BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:1999/2000REPORT #:PAP 99-40NAME:ADAM TRAVIS

A Summary of Reconnaissance Geological Mapping, Prospecting, Rock Chip

Sampling and Stream Sediment Sampling Completed on the

Tiger 1-14 Mineral Claims

Fort Steele Mining Division

82G/13 E, 14/W

082G083, 082G093

Prepared By

Adam Travis Geological

In Partial Fulfillment For Assistance Granted Under the Prospectors Assistance Program

November, 1999

۰

.

Table of Contents

- 1.0 Introduction
- 2.0 Location and Access
- 3.0 Property and Ownership
- 4.0 Climate and Physiography
- 5.0 Exploration History
- 6.0 Regional Geology
- 7.0 Property Geology
 - 7.1 Tiger-Poorman Area
 - 7.2 Area East of Lussier River Thrust
 - 7.3 Area West of Lussier River Thrust and South of Tiger-Poorman Area

8.0 Geochemistry and Mineralization

- 8.1 Syenite Related Au, Cu, As, Hg
- 8.2 Copper Skarn
- 8.3 Jubilee Formation Hosted Fe, Tetrahedrite, Pb, Zn Replacements
- 8.4 Limestone Hosted Stockwork Quartz Veins
- 8.5 Shear Related
- 8.6 Gypsum
- 9.0 Conclusions and Recommendations

List of Figures

,

ъ

Ŀ,

i.

Following Page

Figure 1:	Property Location	2
Figure 2:	Claim Location	2
Figure 3:	Tiger Claims Compilation (July 1999)	4
Figure 4:	Tiger Claims Property Geology (Scale 1:15,000)	(in pocket)
Figure 5:	Tiger Claims Sample Locations and Results (Scale 1;15,000)	(in pocket)
Figure 6:	Off Property Sample Locations (Scale 1:100,000)	8
Figure 7:	April Showing Trench Map (Scale 1:2000)	9
Figure 8:	Possible Erosional Level – Intrusive Related Model	(on page 12)

List of Photographs

Following Page

Photograph 1:	Nicol Creek Valley	3
Photograph 2:	Mountainview Bowl	3
Photograph 3:	Stream Sediment Sampling	3
Photograph 4:	View from Peak west of Tiger 7 Claim	3
Photograph 5:	Poorman Cabin	4
Photograph 6:	Tiger Cabin	4
Photograph 7:	Shepherds Bowl	6
Photograph 8:	View of Mt. Wirth and Diorite Creek	6
Photograph 9:	Shepherds Bowl Stromatolites	6
Photograph 10:	Tiger South Adit Quartz/Carbonate Vein	6
Photograph 11:	Quartz Stockworked Quartzites	7
Photograph 12:	Folded and Foliated proterzoic Sediments	7
Photograph 13:	Syenite Plug Tiger 13 Claim	9
Photograph 14:	April Trench 1	9
Photograph 15:	Poorman Shaft	10

T 11		The second se
ROUR	กมากส	Page
TOR	unung	1450

Photograph 16:	Poorman Shaft Rubble	10
Photograph 17:	Poorman Shaft View Southward	10
Photograph 18:	Poorman Adit	10
Photograph 19:	Poorman Adit Closeup	10
Photograph 20:	~ 750 m NE of Poorman Shaft	10
Photograph 21:	Tiger South Adit	10
Photograph 22:	Tiger Adit	10
Photograph 23:	Mountainview Adits Area	11
Photograph 24:	Mountainview Adits "Ore"	11
Photograph 25:	Mountainview Adits "Ore" in Place	11
Photograph 26:	Mountainview Adits – View of one of > Six adits	11
Photograph 27:	Tiger 7 Shear	12
Photograph 28:	Tiger 3 Gossan	12
Photograph 29:	Tiger 4 Sinkhole	12
Photograph 30:	Tiger 4 "Twin Sinkholes"	12

List of Appendix's

List of Photographs(cont.)

6

6...

ŝ

۲ د

.

.

,

. .

.

.

.

÷

•

•

.

` 、

....

κ.

[

_

Appendix I: Completed Prospectors Assistance Prospecting Report Forms

- Appendix II: Rock, Soil and Stream Sediment Sample Descriptions
- Appendix III: Rock, Soil and Stream Sediment Sample Tabulated Analytical Results
- Appendix IV: Chemex labs Ltd. Certified Analysis
- Appendix V: Statement of Costs

1.0 Introduction

The Tiger 1-14 (248 units) mineral claims are situated in the Fort Steele Mining Division approximately 40 kilometres northeast of Cranbrook, in southeastern British Columbia (see Figure 1). The claims are centered on approximately 49 degrees, 47' and 115 degrees 30' and cover the headwaters of both the Wild Horse and Lussier Rivers. The claim blocks cover four known mineral occurrences listed below which occur on NTS Map sheets 82G/13E and 82G/14W.

Name	Minfile #	Туре	Comments
April	82GNW049	Cu skarn	Purcell Supergroup Sed's intruded by syenite stock
Hot 1	82GNW050	Porp. Cu,Mo,Au	syenite porphyry intrudes Mckay Group carbonates and shales near Lussier Creek thrust. Copper rich zones are anomalous in gold, arsenic and mercury.
Tiger	82GNW083	Poly. Manto Ag-Pb-Zn	replacement style in Jubilee Formation limestone
Poorma	1 82GNW082	Poly. Manto Ag-Pb-Zn	replacement style in Jubilee Formation limestone

The applicant chose this area to stake after a detailed research program in the search for small syentic alkali feldspar porphyry plugs intruding potentially reactive rocks of the Kootenay Arch. Encouraged by Geological Fieldwork 1998, Paper 1999-1 with references to "sediment-hosted gold deposits", previous work by Placer Dome and Cominco at Howell Creek, recent successes by Eastfield Resources in the Flathead River Valley and a recent workshop in Kamloops on "intrusive hosted gold" the applicant acquired the ground in early April, 1999. The author then successfully applied under the B.C Prospectors Assistance Program for funding to assist in the development of this property. A first pass phase of stream sediment sampling (see Figure 3) and prospecting (June 16-June 24) was followed up by more detailed sampling, prospecting and mapping (Sept. 15-Oct. 5). This work resulted in not only the recognition and understanding of previous occurrences but also the discovery of new styles of mineralization and expansion of known areas.

In the Hot 1 area anomalous copper and gold values occur over a 3 km square area, mostly to the south and west of the previously drilled area. Included in this is quartz carbonate vein stockworks in syenite ~ 2.5 km SW with values to Au 260 ppb, Ag 13.6 ppm and Cu 2210 ppm. Also immediately west (and uphill) of the drilled area a stream sediment sample returned Au 25 ppb and Cu 991 ppm. This along with skarn float (Au 1625 ppb, Ag 75.6 ppm, and Cu 23.4 %) also found in the area indicates mineralization outside of the previously known area.

Exciting new discoveries were also made in the area between the Hot and Poorman Minfile occurrences. On the Tiger 7 claim semi-massive tetrahedrite veins were found in Jubilee Formation limestone (similar to Tiger and Poorman style). Further to the north on the Tiger 5 claim northerly trending shears in Proterzoic rocks returned anomalous Au, Ag, As, Cu, Mo, Pb and Zn. Near the southern boundary of the Tiger 5 and 6 claims stream sediments have returned anomalous lead and zinc values (Pb 254 ppm, Zn 524 ppm) and remain unexplained.

In the area of the Tiger and Poorman Minfile occurrences the old workings were relocated and also a previously undocumented 25 m long adit was discovered. The replacement style iron, tetrahedrite, chalcopyrite mineralization has been attributed to splays off low angle faults. Large quartz veins (<4 m) along with stockworked veined limestone float have returned values to Au 1175 ppm, Ag 270 g/t, As 2820 ppm, Cu 1.37 %, Sb 3090 ppm, and Zn 2270 and represent a new style of mineralization in the area.

The discovery of previously unknown sinkholes on the Tiger 2 and 4 claims led to some preliminary prospecting for gypsum bearing horizons in the basal Devonian Unit. Its potential economic importance at this stage is not fully understood.

These mineral occurrences discoveries along with the geological understanding and mapping of previously unknown syenite bodies, northerly trending shears within Proterzoic rocks and significant low angle normal? (back thrust?) faults attests to the potential of this large property.

2.0 Location and Access

Tiger 1- 14 (248 units) mineral claims are situated in the Fort Steele Mining Division approximately 40 kilometres northeast of Cranbrook, in southeastern British Columbia (see Figure 1). Cranbrook is a regional supply centre approximately 500 air kilometres east of Vancouver, B.C.

The claims are centered on approximately 49 degrees, 47' and 115 degrees 30' and cover the headwaters of both the Wild Horse and Lussier Rivers. The 248 units (6,200 hectares) cover an area approximately 12 km North – South by 4.5 km East-West. Elevations range from 1600 metres on the Lussier River valley bottom to 2743 m on the summit of Mt. Wirth.

Road access to the northern portion of the claim block is via Highway 95A north from Cranbrook for 70 kilometres to the Highway 95A – White Swan Lake Forest Service road junction, approximately 10 kilometres south of the community of Canal Flats. The mainline gravel White Swan Lake road is traveled for 23 kilometres north east to the Lussier River Forest Service road junction. The Lussier River roads is then traveled for 26 kilometres (49 km marker) to the northern boundary of the claims. This mainline road is easily traveled till the 55 km marker and the crossing of Nicol Creek. Most secondary spur roads prior to this point are easily traveled by 4 wheel drive vehicle, although de-activation is currently taking place. Access further south than the first crossing of the Nicol Creek is limited to ATV as the bridges have been taken out and the road severely cross ditched.

Access to the southern portion of the claim block in the Wild Horse drainage can be either gained by ATV from the Nicol Creek drainage or via logging roads from Fort Steele. The Wild Horse River road is followed north from Fort Steele past the historic site of the Fisherville Townsite to the claim area, a distance of approximately 25 kilometres. This road during the spring of 1999 winds along narrow steep canyons and slide paths and debris cross the road making access limited to 4 wheel drive vehicles. A creek south of the Hot drilling area has washed out the road for approximately 50 metres making passage impossible.

