# BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1999/2000REPORT #:PAP 99-37NAME:ARNE BIRKELAND

#### BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

#### **B. TECHNICAL REPORT**

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations 15 to 17, page 6.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

BIRNELAND ARNE Reference Number 99/2000 P92 Name LOCATION/COMMODITIES Project Area (as listed in Part A) TAMBIER NORTH KEENNAMANICE MINFILE No. if applicable\_ Location of Project Area NTS Lat Long 130° 1035 54 Description of Location and Access KHAT 2 64 MATGEN ZNLET Boat access tion Poince Kupsot, Main Commodities Searched For 24 Known Mineral Occurrences in Project Area NONE WORK PERFORMED 10 km × 30 Km 1. Conventional Prospecting (area) 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 45 Stream sediment 15 rock chip Samples 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify) SIGNIFICANT RESULTS Commodities ZA Claim Name 120007 1000 Location (show on map) Lat Long Elevation Sedimente Best assav/sample type Stream VIDAN and 410 ppm Best Rock Chin Description of mineralization, host rocks, anomalies vastu telsic gne154 noMai ecting Value med avesh Źи 1.6 1 com pany ing KEPORT

Supporting data must be submitted with this TECHNICAL REPORT Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act. PROSPECDTOR'S ASSISTANCE PROGRAM REPORT

#### GAMBIER NORTH RECONNAISSANCE PROJECT KHUTZEYMATEEN INLET AREA

#### SKEENA MINING DIVISION

#### NTS: 103I, 103J

#### LAT: 54°40' LONG: 130°00'

| 1 | Y OF ENERGY & MINES |
|---|---------------------|
|   | 000                 |
|   |                     |
| ) | SMITHERS, BC        |

Report by:

Arne Birkeland, P. Eng.

Report dated:

January 12, 2000

C:/mydocs/gnrdoc/gnrr9902

### TABLE OF CONTENTS

| 1. Introduction                      | 3   |
|--------------------------------------|-----|
| 1.1. General                         |     |
| 1.2. Location and Access             | . 4 |
| 2. History                           | 4   |
| 3. Geology                           | . 4 |
| 3.1. Regional Geology                | . 4 |
| 3.2. Local Geology                   | . 7 |
| 3.3. Geochemistry                    | 13  |
| 4. 1999 Reconnaissance program       | 13  |
| 4.1. Introduction                    |     |
| 4.2. Results                         |     |
| 4.3. Conclusions and Recommendations | 20  |
| 5. Bibliography, Selected References | 21  |

#### LIST OF FIGURES

| Figure 1A. | Project Location Map, PAP Guidebook 1998                   |
|------------|------------------------------------------------------------|
| Figure 1B. | Location Map, NTS 103I/103J, Scale 1:250,000               |
| Figure 2.  | Map 1472A, Geology, Prince Rupert, Skeena, Scale 1:250,000 |
| Figure 3.  | Geology, Gambier North Project, Scale 1:500,000            |
| Figure 4.  | Digital Geology Map, Mineral Potential Block CP 21         |
| Figure 5.  | Khutzeymateen, Parks, Scale approx 1:1,000,000             |
| Figure 6.  | RGS Zinc Geochemistry, Scale 1:500,000                     |
| Figure 7.  | Regional Sample Location Map, Geochemistry, Scale 1:50,000 |
| Figure 8.  | Detailed Sample Location Map, Geochemistry, Scale 1:20,000 |

### LIST OF APPENDICIES

| Appendix A. | Certificate of Qualification           |
|-------------|----------------------------------------|
| Appendix B. | Statement of Expenditures              |
| Appendix C. | Analytical Procedures and Certificates |

Appendix D. Geochemical Data Sheets

#### **Prospectors Assistance Program Report Gambier North Reconnaissance Project**

#### 1. INTRODUCTION

#### 1.1. General

A Prospector's Assistance Program ("PAP") Grant in the amount of \$10,000 was approved dated May 27, 1999 (Reference No. 99/2000 P92). The following Technical Report documents Prospecting and Geochemical Sampling conducted on the Gambier North Reconnaissance program.

A 58.5 man-day exploration program was carried out by Arne Birkeland (the "Grantee") assisted by Stan Seney, an experienced prospector-geotechnical assistant between August  $2^{nd}$  and September 16<sup>th</sup>, 1999.

As reported in Part A. Summary of Prospecting Activity, Prospecting Report Form, total project expenditures including wages and rentals are \$18,783.55. Field Expenses, paid items documented by receipt, total \$10,048.55.

Analytical costs for the 60 samples taken total \$1,012.02. As shown by the chart in Appendix B, Statement of Expenditures, analytical costs equal 10% of direct Field Expenses even though they are 5% of total Expenditures. Analytical costs also equal 10% of the \$10,000 grant that was awarded.

The number of samples taken was considerably less than the number anticipated due to the following logistical difficulties:

- 1. Very bad storm conditions were present on the North Coast during August and September, 1999. Assess to the project area was by use of a 6m open boat to navigate approximately 80 km, much of which is open water exposed to Hecate Straight. Strong winds, tides and bad storms prevented access altogether on some days (as noted on the Summary of Prospecting activity) and only allowed partial workdays on others. There were no campsites with safe storm moorage anywhere near the project area. The participants were caught out in emergency fly-camp on three occasions during bad storms, with dangerously poor moorage.
- 2. The project area proved to by very rugged, with fjord walls rising steeply out of the ocean. Numerous traverses were very slow, and it often could take one manday's time to get only 2 or 3 samples.
- 3. Additional prospecting and geochemical sampling was planned for Somerville Island but could not be carried out because of rough seas.

4. The project was stopped earlier than planned because long-term storm conditions would not have allowed for continuing with the program.

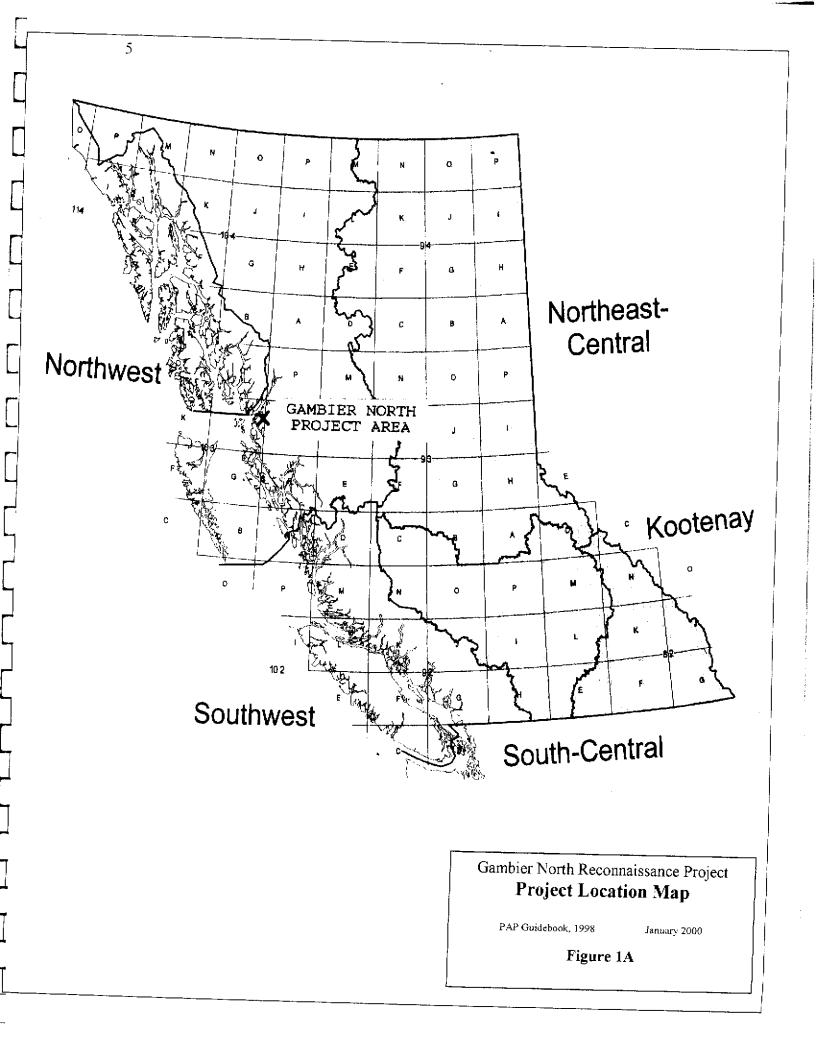
Because of the weather and topography, the only way to work productively in this area is to have a large boat with sufficient amenities to live-aboard. Daily work access could then be provided by open run-about.

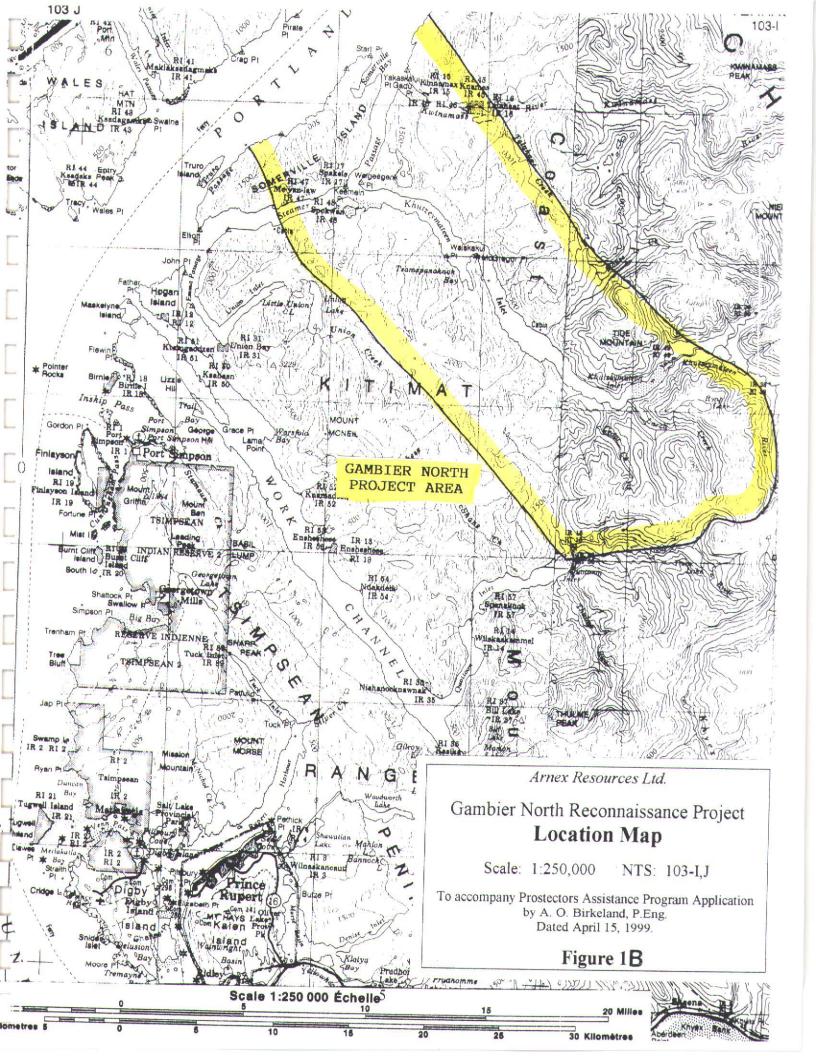
#### 1.2. Location and Access

The project area lies centered around Khutzeymateen Inlet, approximately 50 km northeast of Prince Rupert, BC. (See Figure 1A, 1b, Location Maps). The area is within the Skeena Mining Division, NTS 103I and 103J at approximately Latitude 54°40' and Longitude 130° 00'.

The project area includes the northwestern two thirds of Khutzeymateen Inlet outside of the park area at the head of the inlet, which has been protected as grizzly bear habitat (See Figure 5, Parks).

Access to the area is by boat to Khutzeymateen Inlet from Prince Rupert, a distance of approximately 80 km. A fixed-wing floatplane was also used to evacuate an emergency fly-camp that was set up at Kumeon Bay in Steamer Passage. Boat access was also used to access Quottoon Inlet from a truck/camper fly camp at the head of Work Channel.


#### 2. HISTORY


There is no record of any previous exploration activity by industry in the area. An RGS program was conducted by the B.C.G.S.B during the early 1990's, which identified base metal anomalies (primarily Zn), associated with Mesozoic rocks. Geology, Geochemistry and other data for the area was accessed through <u>WWW, EM, GOV, BC, CA/GEOLOGY</u>, the Map Place and Exploration Assistant was used to identify and document the exploration targets present in the selected area (Figure 3, Geology, Figure 6, RGS Zinc Geochemistry).

#### 3. GEOLOGY

#### 3.1. Regional Geology

The prospecting area lies within undifferentiated Metamorphic Terrane of the Coast Belt. The Coast Metamorphic Belt is adjacent to, and partially overlies Alexander Terrane directly to the west.



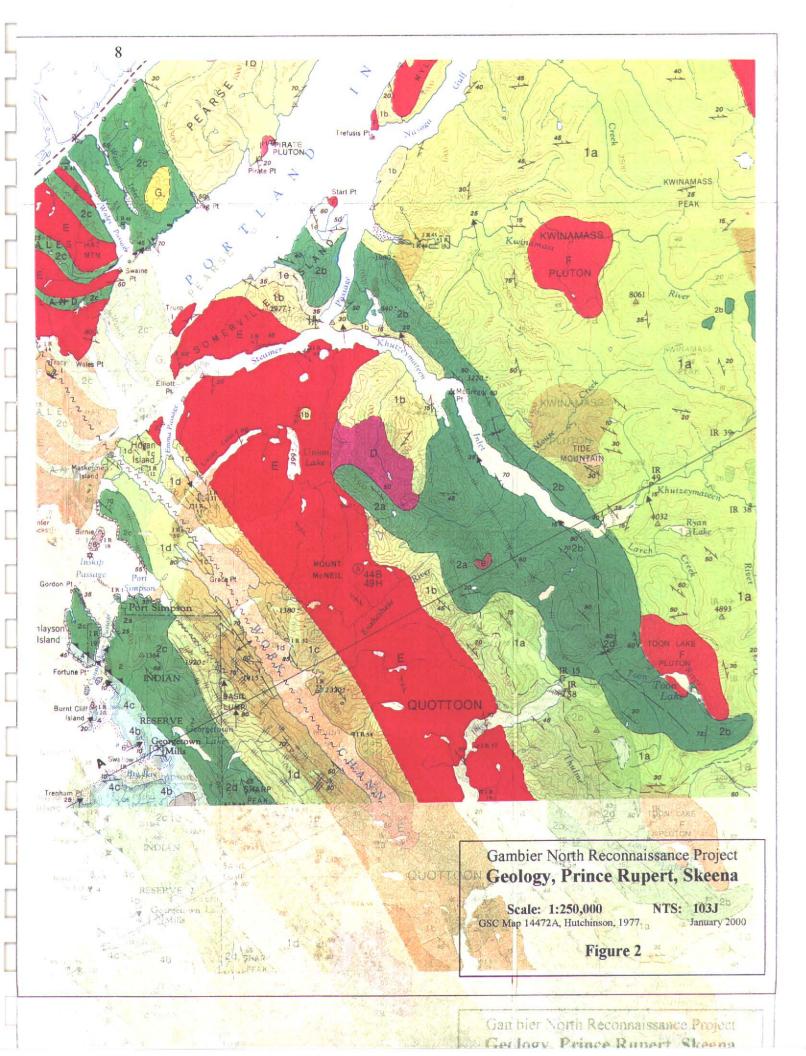


The area is underlain by rocks mapped as unit 2b, feldspathic schist, impure quartzite and hornblende schist, Figure 2, Geology, Prince Rupert, Skeena. Rocks in this area are also mapped as unit JKG, lower Cretaceous Gambier group, as illustrated in Figure 4, Digital Geology Map, Mineral Potential Block CP21.

