ag ppm	3.00 CU ppm	4.00 Ni ppm	6.00 CO ppm	8.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.8 ppm AG, 36 ppm CU, 26 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
16046188	<5	0.20	52.00	93.00	19.00	10.00	140.00	0.50	12.00	90.00	<1	2.00	<2	
160462SS	55.00	1.80	97.00	44.00	19.00	2 8.00	160.00	2.50	72.00	70.00	<1	7.00	<2	
160474SS	<5	0.20	50.00	84.00	26.00	12.00	174.00	0.50	10.00	140.00	<1	3.00	<2	MED PR FU TARG

9.A4. AREA 4: BELL 1 TO BELL 2: NTS 104 A/12, A/13, A/6W:

Area 4 mainly comprises the Bell-Irving River Valley along the route of Hwy 37, from Bell 1 to Bell 2 (Maps 5, 6, 7). Except for in the area of the Delta West Project (near Skowill Creek on Hwy 37) where Hazelton Group rocks are associated with the Oweegee Dome, most of the area appears to be underlain by Bowser Group sediments as indicated by outcrops along the highway. The valley area is generally covered by thick glacial-fluvial, sand and gravel deposits.

The drainage is generally dominated by a number of high-energy, large streams flowing west into the Bell-Irving River. Smaller, seasonal streams draining the overburden often become flooded near the highway during periods of abundant rainfall. The conditions make the procurement of fines difficult, particularly when the streams are at high levels. A variety of active lumber roads, including the Hodder Road near Bell 2, utilized in this program, provide interior access; however, in view of lumbering activities and deteriorating conditions, access was restricted on most of these routes.

A total of 26 stream sediment samples and one rock sample (Maps 5, 6, 7; Tables STRSDA4, STRSARA4; RKSDA4, RKSARA4) were collected during the program. The samples, as expected, are generally characterized by elevated Ni and Cu values, along with some anomalous Zn, Pb and Ba values. From the author's previous experience on the Deltaic and Delta West Grids of the Stewart Property, it is known that some significant dilution of gold and zinc anomalies has taken place via the incessant precipitation e.g., active sediments from Deltaic Creek usually have anomalous Au and Zn contents; and, other creeks in the vicinity of the Delta West Grid, including Glacier Creek, usually produce sediments with anomalous Zn contents. Drill testing of the targets on the Delta West Project (see Section 10) should provide information on the significance of many of the low and medium priority anomalies in Area 4.

TABLE STRSDA4: REGIONAL GEOCHEMICAL PROGRAM: STREAM SEDIMENT SAMPLE DESCRIPTIONS: AREA 4, BELL 1 TO BELL 2

.

.

.

۲

.

b

٠

•

ſ

•

BO BOW SEDS BOW SED OC BOW SED OC BOW SED OC GEOLOGY: NO GEOL SMALL CRK, LOW FL NW MAJOR CRK, HI FL, HI ENERG FL NW STREAM PERAMATERS: SMALL CRK, FL N SMALL CRK, FL N SMALL CRK, FL N FI-FRAGS, FEW FI, FR BOW SEDS, ANG FRAGS, MIN CAL, OXID MAT, ORG FI-CO, SD FR BOW SED, CARB, FRAC, SOME ANG FRAGS OF SHALE, MIN CAL, OXID MAT CL - CO CL, CO BOW SED FRAGS, MIN OXID MAT, CAL SILT-PEBS, 50% SILT, 45% FRAGS OF BOW SED, 5% ORG DESCRIPTION: AS 160286SS 4.00 16029055 BRN ORG SILT-FI AREA 4 TOP MAP MUCK 104.A12 2.4 KM TO W OF 1.00 16028655 SO, BLK FF AREA 4 TOP MAP SC 104 A/12 SE LARGE CRK SC ON LUM RD O D.7 KM S OF BELL 2; C/ CRK IS 5,5 KM UP EAST LUM RD SAMP Q 50 M UPSTR FR RD 3.00 16028855 SD GRAV, F A 4 TOP MAP BUK F 104 A12 B .55 KM TO W A OF M REF. NO., SAMPLE NAME, I RECON NO., LOC, COLOUR: TARGET TYPE: AREA: 5.00 160291SS SD, BR A 4 TOP MAP 104 A/12 2.6 KM TO W OF 6.00 160292SS CL SD A 4 TOP MAP BLK 104 A12 3.4 KM TO W OF 2.00 16028/SS 4.4 TOPOG MAP 104 A/12 200 M UPSTR FR 160286SS 160286SS 100 M UPSTR FR RD 16028655 50 M UPSTR FR RD 160296SS 50 M UPSTR FR RD 160296SS 75 M UPSTR FR RD AREA 4 AREA 4 AREA 4 AREA 4

1	OST RELEVA	NT ANALYT	IONS (BASE	LTS (FOR C	COMPLETE &	RESULTS SI	EE CHEMEX GEOLOGIC	CERTIFICAT	TES OF ANA IMENT) :	NLYSES)				
SAMPLE NO.	1.00 AU PPD	7INE FOLLO 2.00 AG ppm	₩-UP ACTN 3,00 CU ppm	ATTIES: 4.00 NI ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BG, 1 ppm HG, 2 ppm MO, 2 ppm SB)
16028655	<5	<0.2	42.00	89.00	15.00	10.00	144.00	<0.5	12.00	150.00	<1	3.00	<2	LOW FR FU TARG
16028788	<5	<0.2	37.00	81.0 0	17.00	8.00	132.00	0.50	6.00	170.00	1.00	1.00	<2	LOW PR FU TARG
16028855	< 5	0.20	45.00	70.00	23.00	12.00	338.00	0.50	14.00	180.00	<1	1.00	<2	MOD PR FU TARG
16029055	<5	0.20	34.00	91.00	20.00	10.00	156.00	<0.5	<2	170.00	<1	1.00	<2	LOW PR FU TARG
16029188	<5	0.20	34.00	105.00	30.00	8.00	146.00	0.50	10.00	190.00	1.00	1.00	<2	LOW PR FU TARG
16029255	6	0.20	33.00	80.00	19.00	4.00	164.00	1.00		200.00	4.05		-	
	~~	9.20	20.97	UN2.000	10.00	4.00	104.00	1.00	6.00	200.00	1.00	3.00	<2	MOD PR FU TARG

and the test of test o

TABLE STRSDA4 (CONT) REGIONAL GEOCHEMICAL PROGRAM STREAM SEDIMENT SAMPLE DESCRIPTIONS: AREA 4, BELL 1 TO BELL 2 REF. NO., SAMPLE NAME. DESCRIPTION STREAM GEOLOGY[.] RECON NO. LOC. COLOUR: PERAMATERS: TARGET TYPE: AREA 7.00 160293SS SD BLK FLMIN OXID MAJOR CRK NO GEOL AREA 4 TOP MAP MAT. ORG HI ENERG 104 A/12 FR BOW SEDS FEW FINES 4.9 KM TO W OF. 16028655 AT HODDER CRK 75 M UPSTR FR RD 8.00 160294SS SD, BLK AS 160293SS AREA 4 TOP MAP 104 A/12 200 M UPSTR FROM 16029355 AT HODDER CRK 9.00 160295SS SD, GRAV FI CO TO ANG MAJOR CRK HETRO BO -AREA 4 TOG MAP BRN FRAGS BOW SED. HI ENERG. SEDS AND GR 104 A/12 90% SD. FEW FINES VOL OWEEGEE CRK 8 % FRAGS, MIN 100 M UPSTR QTZ, OXID MAT FR BRIDGE ON HWY 37 10.00 160296SS HETRO SD, FI CO, SMALL CRK. HETRO BO -AREA 4 TOP MAP BRN 80% MAFICS GOOD FLOW W SEDS AND GR 104 A/12 QTZ, FELD, FEW FINES VOŁ 5 KM N OF OXID AMT SKOWILL CRK - 50 M UPSTR FR HWY 37 11.00 16029788 CL. ORG CL SILT SMALL CRK. HETRO BO -AREA 4 TOP MAP MUCK, LOW FL BOW SHALE BO 104 AV12 GREY BLK IN CRK BED 3.7 KM N OF SKOWILL CRK - 50 M UPSTR FR HWY 37 12.00 16029855 SD, CL, CL - FI SMALL CRK, NO GEOL AREA 4 TOP MAP GRY LOW FL BOW SHALE BO 104 A/12 w IN CRK BED 2.1 KM N OF SKOWILL CRK - 70 M

.

.

.

.

•

.

.

.

.

.

.

۲

.

UPSTR FR HWY 37 .

.

		ТА	BLE STRSA	RA4 (CONT):									
	MOST RELEVA & INITIAL REC AND/OR GEOF	NT ANALYT	ICAL RESU IONS (BASE	LTS (FOR C	OMPLETE R	RESULTS SI SULTS AND	ee chemex Geologic/	CERTIFICAT	TES OF ANA IMENT):	ALYSES)				
SAMPLE NO.	1.00 AU ppb	2.00 AGi ppm	3,00 CU ppm	4.00 Ni ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL &GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 26 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
16029355	<5	<0.2	39.00	86.00	15.00	4.00	114.00	0.50	3.00	180.00	<1	3.00	<2	LOW PR FU TARG
160294SS	~5	<0.2	43.00	89.00	16.00	<2	118.00	<0. 5	2.00	220.00	<1	2.00	≪2	LOW PR FU TARG
											- 1	2.00		
1 0 029555	ళ	≺0.2	39.00	52.00	14.00	8.00	148.00	0.50	24.00	210.00	2.00	4.00	<2	LOW PR FU TARG
1 6 029655	<5	<0.2	24.00	38.00	13.00	8.00	136.00	0.50	12.00	150.00	<1	2.00	<2	
18029785	<5	<0.2	34.00	65.00	16.00	10.00	194.00	<0.5	6.00	170.00	<1	3.00	~2	LOW PR FU TARG
16029855	<5	<0.2	31.00	46.00	15.00	12.00	160.00	¢0.5	16.00	210.00	<1	<1	<2	LOW PR FU TARG

TABLE STRSDA4 (CONT): REGIONAL GEOCHEMICAL PROGRAM: STREAM SEDIMENT SAMPLE DESCRIPTIONS: AREA 4, BELL 1 TO BELL 2

a the second second

REF. NO., RECON TARGET AREA:	SAMPLE NAME, NO., LOC, COLOUR TYPE:	DESCRIPTION:	STREAM PERAMATERS:	GEOLOGY:
13.00 AREA 4	160299SS SD, BRN TOP MAP GRY 104 A/12 SKOWILL CRK - 200 M UPSTR FR HWY 37	FI, GRN VOL, BLK SEDS, OXID MAT	MAJOR CRK, HI ENGERG FEW FI FL W	HETRO BO HAZ VOL INCL INCL SOM RHY MAT, & BOW SEDS
14.00	160300SS CHECK SAMPLE AS	16020155		
15.00 AREA 4	1 160302SS CL SD, TOP MAP BRN 104 A/12 SPRING CRK ABOUT 1.4 KM S OF SKOWILL CRK - 50 M E OF HWY 37	CL-CO GR VOL, BLK SHALE, BRN CL, MIN ORG, MIN QTZ	SMALL CRK, FL W	NEAR CT, BOW SED, HAZ VOL- NO OC
16.00 AREA 4	0 160303SS HETRO TOP MAP BRN 104 A/12 GLACIER CRK ABOUT 250 M UPSTR FR HWY 37	SD, FI-CO, FR MAFIC VOL, BLK SHALE, MIN QTZ, EPID, OXID MAT	HI ENGER, MAJOR CRK FL W ON STEWART PROPERTY	NEAR CT, BOW SED, HAZ VOL
17.00 AREA 4	0 160304SS SD-GRA TOP MAP BRN 104 A/12 ABOUT 0.7 KM S OF GLAC CRK ABOUT 50 M E OF HWY 37	/ FI-CO, MAFIC VOL, BLK SHALE, MIN QTZ, OXID MAT	MOD FL W IN SM CRK ON STEWART PROPERTY	NEAR CT, BOW SED, HAZ VOL
18.00 AREA 4	D 16030555 HETRO TOP MAP BRN 104 A/12 ABOUT 1.5 KM S OF GLAC CRK ABOUT 100 M E OF HWY 37	SD, AS ABOVE	MOD FL W IN SM CRK ON STEWART PROPERTY	HETRO BO HAZ VOL & BOW SEDS

4	IOST RELEVA INITIAL RECI ND/OR GEOF	NT ANALY	TIONS (BASI	LTS (FOR C	OMPLETE 8	RESULTS SI BULTS AND	EE CHEMEX GEOLOGIC	CERTIFICA AL ENVIRON	TES OF ANU IMENT):	nlyses)				
SAMPLE NO.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 Ni ppm	5.00 CC ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG gpm	12.00 MO ppm	12.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL, PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 05 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm A3, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
160299SS	<5	0.20	54.00	47.00	16.00	6.00	94.00	<0.5	24.00	170.00	<1	<1	2.00	LOW PR FU TARG
160300SS	50.00	1.20	133.00	47.00	23.00	52.00	194.00	2.50	96.00	80.00	<1	8.00	<2	
16030258	<5	0.20	57.00	48.00	15.00	4.00	116.00	D.50	20.00	160.00	<1	1.00	<2	LOW PR FU TARG
16030355	<5	0.20	77.00	12.00	15.00	<2	76.00	<0.5	8.00	70.00	<1	<1	<2	LOW PR FU TARG
16030455	<5	<0.2	~~~~											
COPUCADI	10	~U.Z	62.00	30.00	19.00	10.00	136.00	1.50	24.00	120.00	<1	1.00	<2	LOW PR FU TARG
16030555	<5	0.20	42.00	45.00	15.00	6.00	166.00	1.50	44.00	140.00	<1	4.00	<2	MOD PR FU TARG

8	ost Releva Initial Reci ND/OR Geof	NT ANALYT	IONS (BASE	LTS (FOR C	OMPLETE F	RESULTS SE SULTS AND	e chemex Geologic,	CERTIFICAT	ies of Ana Ment) :	lyses)				
SAMPLE NO.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 Ni ppm	5.00 CC ppm	6.00 98 ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MCJ ppm	12.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm PD, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
16029955	<5	0.20	54.00	47.00	16.00	6.00	94.00	<0.5	24.00	170.00	<1	<1	2.00	LOW PR FU TARG
16030055	50.00	1.20	133.00	47.00	23.00	52.00	194.00	2.50	96.00	80.00	<1	8.00	<2	
16030255	<5	0.20	57.00	48.00	15.00	4.00	116.00	0.50	20.00	160.00	<1	1.00	<2	LOW PR FU TARG
16030355	<5	0.20	77.00	12.00	15.00	<2	76.00	<0.5	8.00	70.00	<1	≺ 1	<2	LOW PR FU TARG
16030455	<5	«0.2	62.00	30.00	19.00	10.00	136.00	1.50	24.00	120.00	≺1	1.00	<2	LOW PR FU TARG
1 60305 SS	<5	0.20	42.00	45.00	15.00	6,00	166.00	1.50	44.00	140.00	<1	4.00	<2	MOD PR FU TARG

	REGIONAL GEOCHEM		S: AREA 4, BELL 1 TO I	BELL 2
REF. NO., RECON TARGET AREA:	NO., LOC, COLOUR:	DESCRIPTION:	STREAM PERAMATERS:	GEOLOGY:
19.00 AREA 4	16030655 HETRO SD TOP MAP GRAV, BR/ 104 A/12 ABOUT 2.4 KM S OF GLACIER CRK ABOUT 100 M E OF HWY 37		Mod FL W IN MED CRK	HETRO BO
20.00 AREA 4	104 A/12 DELTAIC CRK	FI-CO. HETRO SD; VOL, SEDS, EPID, CAL, OXID MAT		HETRO BO INCL GRANODI
21.0 AREA 4	D 18030855 AS ABOVE TOP MAP 104 A/12 300 M E OF BRIDGE, DELTAIC CRK			
22.04 AREA 4	0 16030965 SD, BRN TOP MAP 104 A6 100 M E OF TAFT CRK BRIDGE, HWY 37	FI, MAINLY MAFICS, MIN OXID MAT	HI ENERG, HI FL W	BOW SED BO
23.0 AREA 4	D 18031055 ABOVE TOP MAP 104 A6 300 M UPSTR FR BRO ON TAFT CRK			
24.01 AREA 4	0 18031185 SD, BLK TOP MAP 104 A/8 RITCHIE CRK ABOUT 200 UPSTR FR BRD ON HWY 37	FI-CO, MAINLY BOW SEDS MIN OXID, CAL	HI ENERG, HI FL W	Bow SED BO Som MV Bo
25.0 AREA 4	0 10031258 AS ABOVE TOP MAP 104 A6 COUBINS CRK ABOUT 200 UPSTR FR BRD ON HWY 37	E		BOW SED
26.0 AREA 4	0 18031385 AS ABOVE TOP MAP 104 A/8 SPRUCE CRK - 100 M W OF HWY 37 FR AT DELTA AT MOUTH			Bow SED

AT DELTA AT MOUTH AT BELL IRVING R

	MOST RELEV & INITIAL REC AND/OR GEOI	ANT ANALYI	ICAL RESU	ED ON ANAI	CMPLETE!					alyses)				
Sample No.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 Ni ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0 & ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
160306SS	ব	0.20	43.00	62.00	17.00	6.00	140.00	0.50	22.00	170.00	≪1	3.00	4	LOW PR FU TARG
160307SS	4	0.20	68.00	25.00	15.00	2.00	70.00	<0.5	8.00	70.00	<1	1.00	2.00	LOW PR FU TARG
16030855	ধ	<0 <u>.2</u>	65.00	29.00	15.00	2	70.00	0.50	5.00	100.00	<1	ব	4	LOW PR FU TARG
18030988	4 5	≪0.2	39.00	98.00	16.00	10.00	92.00	<0.5	18.00	170.00	≺1	≺1	4	LOW PR FU TARG
18031039	\$	⊲0.2	40.00	97.00	16.00	6.00	94.00	<0.5	14.00	170.00	<1	<1	4	LOW PR FU TARG
1903†158	ও	⊲0.2	43.00	83.00	16.00	16.00	118.00	<0.5	10.00	160.00	<1	4	0	LOW PR FU TARG
1603†265	<5	⊲0.2	36.00	78.00	18.00	12.00	106.00	0.50	16.00	110.00	<1	<1	8.00	LOW PR FU TARG
160313SS	ব	<0.2	41.00	50.00	15.00	6.00	152.00	0.50	6.00	110.00	ব	3.00	2.00	MOD PR FU TARG

TABLE RKSDA4: REGIONAL GEOCHEMICAL PROGRAM: ROCK SAMPLE DESCRIPTIONS: AREA 4, BELL 1 TO BELL 2

*

.

1 . **1** .

• ,

and the test of the second

, ,

•

entry entry entry e

REF. NO., SAMPLE RECON NO., LOC, TARGET TYPE: AREA:	NAME, COLOUR:	DESCRIPTION:	COMMENTS:
1.00 160289RFLT AREA 4 TOP MAP 104 A/12	ALT BOW SED (SILTSTONE?)	FRAC, CAL, MIN DISSEM PY IN VEINS BREC FRAGS, SOME	

100289RFL1	ALI BOW SED	FRAC, GAL, MIN
TOP MAP	(SILTSTONE?)	DISSEM PY IN VEINS,
104 A/12		BREC FRAGS, SOME
HODDER CRK		SOOTY MAN IN
AT 106286SS		VUG, LIM CAL VEINS
		AND STWKS; UP TO
		1% PYRITE

TABLE RKSARAA; MOST RELEVANT ANALYTICAL RESULTS (FOR COMPLETE RESULTS SEE CHEMEX CERTIFICATES OF ANALYSES) & INITIAL RECOMMENDATIONS (BASED ON ANALYTICAL RESULTS AND GEOLOGICAL ENVIRONMENT) : AND/OR GEOFINE FOLLOW-UP ACTIVITIES:													
SAMPLE NO.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 NI ppm	5.00 CC ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm
160289RFL	<5	<0.2	18.00	34.00	10.00	<2	50.00	0.50	6.00	120.00	<1	3.00	10.00

and the second of the

INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL &GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm Ni, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)

9.A5. AREA 5: MEZIDIN JUNCTION TO WHITE RIVER: NTS 104 A/3, 104 P/14:

Area 5 of the general program extended from Meziadin Junction to beyond the White River Bridge on the White River lumber road, which trends southeast from Hwy 37, about 700 m west of the bridge on Nass R. (Map 8.) The project area proved to be the most frustrating for the collection of reasonable sediment sample material – in view of the regional flooding of streams at road culverts, often for some distance upstream, considerable traversing was required to obtain the appropriate fines. Such ponds are the habitat of ubiquitous toads; and some higher energy streams are particularly well-frequented black bear habitats, which are defended accordingly.

A total of 11 samples (Tables STRSDA5, STRARA5) were collected in Area 5, which is generally underlain by Bower Group shale and sandstone. The samples are thus generally characterized by elevated Cu and Ni values, and most are considered of no interest or low priority follow-up targets. However, samples 160316SS and 160317SS also have anomalous Zn (up to 956 ppm) and Ba contents and are thus currently considered the most important follow-up targets in the area.

9.A6. AREA 6: BELL 2 TO BOB QUINN: NTS 104 A/12, 104 A/13, 104 B/16E:

Area 6 terrain (Maps 6, 9, 10) is somewhat similar to Area 4 terrain, as Hwy 37 extends north along various river valleys to Bob Quinn. The highway provides an excellent cross section through high-energy, large streams, which generally drain Bowser Group sediment terrain. The wider streams are generally accessible for traversing, relative to the onerous conditions experienced in Areas 1 and 5.

A total of 13 samples (Table STRSDA6, STRARA6) were collected in Area 6. The samples are generally characterized by very anomalous Ni values, along with some elevated copper contents. The most interesting samples, 160449SS and 160448SS, have anomalous Cu, Ni, Co, Pb and Zn contents. The latter sample is particularly interesting in view of its weakly anomalous gold content and its 68 ppm Zn value.

All the other samples are considered of no current interest or low priority, pending additional information e.g. it would be interesting to ascertain what the anomaly dilution factor was in the high-energy streams in the summer of 1999. In view of the precipitation and run-off, that factor could be significant, and more anomalies could be normally present than indicated in the current data base.

			CAL PROGRAM; MPLE DESCRIPTIONS:	AREA 5, WHITE RIVER	AREATO BELL 2
	GAMPLE 10., LOC, YPE:	· · · · · · · · · · · · · · · · · · ·	DESCRIPTION:	STREAM PERAMATERS:	GEOLOGY:
AREA 5 T	160315SS 10P MAP 104 A/3 VH R RD 2 4.5KM S 18OUT 130 IPSTR FR I	ORG 30% GRY M	CL, SLT	FROM LIN VAL TR 165 DEG; LOW FLOW	NO GEOL
AREA 5 T 1 V 4 A	16031655 103P/14 103P/14 VH R RD 0 8.5KM S 100UT 120 1PSTR FR (GRY	CL .	SM CRK FLOW 5 DEG	NO GEOL
AREA 5 T 1 V 4 A	16031755 OP MAP 103P/14 VH R RD @ 10KMS @ 10KMS BOUT 150 IPSTR FR I	GRY	CL	SM CRK FLOWS 340 DEG IN FOREST LOW FLOW BEAR CRK	NO GEOL
AREA 5 T 1 V (A U	16031855 COP MAP 103P/14 VH R RD 20 10.6 KM BOUT 100 IPSTR FR RD	5	CL	SM CRK FLOWS 160 DEG LOW FLOW	NO GEOL
AREA 5 T 1 V 4 A U	16031955 OP MAP 103P/14 VH R RD 5 11.6 KM BOUT 100 IPSTR FR RD	GRY 5	CL MIN ORGS	SM CRK FLOWS 170 DEG LOW FLOW	NO GEOL

6.00 160320SS SD, BRN AREA 5 TOP MAP 103P/14 WH R RD © 12.1 KMS ABOUT 120 M UPSTR FR RD	FI-CO HETRO SD, INCL OXID MAT, SLATY BOW SED	SM CRK FLOWS 170 DEG LOW FLOW	NO GEOL
--	---	--	---------

TABLE STRSDA5; REGIONAL GEOCHEMICAL PROGRAM; STREAM SEDIMENT SAMPLE DESCRIPTIONS: AREA 5, WHITE RIVER AREATO BELL 2

.

	MOST RELEVA & INITIAL REC AND/OR GEOR	ANT ANALYT	YONS (BASE	LTS (FOR C						LYSES)				
SAMPLE NO.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 Ni ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MO ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU. 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
160315SS	<5	<0.2	34.00	59.00	13.00	6.00	90.00	<0.5	6.00	130.00	<1	3.00	<2	
16031655	<\$	0.20	62.00	83.00	25.00	12.00	956.00	0.50	10.00	260.00	≺1	2.00	<2	HIGH PR FU TARG
16031799	<5	<0.2	71. 00	103.00	26.00	12.00	162.00	<0.5	14,00	210.00	<1	4.00	<2	MOD PR FU TARG
16031858	s <5	<0.2	23.00	40.00	10.00	2.00	104.00	<0.5	4,00	110.00	<1	1.00	<2	
16031988	i <5	<0.2	40.00	62.00	12.00	8.00	104.00	≺0.5	6.00	140.00	4	1.00	<2	LOW PR FU TARG
160320SS	i <5	<0.2	39.00	66.00	18.00	10.00	118.00	<0.5	10.00	120.00	<1	3.00	<2	LOW PR FU TARG
10232030				~~.~~	10.00	10.00	110.00		14,444	120.00	-1	0.00	-	

TABLE STRSDA5 (CONT):	
REGIONAL GEOCHEMICAL PROGRAM:	
STREAM SEDIMENT SAMPLE DESCRIPTIONS:	AREA 5, WHITE RIVER AREATO BELL 2

REF. NO., RECON TARGET AREA:	SAMPLE NO., LOC, TYPE:	NAME, COLOUR:	DESCRIPTION:	STREAM PERAMATERS:	GEOLOGY:
7.00 AREA 5	160321SS TOP MAP 103P/14 WH R RD @ 12.15 K ABOUT 75 UPSTR FR	MS M	CL, SLT	SM CRK FLOWS 220 DEG LOW FLOW	NO GEOL
8.00 AREA 5	160322SS TOP MAP 103P/14 WH R RD 20 12.30 K 100 M UPS FR CUL	MS	FLPEBS, 20% PEBS INCL BOW SHALE & OXID MAT; 80% FLCO SD, SAM COMP AS PEBS	SM CRK FLOWS 160 DEG LOW FLOW	NO GEOL
9.00 AREA 5	160323SS TOP MAP 103P/14 WH R RD @ 13.70 K 120 M UP FR CUL	GRAV ORG BRN	FI-PEBS, 30% PEBS INCL BOW SHALE & OXID MAT; 20% CL, 50 FI -CO SD SAM COMP AS PEBS	SM CRK FLOWS 160 DEG LOW FLOW	BOW SEDS IN AREA
10.00 AREA 5	0 160324SS TOP MAP 103P/14 WH R RD 02 15.60 K 150 M UP WHITE R E BRD	STR	FI-MED, BOW SED, OXID MAT, QTZ MAINLY ANG	WHITE RIVER HI FLOW FLOWS 170 DEG	BOW SEDS
11.00 AREA 5	0 16025055 TOP MAP 103P/14 WH R RD 00 15.60 K 60 M UPS FR JUNCT WHITE R	(MS TR	FI BOW SED, OXID MAT, QTZ MAINLY ANG	TRIB TO WHITE R. CRK, HI FLOW FLOWS 245 DEG MEETS WHITE R. 75 M NE OF BRDG	Bow SEDS

8	OST RELEVA INITIAL RECO ND/OR GEOF	NT ANALYT	'IONS (BASE	LTS (FOR C	OMPLETE F	RESULTS SE SULTS AND	ee Chemex Geologic	CERTIFICAT AL ENVIRON	TES OF ANA IMENT):	NLYSES)				
SAMPLE NO.	1.00 AU ppb	2.00 AG ppm	3.00 CU ppm	4.00 Ni ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN 9900	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 НС дрт	12.00 MC ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
16032155	<5	0.40	39.00	53.00	19.00	6.00	118.00	0.50	8.00	260.00	~1	2.00	~2	LOW PR FU TARG
16032288	≺5	<0.2	40.00	62.00	15.00	10.00	110.00	<0.5	14.00	110.00	<1	2.00	. <2	LOW PR FU TARG
16032368	<5	<0.2	47.00	68,00	19.00	8.00	128.00	<0.5	14.00	170.00	<1	2.00	42	LOW PR FU TARG
16032465	10.00	0.20	42.00	35.00	12.00	6.00	88.00	<0.5	24.00	80.00	<1	3.00	≤2	LOW PR FU TARG
16025088	<5	<0.2	40.00	35.00	13.00	10.00	88.00	<0.5	26.00	110.00	<1	3.00	2.00	LOW PR FU TARG

a second se

	TABLE STI REGIONAL GEOCHEN STREAM SEDIMENT S		: AREA 6, BELL 2 TO 5	iob quinn
REF. NO., RECON TARGET AREA:	SAMPLE NAME, NO., LOC, COLOUR: TYPE:	DESCRIPTION:	STREAM PERAMATERS:	geology:
1.00 AREA 6	160449 SS SD GRAV, 1.9 KM N BRN OF BELL 2 ON HWY 37 120 M UPSTR FR RD TOP MAP 104 A/12	FI-PEBS INCL 85% ANG FRAGS BOW SEDS, 10% QTZ, 5% OXID MAT	MOD FLOW	Bow sed oc In Area
2.00 AREA 6	160448 SS SD GRAV 5 KM W OF BLK 160449 SS ABOUT 100 M UPSTR TOP MAP 104 A/12	FI-PEBS INCL 65% ANG FRAGS BOW SEDS, 10% QTZ, 15% OXID MAT, 5% ORGS	MOD FLOW @ 230 DEG	BOW SED OC IN AREA
3.00 AREA 6	160447 SS SD, BRN 2.3KM N OF 160448SS AT SNOWBK CRK, ABOUT 75 M UPSTR FR HWY 37 TOPOG 104 A/13	FI, DERIV FR BOW SEDS, MIN QTZ, ORG	MOD FLOW SSE	BOW SED OC IN AREA
4.00 AREA 6	160446 SS SD, BRN 4.3KM N OF 160447SS AT RED FLAT CRK ABOUT 200 M UPRSTR FR HWY 37 TOPOG 104 A/13	FI - CO ANG FRAGS FR BOW SEDS, MIN OXID, QTZ	MOD FLOW EAST	Bow SED OC IN AREA
5.00 AREA 6	9 160445 SS SD, GRY 4.1KM N OF 180446SS AT REVISION CRK ABOUT 200 M UPRSTR FR HWY 37 TOPOG 104 A/13	FI - CO CAW HETRO FRAGS OF GRY VOL, BOW SEDS, OXID MAT 5-7% QTZ	MOD FLOW	Bow SED OC IN AREA

 $= \sum_{i=1}^{n} (i + i) + (i + i) +$

ų i	•		Ŧ	` •	•	• ,	,	• •	۲	•	Ŧ	• •	•. •	
	MOST RELEV & INITIAL REC AND/OR GEO	ANT ANALY		ULTS (FOR C	COMPLETE F	RESULTS SI SULTS AND	EE CHEMEX GEOLOGIC/	CERTIFICA AL ENVIRON	TES OF AN	ALYSES)				
Sam ple No.	1.00 AU ppb	2.00 AG ppm	3,00 CU ppm	4.00 Ni ppm	5.00 CO ppm	6.00 PB ppm	7.00 ZN ppm	8.00 CD ppm	9.00 AS ppm	10.00 BA ppm	11.00 HG ppm	12.00 MC ppm	13.00 SB ppm	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES; (BASED ON GEOLOGICAL &GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm NO, 2 ppm SB)
160449 SS	<5	0.20	49.00	115.00	28.00	16.00	154.00	0.50	16.00	130.00	<1	3.00	<2	MED PR FU TARG
1 6044 8 SS	10.00	0.20	50.00	116.00	28.00	68.00	164.00	0.50	16.00	140.00	<1	<1	2.00	HIGH PR FU TARG
160447 SS	<5	<0.2	27.00	76.00	13.00	6.00	82.00	<0.5	2.00	70.00	<1	≮1	<2	
160446 SS	< 6	0.20	30.00	79.00	13.00	10.00	84.00	<0.5	12.00	70.00	<1	<1	<2	
160445 55	<5	0.20	42.00	115.00	19.00	12.00	118.00	<0.5	14.00	110.00	<1	<1	2.00	LOW RP FU TARG

TABLE STREDAG (CONT):
REGIONAL GEOCHEMICAL PROGRAM:
STREAM SEDIMENT SAMPLE DESCRIPTIONS: AREA 6, BELL 2 TO BOB QUINN

REF. NO., SAMPLE NAME, RECON NO., LOC, COLOUR: TARGET TYPE: AREA:	DESCRIPTION:	STREAM PERAMATERS:	geology:
6.00 160444 SS SD, GRY AREA 6 1.7KM N OF 160445SS AT FON CRK ABOUT 125 M UPRSTR FR HWY 37 TOPOG 104 A/13	FI - CO CW HETRO FRAGS OF GRY VOL, BOW SEDS, OXID MAT 20 GTZ	MOD FLOW @ 85 DEG	BOW SED OC IN AREA
7.00 100442 SS SD GRAV AREA 6 1.7KM N OF BRN 100445SS AT SMALER CRK ABOUT 100 M UPSTR FR HWY 37 TOPOG 104 A/13	FI - PEBS 50% QTZ FELD 40% BOW ANG FRAGS 10% OXID MAT	Mod Flow North	BOW SED OC IN AREA
8 00 160443 SS CL, BRN AREA 6 4.2KM N OF 160445SS AT BEAVER POND CRK ABOUT 100 M UPSTR FR HWY 37 TOPOG 104 B/16E	a	MOD FLOW 310 DEG	BOW SED OC IN AREA
9.00 160440 SS SD, BLK AREA 6 0.5 KM N OF 1604436S AT LIZ POND CRK ABOUT 125 M UPSTR FR HWY 37 TOPOG 104 B/16E	FI, MAINLY ANG FRAGS OF BOW SED, 5% WH QTZ, 5% OXID MAT	MOD FLOW 250 DEG	Bow SED OC IN AREA
10.00 160439 55 SD, BLK AREA 6 4.2 KM N OF 16044055 AT ALGER CRK ABOUT 125 M UPSTR FR HWY 37 TOPOG 104 B/16E	FI, MAINLY ANG FRAGS OF BOW SED, 10% WH QTZ, 10% OXID MAT	Mod Flow 280 deg	BOW SED OC IN AREA

AMPLE	1.00 AU	2.00 AG	3.00 CU	4.00 NI	5.00 CQ	6.00 PB	7.00 ZN	8.00 CD	9.00 AS	10.00 BA	11.00 HG	12.00 MQ	13.00 88
10.	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррт	ppm	ppm	ppm	ppm
160444 55	<5	<0.2	28.00	96.00	15,00	8.00	86.00	<0.5	8.00	80.00	<1	<1	<2
60442 \$5	<5	<0.2	23.00	77.00	14.00	8.00	78.00	<0.5	~2	50.00	<1	1,00	4.00
160443 SS	<5	<0.2	30.00	80.00	15.00	12.09	100.00	<0.5	6.00	100.00	<1	1.00	<2
160440 55	<5	<0.2	29.00	82.00	12,00	8.00	55.00	<0.5	8.00	140.00	<1	<1	<2

and the second second

INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES: (BASED ON GEOLOGICAL & GEOCHEMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)

TABLE STRSDA6 (CONT): REGIONAL GEOCHEMICAL PROGRAM: STREAM SEDIMENT SAMPLE DESCRIPTIONS: AREA 6, BELL 2 TO BOB QUINN

.

.

.

• • • •

,

× • •

.

.

ì

.

.

.

REF. NO., SAMPLE NAME, DESCRIPTION: STREAM GEOLOGY: RECON NO., LOC, COLOUR: PERAMATERS: TARGET TYPE: AREA:

×.

.

1.5

. .

.

.