Numerous secondary logging roads, and un mapped skidder trails make access to most of the claims by ATV or on foot quite easy. Abundant game, and hunting guide trails from logging spur roads to alpine meadows also provide good access. A pack horse trail (est. 1890's) from the Nicol Creek valley to the Poorman and Tiger areas still can be followed for most of its original route.

3.0 Property and Ownership

The Tiger 1-14 mineral claims were staked by Adam Travis in early April, 1999. The claims consist of 248 units (6,200 hectares) which cover an area approximately 12 kilometres north-south by 4.5 kilometres east –west (see Figure 2). The claims are bounded by the Top of the World Provincial Park on the east and to the southwest by claims held by Comico and others over the historic Estellam Mine area. Eagle Plains Resources however has recently staked claims further to the north to cover highly anomalous Regional Geochemistry Survey (RGS) zinc anomalies. Numerous claim blocks also exist further to the south in the Wild Horse River drainage. The claim data as downloaded from the government Mineral Titles website is summarized below :

B.C. Ministry of Energy and Mines

Figure 2:

	Claim				Work			
Tenure #	Name	Owner #	Interest	Map #	Recorded To	Mining Division	Units	Tag #
368415	TIGER 1	127175	100	082G14W	20000408	Fort Steele	20	234509
368416	TIGER 2	127175	100	082G14W	20000408	Fort Steele	12	234510
368417	TIGER 3	127175	100	082G14W	20000408	Fort Steele	20	234511
368418	TIGER 4	127175	100	082G14W	20000408	Fort Steele	12	234512
368419	TIGER 5	127175	100	082G13E	20000408	Fort Steele	20	234513
368420	TIGER 6	127175	100	082G13E	20000408	Fort Steele	20	234514
368421	TIGER 7	127175	100	082G13E	20000408	Fort Steele	20	234515
368422	TIGER 8	127175	100	082G13E	20000408	Fort Steele	20	234516
368423	TIGER 9	127175	100	082G13E	20000408	Fort Steele	18	234517
368424	TIGER 10	127175	100	082G13E	20000408	Fort Steele	18	234518
368425	TIGER 11	127175	100	082G13E	20000468	Fort Steele	18	234519
368426	TIGER 12	127175	100	082G13E	20000408	Fort Steele	18	234520
368427	TIGER 13	127175	100	082G14W	20000408	Fort Steele	20	234521
368428	TIGER 14	127175	100	082G14W	20000408	Fort Steele	12	234522
	+					<u> </u>	248	+

4.0 Climate and Physiography

The Tiger 1- 14 claims cover terrain ranging from less than 1600 metres in the Lussier River valley to 2743 metres at the summit of Mt. Wirth. Generally the Lussier, Nicol and Wild Horse valleys consist of thickly forested, and glacial till covered slopes from 1600-1900m (see Photograph 1). From 1900-2200 m discontinuous or sub-alpine slopes are covered by patchy forests, talus slopes, and sub-crop depending upon both the underlying rock units and the direction the slope faces. Above 2200 m most slopes are into alpine terrain with near continuous outcrop and subcrop (see Photograph 2).

Along the western boundary of the claims large peaks and cirques with intervening peaks form spectacular weathered spires of limestone producing spectacular vistas.

During staking in April, 1999approximately 2-3 metres of snow was noted in the main Nicol Creek valley (~ 1700 m). By the first pass of silt sampling near the end of June this accumulation was only slightly reduced, especially in creek valleys and shaded areas, with continuous snow above 1900 m (see Photograph 3). During the last phase of mapping and sampling commencing on September 15 th, snow accumulation in circulate and north facing slopes above 2400 m from the previous year was still evident. By the end of the program in early October snow was beginning to fall again (see Photograph 4).

5.0 Exploration History

The first town in the East Kootenay was established on the Wild Horse Creek above the junction with Brewery Creek. It was named Fisherville after one of the miners and by 1865 there were up to 5,000 miners at Wild Horse Creek. By 1865 the Dewdney Trail from Hope to the Wild Horse Creek was also completed.

The discovery of placer gold in the region led to further prospecting for their lode sources, as attested by Schofiled in Memoir 76.

"Mining was initiated in East Kootenay by the discovery of placer gold on Wild Horse creek near Fort Steele in the early sixties, and since then the district has advanced from the stage of uncertain placer mining

Photograph 1: April trench 1: view northward down Nicol Creek valley, showing the till covered slopes and extensive logging, also note weak gossan on eastern flank of Mt. Doolan where cut by thrust fault, photo taken in June 1999

Photograph 2: Mountainview Bowl – Tiger 1 claim looking northward, showing near continuous outcrop exposure above 2200 m, also note area where quartz stockworked veined limestone float found, sample 127611,127612

Photograph 4: View eastward from prominent +2600 m peak west of Tiger 7 claim, note new snowfall in early October 1999, also prominent structure in Mt. Doolan in background which trends through "Red Zone"

to one of steady lode mining." The search for the lode sources to placer gold on the Wild Horse and Moyie Rivers contributed to the discovery of the Sullivan Mine in 1892 and the St. Eugene about the same time.

The community of Fort Steele at the junction of the Wild Horse River and the Kootenay River formed the regional supply centre with railway access completed in 1898. About this same time J. Larsen (prospector) located 8 claims on the eastern flank of Mt. Wirth. These were given crown granted title called the Uncle Sam, Poorman, Silver Crown, Montana, Moutainview, Tiger, iron mask and B&M.

The developments on these properties included collaring and sinking a shaft along with at least seven adits on three separate zones. Mineralization consisting of oxidized chalcopyrite and tetrahedrite with precious metal credits was the focus of the underground work. Log cabins were built below the Poorman Shaft (see Photograph 5) and Mountianview Adits (see Photograph 6) and a wagon trail connecting to the Wild Horse trails for the shipment of hand sorted ore was also constructed. By 1938 the Crown Grants were reverted back to the Crown.

Later with the advent of the railway through Cranbrook, Fort Steele dwindled to a population of a few hundred. By 1937 Cranbrook had a population of 4,000 with a similar number around the Sullivan Mine. (Rice, 1937).

Approximately 10 km's to the SW of the claims near mount Bill Nye the Estella Mine produced lead and zinc from 1951-1967. In the late 1980's gypsum exploration and mining from the Lussier River area north of the Tiger claims by Domtar (Georgia Pacific) occurred. Recent developments include the definition of > 30 years worth of reserves sufficient for the establishment of a wallboard plant at Canal Flats.

Recent mineral exploration on the current Tiger 1-14 claim area has resulted in numerous Assessment Reports being filed and the discovery of the Hot and April Minfile occurrences along with the previous Poorman and Tiger occurrences.

In 1980-1982 Dekalb Mining conducted stream sediment, soil sampling and trenching programs in the headwaters of Nicol Creek and the Wild Horse River on the April claims. Copper skarn mineralization at the margins of a monzonite – syenite stock was the focus of their work. From 1984-1987 Fox Geological for Dome Exploration conducted geochemical surveys followed by diamond drilling of 6 holes (707.6 m) in an area that overlapped with the previous April claims but focussed more to the east. This drilling intercepted pyritic, quartz veined syenite, and skarned sediments that returned anomalous copper and gold values.

In 1989 South Kootenay Goldfields conducted sampling and mapping of the Tiger – Poorman area. There's is the only apparent recorded work filed on the Tiger – Poorman area for Assessment purposes.

A prospecting report was also filed in 1991on the Bird-Lynx claims in the southern portion of the claim block. It also evident that claims and other unrecorded work were not filed in this area as evidenced by a large block of Gem claims staked in 1994 by L.B Warren for R.T Heard that cover much of the Tiger claims, yet no Assessment Report is noted.

6.0 Regional Geology

The regional geology consists of Proterzoic Purcell Supergroup sediments and volcanics folded and faulted with Lower Paleozoic platformal carbonates that strike northwards. Large thrust faults trend throughout the region along the Wild Horse and Lussier River valleys and emplace the older Proterzoic rocks onto the younger Paleozoic rocks. The Proterzoic Supergroup forms the dominant succession to the west and consists dominantly of sediments with minor volcanics. Listric normal faults and other thrusts faults occur within the Proterzoic sequence generally with a northerly trend. Later east-west oriented faults have also been shown by Hoy & Carter, 1988 named as Nicol Creek, Mt. Stephens and Lewis Creek.

East of the Purcell Fault a dominantly Lower Paleozoic carbonate sequence forms broad syncline and anticlines with imbrication along NW trending thrust faults.

Photograph 5: Poorman Cabin: small cabin that has survived close to 100 years, various mining paraphernalia including winze, bucket and of course whiskey bottles

Photograph 6: Tiger Cabin unfortunately this old miners cabin has not survived, however it only appears to have collapsed in the last few years

Cretaceous monzonites, granodiorites and syenites intrude both Proterozoic and Paleozoic rocks. A few have been regionally mapped and occur in a trend from Summer Lake to just east of Mt. Wirth. Many of these syenite bodies occur as small irregular dykes, sills and stocks and cannot be shown on regional maps. Although volumetrically insignificant their relationship to mineral deposits in the region is significant.

Basal Devonian Unit shaley limestones contain gypsum horizons along the Lussier River which form northerly linear clusters of sinkholes. These are being mined near the confluence of Coyote Creek and Lussier River by Domtar (Georgia Pacific).

Placer gold occurs within the Cranbrook map area with historical production on the Wild Horse and Moyie Rivers. The deposits are found in poorly sorted Pleistocene conglomerates with higher values found at the bedrock interface. Hot spring sinter deposits are currently forming and well known locations such as Radium and Fairmont Hotsprings, and also at other less known spots such as Lussier River and Ram Creek locations closer to the project area are noted.