Unit 2b schistose metasedimentary and metavolcanic rocks lie along a northwestern trending synclinorium best exposed along the eastern shore of Khutzeymateen Inlet. The foliation dips vertical in the core of the synclinorium, with dips flattening to the west and east of the synclinal structure. The Gambier group "pendant" is hosted within the Central Gneiss Complex of uncertain Paleozoic age. The Quottoon pluton, mainly quartz diorite and granodiorite in composition, flanks the Gambier group and Central Gneiss complex to the west. The Quottoon pluton is interpreted to be a less evolved equivalent of the Devonian? Ecstall pluton to the southwest.

Major northwest trending strike slip faults control the physiography of Work Channel, Khutzeymateen Inlet and many inlets on Somerville and Whales Islands. These transcurrent faults are generally steeply dipping and show right lateral movement. Northeastern dipping high angle normal faults area also present as reflected by Portland Inlet, Steamer Passage, Ensheshese River-Mouse Creek, and upper Quottoon Inlet.

Hutchinson (1982) interprets northeast normal faults to be ancient features while northwest strike slip faults are younger structures related to current plate tectonics.


#### 3.2. Local Geology

The prospecting area is centered on a belt of layered Mesozoic rocks in a northwest trending belt extending 50 km by 10 km wide. (See Figures 2, 3, 4).

Rocks in this area were originally mapped as the Middle Jurassic to Lower Cretaceous Gravina Assemblage. The rocks are described as being marine argillite and greywacke containing interbedded andesitic to basaltic volcanic and volcanoclastic rocks that have been metamorphosed to amphibolite grade. This rock assemblage depositionally overlies Alexander Terrane.

The rocks have more recently been re-classified by the tectonic assemblage mapping as belonging to the Lower Cretaceous Gambier Group. The Gambier group is characterized by thick-bedded andesite to rhyolite flows, tuff and breccia, with minor clastic sedimentary rocks. The Gambier Group is Hauterivian in age in southwestern BC (NTS 93E).

Rusty weathering, pyritic felsic schists and micaceous gneissic rocks trend in a belt from southwest of McGreggor Point, passing through McGreggor peninsula, and trending northwestwards along the eastern shore of Khutzeymateen Inlet. Numerous gossanous outcrops are associated with this unit. The rocks are interpreted as being metamorphosed altered pyritic felsic volcanics. Local distributions of large relict breccia fragments



| F | Grai<br>quai |
|---|--------------|
| E | Qua<br>gran  |

nodiorite. minor quartz diorite, rtz monzonite



rtz diorite, minor diorite, odiorite



Diorite, minor quartz diorite



Gabbro and diorite



Ultrabasic rock

#### LATE JURASSIC BOWSER LAKE GROUP (?)



Greywacke and argillite

#### EARLY MESOZOIC (?) and/or PALEOZOIC (?)

| 4 |  |
|---|--|
|   |  |

Metasedimentary rocks of greenschist facies: 4a, Black to dark grey graphite schist; 4b, Intercalated pale and dark schist; 4c, Intercalated chlorite and sericite schist



Weakly metamorphosed volcanic rocks: 3a, Tuff; 3b, Agglomerate and volcanic breccia; 3c, Rhyolite tuffs and flows; 3d, Schistose metavolcanic rocks; 3e, Mixed volcanic and plutonic rocks; 3f, Limestone, quartzite and sericite schist; minor graphite schist (These are mappable intercalations in the metavolcanic rocks)



Metasedimentary rocks of amphibolite facies: 2a, Rusty weathering muscovite ± biotite ± garnet ± amphibole schist; minor amphibolite and micaceous quartzite; 2b, Feldspathic schist, impure quartzite and hornblende schist; 2c, Dark greenish grey hornblende ± biotite ± garnet schist and impure quartzite with rare intercalated marble; 2d, Black to dark grey graphite schist with local interbedded conglomerate, greywacke and marble; 2e, Mt. Morse felsic rocks of uncertain origin; 2f, Marble

#### PALEOZOIC(?)

CENTRAL GNEISS COMPLEX



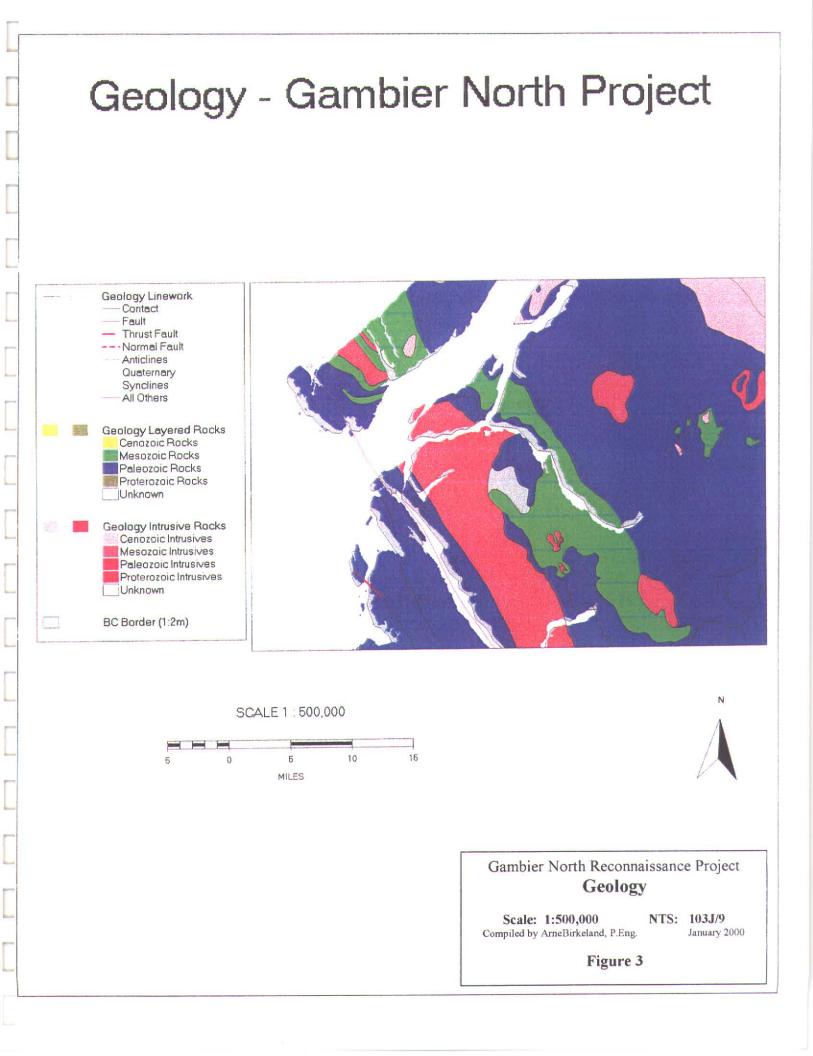
Dominantly buff grey leucogneiss and migmatite

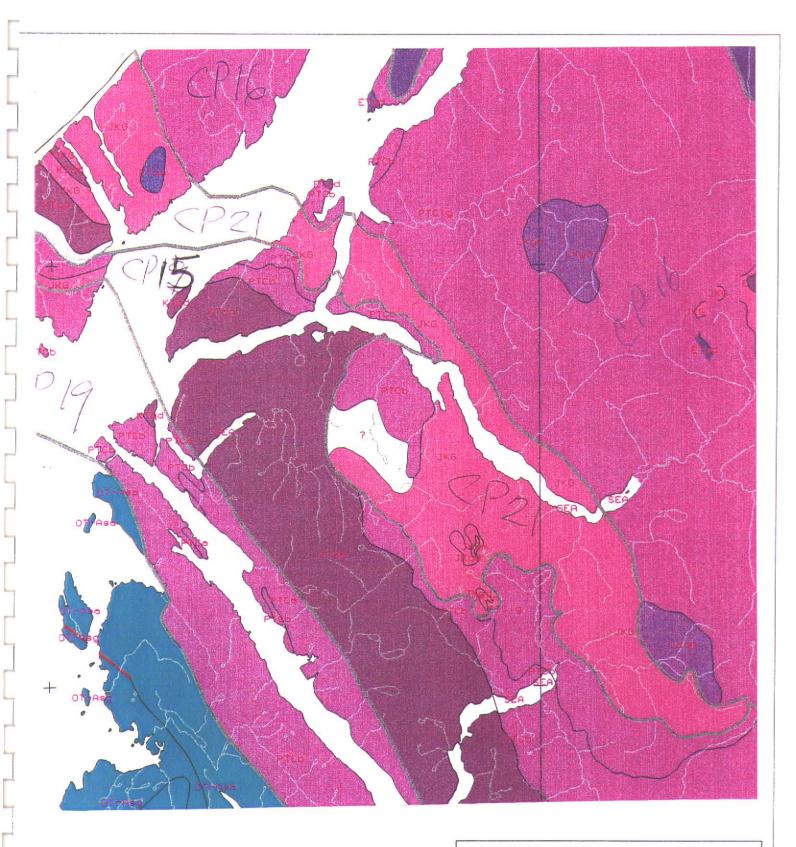


1b, Dominantly grey biotite ± hornblende gneiss, amphibolite, minor sillimanite ± garnet gneiss; 1c, Work Channel amphibolite; 1d, Dominantly biotite hornblende gneiss, amphibolite and minor migmatite, rare biotite ± muscovite ± garnet ± kyanite schist and gneiss



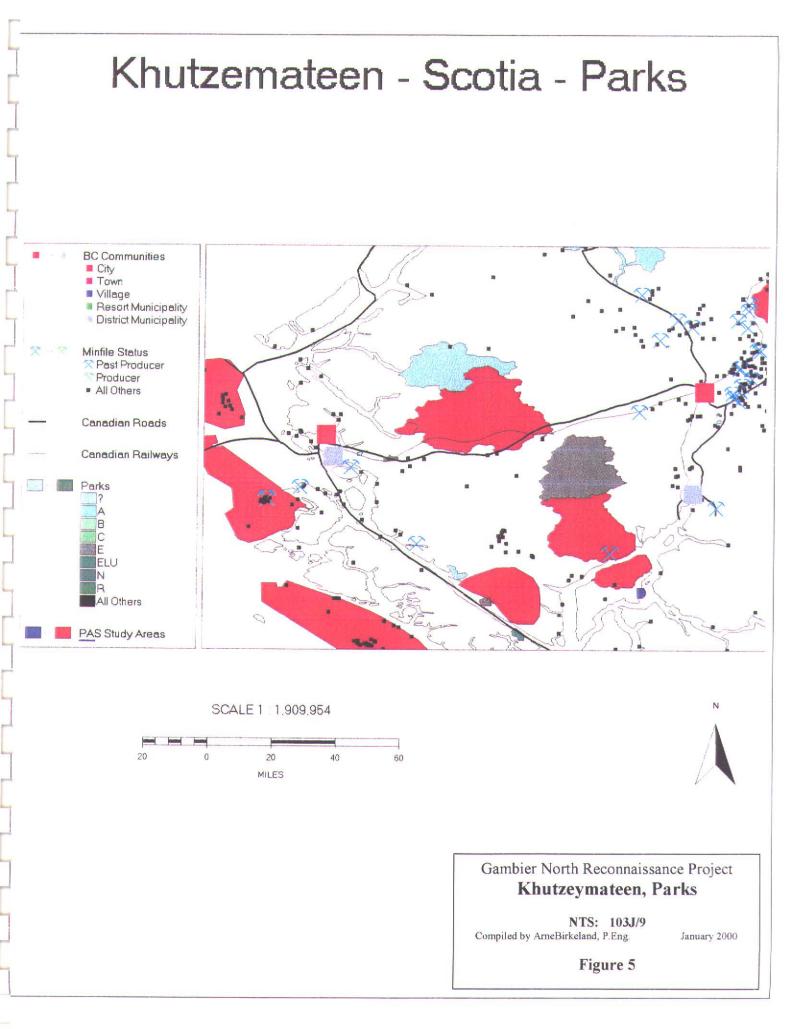
Older plutonic rocks


#### Gambier North Reconnaissance Project Geology, Prince Rupert, Skeena


Scale: 1:250,000 GSC Map 14472A, Hutchinson, 1977 NTS: 103J January 2000

1e

Migmatitic plutonic rock


Legend





Gambier North Reconnaissance Project Digital Geology Map Mineral Potential Block CP21 Scale: 1:250,000 NTS: 103J Compiled by BCDM, GSB February 1995

Figure 4



indicate some of the rocks may be vent proximal pyroclastic (rhyolite) breccias hosted in felsic tuffs and domes.

The Gambier group constitutes an economically important Island Arc Belt and related distal basinal rocks that occur as discontinuous belts and pendants marginal to the Coast Plutonic Complex extending from southwestern BC and trending northwestward into southeast Alaska. The Gambier Group equivalent rocks host the Britania Mine where 50 million tons of historical base metal production came from several associated and stacked polymetallic VMS deposits. Important VMS occurrences have been discovered in the Alaska *Panhandle* in correlative rocks.

#### 3.3. Geochemistry

As can be seen on the accompanying Figure 6, RGS Geochemistry, the Gambier group in this belt is highly anomalous in Zinc on a regional basis. Numerous values >95<sup>th</sup> percentile are present and range between 200 and 350 ppm. Threshold values of 100 ppm zinc (or less) are usually associated with Greenstone Island Arc belts in the Cordillera. There are also isolated copper and lead anomalies coincident with some zinc anomalies. There are no RGS gold values analyzed for in this area.

#### 4. 1999 RECONNAISSANCE PROGRAM

#### 4.1. Introduction

The objective of the 1999 program was to follow-up the RGS program and to establish and evaluate geochemical anomalies and related base metal mineralization. Specifically, prospecting and examination of float in anomalous drainages was conducted in an attempt to determine the host rocks and classification of mineralization reflected by the RGS geochemical anomalies.

Prospecting and an extensive stream sediment survey were carried out in drainages that are underlain by the favourable felsic meta-volcanic unit. Fifteen rock chip and forty five stream sediment samples were taken over the 40 km by 10 km belt. Prospecting and sampling was concentrated around the McGreggor Point area where numerous gossans in the cliff faces can be seen from the water.

Selected Stream Sediment Geochemical Values are tabulated in Table 1, and Rock Chip values are contained in Table 2. All samples and base metal values are plotted on either Figure 7, Regional Sample Location Map, or Figure 8, Detailed Sample Location Map. Analytical Procedures and Certificates are contained in Appendix C. All samples taken are described in Appendix D, Geochemical Data Sheets.

L

L

**i**...

**.**....

۰.

Ĺ.

h ....