ч **н**

11.00 AREA 6	9 160441 SS SD GRAV 3 KM N OFBLK 160440SS AT BEND CRK ABOUT 75 M UPSTR FR HWY 37 TOPOG 104 B/16E	FI - PEBS 70% ANG FRAGS OF BOW SED, 15% WH QTZ, 15% OXID MAT	MOD FLOW 260 DEG	BOW SED OC IN AREA
12.00	16033888 SD BLK	FL-CO		ROW SED OC

12.00 160338SS SD, BLK AREA 6 1.3 KM W OF 160441SS AT GAMMA CRK ABOUT 70 M UPSTR FR HWYY 37 TOPOG 104 B/16E	FI - CO 90% ANG MAFIC FRAG INCL BOW SED, 10% V QTZ		BOW SED OC IN AREA
13.00 160337SS SD, BLK	FI - CO	MOD FLOW	BOW SED OC

AREA 6 2.7 KM W OF 90% ANG MAFIC FRAGSOUTH IN AREA 160441SS INCL BOW SED, 10% WH AT OLGILVIE QTZ CRK ABOUT 40 M UPSTR FR HWY 37 TOPOG 104 B/16E

14.00 160337ASS BITTER CREEK CHECK SAMPLE AS 160201SS

	MOST RELEV & INITIAL REC AND/OR GEOI	ANT ANALYI OMMENDA1	IICAL RESU	ED ON ANAL	OMPLETE I	RESULTS SI SULTS AND	ee chemex Geologic	CERTIFICA AL ENVIRON	TES OF AN	ALYSES)				
SAMPLE	1.00 AU	2.00 AG	3.00 CU	4.00 NI	5.00 CO	6.00 PB	7.00 ZN	8.00 CD	9.00 AS	10.00 BA	11.00 HG	12.00 MO	13.00 SB	INITIAL RECOMMENDATIONS (SUBJECT TO DETAILED RESEARCH & FU ACTIVITIES) AND/OR GEOFINE FOLLOW-UP ACTIVITIES:
NO.	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	(BASED ON GEORGICAL BEFORMICAL PARAMETERS INCL. THRESHOLD VALUES OF 10 ppb AU, 0.6 ppm AG, 35 ppm CU, 25 ppm NI, 20 ppm CO, 10 ppm Pb, 150 ppm ZN, 1 ppm CD, 15 ppm AS, 140 ppm BA, 1 ppm HG, 2 ppm MO, 2 ppm SB)
160441 SS	<5	0.20	43.00	102.00	17.00	10.00	116.00	<0.5	12.00	230.00	<1	3.00	2.00	LOW PR FU TARG
16033855	<5	<0.2	33.00	73.00	11.00	6.00	64.00	<0.5	6.00	70.00	<1	<1	*2	

 $(\mathbf{r}_{i},\mathbf{x}_{i},\mathbf{r}_{i},\mathbf{x}_{i},\mathbf{r},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}_{i},\mathbf{r}$

16033788	<5	0.20	43.00	93.00	18.00	12.00	94.00	<0.5	12.00	110.00	≺1	1.00	<2	LOW PR FU TARG
----------	----	------	-------	-------	-------	-------	-------	------	-------	--------	----	------	----	----------------

9.B. SIGNIFICANCE OF THE REGIONAL GEOCHEMICAL/GEOLOGICAL PROGRAM:

It is concluded that the regional program was successful in identifying interesting follow-up targets in most areas. Area 1, with its predominately Hazelton Group geological association and numerous mineral showings obviously offers the best opportunity for new discoveries. In addition to the Red and Poly Claims Groups, which were staked during the program, a number of high priority anomalies in very favourable geological environments remain to be investigated.

Areas 2, 3, 5 and 6 are deemed to offer some unique follow-up targets in Bowser Group sedimentary terrain. Anomalous Zn and Ba values mainly characterize such higher priority targets, which appear somewhat similar to those on the Delta West Project.

Elevated Cu and Ni contents generally characterize most stream sediments from these areas – perhaps indicative of the uniform composition of the sediments. However, given the important Ni association with much of the Cu-Au mineralization in the Stewart Camp, these low priority "anomalies" have not been completely discarded, pending critical additional information that should be supplied by follow-up activities on some of the more interesting samples..

9.B. SIGNIFICANCE OF THE REGIONAL GEOCHEMICAL/GEOLOGICAL PROGRAM:

It is concluded that the regional program was successful in identifying interesting follow-up targets in most areas. Area 1, with its predominately Hazelton Group geological association and numerous mineral showings obviously offers the best opportunity for new discoveries. In addition to the Red and Poly Claims Groups, which were staked during the program, a number of high priority anomalies in very favourable geological environments remain to be investigated.

Areas 2, 3, 5 and 6 are deemed to offer some unique follow-up targets in Bowser Group sedimentary terrain. Anomalous Zn and Ba values mainly characterize such higher priority targets, which appear somewhat similar to those on the Delta West Project.

Elevated Cu and Ni contents generally characterize most stream sediments from these areas – perhaps indicative of the uniform composition of the sediments. However, given the important Ni association with much of the Cu-Au mineralization in the Stewart Camp, these low pri ority "anomalies" have not been completely discarded, pending critical additional information that should be supplied by follow-up activities on some of the more interesting examples of them.

10. DETAILED GEOCHEMCIAL AND GEOLOGICAL SURVEYS TO PRIORITIZE DRILL TARGETS ON THE DELTA WEST PROJECT, STEWART PROPERTY:

The second main component of the 1999 Prospectors Assistance Program comprised detailed geochemical and geological surveys on the Delta West Project of the Stewart Property. The project is located on the east side of the Stewart Property (Map S1), situated about 70 km north of Meziadin Junction, in Area 4 referenced above.

Historical work, which is described in the Report on 1998 Prospectors Assistance Program (Molloy, 1998), outlined a number of apparently stratabound zones of Zn-Cd-Ag-Ba soil anomalies that have both IP and EM anomaly associations. The targets are located in close proximity to Hwy 37, but occur in overburden that ranges up to over 10 m in depth. They are interpreted to be associated with altered (silicified, carbonatized, hematized, pyritized) HazeltonGroup volcanic breccias and tuffaceous rocks. Such rocks occur near the contact with Bowser Group sediments (near Hwy 37A) and are part of the Oweegee Dome, which was identified by the GSC (Map S2; Greig, 1991) as being predominantly composed of Hazelton Group stratigraphy. Au-Cu mineralization is hosted by such rocks on the Deltaic Grid, located about 5 km to the east, on the Stewart Property.

The widening and construction of the Hwy 37 (Map S1) hindered access to, and work on the historic Delta West Grid, which strattles the highway. For a period of time "no stopping" was allowed in the construction zone. Activities consisted of the restoration of Grid Lines 30+00N, 28+00N, 26+00N, and 22+00N; and, the collection of a total of 86 fill-in soil samples (Map S3 generally taken at 10 m intervals) and check samples, which were analyzed by 32 element ICP by Chemex Labs in Vancouver. The samples are described in Table STUDGSO1 and the analytical results for the 11 elements considered most relevant are presented in Table STUDGSOA1. The Zn, Cu, Ni, Ba and Cd soil analytical results have been integrated with the historic data on Maps S4-S8, respectively. All the analytical results are presented in Appendix B on the Chemex Certificates of Analyses. Prospecting and mapping were carried out to locate additional outcrops and apparent structures, and to ascertain whether the axes of the most important HLEM anomalies located in 1998 have any apparent overburden, as opposed to bedrock association. The results of prospecting and mapping activities have been integrated with the historic data on Map S9.

The project rationale was advanced by both the regional geochemical program described above and by the work on the project. As noted above, sediments from streams draining Bowser Group lithologies are generally characterized by rather elevated Cu and Ni contents. Soil samples overlying Bowser sediments near Hwy 37 appear to have the same Cu-Ni signature (Maps S5, S6), which thus appears to be a useful tool in mapping the contact of the Bowser Group and altered Hazelton Group rocks. The latter rocks are postulated to host wide, stratabound zones of Zn-Cd-Ag-Ba mineralization. This type of mineralization often halos significant Cu-Au mineralization in the Stewart Camp e.g., the Red Mountain Au-Cu deposit; and, the Delta Grid Cu-Au mineralization located on the Stewart Property about 5 km east of

ť

	DELTAIC G	,	RT PROPERTY: 1999 DETAILED F SOIL SAMPLE DESCRIPTIONS: TABLE STUDGSO1							
	L30+00N									
SAMPLE NO., LOC.	NAME, HORIZ., DEVEL., DEPTH	gr. size, Colour	COMPOSITION	DRAINAGE, GEOLOGY	COMMENTS					
86801SO L30N, 48+70E	SLT-SD- GRAV, B, GOOD, 25 CM		70% SLT, 10% SD, 20% GRAV - HETRO FRAGS, ANG TO RD, BOW SEDS OXID MAT, MIN GR VOL	TO S, HETRO BO SIM TO FRAGS	48+75: NO SURF EVID FOR CONDUCT ON HILLSIDE					
86802SO L30N, 48+60E	AS 86801SS									
8680350 L30N, 48+80E	AS 8680155	BUT CAW 8	0% SLT, 5% ORG							
8680490 L30N, 48+50E	SLT-SD- GRAV, B, GOOD, 25 CM	slt-pebs. Brn	50% SLT, 20% SD, 30% GRAV - HETRO FRAGS, ANG TO RD, BOW SEDS OXID MAT, MIN GR VOL	to S, Hetro Bo RD to Ang	48+75: NO SURF EVID FOR CONDUCT ON HILLSIDE					
8697850 L30N, 55+60E	SLT-SD B, GOOD, 20 CM	SLT-CO, ORG BRN	80% SLT, 40% SD	TO W, NO GEOL	NO APPARENT CAUSE OF CONDUCT					
88979SO L30N, 55+70E	SLT-SD B, GOOD, 20 CM	SLT-CO, ORG BRN	80% SLT, 40% SD	TO W, NO GEOL	NO APPARENT CAUSE OF CONDUCT					
88980SO L30N, 55+80E		SLT-CO, ORG BRN	60% SLT, 40% SD	TO W, NO GEOL	NO APPARENT CAUSE OF CONDUCT					
86981SO L30N, 55+90E	SLT-SD B, GOOD, 30 CM	SLT-CO, ORG BRN	60% SLT, 40% SD	TO W, NO GEOL	NO APPARENT CAUSE OF CONDUCT					
5698250 L30N, 56+10E	SLT-SD B, GOOD, 30 CM	slt-co, org brn	60% SLT, 40% SD	TO W, NO GEOL	NO APPARENT CAUSE OF CONDUCT					
86983SO L30N, 56+20E	SLT-SD B, GOOD, 30 CM	SLT-CO, ORG BRN	60% SLT, 40% SD	TO W, NO GEOL	NO APPARENT CAUSE OF CONDUCT					
86984SC L30N, 56+30E	SLT-SD B, GOOD, 30 CM	SLT-CO, ORG BRN, PK TING	60% SLT, 40% SD	TO W, NO GEOL	NO APPARENT CAUSE OF CONDUCT					
88985SC L30N, 58+40E	SLT-SD- GRAV, B, GOOD, 25 CM	BRN	, 80% SLT, 30% 5D 10% ANG FRAGS OF VOL	TO W, NO GEOL	NO APPARENT CAUSE OF CONDUCT					
8698650 L30N, 56+60E	SLT-SD- GRAV, B, GOOD, 25 CM	BRN	, 60% SLT, 30% SD 10% ANG FRAGS OF VOL	TO W, NO GEOL	NO APPARENT CAUSE OF CONDUCT					

M	JST RELEVE	NT ANALYT	YCAL RESUL	ALRESULTS (32 ELEMENTICH) SEE TABLE AT FOR COMPLETE RESULTS)): E STUDGSOA1								
L3	0+00N	17		0041								
SAMPLE NO.	AG ppm	CU ppm	NI ppm	PB ppm	ZN ppm	CD ppm	BA ppm	AS ppm	SB ppm	HG ppm	MO ppm	
86801 SO	0.20	20.00	32.00	12.00	252.00	<0.50	350.00	8.00	<2	<1	<1	
8680250	<0.20	18.00	29.00	12.00	226.00	0.50	360.00	8.00	<2	<1	<1	
86803.SO	<0.20	17.00	33.00	8.00	236.00	0.50	230.00	6.00	2.00	<1	<1	
86804SO	<0.20	87,00	67.00	16.00	158.00	0.50	230.00	20.00	≺2	<1	1.00	
86978SÖ	<0.20	41.00	45.00	10.00	306.00	2.50	370.00	10.00	<2	≮1	<1	
86979SO	<0.20	33,00	33.00	8.00	204.00	2.50	290.00	12.00	6.00	<1	~1	
86980SQ	<0.20	19.00	33.00	8.00	344.00	1.50	170.00	8.00	6.00	<1	<1	
86981SO	0.20	27.00	41.00	8.00	272.00	0.50	190.00	14.00	<2	<1	< 1	
86982SO	0.40	33.00	40.00	10.00	302.00	3.00	410.00	22.00	≺2	≺1	1.00	
86983SO	0.40	19.00	29.00	10.00	394.00	3.00	340.00	14.00	<2	<1	<1	
86964SO	0.40	16.00	25.00	8.00	222.00	2.00	230.00	14.00	<2	1.00	<1	
8898550	0.20	49.00	51.00	10.00	148.00	0.50	210.00	32.00	<2	<1	1.00	
86986SO	0.40	24.00	21.00	12.00	152.00	1.50	220.00	18.00	<2	<1	1.00	

į.

MOST RELEVENT ANALYTICAL RESULTS (32 ELEMENT ICP; SEE TABLE A1 FOR COMPLETE RESULTS)): TABLE STUDGSOA1

	L28N+00		TABLE STUDGSO1		
Sample NO., LOC.	NAME, HORIZ., DEVEL., DEPTH	gr. size, Colour	COMPOSITION	DRAINAGE, GEOLOGY	COMMENTS
8680550 L28N, 49+30E	SLT-SD- GRAV, B, GOOD, 25 CM		60% SLT, 20% SD, 20% GRAV - HETRO FRAGS, ANG TO RD, BOW SEDS OXID MAT, MIN GR VOL	to S, H etro Bo	NO APPARENT CAUSE OF CONDUCT
86806SO L28N, 49+20E	SLT-SD- GRAV, B, GOOD, 25 CM	SLT-PEBS, BRN	60% SLT,20% SD, 20% GRAV - HETRO FRAGS, ANG TO RD, BOW SEDS OXID MAT, MIN GR VOL	TO E, HETRO BO	NO APPARENT CAUSE OF CONDUCT
8680750 L28N, 49+10E	SLT-SD- GRAV, B, GOOD, 20 CM	slt-pebs, Brn	SLT FI 20% SLT,80% SD, MIN FRAGS BOW SEDS,	to s No geol	NO APPARENT CAUSE OF CONDUCT
86808SO L28N, 48+90E	AS 96807SO	FI, BRN			
8680950 L28N, 48+80E	SLT-SD- ORG, AB, GOOD, 40 CM	slt fi, Br blk	70% SLT,10% SD, 20% ORG	TO E NO GEOL	NO APPARENT CAUSE OF CONDUCT
86810SO L28N, 48+70E	ORG MUCK, A, POOR, 20 CM	slt. Blk	50% SLT, 50% SD, 10% ORG	TO E NO GEOL	NO APPARENT CAUSE OF CONDUCT
86811SO L28N, 48+60E	org Muck, B, good, 20 cm	slt, BRN	60% SLT, 50% SD, 10% ORG	POOR NO GEOL	NO APPARENT CAUSE OF CONDUCT
86812SO L28N, 48+40E	SLT SD, B, GOOD, 30 CM	slt fi <u>.</u> Brn	70% SLT, 25% SD, 5% ORG	to NW No geol	NO APPARENT CAUSE OF CONDUCT
86813SO L28N, 48+30E	SLT ORG TR ROOT SAMP	SLT, BRN	50% SLT, 50% ORG,	to NW NO GEOL	NO APPARENT GAUSE OF CONDUCT
86814SO L28N, 48+20E	SLT , SD B, GOOD, 20 CM	SLT-CO BRN,	20% SLT, 80% SD,	to NW NO GEOL	NO APPARENT CAUSE OF CONDUCT
86815SO L28N, 48+10E	SLT , ORG AB, GOOD 20 CM	SLT, , ORG BRN BLK	60% SLT, 40% ORG,	TO NW NO GEOL	NO APPARENT CAUSE OF CONDUCT
8881690 26+75N, 47+75E E SIDE OF RD	FLOUR	FI BLK	SLT	BOW SEDS EXPOSED DURING RD CONST	

n na server a la construcción de la La construcción de la construcción d

l	L28+00N	TA	BLE STUDG	SOA1							
Sample No.	AG ppm	CU ppm	NI ppm	PB ppm	ZN ppm	CD ppm	BA ppm	AS ppm	SB ppm	HG ppm	MO ppm
8680550	0.20	21.00	37.00	10,00	340.00	0.50	220.00	6.00	<2	<1	<1
86806SO	<0.20	49.00	55.00	10.00	110.00	<0.5	150.00	12.00	<2	<1	<1
8680790	<0.20	79.00	59.00	10.00	134.00	<0.5i	150.00	16.00	<2	ব	<1
86808SO	0.20	40.00	51.00	10.00	146.00	<0.5	160.00	12.00	2.00	<1	<1
868099O	1.20	190.00	94.00	8.00	298.00	2.50	490.00	10.00	2.00	<1	<1
86810SO	0.60	113.00	43.00	<2	248.00	1.50	210.00	2.00	<2	<1	1.00
85 8115O	<0.20	29.00	21.00	2.00	86.00	0.50	220.00	2.00	<2	<1	<1
86812 SO	0.20	27.00	38.00	6.00	156.00	0. 50	160.00	13.00	2.00	<1	<1
868 13SO	0.80	33.00	35.00	12.00	248.00	2.50	370.00	12.00	<2	<1	<1
66814SO	0.20	29.00	35.00	10.00	372.00	2.50	250.00	10.00	<2	<1	<1
868 15SO	0.20	72.00	47.00	6.00	248.00	1 50	420.00	6.00	<2	<1	<1
868169O	0.20	52.00	68.00	8.00	142.00	<0.5	170.00	12.00	<2	<1	<1

	L28+00N (0	CONT)	TABLE STUDGSO1		
Sample No., Loc.		gr. size, Colour	COMPOSITION	DRAINAGE, GEOLOGY	COMMENTS
8696580 L28N, 57+15E	SLT SD, B, GOOD, 25 CM	SLT - FI BRN	80% SLT, 20% SD,	TO W NO GEOL	NO SURF EVID FOR CONDUCTOR
86966SO L28N, 56+90E	CL SLT ORG, AC, POOR, 15 CM	SLT - FI BLK	25% SLT, 25% CL, 40% ORG, 10% TUFF FRAGS	TO W NO GEOL	NO SURF EVID FOR CONDUCTOR
86957 SO L28N, 56+80E	CL SLT ORG, AC, POOR 15 CM	SLT-FI BLK	25% SLT, 25% CL, 40% ORG, 10% TUFF FRAGS	TO W NO GEOL	NO SURF EVID FOR CONDUCTOR
8696850 L28N, 56+70E	CL SLT ORG, AC, POOR 15 CM	SLT - FI BLK	25% SLT, 25% CL, 40% ORG, 10% TUFF FRAGS	TO W NO GEOL	NO SURF EVID FOR CONDUCTOR
8696990 L28N, 56+60E	SLT SD ORG, B, GOOD, 40 CM		880% SLT, 10% SD, 5% OXID VOL, BRECC 5% ORG	to W No geol	NO SURF EVID FOR CONDUCTOR
86970SO L28N, 56+40E	SLT SD GRAV, B, GOOD, 25 CM	BRN	50% SLT, 30% SD, 20% TUFF FRAGS	TO W NO GEOL	NO SURF EVID FOR CONDUCTOR
86971SO L28N, 56+30E	SLT ORG, AC, POOR 30 CM		70% SLT, 30% ORG,	TO W NO GEOL	NO SURF EVID FOR CONDUCTOR
86972SO L28N, 56+20E	SLT SD, B, GOOD, 20 CM		50% SLT, 40% SD, 10% ORG	TO W NO GEOL	NO SURF EVID FOR CONDUCTOR
86973SO L28N, 56+10E	SLT SD, B, GOOD, 20 CM	BRN SLT FI	50% SLT, 40% SD, 10% ORG	TO W NO GEOL	NO SURF EVID FOR CONDUCTOR
86974SO L28N, 55+90E	SLT SD ORG, AC, POOR, 20CM	slt Blk Brn	25% SLT, 50% ORG, 25% SD	TO W NO GEOL	NO SURF EVID FOR CONDUCTOR
8697690 L28N, 55+80E	SLT SD GRAV, B, GOOD, 20CM	SLT - PEBS BRN	5 50% SLT, 10% ORG, 40% SD	TO W NO GEOL	NO SURF EVID FOR CONDUCTOR
8697750 L28N, 55+70E	SLT SD GRAV, B, GOOD, 25CM	SLT - PEBS BRN	5 50% SLT, 10% ORG, 40% SD	TO W NO GEOL	NO SURF EVID FOR CONDUCTOR

the second se

	L28+00N (CON	IT) ⁻	TABLE STUDO	GSOA1								
SAMPLE NO.	AG ppm	CU ppm	NI ppm	P8 ppm	ZN ppm	CD ppm	BA ppm	AS ppm	SB ppm	HG ppm	MO ppm	
8696550	0.60	34.00	29.00	10.00	258.00	1.50	250.00	18.00	2.00	<1	<1	
8696650	0.40	76.00	52.00	14.00	632.00	6.00	780.00	18.00	<2	<1	<1	
86967SO	0.60	42.00	25.00	25.00	182.00	3.00	270.00	8.00	2.00	<1	1.00	
86968SO	0.40	54.00	34.00	8.00	326.00	3.00	260.00	12.00	2.00	<1	<1	
8696950	<0.2	52.00	28.00	14.00	386.00	2.00	280.00	14.00	6.00	<1	<1	
8697090	<0.2	101.00	81.00	12.00	458.00	1.00	420.00	16.00	2.00	<1	1.00	
8697190	0.60	122.00	74.00	12.00	466.00	1.50	290.00	14.00	4.00	<1	1.00	
8697250	<0.2	69.00	53.00	10.00	264.00	1.50	300.00	14.00	2.00	<1	1.00	
8697390	0.20	41.00	54.00	20.00	478.00	1.50	280.00	16.00	6.DO	<1	1.00	
8697490	0.20	29.00	37.00	10.00	440.00	5.00	550.00	6.00	4.00	<1	<1	
8697690	0.20	27.00	33.00	12.00	370.00	2.00	370.00	18.00	2.00	<1	<1	
86977SO	0.40	24.00	30.00	10.00	252.00	2.50	220.00	12.00	4.00	<1	<1	

and a second second

	L26+00N		TABLE STUDGSO1		
Sample NO., LOC.	NAME, HORIZ., DEVEL., DEPTH	gr. size, Colour	COMPOSITION	DRAINAGE, GEOLOGY	COMMENTS
8684550 L26N, 48+30E	SLT, SD, GRAV, B, GOOD, 25 CM	ORG BRN	90% SLT, 5% ORGS, 5% FRAGS MAINLY BOW	TO W NO GEOL	NO APPARENT CAUSE OF CONDUCT
86844.90 L26N, 48+40E	AS 86840SO				
8684350 L26N, 48+40E	AS 86840SO				
8684150 L26N, 48+60E	AS 86840SO				
8684060 L26N, 48+70E	SLT, SD, GRAV, B, GOOD, 30 CM	ORG BRN	70% SLT, 20 SD%, 5% ANG HETRO ANG FRAGS 5% ORG	TO W NO GEOL	NO APPARENT CAUSE OF CONDUCT
8683990 L26N, 48+80E	AS 86638SO				
8683850 L26N, 48+90E	SLT , SD, GRAV, B, GOOD, 25 CM		60% SLT, 30 SD%, 10% ANG FRAGS MAINLYBOW SEDS ANG	to W NO GEOL	NO APPARENT CAUSE OF CONDUCT
8681790 L26N, 49+10E	SLT , ORG, 8, GOOD, 20 CM		5% SLT, 90% ORG, 5% ANG FRAGS BOW SEDS	to W Som Bo Bow Seds	NO APPARENT CAUSE OF CONDUCT
8681850 L26N, 49+20E	AS 86817SO				
8681930 L26N, 49+30E	SLT, SD, ORG, B, GOOD, 30 CM	SLT - PEBS BRN	80% SLT, 10 ORG, 10 SD, MIN FRAGS BOW SEDS	to W No geol	NO APPARENT CAUSE OF CONDUCT
8682050 L26N, 49+40E	SLT, SD, ORG, B, GOOD, 20 CM		80% SLT, 10 ORG, 30 SD, MIN FRAGS BOW SEDS & GR VOL	to W NO GEOL	NO APPARENT CAUSE OF CONDUCT
8682150 L26N, 49+60E	SLT, SD, ORG, B, GOOD, 25 CM	slt Org Brn	100% SLT	TO W NO GEOL	NO APPARENT CAUSE OF CONDUCT
8682290 L26N, 49+70E		(SLT - PEBS ORG BRN		TO W NO GEOL	NO APPARENT SOURCE OF CONDUCT
86823SO L26N, 49+80E		SLT - PEBS ORG BRN		TO W NO GEOL	No apparent Source of Conduct

	L26+00N	T/	ABLE STUDG	SOA1							
SAMPLE NO.	AG ppm	CU ppm	NI ppm	PB ppm	ZN ppm	CD ppm	BA ppm	AS ppm	SB ppm	HG ppm	MO ppm
8684550	<0.20	34.00	40.00	10.00	254.00	2.00	350.00	14.00	<2	<1	2.00
86844SO	<0.20	21.00	21.00	4.00	242.00	2.00	310.00	6.00	2.00	<1	1.00
86843SQ	0.20	26.00	20.00	14.00	358.00	4.00	470.00	6.00	2.00	<1	3.00
86841SO	0.20	17.00	23.00	6.00	384.00	2.50	490.00	4.00	<2	<1	1.00
8684050	0.20	21.00	25.00	6.00	282.00	1.50	340.00	8.00	2.00	<1	<1
8683950	<0.20	26.00	33.00	10.00	284.00	1.50	370.00	15.00	<2	<1	<1
86838SO	<0.20	34.00	34.00	12.00	310.00	1.00	210.00	14.00	2.00	<1	<1
8681730	0.20	23.00	30.00	6.00	310.00	1.50	460.00	6.00	<2	۲1	<1
86818SO	0.60	15. 00	34.00	6.00	402.00	2.00	620.00	4.00	2.00	<1	<1
868195O	0.40	15.00	32.00	8.00	256.00	2.00	490.00	2.00	<2	<1	<1
8682050	0.60	14.00	29.00	4.00	268.00	1.50	300.00	6.00	<2	<1	1.00
86821SO	0.20	17.00	22.00	8.00	110.00	0.50	170.00	4.00	<2	<1	<1
8587250	0.40	19.00	27.00	10.00	172.00	<0.ť	280.00	12.00	2.00	4	1.00
8682350	1.00	47.00	33. 00	12.00	236.00	1.50	320.00	6.DQ	<2	≺1	2.00

	L26+00N (C	CONT)	TABLE STUDGSO1		
SAMPLE NO., LOC.	NAME, HORIZ., DEVEL., DEPTH	gr. size, Colour	COMPOSITION	DRAINAGE, GEOLOGY	COMMENTS
8682490 L26N, 49+90E	SLT, MIN ORG, B, GOOD, 20 CM	slt BRN	100% SLT	to W No geol	NO APPARENT SOURCE OF CONDUC'
8684690 L26N, \$3+80E	SLT, SD, GRAV, B, GOOD, 20 CM	SLT - PEBE ORG BRN	8 80% SLT, 10 SD% , 10% ANG FRAGS OF GR VOL BRECC	to W Hetro Bo	NO APPARENT SOURCE OF CONDUC"
86847SO L26N, 53+90E	SD, GRAV, B, GOOD, BK SAMP		80% SD, 20 GRAV , HETRO FRAGS	to se No geol	NO APPARENT SOURCE OF CONDUCT
86848SO L26N, 54+10E	SLT, SD, GRAV, B, GOOD, 25 CM		8 80% SLT, 10 HETRO FRAGS, MOSTLY OXID, 10% FI SD	TO SE NEAR MAJOR LIN @ 340 DEG @54+15E	NO APPARENT SOURCE OF CONDUC"
5584980 L26N, 54+20E	SD, ORG, AC, POOR, 30 CM		30% SLT, 70% 8D	to NW No geol	NO APPARENT SOURCE OF CONDUC'
86850SO L26N, 54+30E	SD, ORG, SLT, B. GOOD, 35 CM	SLT - FI ORG BRN	60% SLT, 30% SD 10% ORG	to W NO GEOL	NO APPARENT SOURCE OF CONDUC"
8895250 L26N, 54+40E	SLT GRAV ORG, AC, POOR, 30 CM	BLK BRN	70% SLT, 5% ORG, 15% HETRO FRAGS, MAINLY OXID BRECC	TO W PYROCLASTIC BO INCL TUFF	NO APPARENT SOURCE OF CONDUCT
88953SO L26N, 54+80E	SLT, SD, GRAV, B, GOOD, 20 CM	SLT - PEBS ORG BRN	8 60% SLT, 10 HETRO FRAGS, INCL ANG SHALE, RD BRECC 30% FI SD	TO W SOM HETRO FRAGS	NO APPARENT SOURCE OF CONDUC"
8695430 L26N, 54+70E	SLT, SD, GRAV, B, GOOD, 20 CM		80% SLT, 10% HETRO FRAGS, INCL ANG SHALE, RD BRECC 30% FI SD	TO W SOM HETRO FRAGS	NO APPARENT SOURCE OF CONDUC"
8695590 L26N, 54+80E	CL SLT, B, GOOD, 20 CM	CL SLT ORG BRN	80% SLT, 10% CL, 5% ORGS, 5% FRAGS, INCL GR TUFF	TO W NO GEOL	NO APPARENT SOURCE OF CONDUC"
8695630 L26N, 54+90E	CL SLT, B. GOOD, 20 CM	CL SLT ORG BRN	80% SLT, 10% CL, 5% orgs, 5% Frags, NCL gr Tuff	TO W NO GEOL	NO APPARENT SOURCE OF CONDUC
8695750 L26N, 55+10E	SLT SD GRAV, B, GOOD, 20 CM	SLT - PEBS ORG BRN	3 60% SLT, 30% SD, 10% HETRO FRAGS - MOSTLY VOL	TO W NO GEOL	NO APPARENT SOURCE OF CONDUC"
8695660 L26N, 55+20E	SLT SD GRAV, B, GOOD, 20 CM	SLT - PEBS ORG BRN	180% SLT, 30% SD, 10% HETRO FRAGS - MOSTLY VOL	to W No Geol	NO APPARENT SOURCE OF CONDUCT
8895950 L26N, 55+30E	SLT 50 GRAV, 8, GOOD, 30 CM	SLT - PEB8 ORG BRN	3 60% SLT, 30% SD, 10% HETRO FRAGS - MOSTLY VOL 5% ORG	TO W NO GEOL	NO APPARENT SOURCE OF CONDUC'
8696080 L26N, 55+40E	SLT SD GRAV, B, GOOD, 30 CM	SLT - PEBS ORG BRN	180% SLT, 30% SD, 10% HETRO FRAGS - MOSTLY VOL 5% ORG	to W NO GEOL	NO APPARENT SOURCE OF CONDUC ⁻

	L28+00N (CON	י ת	TABLE STUD	GSOA1								
Sample No.	AG ppm	CU ppm	NI ppm	P8 ppm	ZN ppm	CD ppm	ВА ррля	AS ppm	SB ppm	HG ppm	MO ppm	
8682450	≪0.20	21.00	14.00	6.00	94.00	0.50	180.00	6.00	4	<1	1.00	
868463 0	0.20	30.00	35.00	19.00	350.00	1.50	260.00	20.00	4	<1	र्स	
8684750	0.20	85.00	54.00	12.00	172.00	2.00	180.00	30.00	4	<1	2.00	
86848 90	0.20	18.00	15.00	10.00	98.00	1.50	140.00	16.00	2.00	≺1	<1	
8684950	0.20	63.00	45.00	12.00	144.00	2.00	220.00	14.00	4	<1	1.00	
8685030	0.20	32.00	40.00	6.00	222.00	1.50	100.00	22.00	4	<1	3.00	
8695250	0.40	43.00	39.00	2.00	396.00	8.50	380.00	10.00	~	<1	1.00	
8695330	0.20	32.00	47.00	10.00	416.00	3.50	250.00	14.00	4	<1	1.00	
8895450	0.20	54.00	26,00	16.00	258.00	4.00	430.00	10.00	<2	<1	3.00	
8895530	<0.20	22.00	25.00	6.00	258.00	2.50	250.00	10.00	4	<1	1.00	
8695680	0.20	23.00	19.00	8.00	174.00	2.00	160.00	14.00	~2	ব	2.00	
86957SO	0.20	29.00	28.00	10.00	208.00	3.00	150.00	12.00	Q	ণ	<1	
6695690	0.20	26.00	23.00	10.00	368.00	14.00	390.00	8.00	4	<1	3.00	
8695960	0.20	29.00	44.00	12.00	272.00	2.50	200.00	16.00	~2	≪1	1.00	
88960SO	0.20	30.00	30.00	8.00	214.00	0.50	160.00	14.00	2.00	<1	3.00	

L26+00N (C	ONT) TAE	BLE STUDGSO1		
	gr. size, coi Colour		DRAINAGE, GEOLOGY	COMMENTS
	BRN 10 MO	0% HETRO FRAGS -	TO W HETRO BO INCL RHY, GR TUFF	NO APPARENT SOURCE OF CONDUC
	ORG BRN 10 MO	0% HETRO FRAGS -	TO W HETRO BO INCL RHY, GR TUFF	NO APPARENT SOURCE OF CONDUC
	BRN 10 MO		TO W HETRO BO INCL RHY, GR TUFF	NO APPARENT SOURCE OF CONDUC
	BRN 59 MO	9% SLT, 30% SD, % HETRO FRAGS - DSTLY VOL 6 ORG	TO W NO GEOL	NO APPARENT SOURCE OF CONDUC

	L26+00N (CONT)	TABLE STUDGS	50A1							
Sample No.	AG ppm	CU ppm	NI ppm	PB ppm	ZN ppm	CD ppm	BA ppm	AS ppm	SB ppm	HG ppm	MO ppm
86961SO	0.20	18.00	23.00	14.00	272.00	2.00	270.00	8.00	<2	<1	<1
86962SO	0.20	43.00	50.00	10.00	240.00	0.50	320.00	16.00	<2	<1	<1
86963SO	<0.20	27.00	36.00	10.00	272.00	0.50	260.00	12.00	<2	<1	<1
86964SO	<0.20	35.00	38.00	14.00	294.00	2.00	350.00	16.00	2.00	<1	<1

	L24+00N		TABLE STUDGSO1		
SAMPLE NO., LOC	NAME, HORIZ. DEVEL., DEPTH	gr. size, Colour	COMPOSITION	DRAINAGE, GEOLOGY	COMMENTS
86826SO L24N, 50+40E	SLT, SD, B, GOOD, 20 CM	SLT ORG BRN	60 SLT, 40 SD MIN ORG	TO W SOM HETRO BO, MAINLY OXID	NO SURF EVID FOR CONDUCTOR
86827SO L24N, 50+30E	SLT, SD GRAV, B, GOOD, 20 CM	ORG BRN	5 40 SLT, 40 SD 20 HETRO PEBS	to W Som Hetro Bo, Mainly Oxid	NO SURF EVID FOR CONDUCTOR
8682890 L24N, 50+20E	AS 8682790			TO W SOM HETRO BO, INCL FELSIC MAT	NO SURF EVID FOR CONDUCTOR
96829900 L24N, 50+10E	AS 86827SO 25 CM			to W Som Hetro Bo, Incl Rhy Mat	NO SURF EVID FOR CONDUCTOR
86830SO L24N, 49+90E	AS 86829SO				
86831SO L24N, 49+80E	AS 86829SO 40 CM			GEOL INCL NO OF RHY BO	NO SURF EVID FOR CONDUCTOR
86832SO L24N, 49+70E	SLT, SD GRAV, B, GOOD, 30 CM	ORG BRN	70 SLT, 20 SD 10 HETRO PEBS	TO W SOM HETRO BO	NO SURF EVID FOR CONDUCTOR
8683390 L24N, 49+60E	AS 86832SO 25 CM				
86834SO L24N, 49+40E	SLT, SD GRAV, B, GOOD, 30 CM	org Brn	70 SLT, 20 SD 10 HETRO PEBS	tow Som Hetro Bo	NO SURF EVID FOR CONDUCTOR
8683550 L24N, 49+30E	AS 86834SO 40 CM	SLT - CO	INCL 5 % PEBS 70% SILT	TO W LOTS OF VOL BRECC BO	NO SURF EVID FOR CONDUCTOR
8683680 L24N, 49+20E	SLT, SD B GOOD 25 CM		80 SLT, 20 SD	TO W LOTS OF VOL BRECC BO	NO SURF EVID FOR CONDUCTOR
8683750 L24N, 49+10E	SLT, SD GRAV, A C, GOOD, B, 15 CM	ORG BRN	30 SLT, 20 SD 50% HETRO PEBS	To W Geol In Vol Brecc Bo	NO SURF EVID FOR CONDUCTOR

L24+00N TABLE STUDGSOA1 SAMPLE AG cυ NI P**B** ZN CD BA AS SB HG MO NO. ppm 86826SO <0.2 22.00 28.00 10.00 298.00 0.50 280.00 12.00 2.00 <1 <1 8682750 <0.2 21.00 25.00 10.00 308.00 <0. 250.00 14.00 <2 <1 <1 8682850 <0.2 28.00 30.00 14.00 305.00 0.50 220.00 16.00 6.00 <1 <1 8682950 0.20 22.00 35.00 8.00 616.00 2.00 250.00 10.00 2.00 <1 <1 8683050 <0.2 31.00 38.00 10.00 292.00 0.50 240.00 20.00 2.00 <1 <1 86831SO <0.2 28.00 36.00 12.00 260.00 <0. 230.00 20.00 2.00 <1 1.00 8683250 0.20 20.00 23.00 50.00 370.00 0.50 190.00 14.00 2.00 <1 <1 8683350 0.20 40,00 38,00 12.00 200.00 1.00 210.00 22.00 2.00 <1 1.00 86834SO <0.2 26.00 27,00 14.00 534.00 2.50 240.00 12.00 2.00 <1 <1 8683550 <0.2 37.00 34.00 14.00 292.00 1.50 400.00 18.00 <2 <1 <1 86836SO <0.2 26.00 19.00 12.00 530.00 3.00 560.00 4.00 <2 <1 <1 86837SO <0.2 30.00 30,00 14.00 346.00 2.00 260.00 20.00 4.00 <1 <1

and the second second

the Delta West Grid.