7.0 Property Geology

Detailed logging road maps showing Crestbrook Forest Industries and B.C Forest Service roads along with other topographical features was used as a base for drafting of both the property geology and sample location maps. The property geology is quite complex and until the staking of the Tiger 1- 14 claims the previous land packages have been held as smaller fragments around the separate Minfile occurrences. Thick till cover below 2000 m limits outcrop exposures to road cuts and stream beds, from 2000-2300 m forested and partially till covered areas create moderate exposures, and above 2300 m nearly continuous subcrop and outcrop exposures are noted in the alpine.

Simplistically Lower Paleozic and Proterzoic carbonates, sediments and minor volcanics on the western side of the claims have been thrust eastward onto Lower Paleozoic carbonates and minor sediments with Cretaceous aged syenite plugs intruding along this north south striking thrust.

The property geology can essentially be separated into three main domain areas, that appear to be fault bounded entities, they are:

- 1. Tiger Poorman area
- 2. Area east of Lussier River Thrust
- 3. Area west of Lussier River Thrust and south of Tiger- Poorman area

7.1 Tiger – Poorman Area

In the Tiger-Poorman areas which has been worked intermittently since the 1890's only two Assessment Reports have been filed and these show only simplistic geology. This area consists of Upper Cambrian and Lower Ordovician Mckay Group limestones and shales overlying Middle and/or Upper Cambrian Jubille Formation limestones and Proterzoic Sheppherd Formation sediments. All units strike northerly with a moderate dip, however the Shepperd appears to dip slightly steeper. Along the contact zone with the Lussier River or Purcell Thrust a northerly trending syenite body is also noted.

A series of small outcrop exposures of pinkish colored syenite occur in road cuts on spur roads that leave the Lussier road at 50.5 and 52.9 kilometres. Further up the creek valley towards the Poorman Showing and in fact along the original wagon trail is a talus exposure of syenite. Minor gossanous intervals occur in some of the exposures, with minor quartz veining. The Mckay Group grey limestones and shales occur chiefly below 1800 m and are therefore mostly till covered. The Jubille Formation consists of white crystalline limestone and dolomite with siltstone interbeds and underlies most of the area, forming steeps bluffs and spectacular ridge crests. At least two significant siltstone interbeds have been noted and form breaks in slope, flat topped ridges and probably floor some of the hanging valley cirques.

Underlying the Jubilee Formation is the Proterzoic Shepherd Formation which is noted near the western boundary of the Tiger 3 claim in the head of a valley termed "Shepherd's Bowl". Previous workers have noted this unit as conformably underlying the Jubilee, however this work seems to indicate that's an angular unconformity (see Photograph 7). This fault contact area is marked by extensive brecciation and gossan zones and appears to be related to a structure at a slightly higher angle than the bedding in the Jubilee. This gossanous horizon appears to strike northward, to trend northward along the western flank of Mt. Wirth. A similar looking gossan was spotted ~ 5 km northward on the eastern slopes of the Diorite Creek valley (see Photograph 8). Also evident in the Shepherd Formation is a stromatolitic horizon which was noted in large talus blocks (see Photograph 9).

Other low angle north striking normal (?) faults or perhaps back thrusts related to the Lussier River Thrust were noted forming dip slopes on the eastern flanks of Mt. Wirth. These fault zones were cutting the Jubilee Formation and seem to be expressed as brecciated zones with a pinkish hue (hematite?) in the limestone. Mineral occurrences appear to be related to these north striking faults and are discussed under the mineralization section.

Quartz- carbonate veins up to 4 metres in width were noted along a northerly trending structure near the Tiger South adit and north of the Tiger cabin along the same (?) structure (see Photograph 10) These and quartz stockworked vein float found in the valley to the north (termed "Mountainview Bowi") seem to indicate the potential for another style of mineralization.

7.2 Area East of Lussier River Thrust

h ...

The area east of the Lussier River Thrust occurs along the eastern boundary of the claims and appears to be the least complex area. This package of rocks consists of dominantly platformal carbonates with minor shaley interbeds. The Devonian Basal Unit in the north on the Tiger 2 and 4 claims is underlain by the Upper Ordovician to Middle Silurian Beaverfoot Formation and the Upper Cambrian Mckay Group found to the south. These units strike generally northwards and on the claims mostly dip to the east moderately. Various anticlinal and synclinal (some overturned) have been mapped by previous workers, this area though was not the focus of this years program. These rocks have been thrust over top of by Lower Paleozoic and Proterzoic rocks on the west and also by Devonian rocks from the east in the Top of the World Park.

A few small (< 100 m) syenite plugs were noted in a previous Assessment Report on the present Tiger 13 claim, these were confirmed. Minor gossanous patches and pyritic intervals were noted in a creek exposures of one of the bodies.

Quaternary Hot Spring (or most likely "warm springs) sinter deposits were noted in the main creek on the Tiger 13 claim, and occur just below the junction of the three creeks on the main Wildhorse. Local people have also professed of a "long lost hotspring" in the areas of the syenite plugs, however this was not noted.

7.3 Area West of Lussier River Thrust and South of the Tiger- Poorman Area

The area south of the Poorman occurrence and west of the Lussier River Thrust has only been previously mapped in the southern section between the April and Hot Minfile occurrences. Regional work by Hoy and Carter in this area is generally quite good although the author believes more low angle faulting similar to

Photograph 7: Shepherds Bowl, angular unconformity And gossanous zone , Jubilee Formation overlying Shepherd Formation

Photograph 8: View northward along western flank of Mt Wirth and Diorite Creek valley, note gossanous horizon in ridge west of Shepherds Bowl trending northwards

Photograph 9: Shepherds Bowl: Stromatolitic dolomite near the top of the Shepherd Formation in large talus block

Photograph 10: Tiger South Adit area, large (<4m) quartz carbonate vein located 50 m below Tiger South Adit

what's mapped regionally to the south also occurs here. This block appears to be an upthrown equivalent of the Tiger – Poorman area, bringing more extensive areas of Proterzoic rocks onto the claim area.

In the Nicol Creek valley and onto the western slopes of Mt. Doolan on the Tiger 6 claim Upper Ordovician – Middle Silurian Beaverfoot Formation shales and limestone have been regionally mapped by Hoy & Carter. Shaley units were noted during sampling of one creek in this area. On one of the logging spur roads in this area a quartzite unit is also noted and may represent the Ordovician Wonah Formation. These units are underlain by Mckay Group limestones which form grey limestone bluffs along the eastern slopes of the Nicol Creek Valley and strike northerly with moderate dips east. Near the northern boundary of the Tiger 8 claim a 10 m thick syenite sill is noted for approximately 200 metres and is hosted by Mckay Group limestones and shales. The sill appears to have little alteration effects on the Mckay Group in this area, however a significant lead, zinc anomaly is noted along trend to the north.

Forming the central portion of the claims and the main Nicol Creek valley and southward to summits on the Tiger 10 and 12 claims is the Jubilee Formation white crystalline limestone and dolomite. In the northern end near the Tiger 6 claim white limestone bluffs are noted along road cuts at 1900 m. South of this area exposure is limited to a few creeks and road cuts. The area southward to the headwaters of Nicol Creek / April Showing is mostly till covered and may contain some recessive siltstone units as noted in the Tiger/Poorman area. Further south in the area east and south of the April Showing white limestone cliffs form mountain peaks in the north central Tiger 10 claim and onto the Tiger 12 claim. The Jubilee Formation in this area has been intruded by syenite sills, dykes and small stocks centred on a prominent peak along the Tiger 10/12 boundary and also eastward at the Hot Minfile occurrence.

These syenite stocks appear to be the source for geochemically anomalous copper, gold, arsenic, silver and other elemental anomalies. The syenites are host to quartz stockworked veined and pyritic intervals with anomalous levels of the above mentioned elements. Skarned and hornfelsed contact zones near the margins are also noted with pyrite, pyrrhotite, actinolite and garnet. The plugs appear to consist of at least three different phases and include a more pink or potassic syenite (salmon pink coloured), a more greyish syenite and near the April occurrence a more magnetite rich monzonite phase. These bodies are generaly quite irregular sills, dykes and plugs noted on ridge tops, cirque valley headwalls, and road cuts. The bodies display jointing both N-S and E-W. Previous workers have connected exposures at Hot souhward to those 1 km away, however these could just as easily be joined to bodies noted to the west. The areas highlighted on the property geology map should be thought of zones of extensive sills, dykes and plugs rather than a single discrete body.

Underlying and west of the Jubilee Formation is the prominent Proterzoic Nicol Creek Formation basalt, with the Shepperd Formation apparently absent. The Nicol Creek Formation basalt forms quite noticeable dark green in places amygdaloidal, pillowed, massive and minor coarsely crystalline flows that are mostly noted in till float. Large amphibole phenocrysts up to 8 cm long and labradorite phenocrysts 2 cm across form a distinct unit near the base of the Nicol Creek Formation. This unit is rarely noted in outcrop along the western slopes on the Nicol Creek valley, except in cliff exposures south of April and in a few creek beds. A folded replicate may also exist along the western boundary of the claims.

Further to the west of the Nicol Creek Formation Proterzoic Van Creek, Kitchener, and possibly Creston Formations siltstones, mudstones, quartzites, limestones and other sediments are noted. These units are noticeable in that they are bedded also north-south like the Paleozoic rocks however are very steeply dipping. Pale green and mauve coloured siltstones, quartzites, sandstones form cliffs and hanging wall cirques along the Tiger 5, 7 and 9 claims. The quartzite units appear to be more favourable for the development of stockwork veining (see Photograph 11). These units are also cut by a few significant north trending faults, that form notches in ridges and linear "tarn" lakes. Further to the west along the boundary of the Tiger 5 and 7 claim massive basalts form cliffs and perhaps may be a folded repeat of the Nicol Creek Formation.

Near the northern boundary of the Tiger 7 and 8 claims the regionally mapped Mt. Stephens Fault is noted. It appears to offset the units with an apparent upthrow to the north. Synite float was also noted in the valley bottom along the projection of this fault, and possibly may have invaded it.