## Table 1GNR Reconnaissance ProgramKhutzeymateen Inlet Project Area

#### Selected Stream Sediment Geochemical Values

A9928268 - CERTIFIED CLIENT : "ARNEX RESOURCES LIMITED " # of SAMPLES : 45 DATE RECEIVED : 08-SEP-1999 PROJECT : "GNR " CERTIFICATE COMMENTS : "ATTN: ARNE BIRKELAND"

| Sample | Au  | Ag   | As  | Ba  | Cd   | Cu  | Fe   | Hg  | Mn   | Мо  | Ni  | Pb  | Zn   |
|--------|-----|------|-----|-----|------|-----|------|-----|------|-----|-----|-----|------|
| No     | ppb | ppm  | ppm | ppm | ppm  | ppm | %    | ppm | ppm  | ppm | ppm | ppm | ppm  |
| 99601  | <5  | <0.2 | <2  | 90  | <0.5 | 23  | 2.64 | <1  | 235  | 5   | 17  | 2   | 90   |
| 99602  | <5  | <0.2 | <2  | 150 | 0.5  | 33  | 2.69 | <1  | 325  | 5   | 28  | <2  | 126  |
| 99603  | <5  | <0.2 | <2  | 70  | 1    | 20  | 3.57 | <1  | 325  | 3   | 15  | <2  | 112  |
| 99604  | <5  | <0.2 | 2   | 90  | 1.5  | 31  | 3.02 | <1  | 405  | 7   | 25  | 6   | 224  |
| 99605  | <5  | <0.2 | 2   | 110 | <0.5 | 31  | 2.33 | <1  | 240  | 4   | 21  | 6   | 98   |
| 99606  | <5  | <0.2 | <2  | 140 | 0.5  | 36  | 2.77 | <1  | 300  | 4   | 26  | <2  | 136  |
| 99607  | <5  | <0.2 | 2   | 90  | <0.5 | 20  | 4.24 | <1  | 400  | 1   | 16  | 2   | 68   |
| 99608  | <5  | <0.2 | <2  | 80  | <0.5 | 22  | 4.37 | <1  | 400  | 4   | 14  | 2   | - 54 |
| 99609  | <5  | <0.2 | 2   | 180 | <0.5 | 29  | 3.81 | <1  | 410  | 3   | 17  | 2   | 58   |
| 99610  | <5  | <0.2 | <2  | 200 | <0.5 | 16  | 2.91 | <1  | 350  | 2   | 15  | 2   | 76   |
| 99611  | <5  | <0.2 | <2  | 200 | <0.5 | 21  | 3.17 | <1  | 365  | 4   | 14  | 2   | 76   |
| 99612  | <5  | <0.2 | <2  | 210 | <0.5 | 19  | 3.15 | <1  | 380  | 4   | 16  | 2   | 74   |
| 99613  | <5  | <0.2 | <2  | 220 | <0.5 | 15  | 2.79 | <1  | 340  | 4   | 15  | <2  | 74   |
| 99614  | <5  | 0.2  | <2  | 250 | 3    | 63  | 4.23 | <1  | 455  | 10  | 40  | <2  | 318  |
| 99615  | <5  | <0.2 | <2  | 230 | 3.5  | 26  | 2.69 | <1  | 465  | 6   | 36  | <2  | 238  |
| 99616  | <5  | 0.2  | <2  | 250 | 2.5  | 48  | 3.75 | <1  | 460  | 6   | 39  | <2  | 288  |
| 99617  | <5  | 0.2  | <2  | 240 | 3    | 60  | 4.13 | <1  | 505  | 8   | 44  | <2  | 314  |
| 99618  | <5  | <0.2 | <2  | 270 | 4    | 31  | 3.26 | <1  | 835  | 5   | 34  | <2  | 304  |
| 99619  | <5  | 0.2  | <2  | 270 | 3    | 70  | 4.6  | <1  | 565  | 7   | 51  | <2  | 338  |
| 99620  | <5  | 0.4  | <2  | 330 | 3.5  | 74  | 4.77 | <1  | 735  | 8   | 62  | 4   | 410  |
| 99621  | <5  | <0.2 | <2  | 120 | <0.5 | 13  | 2.73 | <1  | 380  | 3   | 26  | 6   | 62   |
| 99622  | <5  | <0.2 | <2  | 190 | 0.5  | 19  | 3.2  | <1  | 1130 | 2   | 41  | 6   | 82   |

#### **Selected Stream Sediment Geochemical Values**

A9928268 - CERTIFIED CLIENT : "ARNEX RESOURCES LIMITED " # of SAMPLES : 45 DATE RECEIVED : 08-SEP-1999 PROJECT : "GNR " CERTIFICATE COMMENTS : "ATTN: ARNE BIRKELAND"

| Sample | Au  | Ag   | As  | Ba  | Cd   | Cu  | Fe   | Hg  | Mn   | Мо  | Ni  | Pb   | Zn  |
|--------|-----|------|-----|-----|------|-----|------|-----|------|-----|-----|------|-----|
| No     | ppb | ppm  | ppm | ppm | ppm  | ppm | %    | ppm | ppm  | ppm | ppm | ppm  | ppm |
| 99801  | <5  | <0.2 | 2.  | 70  | <0.5 | 23  | 1.76 | <1  | 190  | 3   | 15  | <2   | 38  |
| 99802  | <5  | <0.2 | <2  | 130 | <0.5 | 31  | 2.44 | <1  | 260  | 3   | 22  | <2   | 50  |
| 99803  | <5  | <0.2 | 2   | 140 | <0.5 | 19  | 3.49 | <1  | 465  | 2   | 28  | <2   | 70  |
| 99804  | <5  | <0.2 | <2  | 50  | <0.5 | 4   | 6.98 | <1  | 200  | 1   | 7   | <2   | 22  |
| 99805  | <5  | <0.2 | <2  | 50  | <0.5 | 5   | 2.15 | <1  | 135  | <1  | 6   | <2   | 18  |
| 99806  | <5  | <0.2 | <2  | 180 | <0.5 | 11  | 2.98 | <1  | 425  | 3   | -12 | <2   | 62  |
| 99807  | <5  | <0.2 | <2  | 210 | <0.5 | 12  | 3.3  | <1  | 435  | 2   | 13  | <2   | 62  |
| 99808  | <5  | <0.2 | <2  | 210 | <0.5 | 24  | 3.44 | <1  | 425  | 1   | 18  | <2   | 92  |
| 99809  | <5  | <0.2 | <2  | 320 | <0.5 | 29  | 2.93 | <1  | 380  | 4   | 25  | <2   | 68  |
| 99810  | <5  | <0.2 | <2  | 160 | <0.5 | 18  | 3.44 | <1  | 575  | 4   | 19  | <2   | 84  |
| 99811  | <5  | <0.2 | <2  | 150 | <0.5 | 21  | 3.23 | <1  | 570  | 3   | 24  | <2 - | 48  |
| 99812  | <5  | <0.2 | <2  | 90  | <0.5 | 19  | 3.98 | <1  | 415  | 3   | 16  | 2    | 60  |
| 99813  | <5  | <0.2 | <2  | 160 | <0.5 | 39  | 3.93 | <1  | 725  | 5   | 28  | 16   | 130 |
| 99814  | <5  | <0.2 | <2  | 330 | 1    | 49  | 4.29 | <1  | 760  | 7   | 47  | <2   | 198 |
| 99815  | <5  | <0.2 | <2  | 300 | 0.5  | 39  | 3.66 | <1  | 615  | 5   | 39  | 2    | 146 |
| 99816  | <5  | <0.2 | <2  | 330 | 1    | 53  | 4.46 | <1  | 790  | 8   | 45  | 2    | 194 |
| 99817  | <5  | <0.2 | <2  | 300 | 1.5  | 70  | 4.98 | <1  | 980  | 7   | 52  | 2    | 206 |
| 99818  | <5  | <0.2 | <2  | 280 | 1    | 43  | 3.94 | <1  | 640  | 7   | 42  | <2   | 162 |
| 99819  | <5  | <0.2 | <2  | 320 | 1.5  | 61  | 4.99 | <1  | 1130 | 8   | 48  | <2   | 202 |
| 99820  | <5  | <0.2 | <2  | 340 | 1    | 63  | 4.99 | <1  | 1010 | 8   | 57  | <2   | 208 |
| 99821  | <5  | <0.2 | <2  | 370 | 0.5  | 49  | 3.34 | <1  | 380  | 5   | 61  | 2    | 158 |
| 99822  | <5  | <0.2 | <2  | 260 | <0.5 | 19  | 4.78 | <1  | 1095 | 2   | 41  | 2    | 68  |
| 99823  | <5  | <0.2 | <2  | 270 | <0.5 | 14  | 3.41 | <1  | 650  | 2   | 47  | 2    | 60  |

**L** 

**\_**\_\_

ι.

L

L

L

## Table 2GNR Reconnaissance ProgramKhutzeymateen Inlet Project Area

#### Selected Rock Chip Geochemical Values

A9928273 - CERTIFIED CLIENT : "ARNEX RESOURCES LIMITED " # of SAMPLES : 16 DATE RECEIVED : 08-SEP-1999 PROJECT : "SCOTIA NORTH " CERTIFICATE COMMENTS : "ATTN: ARNE BIRKELAND"

| Zn   | Pb  | Ni  | Мо  | Μα   | Hg  | Fe   | Cu  | Cd   | Ba  | As  | Ag   | Au  | Sample |
|------|-----|-----|-----|------|-----|------|-----|------|-----|-----|------|-----|--------|
| ppm  | ppm | ррт | ppm | ppm  | ррт | %    | ppm | ppm  | ppm | ppm | ppm  | ppb | No     |
| 42   | 2   | 26  | 4   | 540  | 2   | 4.78 | 86  | 2    | 130 | <2  | 1    | <5  | 301651 |
| 32   | <2  | 1   | 4   | 215  | <1  | 1.59 | 25  | <0.5 | 140 | <2  | <0.2 | <5  | 301652 |
| 38   | <2  | 13  | 3   | 335  | <1  | 3.12 | 22  | <0.5 | 180 | <2  | <0.2 | <5  | 301653 |
| 38   | <2  | 10  | 3   | 440  | <1  | 3.5  | 41  | <0.5 | 140 | 2   | <0.2 | <5  | 301654 |
| 1360 | 20  | 68  | 3   | 185  | 1   | 3.33 | 27  | 4.5  | 50  | 18  | 4.2  | <5  | 301655 |
| 76   | <2  | 23  | 3   | 790  | 1   | 4.9  | 41  | <0.5 | 80  | <2  | 0.6  | <5  | 301656 |
| 112  | <2  | 49  | 17  | 890  | <1  | 3.45 | 50  | 1    | 100 | <2  | 0.8  | <5  | 301657 |
| 84   | <2  | 25  | 4   | 550  | <1  | 3.64 | 39  | <0.5 | 100 | <2  | 0.6  | <5  | 301658 |
| 82   | <2  | 70  | 28  | 30   | <1  | 2.35 | 45  | 2    | 60  | <2  | 0.6  | <5  | 301659 |
| 22   | <2  | 42  | 3   | 265  | <1  | 2.01 | 30  | <0.5 | 140 | <2  | <0.2 | <5  | 301660 |
| 200  | <2  | 50  | 11  | 285  | <1  | 2.87 | 42  | 4    | 10  | <2  | 0.6  | <5  | 301661 |
| 166  | <2  | 64  | 13  | 420  | <1  | 7.97 | 128 | 2    | 30  | 24  | 2    | <5  | 301662 |
| 672  | <2  | 34  | 23  | 470  | <1  | 2.21 | 42  | 16   | 440 | <2  | 0.6  | <5  | 301663 |
| 154  | 2   | 45  | 3   | 1085 | <1  | 7.73 | 32  | 2.5  | 70  | <2  | <0.2 | <5  | 301664 |
| 194  | <2  | 24  | 11  | 460  | <1  | 3.98 | 34  | 2    | 210 | 2   | 0.6  | <5  | 301665 |
| 834  | <2  | 28  | 14  | 860  | <1  | 4.58 | 84  | 21.5 | 120 | <2  | 2.6  | <5  | 301666 |

Moss mat sampling was employed whenever possible. Moss mat sampling has been conducted by the author taking hundreds of moss mat and active stream sediment samples in West Coast mountainous terrane over the past ten years. Moss mat sampling generally returns the same values as active stream sediments for the hydromorphically transported elements such as Zn, Cu and Ag. Moss mats give higher values and better anomaly contrasts for mechanically transported metals such as Au, Pb and W. In many steep West Coast drainage's, there is no active stream sediment to sample while moss mats are generally always abundant within the freshet level of the drainage. Within the mat roots

Threshold values for determining anomalies for various elements are presented in Table 3. Threshold values were determined utilizing RGS statistical data combined with personal experience from West Coast sampling with similar underlying geology. The 95% anomalies are highlighted on Figure 8.

## Table 3Stream Sediment Threshold Values

is trapped sediment that provides an ideal sampling median.

| Percentile    |     | Three | hold V | alues (p  | opm) |
|---------------|-----|-------|--------|-----------|------|
|               | Ag  | Ba    | Cu     | <u>Pb</u> | Zn   |
| 95%ile        | .04 | 330   | 45     | 6         | 200  |
| <u>98%ile</u> |     |       | 60     |           | 300  |

#### 4.2. Results

#### 4.2.1. Regional Results

No anomalous stream sediment values were present for samples taken in the southeastern region of the project area (See Regional Map, Figure 8). Two samples had elevated Ag, but this is considered due to the geologic setting as opposed to reflecting a mineralized source.

In the northern end of the project area, rock sample 301659 returned an elevated value for Cu. This may be significant in that those anomalies from the Detailed Sample area to the southeast trend in this direction. The sample is described as being a meta-argillite containing pyrite laminations.

#### 4.2.2. McGreggor Point - "Wal" Point ("Walskakul" Point) Area

Twelve stream sediment samples and four rock chip samples are anomalous in base metals over a distance of 6 kms in the Wal Point area (See Figure 8).

Two drainages directly east of McGreggor point contain Zn anomalies (99614-99616). A quartz pyrite "stockwork feeder" type vein 1 km to the south contained visible chalcopyrite and sample 301662 returned a value of 128 ppm Cu over a 0.6 m true width.

Numerous gossans are present in the two creeks flanking Wal Point. Both drainages are anomalous in Zn with elevated Cu values. Pb values are also present in samples 99605 and more importantly, 16 ppm from sample 99813 indicating these samples may be proximal to the mineralizing source.

It was difficult to prospect in this area because of steep terrane. The most significant rock chip result was from sample 301655, which ran 1360 ppm Zn, 20 ppm Pb and 4.2 ppm Ag over a 0.3 m true width. The rock is described as being a silicified pyritic felsic gneiss containing pyrite laminations concordant with foliation. Mariposite was thought to have been identified. This rock unit is thought to be a metamorphosed exhalite unit consisting predominantly of chert and pyrite.

On trend 800 m to the south, sample 301663 contained 672 ppm Zn and 440 ppm Ba within a 1.4 m thick meta-rhyolite containing stratiform sulphides and barite. Elevated Ba values in the 300 ppm range and Cd values in the 3 ppm range are present in many of the anomalous samples from the Wal Point area.

Three hundred and fifty m to the east on the east face of Wal Point ridge, sample 301666 returned values of 834 ppm Zn, 84 ppm Cu and 2.6 ppm Ag. The sample was taken across a 1.4 m wide rusty felsic meta-volcanic unit containing stratiform massive sulphide laminae. Disseminated sphalerite was notes associated with pyrite laminae. Sediment sample 99604 reflects the downslope dispersion from 301666.

Three drainages contain five Zn - Cu anomalies over a strike length of 1500 m approximately 3 km north of Wal Point. High values of 410 ppm Zn are reported from site 99620, with the down-stream sample at 99619 returning 338 ppm Zn. A very limited amount of prospecting was done in this area.

Substantial gossanous outcrops occur on the western flank of McGreggor Peninsula at rock chip sites 302658 and 301664. Rocks are described as being a pyritic meta-rhyolite unit containing up to 10% pyrite locally. Sample 301664 contained 8% Fe, indicating high pyrite content but base metal values were not anomalous.

Stream sediment sampling in the southeastern part of the project area in the vicinity of Mouse Creek did not return any anomalous values. Samples taken from the Central Gneiss Unit south of Khutzeymateen Inlet were likewise not anomalous.

#### 4.3. Conclusions and Recommendations

A predominately felsic pyritic meta-volcanic unit is present from at least McGreggor Peninsula extending in a northerly direction for at least 8 km to 99620 creek. Numerous stream sediment and "country rock" samples are anomalous in principally Zn.

Creek float and outcrop indicates that geochemical anomalies are associated with VMS style mineralization as evidenced by the following:

- Mineralization occurs as disseminated stratabound pyritic volcanic units and as pyrite laminae stratiform to foliation and hosting volcanic stratigraphy.
- Although all the rocks are intensely metamorphosed, a mineralized felsic volcanic geological environment appears to be present along the 8 km belt.
- The presence of elevated Ba (note, Ba values are "partials" due to incomplete digestion) and Cd and associated exhalite layers indicates white smokers are present in the Wal Point area. Black smoker pipes are considered responsible for the regional distribution of pyrite along the belt.
- Physiography indicates that major reactivated structures are present in the two creeks flanking Wal Point and extending to the south forming the boundaries of McGreggor Peninsula. It is considered that these structures and coarse pyroclastic rhyolite breccias observed in outcrop are vent proximal.

Twenty claim units were located in the field in the Wal Point Area. Although a mineralized VMS belt appears to be present, no massive sulphide float or showings were found during a limited amount of prospecting. As such, the claims were not recorded because no specific mineralized target has yet been found.