From the integration of the historical and current geophysical, geological and soil Cu, Ni, Zn, Cd and Ba geochemical information (Maps S2-S9), the Highway and Central/East Zn Zones are interpreted to offer high priority polymetallic, year round exploration targets in close proximity to Hwy 37. The Highway Zn Zone, as outlined by threshold Zn, Cd and Ba contours of 300 ppm, 1.5 ppm and 200 ppm, respectively (Maps S4, S7, S8) is centered at about L48+50N (Map S4) and ranges up to over 150 m in width. Historical work indicates the zone has a northwest strike length of over 2 km and moderate IP correlation on the three lines (26+00N, 22+00N, 14+00N) that have been run with IP.

The Central/East Zn Zone is centred at about L56+00N and offers a similar, if not more important target, since stronger soil Cu and Ni values (Maps S5, S6), in this case believed to be associated with altered Hazelton Group rocks, have a overlapping relationship with the east side of the Central/East Zn Zone. The zone also exhibits an apparent flexure (Map S4) that is associated with some of the strongest soil Zn, Cu and Ni values. A strong IP anomaly is correlative with the zone on L28+00N (the only grid line in the 1999 detailed follow-up area on which the historic IP survey was run). At least two HLEM anomaly axes (Map 4) are associated with the wide zone (up to over 200 m) as outlined by threshold contours of 300 ppm Zn, 200 ppm Ba and 1.5 ppm Cd (Maps S4, S7, S8). Base on the historical work, the zone has a strike length of over 2 km.

The two initial diamond drill holes now recommended (Map S4) total 550 m and represent a revision of the1998 drill proposal. Hole DW01-00 would be collared on L28+00N at 55+50E and drilled for 250 m at an azimuth of 60° and a dip of 45° to test the East/Central Zn Zone. Dependent on the success of the first hole, Hole 2 could be immediately drilled under Hole 1 from the same set-up. Or, Hole 2 could be collared at 47+50 E on L24+00N to test the Hwy Zone, and would be drilled at an azimuth of 60° and a dip of 45° under Hwy 37, for about 300 m.

10.A. SIGNIFICANCE OF THE DETAILED GEOCHEMICAL/GEOLOGICAL FOLLOW-UP ACTIVITIES ON THE DELTA WEST PROJECT:

It is concluded that the Delta West Project hosts the most consistent and strongest Zn-Ag-Cd-Ba soil anomalies that the author is aware of in the Stewart Camp, based on over 10 years of field exploration experience there. The strength of the anomalies also compare favourably to those in the Grenville Province of Ontario, Quebec and New York State that are associated with significant Zn deposits. The anomalies also have moderate to high IP chargeability association, and based on the results of the 1999 program, are deemed to offer high priority targets that now require evaluation with diamond drilling.

11. CONCLUSIONS, RECOMMENDATIONS:

11.A. CONCLUSIONS:

The regional stream sediment geochemical and geological program has delineated a number of priority anomalies, which are recommended for follow-up. The Red Claim Group and the Poly Claim Group are examples of how the program can be applied and lead to the discovery of interesting, apparently new exploration targets.

The anomalous sediment signatures include two of the main types in the camp i.e., Au-Cu-As and Zn-Ag-Cd-Ba, both with some enhancement from key indicator elements i.e., Ni, Pb, Mo and Sb. As evidenced by metal associations and zoning at many mineral occurrences and deposits in the camp, Zn is an extremely important pathfinder element for gold/copper deposits and for polymetallic deposits. Zn sediment anomalies (and the recognition that metal sediment anomalies can be substantially diluted in high-energy drainage regimes) are thus regarded as particularly significant in the search for blind and/or buried copper/gold deposits. Zn sediment anomalies in Bowser Group terrains are considered especially interesting, with the possibly they may represent seepage anomalies from otherwise blind Cu-Au deposits in the Hazelton Group rocks they overlie.

Bowser Group sediments have an elevated Cu-Ni signature that characterizes the rocks over a very large area e.g., White River to Bob Quinn. Such apparent non-anomalies have not been totally dismissed in the 1999 program, since as noted above, Cu-Ni signatures are important in many Stewart Camp deposits and their host rocks. Such elevated values become rather interesting when they have an anomalous Zn component, such as on the Delta West Project.

Detailed follow-up activities on the Delta West Project are deemed to have delineated high priority drill targets for both Zn-Ag and Cu-Au mineralization. The Bowser Group Cu-Ni signature appears to be a useful mapping tool in overburden covered terrains, and the good correlation of soil Zn, Cd, and Ba anomalies and their IP expression delineates rather precise drill targets. Soil Cu-Ni anomalies, apparently associated with altered Hazelton Group rocks, flank the Central/East Zn Zone on the east, and they are considered to possibly reflect Cu-Au targets.

11.B. RECOMMENDATIONS:

It is recommended that the moderate and high priority sediment anomalies in each area be subject to detailed follow-up activities. The activities should include geological and prospecting activities, with special emphasis on alteration types, geology, elemental associations and indicator elements referenced in this report. Some particularly important attributes of the aforementioned criteria are, respectively, hematite, jarosite/alunite; intermediate to felsic volcanics and hornblende intrusive rocks; Zn-Ag-Cd-Ba; and, Pb, Mo, Ni, Sb. In view of often-negative field conditions, considerable patience and persistence can be required.

.

.

Most importantly, it is recommended that the Delta West Project be initially drill tested with two holes comprising a total of 550 m. The targets are located in close proximity to Hwy 37 and on relatively flat ground, thus providing year round exploration opportunities.

12. REFERENCES:

Aerodat Limited (1991): Report on the Oweegee Project for Indigo Gold Mines Inc.: BCMEMPR Assessment Work File 22,082.

ALLDRICK, D. J. (1984): Geologic Setting of the Precious Metal Deposits in the Stewart Area; in: Geological Fieldwork 1983, BCMEMPR, Paper 1984-1, p. 149-164

ALLDRICK, D. J. (1985): Stratigraphy and Petrology of the Stewart Mining Camp (104B/1); in: Geological Fieldwork 1984, BCMEMPR, Paper 1985-1, p. 316-341

ALLDRICK, D.J. (1989): Geology and Mineral Deposits of the Salmon River Valley - Stewart Area, 1:50,000. BCMEMPR Open File Map 1987-22.

ALLDRICK, D.J. (1989): Volcanic Centres in the Stewart Complex (103P and 104A,B); in: Geological Fieldwork 1988, BCMEMPR, Paper 1989-1 p. 223-240.

ALLDRICK, D. J., BROWN, D. A., HARAKAL, J. E., MORTENSEN, J. K. and ARMSTRONG, R. L. (1987): Geochronology of the Stewart Mining Camp (104B/1); in: Geological Fieldwork 1986, BCMEMPR, Paper 1987-1, p. 81-92.

ANDERSON, R. G. (1989): A Stratigraphic, Plutonic, and Structural Framework of the Iskut River Map Area, Northwestern British Columbia; in: Current Research, Part E, Geological Survey of Canada, Paper 89-1E, p. 145-154.

ANDERSON, R. G. and THORKELSON, D. J. (1990): Mesozoic Stratigraphy and Setting for some Mineral Deposits in Iskut Map Area, northwestern British Columbia; in: Current Research, Part E, Geological Survey of Canada, Paper 90-1E, p. 131-139.

BLACKWELL, J. (1990): Geology of the Eskay Creek #21 Deposits; in: The Gangue, MDD-GAC, No 31, April, 1990.

Greig, C. J. (1991): Stratigraphic and structural relations along the west-central margin of the Bowser Basin, Oweegee and Kinskush areas, northwestern British Columbia: in Current Research, Part A, Geological Survey of Canada, Paper 91-1A, p. 197-205.

GREIG, C. J., EVENCHICK, C. A., Mustard, P. S., Porter, J. S. (1992): Regional Jurassic and Cretaceous facies assemblages, and structural geology in Bowser Lake map area (104A), B.C.: Open File 2582, EMR Canada.

- 58 -

GREIG, C. J., EVENCHICK, C. A. (1993): Geology of Oweegee Dome, Delta Peak (104A/12) And Taft Creek (104A/11W) Map Areas, GSC Preliminary Map.

GROVE, E. W. (1986): Geology and Mineral Deposits of the Unuk River-Salmon River-Anyox Area; BCMEMPR, Bulletin 63.

Hamilton, A. (1991): Assessment Report on Geological and Geochemical Work on the Delta 1 and 2 Mineral Claims, BCMEMPR Assessment Work File 21.745, prepared for Cominco Ltd.

JVX Limited (1993): Report ON Geophysical Surveys On The Stewart Project, Delta Target Area, Northwestern British Columbia, prepared for Geofine Exploration Consultants Ltd.

LEE, A. W. (1990): Assessment Report on Geological and Geochemical Work on the Delta 1 and 2 Mineral Claims, BCMEMPR Assessment Work File 20.399, prepared for Cominco Ltd.

McLoed, D. A. (1996): Surface Drilling Starts ON Wilby Zone & New Zone Discovered On Surface: August 28, 1996 Press Release, Camnor Resources Ltd.

MCDONALD, D. (1989): Metallic Minerals in the Silbak Premier Silver Gold Deposits, Stewart; in: Geological Fieldwork 1987, BCMEMPR, Paper 1988-1, p. 349-352.

MINISTER OF MINES (1929): Annual Report For The Year Ended 31st December, 1929, Being AN Account Of Mining Operations For Gold, Coal, Etc. In The Province of British Columbia.

MOLLOY, D. E. (1992): Assessment Report On The Hugh, Ken and Pam Claims: Phase 1B Reconnaissance and Phase 2 Detailed Follow-up Programs, September 1992, Skeena Mining Division, Northwestern British Columbia; BCEMPR Assessment Work File.

MOLLOY, D. E. (1993): Report On The Phase 1A Reconnaissance Program On The Fox Claims Of The Stewart Property, prepared for American Barrick Resources Corporation by Geofine Exploration Consultants Ltd.

MOLLOY, D. E. (1993): Report On The Phase 1B Follow-up Geophysical & Geochemical Program On The Fox Claims Of The Stewart Property, prepared for American Barrick Resources Corporation by Geofine Exploration Consultants Ltd.

MOLLOY, D. E. (1993A): Report On The Phase 1B Follow-up Geophysical & Geochemical Program On The Fox Claims Of The Stewart Property, prepared for American Barrick Resources Corporation by Geofine Exploration Consultants Ltd.; BC Ministry of Employment and Investment, Assessment Work File. MOLLOY, D. E. (1994): Report On The Phase 1, 1994 Exploration Program Carried Out On The Todd Property, Skeena Mining Division, Northwestern British Columbia prepared for Oracle Minerals Inc. by Geofine Exploration Consultants Ltd.

MOLLOY, D. E. (1996): Report On The 1996 Deltaic Creek Project Carried Out On The Deltaic Grid Of The Stewart Property: Fox 1-26, Old 1-4, Delta 1, 2 Claims, Skeena Mining Division, Northwestern British Columbia; BC Ministry of Employment and Investment, Assessment Work File.

MOLLOY, D. E. (1998): Report On The 1998 Prospectors Assistance Program: The 1998 Delta West Project, Delta Peak Area, Skeena Mining Division, Northwestern British Columbia; BC Ministry of Employment and Investment, Report File.

RAINSFORD, D. R. B. (1990): Report on A Combined Helicopter Borne Magnetic Electromagnetic and VLF Survey, Stewart Area; BCMEMPR Assessment Report # 20,200.

RANDALL, A. W. (1988): Geological Setting and Mineralization of the Silbak Premier and Big Missouri Deposits; in Field Guide Book, Major Gold-Silver Deposits of the northern Canadian Cordillera, Society of Economic Geologists, p. 85-99.

Robertson, R. (1996): Companies Zeroing In On Stewart Area, The Northern Miner, August 5, 1996, Vivian Danielson, Editor.

RUBIN, C. M., SALEEBY, J. B., COWAN, D. S., BRANDON, M. T., and MCGRODER, M. F., (1990): Regionally Extensive Mid-Cretaceous Westvergent Thrust Systems in the Northwestern Cordillera: Implications for Continent-Margin Tectonism. Geology, v.18, p. 276-280.

VOGT, ANDREAS H., BRAY, ADRIAN D., and BULL, KATE, (1992): Geologic Setting and Mineralization of the Lac Minerals Red Mountain Deposit, handout at 1992 Cordilleran Roundup "Spotlight Session".

WESTMIN RESOURCES LIMITED (1992): Premier Gold Project: in: Annual Report 1991; p.9.14. I, David E. Molloy, of the Town of Unionville, of the Regional Municipality of York, Ontario, hereby certify that:

- i. I am a resident of Ontario at 49 Normandale Road, Unionville, Ontario, L3R 4J8.
- ii. I am a graduate of McMaster University, in the City of Hamilton, Ontario, with a B.A. in Philosophy (1968); I am a graduate of the University of Waterloo, in the City of Waterloo, Ontario, with a B.Sc. in Earth Science (1972);
- iii. I have practised my profession in mineral exploration continuously for the past 28 years including 11 years with St. Joe Canada Inc./Bond Gold Canada Inc./LAC Minerals Ltd. as Regional Geologist, Exploration Manager and as Senior Vice President, Canadian Exploration; and, 8 years with Beth-Canada Mining Company as a Regional Geologist;
- iv. I am a Fellow of The Geological Association of Canada;
- v. I am a Member of the Canadian Institute of Mining and Metallurgy; of the Prospectors and Developers' Association; of the Association of Exploration Geochemists; of the BC & Yukon Chamber of Mines; and, of the Association of Geoscientists of Ontario.
- vi. I have executed the field program and the preparation of this report titled "Report On The 1999 Prospectors Assistance Program: 1. On a Regional Stream Sediment Geochemical and Geological Evaluation of Hazelton Group and Covered Hazelton Group Lithologies in the Stewart Gold Camp; 2. On Detailed Geochemical and Geological Surveys to Prioritize Drill Targets On The Delta West Project of the Stewart Property, Delta Peak Area, Skeena Mining Division, Stewart Gold Camp, Northwestern British Columbia". I have referenced the technical data available in the BCMEMPR assessment work files as well as other sources listed in the References.
- vii. The recommendations herein are solely the responsibility of the author.

David/ E. Molloy, B.A., B.Sc., F.G.A.C.

Dated at Unionville, Ontario, this 28th day of January 2000.

14.

, ,

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd. Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Page Number :1-A Total Pages :1 Certificate Date: 17-AUG-1999 Invoice No. : 19925239 P.O. Number : Account :RIX

Project : G Comments: ATTN: D. MOLLOY CC: D. MOLLOY

r=			7							_	CI	ERTIF	ICATE	OF A	NAL	YSIS		\992 5	5239		
SAMPLE	ł	EP DE	Au ppb FA+AA	Ag PPm	Al %	As ppm	B PPm	Ba ppm	Be ppm	Bi ppm	Ca १	Cd ppm	Co pp=	Cr PPm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm	Mg
P160201		202		1.2	1.67	82	< 10	70	< 0.5	< 2	2.16	2.5	24	29	126	4.64	< 10	< 1	0.09	< 10	1.42
P160202 P160206		202		0.8	1.87	56	< 10	230	< 0.5	< 2	0.47	0.5	24	47	108	4 99	< 10	< ī	0.08	< 10	1.32
P160207		202		0.6 8.0	4.54 2.76	22 40	< 10 < 10	60 160	< 0.5 < 0.5	< 2 8	0.10 0.30	< 0.5 2,0	23	21	219	5.45	< 10	< 1	0,14	< 10	0.76
P160208		202		0.6	1.67	44	< 10 < 10	300	< 0.5	< 2	1,43	0.5	37 30	38 18	1325 84	5.73 4.97	< 10 < 10	< 1 < 1	0.15 0.09	< 10 < 10	1.28 1.00
P160211		202		0.8	2.33	62	< 10	180	0.5	< 2	0.59	1.5	32	22	126	5.98	< 10	< 1	0.12	10	1.01
P160213		202		0.6	4.10	136	< 10	180	< 0,5	< 2	0.73	0.5	27	22	72	6,31	< 10	< ĩ	0,29	< 10	1.88
P160215 P160217	201			0.6 0.6	3.72 1.62	18	< 10	110	0.5	< 2	0.54	< 0.5	18	23	50	5,22	< 10	< 1	0,08	< 10	0.63
P160218		202			1.77	8 28	< 10 < 10	140 190	< 0.5 < 0.5	< 2 < 2	0.37 0.49	< 0.5 0.5	13 17	19 7	41 31	3.82 4.48	< 10 < 10	< 1 < 1	0.09 0.11	< 10 10	1,01 1,17
P160219		202		0.2	1.57	18	< 10	210	< 0.5	< 2	0.95	1.5	12	29	74	3.16	< 10	< 1	0.10	10	0.86
P160220		202		0.2	1.22	8	< 10	100	< 0.5	< 2	1.08	1.0	14	4	20	3.60	< 10	< 1	0.07	< 10	0.89
P160221 P160222		202		2.8	0.87	60	< 10	200	< 0.5	< 2	0.54	3.0	8	5	26	4.09	< 10	< 1	0.12	10	0.31
P160223		202		0.2 1.2	1.04 1.16	30 56	< 10 < 10		< 0.5 < 0.5	< 2 < 2	0.45 0.31	1,5 4,5	12 11	12 7	27 30	5.86 3.81	< 10 < 10	< 1 < 1	0.08 0.10	< 10 10	0.78 0.54
P160224	201	202	200	0,8	1,62	66	< 10	70	< 0.5	< 2	2,28	2.5	18	29	93	4.16	< 10	< 1	0.09	< 10	
P160225		202		0,6	0.97	30	< 10	230	< 0.5	< 2	0.33	1.5	10	8	23	3.34	< 10		0.11	< 10	1.39 0.49
P160226 P160227		202		0,6	1.03	40	< 10		< 0.5	< 2	0.42	2.0	14	9	26	4.18	< 10	<1	0.12	< 10	0.49
P160228		202		0.4 1.0	1.07 2.86	28 130	< 10 < 10		< 0.5 < 0.5	<pre> < 2 </pre> <pre> </pre> <pre> </pre> <pre> </pre>	0.46 1.29	1.5 2.0	10 20	9 37	23 123	3.56 4.30	< 10 < 10	$\langle 1 \\ \langle 1 \rangle$	0.13 0.48	< 10 < 10	0.52 1.15
	201	202	15	0.8	2,56	102	< 10	180	< 0,5	< 2	0.73	1.5	28	32	126	4.84	< 10	< 1	0,36		
P160230		202		1.0	2.92	156	< 10		< 0.5	< 2	0.16	< 0,5	23	113	61	5.00	< 10	< 1	0.38	< 10 < 10	1,61 1,28
P160232 P160234		202		0.6	2.55	116	< 10		< 0.5	< 2	0.13	< 0,5	16	105	44	4.40	< 10	< ī	0.30	< 10	1.14
P160235		202		0.8 0.2	$1.20 \\ 1.53$	62 38	< 10 10		< 0.5 < 0.5	< 2 < 2	0.77 1,08	1.0 1.0	15 35	32 6	36 79	4.17 8.50	< 10 < 10	< 1 < 1	0.08 0.09	< 10 < 10	0.79 1.15
P160236	201	202	15	0.4	1.71	50	< 10	240	< 0.5	< 2	0.76	0.5	15	11	49	4.69					
P160237	201	202	< 5	0.2	1.37	64	< 10	140	< 0.5	- ĉ 2	0.47	1.0	10	54	86	2.68	< 10 < 10	< 1 < 1	0.08 0.11	< 10 < 10	0.95 0.77
P160238		202			1.10	14	< 10	50	0.5	< 2	0.23	0.5	6	20	31	2 28	7 10	/ 1	0 06	10	0 34
P160239 P160240	201	202	Notred < 5	< 0,2	NotRcd 1,95	NotRcd 1 16	NotRed 1 < 10	NotRed : 130	NotRed < 0.5	NotRed < 2	NotRcd 0,22	NotRcd < 0.5	NotRed 21	NotRed 1 47	NotRcd 41	NotRcd 4.22	NotRed 1 < 10	NotRed 1 < 1	NotRed 0.05	NotRed } < 10	NotRcd 1.04
P160241	201	202	< 5	0.2	3.08	6	< 10	100	0.5	< 2	0.12	< 0.5	41	66	28	3.85	< 10				
P160242	201	202	< 5	1.4	3.74	14	< 10	60	0.5	< 2	0.04	< 0.5	32	93	93	4,33	< 10	< 1 < 1	0.04 0.06	< 10 < 10	0.63 0.84
P160243	201	202	< 5	0.6	2.41	10	< 10	60	< 0.5	< 2	0.04	< 0.5	25	71	56	4.24	< 10	< î	0.05	< 10 < 10	0.95
																	-0	,			

CERTIFICATION:

Ć

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4,j8

Project : G Comments: ATTN: D. MOLLOY CC: D. MOLLOY

Page Number :1-B Total Pages :1 Certificate Date: 17-AUG-1999 Invoice No. :19925239 P.O. Number ; RIX Account

r

		<u> </u>									CE	RTIFI	CATE	OF A	NAL	SIS	<u> </u>	9925239	
SAMPLE	PRE		ми ррп	Mo ppm	Na %	Ni PPm	P ppm	Pb ppm	s *	Sb ppm	SC ppm	Sr ppm	Ti %	Tl PPm	n bbu	V ppm	W Ppm	Zn ppm	
160201	201	202	710	5	0.01	43	930	48	1,46	4	3	126	0.04	< 10	< 10	49	< 10	178	-
160202	201		1295	3	0.01	35	1070	24	0.04	8	7	28	0.05	< 10	< 10	69	< 10	112	
160206	201		1105		< 0.01	17	1470	12	0.07	4	5	7	0.08	< 10	< 10	85	10	80	
160207	201		1710	8	0,01	31	1000	372	0.08	< 2	7	19	0.04	< 10	< 10	71	< 10	346	
160208	201	202	1420	4	< 0.01	22	940	32	0.05	2	6	62	0.06	< 10	< 10	67	< 10	148	
160211	201		2210	6	0.01	22	1280	44	0.03	2	8	42	0.07	< 10	< 10	84	< 10	182	
160213		202	1305	4	0.02	10	750	18	0,03	12	10	60	0.22	< 10	< 10	139	< 10	140	
160215	201		540		< 0.01	17	610	14	0.04	< 2	4	36	0.08	< 10	< 10	86	< 10	100	
160217	201		585		< 0.01	18	1070	26	0.05	4	4	23	0.05	< 10	< 10	61	< 10	134	
160218	201	202	990	2	0.01	5	1170	8	0.10	< 2	6	30	0.08	< 10	< 10	75	< 10	104	
160219		202	860	3	0.01	20	1080	34	0.13	< 2	4	77	0.03	< 10	< 10	51	< 10	156	
160220	201		715	< 1	0.01	4	790	1.8	0.64	< 2	5	49	0.14	< 10	< 10	72	< 10	118	
160221	201		1360		< 0.01	5	960	92	0.45	6	3	37	0.04	< 10	< 10	35	< 10	338	
160222 160223	201		1170		< 0.01	6	900	24	0.17	2	4	34	0,04	< 10	< 10	119	< 10	194	
160223	201	202	1245		< 0.01	19	960	114	0.06	6	3	21	0.03	< 10	< 10	26	< 10	456	
160224		202	745	б	0.01	41	900	50	1.10	6	3	128	0,03	< 10	< 10	46	< 10	186	
160225	201		1220		< 0.01	13	930	24	0.06	2	3	26	0.04	< 10	< 10	31	< 10	226	
160226	201		4910		< 0.01	17	1000	32	0.06	< 2	3	38	0.06	< 10	< 10	34	< 10	284	
2160227	201		1185	-	< 0.01	14	900	24	0,08	2	3	31	0.08	< 10	< 10	38	< 10	192	
2160228	201	202	880	4	0.12	40	1150	38	0,26	2	6	114	0.13	< 10	< 10	80	< 10	218	
160229	201	202	1880	1	0.01	55	1440	34	0.06	6	6	66	0.10	< 10	< 10	77	< 10	308	
2160230		202	1015	3	0.01	69	1020	22	0.06	< 2	8	20	0.12	< 10	< 10	83	< 10	134	
160232	201		750	3	0.01	54	890	16	0.05	8	7	14	0.11	< 10	< 10	74	< 10	98	
160234		202	1015		< 0.01	43	810	32	0.35	< 2	3	56	0.02	< 10	< 10	37	< 10	210	
2160235	201	202	895	1	< 0.01	10	990	26	4.24	2	5	37	0.09	< 10	< 10	80	< 10	164	
2160236	201	202	1305	2	< 0.01	9	910	28	0,13	2	5	30	0.05	< 10	< 10	62	< 10	182	· · · · · · · · · · · · · · · · · · ·
160237		202	510	4	0.01	46	1320	54	0.34	< 2	3	30	0.01	< 10	< 10	37	< 10	156	
160238	201		815	-	< 0.01	18	570	18	0.06	2	1	17	0.01	< 10	40	29	< 10	94	
160239			NotRed N		NotRed 1	otRcd 1	NotRed N		NotRed 1						NotRed 1				
160240	201	202	2980	1	< 0.01	75	690	16	0.06	2	5	30	< 0.01	< 10	< 10	43	< 10	182	
2160241 2160242	201	202	3210		< 0.01	52	1060	10	0.06	< 2	4		< 0.01	< 10	< 10	42	< 10	94	
	201		1575 970		< 0.01 < 0.01	67 75	1160 800	10 8	0,04 0,01	< 2 2	9		< 0.01	< 10	< 10	44	< 10	190	
2160242	201				< 11 (1)		800		n n1		5		< 0.01	< 10	< 10	43	< 10	118	

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Page Number :1-A Total Pages :1 Certificate Date: 18-AUG-1999 Invoice No. P.O. Number :19925242 Account :KIV

* ··· · · ·

r ·· 1

· • •

۲

١

Project : GR Comments: ATTN: D. MOLLOY CC: D. MOLLOY

										CE	ERTIFI	CATE	OF A	NAL	YSIS	ļ	19925	242		
SAMPLE	PREP CODE	Ац ррђ ГА+АА	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
P160203 P160204 P160205 P160209 P160210	205 22 205 22 205 22 205 22 205 22 205 22	6 15 6 40 6 20	0.2 0.2 < 0.2 0.2 < 0.2	0.35 1.49 1.66 1.11 1.75	116 < 2 < 2 10 < 2	< 10 < 10 < 10 < 10 < 10 < 10	140	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.86 1.02 3.56	< 0.5 < 0.5 < 0.5 21.5 < 0.5	21 8 23 16 23	74 31 22 51 32	133 107 243 375 222	1.48 1.47 3.67 3.72 3.87	< 10 < 10 < 10 10 < 10	< 1 1 < 1 < 1 < 1	0.08 0.32 0.08 0.44 0.43	< 10 < 10 < 10 < 10 < 10 < 10	0.14 0.37 0.27 1.05 0.45
P160212	205 22	6 < 5	< 0.2	1.46	< 2	< 10	450	< 0.5	< 2	0.49	< 0.5	12	65	218	2.92	10	1	0.74	< 10	0.90
																	÷ 1		1	

CERTIFICATION:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave. North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: GEOFINE EXPLORATION CONSULTANTS LTD.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8 Page Number : 1-B Total Pages : 1 Certificate Date: 18-AUG-1999 Invoice No. : 19925242 P.O. Number : Account : KIV

Project : GR Comments: ATTN: D. MOLLOY CC: D. MOLLOY

[····			· · · · ·								CE	RTIF	CATE	OF /	NAL	/SIS		A9925242	
SAMPLE	PRI CO		Mn ppm	Мо ррш	Na %	Ni ppm	P ppm	Pb ppm	ន	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W	Zn ppm	
P160203 P160204 P160205 P160209 P160210	205 205 205 205		200 145 780 265	9 7 12 6 7	0.05 0.16 0.19 0.04 0.15	28 8 25 16 8	1060 1380 1240 940 960	4 < 2 < 2 < 2	0.48 0.27 1.94 0.89 1.16	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 3 1 10 7	11 43 60 63 20	0.12 0.09 0.08 0.13 0.18	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	35 61 39 62 110	< 10 < 10 150 < 10 < 10	18 22 22 2050 30	
P160212	205	226	200	4	0.08	7	880	< 2	0.38	< 2	4	34	0.23	< 10	< 10	64	< 10	38	
																		(
									- <u>-</u>										1

CERTIFICATION:

.1

٦,

٦

,

Chemex Labs Ltd.

- 19

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Page Number : 1-A Total Pages : 1 Certificate Date: 31-AUG-1999 Invoice No. : 19926638 P.O. Number : G BC Account : RIX

Project : G Comments: ATTN: D. MOLLOY FAX: D. MOLLOY

·	_ <u></u>							·		CE	RTIFI	CATE	OF A	NAL	ysis	ļ	\9926	638		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	Al %	As ppm	B PPm	Ba ppm	Be ppm	Bi ppm	Ca १	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg pp n	K %	La ppm	Мg
P160245	201 202		0.2	2.95	14	10	150	0.5	< 2	0.17	0.5	35	60	37	3.20	< 10	< 1	0.09	< 10	0.89
P160246 F160247	201 202		< 0.2	1.85	16	< 10	120	< 0.5	< 2	0.09	0,5	17	58	39	2.98	< 10	< ī	0.08	< 10	0.72
P160248	201 202 201 202		0.4	2.72	4	< 10	140	< 0.5	6	0.11	0.5	34	59	38	2.03	< 10	< 1	0.07	< 10	0.77
P160249	201 202		1.0	3.10 2.37	14 < 2	< 10 < 10	330 230	0.5 < 0.5	2 < 2	0.27 0.14	2.5 0.5	68 22	70 47	56 16	4.47 4.00	< 10 < 10		0.08 0.08	< 10 < 10	0.74 0.57
P160250	201 202	90	1.2	1.84	78	< 10	90	< 0.5	< 2	2.34	3.0	22	32	133	4.65	< 10	< 1			
P160251	201 202	< 5	0.2	2.93	2	10	230	< 0.5	< 2	0.34	1,5	33	63	33	3.27	< 10		0.11 0.08	< 10 < 10	1.50 1.03
P160252	201 202		1.0	1.77	6	10	190	< 0,5	< 2	1.35	0.5	18	25	33	2.77	< 10	- À Î	0.07	10	0.33
P160253	201 202		0.2	2.08	10	< 10	110	< 0.5	< 2	0.27	0.5	22	52	43	3.11	< 10	< î	0.07	< 10	0.87
P160254	201 202	< 5	< 0,2	0.22	2	< 10	70	< 0.5	< 2	0,68	< 0.5	1	6	26	0.48	< 10	< 1	0.01	< 10	0.09
P160255	201 202		0.4	2.40	12	10	130	< 0.5	2	0.22	0.5	24	58	41	3.43	< 10	< 1	0.07	< 10	0.56
P160256 P160257	201 202 201 202		0.2	2.80	12	10	280	0,5	2	0.63	1.5	72	61	41	3.67	< 10	< 1	0.10	< 10	0.68
P160258	201 202		1.2 0.2	2.57 2.90	8	< 10	130	0.5	10	0.47	2.0	57	38	48	7.06	< 10	< 1	0.05	10	0.27
P160259	201 202		< 0.2	1.89	16 6	< 10 < 10	140 110	< 0.5 < 0.5	< 2 < 2	0.19 0.15	0.5 0.5	28 14	78 55	57 32	3.86 2.68	< 10 < 10		$0.10 \\ 0.10$	< 10 < 10	0.99 0.98
P160260	201 202	< 5	0,2	1.96	10	10	100	< 0.5	< 2	0.30	1.5	18	28	43	1.62	< 10				
P160261	201 202	40	0.6	4.54	72	< 10	170	< 0.5	1.6	0.46	1.5	34	29	242	6,26	10	< 1 < 1	0,12 0,62	< 10 < 10	0.52 1.56
F160267	201 202		1,0	4.39	66	< 10	180	< 0.5	6	0.44	2.0	37	33	229	6 05	10	$\langle 1$	0.62	< 10	1.61
P160268	201 202		0,6	5.19	90	< 10	230	< 0.5	4	0.52	2.0	35	29	256	6 69	10	< 1	0.81	< 10	1.80
P160270	201 202	45	0.4	4.02	62	< 10	180	< 0.5	4	0.43	2.0	35	39	264	6.07	10	< 1	0.61	< 10	1.65
P160274	201 202	40	0.4	4.18	68	< 10	180	< 0,5	< 2	0.37	1.5	33	36	273	6.14	10	2	0.54	< 10	1.77
P160275 P160281	201 202 201 202		1.0	1.80	90	< 10	80	< 0.5	< 2	1.97	2.0	20	30	139	4.81	< 10	1	0.09	< 10	1.53
P160284	201 202	25 60	0.4	4,90	76	< 10	210	< 0.5	< 2	0.38	1.5	29	30	284	6.36	10	< 1	0.70	< 10	1.91
P160285	201 202		0.2	4.84 2.31	86 16	< 10 < 10	220 90	< 0.5 < 0.5	< 2 < 2	0.51 0.27	1.5 0.5	37 13	24 61	343 58	7.02 3.59	10 < 10	< 1 < 1	0.81 0.07	< 10 < 10	2,04 1,17
P160286	201 202	< 5	< 0.2	2.10	12	< 10	150	< 0.5	< 2	0.24	< 0.5	16	55	43						
P160287	201 202		< 0.2	2.03	6	< 10	170	< 0.5	₹ 2	0.30	0.5	17	58	42 37	3.48 3.40	< 10 < 10	< 1 1	0.11 0.12	< 10	1.20
P160288	201 202		0.2	2.50	14	< 10	180	< 0.5	< 2	0.67	0.5	23	43	45	3.55	< 10	< 1	0.12	< 10 10	1.09 0.75
P160290	201 202		0.2	2,79	< 2	< 10	170	< 0.5	< 2	0,31	< 0.5	20	77	34	3.93	< 10	λÎ	0.08	< 10	1.03
P160291	201 202	< 5	0.2	2.57	10	< 10	190	< 0.5	< 2	0.31	0.5	30	77	34	6,41	< 10	ĩ	0.06	< 10	1,35
P160292	201 202	< 5	0.2	2.41	6	< 10	200	0.5	< 2	0.31	1.0	19	56	33	3.60	< 10		0.07	< 10	0.87
P160293	201 202		< 0.2	1.77	2	10	180	< 0.5	< 2	0.30	0,5	15	57	39	3.53	< 10	< î	0.10	< 10	1.09
P160294 P160295	201 202	< 5	< 0.2	2.05	10	< 10	220	< 0,5	< 2	0.35	< 0,5	16	63	43	3.04	< 10	< ī	0.14	< 10	1.19
P160296	201 202 201 202		< 0.2 < 0.2	1.37 1.54	24 12	< 10 < 10	210 150	< 0.5 < 0.5	< 2 < 2	0.34	0.5	14	23	39	3.55	< 10	2	0.11	< 10	0.62
										0,39	0.5	13	26	24	3.17	< 10	< 1	0.08	< 10	0.67
P160297 P160298	201 202		< 0.2	1.88	6	< 10	170	< 0.5	< 2	0.63	< 0.5	16	36	34	3,29	< 10	< 1	0.07	< 10	0.77
r100298	201 202	< 5	(0.2	1.70	16	< 10	210	< 0.5	< 2	0.45	< 0.5	15	28	31	3.03	< 10	< 1	0.07	< 10	0.60
																	1. J.			
																(/			