Photograph 11: Quartz Stockwork Veined Quartzite. west of Tiger 7 claim, sample site 127676, approximately 100 m exposure of stockwork veining

Photograph 12: Foliated and Folded Proterzoic Sediments. north of Tiger 9, west of Tiger 7 In valley below pass to Diorite, note near vertical dipping north striking folded siltstones, shales and quartzites cut by shallow (15), east dipping foliation related to low angle fault Near the northern boundary of the Tiger 9 and western boundary of the Tiger 7 claims (near an area termed 'Diorite Pass') a significant low angle fault has been noted striking N-S and dipping 15 degrees eastward. It forms a prominent foliation in some units and can be seen cutting across bedding (see Photograpgh 12). This low angle fault may also be responsible for the quartz stockwork veining noted in quartzite units.

A 50 m thick gabbro sill near 'Diorite Pass" and may be a feeder for the overlying Nicol Creek Formation.

8.0 Geochemistry and Mineralization

Numerous styles of mineralization have been noted on the Tiger 1-14 claims by previous workers, these were investigated along with the follow up of stream geochemical anomalies and property wide prospecting. This work resulted in not only the recognition and understanding of previous occurrences but also the discovery of new styles of mineralization and expansion of known areas.

A total of 62 rocks, 66 stream sediment and six soil samples were collected and sent to Chemex Labs in North Vancouver for analyses. After a review of such articles as "Stream Sediment Geochemistry in Today's Exploration World" by W.K Fletcher it was deemed more appropriate to screen and sieve stream sediment samples (see Photograph 3) to provide a sufficient quantity of -200 Mesh sample. However the transport of buckets and sieves was cumbersome and all the second phase samples were not sieved but did provide a sufficient quantity for -200 Mesh sampling. The samples are plotted on Figure 5: Tiger Claims Sample Locations and Results (Scale 1;15,000). A few days were also spent sampling and prospecting to the north and south of the claim block and these samples are shown on Figure 6: Off Property Sample Locations. Sample Descriptions (AppendixII), Tabulated Results (Appendix III) and Chemex Assay Certificates (Appendix IV) have also been appended. Stream geochemistry has proven to be a valuable soil to identify many anomalous zones which are discussed below in the context of mineralization.

The off property sampling (see Figure 6) was not followed up in any detail and is therefore discussed within. Four stream sediment samples (#126578-126581) were taken approximately 7 km north of the claims at the first good streams that intercept the main road north of the claims. These samples show weakly anomalous gold (<35 ppb Au) and may deserve some follow –up, some of these samples however may now fall on new ground acquired by Eagle Plains. One day was also spent to follow-up anomalous site 126590 (Au165 ppb) near the southern boundary of the claim. Five stream sediment samples (127707,708,709,751 and 752) and four rock sample (127605,606,659,660) were taken in a eastern tributary drainage of the Wild Horse River to the south of the claims. The stream sediment samples failed to return significant results, and the rock samples for the most part were also insignificant. However float sample (127605) did return weakly anomalous Ag, As and Pb from pyritic and galena bearing brecciated limestone most likely from near vertically bedded north striking Proterzoic rocks. It is still unclear at this stage whether the site 126590 low in the Wild Horse valley represents material from the main valley or the tributary followed up.

The previous minfile summaries are tabulated below:

-

Name	Minfile #	Туре	Comments
April	82GNW049	Cu skarn	Purcell Supergroup Sed's intruded by syenite stock
Hot 1	82GNW050	Porp. Cu,Mo,Au	syenite porphyry intrudes Mckay Group carbonates and shales near Lussier Creek thrust. Copper rich
Tiger	82GNW083	Poly. Manto Ag-Pb-Zn	zones are anomalous in gold, arsenic and mercury. replacement style in Jubilee Formation limestone
Poormai	n 82GNW082	Poly. Manto Ag-Pb-Zn	replacement style in Jubilee Formation limestone

For ease in explanation the varying styles of mineralization will be discussed under separate headings according to its type and include:

- 1. Syenite Related Au, Cu, As, Hg
- 2. Copper Skarn
- 3. Jubilee Formation Hosted Fe, Tetrahedrite, Pb, Zn Replacements
- 4. Limestone Hosted Stock work Quartz/ Carbonate Veins
- 5. Quartzite Hosted Stockwork Quartz Veins
- 6. Shear Related
- 7. Gypum

÷

i.

8.1 Syenite Related Au, Cu, As, Hg

As early as work by Rice, 1937 the relationship of granitic intrusives to mineral deposits in the Cranbrook area has been recognized. He noted two main forms as granodiorite stocks and syente dykes and also correctly interpreted their age as Cretaceous-Tertiary.

In the Hot 1 area anomalous copper and gold values occur over a 3 km square area, mostly to the south and west of the previously drilled area. Included in this is quartz carbonate vein stockworks in syenite ~ 2.5 km SW with values to Au 260 ppb, Ag 13.6 ppm and Cu 2210 ppm (# 127615). The previous drillcore was found to be stored at drillhole site 1, and unfortunately is in poor condition. An examination of the core indicates that anomalous values in gold came from pyritic and quartz stockworked intervals. Intervals of skarned sediments was also noted in some of the core. Hole 4 contained values of 35 ppb – 340 ppb Au from 0-75 m in pyritic syenite. The potassic alteration, stockwork veining, 1-3% pyrite and trace chalcopyrite give the core an almost porphyry copper look. The stockwork veined area also seems to have a spatial relationship with the mapped thrust fault in the area.

Also immediately west (and uphill) of the drilled area a stream sediment sample (#127701) returned Au 25 ppb,, Cu 991 ppm, Mo 5 ppm, Pb 62 ppm and Zn 190 ppm. This along with skarn float (# 127601- Au 1625 ppb, Ag 75.6 ppm, and Cu 23.4 %) also found in the area indicates mineralization outside of the previously tested area.

Other syenite bodies were noted further to the west of Hot and south of April, with anomalous copper and gold stream geochemistry (#126588,589, 127711) and rock float sampling (127658, 127614, 615). This area contains stockwork quartz veining and minor gossanous zones. Insufficient work has been completed to determine whether results higher than anomalous levels to potentially economic concentrations may be found. Syenite bodies at the "Chil Zone" were also noted, however a few rocks samples taken failed to return significant results. Another small sill to the south of the "Red Zone" was also noted and may have a relationship to Pb, Zn, Ag, Au anomalies in the area. Two small syenite plugs were also noted to the east on the Tiger 13 claim (see Photograph 13), a rock sample (#127682) although pyritic failed to return significant results. These numerous small bodies have been shown to contain anomalous values, the full evaluation of existing bodies and potential discovery of new ones should be of high future priority.

8.2 Copper Skarn

The April Minfile occurrence is listed in the Minfile description as "of the copper skarn type hosted by northerly striking, steeply dipping Helikian Gateway Formation (Purcell Supergroup) carbonate and clastic rocks". This has been renamed in work by Hoy & Carter as the Nicol Creek Formation but essentially remains as the unit overlying the Kitchener Creek Formation. At April three trenches (total 300 m) were still evident from work completed in 1986, at the headwaters of Nicol Creek. Most of the trenches were cut down for at least 3 metres and most of the trenches were still in till (perhaps some slumping over the years). The most southerly trench (see Photograph 14) has a few exposures of grey monzonite, the middle trench skarned basalts, sediments and intrusives and the last or most northerly trench failed to hit bedrock (see Figure 7). The monzonite unit is fairly magnetic and may have been the source of previous geophysical anomalies.

A few float samples (126503-505) were taken during the initial visit in June, these only returned slightly anomalous values in copper and gold. The thick till cover in this area precludes conventional prospecting and the target type was not that principally chosen and hence remains a lower priority.

Photograph 13: Small Syenite Plug. On Tiger 13 claim, sample 127682 site, Note blocky syenite with gossanous Patches in creek exposure

Photograph 14: April Trench I, view looking eastward down trench, note extensive till cover and patchy snow cover in late September 1999

A new discovery of semi-massive skarned float (# 127601- Au 1625 ppb, Ag 75.6 ppm, and Cu 23.4 %) on the old drill road between Holes 1 and 2 may indicate skarn potential outside of the April trenches. It is interesting to note that previous work by Fox Geological alluded to the fact that the geochemical anomalies may have significant downslope dispersion and yet the following year the drillholes were collared directly in the anomalies. Silt sample 127701which was taken approximately 200 m west of the drilling may indicate another mineralized source.

Another skarned float (#127662) piece was found as float on the road to the west of the hunters cabins on the Wild Horse on the Tiger 12claim. This sample failed to return significant results however this indicates the skarn potential in the area. Skarned float is also noted along the eastern side of the headwaters of the Nicol Creek through the central portions of the Tiger 8 claim and may indicate the potential for skarn deposits below the till. The new discovery of a syenite sill on the east side of the valley may also add credence to this theory. Although where noted cutting the Mckay Formation the contacts were unaltered, however different contact effects may occur cutting the Jubilee Formation. Another possible explanation could also be till dispersion from the head of the Nicol Creek valley.

8.3 Jubilee Formation Hosted Fe, Tetrahedrite, Pb, Zn Replacements

In the area of the Tiger and Poorman Minfile occurrences the old workings were relocated and also a previously unknown 25 m long adit was discovered. The replacement style iron, tetrahedrite, chalcopyrite mineralization has been attributed to splays off low angle faults.

At the Poorman shaft (606360E/ 5526280 N/ 2410 m) area replacement style mineralization trending 220/ 72 W was noted in brecciated Jubille Formation limestone (see Photograph 15). The limestone where brecciated has a pinkish hue and were bedding is more apparent strike 350/48 W. Interestingly the continuation of this structure approximately 200 m NE takes us to the plotted location of the Poorman Adit. Exposed in the 3 m deep pit or shaft on the north wall is two < 1.2 m pods of nearly massive intervals of iron (#127663-665). The oxidation of which has produced beautiful goethite specimens (#127610), with spectacular secondary copper minerals such as malachite, azurite and brochanitite (?) along with tetrahedrite (see Photograph 16). The vertical exposure indicates a poddy nature and perhaps offsetting along low angle structures. Exposures along strike although somewhat covered in places indicate the poddy nature also along strike (see Photograph 17).