Much more detailed prospecting, sampling and geologic mapping is recommended for the Wal Point area. It is recommended that stream sediment sample spacing done at approximately 100 m intervals. Gossanous areas should be prospected and soil or talus-fine sampling should be applied where possible to isolate base metal centers within the sulphide belt.

Airborne magnetic data available through <u>WWW.EM.GOV.BC.CA/GEOLOGY</u> shows the Gambier group rocks at Khutzeymateen Inlet occur in a north trending magnetic low. Additional reconnaissance prospecting and geochemical sampling are recommended to the north of the Wal Point trend along Steamer Passage and on Somerville Island.

Because of the logistical difficulties of operating in the area, it is highly recommended that a live-abroad boat be positioned in Tsamspanaknok Bay, or ideally in Croix Lagoon if tide conditions permit. Exploration activities could then be conducted relatively safely utilizing small boat access. It is recommended tat mountaineering equipment be appropriately employed when prospecting in steep areas.

Because of the digestion technique used, Ba values for the samples taken area only partial values. It is recommended that all pulps be analyzed for total Ba as Ba is expected to be associated with exhalites in this area.

Report dated at North Vancouver, British Columbia,

This <u>12</u> day of <u>January</u>, 2000

Richland

Arne O. Birkeland, P. Eng.

#### 5. BIBLIOGRAPHY, SELECTED REFERENCES

BC RGS 42, Regional Geochemical Survey, NTS 103I/J – Prince Rupert/Terrace, Matysek and Jackaman, May, 1995

GSC Memoir 394, Geology of the Prince Rupert - Skeena Map Area, Hutchison, 1982

Skeena -- Nass Mineral Potential Workshop, March 1995

WWW.EM.GOV.BC.CA/GEOLOGY

### APPENDIX A

## **Certificate of Qualification**

\_\_\_\_\_

#### **Certificate of Qualification**

I, Arne O. Birkeland, do hereby certify that:

- 1. I am a Geological Engineer in the employ of Arnex Resources Ltd. with offices at 2069 Westview Drive, North Vancouver, British Columbia.
- 2. I am a 1972 graduate of the Colorado School of Mines with a Bachelor of Science Degree in Geological Engineering.
- 3. I have been a registered Professional Engineer with the Association of Professional Engineers Association of British Columbia since 1975, Registration Number 9870.
- 4. My primary employment since 1966 has been in the field of mineral exploration and development, namely as a Geological Engineer.
- 5. My experience has encompassed a wide range of geological environments including extensive experience in classification of deposit types as well as considerable familiarization with geochemical and geophysical survey techniques and diamond drilling procedures.

Dated at North Vancquver, British Columbia,

12th day of January, 2000 This

KELAND 0.8 Arne O. Birkeland, P. Eng.

### **APPENDIX C**

### **Analytical Procedures and Certificates**

To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

A9928268

Comments: ATTN: ARNE BIRKELAND

## CERTIFICATE

Г

A9928268

212 Brooksbank Ave., British Columbia, Canada

Chemex Labs Ltd.

North Vancouver

V7J 2C1

Analytical Chemists \* Geochemists \* Registered Assayers

PHONE: 604-984-0221 FAX: 604-984-0218

(AN) - ARNEX RESOURCES LIMITED

Project: SCOTIA NORTH P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 17-SEP-1999.

|                   | SAMPLE PREPARATION |                                                                    |  |  |  |  |  |  |
|-------------------|--------------------|--------------------------------------------------------------------|--|--|--|--|--|--|
| CHEMEX<br>CODE    | NUMBER<br>SAMPLES  | DESCRIPTION                                                        |  |  |  |  |  |  |
| 201<br>202<br>229 | 45<br>45<br>45     | Dry, sieve to ~80 mesh<br>save reject<br>ICP - AQ Digestion charge |  |  |  |  |  |  |
|                   | 1.                 |                                                                    |  |  |  |  |  |  |

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Ha, Sr, Ti, Tl, W.

|                                                                                                                                                                                                                                                                            |                                                                                 | ANALYTICAL P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ROCEDURE                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                            | NUMBER<br>SAMPLES                                                               | DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | METHOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DETECTION<br>LIMIT                                                                                                                                                                                                    | upper<br>Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 983<br>2118<br>2119<br>2120<br>557<br>2121<br>2122<br>2123<br>2124<br>2125<br>2126<br>2127<br>2128<br>2126<br>2130<br>2131<br>2132<br>2151<br>2134<br>2135<br>2136<br>2137<br>2138<br>2139<br>2140<br>2141<br>2142<br>2143<br>2144<br>2145<br>2146<br>2147<br>2148<br>2149 | 45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>45<br>4 | Au ppb: Fuse 30 g sample<br>Ag ppm: 32 element, soil & rock<br>Al %: 32 element, soil & rock<br>B ppm: 32 element, soil & rock<br>B ppm: 32 element, soil & rock<br>B ppm: 32 element, soil & rock<br>Ca %: 32 element, soil & rock<br>Ca ppm: 32 element, soil & rock<br>Mg ppm: 32 element, soil & rock<br>Mg ppm: 32 element, soil & rock<br>Mg %: 32 element, soil & rock<br>Mn ppm: 32 element, soil & rock<br>Mi ppm: 32 element, soil & rock<br>Pf ppm: 32 element, soil & rock<br>Mi ppm: 32 element, soil & rock | FA-AAS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS<br>ICP-ARS | $\begin{array}{c} 5\\ 0.2\\ 0.01\\ 2\\ 10\\ 10\\ 0.5\\ 2\\ 0.01\\ 0.5\\ 1\\ 1\\ 0.5\\ 1\\ 0.01\\ 10\\ 0.01\\ 5\\ 1\\ 0.01\\ 10\\ 2\\ 0.01\\ 1\\ 10\\ 2\\ 1\\ 1\\ 0.01\\ 10\\ 10\\ 10\\ 10\\ 1\\ 10\\ 2\\ \end{array}$ | $10000 \\ 100.0 \\ 15.00 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 10000 \\ 1000$ |

| 0            |            |            | hen<br>212 Brook<br>British Col<br>PHONE: 6 | nists * Geo<br>sbank Av<br>umbia, C | ochemists<br>/e.,  <br>anada | * Register<br>North Va | ed Assays<br>ncouver<br>V7J 2C1 |            |                | Proje      | 2069 WI<br>NORTH<br>V7M 3B | STVIEW<br>VANCOU<br>I<br>SCOTIA I | JVER, BO  | 2         |           | *            |              |            | Total Pa     | te Date: 1<br>No. 11<br>mber 11 | 2            |
|--------------|------------|------------|---------------------------------------------|-------------------------------------|------------------------------|------------------------|---------------------------------|------------|----------------|------------|----------------------------|-----------------------------------|-----------|-----------|-----------|--------------|--------------|------------|--------------|---------------------------------|--------------|
|              |            |            |                                             |                                     |                              |                        | <b></b> .                       |            |                |            | CE                         | RTIFI                             | CATE      | ÓF A      | NAL       | /SIS         | ļ            | \9928      | 268          |                                 |              |
| SAMPLE       | PRI<br>COI |            | λu ppb<br>Гλ+λλ                             | Ag<br>ppm                           | л1<br>%                      | <b>As</b><br>ppm       | B<br>DDM                        | Ba<br>ppm  | Ве<br>ррш      | Bi<br>ppm  | Ca<br>%                    | Cđi<br>ppan                       | Со<br>ррш | Cr<br>ppm | Cu<br>ppm | Fe<br>%      | Ga<br>DDE    | Hg<br>ppm  | K<br>X       | La<br>ppm                       | Ng<br>%      |
| 99601        | 201        | 202        | < 5                                         | < 0.2                               | 1.23                         | < 2                    | < 10                            | 90         | < 0.5          | < 2        | 0.74                       | < 0.5                             |           | 30        | 23        | 2.64         | < 10         | < 1        | 0.15         | < 10                            | 0.65         |
| 9602<br>9603 |            | 202        |                                             | < 0.2                               | 1.69                         | < 2                    | < 10                            | 150        | < 0.5          | < 2        | 0.81                       | 0.5                               | 13        | 41        | 33        | 2.69         | < 10         | < 1        | 0.23         | < 10                            | 0.96         |
| 9604         | 201<br>201 |            |                                             | < 0.2<br>< 0.2                      | 1.07<br>2.15                 | < 2                    | < 10<br>< 10                    | 70<br>90   | < 0.5          | < 2        | 0.85                       | 1.0                               | 8         | 22        | 20        | 3.57         | < 10         | < 1        | 0.15         | < 10                            | 0.44         |
| 9605         | 201        |            |                                             | < 0.2                               | 1.38                         | 2                      | < 10                            | 110        | < 0.5<br>< 0.5 | < 2<br>< 2 | 1.12<br>0.84               | 1.5<br>< 0.5                      | 11<br>10  | 29<br>31  | 31<br>31  | 3.02<br>2.33 | < 10<br>< 10 | < 1<br>< 1 | 0.14<br>0.17 | < 10<br>< 10                    | 0.76<br>0.68 |
| 9606         | 201        |            |                                             | < 0.2                               | 1.71                         | < 2                    | < 10                            | 140        | < 0.5          | < 2        | 0.80                       | 0.5                               | 13        | 39        | 36        | 2.77         | < 10         | < 1        | 0.22         | < 10                            | 0.93         |
| 9607<br>9608 | 201<br>201 | 202<br>202 |                                             | < 0.2<br>< 0.2                      | 1.25                         | < 2                    | < 10                            | 90         | < 0.5          | < 2        | 0.54                       | < 0.5                             | 13        | 40        | 20        | 4.24         | < 10         | < 1        | 0.17         | < 10                            | 0.93         |
| 9609         | 201        |            |                                             | < 0.2                               | 1.08<br>1.50                 | < 2<br>< 2             | < 10<br>< 10                    | 80<br>180  | < 0.5          | < 2        | 0.58<br>0.46               | < 0.5<br>< 0.5                    | 13<br>15  | 37<br>57  | 22        | 4.37         | < 10         | < 1        | 0.15         | < 10                            | 0.78         |
| 9610         | 201        |            | _                                           | < 0.2                               | 1.54                         | < 2                    | < 10                            | 200        | < 0.5          | < 2        |                            | < 0.5                             | 10        | 38        | 29<br>16  | 3.81<br>2.91 | < 10<br>< 10 | < 1<br>< 1 | 0.27<br>0.49 | < 10<br>< 10                    | 1.31<br>0.73 |
| 9611         | 201        |            |                                             | < 0.2                               | 1.69                         | < 2                    | < 10                            | 200        | < 0.5          | < 2        | 0.56                       | < 0.5                             | 9         | 36        | 21        | 3.17         | < 10         | < 1        | 0.48         | < 10                            | 0.78         |
| 9612<br>9613 | 201        | 202        |                                             | < 0.2                               | 1.56                         | < 2                    | < 10                            | 210        | < 0.5          | < 2        | 0.53                       | < 0.5                             | 11        | 37        | 19        | 3.15         | < 10         | < 1        | 0.51         | < 10                            | 0.72         |
| 9614         | 201        |            | < 5<br>< 5                                  | < 0.2                               | 1.53<br>2.02                 | < 2                    | < 10<br>< 10                    | 220<br>250 | < 0.5          | < 2<br>< 2 | 0.44<br>0.84               | < 0.5                             | 9<br>11   | 34        | 15        | 2.79         | < 10         | < 1        | 0.52         | < 10                            | 0.75         |
| 9615         | 201        |            |                                             | < 0.2                               | 1.67                         | < 2                    | < 10                            | 230        | < 0.5          | < 2        | 0.79                       | 3.0<br>3.5                        | 10        | 77<br>57  | 63<br>26  | 4.23<br>2.69 | < 10<br>< 10 | < 1<br>< 1 | 0.58<br>0.49 | < 10<br>< 10                    | 1.15         |
| 9616         | 201        |            | < 5                                         | 0.2                                 | 1.92                         | < 2                    | < 10                            | 250        | < 0.5          | < 2        | 0.79                       | 2.5                               | 12        | 74        | 48        | 3.75         | < 10         | < 1        | 0.57         | < 10                            | 1.13         |
| 9617<br>9618 | 201        |            | < 5<br>< 5                                  | 0.2                                 | 1.91                         | < 2                    | < 10                            | 240        | < 0.5          | < 2        | 0.84                       | 3.0                               | 14        | 72        | 60        | 4.13         | < 10         | < 1        | 0.53         | < 10                            | 1.09         |
| 9619         | 201        |            | < 5                                         | < 0.2                               | 1.89<br>2.29                 | < 2<br>< 2             | < 10<br>< 10                    | 270<br>270 | < 0.5<br>< 0.5 | < 2        | 0.67<br>0.90               | 4.0                               | 18        | 52        | 31        | 3.26         | < 10         | < 1        | 0.55         | < 10                            | 0.87         |
| 9620         |            |            | < 5                                         | 0.4                                 | 2.62                         | < 2                    | < 10                            | 330        | < 0.5          | < 2        | 0.79                       | 3.5                               | 15<br>24  | 87<br>95  | 70<br>74  | 4.60<br>4.77 | < 10<br>< 10 | < 1<br>< 1 | 0.56<br>0.69 | < 10<br>< 10                    | 1.28         |
| 9621         | 201        |            |                                             | < 0.2                               | 1.49                         | < 2                    | 10                              | 120        | < 0.5          | < 2        | 0.35                       | < 0.5                             | 13        | 74        | 13        | 2.73         | < 10         | < 1        | 0.18         | < 10                            | 0.83         |
| 9622<br>9801 |            | 202<br>202 |                                             | < 0.2<br>< 0.2                      | 1.79<br>0.93                 | < 2                    | < 10                            | 190        | < 0.5          | < 2        | 0.60                       | 0.5                               | 27        | 59        | 19        | 3.20         | < 10         | < 1        | 0.13         | < 10                            | 0.69         |
| 9802         | 201        |            |                                             | < 0.2                               | 1.27                         | < 2                    | < 10<br>< 10                    | 70<br>130  | < 0.5          | < 2<br>< 2 | 0.33<br>0.48               | < 0.5                             | 9<br>12   | 33<br>46  | 23<br>31  | 1.76         | < 10         | < 1        | 0.17         | < 10                            | 0.73         |
| 9803         | 201        | 202        |                                             | < 0.2                               | 1.91                         | < 2                    | < 10                            | 140        | < 0.5          | < 2        |                            | < 0.5                             | 15        | 49        | 19        | 3.49         | < 10<br>< 10 | < 1<br>< 1 | 0.22<br>0.28 | < 10<br>< 10                    | 0.98<br>1.09 |
| 9804         | 201        |            |                                             | < 0.2                               | 0.29                         | < 2                    | < 10                            | 50         | < 0.5          | < 2        | 0.43                       | < 0.5                             | 6         | 32        | 4         | 6.98         | < 10         | < 1        | 005          | < 10                            | 0.17         |
| 9805<br>9806 | 201        |            | _                                           | < 0.2<br>< 0.2                      | 0.36                         | < 2                    | < 10                            | 50         | < 0.5          | < 2        |                            | < 0.5                             | 4         | 13        | 5         | 2.15         | < 10         | < 1        | 0.08         | < 10                            | 0.21         |
| 9807         | 201        |            | _                                           | < 0.2                               | 1.29<br>1.41                 | < 2<br>< 2             | < 10<br>< 10                    | 180<br>210 | < 0.5<br>< 0.5 | < 2        |                            | < 0.5<br>< 0.5                    | 13<br>14  | 24<br>23  | 11        | 2.98         | < 10         | < 1        | 0.27         | < 10                            | 0.73         |
| 9808         | 201        |            |                                             | < 0.2                               | 1.80                         | < 2                    | < 10                            | 210        | < 0.5          | < 2        |                            | < 0.5                             | 15        | 37        | 12<br>24  | 3.30<br>3.44 | < 10<br>< 10 | < 1<br>< 1 | 0.29<br>0.45 | < 10<br>< 10                    | 0.77<br>1.18 |
| 9809         | 201        |            |                                             | < 0.2                               | 1.91                         | < 2                    | < 10                            | 320        | < 0.5          | < 2        | 0.33                       | < 0.5                             | 15        | 81        | 29        | 2.93         | < 10         | < 1        | 0.63         | < 10                            | 1.60         |
| 9810<br>9811 | 201<br>201 | 202        |                                             | < 0.2                               | 1.82                         | < 2                    | < 10                            | 160        | < 0.5          | < 2        | <b>.</b>                   | < 0.5                             | 16        | 48        | 18        | 3.44         | < 10         | < ī        | 0.30         | < 10                            | 1.35         |
| 9812         | 201        | 202        |                                             | < 0.2<br>< 0.2                      | 1.26<br>1.37                 | < 2<br>< 2             | < 10<br>< 10                    |            | < 0.5          | < 2        | 0.42<br>0.51               |                                   | 16        | 50        | 21        | 3.23         | < 10         | < 1        | 0.21         | < 10                            | 0.83         |
| 9813         | 201        | 202        |                                             | < 0.2                               | 1.71                         | < 2                    | < 10                            |            | < 0.5          | < 2        | 0.84                       |                                   | 13<br>17  | 39<br>33  | 19<br>39  | 3.98<br>3.93 | < 10<br>< 10 | < 1<br>< 1 | 0.17<br>0.24 | < 10<br>10                      | 0.99<br>0.78 |
| 9814         | 201        |            |                                             | < 0.2                               | 2.68                         | < 2                    | < 10                            | 330        | < 0.5          | < 2        | 1.10                       | 1.0                               | 17        | 52        | 49        | 4.29         | < 10         | < 1        | 0.86         | < 10                            | 1.09         |
| 9815<br>9816 | 201<br>201 |            |                                             | < 0.2                               | 2.31                         | < 2                    | < 10                            |            | < 0.5          | < 2        | 0.83                       | 0.5                               | 14        | 46        | 39        | 3.66         | < 10         | < 1        | 0.77         | < 10                            | 0.93         |
| 9817         | 201        |            |                                             | < 0.2<br>< 0.2                      | 2.78<br>2.74                 | < 2<br>< 2             | < 10<br>< 10                    |            | < 0.5<br>< 0.5 | < 2<br>< 2 | 1.09<br>1.05               | 1.0                               | 18        | 50        | 53        | 4.46         | < 10         | < 1        | 0.87         | < 10                            | 1.08         |
| 9818         | 201        | 202        |                                             | < 0.2                               | 2.28                         | 22                     | < 10                            |            | < 0.5          | < 2        | 0.91                       | 1.5<br>1.0                        | 23<br>15  | 51<br>45  | 70<br>43  | 4.98<br>3.94 | < 10<br>< 10 | ふ          | 0.76<br>0.73 | < 10<br>< 10                    | 1.02         |
|              |            |            |                                             |                                     |                              |                        |                                 |            |                |            |                            |                                   |           |           |           |              |              | 1-1        |              | 1                               | 4100         |