CERTIFICATION:

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Page Number :1-B Total Pages :1 Certificate Date: 31-AUG-1999 Invoice No. : 19926638 P.O. Number : G BC Account :RIX

Project : G

Comments: ATTN: D. MOLLOY FAX: D. MOLLOY

CERTIFICATE OF ANALYSIS A9926638 PREP S Mn Мо Na Ni P Pb Sb Sc Sr тi т1 U Y W Zn SAMPLE CODE 8 ppm ppm ppa ppm ppm 8 ppm pp∎ 8 ppm pp ppm ppm pp∎ ppm P160245 201 202 2500 2 < 0.01 67 940 14 0,05 < 2 5 27 < 0.01 < 10 < 10 43 < 10 152 P160246 201 202 915 < 1 < 0.01 57 900 8 0.03 8 4 13 < 0.01 < 10 < 10 < 10 46 90 P160247 201 202 3230 < 1 < 0.01 62 980 10 0.07 < 2 б 19 < 0.01 < 10 < 10 45 < 10 114 P160248 201 202 >10000 3 0.01 79 2420 6 0.13 < 2 8 66 < 0.01 < 10 30 50 < 10 1595 P160249 201 202 1015 < 1 < 0.01 35 1390 < 2 0.07 < 2 4 28 < 0.01 < 10 < 10 74 < 10 392 P160250 201 202 745 0.01 4 42 1010 40 1.71 2 4 122 0.05 < 10 < 10 59 < 10 170 P160251 201 202 4090 < 1 0.01 77 970 < 2 0.14 < 2 6 62 < 0.01 < 10 < 10 58 < 10 170 P160252 201 202 1215 < 1 0.01 30 2120 4 0.38 < 2 3 144 0.01 < 10 < 10 29 < 10 66 P160253 201 202 2130 < 1 < 0.01 65 770 6 0.04 < 2 5 37 0.01 < 10 < 10 45 < 10 120 P160254 201 202 105 < 1 < 0.01 17 300 2 0.16 < 2 < 1 109 < 0.01 < 10 < 10 6 < 10 42 ₽160255 201 202 1430 3 < 0.01 49 1020 10 0.18 2 4 51 0.01 < 10 < 10 65 < 10 108 P160256 201 202 >10000 3 0.01 72 1620 8 0.12 ۲ 2 5 125 0.01 < 10 20 49 < 10 228 P160257 201 202 3950 4 < 0.01 45 2790 б 0.25 < 2 б 50 0.01 < 10 < 10 31 < 10 70 P160258 201 202 3150 < 1 < 0.01 74 790 2 0.04 < 2 6 28 0.01 < 10 < 10 65 < 10 126 **P160259** 201 202 950 < 1 < 0.01 59 530 6 0.01 < 2 5 16 0.01 < 10 < 10 45 < 10 84 **P160260** 201 202 360 < 1 < 0.01 54 1280 8 0.42 2 3 30 0.01 < 10 < 10 41 < 10 136 2160261 201 202 1785 0,02 6 29 1630 54 0,04 7 4 48 0.17 < 10 < 10 144 40 258 P160267 201 202 1950 5 0.01 31 1620 56 0.03 Б 8 43 0.18 < 10 < 10 159 10 300 P16026B 201 202 1580 4 0.02 26 1990 56 0.04 < 2 8 55 0.22 < 10 < 10 186 < 10 322 P160270 201 202 1580 7 0.01 43 1380 36 0.02 2 8 44 0.17 < 10 < 10 140 10 288 P160274 201 202 1645 6 0.01 47 1390 52 0.03 < 2 8 41 0.17 < 10 < 10 145 10 318 P160275 201 202 715 6 0.01 50 980 30 1.69 2 122 3 0.04 < 10 < 10 54 < 10 196 P160281 201 202 1575 7 0.01 34 1380 56 0.03 6 8 41 0.22 < 10 < 10 166 10 312 P160284 201 202 1855 9 0.02 29 1690 62 0.03 Z 8 58 0.24 < 10 < 10 177 10 350 P160285 201 202 795 < 1 0.01 79 880 32 0.05 < 2 5 56 0.01 < 10 < 10 47 < 10 186 P160286 201 202 815 3 < 0.01 89 710 10 0.04 < 2 5 34 ۲, 0.01 < 10 < 10 51 < 10 144 P160287 201 202 790 1 0.01 81 720 8 0.04 < 2 6 < 0.01 33 < 10 < 10 52 < 10 132 P160288 201 202 2850 1 0.01 70 1120 12 0.05 < 2 4 58 0.04 < 10 < 10 47 < 10 338 P160290 201 202 1345 1 0.01 91 910 10 0.04 < 2 6 30 0,10 < 10 < 10 58 < 10 156 2160291 201 202 3360 1 0.01 108 970 8 0.03 < 2 7 37 0.17 < 10 < 10 58 < 10 146 P160292 201 202 2160 3 0.01 1070 80 4 0.04 < 2 5 33 0.05 < 10 < 10 53 < 10 164 201 202 P160293 0.01 525 4 86 650 10 0.10 < 2 б 33 0.01 < 10 ٠ < 10 45 < 10 114 P160294 201 202 575 2 0.01 89 670 < 2 0.11 < 2 7 38 ć. 0.01 < 10 < 10 51 < 10 118 201 202 P160295 1105 4 0.01 670 52 8 0.06 < 2 5 32 0.03 < 10 < 10 42 < 10 148 P160296 201 202 1240 2 < 0.01 38 590 8 0.03 < 2 4 23 0,03 < 10 < 10 51 < 10 136 P160297 201 202 2750 З 0.01 65 810 0.06 < 2 10 4 37 0.03 < 10 < 10 42 < 10 194 P160298 201 202 2030 < 1 < 0.01 46 620 12 0.05 < 2 5 25 0.03 < 10 < 10 42 < 10 150

CERTIFICATION: Þ

r

٦

1

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8 Page Number : 1-A Total Pages : 1 Certificate Date: 31-AUG-1999 Invoice No. : 19926637 P.O. Number : GR BC Account : R1X

Project : GR Comments: ATTN: D. MOLLOY FAX: D. MOLLOY

···							••			CE	RTIFI	CATE	OF A	NAL	YSIS	-	\9926	637		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be PP m	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
P160214 P160216 P160231 P160233 P160233 P160239	205 22 205 22 205 22 205 22 205 22 205 22	6 < 5 6 < 5 6 < 5	0.2 < 0.2 0.2 0.2 0.2	1.75 3.10 2.14 2.94 0.38	14 < 2 10 16 14	<pre>< 10 < 10</pre>	220 50 130 180 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2 < 2 < 2 < 2 < 3 < 4</pre>	0.84 1.92 1.50 0.18 0.04	< 0.5 < 0.5 1.0 < 0.5 0.5	16 14 14 14 (1	47 35 48 249 135	91 14 20 37 5	3.33 4.22 3.93 3.75 0.69	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0,74 0.86 0.27 1.67 0.16	<pre></pre>	0.83 1.13 0.55 1.85 0.06
160244B 160262 160263 160264 160265	225 22 205 22 205 22 205 22 205 22 205 22	6 35 6 10 6 15	3.2 0.6 0.6 0.4 0.2	3,78 2,71 2,83 1,66 2,09	122 < 2 10 6 6	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	<pre>< 10 50 70 30 180</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	3,19 1.55 1.70 1.93 1.02	1.0 0.5 1.0 0.5 0.5	202 22 25 22 22 22	25 44 32 30 25	7930 256 242 236 143	9.78 4.54 4.93 4.84 4.77	10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	0.03 0.60 0.73 0.26 0.97	<pre>< 10 < 10</pre>	2.08 0.94 1.08 0.84 1.26
160266 160269 160271 160272 160273	205 22 205 22 205 22 205 22 205 22 205 22	6 20 6 < 5 5 10	0.2 0.4 0.2 0.4 0.2	2.33 1.95 2.09 1.53 1.98	10 10 12 8 6	<pre>< 10 < 10</pre>	210 60 140 100 180	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	1.05 1.12 1.22 1.29 1.24	0.5 0.5 1.0 1.0 < 0.5	22 21 27 23 23	21 28 28 23 35	159 166 201 174 128	4.60 4.48 4.67 4.26 4.55	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 1 < 1</pre>	1.04 0.57 0.65 0.42 0.93	<pre>< 10 < 10</pre>	1.54 1.11 1.23 1.08 1.10
2160276 2160278 2160279 2160280 2160282	205 22 205 22 205 22 205 22 205 22 205 22	6 10 6 < 5 6 10	0.2 0.6 0.2 0.6 0.2	1.45 1.71 1.22 2.33 1.22	6 8 8 < 2 < 2	<pre>< 10 < 10</pre>	90 90 50 70 80	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	18 < 2 < 2 < 2 < 2 < 2	1.34 1.24 1.06 1.39 1.97	< 0.5 1.0 < 0.5 < 0.5 0.5	23 22 21 28 21	26 36 26 29 26	195 163 222 282 187	4.35 4.24 3.81 4.98 3.98	< 10 < 10 < 10 < 10 < 10 < 10	<pre></pre>	0,42 0,57 0,28 0,51 0,42	<pre>< 10 < 10</pre>	0.91 1.06 0.59 1.01 0.87
P160283 P160289	205 22 205 22	5.70 5.<5	0,6 < 0,2	1.72	8 6	< 10 10	110 120	< 0.5 < 0.5	8 < 2	0.89 0.19	1.0 0.5	24 10	34 156	191 18	4.94	< 10 < 10	< 1 < 1	0.73 0.16	< 10 < 10 < 10	1.00

CERTIFICATION:

.

n,

 ~ 10

·····

Chemex Labs L .td. Analytical Chemists * Geochemists * Registered Assayers

٦

.

٢

3

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8 Page Number : 1-B Total Pages :1 Certificate Date: 31-AUG-1999 Invoice No. : 19926637 P.O. Number : GR BC Account :RIX

۲

1 ٦

۳

Project : GR Comments: ATTN: D. MOLLOY FAX: D. MOLLOY

CERTIFICATE OF ANALYSIS

A9926637

F ٦

															00	<i>F</i>	1992003	ſ	
SAMPLE	PREP CODE	Mn ppm	Мо ррт	Na %	Ni ppm	P PPm	Pb ppm	5	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U PPm	V PPm	W Pp m	2n ppm		
P160214 P160216 P160231 P160233 P160239	205 226 205 226 205 226 205 226 205 226 205 226	285 755 445 300 110	10 < 1 < 1 < 1 1	0.06 0.34 0.32 0.06 0.08	5 7 5 66 < 1	760 950 1220 440 80	6 < 2 < 2 < 2 38	1.11 0.04 1.82 0.74 0.13	< 2 2 2 < 2 < 2 < 2	6 10 3 8 < 1	40 95 97 18 4	0.15 0.23 0.15 0.20 0.01	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	109 152 64 79 5	<pre>< 10 < 10</pre>	38 70 36 70 24		
P160244R P160262 P160263 P160264 P160265	225 229 205 226 205 226 205 226 205 226 205 226	1545 565 600 655 595	< 1 23 11 < 1 2	0.05 0.32 0.29 0.14 0.09	65 12 12 11 10	60 1560 1550 1570 1600	6 12 4 6 < 2	2.34 1.54 1.68 1.65 0.90	6 < 2 < 2 6 10	5 4 5 3 5	6 81 79 52 38	0.04 0.21 0.22 0.20 0.26	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	59 140 152 113 158	< 10 170 < 10 < 10 < 10	138 98 114 98 128		<u>. </u>
P160266 P160269 P160271 P160272 P160273	205 226 205 226 205 226 205 226 205 226 205 226	615 555 655 555 530	1 12 3 < 1 < 1	0.13 0.12 0.11 0.11 0.11	8 9 12 10 12	1610 1460 1610 1520 1390	<pre> < 2 < 2 < 8 < 2 < 2 < 4 </pre>	1.01 0.86 1.09 1.21 1.10	<pre>< 2 < 2</pre>	5 5 5 5 5	63 41 77 35 49	0.23 0.23 0.29 0.23 0.19	<pre>< 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10	156 142 159 137 152	<pre>< 10 < 10</pre>	152 94 122 108 132		
P160276 P160278 P160279 P160280 P160282	205 226 205 226 205 226 205 226 205 226 205 226	520 565 285 535 555	< 1 20 4 3 < 1	0.10 0.12 0.11 0.20 0.08	10 10 10 12 9	1300 1360 1610 1460 1220	6 8 < 2 10 < 2	1,49 1,05 1,29 1,96 1,16	<pre></pre>	4 5 3 4 4	37 35 51 102 46	0.18 0.21 0.25 0.25 0.25 0.21	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	108 122 86 136 96	<pre>< 10 < 10</pre>	84 104 58 108 76		
P160283 P160289	205 226 205 226	575 1255	5 3	0,09 0,02	10 34	1430 310	4 < 2	1.22 0.21	6 10	3 2	44 13	0.20	< 10 < 10	< 10 < 10	123 23	< 10 < 10	108 50		
																/.	0		

CERTIFICATION:

To: GEOFINE EXPLORATION CONSULTANTS LTD.

. .

.

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Page Number : 1-A Total Pages : 1 Certificate Date: 31-AUG-1996 Invoice No. : 19926788 P.O. Number : Account :KIV

3

7

Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

.

Chemex Labs Ltd.

٦

۳

1

٩

1

٦ .

Project : Comments: ATTN: D. MOLLOY FAX: D. MOLLOY

			····			··				CE	RTIFI	CATE	OF A	NAL	YSIS		19926	788		
SAMPLE	Prep Code	Ац ррђ РА+АА	Ag ppm	λ1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co	Cr ppm	Cu ppm	7e %	Ga ppm	Hg ppm	K %	La ppm	Мg
P160244 P160277 P160299 P160300 P160301	201 202 201 202 201 202 201 202 201 202 201 202	< 5 25 < 5 50 < 5	0.6 0.2 1.2 0.2	2.75 4.31 2.00 1.68 1.13	12 68 24 96 22	< 10 < 10 < 10 < 10 < 10 < 10	60 220 170 80 300	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 2 2 2	0.03 0.46 2.69 2.43 0.89	< 0.5 1.5 < 0.5 2.5 1.0	10 29 16 23 15	66 32 41 30 6	32 202 54 133 31	3.21 6.03 3.79 4.87 4.29	< 10 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.06 0.69 0.08 0.10 0.11	< 10 < 10 < 10 < 10 < 10 10	0.73 1.64 1.43 1.38 0.76
P160302 P160303 P160304 P160305 P160306	201 202 201 202 201 202 201 202 201 202 201 202	<pre></pre>	0.2 0.2 < 0.2 0.2 0.2 0.2	2.46 2.64 1.89 1.02 1.13	20 2 24 44 22	< 10 30 < 10 < 10 < 10	160 50 120 140 170	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.75 1.62 0.54 0.61 0.42	0.5 < 0.5 1.5 1.5 0.5	15 15 19 15 17	48 21 16 15 25	57 77 62 42 43	3.48 4.37 4.35 4.11 3.89	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.07 0.06 0.09 0.06 0.06 0.08	< 10 < 10 < 10 < 10 < 10 < 10	0.92 1.68 0.96 0.50 0.60
2160307 2160308 2160309 2160310 2160311	201 202 201 202 201 202 201 202 201 202 201 202	< 5	0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.55 2.60 2.13 2.11 2.11	8 6 18 14 10	20 20 < 10 < 10 < 10 < 10	170	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 6 < 2 < 2 < 2 < 2	1.74 1.68 0.26 0.26 0.28	< 0.5 0.5 < 0.5 < 0.5 < 0.5	15 15 16 16 16	28 32 78 77 71	66 65 39 40 43	3.75 3.89 3.48 3.50 3.78	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.05 0.12 0.11 0.11	< 10 < 10 < 10 < 10 < 10 < 10	1.60 1.63 1.37 1.37 1.34
2160312 160313	201 202 201 202		< 0.2	1.95	16 6	< 10 < 10	110 110	< 0.5 < 0.5	< 2 2	0.32 0.68	0.5	16	64 35	36 41	3.49 3.99	< 10 < 10	< 1 < 1	0.09	< 10 < 10	1.24

CERTIFICATION:

To: GEOFINE EXPLORATION CONSULTANTS LTD.

э.

CERTIFICATION:

<u>⊳</u>_

۲

49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

'n.

Page Number :1-B Total Pages :1 Certificate Date: 31-AUG-199: Invoice No. :19926788 P.O. Number : Account :KIV

Analytical Chemists * Geochem	nists * Registered Assayers
5175 Timberlea Blvd., Ontario, Canada PHONE: 905-624-2806	Mississauga

abs.

td.

۲

ζ•,

٦

hemex

Project : Comments: ATTN: D. MOLLOY FAX: D. MOLLOY

		·							CE	RTIFI	CATE	OF /	NAL	rsis	A	9926788	
SAMPLE	PREP CODE	Mn ppm	Mo Na ppm %	Ni ppm	P P	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	D D	v ppm	W	Zn ppm	
P160244 P160277 P160299 P160300 P160301	201 202 201 202 201 202 201 202 201 202 201 202	455 1350 665 715 1115	<pre>< 1 < 0.01 6 0.01 < 1 0.01 8 0.01 1 < 0.01 1 < 0.01</pre>	52 28 47 47 5	870 1340 640 1010 1060	4 44 52 18	0.05 0.03 0.09 1.75 0.22	< 2 4 2 < 2 < 2 < 2	4 9 7 3 5	5 < 43 57 114 35	0.01 0.21 0.05 0.03 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	42 163 70 54 66	< 10 30 < 10 < 10 < 10 < 10	72 260 94 194 100	
160302 160303 160304 160305 160305	201 202 201 202 201 202 201 202 201 202 201 202	835 970 1415 1080 950	$ \begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	48 12 30 46 62	570 760 840 860 860	4 < 2 10 6 6	0.05 0.07 0.06 0.28 0.14	< 2 < 2 < 2 < 2 < 2 < 2	7 8 6 6 6	34 41 23 31 < 33	0.04 0.25 0.06 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	75 134 71 37 48	< 10 < 10 < 10 < 10 < 10 < 10	116 76 136 166 140	
160307 160308 160309 160310 160311	201 202 201 202 201 202 201 202 201 202 201 202	730 740 480 480 975	1 0.02 < 1 0.02 < 1 0.01 < 1 0.01 < 1 0.01 < 1 0.01	25 29 98 97 83	680 690 570 590 650	2 < 2 10 6 16	0.10 0.12 0.04 0.04 0.13	2 < 2 < 2 < 2 < 2 < 2	9 9 7 7 6	30 <	0.22 0.21 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	125 123 53 51 53	< 10 < 10 < 10 < 10 < 10 < 10	70 82 92 94 118	
60313	201 202 201 202	825 1210	< 1 0.01 3 < 0.01	78 50	620 710	12 6	0.09	82	6	27 36	0.02	< 10 < 10	< 10 < 10	50 54	< 10 < 10	106 152	
															17		

.

1 **F**... 1

٦

• .

Chemex Labs L td.

1

Analytical Chemists * Geochemists * Registered Assayers

١,

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To:	MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8
	49 NORMANDALE RD. UNIONVILLE, ON

Page Number : 1-A Total Pages : 1 Certificate Date: 10-SEP-1999 Invoice No. : 19927481 P.O. Number : Account RIX

. ٩

7

٦

Project : GB Comments: ATTN: D. MOLLOY FAX: D. MOLLOY

r				·				<u> </u>			CERTIFICATE OF ANALYSIS A992748										
SAMPLE	PREP CODE		ррb \+ \\	Ag ppm	A1 %	λ в ррш	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	R %	La ppm	Mg %
P160423 P160450 P160451 P160452 P160453	201 2 201 2 201 2 201 2 201 2 201 2	02 02 02 02	20 < 5 < 5 < 5 < 5	0.6 0.2 0.2 < 0.2 0.2	1.60 2.42 2.12 1.96 2.43	6 8 10 10 < 2	< 10 < 10 < 10 < 10 < 10 < 10	260 200 160 120 270	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.09 0.37 0.20 0.17 0.46	1.0 < 0.5 < 0.5 < 0.5 < 0.5 1.5	17 19 14 14 19	4 52 62 57 65	76 51 31 29 39	4.44 4.14 3.74 3.29 3.49	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.09 0.10 0.08 0.08	10 < 10 < 10 < 10 < 10 < 10	0.97 1.10 1.08 1.02 0.86
P160454 P160455 P160456 P160457 P160458	201 20 201 20 201 20 201 20 201 20 201 20	02 02 02 02	< 5 < 5 75 < 5 < 5	0.4 0.2 0.2 0.6	2.41 2.37 1.99 2.29 1.26	12 12 14 16 40	< 10 < 10 < 10 < 10 < 10 < 10	160 230 160 160 160	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.35 0.30 0.31 0.35 1.18	0.5 < 0.5 0.5 0.5 1.0	28 30 20 25 12	56 53 46 43 28	65 69 45 53 36	4.79 4.65 3.94 4.30 3.40	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.10 0.10 0.10 0.10	< 10 < 10 < 10 < 10 < 10 10	1.18 1.08 1.01 1.18 0.80
P160459 P160460 P160461 P160462 P160474	201 20 201 20 201 20 201 20 201 20 201 20	02 02 02	< 5 < 5 < 5 < 5 < 5	0.8 0.2 0.2 1.8 0.2	1.30 2.23 1.99 1.50 2.39	106 8 12 72 10	< 10 < 10 < 10 < 10 < 10 < 10	390 110 90 70 140	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.45 0.36 0.26 2.39 0.33	2.5 0.5 0.5 2.5 0.5	22 19 19 19 26	34 55 63 28 50	47 39 52 97 50	5.05 3.58 4.05 4.19 4.49	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.06 0.05 0.09 0.06	< 10 < 10 < 10 < 10 < 10 < 10	0.63 0.89 1.13 1.27 1.00
											·										
																		\sim			
										- <u></u>		· · · · · · · · · · · · · · · · · · ·	.					$\left(\right)$	7	/	ĺ

CERTIFICATION:_

.

2ÚC

f~~ 1 1

1

۲ $\overline{1}$

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

۲

FARE TRUE

*

5175 Timberlea Blvd.,	Mississauga
Ontario, Canada	Mississauga L4W 2S3
PHONE: 905-624-2806	FAX: 905-624-6163

To: MOLLOY, D PROP 49 NORMAN UNIONVILLI L3R 4J8	NDALE RD.
---	-----------

Page Number : 1-B Total Pages : 1 Certificate Date: 10-SEP-1999 Invoice No. : 19927481 P.O. Number : Account RIX

7 7

. 1

.

۲ 7

Project : GB Comments: ATTN: D. MOLLOY FAX: D. MOLLOY

_*

		CERTIFICATE OF ANALYSI							/SIS	IS A9927481									
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	p ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U mqq	V P pm	W	Zn ppm	<u> </u>	· · · · · · · · · · · · · · · · · · ·
P160423 P160450 P160451 P160452 P160453	201 202 201 202 201 202 201 202 201 202 201 202	1265 1760 1470 1175 2660	3 2 2 1 2	0.02 0.01 0.01 0.01 0.01 0.01	4 78 79 73 90	1370 770 590 480 1170	28 14 8 6 10	0.50 0.06 0.02 0.01 0.05	< 2 < 2 < 2 < 2 < 2 < 2	5 5 4 5	56 0 45 < 0 21 < 0 15 < 0 90 < 0	.01 .01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	66 52 50 46 48	< 10 < 10 < 10 < 10 < 10 < 10	108 166 126 104 152		
P160454 P160455 P160456 P160457 P160458	201 202 201 202 201 202 201 202 201 202 201 202 201 202	3200 4420 2260 2380 1045	2 1 2 4	0.01 0.01 0.01 0.01 0.01	93 92 72 76 38	760 760 820 870 940	18 16 12 14 30	0.09 0.03 0.12 0.19 0.26	< 2 < 2 < 2 < 2 < 2 < 2 < 2	6 5 6 3	38 < 0	.01 .01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	50 54 51 54 33	< 10 < 10 < 10 < 10 < 10 < 10	214 222 140 154 190		
P160459 P160460 P160461 P160462 P160474	201 202 201 202 201 202 201 202 201 202 201 202	4020 1600 1160 685 1945	5 2 2 7 3	0.01 0.01 0.01 0.01 0.01	67 85 93 44 84	1090 920 980 950 940	32 8 10 28 12	0.06 0.05 0.13 1.22 0.03	< 2 < 2 < 2 < 2 < 2 < 2 < 2	5 5 3 5	36 < 0 36 < 0 27 < 0 101 0 43 < 0	.01 .01 .03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	34 41 43 45 51	< 10 < 10 < 10 < 10 < 10 < 10	244 148 140 160 174		
<u> </u>		······································							17 8 -								()	. 1	•

2

۰.

Ok.

C

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga

Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Page Number :1-A Total Pages :1 Certificate Date: 14-SEP-1999 Invoice No. :19928667 P.O. Number : Account :RIX

Project :

Comments: ATTN: D. MOLLOY FAX: D. MOLLOY

CERTIFICATE OF ANALYSIS A9928667 PREP Au ppb Ag Al As В Ba Be Bi Ca Cđ Co Cr Cu Fe Ga Ħg K La Mg SAMPLE CODE FA+AA ppa ٩, ppa ppm ррш pp ppm 8 pp∎ ppm Ł pp ppm ppm ppm 8 ppm 8 P160244 201 202 < 5 0.6 2.75 12 < 0.5 < 10 60 < 2 0.03 < 0.5 10 66 32 3.21 < 10 < 1 0.06 2160277 < 10 0.73 201 202 25 0.6 4.31 6B < 10 220 < 0.5 < 2 0.46 1,5 29 32 202 6.03 10 < 1 0,69 < 10 P160299 201 202 1.64 < 5 0.2 2.00 24 < 10 170 < 0.5 < 2 2.69 < 0.5 16 41 54 3.79 < 10 < 1 0,08 < 10 **P160300** 1,43 201 202 50 1.2 1.68 96 < 10 80 < 0.5 2 2.43 2.5 23 30 133 4.87 < 10 < 1 0.10 < 10 **P160301** 1.38 201 202 < 5 0.2 1.13 22 < 10 < 0.5 300 2 0.89 1.0 15 6 31 4.29 < 10 < 1 0.11 10 0.76 P160302 201 202 < 5 0.2 2.46 20 < 10 160 < 0.5 0.5 < 2 0.75 15 48 57 3.48 < 10 < 1 0.07 < 10 0.92 **P160303** 201 202 < 5 0.2 2.64 2 30 50 < 0.5 < 2 1.62 0.5 15 21 < 77 4.37 < 10 < 1 0.06 P160304 < 10 1,68 201 202 < 5 < 0.2 1.89 24 < 10 120 < 0.5 < 2 0.54 1.5 19 16 62 4.35 < 10 < 1 0.09 < 10 0,96 P160305 201 202 < 5 0.2 1.02 44 < 10 140 < 0.5 < 2 0.61 1.5 15 15 42 4.11 < 10 < 1 0.06 < 10 0.50 P160306 201 202 < 5 0.2 1.13 22 < 10 170 < 0.5 < 2 0.42 0.5 17 25 43 3.89 < 10 < 1 < 10 0.08 0.60 P160307 201 202 < 5 0.2 2.55 8 20 70 < 0.5 < 2 1.74 < 0.5 15 28 66 3.75 < 10 < 1 0.05 < 10 1,60 P160308 201 202 < 5 < 0.2 2.60 6 20 100 < 0.5 6 1.68 0.5 15 32 65 3.89 < 10 < 1 0,05 < 10 1,63 P160309 201 202 < 5 < 0.2 2.13 < 0.5 18 < 10 170 く 2 0.26 < 0.5 16 78 39 3.48 < 10 2160310 < 1 0.12 < 10 1.37 201 202 < 0.2 < 5 2.11 14 < 10 170 < 0.5 < 2 0.26 < 0,5 16 77 40 3.50 < 10 P160311 < 1 0.11 < 10 1.37 201 202 < 5 < 0.2 2.11 10 < 10 160 < 0.5 < 0.5 < 2 0.28 16 71 43 3.78 < 10 < 1 0.11 < 10 1.34 P160312 201 202 < 5 < 0.2 1.95 16 < 10 110 < 0.5 < 2 0.32 0.5 16 64 36 3,49 < 10 0.09 < 1 < 10 **\$160313** 1.24 201 202 < 5 < 0.2 1.95 6 < 10 110 < 0.5 2 0.68 0.5 15 35 41 3.99 < 10 < 1 0.06 < 10 1.03

CERTIFICATION:

nti⊂

٩ ÷ ٦.

1 C

emex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

MOLLOY, DAVID To: 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Page Number :1-B Total Pages :1 Certificate Date: 14-SEP-1999 Invoice No. :19928667 Invoice No. P.O. Number : Account :RIX

7

.

Project : Comments: ATTN: D. MOLLOY FAX: D. MOLLOY

CERTIFICATE OF ANALYSIS

A9928667

													MALI	33	<i>F</i>	19928007	
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na Ni 3 ppm	P Ppm	Pb ppm	s %	Sb ppm	Sc ppm	Sr ppa	Ti %	Tl PP m	n D	V PP n	W	Zn ppn	* <u> </u>
P160244 P160277 P160299 P160300 P160301	201 202 201 202 201 202 201 202 201 202 201 202	455 1350 665 715 1115	< 1 0.	01 28 01 47 01 47	870 1340 640 1010 1060	4 44 6 52 18	0.05 0.03 0.09 1.75 0.22	<pre></pre>	4 9 7 3 5	5 (43 57 114 35	0.01 0.21 0.05 0.03 0.08	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	42 163 70 54 66	<pre>< 10 30 < 10 < 10 < 10 < 10 < 10</pre>	72 260 94 194 100	
2160302 2160303 2160304 2160305 2160305	201 202 201 202 201 202 201 202 201 202 201 202	835 970 1415 1080 950	< 1 0.		570 760 840 860 860	4 < 2 10 6 6	0.05 0.07 0.06 0.28 0.14	<pre></pre>	7 8 6 6 6	34 41 23	0.04 0.25 0.06 0.01 0.01	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	< 10 < 10 < 10 < 10 < 10 < 10 < 10	75 134 71 37 48	< 10 < 10 < 10 < 10 < 10 < 10 < 10	116 76 136 166 140	
160307 160308 160309 160310 160311	201 202 201 202 201 202 201 202 201 202 201 202	730 740 480 480 975	<pre>< 1 0.</pre> <pre>< 1 0.</pre> <pre>< 1 0.</pre>	02 25 02 29 01 98 01 97 01 83	680 690 570 590 650	2 < 2 10 6 16	0.10 0.12 0.04 0.04 0.13	2 < 2 < 2 < 2 < 2 < 2 < 2	9 9 7 7 6	- 30 (0.22 0.21 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	125 123 53 51 53	<pre>< 10 < 10</pre>	70 82 92 94 118	
160312 160313	201 202 201 202	825 1210	< 1 0, 3 < 0,	01 78 01 50	620 710	12 6	0.09 0.28	8 2	6	27 36	0.02	< 10 < 10	< 10 < 10	50 54	< 10 < 10	106 152	
					_										() 1	~

CERTIFICATION:

. **F**

٩,

٦

•

F ----

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayera

5175 Timbodoo Dive

5175 Timberlea Blvd.,	Mississauga
Ontario, Canada	L4W 2S3
PHONE: 905-624-2806	FAX: 905-624-6163

To: MOLLOY, DAVID 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

٦

Г

Project : GRS Comments: ATTN: DAVID MOLLOY

~*

Page Number : 1-A Total Pages : 1 Certificate Date: 15-SEP-1999 Invoice No. : 19927993 P.O. Number : GR Account :RIX

. 7

۳ ٠

۲

۲

										С	ERTIF	ICATI	EOF	ANAL	YSIS		A992	7993		
SAMPLE	PREP CODE	Ац ррђ ГА+АА	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi pom	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu	Fe %		Hg ppm	R %	La ppm	Mg %
160042 160250 160315 160316 160317	201 202 201 202 201 202 201 202 201 202	< \$ < \$	NotRed < 0.2 < 0.2 0.2 < 0.2 < 0.2	NotRed 1 1.35 2.19 2.89 3.07	NotRed 26 6 10 14	NotRed < 10 < 10 < 10 < 10	NotRed 110 130 260 210	NotRed < 0.5 < 0.5 0.5 0.5	NotReđ < 2 < 2 < 2 < 2 < 2	NotRed 1.00 0.13 0.27 0.26	NotRed < 0.5 < 0.5 0.5 < 0.5	NotRad 13 13 25 26	NotRed 30 56 77 85	NotRed 40 34 62 71	NotRed 4.08 3.01 4.18 5.16					
160318 160319 160320 160321 160322	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 0.4 < 0.2	1.41 2.27 2.61 2.54 2.29	4 6 10 8 14	< 10 < 10 < 10 < 10 < 10 < 10	110 140 120 260 110	< 0.5 < 0.5 < 0.5 < 0.5 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.09 0.21	< 0.5 < 0.5 < 0.5 0.5 < 0.5	10 12 18 19 15	38 58 64 52 56	23 40 39 39 40	2.54 3.01 3.67 4.23 3.52	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.09 0.08 0.16 0.07	< 10 < 10 < 10 < 10 < 10 < 10	0.61 0.94 0.91 0.70 0.88
160323 160324 160343 160343 160475	201 202 201 202 201 202 201 202 201 202 201 202	< 5 10 10 15 95	< 0.2 0.2 < 0.2 0.6 0.8	2.45 1.33 1.62 1.67 1.66	14 24 28 36 80	< 10 < 10 10 10 < 10	170 80 100 90 70	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.16 0.93 1.90 1.80 2.33	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 2.0	19 12 11 14 21	54 29 13 15 30	47 42 31 41 115	3.78 3.52 3.44 4.46 4.72	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.07 0.05 0.05 0.10	< 10 < 10 < 10 < 10 < 10 < 10	0.99 0.89 1.14 1.17 1.36
460042 598775 598776	201 202 201 202 201 202	10 20 15	0.8 0.8 1.0	1.20 1.29 1.20	34 80 52	< 10 < 10 < 10	60 50 70		< 2 < 2 < 2	1.70 2.51 2.23	1.5 2.0 2.5	13 17 15	34 42 36	76 88 94	3.03 3.46 3.40	< 10 < 10 < 10	< 1 1 < 1	0.05 0.05 0.06	< 10 < 10 < 10	1.09 1.20 1.10
																	• .			

5.5

.

CERTIFICATION:_

MOLLOY DAVID To Chemex Labs | Ltd. Analytical Chemists * Geochemists * Registered Assayers

. .

1

۲

1

٦

1

7

C

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

Ο,	PROP
	49 NORMANDALE RD.
	UNIONVILLE, ON
	L3R 4J8

Page Number : 1-B Total Pages : 1 Certificate Date: 15-SEP-1999 Invoice No. : 19927993 P.O. Number : GR Account : RIX

F (.