At the Poorman Adit which appears to be along strike to the NE an adit with collapsed material at the entrance is noted (see Photograph 18). Brecciated limestone at 220/82W is also noted and where bedding is apparent at 350/62E. The entrance to the adit was partially dug out and the adit appears to trend at 218 degrees for at least 15 metres (see Photograph 19). A few semi-massive gossanous iron pieces (# 127666)were found in the gulley below, but most of the inferred mineralization appears to have been removed. The mineralization here also appears limited but the persistence of the structure is duly noted. Brecciated limestone in float (#127667) to the NE in Shepherds Bowl and a cliff exposure indicate that the structure may continue for at least 750 metres. The cliff exposure above this float sample is noted with a gossanous pinkish hue (see Photograph 20).

Further to the north in an area termed Tiger Bowl, and south of the Tiger cabin at approximately 606650 E / 5528425 N / 2200m another adit (Tiger South Adit, see Photograph 21) is noted. A collapsed adit with only a few small timbers in the talus slope was evidenced in the area. Strong north south trending fractures were noted in limestone in the vicinity of the collapsed adit. Below the adit a large quartz/carbonate vein (# 127670)was also noted (see Photograph 10). Gossanous float (#127671) approximately 100 metres below the collapsed adit in a narrow steep gulley indicates the mineralization at the adit was most likely also replacement style massive iron, tetrahedrite style.

A previously unknown adit (not shown on previous Assessment Reports, see Photograph 22) was also found in thickly forested limestone bluffs to the west of the Tiger cabin. The cabin (606970 E/ 5528280 N) is now collapsed, however the 25 m long adit (606630 E/ 5528250 N) remains in good condition. The adit

Photograph 15: Poorman Shaft: view looking northward? Note gossanous pods and shears in brecciated limestone Lenses seem to coalesce at depth, location of samples 127663-127665

iron/goethite pieces and white limestone

Photograph 17: Poorman Shaft: view looking southward, note large valley behind claim post and also eastward dipping Jubilee Formation limestones in background, also possible Steeply dipping structures

Photograph 18: Poorman Adit: located - 200 m on strike to the NE of Poorman Shaft, collapsed adit in brecciated limestone, view looking SW

Photograph 19: Poorman Adit. clos-up view of Photograph 18 showing collapsed adit and strongly brecciated limestone

Photograph 20: 750 m NE of Poorman Shaft. Shepherds Bowl, gossanous pinkish hue to limestone in area on trend with Poorman. float sample 127667 taken on talus below

Photograph 21: Tiger South Adit: note now collapsed adit covered by siltstone talus from horizon above in predominantly limestone, steep gulley trends northward, near massive iron float found below suggests mineralization similar to Poorman

Photograph 22: Tiger Adit: located to the west of Tiger cabin in dense forest, 25 m long adit heading westward into brecciated limestone, note was never previously documented, no mineralization noted, note old wheelbarrow

trends westward and fractures were noted at 160/56 W, 300/65 NE, 280/60 N and 230 /50 NW. NoX appreciable mineralization was noted and only brecciated limestone was noted. Interestingly this location is the possible intersection of the northward extension of the Tiger South Adit and the downdip projection of the Mountainview Adit area.

The Mountainview Adit area consists of at least five adits, pits and trenches located approximately 500 metres NE of the summit of Mt. Wirth between 2300 m and 2500m in a prominent steep gulley (see Photographs 23,24,25). Similar textures to the Poorman area of semi-massive goethite with secondary copper minerals and also near massive pods of tetrahedrite were noted (#127618,619,681). The adits generally trend north- northwest into the steep hillside (see Photograph 26) and are composed of brecciated limestone at 300/60 NE, 200/50 W, 250/30 N and 160-180 near vertical. Stepping back from the adits to the southern side of the gulley and also evidenced in the next bowl north of the adits are low angle structures. These low angled structures appear to have splays off them which appear to control the replacement style mineralization that was mined.

Closer to the summit of Mt. Wirth similar style mineralization although with only iron apparent was noted by previous workers, this was failed to be accessed due to snow and cliff conditions during this program. Further to the north in an unnamed valley north of the claims one small piece (#127677) of similar massive iron with anomalous arsenic and molybdenum was also noted. This brings the total potential strike length of the iron, tetrahedrite, copper replacement style mineralization to at least 4 kilometres from Poorman northwards.

Exciting new discoveries (#127679) were also made in the area between the Hot and Poorman Minfile occurrences. On the Tiger 7 claim semi-massive tetrahedrite veins were found in Jubilee Formation limestone (similar to Tiger and Poorman style but without the iron). The area in the vicinity of the Tiger 5-8 LCP has been called the Red Zone and significant but as yet unexplained Pb, Zn, Au, Ag, Sb, and As occur in till covered areas. These may represent a similar style of mineralization as at Tiger and Poorman but with potentially a different mineral zonation. The potential mineralized area needs to be fully evaluated with detailed mapping and sampling. Thin tetrahedrite fracture fills were also noted in limestone at sample 127604 south of the Hot Minfile occurrence and also attest to the potential widespread nature of this mineralization type.

8.4 Limestone Hosted Stock work Quartz/ Carbonate Veins

Large (<4 m) quartz veins (#127670,127681) along with stockworked veined limestone float (#127611, 612) have returned values to Au 1175 ppm, Ag 270 g/t, As 2820 ppm, Cu 1.37 %, Sb 3090 ppm, and Zn 2270 and represent a new style of mineralization in the Tiger- Mountainview area. The large veins north and south of the Tiger cabin (see Photograph 10) failed to return significant results but indicate the potential for larger veins. The float pieces found to the north of the Tiger cabin in Montainview Bowl (see Photograph 2) though indicate the potential for possibly economic concentrations. The area of the northwest corner of the Tiger 1 claim needs to be fully evaluated.

8.5 Quartzite Hosted Stockwork Quartz Veins

Quartzite bodies in the south western portion of the claims in the Proterzoic rocks appear to be more receptive hosts for quartz stockwork veining (see Photograph 11). These appear to be related to competency contrasts whereas the more friable sediments simply deform more plastically. The veining appear to be spatially related to areas cut by low angled structures. The few samples (# 127675,676) taken to date however have failed to return significant results.

8.6 Shear Related

The Proterzoic rocks on the western side of the claim group south of the Poorman occurrence are noticeably more deformed than the Paleozoic rocks. This package of rocks strikes similarly northwards but with steep dips east and west. Along these bedding planes are apparent north-south trending fault zones (

Photograph 23: Mountainview Adit: view eastward from ridge crestabove Mountainview adits, surface walked on is ~ 10 m into hangingwall of low angled shear, all adits/minz'n hosted within this horizon, background shows new logging in area of newly discovered gypsum bearing sinkholes

Photograph 24: Mountainview Adits abundant iron and copper stained float found at entrance to collapsed lowermost adit at Mountainview

Central adits, looking northward near entrance To adit, note secondary copper mineralization Hosted in sheared limestone, also semi-massive tetrahedrite

Photograph 26: Mountainview Adits: one of the more than 6 adits in the Mountainview area - 500m NE of Mt Wirth, note eastward dipping limestone, higher angled shear through adit roof, immediate lower left corner of photo most likely shallow dipping fault surface

see Photograph 27). On the Tiger 5 claim northerly trending shears in Proterzoic rocks returned anomalous Au, Ag, As, Cu, Mo, Pb and Zn (#127620). Near the southern boundary of the Tiger 5 and 6 claims stream sediments(#126573.126574, 127760) have returned anomalous lead and zinc values (Pb 254 ppm, Zn 524 ppm) and remain unexplained.

In the Pepper Zone area a new logging road cut has exposed a 160 trending 0.6 m wide gossanous shear with highly anomalous lead (#126551,127655), it may be related to the nearby Lussier River Thrust and/or syenite body to the south. Another gossanous shear(?) has been noted in the Jubilee Formation on a cliff face to the east of the previously worked Dragoon claims on the eastern margin of the current Tiger 3 claim. It so far has not been investigated during this program or recorded in previous programs (see Photograph 28).

8.7 Gypsum

The discovery of previously unknown sinkholes (see Photograph 29, 30) on the Tiger 2 and 4 claims led to some preliminary prospecting for gypsum bearing horizons in the basal Devonian Unit. Its potential economic importance at this stage is not fully understood. Previous claim maps indicate a claim held by gypsum operator Domtar in this area, however no Assessment Report appears to be available.

These mineral occurrences discoveries along with the mapping of previously unknown syenite bodies, northerly trending shears within Proterzoic rocks and significant low angle normal? (back thrust?) faults attests to the potential of this large property.

9.0 Conclusions and Recommendations

Sampling, mapping and prospecting to date has reviewed previous work and also made significant new discoveries. Further syenite bodies and more faulting than regionally mapped along with significant geochemical anomalies attests that the area has excellent mineral potential for many styles of mineralization.

Figure 8: Possible Erosional Level Noted on the Tiger 1-14 claims based on Intrusive Related Gold Deposit Model

Photograph 27: Tiger 7 Shear; gossanous Zone in north-central portion of claim near 2300 m peak, cutting Proterzoic sediments, so far not investigated

Photograph 28: gosanous shear, view eastward from start of Shepherds Bowl to area on eastern margin of Tiger 3 claim, so far not investigated, was east of previous Dragoon claims **Photograph 29:** Tiger 4 Sinkhole located on de-activated spur road off Lussier Main at 52.3 km, ~ 25 m x 25 m x 15 m deep note filled by log debris, northern slope has gypsum bearing horizons in shaley limestones

Photograph 30: Tiger 4 "Twin" Sinkholes: one of two adjacent 25 m x 25 m x 15 m deep sinkholes, newly discovered in active logging area situated in break in slope on new spur roads off main at 51.3 km corner
Based on an Intrusive Related Model (Figure 8) the so far discovered tetrahedrite, silver, lead, zinc mineralization discovered may indicate that the potential for "Pogo", "Fort Knox" and "Sediment Hosted" could exist at depth. The syenite bodies found to the south at Hot, and other smaller bodies may indicate a deeper level, closer to the potentially sediment hosted gold depth.