and the second sec

CERTIFICATION:\_

TION:\_\_\_\_\_

late

| C            |                 | Analytical Cher<br>212 Brook<br>British Col<br>PHONE: 6 | nists * Ge<br>sbank Av<br>umbia, C | ochemists '<br>ve., i<br>Canada | * Registe<br>North Va | red Assaye<br>Incouver<br>V7J 2C1 |            |              |            | ARNEX<br>2069 WE<br>NORTH<br>V7M 3B1<br>ot : S<br>nents: A |           | V DR.<br>UVER, B<br>NORTH |              | 1            | *          |              | Page Number : 1-B<br>Total Pages :2<br>Certificate Date: 17-SEP<br>Invoice No. : 1992820<br>P.O. Number :<br>Account : AN |
|--------------|-----------------|---------------------------------------------------------|------------------------------------|---------------------------------|-----------------------|-----------------------------------|------------|--------------|------------|------------------------------------------------------------|-----------|---------------------------|--------------|--------------|------------|--------------|---------------------------------------------------------------------------------------------------------------------------|
|              |                 | <b></b>                                                 |                                    |                                 |                       |                                   |            |              |            | CE                                                         | RTIFI     | CATE                      | OF A         | NALY         | rsis       | A            | <b>\9928268</b>                                                                                                           |
| SAMPLE       | PREP<br>CODE    | Mn<br>ppm                                               | No<br>ppm                          | Na<br>%                         | Ni<br>ppa             | p<br>ppm                          | Pb<br>ppm  | 8<br>%       | Sb<br>ppm  | Sc<br>ррт                                                  | Sr<br>ppm | Ti<br>%                   | T1<br>ppm    | U<br>mqq     | v<br>ppm   | W            | Zn<br>ppn                                                                                                                 |
| 99601        | 201 20          |                                                         | 5                                  | 0.05                            | 17                    | 990                               | 2          | 0.04         | < 2        | 4                                                          | 34        | 0.11                      | < 10         | < 10         | 59         | < 10         | 90                                                                                                                        |
| 9602<br>9603 | 201 203         |                                                         | 5                                  | 0.06                            | 28                    | <b>B4</b> 0                       | < 2        | 0.04         | 2          | 5                                                          | 41        | 0.13                      | < 10         | < 10         | 67         | < 10         | 126                                                                                                                       |
| 9604         | 201 202 201 202 |                                                         | 3<br>7                             | 0.04<br>0.05                    | 15<br>25              | 1180<br>800                       | < 2        | 0.04         | < 2        | 3                                                          | 35        | 0.10                      | < 10         | < 10         | 64         | < 10         | 112                                                                                                                       |
| 9605         | 201 20          |                                                         | 4                                  | 0.06                            | 25                    | 1320                              | 6          | 0.07<br>0.07 | < 2        | 5                                                          | 81<br>41  | 0.11<br>0.10              | < 10<br>< 10 | < 10<br>< 10 | 60<br>54   | < 10<br>< 10 | 224<br>98                                                                                                                 |
| 9606         | 201 202         |                                                         | 4                                  | 0.07                            | 26                    | 910                               | < 2        | 0.07         | < 2        | 5                                                          | 42        | 0.13                      | < 10         | < 10         | 68         | < 10         | 136                                                                                                                       |
| 9607<br>9608 | 201 202 202 202 |                                                         | 1                                  | 0.02                            | 16                    | 990                               | 2          | 0.09         | 2          | 5                                                          | 15        | 0.18                      | < 10         | < 10         | 93         | < 10         | 68                                                                                                                        |
| 9609         | 201 202 202     |                                                         | 4                                  | 0.02<br>0.05                    | 14<br>17              | 1060<br>890                       | < 2        | 0.10         | < 2        | 4                                                          | 14        | 0.14                      | < 10         | < 10         | 89         | < 10         | 54                                                                                                                        |
| 9610         | 201 20          |                                                         | 2                                  | 0.05                            | 15                    | 880                               | < 2        | 0.10<br>0.15 | < 2        | 4                                                          | 15<br>30  | 0.21<br>0.16              | < 10<br>< 10 | < 10<br>< 10 | 85<br>82   | < 10<br>< 10 | 58<br>76                                                                                                                  |
| 611          | 201 202         |                                                         | 4                                  | 0.06                            | 14                    | 1020                              | < 2        | 0.13         | 2          | 7                                                          | 37        | 0.17                      | < 10         | < 10         | 84         | < 10         | 76                                                                                                                        |
| 9612<br>9613 | 201 202 202     |                                                         | <u>+</u>                           | 0.05                            | 16                    | 980                               | 2          | 0.17         | 2          | 6                                                          | 33        | 0.16                      | < 10         | < 10         | 84         | < 10         | 74                                                                                                                        |
| 9614         | 201 202         |                                                         | 4<br>10                            | 0.05<br>0.08                    | 15<br>40              | 770<br>1 <b>49</b> 0              | < 2        | 0.14         | 2          | .6                                                         | 29        | 0.16                      | < 10         | < 10         | 76         | < 10         | 74                                                                                                                        |
| 9615         | 201 202         |                                                         | -6                                 | 0.06                            | 36                    | 990                               | < 2        | 0.27<br>0.05 | < 2<br>2   | 10<br>8                                                    | 58<br>48  | 0.18<br>0.15              | < 10<br>< 10 | < 10<br>< 10 | 116<br>96  | < 10<br>< 10 | 318<br>238                                                                                                                |
| 9616         | 201 202         |                                                         | 6                                  | 0.07                            | 39                    | 1310                              | < 2        | 0.21         | 2          | 9                                                          | 52        | 0.17                      | < 10         | < 10         | 115        | < 10         | 288                                                                                                                       |
| 9617<br>9618 | 201 202 201 202 |                                                         | 8                                  | 0.07                            | 44                    | 1520                              | < 2        | 0.22         | 2          | 9                                                          | 54        | 0.16                      | < 10         | < 10         | 114        | < 10         | 314                                                                                                                       |
| 9619         | 201 202 201 202 |                                                         | 5<br>7                             | 0.04<br>0.08                    | 34<br>51              | 930<br>1370                       | < 2<br>< 2 | 0.07         | 2          | 9                                                          | 33        | 0.18                      | < 10         | < 10         | 88         | < 10         | 304                                                                                                                       |
| 9620         | 201 202         |                                                         | 8                                  | 0.08                            | 62                    | 1120                              | 1          | 0.20         | 2          | 11<br>12                                                   | 67<br>61  | 0.19<br>0.21              | < 10<br>< 10 | < 10<br>< 10 | 129<br>132 | < 10<br>< 10 | 338<br>410                                                                                                                |
| 9621         | 201 202         |                                                         | 3                                  | 0.04                            | 26                    | 690                               | 6          | 0.05         | < 2        | - 4                                                        | 34        | 0.18                      | < 10         | < 10         | 65         | < 10         | 62                                                                                                                        |
| 9622<br>9801 | 201 202 201 202 |                                                         | 23                                 | 0.03                            | 41                    | 770                               | 6          | 0.10         | 2          | 4                                                          | 28        | 0.21                      | < 10         | < 10         | 65         | < 10         | 82                                                                                                                        |
| 9802         | 201 202         |                                                         | 3                                  | 0.07<br>0.03                    | 15<br>22              | 620<br>880                        | < 2        | 0.03         | < 2        | 2                                                          | 12        | 0.12                      | < 10         | < 10         | 45         | < 10         | 38                                                                                                                        |
| 9803         | 201 202         |                                                         | 2                                  | 0.05                            | 28                    | 760                               | < 2        | 0.01         | < 2<br>< 2 | 5                                                          | 11<br>21  | 0.15<br>0.25              | < 10<br>< 10 | < 10<br>< 10 | 63<br>84   | < 10<br>< 10 | 50<br>70                                                                                                                  |
| 9804         | 201 202         |                                                         | 1                                  | 0.02                            | 7                     | 1110                              | < 2        | 0.01         | < 2        | 1                                                          | 8         | 0.08                      | < 10         | < 10         | 112        | < 10         | 22                                                                                                                        |
| 9806         | 201 202 201 202 |                                                         | < 1                                | 0.02                            | 6<br>12               | 820                               |            | < 0.01       | < 2        | 1                                                          | .7        | 0.06                      | < 10         | < 10         | 39         | < 10         | 18                                                                                                                        |
| 9807         | 201 202         | 435                                                     | 2                                  | 0.03                            | 12<br>13              | 680<br>770                        | < 2<br>< 2 | 0.01<br>0.01 | < 2<br>< 2 | 3                                                          | 11<br>11  | 0.23<br>0.26              | < 10         | < 10         | 79         | < 10         | 62                                                                                                                        |
| 9808         | 201 202         |                                                         | ī                                  | 0.04                            | 18                    | 910                               | < 2        | 0.02         | < 2        | 5                                                          | 17        | 0.27                      | < 10<br>< 10 | < 10<br>< 10 | 90<br>106  | < 10<br>< 10 | 62<br>92                                                                                                                  |
| 9809         | 201 202         |                                                         | 4                                  | 0.03                            | 25                    | 560                               | < 2        | 0.03         | 2          | 5                                                          |           | 0.23                      | < 10         | < 10         | 85         | < 10         | 68                                                                                                                        |
| 9810<br>9811 | 201 202 201 202 |                                                         | 4                                  | 0.04                            | 19                    | 780                               | < 2        | 0.04         | 2          | 5                                                          | 14        | 0.26                      | < 10         | < 10         | 97         | < 10         | 84                                                                                                                        |
| 9812         | 201 202         |                                                         | 3                                  | 0.03<br>0.02                    | 24<br>16              | 580<br>860                        | < 2        | 0.04         | 2          | 3                                                          | 13        | 0.15                      | < 10         | < 10         | 65         | < 10         | 48                                                                                                                        |
| 9813         | 201 202         | 725                                                     | 5                                  | 0.04                            | 28                    | 1820                              | 16         | 0.08         | < 2<br>< 2 | 5<br>8                                                     | 15<br>27  | 0.19<br>0.12              | < 10<br>< 10 | < 10<br>< 10 | 88<br>75   | < 10<br>< 10 | 60<br>130                                                                                                                 |
| 9814<br>9815 | 201 202         |                                                         | 7                                  | 0.08                            | 47                    | 920                               | < 2        | 0.60         | 2          | 11                                                         | 76        | 0.20                      | < 10         | < 10         | 95         | < 10         | 198                                                                                                                       |
| 9816         | 201 202 201 202 |                                                         | 5                                  | 0.07<br>0.08                    | 39                    | 870                               | 2          | 0.49         | < 2        | 9                                                          | 57        | 0.19                      | < 10         | < 10         | 80         | < 10         | 146                                                                                                                       |
| 9817         | 201 202         | 980                                                     | ,<br>7                             | 0.08                            | 45<br>52              | 940<br>1300                       | 2          | 0.66<br>0.52 | 4<br>< 2   | 11<br>11                                                   | 77<br>76  | 0.20<br>0.20              | < 10         | < 10         | 95         | < 10         | 194                                                                                                                       |
| 9818         | 201 202         | 640                                                     | Ż                                  | 0.07                            | 42                    | 870                               | < 2        | 0.62         | 2 2        | 9                                                          | 61        | 0.19                      | < 10<br>< 10 | < 10<br>< 10 | 91<br>76   | < 10<br>< 10 | 206<br>162 ( )                                                                                                            |
|              |                 | 1                                                       |                                    |                                 |                       |                                   |            |              |            |                                                            |           |                           |              |              | · •        | · • •        |                                                                                                                           |

CERTIFICATION:\_\_

.