٦

~*

Project : GRS Comments: ATTN: DAVID MOLLOY

	1						CE	RTIF		E OF /	ANAL	rsis		49927993	
PREP CODE	Mn ppm	Mo Na ppm %	Ni I ppm ppr		5	SD ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	- <u>37</u>
60042 60250 201 202 60315 201 202 60316 201 202 60317 201 202	685 1795 1450	tRed NotRed 3 0.01 3 < 0.01 2 < 0.01 4 < 0.01	NotRed NotRed 35 1000 59 660 83 1010 103 980	6 12	NotRcd 0.43 0.01 0.05 0.01	NotRed 1 2 < 2 < 2 < 2 < 2	NotRcđ 1 3 5 7 10		NotRed 0.05 0.01 0.01 0.01						
.60318 201 202 .60319 201 202 .60320 201 202 .60321 201 202 .60322 201 202	565 1150 2270 1170	$ \begin{array}{r} 1 < 0.01 \\ 1 < 0.01 \\ 3 < 0.01 \\ 2 & 0.01 \\ 2 & 0.01 \\ 2 & < 0.01 \\ \end{array} $	40 540 62 770 66 670 53 1900 62 970	8 10 6	0.02 0.02 0.02 0.04 0.01	< 2 < 2 < 2 < 2 < 2 < 2 < 2	3 6 5 5 5 5	15	< 0.01 0.01 < 0.01 0.01 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	33 48 54 54 48	< 10 < 10 < 10 < 10 < 10 < 10	104 104 118 118 110	
60323 201 202 60324 201 202 60343 201 202 60398 201 202 60475 201 202 60042 201 202	700	$\begin{array}{c} 2 < 0.01 \\ 3 < 0.01 \\ 3 < 0.01 \\ 3 < 0.01 \\ 3 < 0.01 \\ 9 0.01 \end{array}$	68 830 35 1000 10 1040 10 1070 46 990	6 8 32	0.01 0.40 0.09 0.32 1.66	< 2 < 2 < 2 < 2 < 2 < 2 < 2	5 3 4 4 4	26 55 63 63 114	<pre> 0.01 0.02 0.02 0.04 0.03 </pre>	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	46 46 52 68 49	< 10 < 10 < 10 < 10 < 10 < 10	128 88 74 90 166	
98775 98776 201 202 201 202	635 615 655	6 < 0.01 7 < 0.01 6 < 0.01	48 860 62 850 58 930	32	0.60 1.04 0.81	2 ~ 2	4 4	70 93 89	0.04	< 10 < 10 < 10	< 10 < 10 < 10	45 49 50	< 10 < 10 < 10	146 170 194	

CERTIFICATION:_

7 7

.

•

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

.

1 3 3

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 253 PHONE: 905-624-2806 FAX: 905-624-6163

MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8 To:

Project : GRS Comments: ATTN: DAVID MOLLOY

Page Number : 1-A Total Pages : 1 Certificate Date: 15-SEP-1999 Invoice No. : 19927994 P.O. Number : GR Account RIX

•

e

٠

1

]				- <u></u>				CE	RTIF	CATE	OF A	NAL	YSIS	ļ	19927	994		
SAMPLE	PREP CODE	Ац ррб FA+AA	λg ppm	λ1 *	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррд	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	R %	La ppm	Mg %
.60342	205 226	185	3.0	0.11	200	< 10	30	< 0.5	< 2	2.58	8.0	4	81		1.92	< 10 < 10	<pre> / / / / / / / / / / / / / / / / / / /</pre>		урш < 10	0.53
																			. <i>k</i>	

×.5

To: MOLLOY, DAVID PROP Chemex Labs Ltd. C 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8 Analytical Chemists * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 Project : Project : GRS Comments: ATTN: DAVID MOLLOY Г

۲

٦

1

r ٩

> Page Number :1-B Total Pages :1 Certificate Date: 15-SEP-1999 Invoice No. :19927994 P.O. Number :GR Account : RIX

17 57

	- <u> </u>									CE	RTIFIC	CATE	OF A	NALY	/SIS	4	99279	94
SAMPLE	PREP CODE	Мл ррш	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	5	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
60342	205 226	1050	7 4	< 0.01	21	400	232	1.15	< 2	1	101 <	0.01	< 10	< 10	6	< 10	822	· · · · · · · · · · · · · · · · · · ·
																	$\hat{\Delta}$	
																		10

• •

•

٦

٦

٦ . n

٦

٩.

Xauch

1 1

To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

n /

0

. .

Chemex Labs Ltd.

Analytical Chemiats * Geochemists * Registered Assayers 5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2\$3 PHONE: 905-624-2806 FAX: 905-624-6163

Project : GRDW Comments: ATTN: DAVID MOLLOY Page Number :1-A Total Pages :1 Certificate Date: 15-SEP-1999 Invoice No. : 19927996 P.O. Number :GR Account :RIX

1

. 2

CERTIFICATION:

٦

r		· · · · · · · · · · · · · · · · · · ·								CE	RTIFI	CATE	OF /	NAL	YSIŞ		A9927	'996		
SAMPLE	PREP CODE	λg ppm	A1 %	λs ppm	B	Ba ppm	Be ppm	Bi ppm	Ca %		Со ррт	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	R %	La ppm	Mg %	Mn ppm
86842	205 226		0.21	4	< 10		< 0.5	< 2		< 0.5	1	114	3		 < 10	<u>ppm</u> < 1		ppm < 10		ppm 100
																			1	

• •

0	Ontario, Canada L4W 2\$3 PHONE: 905-624-2806 FAX: 905-624-6163										, DAVIE IANDAI ILLE, OI BRDW	le RD.	DLLOY	_* *		·.	Page Numbe Total Pages Certificate Di Invoice No. P.O. Numbe Account	or :1-B :1 ate:15-SEP-19 :19927996 r :GR :RIX
	Γ	r								CE	RTIF		OF A	NAL	YSIS	A9	927996	
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	9 ppm	Pb ppm	5 %	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U PPm	V ppm	W М	Zn ppm		
6842	205 226	< 1	0.05	7	110	14	0.08	2	< 1	47 <	0.01	< 10	< 10	13	< 10	38		
										-			CE	ERTIFIC	ATION.		Janla	,

•

,

٠

1

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd.,	Mississauga L4W 2S3
Ontario, Canada	
PHONE: 905-624-2806	FAX: 905-624-6163

Γo;	MOLLOY, DAVID
	PROP
	49 NORMANDALE RD.
	UNIONVILLE, ON
	L3R 4J8

Page Number : 1-A Total Pages : 1 Certificate Date: 24-SEP-1999 Invoice No. : 19928536 P.O. Number : GR Account : RIX

٦

٦

۲

٩.

Project : GR5 Comments: ATTN: DAVID MOLLOY

ſ -		F							CERTIFICATE OF ANALYS							/	49928	3536		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	λs ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
P160437 P160437A P160438 P160439 P160440	201 202 201 202 201 202 201 202 201 202 201 202	80 < 5	0.2 0.8 < 0.2 0.2 < 0.2	1.90 1.73 1.77 1.75 1.90	12 70 6 6	< 10 < 10 < 10 10 < 10	110 80 70 90 140	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2		< 0.5 2.5 < 0.5 < 0.5 < 0.5	18 19 11 17 12	83 31 74 70 72	43 100 33 31 29	3.36 4.21 2.68 3.32 3.13	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.10 0.05 0.07 0.08	< 10 < 10 < 10 < 10 < 10 < 10	1.37 1.42 1.29 1.26 1.30
P160441 P160442 P160443 P160444 P160445	201 202 201 202 201 202 201 202 201 202 201 202	5 15 15 15 V V V V V V	0.2 < 0.2 < 0.2 < 0.2 < 0.2 0.2	2.09 2.86 2.11 2.42 1.88	12 < 2 6 8 14	< 10 < 10 < 10 < 10 < 10 < 10	230 50 100 80 110	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.11 0.43 0.61	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	17 14 15 16 19	89 94 78 110 95	43 23 30 28 42	3.63 3.19 3.29 3.41 3.86	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.11 0.07 0.10 0.08 0.07	< 10 < 10 < 10 < 10 < 10 < 10	1.49 1.67 1.32 1.74 1.31
P160446 P160447 P160448 P160449	201 202 201 202 201 202 201 302		0.2 < 0.2 0.2 0.2	1.61 1.70 2.34 2.38	12 2 16 16	< 10 10 10 < 10	70 70 140 130	< 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	0.41 0.34 0.29 0.45	< 0.5 < 0.5 0.5	13 13 28 28	79 82 93 96	30 27 50 49	2.91 2.94 4.41 4.32	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.07 0.08 0.10 0.12	< 10 < 10 < 10 < 10	1.22 1.23 1.36 1.39
																	()	ſ	1	

CERTIFICATION:_

۲

Chemex Labs Ltd.

Analytical Chemiste * Geochemists * Registered Assayers

5175 Timberlea Blvd.,MississaugaOntario, CanadaL4W 2\$3PHONE: 905-624-2806FAX: 905-624-6163

To;	MOLLOY, DAVID
	PROP
	49 NORMANDALE RD.
	UNIONVILLE, ON
	L3R 4J8
	LON 400 -

Page Number :1-B Total Pages :1 Certificate Date: 24-SEP-1999 Invoice No. : [9928536 P.O. Number :GR Account :RIX

Project : GR5 Comments: ATTN: DAVID MOLLOY

CERTIFICATE OF ANALYSIS A9928536 PREP Mn Ко Ni Na P ₽b S Sb 8c Sr Tİ Tl υ ۷ W Zn SAMPLE CODE ppm ррд * ppm * ppm ppm ppm ppm ppm ۰, ppm ppm ppm ppm ppm 2160437 201 202 600 1 0.01 93 660 12 0.16 < 2 5 24 0.04 < 10 < 10 45 < 10 94 P160437A 201 202 685 4 0.01 38 950 32 1.22 4 113 0.04 4 < 10 < 10 54 < 10 190 P160438 201 202 335 < 1 0.01 73 630 6 0.10 < 2 5 30 0.05 < 10 45 < 10 < 10 64 P160439 201 202 375 1 0.01 89 690 6 0.42 < 2 < 10 5 35 < 0.01 < 10 42 < 10 88 2160440 201 202 360 < 1 < 0.0182 730 8 0.09 < 2 5 40 0.03 < 10 < 10 48 88 < 10 P160441 201 202 515 3 < 0.01 102 760 10 0.13 2 6 43 < 0.01 < 10 < 10 51 < 10 116 P160442 201 202 505 < 1 0.01 77 640 8 0.02 -4 8 80 0.18 < 10 < 10 71 < 10 78 P160443 201 202 515 0.01 1 680 80 12 0.04 < 2 6 34 0.07 < 10 < 10 52 < 10 100 P160444 201 202 535 < 1 0.02 96 740 8 0.06 < 2 7 36 0.10 < 10 < 10 62 < 10 86 P160445 201 202 645 1 < 0.01 115 970 12 0.14 2 6 44 0.01 < 10 < 10 50 < 10 118 P160446 201 202 500 1 0.01 79 800 10 0.27 < 2 32 4 0.04 < 10 < 10 41 < 10 84 P160447 201 202 545 < 1 0.01 76 720 6 0.16 < 2 4 25 0.04 < 10 < 10 42 < 10 82 P160448 201 202 1825 < 1 0.01 116 900 68 0.08 2 5 34 0.02 < 10 < 10 53 < 10 164 P160449 201 202 1075 3 0.01 115 1080 16 0.08 < 2 7 38 0.04 < 10 < 10 64 < 10 154

CERTIFICATION:_

· 1 / 2002

,

r--

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

51/5 Imperiea Bivd.,	Mississauga
Ontario, Canada	L4W 2Š3
PHONE: 905-624-2806	FAX: 905-624-6163

lo:	MOLLOY, DAVID
	PROP
	49 NORMANDALE RD.
	UNIONVILLE, ON
	L3R 4J8

1

Project : GRB Comments: ATTN: DAVID MOLLOY ~*

Page Number : 1-A Total Pages : 1 Certificate Date: 24-SEP-1999 Invoice No. : 19928534 P.O. Number : GR Account : RIX

•

r : 7

Ŋ

ſ	·									CERTIFICATE OF ANALYSIS						ļ	\9928			
SAMPLE	PREP CODE	Ац ppb FA+AA	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Ng %
P160332 P160335 P160336 P160339	201 20 201 20 201 20 201 20 201 20	2 215 2 45 2 530 2 60	2.4 1.6 2.0 17.2	2.78 3.51 5.19 2.81	46 40 46 36	< 10 < 10 < 10 < 10	190 100 280 160	< 0.5 0.5 1.5 < 0.5	18 10 18 24	0.17 0.24 0.35 0.31	< 0.5 0.5 2.0 5.0	25 29 35 58	38 39 42 39	965 1130 2950 2040	6.08 5.45 5.36 5.96	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.14 0.10 0.13 0.18	< 10 10 10 10	0.81 0.92 1.17 1.19
•																				
													<u></u>				()			

CERTIFICATION:

* ٦ F.

•

,

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Missiesauga Ontario, Canada L4W 253 PHONE: 905-624-2806 FAX: 905-624-6163

MOLLOY, DAVID PROP
49 NORMANDALE RD.
UNIONVILLÉ, ON L3R 4J8

Project : GRB Comments: ATTN: DAVID MOLLOY

Page Number :1-B Total Pages :1 Certificate Date: 24-SEP-1999 Invoice No. :19928534 P.O. Number :GR Account RIX

* * * *

• • • •

_*

1

۹

•

										CE	RTIF		OF A	NAL	/SIS	ļ	\9928 5	34
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	Ų mqq	V ppm	W Ppm	Zn ppm	nijevada <u>a</u> j
2160332 2160335 2160336 2160339	201 202 201 202 201 202 201 202 201 202	1010 1490 1855 2410	5 6 4 9	0.01 < 0.01 0.01 0.01	19 25 31 36	980 1120 1130 1070	36 62 58 1020	0.27 0.09 0.15 0.21	< 2 6 < 2 8	7 7 10 8	12 12 22 17	0.07 0.05 0.06 0.04	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	94 88 87 77	< 10 < 10 < 10 < 10	84 130 182 764	
																	()	

CERTIFICATION:_

Ч

Chemex Labs Ltd. Analytical Chemists " Geochemists " Registered Assayers

5175 Timberlea Blvd.,	Mississauga
Ontario, Canada	L4W 2S3
PHONE: 905-624-2806	FAX: 905-624-6163

To:	MOLLOY, DAVID
	49 NORMANDALE RD. UNIONVILLE, ON
	L3R 4J8

Page Number :1-A Total Pages :1 Certificate Date: 24-SEP-1999 Invoice No. : 19928535 P.O. Number :GR Account : RIX

۲

۲ ٦

r ٦.

Project : GRB Comments: ATTN: DAVID MOLLOY

	r									CERTIFICATE OF ANALYSIS							\9928			
SAMPLE	Prep Code	λu ppb Fλ+λλ	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg
P160330 P160331 P160333 P160334 P160334	205 226 205 226 205 226 205 226 205 226 205 226	< 5 25 20	0.2 0.2 < 0.2 < 0.2 < 0.2 0.2	0.92 1.72 0.23 1.23 0.36	4 10 < 2 118 4	< 10 < 10 < 10 10 < 10	30 10 30	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 2 < 2 < 2 < 2 < 2	0.61 0.44		15 20 10 9 22	72 60 61 88 52	325 302 91 31 393	2.82 4.54 1.46 1.83 3.16	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.84 0.03 0.47 0.08	< 10 < 10 < 10 < 10 < 10 < 10	0.21 1.08 0.10 0.79 0.21
P160338 P160340A	205 226	< 5 1445	0.2 3.0	0.77 3.95	66 130	10 < 10	< 10 < 10	< 0.5	< 2 42	0.63	< 0.5	14 189	65 25	109 7800	2.38 9.97	< 10 < 10	< 1 < 1	0.12	< 10 < 10	0.39

CERTIFICATION:_

+ 1

1.22

Chemex Labs L .td. Analytical Chemists * Geochemists * Registered Assayers

Mississauga
L4W 2Š3
FAX: 905-624-6163
F

To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : GRB Comments: ATTN: DAVID MOLLOY

Page Number :1-B Total Pages :1 Certificate Date: 24-SEP-1999 Invoice No. :19928535 P.O. Number :GR Account :RIX

7 C 1

e.

۰, 7 • •••

Ŀ

Nation Nation

.

<u></u>										CERTIFICATE OF ANALYSIS							\9928535	
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P PPn	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W ppm	Zn ppm	
P160330 P160331 P160333 P160333 P160334 P160337	205 226 205 226 205 226 205 226 205 226 205 226	285 180 400	6 3 2 < 1 3	0.09 0.11 0.04 0.08 0.08	54 49 56 87 77	860 940 1460 430 660	2 < 2 < 2 < 2 < 2 < 2 < 2	1.48 1.79 0.65 0.16 1.77	< 2 < 2 < 2 < 2 < 2 < 2 2	1 8 1 12 1	26 23 10 12 6	0.13 0.16 0.10 0.20 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	47 115 59 111 44	< 10 < 10 < 10 < 10 < 10 < 10	14 24 8 18 10	
P160338 P160340A	205 226 214 229	180 1570	< 1 < 1	0.05 0.05	94 69	530 60	< 2 6	1.09 2.59	42	2 6	6 6	0.12 0.04	< 10 < 10	< 10 < 10	59 61	< 10 < 10	16 128	
																	(λ)	. l

CERTIFICATION:_

F

7 7 1

Chemex Labs Ltd.

Analytical Chemists " Geochemists " Registered Assayers

5175 Timbarlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : GRB Comments: ATTN: DAVID MOLLOY Page Number :1-A Total Pages :1 Certificate Date: 24-SEP-1999 Invoice No. :19928533 P.O. Number :GR Account :RIX

۲ ٦

·····	- F	1	<u> </u>					<u></u>		ĊE	ERTIFI	CATE	OF A	NAL	YSIS	ļ	19928	533		
SAMPLE	PREP CODE	Ац ррђ ГА+АА	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	К %	La ppm	Mg %
P160329 P160340	201 202 201 202	930 525	14.2 4.6	1.37 1.84	106 44	< 10 < 10	70 160	< 0.5 < 0.5	110 36	0.81 0.12	< 0.5 0.5	7 10	11 38	911 989	13.40 7.18	< 10 < 10	< 1 < 1	0.73 0.23	< 10 < 10	0.57 0.74

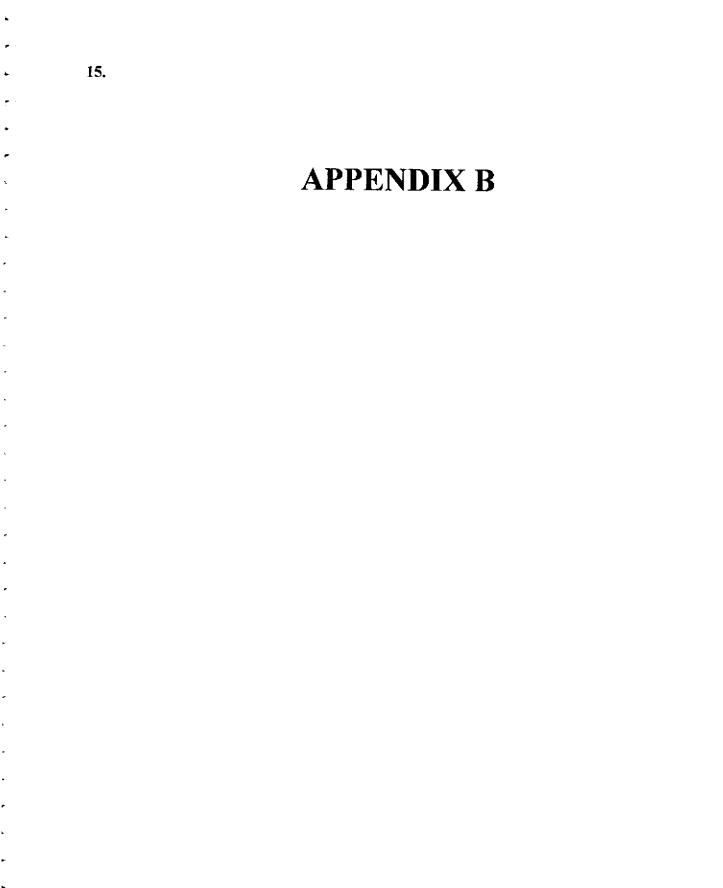
CERTIFICATION:_

۴-1 F. 1 ۲ ۳ ٣ MOLLOY, DAVID Chemex Labs Ltd. To: PROP 49 NORMANDALE RD. Analytical Chemists * Geochemists * Registered Assayers UNIONVILLE, ON 5175 Timberlea Blvd., L3R 4J8 Mississauga L4W 2S3 Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163 Project : GRB Comments: ATTN: DAVID MOLLOY **CERTIFICATE OF ANALYSIS** A9928533 PREP Mn Мо Na Ni P Pb S Sb Sc \$r тi T1 U v W SAMPLE CODE ррш ppm ٩, ppm ppm ppm * ррш ppm * ppm ppm ррт ppm ppm P160329 201 202 300 37 0.01 3 870 98 2.80 < 2 1 57 0.03 < 10 < 10 52 P160340 201 202 < 10 555 9 0.01 15 920 88 0.49 < 2 7 8 0.07 < 10 < 10 93 < 10

Zn ppm 36 50

Page Number :1-B Total Pages :1 Certificate Date: 24-SEP-1999

٦


٩

Invoice No. : 19928533 P.O. Number GR

F 1

Account RIX

H

٦

٦.

r

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

۳,

F "

.

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 253 PHONE: 905-624-2806 FAX: 905-624-6163

To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : GRDW Comments: ATTN: DAVID MOLLOY

Page Number : 1-A Total Pages : 3 Certificate Date: 17-SEP-1999 Invoice No. : 19927995 P.O. Number : GR Account : RIX

36822 201 202 0.4 1.89 12 (10) 170 0.5 < 2 0.27 0.5 10 34 17 3.56 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 1		995	9279	A992		YSIS	NAL	OF A	CATE	RTIF	CE		_						1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Mg Mg % pp																		-		
$ \begin{array}{c} 8 8 6 0 \\ 8 8 6 0 \\ 2 0 1 2 0 \\ 2 0 1 2 0 \\ 2 0 1 2 0 \\ 2 0 1 2 0 \\ 2 0 1 2 0 \\ 2 0 1 2 0 \\ 0 0 1 2 0 \\ 0 0 1 2 0 \\ 0 0 1 2 0 \\ 0 0 1 2 0 \\ 0 0 1 2 0 \\ 0 0 1 2 0 \\ 0 0 1 2 0 \\ 0 0 1 2 0 \\ 0 0 1 2 0 \\ 0 0 1 2 0 \\ 0 0 1 2 0 \\ 0 0 1 0 \\ 0 0 $							A 02		46	12	< 0.5	0.16	< 2	< 0.5			•				
$ \begin{array}{c} 88604 \\ 88605 \\ 201 202 \\ 20$	0.58 114	++							45	13							_				5803 20
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.57 86	< 10 0.	.10 <	0.10	< 1												•	2.44	< 0.2	01 202	
$ \begin{array}{c} 86806 \\ 86807 \\ 201 202 \\ 202 \\ 201 202 \\ 202 $	1.01 170 0.69 95													< 0.5	220	< 10	6	2.22	0.2	01 202	20
$ \begin{array}{c} 8880 \\ 8880 \\ 201 \\ 202 \\ 20$								10		16	< 0.5	0.34	< 2	< 0.5	150	< 10					
$ \begin{array}{c} 86800 \\ 86810 \\ 201 202 \\ 201 202 \\ 201 202 \\ 201 202 \\ 0.6 \\ 0.63 \\ 2 \\ 201 202 \\ 0.6 \\ 0.63 \\ 2 \\ 2 \\ 201 202 \\ 0.6 \\ 1.20 \\ 201 202 \\ 0.6 \\ 1.20 \\ 201 202 \\ 0.6 \\ 1.20 \\ 1.2$	0.79 104				-						< 0.5										
86810 201 202 0.6 0.63 2 100 0.5 < 2 2.89 1.5 51 113 0.59 < 10 < 1 0.17 200 86811 201 202 0.2 1.66 12 < 10 22.99 1.5 5 19 113 0.59 < 10 < 1 0.10 < 10 86813 201 202 0.2 1.66 12 < 10 20.5 < 7 15 29 1.32 < 10 < 1 0.10 < 10 86814 201 202 0.2 1.99 10 < 10 250 < 2 2.46 1.5 13 313 27 3.62 < 10 < 10 < 10 $< 10 < 10 < 10 < 10 < 10 < 20.5 < 2 2.64 1.55 12 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10$	0.90 114 0.79 87				_																809 20
86811201202 < 0.2 0.79 2 < 10 200 < 0.5 < 2 2.72 0.5 7 15 29 1.32 < 10 < 1 0.10 10 86813201202 0.2 1.66 12 < 10 180 < 0.5 < 2 2.72 0.5 7 15 29 1.32 < 10 < 1 < 0.10 < 10 86814201202 0.2 1.66 12 < 10 370 < 0.5 < 2 0.38 0.5 15 33 27 3.20 < 10 < 1 0.10 < 10 86815201202 0.2 1.89 10 < 10 370 < 0.5 < 2 0.88 2.5 17 32 33 3.41 < 10 < 1 0.10 < 10 86815201 202 0.2 1.56 12 < 10 170 < 0.5 < 2 2.46 1.5 17 31 72 2.89 < 10 < 1 0.16 < 10 86816201202 0.2 1.56 12 < 10 170 < 0.5 < 2 1.75 < 0.5 20 38 52 3.70 < 10 < 1 0.16 < 10 86819201202 0.6 1.62 4 < 10 620 < 0.5 < 2 1.68 2.0 17 34 15 3.16 < 10 < 1 0.11 < 10	0.49 500	20 0.	. 17																	01 202	810 20:
86812 201 202 0.1 2 4 100 200 0.5 7 15 29 1.32 <10 <1 0.04 <10 86813 201 202 0.8 1.66 12 <10	0.15 228	10 0.	.10	0.10	< 1	< 10	0.59	113	19	,								0.20	(0)	01 202	811 20
88613 201 202 0.8 1.62 12 <10	0.28 103	< 10 0.	.04 <	0.04	< 1	< 10															812 20
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.62 110	< 10 0.0	.10 <																0.8		
100 100 100 100 100 420 0.5 < 2 2.26 1.5 17 31 72 2.89 < 10 < 1 0.16 < 100 86816201202 0.2 1.56 12 < 10 100 < 0.5 < 2 1.75 < 0.5 20 38 52 3.70 < 10 < 1 0.06 < 10 86817201202 0.6 1.62 4 < 10 620 < 0.5 < 2 1.08 2.0 17 34 15 3.14 < 10 < 1 0.11 < 10 86819201202 0.6 1.62 4 < 10 620 < 0.5 < 2 0.86 2.0 17 34 15 2.82 < 10 < 1 0.11 < 10 86820201202 0.6 1.33 6 < 10 300 < 0.5 < 2 0.86 2.0 16 44 15 2.82 < 10 < 1 0.11 < 10 86821 201202 0.4 1.89 4 < 10 170 < 0.5 < 2 0.27 0.5 10 34 17 3.56 < 10 < 1 0.06 < 10 86821 201202 0.4 1.89 4 < 10 170 < 0.5 < 2 0.27 0.5 10 34 17 3.56 < 10 < 1 0.06 < 10 86821 201	0.56 2460				_								< 2								
868172012020.22.3614< 10170< 0.5< 21.75< 0.52038523.70< 10< 10.06< 10868182012020.61.624< 10	0.58 1915 0.55 3870									17	1.5	2.26	< 2	< 0.5	420	< 10	b	1.2/	V • 4		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$							3 70	52	30	20	< 0.5	1.75	< 2	< 0.5	170						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.98 1485				_							0.55	< 2				-				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.49 2130 0.51 2610				_								-				-				819 201
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.36 2400	< 10 0.3			_								_		•		6	1.33	0.6	202	820 201
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.42 725	< 10 0.4	.06 <	0.06	<u> </u>	<u> </u>									170	< 10		1.80	0.2	1 202	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.38 930																_	1.89	0.4		
36825 201 202 1.6 1.80 122 <10 180 < 0.5 < 2 0.80 0.5 7 21 17 2.33 <10 <1 0.09 <10 86825 201 202 1.6 1.80 122 <10	0.42 1110		+						-			-	-								
B6826 201 202 < 0.2 2.94 12 < 10 200 < 0.5 < 2 2.47 2.0 23 32 124 4.90 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 < 10 </td <td>0.36 4980 0.19 470</td> <td></td> <td>••••••</td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td>21</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>*</td> <td></td> <td></td> <td></td> <td></td>	0.36 4980 0.19 470		••••••		_				21								*				
86827 201 202 < 0.2 2.71 14 < 10 280 < 0.5 < 2 0.55 0.5 19 47 22 6.15 10 < 1 0.10 < 10 86828 201 202 < 0.2 2.60 16 < 10 250 < 0.5 < 2 0.39 < 0.5 13 41 21 5.29 < 10 < 1 0.09 < 10 86829 201 202 0.2 2.67 10 < 10 250 < 0.5 < 2 0.34 0.5 18 42 28 5.51 10 < 1 0.06 < 10 86830 201 202 < 0.2 3.16 20 < 0.5 < 2 0.34 0.5 18 42 28 5.51 10 < 1 0.06 < 10 86831 201 202 < 0.2 2.51 20 < 10 230 < 0.5 < 2 0.45 < 0.5 17 51 <	1.36 735				< 1	< 10	4.90	124	32	23	2.0	2.47	< 4	< v.5	70 -	× 10				_	
86828 201 202 < 0.2 2.60 16 < 10 250 < 2 0.39 < 0.5 13 41 21 5.29 < 10 < 1 0.09 < 10 86829 201 202 0.2 2.67 16 < 10 220 < 0.5 < 2 0.34 0.5 18 42 28 5.51 10 < 1 0.06 < 10 86830 201 202 < 0.2 2.67 10 250 < 2 0.34 0.5 18 42 28 5.51 10 < 1 0.06 < 10 36830 201 202 < 0.2 3.16 20 < 10 240 < 0.5 < 2 0.34 0.5 15 51 31 5.74 < 10 < 1 0.09 < 10 36831 201 202 < 0.2 2.51 20 < 10 230 < 0.5 < 2 0.45 < 1.5 51 28 5.36 <td>0.70 1760</td> <td>< 10 0.7</td> <td>10 <</td> <td>0 10</td> <td>< 1</td> <td>10</td> <td>6.15</td> <td>22</td> <td>47</td> <td>19</td> <td></td>	0.70 1760	< 10 0.7	10 <	0 10	< 1	10	6.15	22	47	19											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.70 1760				_		5.29				+		_		-						828 201
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.63 1300	< 10 0.6															10	2.67			
36831 201 202 < 0.2	0.70 1555 0.82 975													0.5	240 ·	< 10	20	3.16	< 0.2	1 202	201
36832 201 202 0.2 2.12 14 10 190 < 0.5	V.84 9/5	< 10 U .a	<u> </u>								- ^ F	0.45	£ 2	c 0.5	230	< 10	20	2.51	< 0.2		
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.66 2110															< 10	14				
	0.48 1320 0.67 1595			0.08	< 1				35	19	1.0					< 10 < 10	22 12	2.26 2.18	< 0.2	+ -	
$36835 \qquad 201 202 < 0.2 2.26 \qquad 18 < 10 \qquad 400 < 0.5 < 2 \qquad 0.31 \qquad 2.5 \qquad 17 \qquad 41 \qquad 26 \qquad 5.14 < 10 \qquad < 1 \qquad 0.06 < 10$	0.58 1985	< 10 0.5	06 <	0.06	< 1																
	0.56 2870	< 10 0.5	06 <	0.06	< 1	< 10	4.80		-						_	< 10		1 67	< 0.2	1 202	336 201
6637 201 202 < 0.2 2.01 20 < 10 260 < 0.5 < 2 0.41 3.0 29 35 26 4.62 10 < 1 0.08 < 10	0.25 5330	< 10 0.2																2.01	< 0.2	1 202	337 201
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.56 2440														210 <	< 10					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.65 2820 0.49 2500				-				44	22	1.5										
	0.41 2470						3.34	21	38	18	1.5	0.38	< 2	0.5	340 4	~ 10	0		~ * * #		
	/		1	- ()																	

2.2

CERTIFICATION:

in c

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 253 PHONE: 905-624-2806 FAX: 905-624-6163

MOLLOY, DAVID PROP To: 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : GRDW Comments: ATTN: DAVID MOLLOY

Page Number : 1-B Total Pages :3 Certificate Date: 17-SEP-1999 Invoice No. : 19927995 P.O. Number : GR Account : RIX

۳.

					····				CERTIFICATE OF ANALYSIS					YSIS	A	9927995	;		
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm				<u></u>										
6801 6802	201 202 201 202		< 0.01	32	1900	12	0.01	< 2	4	10	0.01	< 10	< 10	71	< 10			<u> </u>	
5803	201 202		< 0.01 < 0.01	29 33	2060 1750	12	0.01	< 2	3	14	0.02	< 10	< 10	85	< 10	252 226			
5804	201 202		< 0.01	67	980	16	0.01 < 0.01	2 < 2	4 14	8	0.01	< 10	< 10	73	< 10	236			
5805	201 202	< 1 <	0.01	37	2190	10	0.01	< 2	3	18 13	0.01 0.01	< 10 < 10	< 10 < 10	74 65	< 10 < 10	158 340			
806 807	201 202		0.01	55	730	10	0.02	< 2	6	14	0.01	< 10					• • • • •		
808	201 202 201 202		0.01	59	780	10	0.01	< 2	6	17	0.01	< 10	< 10 < 10	53 61	< 10 < 10	110 134			
809	201 202	< 1	0.0 <u>1</u> 0.01	51 94	850	10	0.01	2	5		< 0.01	< 10	< 10	58	< 10	146			
810	201 202	ì	0.01	43	2800 1560	8 < 2	0.05	< 2	25	82	0.06	< 10	< 10	55	< 10	298			
811	201 202			···· .					3	127	< 0.01	< 10	< 10	9	< 10	54			
812	201 202		0.01	21 38	890	2	0.17	< 2	1	103	0.01	< 10	< 10	23	< 10	86			
813	201 202		0.01	35	1220 1460	6 12	0.03 0.06	2	3	15	0.01	< 10	< 10	53	< 10	156			
814	201 202	< 1 <	0.01	35	1090	10	0.01	< 2 < 2	2	41 21	0.02	< 10	< 10	58	< 10	248			
815	201 202	< 1 <	0,01	47	1660	6	0.11	< 2		95	0.01	< 10 < 10	< 10 < 10	93 43	< 10 < 10	372 248			
316	201 202	< 1 <	0.01	68	820	8	0.50	< 2				·							
817 818	201 202	< 1 <		30	2110	6	0.03	< 2	6	80 27	0.01 0.02	< 10 < 10	< 10	43	< 10	142			
819	201 202 201 202	< 1 <		34	1620	6	0.04	2	2	48	0.03	< 10	< 10 < 10	68 51	< 10 < 10	310 402			
820	201 202	< 1 < 1 <	0.01	32 29	1490 1390	8 4	0.03	< 2	1	45	0.01	< 10	< 10	40	< 10	256			
821	╉┈╎╶┛					•	0.03	< 2	1	25	0.01	< 10	< 10	50	< 10	268			
822	201 202 201 202	< 1 <	0.01 0.01	22	470	8	0.01	< 2	1	13	0.02	< 10	< 10	67	< 10	110			
823	201 202		0.01	27 33	810 1280	10 12	0.03	2	1	13	0.03	< 10	< 10	87	< 10	172			
824	201 202		0.01	14	700	6	0.08 0.07	< 2 < 2	7	38 33	0.07	< 10	< 10	64	< 10	236			
825	201 202	3	0.01	47	990	50	1.68	6	3	112	0.05 0.03	< 10 < 10	< 10 < 10	62 53	< 10 < 10	94 186			
326	201 202	< 1 <	0.01	28	3660	10	0.02	2	3				-		~ IV	100			
827 828	201 202	< 1 <		25	2350	ĩõ	0.01	< 2	4	17 13	0.03	< 10 < 10	< 10 < 10	128	< 10	298			
829	201 202 201 202	< 1 < < 1 <		30	2670	14	0.01	6	i i	14	0.01	< 10	< 10	11 <u>1</u> 110	< 10 < 10	308 306			
330	201 202	< 1 <		35 38	2330 1900	8 10	0.01	2	э	11	0.04	< 10	< 10	91	< 10	616			
							0.02	2	3	13	0.03	< 10	< 10	117	< 10	292			
331 132	201 202 201 202		0.01	36	2900	12	0.02	2	3	15	0.03	< 10	< 10	100	< 10	260	·····		
133	201 202	< 1 < 1 <	0.01	23 38	3290 1510	50 12	0.03	2	3	15	0.06	< 10	< 10	119	< 10	370			
334	201 202	< 1 k		27	1970	14	0.04	< 2	3	17 13	0.02	< 10	< 10	76	< 10	200			
135	201 202	< 1 <	0.01	34	2110	14	0.03	< 2	3	13	0.07 0.01	< 10 < 10	< 10 < 10	97 85	< 10 < 10	542 292			
36	201 202	< 1 <	0.01	19	1580	12	0.03	< 2							· ±v	474			
337	201 202	< 1 <	0.01	30	1780	14	0.03	< 4 4	3	18 23	0.10	< 10 < 10	< 10	90	< 10	530		·	·····
138 139	201 202	< 1 <		34	1990	12	0.03	2	3	16	0.04	< 10	< 10 < 10	90 103	< 10	346			
40	201 202	< 1 < < 1 <		33 25	2290	10	0.05	< 2	2	29	0.03	< 10	< 10	103	< 10 < 10	310 284			
		· · ·		¥0	980	6	0.03	2	2	18	0.03	< 10	< 10	70	< 10	282	2 A		

۰.