This program has confirmed the anomalous Au, Cu, As (+/- Ag, Bi, Mo, Pb, Zn) results associated with syenite intrusions between the April and Hot Minfile occurrences. Further anomalous results appear to be outside of the areas previously tested.

The April trenches were examined and appear to cover the contact area of Proterzoic basalt and sediments with a more monzonitic phase of the intrusions. This area is considerably till covered and is not conducive for traditional prospecting, although the hills to the south are.

Proterzoic rocks west of April and northwards to the Poorman occurrence have been shown to contain N-S structures and anomalous Au, Ag, As, Cu, Mo, Pb, Zn values drain much of the area.

In the Red Zone area near the Tiger 5-8 LCP massive tetrahedrite veinlets were found (127679) hosted in brecciated Jubilee Formation limestone. Significant unexplained Pb, Zn with Au, Ag, As, Sb anomalies in stream sediments to the north of sample 127679 are also noted.

At the Tiger-Poorman showings replacement style iron, tetrahedrite, copper with lead and zinc values has been shown to be related to northerly trending moderately east dipping structures. This mineralization to date appears to be of limited size potential.

In the Pepper Zone area a new logging road cut has exposed a 160 trending 0.6 m wide gossanous shear with highly anomalous lead, it may be related to the nearby Lussier River Thrust and/or syenite body to the south.

Gypsum bearing horizons were also recognized in the Basal Devonian Unit along with discovery of sinkholes.

The Tiger 1-14 claims cover a large area and many styles of mineralization, the following recommendation's however can be made based on the results date:

- 1. Review and Compile previous soil sampling in the Hot / April areas to help explain stream sediment anomalies, after completing this compilation to conduct soil test sampling programs and evaluate previous work
- 2. Conduct a soil sampling test program over the "Chili" syenite near the Tiger I-4 LCP
- 3. Conduct soil sampling and rock sampling of the syenite sill SE of the Red Zone
- 4. Continued prospecting, sampling and a soil test program in the Red Zone area to try and explain anomalous Pb, Zn, Ag, Au, As, Sb, Zn in stream sediment sampling.
- 5. More detailed prospecting of Proterzoic sediments, their northerly structures and results such as 127620 (Au 1165, Ag 26, As 1110, Cu 1175, Mo 44, Pb 9130 and Zn 2930).
- 6. Assessment of the potential of quartz vein stockworks in limestone found in float in the Moutainview Bowl area.
- 7. Determine the significance of gypsum bearing horizons in the Basal Devonian Unit and the formation of sinkholes.
- 8. Prospecting and sampling of the Tiger 11 claim (note Cominco claims immediately to the SW).
- 9. Follow up sampling of Bismuth anomaly on Tiger 14 claims.
- 10. Assess other syenite bodies in a regional context in the area north of Fort Steele.

Appendix I: Completed Prospectors Assistance Prospecting Report Forms

PROGRAM PROPOSAL - PART B Location of Proposed Project(s)

Indicate on this map (using an "X") the general location of each of the projects covered by this proposal.