| O                                         |                   | An                                     | her<br>alytical Cher<br>212 Brook<br>British Co<br>PHONE: 6 | mists * Geo<br>(sbank Av<br>lumbia, C              | ochemists '<br>ve., N<br>Canada      | " Register<br>North Va                               | red Assaye<br>ancouver<br>V7.J 2C1           |                                 |                                                    |                                               | NORTH<br>V7M 3B<br>t :<br>hents: | SCOTIA I<br>ATTN: AF                | IVER, BO<br>NORTH<br>INE BIRI |                             |                            |                                      |                                              |                                        | Total Pag<br>Certificat<br>Invoice N<br>P.O. Nun<br>Account | lo. :]<br>nber :                 | 17-SEI<br>19928;<br>AN          |
|-------------------------------------------|-------------------|----------------------------------------|-------------------------------------------------------------|----------------------------------------------------|--------------------------------------|------------------------------------------------------|----------------------------------------------|---------------------------------|----------------------------------------------------|-----------------------------------------------|----------------------------------|-------------------------------------|-------------------------------|-----------------------------|----------------------------|--------------------------------------|----------------------------------------------|----------------------------------------|-------------------------------------------------------------|----------------------------------|---------------------------------|
| SAMPLE                                    |                   | iep<br>DDe                             | Ац ррђ<br>ГА+АА                                             | Ag<br>ppm                                          | А1<br>%                              | λs<br>ppm                                            | B                                            | Ba<br>ppm                       | Ве<br>ррв                                          | Bi<br>ppm                                     | <br>Ca<br>%                      | Cđ<br>ppm                           | Co<br>ppa                     | Cr<br>ppm                   | Cu<br>ppm                  | Fe<br>%                              | Ga<br>ppm                                    | Hg<br>pp                               | 200<br>K<br>¥                                               | La<br>ppm                        | M                               |
| 99819<br>99820<br>99821<br>99822<br>99823 | 201<br>201<br>201 | 202<br>202<br>202<br>202<br>202<br>202 | < 5<br>< 5<br>< 5                                           | < 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2 | 2.78<br>2.88<br>2.12<br>1.96<br>1.81 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 320<br>340<br>370<br>260<br>270 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 |                                  | 1.5<br>1.0<br>0.5<br>< 0.5<br>< 0.5 | 19<br>26<br>15<br>19<br>17    | 53<br>55<br>110<br>30<br>31 | 61<br>63<br>49<br>19<br>14 | 4.99<br>4.99<br>3.34<br>4.78<br>3.41 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.81<br>0.85<br>0.57<br>0.19<br>0.24                        | < 10<br>< 10<br>10<br>< 10<br>10 | 1.0<br>1.1<br>1.3<br>1.0<br>1.3 |
|                                           |                   |                                        |                                                             |                                                    |                                      |                                                      |                                              |                                 |                                                    |                                               |                                  |                                     |                               |                             |                            |                                      |                                              |                                        |                                                             |                                  |                                 |
|                                           |                   |                                        |                                                             |                                                    |                                      |                                                      |                                              |                                 |                                                    |                                               |                                  |                                     |                               |                             |                            |                                      |                                              |                                        |                                                             |                                  |                                 |
|                                           |                   |                                        |                                                             |                                                    |                                      |                                                      |                                              |                                 |                                                    |                                               |                                  |                                     |                               |                             |                            |                                      |                                              |                                        |                                                             |                                  |                                 |
|                                           |                   |                                        |                                                             |                                                    |                                      |                                                      |                                              |                                 |                                                    |                                               |                                  |                                     |                               |                             |                            |                                      |                                              |                                        | 1                                                           |                                  |                                 |
|                                           |                   |                                        |                                                             |                                                    |                                      |                                                      |                                              |                                 |                                                    |                                               |                                  |                                     |                               |                             |                            |                                      |                                              |                                        |                                                             |                                  |                                 |
|                                           |                   |                                        |                                                             |                                                    |                                      |                                                      |                                              |                                 |                                                    |                                               |                                  |                                     |                               |                             |                            |                                      |                                              |                                        |                                                             |                                  |                                 |
|                                           |                   |                                        |                                                             |                                                    |                                      |                                                      |                                              |                                 |                                                    |                                               |                                  |                                     |                               |                             |                            |                                      |                                              | 1                                      | 5                                                           |                                  |                                 |

CERTIFICATION:

- Never John

| C                                         |                   |                                        | 212 Brooks<br>British Colu<br>PHONE: 60 | ibank Av<br>Imbia, C<br>)4-984-( | /e., l<br>Janada                     | North Va                   | red Assaye<br>Incouver<br>V7J 2C1<br>184-0218 |                           |                                      | Project                     | /7M3B1<br>t: \$         | COTIA                       | uver, B<br>North<br>RNE Bir          |                                      | )                                            |                            |                                              |                               | Invoice No.<br>P.O. Number<br>Account | :19<br>:<br>: Al |
|-------------------------------------------|-------------------|----------------------------------------|-----------------------------------------|----------------------------------|--------------------------------------|----------------------------|-----------------------------------------------|---------------------------|--------------------------------------|-----------------------------|-------------------------|-----------------------------|--------------------------------------|--------------------------------------|----------------------------------------------|----------------------------|----------------------------------------------|-------------------------------|---------------------------------------|------------------|
| [                                         |                   |                                        |                                         |                                  |                                      | <u></u>                    |                                               |                           |                                      |                             | ĊE                      | RTIF                        |                                      | OF A                                 | NALY                                         | 'SIS                       | A                                            | \9928                         | 268                                   |                  |
| SAMPLE                                    |                   | EP<br>De                               | Mn<br>ppm                               | No<br>ppa                        | Na<br>%                              | Ni<br>ppm                  | P<br>ppm                                      | Pb<br>ppm                 | S<br>%                               | Sb<br>ppm                   | Sc<br>ppm               | Sr<br>ppn                   | Tİ<br>X                              | ti<br>Ppa                            | U<br>PPE                                     | V<br>ppm                   | W<br>mqq                                     | Zn<br>ppm                     |                                       |                  |
| 99819<br>99820<br>99821<br>99822<br>99823 | 201<br>201<br>201 | 202<br>202<br>202<br>202<br>202<br>202 | 1130<br>1010<br>380<br>1095<br>650      | 8<br>5<br>2<br>2                 | 0.08<br>0.08<br>0.05<br>0.07<br>0.08 | 48<br>57<br>61<br>41<br>47 | 1160<br>1070<br>1810<br>1510<br>1970          | < 2<br>< 2<br>2<br>2<br>2 | 0.57<br>0.43<br>0.14<br>0.05<br>0.02 | < 2<br>2<br>2<br>< 2<br>< 2 | 11<br>12<br>7<br>4<br>3 | 76<br>73<br>108<br>75<br>67 | 0.20<br>0.21<br>0.18<br>0.21<br>0.22 | < 10<br>< 10<br>< 10<br>< 10<br>< 10 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 95<br>99<br>92<br>75<br>78 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 202<br>208<br>158<br>68<br>60 |                                       |                  |
|                                           |                   |                                        |                                         |                                  |                                      | _                          |                                               |                           |                                      |                             |                         |                             |                                      |                                      |                                              |                            |                                              |                               |                                       |                  |
|                                           |                   |                                        |                                         |                                  |                                      |                            |                                               |                           |                                      |                             |                         |                             |                                      |                                      |                                              |                            |                                              |                               |                                       |                  |
|                                           |                   |                                        |                                         |                                  |                                      |                            |                                               |                           |                                      |                             |                         |                             |                                      |                                      |                                              |                            |                                              |                               |                                       |                  |
|                                           |                   |                                        |                                         |                                  |                                      |                            |                                               |                           |                                      |                             |                         |                             |                                      |                                      |                                              |                            |                                              |                               |                                       |                  |
|                                           |                   |                                        |                                         |                                  |                                      |                            |                                               |                           |                                      |                             |                         |                             |                                      |                                      |                                              |                            |                                              |                               |                                       |                  |
|                                           |                   |                                        |                                         |                                  |                                      |                            |                                               |                           |                                      |                             |                         |                             |                                      |                                      |                                              |                            |                                              |                               | ·                                     |                  |
|                                           |                   |                                        |                                         |                                  |                                      |                            |                                               |                           |                                      |                             |                         |                             |                                      |                                      |                                              |                            |                                              |                               |                                       |                  |
|                                           |                   |                                        |                                         |                                  |                                      |                            |                                               |                           |                                      |                             |                         |                             |                                      |                                      |                                              |                            |                                              |                               |                                       |                  |
|                                           |                   |                                        |                                         |                                  |                                      |                            |                                               |                           |                                      |                             |                         |                             |                                      |                                      |                                              |                            |                                              | (                             | $\mathbf{c}$                          | _                |

1 Γ T \_\_\_ - [



.

## **Chemex Labs Ltd.**

Analytical Chemists " Geochemists " Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

ARNEX RESOURCES LIMITED To:

r

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

A9928273

- **Г** 

Comments: ATTN: ARNE BIRKELAND

| c                         | ERTIFI               | CATE                         | A9928273                                                           |                                                    |                                        | ANALYTICAL P                                                                                                                                                                                                                            | ROCEDURES                                                                                   | \$                                       |                                                             |
|---------------------------|----------------------|------------------------------|--------------------------------------------------------------------|----------------------------------------------------|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------------------------------------------|-------------------------------------------------------------|
|                           |                      | OURCES LIMITE<br>NORTH       | D                                                                  | CHEMEX                                             | NUMBER<br>SAMPLES                      | DESCRIPTION                                                                                                                                                                                                                             | METHOD                                                                                      | DETECTION<br>LIMIT                       | upper<br>Limit                                              |
|                           |                      | d to our lab<br>printed on 1 | in Vandouwer, BC.<br>5-sep-1999.                                   | 983<br>2118<br>2119<br>2120<br>557<br>2121<br>2122 | 16<br>16<br>16<br>16<br>16<br>16<br>16 | Au ppb: Fuse 30 g sample<br>Ag ppm: 32 element, soll & rock<br>Al %: 32 element, soll & rock<br>As ppm: 32 element, soll & rock<br>B ppm: 32 element, rock & soll<br>Ba ppm: 32 element, soll & rock<br>Be ppm: 32 element, soil & rock | Fà-aas<br>ICP-aes<br>ICP-aes<br>ICP-aes<br>ICP-aes<br>ICP-aes<br>ICP-aes                    | 5<br>0.2<br>0.01<br>2<br>10<br>10<br>0.5 | 10000<br>100.0<br>15.00<br>10000<br>10000<br>10000<br>10000 |
|                           | SAMI                 | PLE PREPA                    |                                                                    | 2123<br>2124<br>2125                               | 16<br>16<br>16                         | Bi ppm: 32 element, soil & rock<br>Ca %: 32 element, soil & rock<br>Cd ppm: 32 element, soil & rock                                                                                                                                     | ICP-AES<br>ICP-AES<br>ICP-AES                                                               | 2<br>0.01<br>0.5                         | 10000<br>15.00<br>500                                       |
| HEMEX<br>XODE             | NUMBER               |                              | DESCRIPTION                                                        | 2126<br>2127<br>2128<br>2150<br>2130               | 16<br>16<br>16<br>16<br>16             | Co ppm: 32 element, soil & rock<br>Cr ppm: 32 element, soil & rock<br>Cu ppm: 32 element, soil & rock<br>Fe %: 32 element, soil & rock<br>Ga ppm: 32 element, soil & rock                                                               | îcp-aes<br>Icp-aes<br>Icp-aes<br>Icp-aes<br>Icp-aes<br>Icp-aes                              | 0.5<br>1<br>1<br>0.01<br>10              | 10000<br>10000<br>10000<br>15.00<br>10000                   |
| 205<br>226<br>3202<br>229 | 16<br>16<br>16<br>16 | 0-3 Kg crush<br>Rock - save  | to approx 150 mesh<br>and split<br>entire reject<br>restion charge | 2131<br>2132<br>2151<br>2154<br>2134<br>2135       | 16<br>16<br>16<br>16<br>16             | Eg pon: 32 element, soil & rock<br>K %: 32 element, soil & rock<br>La pom: 32 element, soil & rock<br>Mg %: 32 element, soil & rock<br>Mn pom: 32 element, soil & rock                                                                  | ICP-АВ#<br>ICP-АВ#<br>ICP-АВ#<br>ICP-АВ#<br>ICP-АВ#<br>ICP-АВ#                              | 1<br>0.01<br>10<br>0.01<br>5             | 10000<br>10.00<br>10000<br>15.00<br>10000                   |
|                           |                      |                              |                                                                    | 2136<br>2137<br>2138<br>2139<br>2140<br>2140       | 16<br>16<br>16<br>16                   | Mo ppm: 32 element, soil & rock<br>Na %: 32 element, soil & rock<br>Ni ppm: 32 element, soil & rock<br>P ppm: 32 element, soil & rock<br>Pb ppm: 32 element, soil & rock                                                                | ICP <b>-NES</b><br>ICP <b>-NES</b><br>ICP <b>-NES</b><br>ICP <b>-NE#</b><br>ICP <b>-NE#</b> | 1<br>0.01<br>1<br>10<br>2                | 10000<br>10.00<br>10000<br>10000<br>10000                   |
| NOTE                      | 1.                   |                              |                                                                    | 551<br>2141<br>2142<br>2143<br>2144                | 16<br>16<br>16<br>16<br>16             | S %: 32 element, rock & soll<br>Sb ppm: 32 element, soll & rock<br>Sc ppm: 32 elements, soll & rock<br>Sr ppm: 32 element, soll & rock<br>Ti %: 32 element, soll & rock                                                                 | ICP-NR#<br>ICP-NRS<br>ICP-NRS<br>ICP-NRS<br>ICP-NRS<br>ICP-NRS                              | 0.01<br>2<br>1<br>1<br>9.01              | 5.00<br>10000<br>10000<br>10000<br>10.00                    |
| a 32 a                    | setals i             | n soil and                   | s suitable for<br>rock samples.<br>ric-aqua regia                  | 2145<br>2146<br>2147<br>2148                       | 16<br>16<br>16<br>16                   | Tl ppm: 32 element, soil & rock<br>U ppm: 32 element, soil & rock<br>V ppm: 32 element, soil & rock<br>W ppm: 32 element, soil & rock                                                                                                   | ICP-AES<br>ICP-AES<br>ICP-AES<br>ICP-AES                                                    | 10<br>10<br>1<br>10                      | 10000<br>10000<br>10000<br>10000                            |
| L, 30,                    |                      |                              | lete are: Ål,<br>7, Næ, Sr, Ti,                                    | 2149                                               | 16                                     | In ppm: 32 element, soil & rock                                                                                                                                                                                                         | ICP- <b>AE</b> 5                                                                            | 2                                        | 10000                                                       |
| a, Be,<br>1, W.           | Ca, Cr,              | Ga, K, La, M                 | 5, Na, Sr, Ti,                                                     |                                                    |                                        |                                                                                                                                                                                                                                         |                                                                                             |                                          |                                                             |



r

1

ſ

Γ

Г

## **Chemex Labs Ltd.**

r

Г

r

Analytical Chemists \* Geochemists \* Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: ARNEX RESOURCES LIMITED

2069 WESTVIEW DR. NORTH VANCOUVER, BC V7M 3B1

Project : SCOTIA NORTH Comments: ATTN: ARNE BIRKELAND Page Number : 1-A Total Pages : 1 Certificate Date: 16-SEP-1999 Invoice No. : 19928273 P.O. Number : Account : AN

Ξ.