CERTIFICATION:_

the

C

1 1

٦

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

* 3

To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : GRDW Comments: ATTN: DAVID MOLLOY Page Number :2-A Total Pages :3 Certificate Date: 17-SEP-1999 Invoice No. :19927995 P.O. Number :GR Account :RIX

1

٩

•

7

7 7

	- F					<u>.</u>				CE	RTIFI	CATE	OF	ANAL	YSIS		A9927	995		
SAMPLE	PREP CODE	A pp	· .	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	7e %	Ga ppm	Eg ppm	R %	La ppm	Mg X	Mn ppa
86841 86843	201 20			4	< 10	490	< 0.5	2	0.93	2.5	14	30		3.24						_
86844	201 203			6	< 10 < 10	470	< 0.5	< 2	0.79	4.0	32	31	26	4.02	< 10 < 10	< 1	0.09	< 10 < 10	0.35	2150 5850
86845 86846	201 202	₹ < 0.	2 2.47	14	< 10	310 350	< 0.5	< 2 < 2	0.75 0.43	2.0	21 17	31 42	21	3.83	< 10	< 1	0.09	< 10	0.42	2150
C 9640	201 203	0.:	3.00	20	< 10	260	< 0.5	< 2	0.20	1.5	19	42	34 30	4.87 6.20	< 10 < 10	< 1 < 1	0.07	< 10 < 10	0.75	1545 1080
86847 86848	201 202			30	< 10	180	< 0.5	< 2	0.32	2.0	24	44	85	4 66						
86849	201 202 201 202			16	< 10	140	< 0.5	< 2	0.22	1.5		21	18	4.66	< 10 < 10	< 1 < 1	0.05	< 10 < 10	0.94	1740
86850	201 202			14 22	< 10 < 10	220 100	< 0.5	< 2	1.07	2.0	18	30	63	3.40	< 10	< 1	0.05	< 10	0.59	555 1850
86951	201 202	1.0		- 8	< 10	70	< 0.5	2	2.26	1.5 3.0	14 22	28 28	32 112	4.11 4.58	< 10	< 1	0.06	< 10	0.57	1055
86952	201 202	0.4	1.58	10		200						**	¥11	4.58	< 10	< 1	0.09	< 10	1.31	665
86953	201 202	ō.		14	< 10 < 10	380 250	< 0.5	< 2	1.35 0.36	8.5	26	28	43	3.78	< 10	< 1	0.07	< 10	0.35	5480
86954 86955	201 202	0.2		10	< 10	430	< 0.5	< 2	0.50	3.5 4.0	26 16	44 37	32 54	4.80 3.87	< 10	< 1	0.07	< 10	0.79	2210
86956	201 202 201 202	< 0.2		10 14	< 10	250	< 0.5	< 2	0.32	2.5	12	34	22	4.29	< 10 < 10	< 1	0.07	< 10 < 10	0.27	2810
		<u> </u>		14	< 10	160	< 0.5	< 2	0.29	2.0	19	31	23	5.34	< 10	< 1	0.06	< 10	0.35	1115 2030
86957 86958	201 202 201 202	0.2		12	< 10	150	< 0.5	< 2	0.33	3.0	16	24	29	3.66	< 10	< 1	0.07			
86959	201 202	0.2		8 16	< 10 < 10		< 0.5	< 2	0.44	14.0	19	22	26	3.73	< 10	< 1	0.06	< 10 < 10	0.31 0.21	2040 3800
86960	201 202	0.2		14	< 10		< 0.5 < 0.5	2 < 2	0.25	2.5 0.5	13	44	29	5.05	< 10	< ī	0.05	< 10	0.73	580
86961	201 202	0,2	1.48	8	< 10		< 0.5	< 2	0.17	2.0	14 17	27 29	30 18	3.73 3.93	< 10 < 10	< 1 < 1	0.04 0.07	< 10	0.55	850
86962	201 202	0.2	2.34	16	< 10	320	< 0.5	< 2	0.21							<u> </u>	0.07	< 10	0.36	2630
86963 86964	201 202	< 0.2	2.17	12	< 10		< 0.5	21	0.25	0.5 0.5	19 15	44 39	43 27	4.53	< 10	< 1	0.04	< 10	0.75	910
86965	201 202 201 202	< 0.2		16	< 10		< 0.5	< 2	0.29	2.0	23	44	35	4.55 4.67	< 10 < 10	< 1 < 1	0.06 0.05	< 10 < 10	0.70	775
86966	201 202	0.4	1.53	18 18	< 10 < 10		< 0.5 < 0.5	< 2	0.57	1.5	15	27	34	3.72	< 10	< 1	0.07	< 10	0.65 0.48	2600 1495
86967							< 0.5	54	1.01	6.0	50	21	76	4.31	< 10	< 1	0.10	< 10		>10000
86968	201 202 201 202	0.6	0.64 0.94	8 12	< 10		< 0.5	< 2	1.33	3.0	5	18	42	1.60	< 10	< 1	0.07	< 10	0.12	
86969	201 202	< 0.2	1.09	14	< 10 < 10		< 0.5 < 0.5	< 2 < 2	1.05 0.73	3.0	14	19	54	2.85	< 10	< 1	0.07	< 10	0.17	995 2430
86970 86971	201 202	< 0.2	2.26	16	< 10		< 0.5	< 2	1.19	2.0	17 33	22 26	52 101	3.80	< 10	< 1	0.08	< 10	0.19	4030
	201 202	0.6	1.90	14	< 10	290	< 0.5	< 2	1.07	1.5	42	25	122	4.12	< 10 < 10	< 1 < 1	0.20 0.07	10 < 10	0.49 0.43	6760
86972	201 202	< 0.2	1.56	14	< 10	300	< 0.5	< 2	0.80	1.5	70							- 10	V.4J	6910
86973 86974	201 202 201 202	0.2	2.62	16	< 10	280	< 0.5	< 2	0.62	1.5	28 34	23 37	69 41	3.70 4.75	< 10 < 10	< 1	0.08	< 10	0.34	3450
86975	201 202 201 202	0.2	1.08 1.60	6 92	10 < 10		< 0.5	< 2	1.96	5.0	22	28	29	2.53	< 10	< 1 < 1	0.09 0.15	< 10 < 10	0.59 0.33	3760 4550
86976	201 202	0.2	1.98	18	< 10		< 0.5 < 0.5	< 2 < 2	2.14	2.5	21 20	29 40	120 27	4.54	< 10	< 1	0.09	< 10	1.24	670
6977	201 202	0.4	1.56	12	< 10	220	< 0.5		_						< 10	< 1	0.10	< 10	0.57	2860
6978	201 202	< 0.2	2.35	10	< 10		< 0.5	< 2 < 2	0.66 0.85	2.5	17 18	32 35	24	3.75	< 10	< 1	0.09	< 10	0.50	1380
6979 6980	201 202 201 202	< 0.2	1.60	12	< 10	290	< 0.5	< 2	0.66	2.5	16	35 29	41 33	4.02	< 10 < 10	< 1 < 1	0.13	< 10	0.67	2470
6981	201 202	< 0.2	2.65 2.46	8 14	< 10 < 10		< 0.5 < 0.5	< 2	0.15	1.5	16	42	19	4.35	< 10	< 1	0.00	< 10 < 10	0.52	1625 1095
				- 4	* 10	790 .		< 2	0.24	0.5	15	41	27	4.38	< 10	< ī	p.07	< 10	0.71	1100
																			ŕ	
																	-+			

1.2

CERTIFICATION:

.

Chemex Labs Ltd. Analytical Chemists * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To;	MOLLOY, DAVID PROP
	49 NORMANDALE RD.
	UNIONVILLE, ON L3R 4J8

Project : GRDW Comments: ATTN: DAVID MOLLOY

Page Number :2-B Total Pages :3 Certificate Date: 17-SEP-1999 Invoice No. : 19927995 P.O. Number :GR Account :RIX

•

· ·

7

¥

1

	·	·	·····							CE	CERTIFICATE OF ANALYSIS A9927995							
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	р ррш	Pb ppm	5 %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U maqa	V ppm	w ppm	Zn ppm		<u>- 1</u>
86841 86843	201 202 201 202		< 0.01	23	2250	6	0.04	< 2	< 1	28	0.03	< 10	< 10	59				
6844	201 202		< 0.01 < 0.01	20 21	990 790	14	0.04	2	3	33	0.07	< 10	< 10	82	< 10 < 10	384 358		
6845 6846	201 202 201 202	2 •	< 0.01	40	1470	10	0.03	< 2 < 2	3 3	32 18	0.05	< 10 < 10	< 10 < 10	85 96	< 10 < 10	242		
<u></u>			< 0.01	35	2330	10	0.02	< 2	5	11	0.03	< 10	< 10	118	< 10	254 350		
6847 6848	201 202		(0.01 (0.01	54 15	960	12	0.01	< 2	7	12	0.03	< 10	< 10	96	< 10	172		
6849	201 202		0.01	45	610 780	10 12	0.03 0.05	2 < 2	15	16	0.06	< 10	< 10	112	< 10	9B		
6850 5951	201 202		0.01	40	750	6	0.03	< 2	3	46	0.02	< 10 < 10	< 10	53	< 10	144		
	201 202		0.01	46	940	40	1.60	2	3	110	0.02	< 10	< 10 < 10	53 47	< 10 < 10	22 <u>2</u> 180		
5952 5953	201 202		0.01	39	1200	2	0.08	< 2	1	54	0.03	< 10	< 10					
5954	201 202 201 202		0.01 0.01	47	1450	10	0.03	< 2	3	17	0.02	< 10	< 10	66 80	< 10 < 10	396 416		
5955	201 202		0.01	26 25	2770 1650	16 6	0.03	< 2	3	32	0.03	< 10	< 10	79	< 10	258		
5956	201 202		0.01	19	1720	8	0.03	< 2	2	12 14	0.03 0.05	< 10 < 10	< 10 < 10	90 131	< 10	266		
957	201 202	< 1 <	0.01	28	1910	10	0.01								< 10	174		
958	201 202		0.01	23	1410	10	0.01	< 2 < 2	3 1	19 18	0.01	< 10	< 10	55	< 10	208		
i959 i960	201 202 201 202		0.01	44	1690	12	0.03	< 2	4	12 4		< 10 < 10	< 10 < 10	64 78	< 10 < 10	388 272		
5961	201 202	< 1 <	0.01	30 23	1170 1800	9 14	0.01 0.02	2	3	12	0.01	< 10	< 10	62	< 10	214		
962	201 202						0.02	< 2	1	8	0.02	< 10	< 10	66	< 10	272		
5963	201 202 201 202	< 1 < < 1 <		50 36	2120	10	0.01	< 2	5	10 <	0.01	< 10	< 10	68	< 10	240		
964	201 202	< 1 <		38	3010 2830	10 14	0.02	< 2 2	4		0.01	< 10	< 10	66	< 10	272		
5965 5966	201 202	< 1 <		29	1180	10	0.03	2	2	13 23	0.01 0.01	< 10 < 10	< 10 < 10	77	< 10	294		
	201 202	< 1	0.01	52	2390	14	0.06	< 2	3	47	0.03	< 10	< 10	66 64	< 10 < 10	258 632		
967 968	201 202	1	0.01	25	890	8	0.09	2		47	0.04	< 10	< 10					
969	201 202 201 202	< 1 < < 1 <		34	1620	8	0.05	2	< 1	36	0.01	< 10	< 10	48 51	< 10 < 10	182 326		
970	201 202	1	0.01	28 81	2000 3180	16 12	0.04	6	1	25	0.05	< 10	< 10	66	< 10	386		
971	201 202	1 <	0,01	74	1730	12	0.08	4	6	66 50	0.03 0.01	< 10 < 10	< 10 < 10	57 52	< 10 < 10	458		
972	201 202	1 <	0.01	53	1570	10	0.07	2							< 10	466		
973 974	201 202		0.01	54	2180	20	0.04	26	3	32 24	0.01	< 10 < 10	< 10 < 10	55	< 10	264		
975	201 202 201 202	< 1 < 2	0.01 0.01	37	1800	10	0.09	4	ī	72	0.03	< 10	< 10	78 41	< 10 < 10	478 440		
976	201 202	< 1 <		45 33	910 2220	54 12	1.83 0.03	12	3	103 32	0.03	< 10	< 10	47	< 10	178		
977	201 202	< 1 <	0 01	30	1310	-					_	< 10	< 10	71	< 10	370		
978	201 202	< 1 <		45	1080	10 10	0.05	4 < 2	3	29	0.01	< 10	< 10	62	< 10	252		·
979 980	201 202	< 1 <		33	920	8	0.03	6	3	33 31	0.03 0.03	< 10 < 10	< 10 < 10	62 55	< 10	306		
981	201 202 201 202	< 1 < < 1 <		33 41	870 940	B	0.02	6	4	10	0.02	< 10	< 10	55 79	< 10 < 10	204 344		
				-1	340	8	0.02	< 2	3	11	0.03	< 10	< 10	73	< 10	272 /		
					······											l	1 -1	1
																	+	

CERTIFICATION:

•

3

. 7

Chemex Labs Ltd. Analytical Chemiats * Geochemists * Registered Assayers

5175 Timberlea Blvd., Mississauga Ontario, Canada L4W 2S3 PHONE: 905-624-2806 FAX: 905-624-6163

To: MOLLOY, DAVID PROP 49 NORMANDALE RD. UNIONVILLE, ON L3R 4J8

Project : GRDW Comments; ATTN: DAVID MOLLOY

Page Number : 3-A Total Pages : 3 Certificate Date: 17-SEP-1999 Invoice No. : 19927995 P.O. Number : GR Account RIX

٦

۳

٦

												_									
			1			_ _					CE	RTIFI	CATE	OF A	NAL	YSIS		A9927	995		
SAMPLE	co	EP DE	λg ppm			-	Ba ppm			Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K X	La ppm	Mg %	Mn
86982 86983 86984 86985 86986	201 201 201	202 202 202 202 202 202	0.4	2.75 2.10 2.05 2.91 1.65	14 14 32	< 10 < 10 < 10	340 230 210	< 0.5	< 2 < 2	0.35 0.37 0.20 0.25 0.70	3.0 3.0 2.0 0.5 1.5	20 17 15 16 13	40 35 35 41 31	33 19 16 49 24	4.45 3.85 3.99 4.58 5.25	< 10 < 10 < 10 < 10 < 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.11 0.12 0.08 0.06 0.07	<pre></pre>	0.50 0.45 0.38 0.79 0.29	3060 2690 1885 1220 1510
36987 36987 <u>a</u>	201	202	Notrađ 1.8	Notred 1.70	NotRađ 92	NotReđ < 10	Notřed 70	NotRed < 0.5	NotRed : < 2	NotRed 2.23	NotRed M 3.0	btRed N 20	otRed N 27	otRed 1 135	lotRed 1 4.69	Notred N < 10	lotRcđ < 1	NotRed 0.09	NotRed < 10	NotRed 1	NotReđ 680

3 <u>8</u>

CERTIFICATION:

,

Ulr.

C		Ar	shei balytical Cha 5175 Tim Ontario, (PHONE:	mists * Geo berlea Bly Canada	chemists d.,	* Register Miss	red Assay issauga 4W 2S3	rers		Proied	PROP 49 NOR UNION L3R 4J8 ct :	GRDW	LE RD.	DLLOY	~*			T C II F	Page Numb Total Pages Sertificate D hvoice No, P.O. Numbe Account	:3 ate: 17-SEP : 1992799
	-										ĊE	RTIF		OF A	NAL	YSIS	A	99279	95	-
SAMPLE	PR CO		Mo ppm	Na *	Ní ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti \$	T1 ppm	U ppm	V ppm	W ppm	Zn ppm			
86982 86983 86984 86985 86986	201 201	202	1	0.01 0.01 < 0.01 0.01 < 0.01	40 29 25 51 21	1160 1580 880 710 620	10 10 8 10 12	0.03 0.01 0.02 0.02 0.01	< 2 < 2 < 2 < 2 < 2 < 2	5 3 2 6 3	17 20 11 13 29	0.04 0.03 0.03 0.03 0.03	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	99 73 79 90 133	< 10 < 10 < 10 < 10 < 10 < 10	302 394 222 146			
6987 6987አ		 202	NotRed 7	NotRed N < 0.01	otRed M	totRcd 1 1010	NotRed 1			-							152 lotRcd 178	<u> </u>	 .	

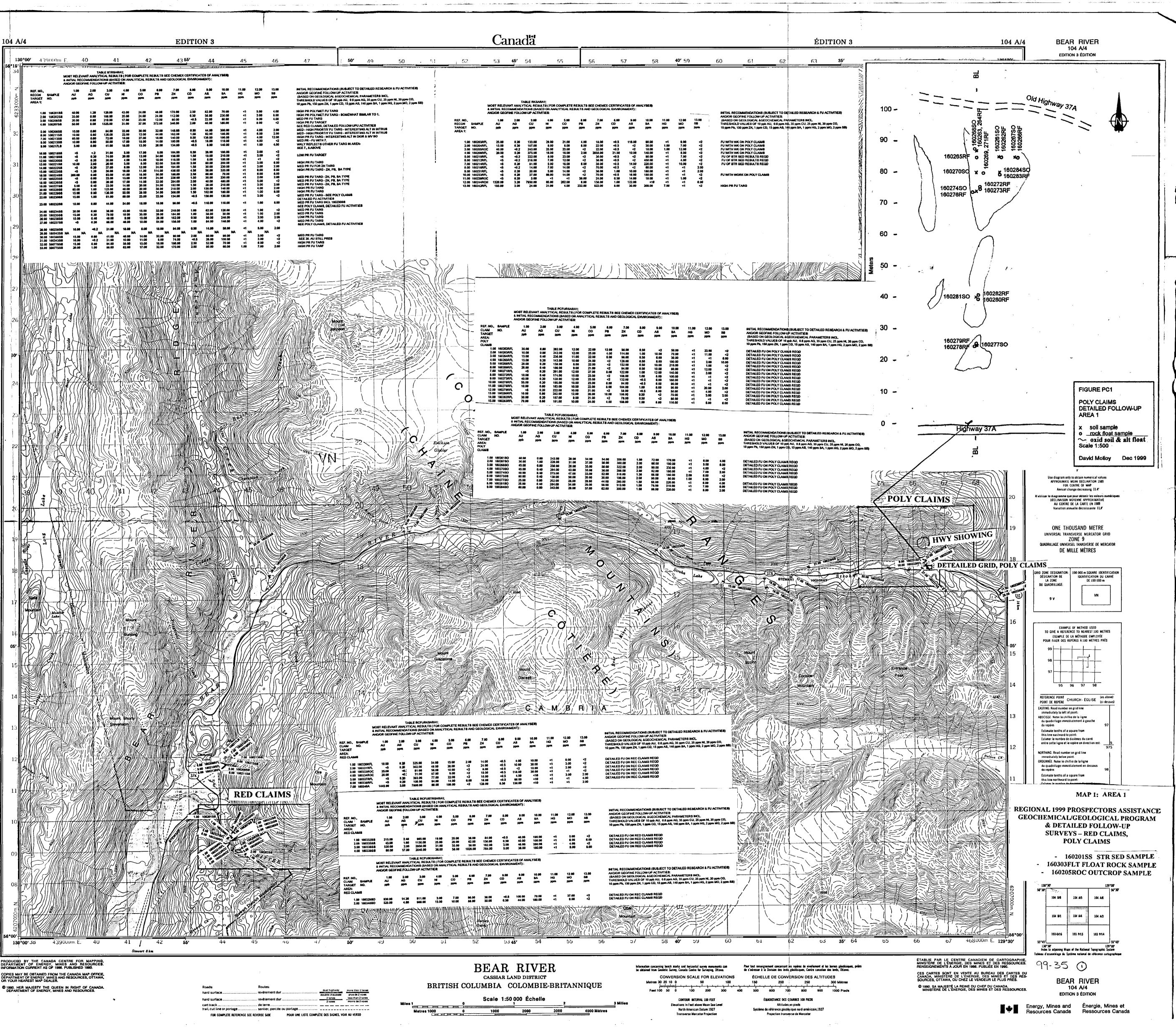
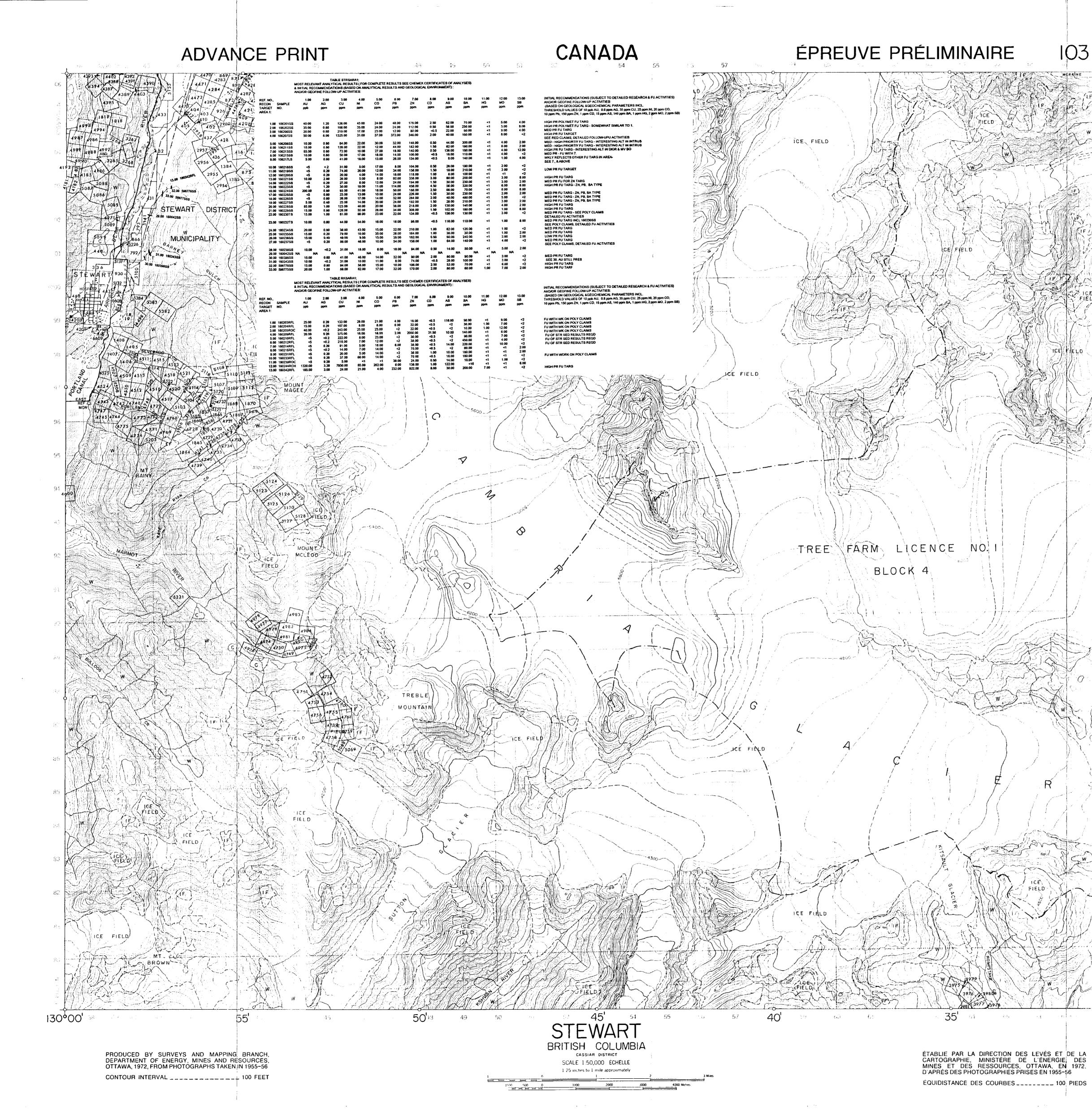
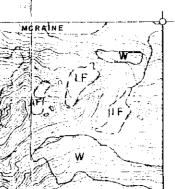

B ZONE ROCK SAMPLES

TABLE A4	ANALYTICAL RESUL i. ROCK SAMPLES	LTS FROM SAMPLES C	OLLECTED ON THE B			/AA; REMAII	NING ELEM	ENTS ICP)						
SAMPLE NO, LOCATION		NAME, COLOUR:	DESCRIPTION:	AU ppb	AG ppm	CU ppm	PB ppm	ZN ppm	AS ppm	BA ppm	CD ppm	HG ppm	SB ppm	MO ppm
160477RP, B ZONE N GRID, SMS SHOWING: W END OF ZONE - SEE DETAILED MAP	PANEL FROM HW OF 160491 RP OVER 2X1 M	ALT M VOL BREC; W:ORG BRN GRY F: GRY PK	FI GR, V WEL SIL, GEN LIM ON SUR, TEXT, PINK PAT K. FI DISSEM PY, SO DISSEM, SCAT CP 3-4% SULF OVER/ MAINLY QTZ	SÙG ALT, ME Y	0.2	11	18	34	10	90	<0.5	<1	<2	3
16047BRP, B ZONE N GRID, SMS SHOWING: W END OF ZONE - SEE DETAILED MAP	PANEL FROM FW OF 160491RP OVER 1X1 M	ALT M VOL BREC; W:ORG BRN GRY F: GRY BLK BRN	FI GR, V WEL SIL, GEN LIM ON SUR, TEXT, PINK PAT K. FRAC CAW QTZ C, VEINS AND STRIN DISSEM PY 2-3%, LOC SOOTY PY IN CHL PATCHES, LO MN STAINED, UP T 90% QTZ	SUG ALT, ARB G, C	0.6	148	40	214	24	80	2.5	<1	<2	5
160479RP, B ZONE N GRID, SMS SHOWING; W END OF ZONE - SEE DETAILED MAP	PANEL FROM HW OVER 1 M	ALT M VOL BREC; W:ORG BRN BLK F: GR BRN	FI GR, V WEL SIL, GEN LIM ON SUR, TEXT, PINK PAT K, FRAC CW QTZ C, VEINS AND STRING SOME UP TO 3 CM WIDE, WITH QTZ C VEINS ON MARGIN ANKERITIC BREC' MATRIC WITH SIL QTZ FRAGS UP TO 2 CM; GR SIL PHE AND ROCK WITH U TO 5% DISSEM PY TR CPY.	SUG ALT, ARB G, CARB IS, VEIN GR GR)) NOOS JP	<0.2	9	8	20	10	100	<0.5	<1	<2	3
160480ROC, B ZONE N GRID, SMS SHOWING: W END OF ZONE - SEE DETAILED MAP	PANEL FROM FW OF 160492RP OVER 2X1 M	ALT M VOL BREC; W:ORG BRN BLK F: GR GRY	FI-CO, SOM QTZ P WELL CHL LOC; C FRACS C/W BLEB: DISSEM CPY; SOC CHL WITH CPY; PI V WEL SIL, SER, GEN LIM ON SUR, TEXT, PINK PAT K. LOC WELL CARB, LARG BLEBS PY, C 4-5% SULF OVER/	HL IN S, DTY SUG ALT, SOM CPY	4.4	6330	38	222	152	60	2	<1	<2	7
160481RP, B ZONE N GRID, SMS SHOWING: SEE DETAILED MAP	PANEL FROM FW OF 160493RP OVER 2X3 M	AS 160480RP		25	0.4	239	20	132	26	90	0.5	<1	<2	7


LIST OF MAPS: TITLE: APPENDIX 1 LOCATION: 1. AREA 1: TOPOGRAPHIC MAP NTS 104 A/4POCKET A 2. AREA 1: TOPOGAPHIC MAP NTS.103 P/13......POCKET A 3. AREAS 1, 2, 3 TOPOGAPHIC MAP 103 A/3.....POCKET A 5. AREA 4: BELL 2 FORESTRY ROAD......POCKET B 6. AREA 4: TOPOGRAPHIC MAP NTS A/12.....POCKET B 7. AREA 4: TOPOGRAPHIC MAP NTS A/6W.....POCKET B 8. AREA 5: WHITE RIVER FORESTRY ROAD MAP......POCKET C 9. AREA 6: TOPOGRAPHIC MAP NTS 104 A/13.....POCKET C 10. AREA 6: TOPOGRAPHIC MAP NTS.104 B/16E.....POCKET C S1. STEWART PROPERTY CLAIM MAP......POCKET D S2. STEWART PROPERTY GEOLOGY MAP POCKET D S3. 1999 DELTA WEST GRID, INTEGRATED SOIL SAMPLE LOC....POCKET E S4. 1999 DELTA WEST GRID, INTEGRATED SOIL ZINC VALUES.... POCKET E S5. 1999 DELTA WEST GRID, INTEGRATED SOIL COPPER VALUES.. POCKET F S6. 1999 DELTA WEST GRID, INTEGRATED SOIL NICKEL VALUES.. POCKET F S7. 1999 DELTA WEST GRID, INTEGRATED SOIL BARIUM VALUES. POCKET G S8. 1999 DELTA WEST GRID, INTEGRATED SOIL CADMIUM VALUES.. POCKET G S9. 1999 DELTA WEST GRID, INTEGRATED GEOLOGICAL DATA..... POCKET H

х



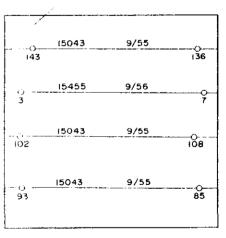
COPIES MAY BE OBTAINED FROM THE CANADA MAP OFFICE DEPARTMENT OF ENERGY, MINES AND RESOURCES, OTTAWA OR YOUR NEAREST MAP DEALER.

103 %3

NORAINE

ICE FIELD

(-)


-56°00'

Military users, refer to this map as: Reférence de la carte pour usage militaire: SERIES A 721 SERIE MAP 103 P/13 CARJE EDITION 1 MCE ÉDITION

LEGEND - LÉGENDE

		,
ROADS AND RELATED FEATURES	ROUTES ET OUVRAGES CONNEXES	(i)
	SURFACE DURE, TOUTES SAISONS	(12)
	GRAVIER	
CART TRACK, WINTER ROAD. UNDER CONSTRUCTION	CHEMIN DE TERRE. D'HIVER, EN CONSTRUCTION	··· ··· ··· ··
TRAIL, CUTLINE, PORTAGE	SENTIER. PERCEE. PORTAGE	;
	AGGLOMERATION	
	CHEMIN DE FER VOIE D'ÉVITEMENT, GARE, ARRÊT	╤┈┈┻╅╌╌╾╋╋
	PONT	
SEAPLANE BASE, ANCHORAGE	HYDROAEROPORT, MOULLAGE	$\psi = \psi$
LANDMARK FEATURES	POINTS DE REPERE	
	MAISON, GRANGE	-
	ÉGLISE, ECOLE	4
	BUREAU DE POSTE	•
		•
	TOURS: FEU. RADIO	
	PUITS: PETROLE, GAZ	
	RÉSERVOIR. PETROLE. ESSENCE, EAU	
	LIGNE DE TRANSPORT D'ÉNERGIE	
	MINE	
		4411110
		GP
BOUNDARIES AND CONTROL	FRONTIÈRES ET POINTS DE RÉFÉRENCES	
	INTERNATIONALE, PROVINCE.	
INTERNATIONAL, PROVINCIAL, BOUNDARY MONUMENT		0-
COUNTY. DISTRICT	COMTÉ. DISTRICT	
TOWNSHIP PARISH SURVEYED	CANTON PAROISSE ARPENTE	- VED
TOWNSHIP. DLS - SURVEYED	CANTON. DLS – ARPENTÉ	ر <u>میں ا</u>ر ۱۹۹۸ ک
- UNSURVEYED	- NON ARPENTE	
MUNICIPALITY	MUNICIPALITÉ	
INDIAN RESERVE. PARK, ETC.	RÉSERVE INDIENNE, PARC, ETC	- •
	REPÈRE PLANIMÉTRIQUE	
	REPÈRE DE NIVELLEMENT	
		•721 ±
DRAINAGE AND RELATED FEATURES	DRAINAGE ET OUVRAGES CONNEXES	
STREAM, SHORELINE: INDEFINITE		
DIRECTION OF FLOW		
		ITTER
	TERRAIN INONDÉ	王 ジ
	MARAIS OU MARÉCAGE (BOISEE)	
	LIT DE COURS D'EAU TARI AVEC CHENAUX	
SAND. ABOVE, IN WATER,	SABLE, AU DESSUS, DANS L'EAU MARÉCAGES EN ENFILADE	
	TOUNDRA: ETANGS. SOLS POLYGONAUX	
	RAPIDES	
	ESTRANS	
носк		
DAM		
	QUAI	
	FOSSÉ	ub b_
	RELIEF	
	COURBE DE NIVEAU	
		25
DEPRESSION		
	ESKER	> >
	PINGO	•
SAND. SAND DUNES	SABLE. DUNES	ND
PALSA BOG	PALSE	
	RÉGION BOISÉE	}

104 B/1	104 A/4	104 A/3
103 O/16	103 P/13	103 P/14
103 O/9	103 P/12	103 P/11

99-35 2

EDITION 1

Metres 30 20 10 0

GRIÐ ZONE DESIGNATION DESIGNATION DE 1A ZUNE DU QUADRIFTAGE: 9 U	100 000 M SUUARE IDENTIFICATION IDENTIFICATION DU CAKRÉ DE 100 000 M
10 GIVE A DIFERE EXEMPLE OF FOUR FIXER DEST 99 98 98	L DE METHODEUSED NCE TU MERRES TOO METRES LA METHODE EMPLOYEE REPERES A 100 METRES PRES
RELEMENCE POINT CET PENNE OF REPERT FASTING, Read number o immediately to left of LONGEODE EST Noter le du quadrillage immed du repere Estimate femilis of a s This time eastward to j Estimer le nombre de l	print chifre de la Egne diatement a gauche 97 quare t <i>cum</i> point

NORTHING Read number on grid time immediately below pum LATITUOL NORD Noter is chiffre de la ligne du quadrillage immediatement en dessous du repere Estimate tenths of a square from