BRITISH COLUMBIA	
PROSPECTORS ASSISTANCE PROGRAM	
PROSPECTING REPORT FORM (continued)	
B. TECHNICAL REPORT	6 1000
• One technical report to be completed for each project area.	0 1333
Refer to Program Requirements/Regulations 15 to 17, page 6. PROSPECTOR	S PROHRAM
• If work was performed on claims a copy of the applicable assessment report may be submitted in supporting data (see section 16) required with this TECHNICAL REPORT.	Alice of the
NameAdam_TravisReference Number 99	9/2000 PIO4
LOCATION/COMMODITIES	
Project Area (as listed in Part A) TIGER CLAIMS MINFILE No if appli	shleane at 202 CR2
Location of Project Area NTS $82 \times 13/14$ Lat $49^{\circ} 52'$ Lor	$\frac{1}{15} \frac{1}{2} 1$
Description of Location and Access CLAINS HOF LOCATED HOP ICH ALE OF CALLE	donie Arrass
to southern portion of claums via wildhove Frest Hain from BET 5	TELE. Nuthern
parties of claims accessed via white such the Sier Main near Cana	al Elats
Main Commodities Searched ForAg, Pb, Zn and Gypsin	
Known Mineral Occurrences in Project Area April (82(12)) - Capit 5Korn	HAT (82(42)0-22)
Copper, Maly, Gold Prohyny, Tiger (82GN/2783) + Parman (826200052) A	tuta C. Zn. Ph
replacement style minimalization	
WORK PERFORMED	
1. Conventional Prospecting (area) H Km x 20 Km	1
2. Geological Mapping (hectares/scale) 6,200 hectures / 1.15,000 scale	LE
2. Geological Mapping (hectares/scale) <u>6, 200 hectores / 1.15,000 Scale</u> 3. Geochemical (type and no. of samples) <u>62 Rock</u> 66 STREAM and 6 Soil S	LE AMPLES
2. Geological Mapping (hectares/scale) <u>6,2cc hectores / 1.15,000 Scale</u> 3. Geochemical (type and no. of samples) <u>62 Rock</u> , <u>66 STREAM</u> and <u>6 Soil S</u> 4. Geophysical (type and line km) <u>–</u>	LE AMPLES
2. Geological Mapping (hectares/scale) <u>6, 2cc hectores / 1.15,000 Scale</u> 3. Geochemical (type and no. of samples) <u>62 Rock</u> , <u>66 STREAM</u> and <u>6 Soir S</u> 4. Geophysical (type and line km) <u>–</u> 5. Physical Work (type and amount) <u>–</u>	LE AMPLES
2. Geological Mapping (hectares/scale) <u>6 2 ci hectares / 1.15,000 Scale</u> 3. Geochemical (type and no. of samples) <u>62 Rock</u> , <u>66 STREAM</u> and <u>6 Soir S</u> 4. Geophysical (type and line km) <u>-</u> 5. Physical Work (type and amount) <u>-</u> 6. Drilling (no. holes, size, depth in m, total m) <u>-</u>	LE AMPLES
2. Geological Mapping (hectares/scale) <u>6, 2cc hectores / 1.15,000 ScAt</u> 3. Geochemical (type and no. of samples) <u>62 Rock</u> , <u>66 STREAM</u> and <u>6 Soir S</u> 4. Geophysical (type and line km) <u>-</u> 5. Physical Work (type and amount) <u>-</u> 6. Drilling (no. holes, size, depth in m, total m) <u>-</u> 7. Other (specify) <u>-</u>	LE AMPLES
2. Geological Mapping (hectares/scale) <u>6 2 ci hectares / 1.15,000 ScAt</u> 3. Geochemical (type and no. of samples) <u>62 Rock</u> , <u>66 STREAM</u> and <u>6 Soir S</u> 4. Geophysical (type and line km) <u>-</u> 5. Physical Work (type and amount) <u>-</u> 6. Drilling (no. holes, size, depth in m, total m) <u>-</u> 7. Other (specify) <u>-</u>	LE AMPLES
2. Geological Mapping (hectares/scale) <u>6 2 cc hectares / 1.15,000 Sc44</u> 3. Geochemical (type and no. of samples) <u>62 Rock</u> , <u>66 STREAM</u> and <u>6 Soir S</u> 4. Geophysical (type and line km) <u>-</u> 5. Physical Work (type and amount) <u>-</u> 6. Drilling (no. holes, size, depth in m, total m) <u>-</u> 7. Other (specify) <u>-</u> SIGNIFICANT RESULTS	LE AMPLES
2. Geological Mapping (hectares/scale) <u>6 2 ci hectares / 1:15,000 ScA4</u> 3. Geochemical (type and no. of samples) <u>62 Rock</u> , <u>66 STREAM</u> and <u>6 Soir S</u> 4. Geophysical (type and line km) <u>-</u> 5. Physical Work (type and amount) <u>-</u> 6. Drilling (no. holes, size, depth in m, total m) <u>-</u> 7. Other (specify) <u>-</u> SIGNIFICANT RESULTS Commodities <u>Au Ag Pb Zn Ci Gypsim</u> Claim Name <u>11GER 1 - 14</u> Leasting (show you have <u>106% 521</u>	LE AMPLES
2. Geological Mapping (hectares/scale) <u>6, 2cc</u> hectares $\int 1.15,000$ ScAle 3. Geochemical (type and no. of samples) <u>62 Rock</u> , <u>66 STREAM</u> and <u>6 Sole</u> 5 4. Geophysical (type and line km) <u>5</u> 5. Physical Work (type and amount) <u>6</u> 6. Drilling (no. holes, size, depth in m, total m) <u>6</u> 7. Other (specify) <u>64 Pb, 2n, Cc</u> , <u>GypScm</u> Claim Name <u>11CTER 1 - 14</u> Location (show on map) Lat. <u>49° 521</u> Long <u>115° 351</u> Elevation	1600-2500m
2. Geological Mapping (hectares/scale) <u>6, 2cc hectores / 1.15,000 Sc44</u> 3. Geochemical (type and no. of samples) <u>62 Rock</u> , <u>66 STREAM</u> and <u>6 Soir S</u> 4. Geophysical (type and line km) <u></u> 5. Physical Work (type and amount) <u></u> 6. Drilling (no. holes, size, depth in m, total m) <u></u> 7. Other (specify) <u></u> SIGNIFICANT RESULTS Commodities <u>AU</u> Ag, <u>Pb</u> Zn, <u>Cu</u> , <u>GypSum</u> <u>Claim Name</u> <u>TICTER 1 - 14</u> Location (show on map) Lat. <u>49° 52'</u> Long <u>115° 3c'</u> <u>Elevation</u> Best assay/sample type <u>SyzixitE: Gt2 vérnel Ryntic</u> <u>Au 22c</u> Ag 13.6 As ZTB <u>B. 38</u> Cu 22 <u>Au 1625</u> Ag 75.6, As io2, <u>Gu23 4°6</u> , Zn 1545 <u>Claimetallic Represent</u> <u>Au 15.1gif</u> Ag 2	1600 - 2500 m 210, CU Skarn: 620git, CU 27.78
2. Geological Mapping (hectares/scale) <u>6.2cc hectures / 1.15,000 Scale</u> 3. Geochemical (type and no. of samples) <u>62 Rock</u> , <u>66 STREAM</u> and <u>6 Sole S</u> 4. Geophysical (type and line km) <u>62 Rock</u> , <u>66 STREAM</u> and <u>6 Sole S</u> 5. Physical Work (type and amount) <u>6</u> 6. Drilling (no. holes, size, depth in m, total m) <u>6</u> 7. Other (specify) <u>64</u> SIGNIFICANT RESULTS Commodities <u>AU Ag</u> , <u>Pb</u> , <u>Zn</u> , <u>Ci</u> , <u>GypSum</u> <u>Claim Name</u> <u>11CTER 1 - 14</u> Location (show on map) Lat. <u>49° 52'</u> Long <u>115° 32'</u> <u>Elevation</u> Best assay/sample type <u>SyENITE: Gtz Veined</u> , <u>Rinhic</u> <u>Au 26</u> , <u>Ag 13.6</u> , <u>As 278</u> <u>B. 38</u> <u>Cu 272</u> <u>Au 1625</u> <u>Ag 75.6</u> , <u>As 102</u> , <u>Cu 23.7%</u> , <u>Zn 1575</u> , <u>Polynetallic Represent:</u> <u>Av 15.1gt</u> , <u>Ag 20</u> Description of mineralization, host rocks, anomalies <u>62</u>	1600 - 2500 m 210, CU Skarn: 620git, CU 27.78
2. Geological Mapping (hectares/scale) <u>6.2 cc hectures / 1.15,000 Scale</u> 3. Geochemical (type and no. of samples) <u>62 Rock</u> , <u>66 STREAM</u> and <u>6 Sole</u> <u>5</u> 4. Geophysical (type and line km) <u></u> 5. Physical Work (type and amount) <u></u> 6. Drilling (no. holes, size, depth in m, total m) <u></u> 7. Other (specify) <u></u> SIGNIFICANT RESULTS Commodities <u>AU Ag Pb 7n C: Gypsim</u> <u>Claim Name <u>TICTER 1 - 14</u> Location (show on map) Lat. <u>49° 52'</u> Long <u>115° 32'</u> <u>Elevation</u> Best assay/sample type <u>Syzin re: Gtz Vened</u> <u>Rynhic</u> <u>Au 24c</u> <u>Az 13.6</u> <u>As 278</u> <u>B. 386</u> <u>Cu</u> <u>22</u> <u>Au 1625</u> <u>Ag 75.6</u>, <u>As 162</u>, <u>Cu 23.4%</u>, <u>Zn 1545</u> <u>B. 136</u> <u>Cu</u> <u>216</u> <u>As 178</u> <u>B. 386</u> <u>Cu</u> <u>22</u> <u>Description of mineralization, host rocks, anomalies</u> <u>Po6PrivRy</u> <u>Cu / Au</u> for <u>3 Km² around</u> <u>Hcit 1 Minific</u> <u>qtz-rpynite c</u></u>	IE AMPLES INCE-2500M 210, CU SKarn: E20git, CU 27.78 SITEL Stock
2. Geological Mapping (hectares/scale) <u>6, 2cc hectures / 1.15,000 ScA4</u> 3. Geochemical (type and no. of samples) <u>62 Rock</u> , <u>66 STREAM</u> and <u>6 Solic S</u> 4. Geophysical (type and line km) <u>-</u> 5. Physical Work (type and amount) <u>-</u> 6. Drilling (no. holes, size, depth in m, total m) <u>-</u> 7. Other (specify) <u>-</u> SIGNIFICANT RESULTS Commodities <u>Au Ag Pb Zn C: Gypsim</u> <u>Claim Name</u> <u>TICTER 1 - 14</u> Location (show on map) Lat. <u>49° 52'</u> Long <u>115° 32'</u> <u>Elevation</u> Best assay/sample type <u>Syzewite: Gtz Veined</u> <u>Pythic</u> <u>Au 24c</u> <u>Az 13.6</u> <u>As 279</u> <u>Bi 38</u> <u>Cu 22</u> <u>Au 1625</u> <u>Ag 75.6</u> , <u>As io2</u> , <u>Cu 23.4%</u> <u>Zn 1545</u> <u>Righteralle</u> <u>Répresent</u> <u>Au 15.1gif</u> , <u>Ag 2</u> Description of mineralization, host rocks, anomalies <u>PoRPHyRY</u> <u>Cu / Au</u> for <u>3 Km² curcuid</u> <u>Het I Minifies</u> <u>gter pythe</u> <u>Cuppe</u> : In <u>Quartz Veins</u> <u>Suthern</u> pertes of <u>Claim</u> <u>bick</u> , fleart with che	1600-2500m 210, CU Skarn: 620git, CU 27.78 altel syente stock
2. Geological Mapping (hectares/scale) <u>6, 2cc</u> hectares / 1.15,000 Scale 3. Geochemical (type and no. of samples) <u>62 Rock</u> , <u>66 STREAM</u> and <u>6 Solic</u> <u>5</u> 4. Geophysical (type and line km) <u>-</u> 5. Physical Work (type and amount) <u>-</u> 6. Drilling (no. holes, size, depth in m, total m) <u>-</u> 7. Other (specify) <u>-</u> SIGNIFICANT RESULTS Commodities <u>AU</u> , <u>Au</u> , <u>PD</u> , <u>Zn</u> , <u>C</u> , <u>GypSum</u> <u>Claim Name</u> <u>TICTER 1 - 14</u> Location (show on map) Lat. <u>49° 52'</u> Long <u>115° 32'</u> <u>Elevation</u> Best assay/sample type <u>SyENITE: Gtz Veined</u> , <u>Rinke</u> <u>Au</u> <u>1865</u> , <u>Ag</u> <u>756</u> , <u>As</u> <u>127</u> , <u>Guz</u> <u>234°6</u> , <u>Zn</u> <u>1575</u> , <u>Pclynetallk</u> <u>Replezerat</u> : <u>Av</u> <u>1519</u> , <u>Ag</u> <u>27</u> Description of mineralization, host rocks, anomalies <u>PoRPHYRY</u> <u>Cu</u> / <u>Au</u> for <u>3</u> Km ² around Hot I <u>Unveine</u> <u>qterpynte</u> <u>C</u> <u>Cappe: In Guartz Veins -</u> <u>Suthera</u> <u>press</u> <u>of claim black</u> , <u>fleat with che</u> <u>Capper</u> <u>Skarn -</u> <u>float new</u> Hot Dolling with <u>Av</u> <u>Ag</u> <u>As</u> <u>Cc</u> <u>Zn</u> <u>val</u>	1600-2500m 210 CU SKarn: 620git, CU 27.78 1121 Syenite Stock akepyrite 1121 Stock
2. Geological Mapping (hectares/scale) <u>6, 2.cc</u> hectures / 1.15,000 Scale 3. Geochemical (type and no. of samples) <u>62 Rock</u> , 66 STREAM and 6 Soir S 4. Geophysical (type and line km) <u>62 Rock</u> , 66 STREAM and 6 Soir S 4. Geophysical (type and line km) <u>62 Rock</u> , 66 STREAM and 6 Soir S 4. Geophysical (type and line km) <u>62 Rock</u> , 66 STREAM and 6 Soir S 4. Geophysical (type and line km) <u>62 Rock</u> , 66 STREAM and 6 Soir S 4. Geophysical (type and line km) <u>62 Rock</u> , 66 STREAM and 6 Soir S 4. Geophysical (type and line km) <u>70 Stream</u> 5. Physical Work (type and amount) <u>70 Stream</u> 6. Drilling (no. holes, size, depth in m, total m) <u>70 Stream</u> 7. Other (specify) <u>70 Stream</u> 7. Other (specify) <u>70 Stream</u> SIGNIFICANT RESULTS Commodities <u>AU Ay Pb, 7n, Cu</u> , GypSum <u>Claim Name</u> <u>TICTER 1 - 14</u> Location (show on map) Lat. <u>49° S2'</u> Long <u>115° 32'</u> <u>Elevation</u> Best assay/sample type <u>SyEANE: Gtz Veinel</u> , Pyntic <u>Au 24c</u> , As 13.6, As 278 B. 35 Cu 22 <u>Au 1625</u> , Ag 75.6, As 152, Gu23 4°6, 2n 1515, <u>Polynetallk Represent: Au 51.64</u> , <u>Ay 20</u> Description of mineralization, host rocks, anomalies <u>PohPruyRy Cu/Au for 3 Km² around Hct I Univience</u> <u>gtz reporte of</u> <u>Copper in Guartz Veins - Southern partice of claim block</u> , fleat with che <u>Copper Skaron - flout new Hat Dolling with Au Ag As Cu 7n val</u> <u>Rolymettelic Replacement - Tetrabechte veins + fractures in linestone</u> <u>en</u>	1600-2500m 210, CU Skarn: 620git, CU 27.78 altel syenite stock akapynite wes xterded + 3 km
2. Geological Mapping (hectares/scale) <u>6.2 cc</u> hectares / 1.15,000 Scale 3. Geochemical (type and no. of samples) <u>62</u> Rock, <u>66</u> STREAM and <u>6</u> Soir <u>5</u> 4. Geophysical (type and line km) <u>-</u> 5. Physical Work (type and amount) <u>-</u> 6. Drilling (no. holes, size, depth in m, total m) <u>-</u> 7. Other (specify) <u>-</u> SIGNIFICANT RESULTS Commodities <u>Au</u> <u>Ag</u> <u>Pb</u> Zn, <u>Ci</u> , <u>GypSim</u> <u>Claim Name</u> <u>TIGTER 1 - 14</u> Location (show on map) Lat. <u>49° 521</u> Long <u>115° 32'</u> <u>Elevation</u> Best assay/sample type <u>Syzewite</u> : <u>Gtz vened</u> <u>Rinke</u> <u>Au</u> <u>240</u> <u>Ag</u> <u>756</u> <u>B</u> .38 <u>Cu</u> <u>23</u> <u>Au</u> <u>1625</u> <u>Ag</u> <u>756</u> , <u>ASEZ</u> , <u>Cu</u> <u>2376</u> <u>Ca</u> <u>1575</u> <u>Chynetallic</u> <u>Represent</u> : <u>Au</u> <u>15164</u> <u>Ag</u> <u>20</u> Description of mineralization, host rocks, anomalies <u><u>PoRprivic</u> <u>Current</u> <u>Copper</u> <u>Skatn</u> <u>Statters</u> <u>Statters</u> <u>Statters</u> <u>Current</u> <u>Charters</u> <u>100</u> <u>Ag</u> <u>As</u> <u>Cc</u> <u>757</u> <u>Current</u> <u>Current</u> <u>Copper</u> <u>Skatn</u> <u>Elevation</u> <u>Elevation</u> <u>Elevation</u> <u>Elevation</u> <u>Copper</u> <u>Skatn</u> <u>Elevation</u> <u>Elevation</u> <u>Current</u> <u>Cur</u></u>	1600 - 2500 m 210 CU SKarn: 620git CU 27.78 21t Syent Stock akapyrite wes xtaded + 3 Km -)
2. Geological Mapping (hectares/scale) <u>6,2cc hectares / 1.15,0cc Scale</u> 3. Geochemical (type and no. of samples) <u>62 Rock</u> , <u>66 STREAM</u> and <u>6 Solu</u> <u>5</u> 4. Geophysical (type and line km) <u>-</u> 5. Physical Work (type and amount) <u>-</u> 6. Drilling (no. holes, size, depth in m, total m) <u>-</u> 7. Other (specify) <u>-</u> SIGNIFICANT RESULTS Commodities <u>Au Ag Pb 7a, C: Gypsim</u> Claim Name <u>TIGTER 1 - 14</u> Location (show on map) Lat <u>49° 52'</u> Long <u>115° 32'</u> Elevation Best assay/sample type <u>SyENITE: Gtz Veined</u> Rinhie <u>Au 24C, Ag 13.6, As 2789</u> <u>B. 38 Cu 22</u> <u>Au 1625, Ag 75.6, As 102, Cu 23.7%</u> <u>Claim Name</u> <u>Au 16.6, As 2789</u> <u>B. 38 Cu 22</u> <u>Au 1625, Ag 75.6, As 102, Cu 23.7%</u> <u>Claim talk Represent</u> : <u>Au 15.1947</u> <u>Ag 22</u> Description of mineralization, host rocks, anomalies <u>PoRPriveRy Cu / Au for 3 Km² carend Host 1 4005105</u> <u>Glaverent</u> : <u>Au 15.1947</u> <u>Ag 25</u> <u>Cappe: in Guirtz Veins - Southern parties of Claim block</u> , float <u>unith</u> <u>che</u> <u>Copper Skarn - float near Host Dalling with <u>Au Ag As Cu 7a veil</u> <u>Relymentatic Replacement - Tetrabechite veins + fractures in linestence of</u> <u>South of Krown ccurrences (Forman Friger</u> <u>Pb/7a Anomalies - Southern Tiger 6 stream Sells to Pb 231, 75.24 <u>Guist 5.24</u></u></u>	1600-2500 m 210, CU Skarn: Elicgit, CU 27.78 altel syent 5 took akapynte wes xtaded +3 km -) pm akhoks victed