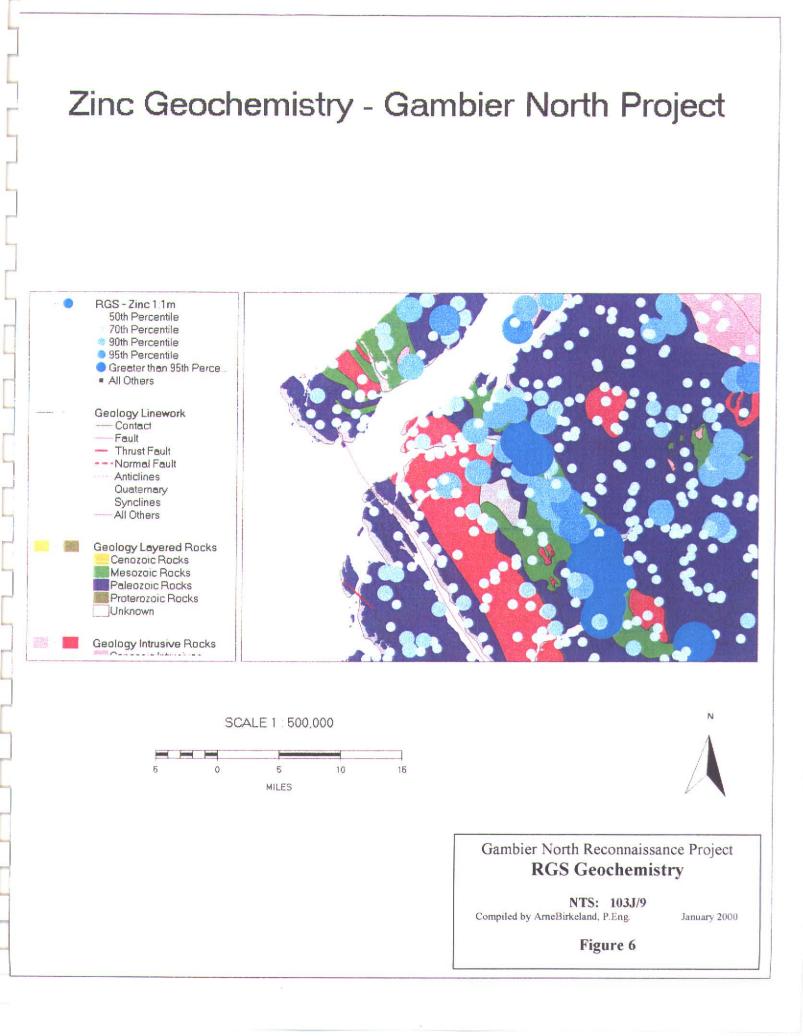
- T

|                                                  |                                                                |                                        |                                                |                                      |                                               |                                              |                                |                                                    |                                               | CE                                    | RTIFI                                 | CATE                       | OF A                          | NAL                         | YSIS                                 | 1                                            | 19928                                  | 273                                  |                                              |                                      |
|--------------------------------------------------|----------------------------------------------------------------|----------------------------------------|------------------------------------------------|--------------------------------------|-----------------------------------------------|----------------------------------------------|--------------------------------|----------------------------------------------------|-----------------------------------------------|---------------------------------------|---------------------------------------|----------------------------|-------------------------------|-----------------------------|--------------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------|----------------------------------------------|--------------------------------------|
|                                                  | PREP<br>CODE                                                   | Au ppb<br>FA+AA                        | λg<br>ppm                                      | A1<br>%                              | λs<br>ppm                                     | B<br>PPm                                     | Ba<br>ppm                      | Be<br>ppm                                          | Bi<br>ppm                                     | Ca<br>%                               | Cā<br>ppa                             | Со                         | Cr<br>ppm                     | Cu<br>ppm                   | Fe<br>X                              | Ga<br>ppm                                    | Eg                                     | к<br>%                               | La                                           | Mg                                   |
| 301652 20   301653 20   301654 20   301655 20    | 105 226<br>105 226<br>105 226<br>105 226<br>105 226<br>105 226 | < 5<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5 | 1.0<br>< 0.2<br>< 0.2<br>< 0.2<br>< 0.2<br>4.2 | 1.09<br>0.69<br>2.10<br>1.92<br>2.31 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>18         | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 130<br>140<br>180<br>140<br>50 | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 13.25<br>0.20<br>0.89<br>0.95<br>1.30 | 2.0<br>< 0.5<br>< 0.5<br>< 0.5<br>4.5 | 27<br>3<br>11<br>14<br>36  | 20<br>109<br>228<br>74<br>156 | 86<br>25<br>22<br>41<br>27  | 4.78<br>1.59<br>3.12<br>3.50<br>3.33 | < 10<br>< 10<br>< 10<br>< 10<br>10<br>< 10   | 2<br>< 1<br>< 1<br>< 1<br>< 1          | 0.48<br>0.39<br>0.65<br>0.58<br>0.15 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 0.62<br>0.31<br>1.70<br>1.59<br>0.01 |
| 301657 20<br>301658 20<br>301659 20<br>301660 20 | 105 226<br>105 226<br>105 226<br>105 226<br>105 226<br>105 226 | < 5<br>< 5<br>< 5<br>< 5<br>< 5        | 0.6<br>0.8<br>0.6<br>0.6<br>< 0.2              | 1.72<br>0.97<br>1.71<br>1.51<br>1.39 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 80<br>100<br>100<br>60<br>140  | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2 | 0.08<br>0.22<br>0.35<br>1.08<br>0.87  | < 0.5<br>1.0<br>< 0.5<br>2.0<br>< 0.5 | 18<br>24<br>14<br>11<br>15 | 97<br>99<br>97<br>90<br>87    | 41<br>50<br>39<br>45<br>30  | 4.90<br>3.45<br>3.64<br>2.35<br>2.01 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1   | 0.72<br>0.60<br>0.27<br>0.08<br>0.49 | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 | 1.07<br>0.86<br>0.58<br>0.04<br>1.38 |
| 301662 20<br>301663 20<br>301664 20              | 05 226<br>05 226<br>05 226<br>05 226<br>05 226                 | < 5<br>< 5<br>< 5<br>< 5<br>< 5<br>< 5 | 0.6<br>2.0<br>0.6<br>< 0.2<br>0.6              | 3.06<br>4.23<br>1.49<br>2.62<br>1.74 | < 2<br>24<br>< 2<br>< 2<br>2<br>2             | < 10<br>< 10<br>< 10<br>< 10<br>< 10<br>< 10 |                                | < 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5<br>< 0.5 | < 2<br>< 2<br>< 2<br>< 2<br>< 2<br>< 2        | 7.22<br>6.05<br>0.17<br>2.07<br>0.43  | 4.0<br>2.0<br>16.0<br>2.5<br>2.0      | 7<br>15<br>5<br>38<br>14   | 87<br>62<br>231<br>49<br>194  | 42<br>128<br>42<br>32<br>34 | 2.87<br>7.97<br>2.21<br>7.73<br>3.98 | < 10<br>10<br>< 10<br>10<br>< 10             | < 1<br>< 1<br>< 1<br>< 1<br>< 1<br>< 1 | 0.06<br>0.07<br>0.89<br>0.25<br>0.96 | < 10<br>< 10<br>< 10<br>< 10<br>10<br>< 10   | 0.07<br>0.13<br>1.25<br>1.96<br>1.25 |
| 301666 20                                        | 05 226                                                         | < 5                                    | 2.6                                            | 1.20                                 | < 2                                           | < 10                                         | 120                            | < 0.5                                              | < 2                                           | 0.23                                  | 21.5                                  | 10                         | 204                           | 84                          | 4.58                                 | < 10                                         | < 1                                    | 0.74                                 | < 10                                         | 0.80                                 |

CERTIFICATION:

| C            |     | An  | <b>hen</b><br>212 Brook<br>British Cole<br>PHONE: 6 | nista * Ge<br>sbank Av<br>umbia, C | ochemists<br>/e.,<br>lanada | * Registe<br>North Ve | red Assaye<br>Incouver<br>V7.1.201 |            |               |            |     | VANCO<br>SCOTIA | uver, 8<br>North | IC<br>IKELANE | )            |            |              | C<br>I<br>F | Total Page<br>Certificate<br>nvoice No<br>P.O. Numi<br>Account | Date: 16-SEP<br>199282; |
|--------------|-----|-----|-----------------------------------------------------|------------------------------------|-----------------------------|-----------------------|------------------------------------|------------|---------------|------------|-----|-----------------|------------------|---------------|--------------|------------|--------------|-------------|----------------------------------------------------------------|-------------------------|
| SAMPLE       | PRE |     | Nn<br>ppm                                           | No                                 | Na<br>X                     | Ni                    | P                                  | Pb         | 3             | sb         | ßc  | Sr              | Tİ               | -<br>T1       | NAL)         | YSIS<br>v  | ע<br>א       | A99282      | 273                                                            |                         |
|              |     | _   |                                                     | ppm                                |                             | ppa                   | DDE                                | ppm        | *             | ppm        | ppa | ppn             | - *              | ррш           | ppm          | ррш        | ррш          | ppm         |                                                                |                         |
| 1651<br>1652 | 205 |     | 540                                                 | 4                                  | 0.05                        | 26                    | 470                                | 2          | 2.33          | < 2        | < 1 | 289             | 0.12             | < 10          | 10           | 41         | < 10         | 42          |                                                                |                         |
| 1653         | 205 |     | 215<br>335                                          | 4                                  | 0.08                        | 1                     | 480                                | < 2        | 0.16          | < 2        | 2   | 17              | 0.12             | < 10          | < 10         | 19         | < 10         | 32          |                                                                |                         |
| 1654         | 205 | 226 | 440                                                 | 3                                  | 0.21<br>0.38                | 13<br>10              | 390                                | < 2        | 0.37          | < 2        | 9   | 41              | 0.20             | < 10          | < 10         | 84         | < 10         | 38          |                                                                |                         |
| 1655         | 205 | 226 | 185                                                 | 3                                  | 0.06                        | 68                    | 1270<br>120                        | < 2<br>20  | 0.01          | < 2        | 16  | 12              | 0.21             | < 10          | < 10         | 162        | < 10         | 38          |                                                                |                         |
|              |     |     |                                                     | •                                  | 0100                        | 00                    | 140                                | 40         | 2.33          | < 2        | 3   | 13              | 0.10             | < 10          | < 10         | 41         | < 10         | 1360        |                                                                |                         |
| 1656         | 205 |     | 790                                                 | 3                                  | 0.05                        | 23                    | 100                                | < 2        | 2.89          | < 2        | 8   | 12              | - 0.04           | 4 10          |              |            |              |             |                                                                |                         |
| 1657         | 205 | 226 | 890                                                 | 17                                 | 0.09                        | 49                    | 410                                | < 2        | 1.95          | < 2        | 14  | 8               | 0.04<br>0.18     | < 10<br>< 10  | < 10         | 37         | < 10         | 76          |                                                                |                         |
| 1658         | 205 | 226 | 550                                                 | 4                                  | 0.07                        | 25                    | 170                                | < 2        | 2.33          | < 2        | 3   | 23              | 0.01             | < 10          | < 10<br>< 10 | 126        | < 10         | 112         |                                                                |                         |
| L659         | 205 | 226 | 30                                                  | 28                                 | 0.18                        | 70                    | 460                                | < 2        | 2.01          | < 2        | < 1 | 84              | 0.08             | < 10          | < 10         | 21<br>21   | < 10<br>< 10 | 84          |                                                                |                         |
| 1660         | 205 | 226 | 265                                                 | 3                                  | 0.22                        | 42                    | 730                                | < 2        | 0.11          | < 2        | 6   | 11              | 0.14             | < 10          | < 10         | 72         | < 10         | 82<br>22    |                                                                |                         |
| 661          | 205 | 226 | 285                                                 | 11                                 | <u> </u>                    |                       |                                    |            |               |            |     |                 |                  |               |              | ••         |              |             |                                                                |                         |
| 1662         | 205 | 226 | 420                                                 | 13                                 | 0.46<br>0.66                | 50<br>64              | 870<br>740                         | < 2        | 1.87          | < 2        | < 1 | 206             | 0.09             | < 10          | 10           | 34         | < 10         | 200         |                                                                |                         |
| 1663         | 205 | 226 | 470                                                 | 23                                 | 0.09                        | 34                    | 460                                | < 2<br>< 2 | >5.00<br>0.66 | < 2        | < 1 | 275             | 0.10             | < 10          | 10           | 45         | < 10         | 166         |                                                                |                         |
| L664         | 205 | 226 | 1085                                                | 3                                  | 0.31                        | 45                    | 2150                               | 2          | 0.14          | < 2<br>< 2 | 15  | 6               | 0.22             | < 10          | < 10         | 185        | < 10         | 672         |                                                                |                         |
| 1665         | 205 | 226 | 460                                                 | 11                                 | 0.11                        | 24                    | 1140                               | < 2        | 1.05          | 22         | 10  | 179<br>22       | 0.66<br>0.30     | < 10<br>< 10  | < 10<br>< 10 | 189<br>122 | < 10         | 154         |                                                                |                         |
| 1666         | 205 |     |                                                     |                                    |                             |                       |                                    |            |               |            |     |                 | ****             | - 14          | . 10         | 144        | < 10         | 194         |                                                                |                         |
|              |     |     | 860                                                 | 14                                 | 0.08                        | 28                    | 980                                | < 2        | 2.67          | < 2        | 16  | 9               | 0.16             | < 10          | < 10         | 289        | < 10         | 834         |                                                                |                         |
|              |     |     |                                                     |                                    |                             |                       |                                    |            |               |            |     |                 |                  |               |              |            |              | $\cap$      |                                                                | ,                       |

the second second second second second second second second second second second second second second second se


CERTIFICATION:\_

Xaue

. 1

L

**Geochemical Data Sheets** 



#### GEOCHEMICAL DATA SHEET - STREAM SEDIMENT GEOCHEMISTRY

NTS: 103J/9

#### Khutzeymateen Inlet Project Area

PROJECT: GNR

Sample Volume (m) Drainage Type of Colour Texture % Organic Petrography Observations Number Width Depth Gradient Sample Bedrock/Float Remarks 99601 3.0 1.0 Steep ΜM ₿r Silt Low JKG "Gambier" Gp - Meta-volc, seds 99602 2.0 1.0 Steep "Gambier" Gp - Meta-volc, seds MM 8r Silt LOW JKG 99603 1.0 0.3 Steep "Gambier" Gp - Meta-volc, seds MM Gr-br Sift Low JKG 99604 1.0 0.3 Steep "Gambier" Gp - Meta-volc, seds MM βr Silt Low JKG 99605 2.0 0.3 Steep "Gambier" Gp - Meta-volc,seds ΜM 8г Silt Low JKG 99606 2.0 0.3 Steep MM Br Silt JKG "Gambier" Gp - Meta-volc seds Low "Gambier" Gp - Meta-volc seds 99607 10.0 Gr-br 3.0 FI-Mod MM Silt Low JKG 99608 2.0 2.0 Steep "Gambier" Gp - Meta-volc,seds MM Вг Silt Low JKG 99609 6.0 2.0 Fl-Mod MM Br Sift Low JKG "Gambier" Gp - Meta-volc seds "Gambier" Gp - Meta-volc seds 99610 4.0 1.0 Mod JKG MM ₿r Silt Low 99611 2.01.0 Steep MM Silt JKG "Gambier" Gp - Meta-volc,seds Br Low 99612 10.0 3.0 FI-Mod MM Sand Unit 1b "Central Gneiss Complex" Br Low 99613 10.0 2.0 FI-Mod MM Br Sand Low Unit 1b "Central Gneiss Complex" 99614 1.0 0.3 Steep MM Lt br Silt JKG "Gambier" Gp - Meta-volc,seds Low 99615 0.6 0.3 Steep MM Dk br Silt JKG "Gambier" Gp - Meta-volc seds Low 99616 1.0 0.3 Steep ΜM 8r Silt Low JKG "Gambier" Gp - Meta-volc, seds 99617 1.0 0.3 Steep MM Br Sift Low JKG "Gambier" Gp - Meta-volc seds 99618 0.3 3.0 Steep MM Br Silt Low JKG "Gambier" Gp - Meta-volc seds 99619 0.3 0.5 Steep MM Br Silt Low JKG "Gambier" Gp - Meta-volc,seds 99620 2.0 0.3 Steep MM Br Silt Low JKG "Gambier" Gp - Meta-volc seds 99621 2.0 1.0 Mod-st MM Unit 1b "Central Gneiss Complex" Br Silt Low 99622 3.0 1.0 Mod-st ΜM Br Silt Unit 1b "Central Gneiss Complex" Low