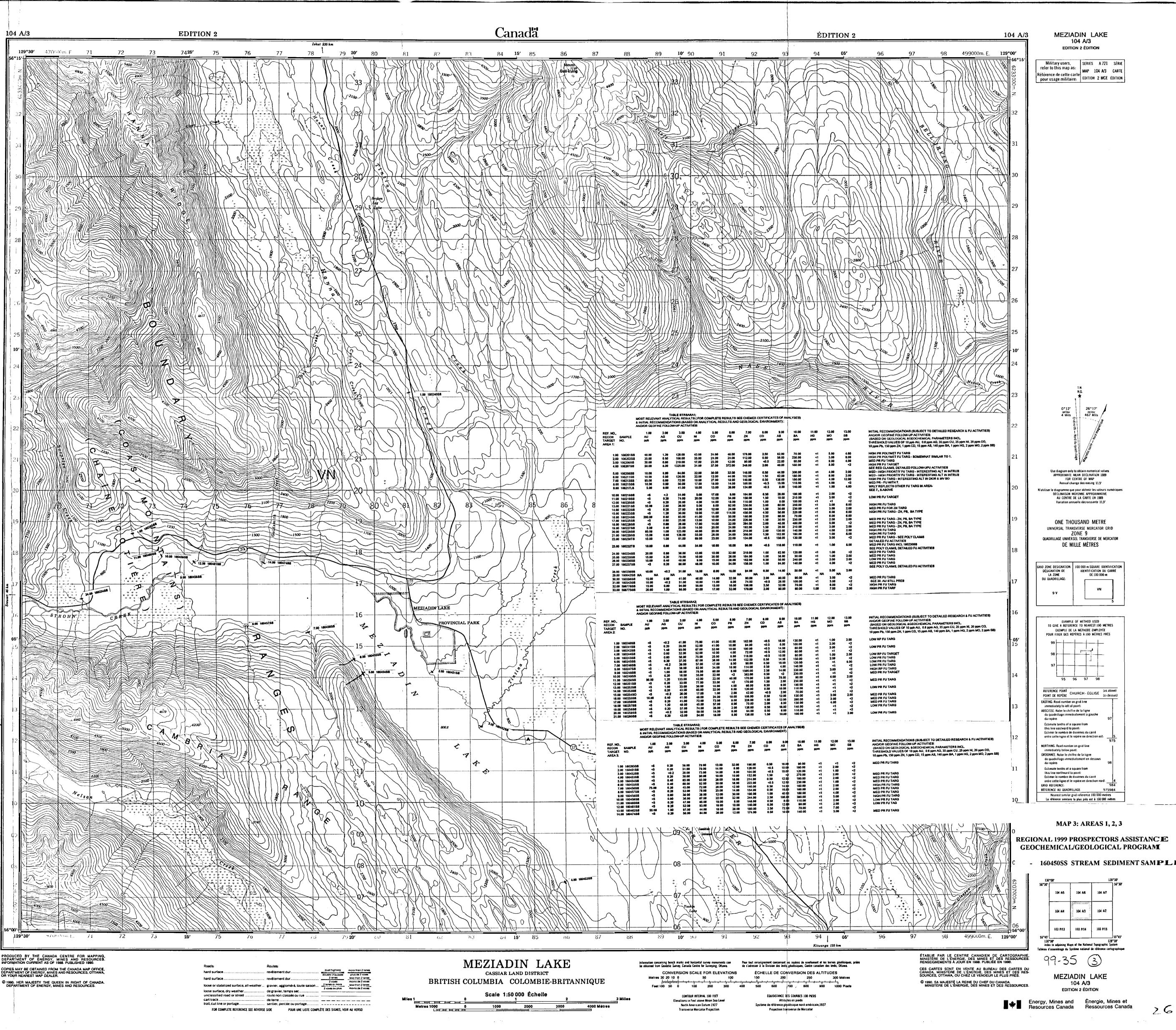
MAP 2: AREA 1

REGIONAL 1999 PROSPECTORS ASSISTANCE GEOCHEMICAL/GEOLOGICAL PROGRAM

> - 160343SS STREAM SED SAMPLE - 160342FLT FLOAT ROCK SAMPLE

> > 300 Metre

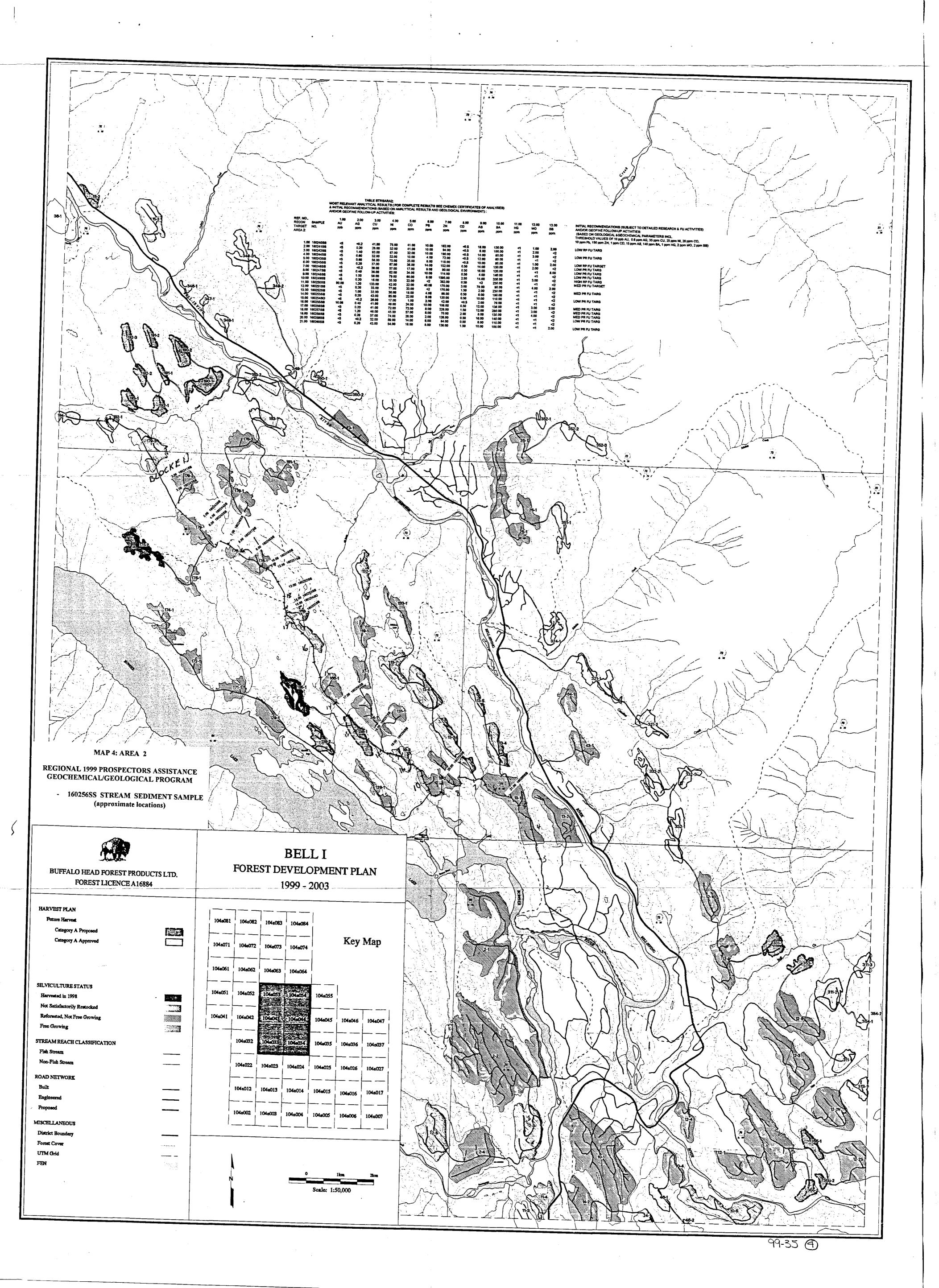
129°30

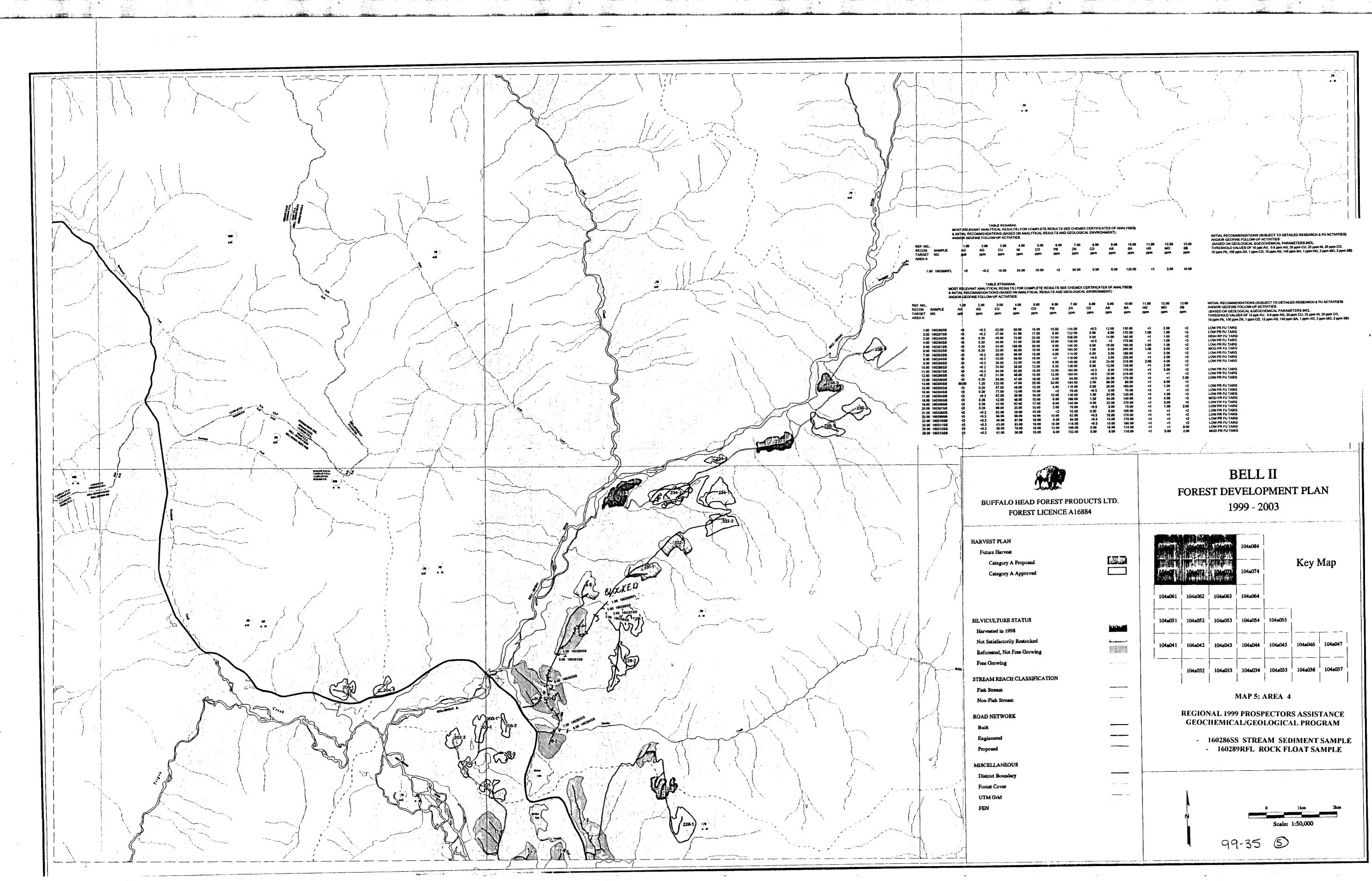

-}-55°45'

CONVERSION SCALE FOR ELEVATIONS ÉCHELLE DE CONVERSION DES ÉLÉVATIONS

150

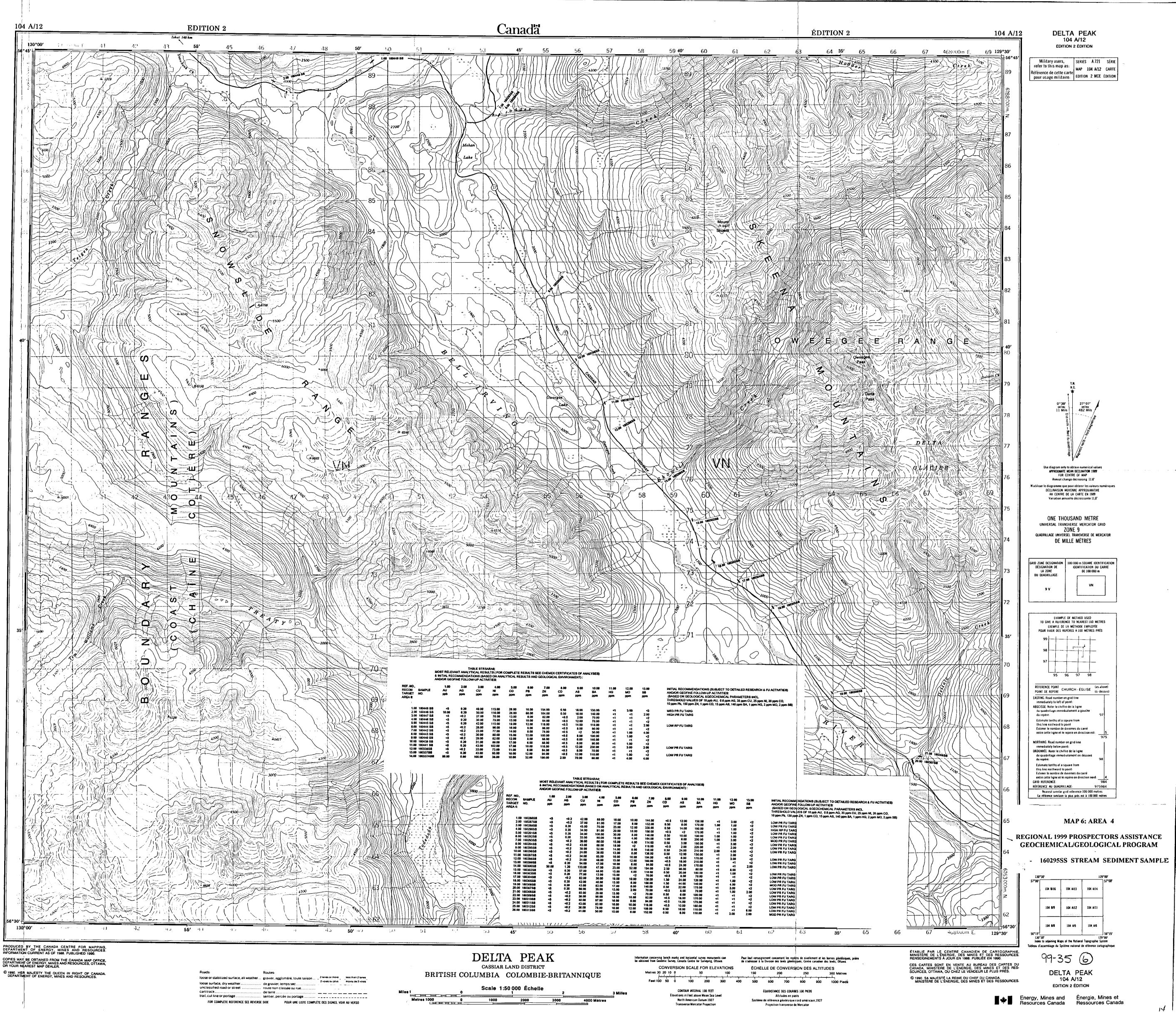
200

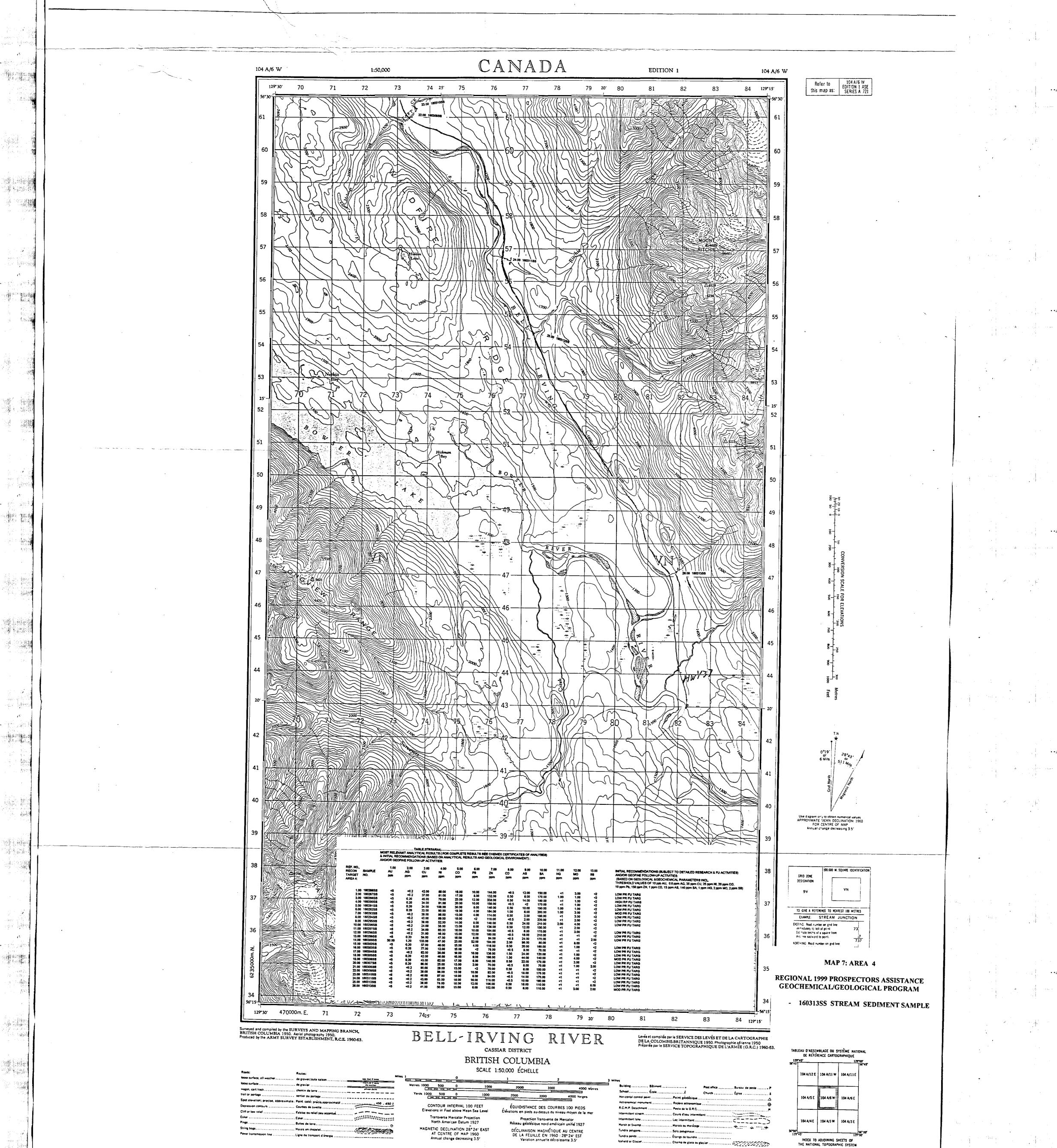

The 1972 MAGNE FIC BEARING (5. 28: 25. (505 outs) EAST of GRID NORTH. Le REPERE MAGNÉTIQUE en 1972 est 28-25 (505mils) a Lest du NORD DU OUADRILLAGE GRID NORTH IS0-37-(11 mills) WEST of TRUE NORTH for centre of map Le NORD DU QUADRILLAGE est 0:37° (11 mils) a Fou du NORD GEOGRAPHIQUE au centre de la carte.



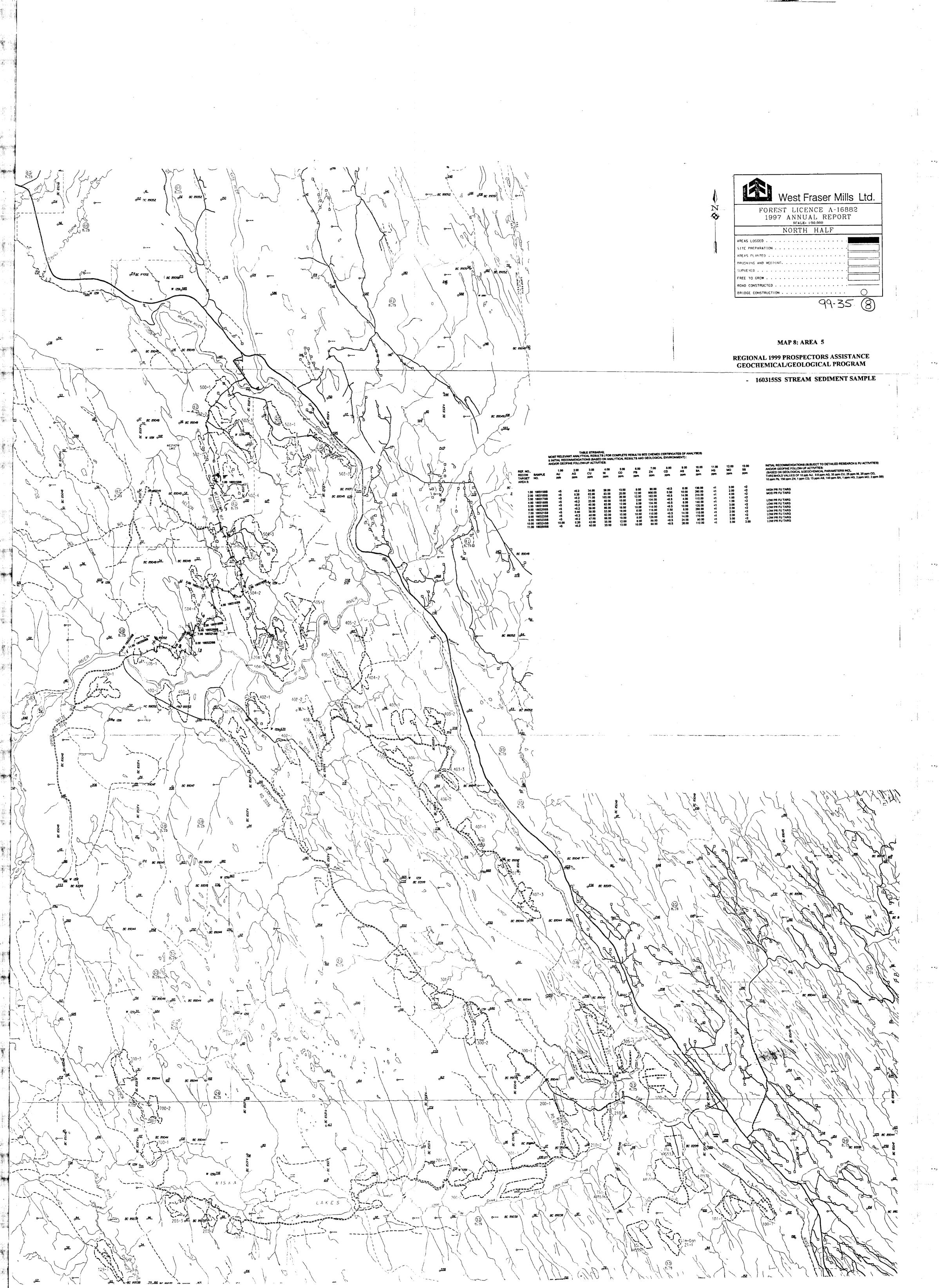
PHODUCED BY THE CANADA CENTRE FOR MAPPIN DEPARTMENT OF ENERGY, MINES AND RESOURCE INFORMATION CURRENT AS OF 1988. PUBLISHED 1990.
COPIES MAY BE OBTAINED FROM THE CANADA MAP OFFK DEPARTMENT OF ENERGY, MINES AND RESOURCES, OTTAM OR YOUR NEAREST MAP DEALER.
@ 1000 HER MAIESTY THE OUSEN IN RIGHT OF CANAD

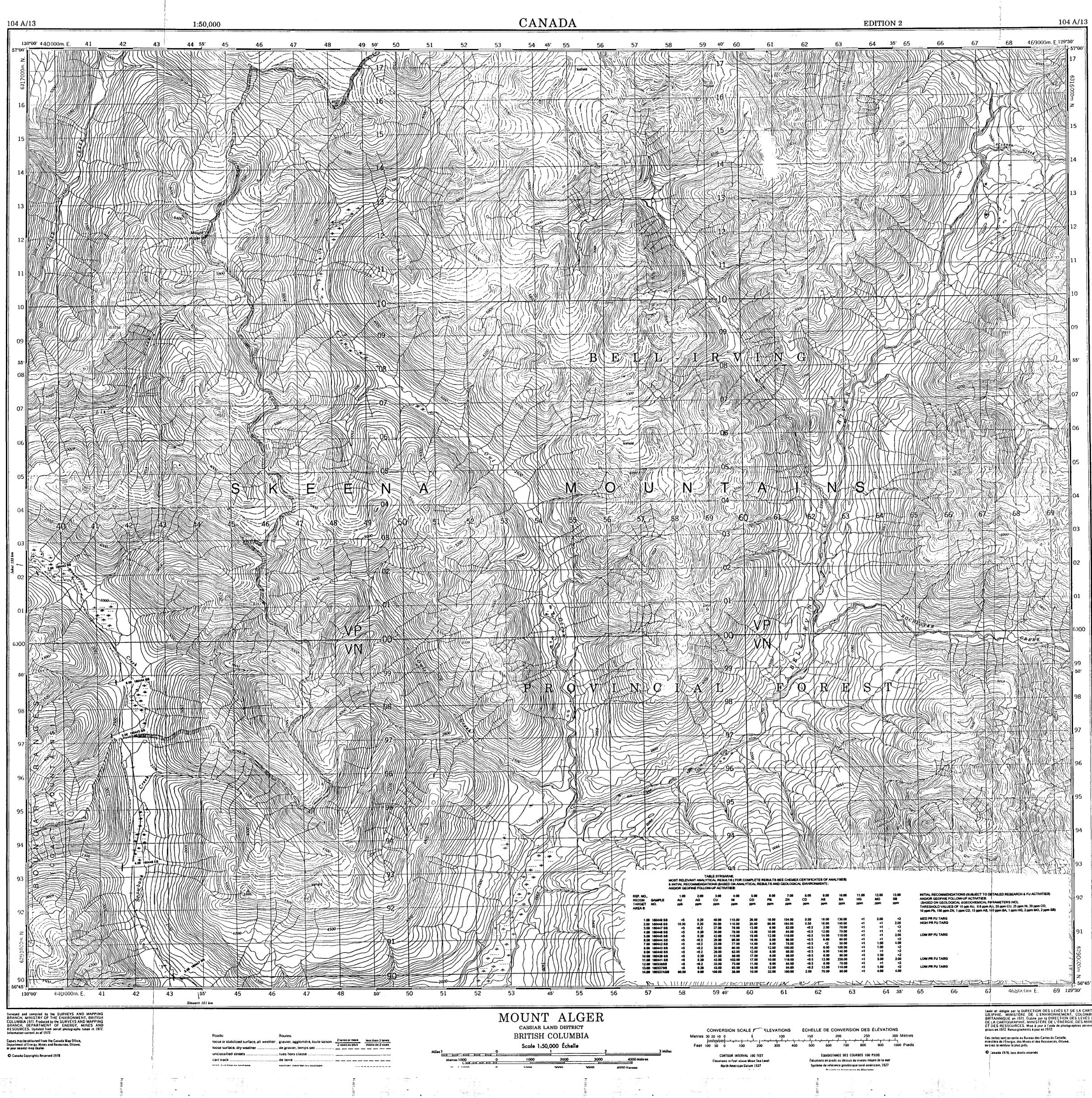
Roads:	Routes
hard surface	revèter
hard surface	revêter
loose or stabilized surface, all weather	gravier
loose surface, dry weather	de grav
unclassified road or street	route n
cart track	





COPIES MAY BE OBTAINED FROM THE CANADA MAP OFFICE, DEPARTMENT OF ENERGY, MINES AND RESOURCES, OTTAWA, OR YOUR NEAREST MAP DEALER.

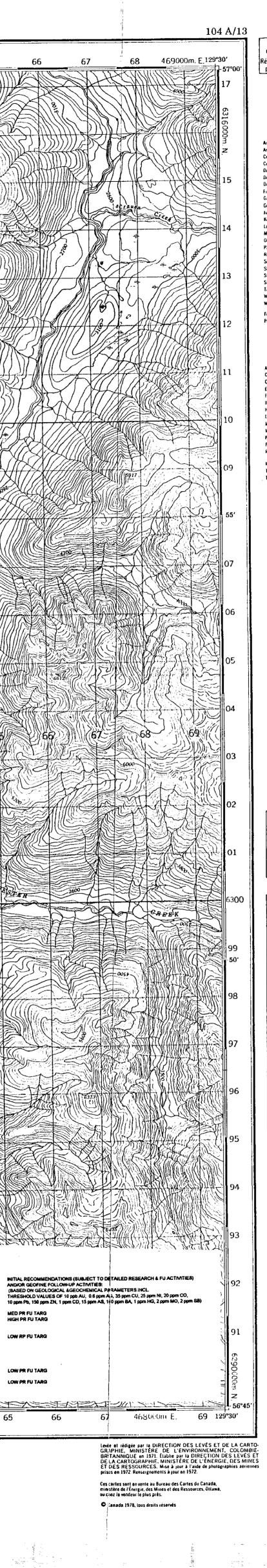

. ÷ ...

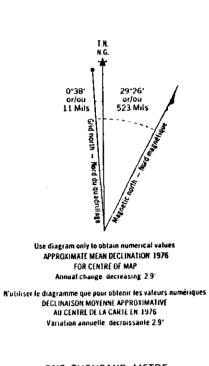

BELL-IRVING RIVER

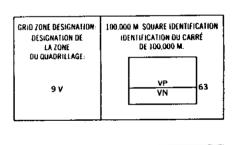
104 A/6 W 99-35 EDITION 1 \bigcirc

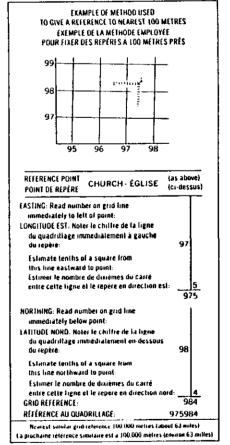
17

• •,}


····· • · · · · ·

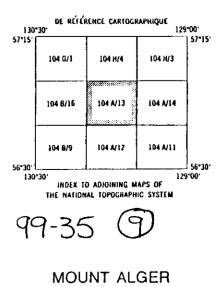

-- ------



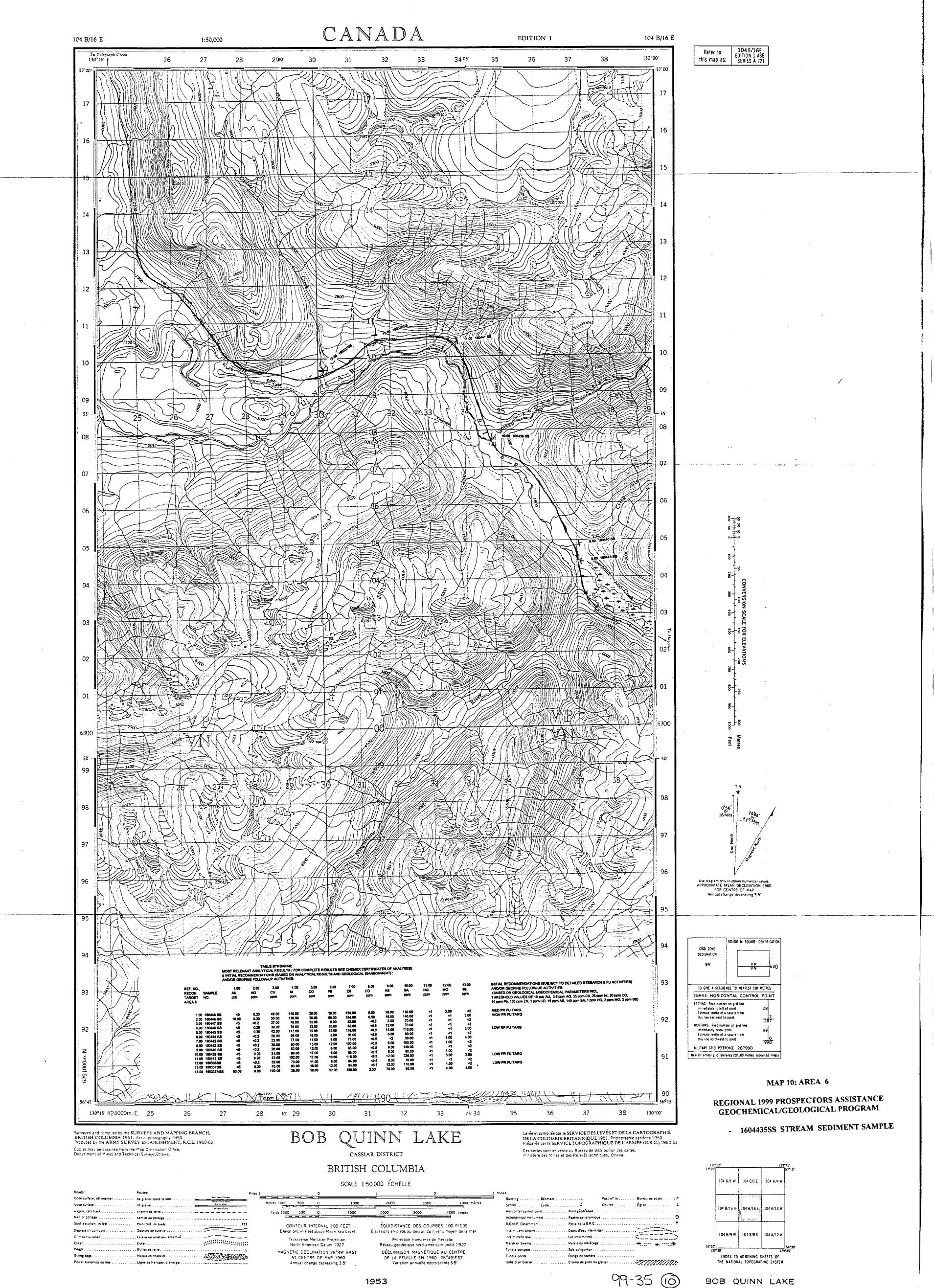

	MAP 104 A/13 CART Edition 2 MCE Éditio
GLOSSARY GLO	SSAIRE
Aufield	
Arena	
Customs	Douane
Ditch Dagout	
Dump	Dépotoir
Filtration Plant	
Gas	
Junii, Yard	ferraille
Kila	
Lookoul Mine Waste	
Oil Wells	Puits de pétrole
Park	
Senior Citizens Home	
Ski Area	
String Bog	
Tank	Réservoir
Water	
White Koan	
· · · · · · · · · · · · · · · · · · ·	
For a complete glossary see revé Pour un glossaire complet, voir i	
Pour un glossaire complet, voir i	ABRÉVIATIONS
Pour un glossaire complet, voir i	
Pour un glossaire complet, voir ABBREVIATIONS Aband Abandoned C	Abandonné, ée Cimetière
Pour un glossaire complet, voir ABBREVIATIONS Aband Abandoned C Co	Abandonné, ée Cimetière Comté
Pour un glossaire complet, voir i ABBREVIATIONS Aband Abandoned C Cemetery C0 County E	Abandonné, ée Cimetière Comté Élévateur Traversior
Pour un glossaire complet, voir ABBREVIATIONS Aband Abandoned C. Cemetery CO County. E Elevator Fy Ferry IR Indian Reserve	Abandonně, še Cimetière Comtě Élévateur Traversier Réserve indien
Pour un glossaire complet, voir ABBREVIATIONS Aband Abandoned C. Cemetery CO. County E. Elevator Fy. Ferry IR. Indian Reserve H. Hospital	Abandonné, ée Cimetière Comté Élévateur Traversior Réserve indieo Hópital
Pour un glossaire complet, voir ABBREVIATIONS Aband Abandoned C. Cemetery C0. County E. Elevator Fy. Ferry. IR. Indian Reserve H. Hospital L. Lot Micro Microwave	Abandonné, ée Cimetière Comté Élévateur Traversier Réserve indien Hópital Lot Micro-ondes
Pour un glossaire complet, voir i ABBREVIATIONS Aband Abandoned C. Cemetery CO County. E. Elevator Fy Ferry IR Indian Reserve H. Hospital L. Lot Micro Municipality	Abandonné, ée Cimetière Comté Élévateur Traversier Réserve indien Hópital Lot Micro-ondes Mucro-ondes
Pour un glossaire complet, voir i ABBREVIATIONS Aband Abandoned C. Cemetery CO. County E. Elevator Fy. Ferry IR. Indian Reserve H. Hospital L. Lot Micro Microwave	Abandonné, ée Cimetière Comté Élévateur Traversier Réserve indica Hópital Lot Micro-ondes Municipalité Bureau de posl
Pour un glossaire complet, voir i ABBREVIATIONS Aband Abandoned C. Cemetery CO County E. Elevator Fy Fery IR Indian Reserve H. Hospital L. Lot Murco Microwave Mun Municipality P Post Office	Abandonné, ée Cimetière Comté Élévateur Traversior Réserve indien Hópital Lot Muncipahté Bureau de posi Centrale électi

Trans Sta... Transformer Station IfL Tree Farm Licence

> ONE THOUSAND METRE UNIVERSAL TRANSVERSE MERCATOR GRID ZONE 9 QUADRILLAGE DE MILLE MÈTRES TRANSVERSE UNIVERSEL DE MERCATOR

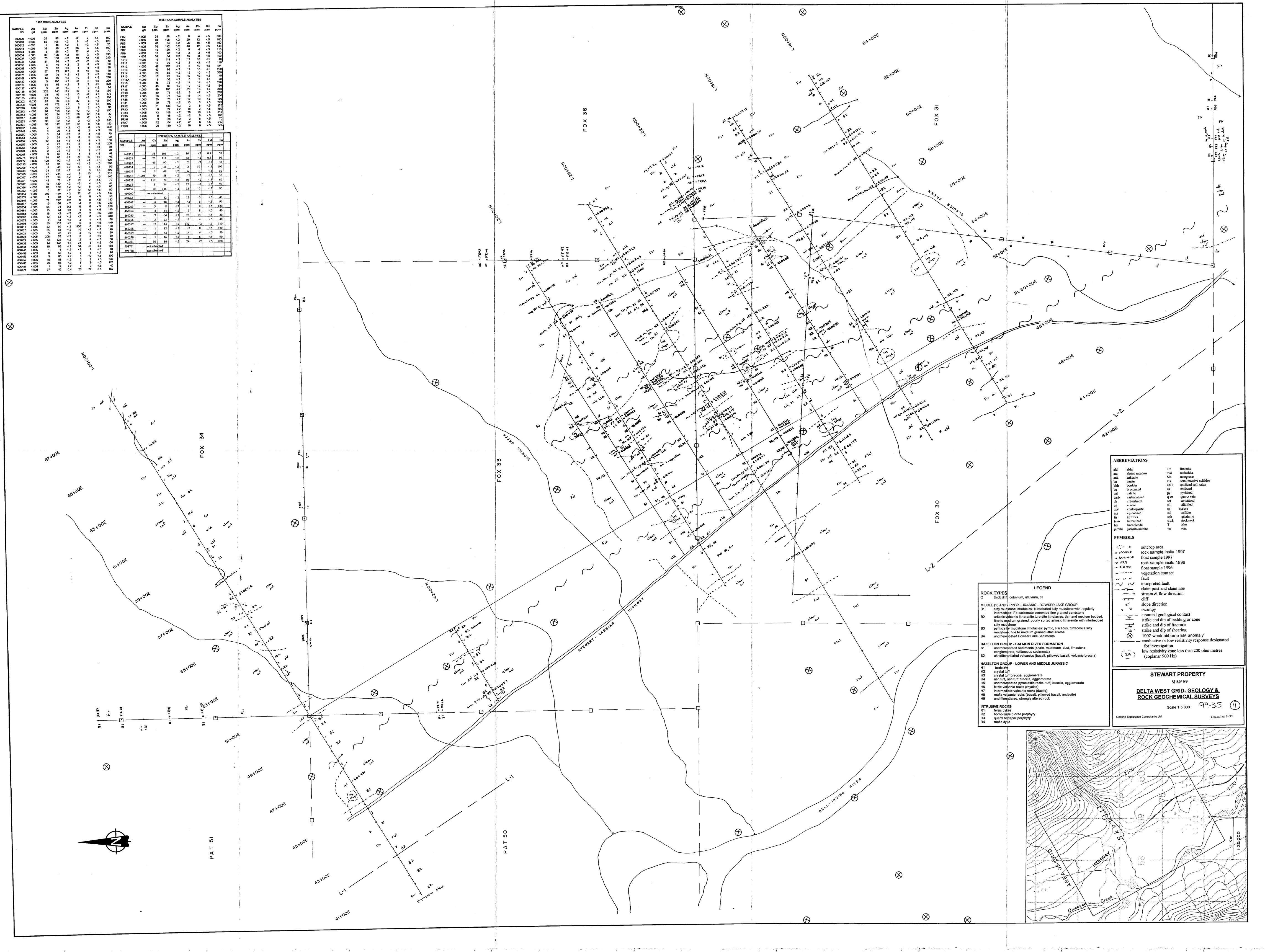

MAP 9: AREA 6

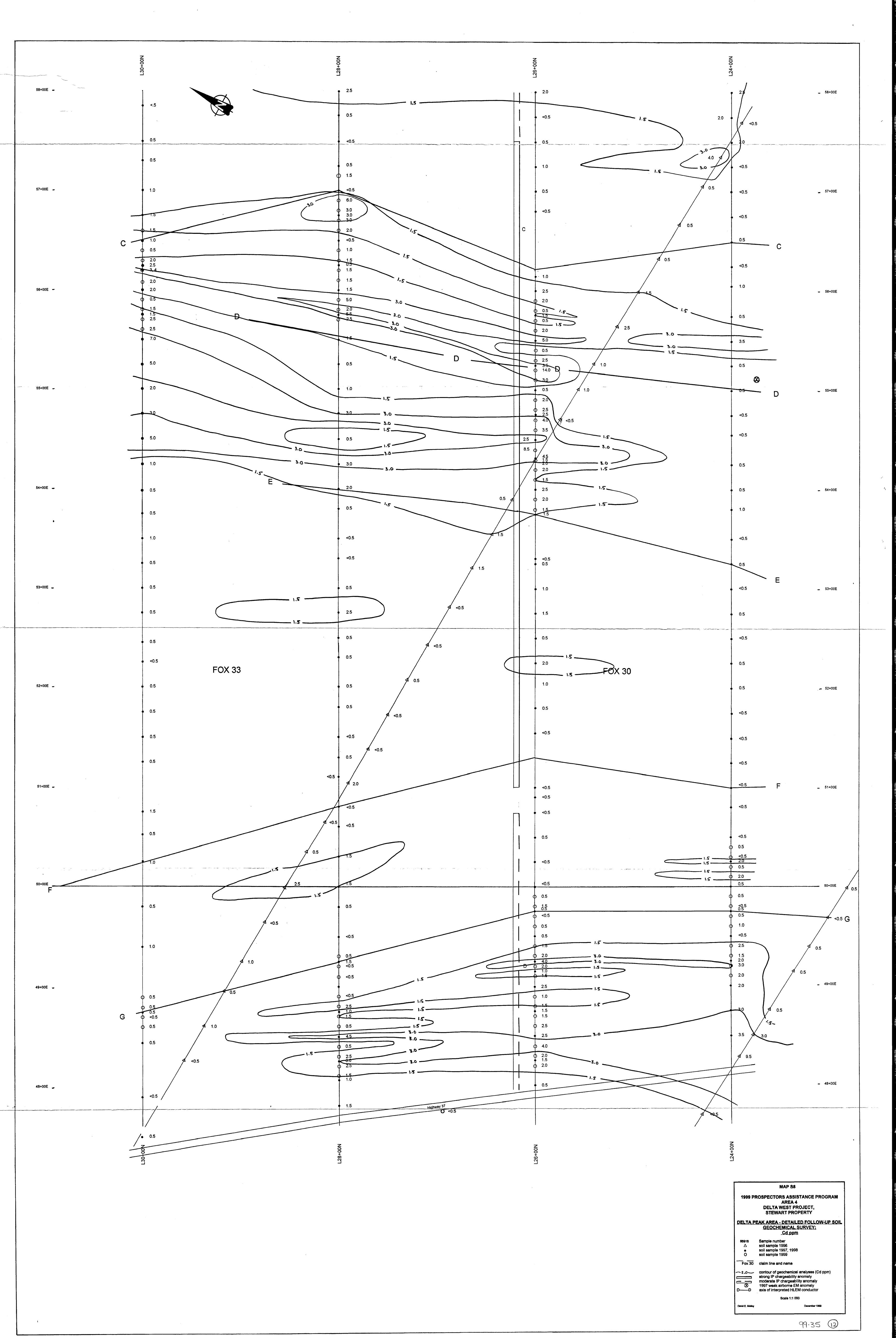
REGIONAL 1999 PROSPECTORS ASSISTANCE GEOCHEMICAL/GEOLOGICAL PROGRAM

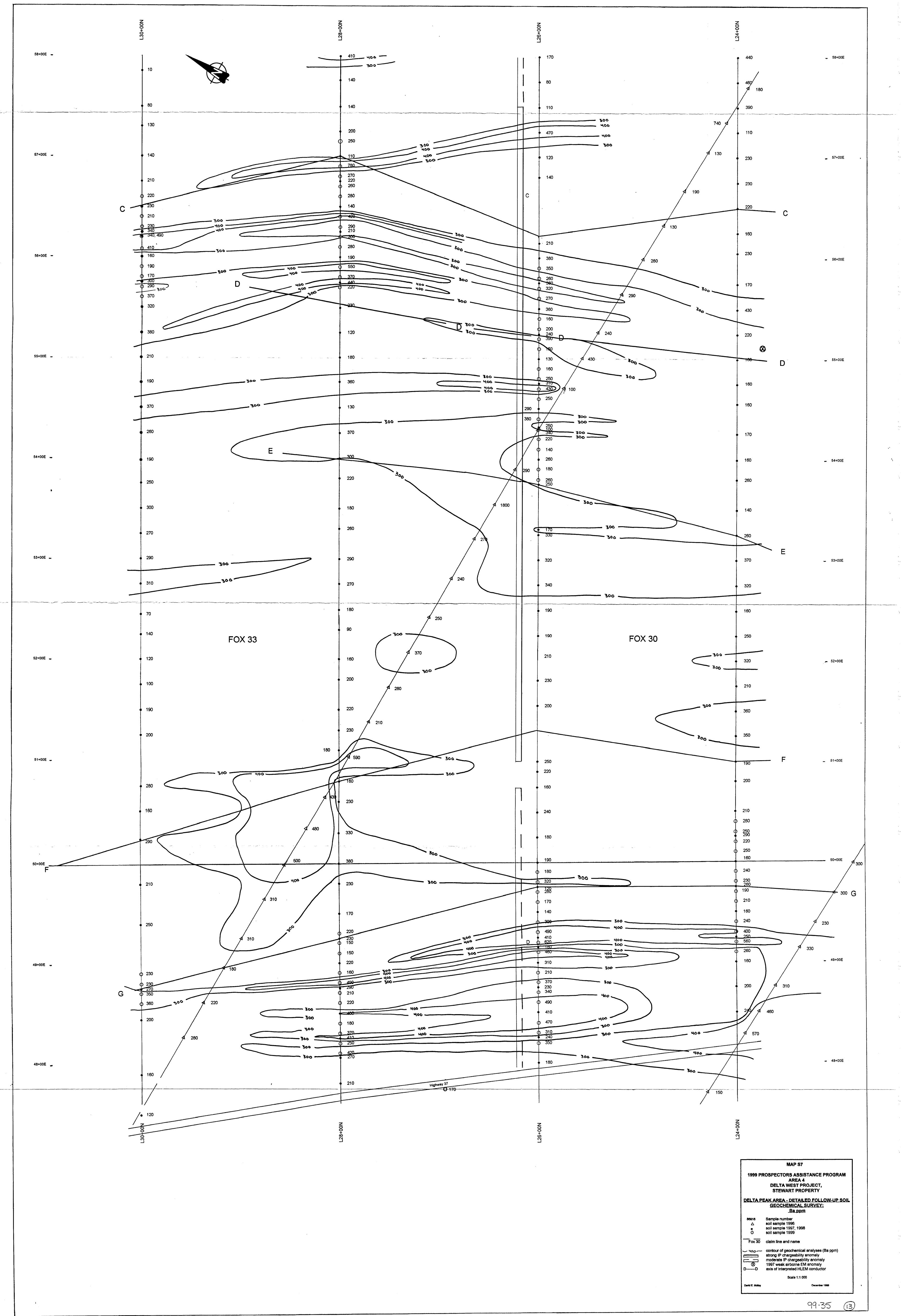

- 1604475SS STREAM SEDIMENT SAMPLE

12 -

- 44

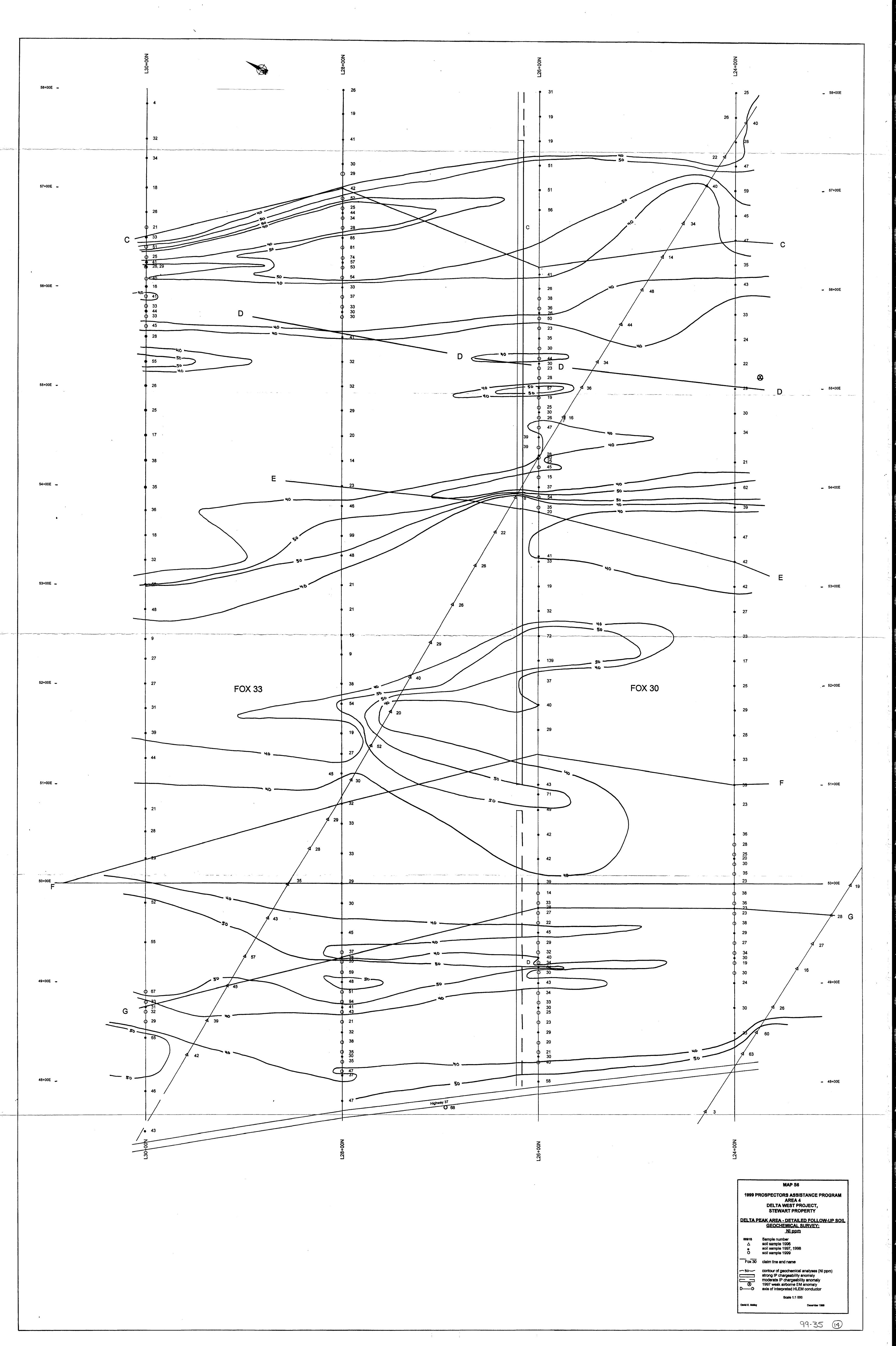


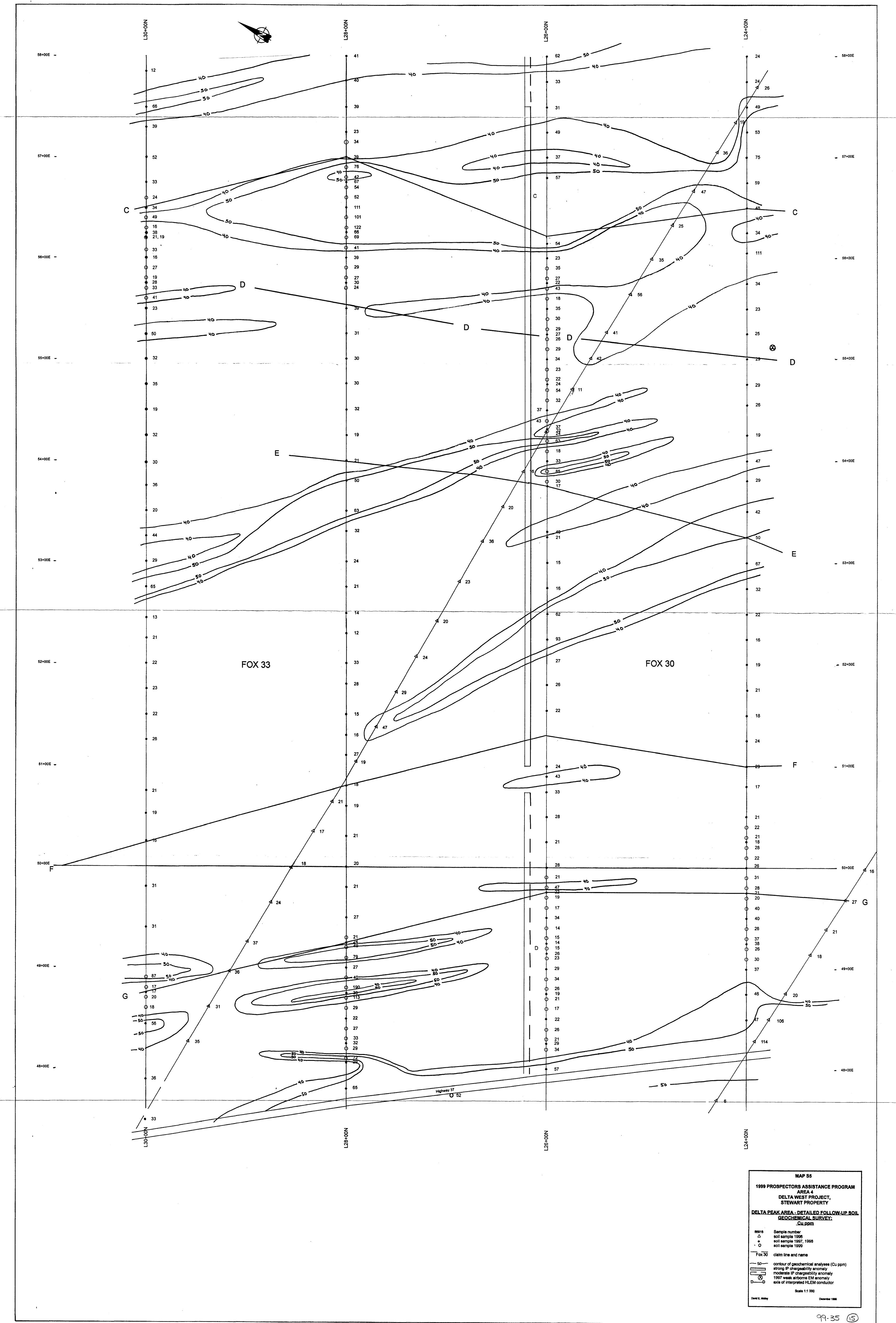

104 A/13 EDITION 2

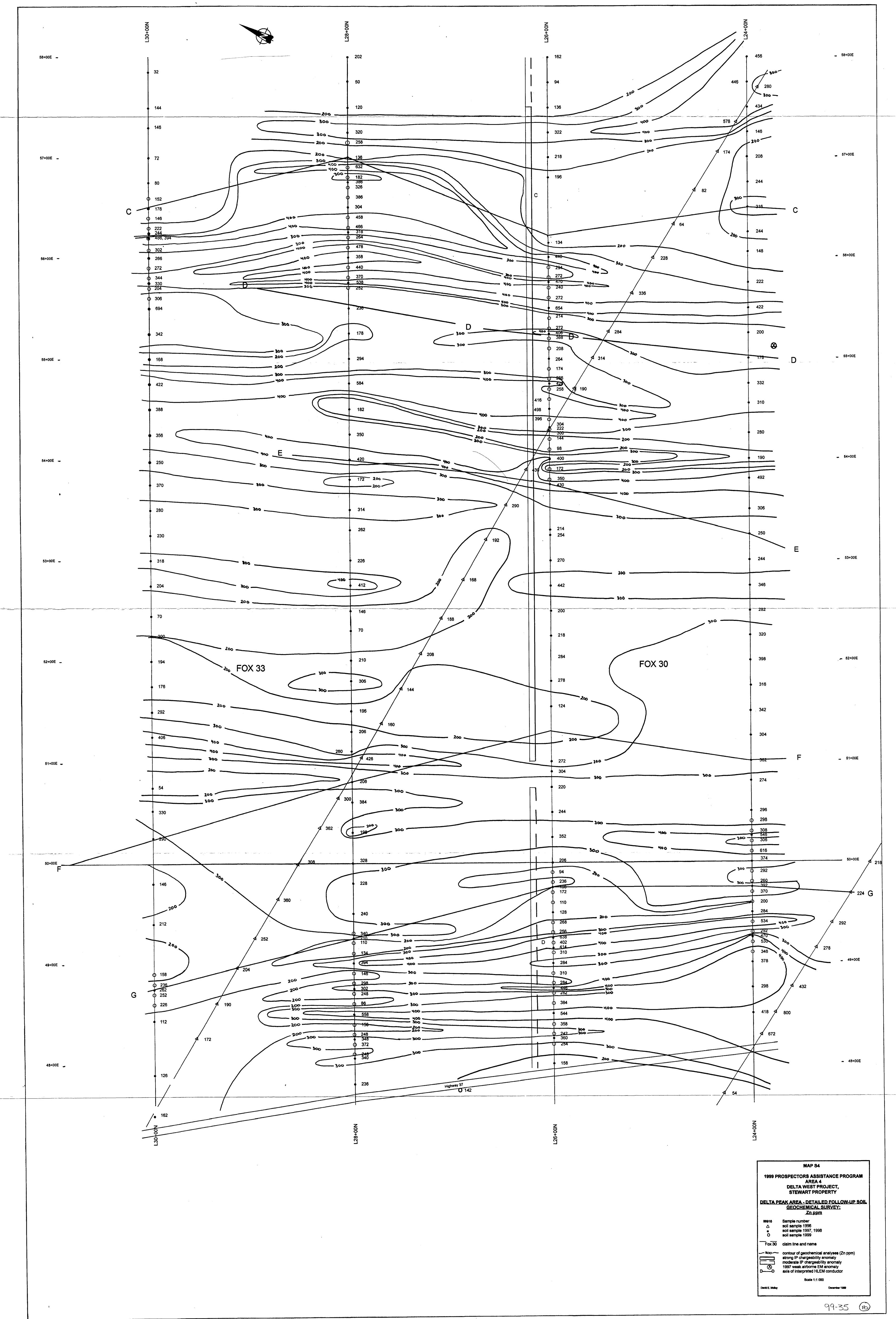


BOB QUINN LAKE 104 B/16 E EDITION 1

· · · [

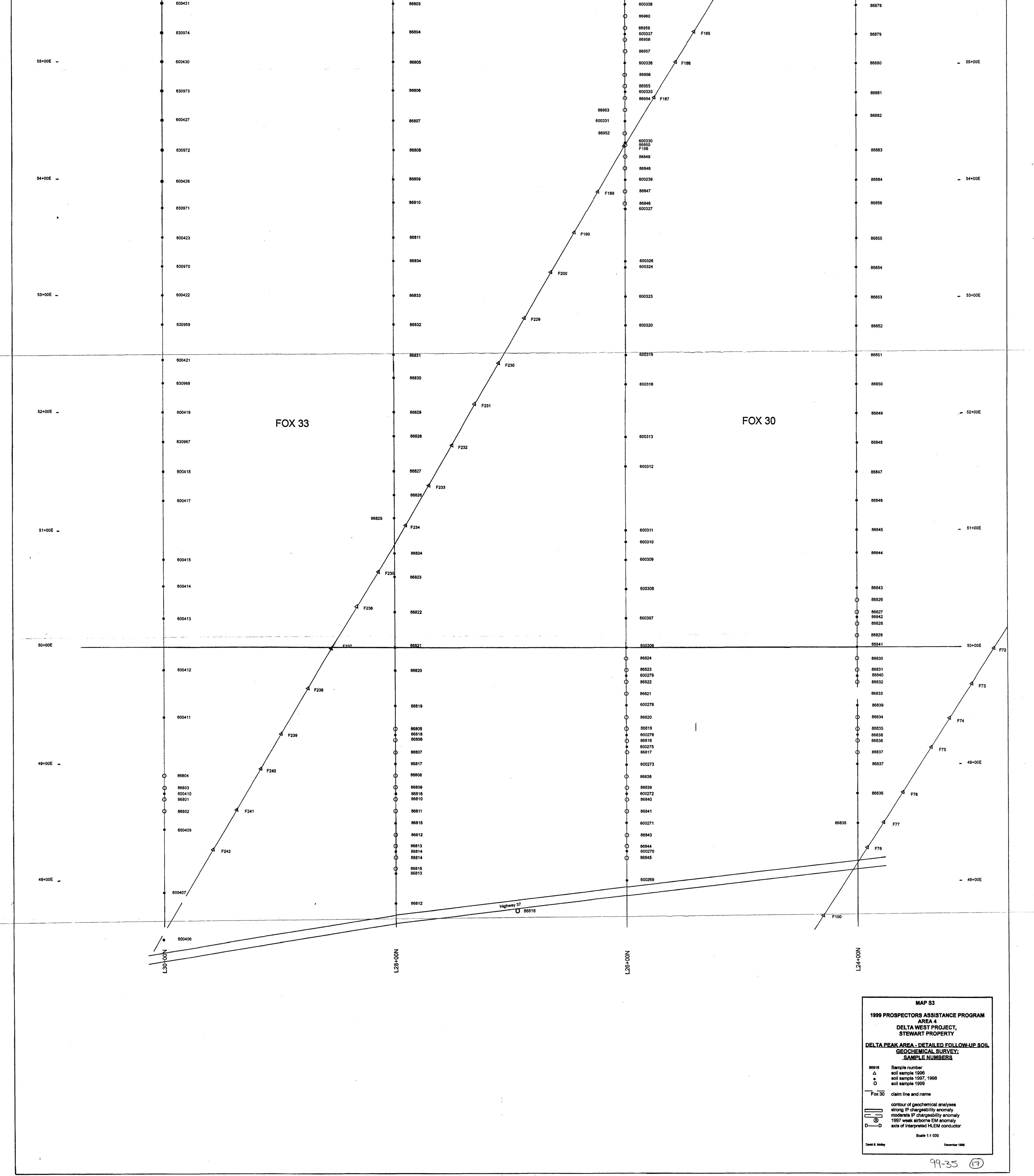


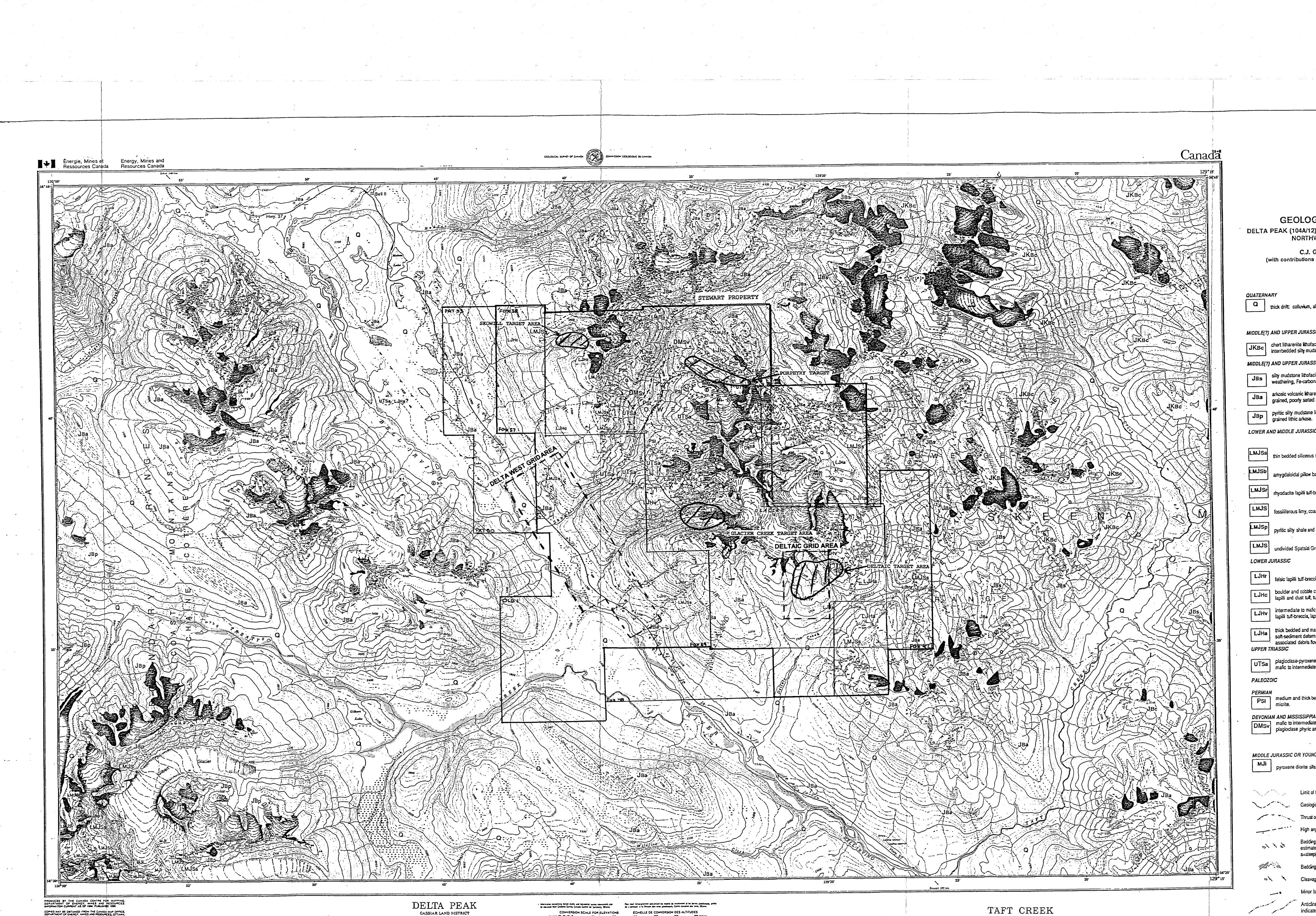




 \cdot

•





•

58+00E -🕳 58+00E F178 د استناب الم المتربي الرحمان -----F179 ダ F180 57+00E _ **57+00E 56** F181 . F182 600433, 86983 56+00E -🛥 56+00E F183 F184

a server that a

State 2 and 4

and a second second second second second second second second second second second second second second second

and the second second second second second second second second second second second second second second second

O 1990. HER MAJESTY THE OUEEN IN RIGHT OF CANADA. DEPARTMENT OF ENERGY, MINES AND RESOURCES.

n se sue d'annu a

-

i

CONVERSION SCALE FOR ELEVATIONS ÉCHELLE DE CONVERSION DES ALTITUDES Merres 30 20 10 0 50 100 150 200 200 200 300 Morres Fret 100 50 0 100 200 300 400 500 600 700 800 900 1000 Piede CASSIAR LAND DISTRICT BRITISH COLUMBIA COLOMBIE-BRITANNIQUE Scale 1:50 000 Échelle CONTOUR WITEINAL 100 FEET Elevations on Feet above Myan Sea Lovel Alexte American Datum 1927 EQUIDISTUNCE DES COUPIES ION MEDS Altraudes an profil Transverse Mercater Presection

MILE MINISTERE DE L'ENVIRONNEMENT, COLONGH MILE MINISTERE DE L'ENVIRONNEMENT, COLONGH MINIQUE AN 1971, LIANNA 321 A DIRECTION DES LEVES E. CARTOGRAPHIE MINISTERE DE L'ENERGIE, DES MINES I RESSOURCES, Mile J par 3 l'ande de photopholines animates 1972 Representation 1 Juni 2017 Cas cartes sant an unta au Butzau des Cartas du Canada, annutare de l'Énorgie, des Annes et ans Ressamicos, Ottaux, du chez le unideur le plots prix. O Canada 1978, Ibus drovis inservis CORRECTIONS PROVISOIRES 1988.

TAFT CREEK BRITISH COLUMBIA Scale 1:50,000 Échelle

Yerds 1000 0 1000 2000

nada			
129°15			
			ONE
	GEOLOGY OF DELTA PEAK (104A/12) AND	FOWEEGEE D	
	NORTHWESTE	RN BRITISH COLUME	3IA
	C.J. GREIG ((with contributions by M.H.	and C.A. EVENCHICK	nd S.P.Porter)
		ale 1:50,000	
		LEGEND	
	QUATERNARY	LEGEND	
	Q thick drift: colluvium, alluvium, till	•	
R. C. C. C. C. C. C. C. C. C. C. C. C. C.		ATIFIED ROCKS	
	MIDDLE(?) AND UPPER JURASSIC TO LO BOW	SER LAKE GROUP	ust sated short litharegite
	JKBc chert litharenite ithofacies: fine t interrbedded silty mudstone, com	o medium grained, moderately v mon bivalve coquinas, rare cher	t pebble conglomerate.
	MIDDLE(?) AND UPPER JURASSIC	SER LAKE GROUP	-
	JBs silty mudstone lithofacies: bioturb weathering, Fe-carbonate cemen	ated silty mudstone with regular	ty interbedded, buff
	arkosic volcanic itharenite turbid	te lithofacies; thin and medium l	bedded, fine to medium
40"	grained, poony solled alkosic nu		•
· · ·	JBp pyritic silty mudstone lithofacies; grained lithic arkose.	pyrinc, sinceous, miraceous siny	
	LOWER AND MIDDLE JURASSIC	ZELTON GROUP	
		N RIVER FORMATION	
	LMJSs thin bedded siliceous silty mudst	one, clay-altered dust tuff(?), dis	scantinuous limestone lenses.
	amygdaloidal pillow basalt, basa	It pillow breccia, tuff-breccia and	debris flow breccia.
X	LMJSr rhyodacite lapilli tuff-breccia; loc	ally welded.	
M	LMJS fossiliferous limy, coarse grained	I arkose; polymict pebble, bould	er and coodie congiomerate.
	LMJSp pyritic silty shale and mudstone		
	LMJS undivided Spatsizi Group	- : :	
	LOWER JURASSIC	:	•
	H LJHr felsic lapilli tuff-breccia, ash and	AZELTON GROUP	:
		te, pebbly sandstone; well-strati	fied, green and maroon ash,
	lapilli and dust tuil, tuffaceous a	irkose and mudstone.	
	LJHv intermediate to malic plagioclas lapilli tuff-breccia, lapilli, ash an	e-pyroxene and subordinate pla d dust tuff, flows; derived debris	flows, arkose and siltstone:
	LJHa thick bedded and massive tuffa	ceous arkose and siltstone with tures; malic to intermediate frag	abundant syn-depositional
235	associated debris flows.		
X) I		STUHINI GROUP If turbidite arkose and siltstone, j	plagioclase-pyroxene phyric
	UTSa mafic to intermediate tapilli and	ash tuff, tuff-breccia and rare fic	ows; minor limestone lenses.
X		KINE ASSEMBLAGE	
	PERMIAN PSI medium and thick bedded to m micrite.	assive bioclastic limestone with	chert interlayers; thin-bedded
	DEVONIAN AND MISSISSIPPIAN		·
T.K	DMSv mafic to intermediate plagiclase plagioclase phyric amygdaloida	e-pyroxene phyric lapilli tuff, lapil I andesite(?) flows; rhyolite and	it tuff-breccia, and liows; rhyodacite lapilli tuff-breccia.
		TRUSIVE ROCKS	• • • .
	MIDDLE JURASSIC OR YOUNGER		
	MJI pyroxene diorite sals.		
		MAP SYMBOLS	
	Limit of thick Quat		
	•	defined, approximate, inferred. ault, defined, approximate, inferr	red; teeth on upthrown side.
	•.	efined, approximate, inferred; ba	
7. F	Bedding: inclined	vertical, overturned:	
	s=steep(50°-70°),	gentle(<10°), g=gentle (10°-30 vs=very steep(>70°).), m≕nooerale(00 00),
56-30	Bedding formlines		
129° 15'	12 X X Cleavage: incline		
	Minor fold axis, pl		e: defined, approximate; arrow
	indicates vergence	direction.	
	SyncEre, overturn indicates vergence	ed syncline, trace of axial surface direction.	e: defined, approximate; arrow
	-1K'	•	
	KH Fossil locality	:	MAD C7
	Property OL	tline	MAP S2 STEWART PROPERTY
	99-35	18	PROPERTY GEOLOGY GSC 1993
	······		

*

BRITISH COLUMBIA
MINISTRY OF EMPLOYMENT AND INVESTMENT
ENERGY AND MINERALS DIVISION MINERAL TITLES BRANCH
MINERAL TITLES REFERENCE MAP IO4AIIW U.T.M. ZONE 9 LAST MAP UPDATE: 1996 NOV OI
ORIGINAL PRODUCED AT 1:31680 METRES 500 0 500 1000 1500 2000 DEFERENCE AREAS MINING DIVISIONS: SKEENA
LAND DISTRICTS:
ALIENATIONS NO STAKING AREAS NO STAKING RESERVES PARKS ECOLOGICAL RESERVES RECREATION AREAS INDIAN RESERVES
MAP S1
CONDITIONAL AREAS SUBJECT TO CONDITIONS RESERVES SECTION 19 RECREATION AREAS I POST CLAIM AREAS AREAS SUBJECT TO URANIUM / THORIUM REGULATIONS
MINERAL TENURE
IUNIT2 POST CLAIMOLD 2 POST CLAIM1040.42 ft1040.42 ft1000 ft10101000 ft1000 ft1010