gcds9901ss99sx

#### GEOCHEMICAL DATA SHEET - STREAM SEDIMENT GEOCHEMISTRY

#### Khutzeymateen Inlet Project Area

PROJECT: GNR

NTS: 103J/9

| Sample | Volume (m)  | Drainage   | Type of  | Colour       | Texture    | % Organic | Petrography   | Observations                            |
|--------|-------------|------------|----------|--------------|------------|-----------|---------------|-----------------------------------------|
| Number | Width Depti | Gradient   | Sample   |              |            |           | Bedrock/Float | Remarks                                 |
| 99801  | 3.0         | 1.0 Steep  | ASS      | Dk gr        | Sand - mud | Viow      | JKG           | Rusty py gn                             |
| 99802  | 2.0         | 1.0 Steep  | MM       | Mgr          | Silt       | Low       | JKG           | Rusty py gn in meta-seds                |
| 99803  | 2.0         | 0.3 FI     | ASS      | Gr-br, rusty | Silt       | Low       | JKG           | Rusty py meta-volc                      |
| 99804  | 1.0         | 0.3 Steep  | MM       | Lt gr        | Silt       | Low       | JKG           | Rusty py meta-volc with amph, meta-seds |
| 99805  | 2.0         | 0.5 Steep  | ASS      | Lt gr        | Sandy sift | Low       | JKG           | "Gambier" Gp - Meta-volc,seds           |
| 99806  | 1.5         | 0.3 Steep  | MM       | Br           | Silt       | Mod       | JKG           | Meta sed, amph                          |
| 99807  | 1.0         | 0.3 Steep  | MM       | Gr-br        | Sift       | Low       | JKG           | Rusty py meta-volc                      |
| 99808  | 2.0         | 1.0 Steep  | MM       | Dk br        | Sandy sift | Low-mod   | JKG           | Thin bed arg-siltstone                  |
| 99809  | 1.0         | 0.3 Steep  | MM       | Dk br        | Silt       | Low       | JKG           | "Gambier" Gp - Meta-volc, seds          |
| 99810  | 3.0         | 1.0 Mod    | MM       | Dk gr br     | Sandy silt | Low       | JKG           | Mafic gn                                |
| 99811  | 2.0         | 1.0 Steep  | MM       | Br           | Silt       | Low       | JKG           | "Gambier" Gp - Meta-volc,seds           |
| 99812  | 4.0         | 1.0 Steep  | MM       | lt gr        | Sand       | Low       | JKG           | Rusty py meta-volc                      |
| 99813  | 2.0         | 0.3 Steep  | MM       | Br           | Silt       | Low       | JKG           | >75% creek fl rusty fel, gn, sch        |
| 99814  | 1.0         | 0.3 Steep  | MM       | Br           | Silt       | Mod       | JKG           | "Gambier" Gp - Meta-volc,seds           |
| 99815  | 0.6         | 0.3 Steep  | ASS      | Gr br        | Sandy silt | Low       | JKG           | Meta sed, amph                          |
| 99816  | 1.0         | 0.1 Steep  | MM + ASS | Gr           | Sand, mus  | Low       | JKG           | Rusty py hifs                           |
| 99817  | 2.0         | 0.1 Steep  | MM       | Br           | Silt       | Low       | JKG           | Rusty py meta-voic                      |
| 99818  | 1.5         | 0.3 Steep  | MM       | Br           | Silt       | Low       | JKG           | >85% creek fi rusty fei, gn, sch        |
| 99819  | 1.0         | 0.3 Steep  | MM       | Br           | Sift       | Low       | JKG           | >85% creek fi rusty fel, gn, sch        |
| 99820  | 4.0         | 1.0 Mod    | ASS      | Gr br        | Sandy silt | Low       | Unit 1b       | "Central Gneiss Complex"                |
| 99821  | 1.0         | 0.1 Steep  | MM       | Br           | Silt       | Low       | JKG           | Rusty py hfts                           |
| 99822  | 8.0         | 1.5 F) Mod | MM       | Br           | Silt       | Low       | Սոն 15        | "Central Gneiss Complex"                |
| 99823  | 5.0         | 1.0 Fl Mod | ASS      | Gr           | Sand       | Low       | Unit 1b       | "Central Gneiss Complex"                |

#### GEOCHEMICAL DATA SHEET - STREAM SEDIMENT GEOCHEMISTRY

#### Khutzeymateen Inlet Project Area

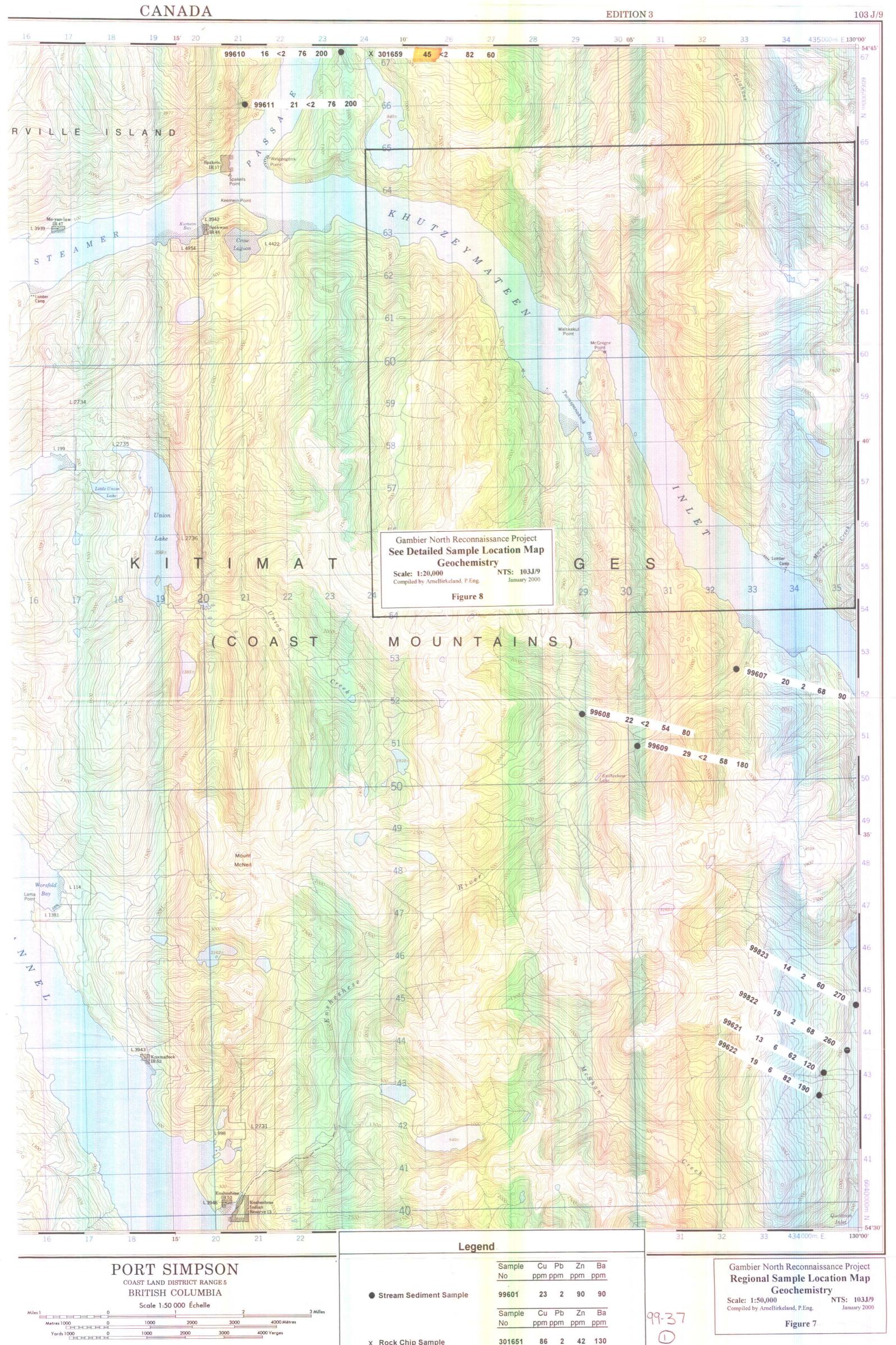
#### PROJECT: GNR

NTS: 103J/9

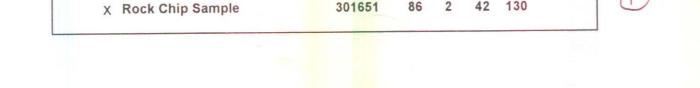
| Sample<br>Number | Location                                 | Rock<br>Type                               | Sample<br>Type       | App/True<br>Width | Alteration   | Weathering<br>Leaching | Mineralization                                                            | Observations, Remarks                                                                   |
|------------------|------------------------------------------|--------------------------------------------|----------------------|-------------------|--------------|------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| 301659           | 99610                                    | Meta-arg                                   | Grab,<br>Creek float | .2 m A\V          | Bio          | Weathered              | Py lams to mm's,<br>to 10% py                                             | Dark grey-black py meta-arg                                                             |
| 301660           |                                          | Meta-arg, amp                              | Chip                 | 5 m TW            | Bio, sil     | Fresh                  | None noted                                                                | "Country Rock"                                                                          |
| 301661           | 500 m SW<br>from 301660                  | Meta-arg, amp                              | Chip                 | 4 m TW            | Bio, sil     | Fresh                  | Minor des py,<br>minor sph lams?                                          | Check for Sedex Zn                                                                      |
| 301662           | Steep hillside,<br>cliff                 | Qtz-py vein in<br>Felsic meta-<br>volc     | Chip                 | .6 m TWV ·        | Sil          | Mod                    | Pyrite vein and<br>stockwork?, py<br>locally to 15% over<br>10 cm, tr cpy | Stockwork "feeder" zone?                                                                |
| 301663           | Steep hillside,<br>cliff                 | Py felsic meta-<br>volc, rhyolite?         | Chip                 | 1.4 m T₩          | Sil, mus, py | Mod                    | Py, mìnor sph,<br>trace opy, Ba?                                          | Mineralized rusty felsic<br>meta-volc unit, sulphides<br>concordant with follation      |
| 301664           | McGreggor<br>Point, 800 m<br>S of 301658 | Gossaneous<br>Meta-volc<br>Rhyolite oc     | Rep chip             | 3.5 m AW          | Sil, py, mus | Weathered              | Py locally to 10%                                                         | Rusty bluff, scarp<br>face, thick py<br>meta-rhyolite                                   |
| 301665           | Headwaters,<br>99604 Creek               | Py felsic meta-<br>voic, rhyolite?         | Chip                 | 1 m TW            | Sil, mus, py | Mod -<br>Weathøred     | Py < 3%<br>trace Ba?                                                      | Mineralized rusty felsic<br>meta-volc unit, sulphides<br>concordant with foliation      |
| 301666           | Ridge<br>Treverse                        | Py felsic meta-<br>volc, sulphide<br>layer | Chip                 | 1.1 m TW          | Sil, mus, py | Mod -<br>Weathered     | Py = 15% total,<br>mass py lam to<br>.2 m, des sph                        | Mineralized rusty felsic<br>meta-volc unit, sulphide layer<br>concordant with foliation |

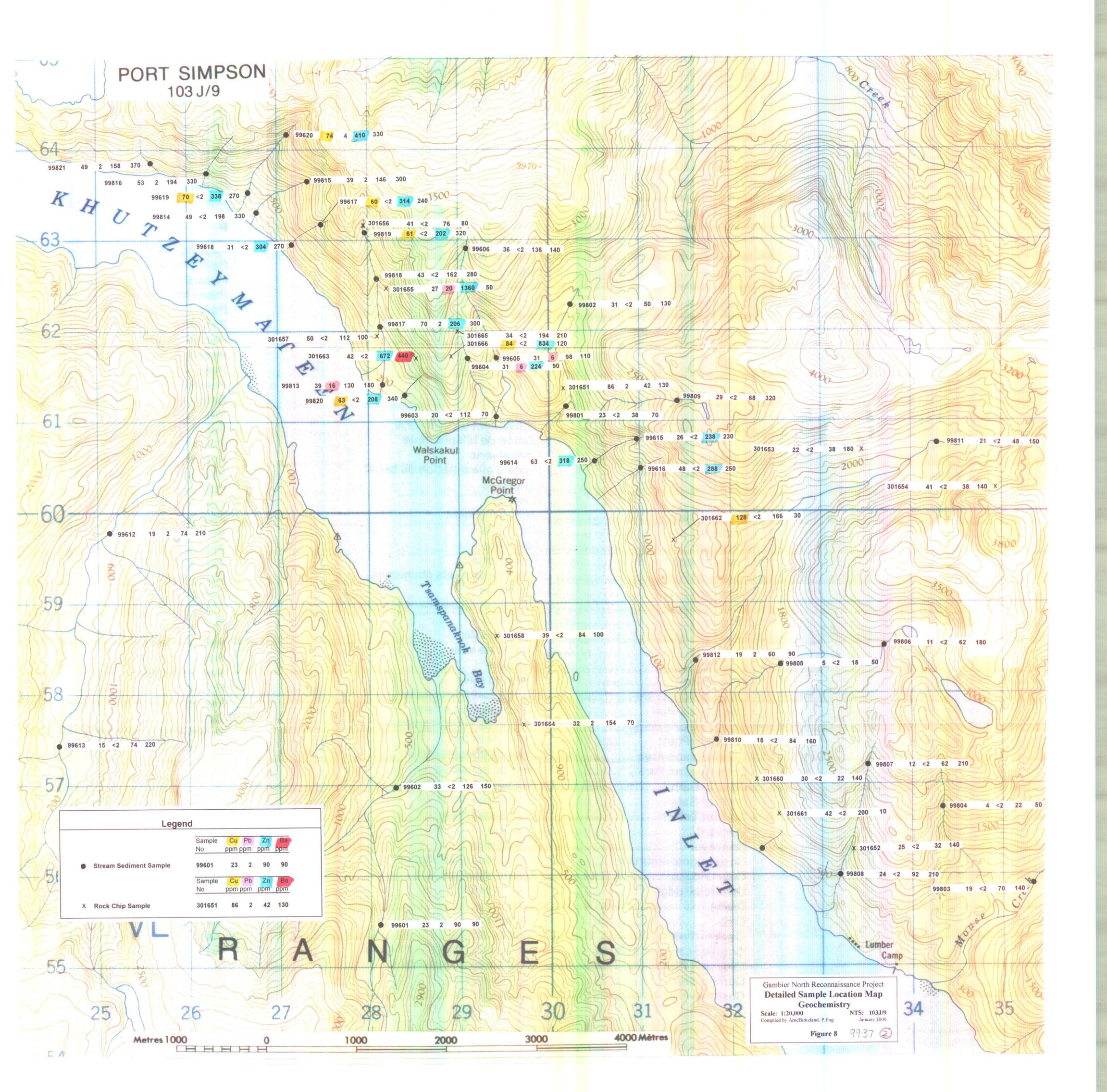
gcds990199rx

· \_\_\_


#### GEOCHEMICAL DATA SHEET - STREAM SEDIMENT GEOCHEMISTRY

#### Khutzeymateen inlet Project Area


PROJECT: GNR


NTS: 103J/9

| Sample<br>Number | Location           | Rock<br>Type                           | Sample<br>Type                   | App/True<br>Width | Alteration         | Weathering<br>Leaching | Mineralization                         | Observations, Remarks                                                                          |
|------------------|--------------------|----------------------------------------|----------------------------------|-------------------|--------------------|------------------------|----------------------------------------|------------------------------------------------------------------------------------------------|
| 301651           | 99801              | Siltstone<br>Meta-exhalite?            | Greb<br>Creek float              | 30 mm             | Sil, calcite       | V leached<br>Boxworks  | Py<br>+/- wk des Sph                   | Calcite, qtz, barite? Layer in<br>meta-siltstone or tuff,<br>Recrystalized chert-calcite band? |
| 301652           | 99808              | Gneiss                                 | Grab,<br>Creek float,<br>Angular | 20 cm             | Sil, mica,<br>Hbld | V leached              | Ру                                     | Py dess and as remnent<br>fragments? Up to 25 mm                                               |
| 301653           | 98111              | Phyllite,<br>Felsic meta-tuff          | Chip                             | .4 m TW           | Sił, mica,<br>Hbld | V leached<br>Boxworks  | Py<5%                                  | Thin meta-felsic volcanic band                                                                 |
| 301654           | Above 98111        | Meta Sed,<br>Siltstone                 | Chip                             | Зт                | Sil, py            | Mod                    | Py locally to 5%                       | Thick pyritic meta-sed package,<br>"Country Rock"                                              |
| 301655           | 99818              | Pyritic Felsic<br>Gneiss               | Chip                             | .3 m TW           | Sil                | Weathered              | Py lams to mm's,<br>dess py, py to 5%  | Rusty py felsite w/ mirror specs<br>of green mariposite?, mirror<br>Cu stain?                  |
| 301656           | 99819              | Thinly lam qtz<br>py fel               | Grab,<br>Creek float,<br>Angular | .3 m AW           | Sil, biotite       | Mod                    | Py lams to mm's                        | "Country Rock"                                                                                 |
| 301657           | 99817              | Thin bed meta-<br>siltstone            | Grab,<br>Creek float,<br>Angular | .3 m AW           | Sil, mus           | Weathered              | Py larns to mm's,<br>dess py, py to 5% | Lg blocks of qtx bio gn as<br>mega breccia blocks                                              |
| 301658           | McGreggor<br>Point | Gossaneous<br>Meta-volc<br>Rhyolite oc | Rep chip                         | 10 m AW           | Sil, py, mus       | Weathered              | Py locally to 10%                      | Rusty bluff, scarp<br>face, thick py<br>meta-rhyolite                                          |



1.