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

Appendix II: Rock, Soil and Stream Sediment Sample Descriptions

. L.

λ.

ŝ,

.

ς.

:

<u>ر</u>

i Na

b.....

~

. .

· •··		+		•• ••				· · · · · · · · · · · · · · · · · · ·	
				Сгее	ek Data		Geology		Other
Sample #	Туре	Claim	Date Taken	Width (m)	Depth (cm)	Gradient	Bedrock	Float	
126551	Soil	Tiger 1	June 17.1999			Mod.	Lmst	till	poss. Shear in lost
126552	Silt	Tiger 1	June 17.1999		5	Mod.		lmst dol.sst	geoti enda in initi
126553	Silt	Tiger 4	June 17,1999	1	5	Mod.		white Imst	drains Poorman
126554	Moss Mat	Tiger 6	June 18,1999	3	20	Steep		Imst.mv.shales	
126555	Silt	N. of Tiger	June 19,1999	1	10	Steep	L	Jubillee Lmst	··· • • • • • • • • • •
126556	Silt	N. of Tiger	June 19,1999	2	2 10	Steep	grey imst	mv,sst	· · · · · · · · · · · · · · · · · · ·
126557	Silt	N. of Tiger	June 19,1999	4	I 30	Mod Low	till		at main road, RGS Site 7306 ?
126558	Silt/Soil	Tiger 1	June 19,1999		5 0	Steep	lmst		slide path/creek
126559	Silt	N. of Tiger	June 19,1999					······································	Coarse
126560	Silt	Tiger 2	June 19,1999	2	2 10	Mod.		imst,sst,int.	
126562	Silt	Tiger 9	June 20, 1999	3	20	Steep		tuffs,syenite	large qtz. Boulder downstream
126563	Silt	Tiger 9	June 20, 1999	3	10	Steep			in flood
126564	Silt	Tiger 10	June 20, 1999	· · · · · · · · · · · · · · · · · · ·		Mod.		syenite,volc.	East of April trenches
126565	Silt	Tiger 7	June 20, 1999			·		qtz., imst	400 m north of cabin
126566	Silt	Tiger 7	June 20, 1999	3	10	Steep		14 - Martin Martin - Carl State - Stat	f.g diss. Py, Fe carb, jasper, mv
126567	Silt	Tiger 7	June 20, 1999					white Imst	upstream of RGS 7310
126568	Silt	Tiger 7	June 20, 1999				· · · · · · · ·	lmst,volc.	upstream of RGS 7308
126569	Silt	Tiger 7	June 20, 1999			Steep		lmst,volc.	upstream of RGS 7308
126570	Silt	Tiger 8	June 21, 1999	2	2 20	Mod.	····· · ·	Imst,syenite	
126571	Silt	Tiger 8	June 21, 1999			• ••• ••• •• ••• •		limey tuffs, slt, syenite	•• ······
126572	Silt	Tiger 8	June 21, 1999	1	5	Steep		grey Imst	talus slide path
128573	Silt	Tiger 6	June 21, 1999			•••	·	qtz, imst	· · · · · · · · · · · · · · · · · · ·
126574	Silt	Tiger 6	June 21, 1999			Steep		white Imst	creek disappears upstream
126575	Silt	Tiger 6	June 21, 1999					n na ga fan Bannan na ga ga ga ga ga	1st spur south of bridge
126576	Silt	Tiger 2	June 22, 1999	1	10	Mod.		· · · · · · · · · · · · · · · · · · ·	fine silt on organics
126577	Silt	N. of Tiger	June 22, 1999		· · · · · · · · · · · · · · · · · · ·	•	I	lmst	46.4 km Lussier Main
126578	Silt	N. of Tiger	June 22, 1999		· • • • • • • • • • • • • • • • • • • •			imst,voic	41.8 km, brx, amygdaloidal
126579	Silt	N. of Tiger	June 22, 1999		10	Steep	· • • • •	mixed till	41.3 km
126580	Silt	N. of Tiger	June 22, 1999	3	10	Mod.		lmst, amyg, Volc	39.9 km
126681	Silt	N. of Tiger	June 22, 1999	4	10	Steep	· · · · · · · · · ·	volc imet	

Page 1

ł

				Cree	k Data		Geology		Other
Sample #	Туре	Claim	Date Taken	Width (m)	Depth (cm)	Gradient	Bedrock	Float	
126582	Silt	Tiger 10	June 23, 199 9	3	10) Steep		svenite, volc.	Hot are
126583	Silt	Tiger 10	June 23, 1999	0.5		5 Steep		svenite. Imst	drains drill area
126584	Silt	Tiger 10	June 23, 1999					İmst, volc.	
126585	Silt	Tiger 10	June 23, 1999	· · · · · · · · · · · · · · · · · · ·		Mod.		mixed float	
126586	Silt	Tiger 12	June 23, 1999					lmst	no int
126587	Silt	Tiger 10	June 23, 1999				· .	syenite, Imst	drill area to the wes
126588	Silt	Tiger 12	June 23, 1999	3	10) Steep		Fe. Carb, volc.	west of hunters cabir
126589	Silt	Tiger 12	June 23, 1999			1		syenite, qtz., I mst	west of hunters cabir
126590	Silt	S. of Tiger	June 23, 1999		• ·· ·			mixed Imst, syenite	main valley below cabir
127701	Silt	Tiger 10	September 17,1999	2		i Mod.	syenite	syenite,Imst., seds	above Hole 4
127702	Silt	Tiger 10	September 17,1999	2	5	5 Steep	syenite	pyritic syenite	downstream of Hole 4 area
127703	Sin	Tiger 10	September 18,1999			Mod.		syenite, Imst	creek south of Hot drilling
127704	Silt	Tiger 8	September 18,1999	1	6	5 Mod.		skarn float	creek north of Hot drilling
127705	Soil	Tiger 1	September 19, 1999			Steep	shale		upslope of Pepper Zone
127706	Soil	Tiger 1	September 19, 1999			Steep	lmst	till	upslope of Pepper Zone
127707	Sin	S. of Tiger	September 20, 1999	3	10	Low		Imst, grey+ Fe. Carb., shale	upstream of RGS 310!
127708	Sin	S. of Tiger	September 20, 1999	1	5	5 Low		Fe carb., shaley imst	upstream of RGS 3108
127709	Silt	S. of Tiger	September 20, 1999	1	5	5 Steep		fine glacial silt, Imst	upstream of RGS 310
127710	Silt	Tiger 14	September 20, 1999	2	[C	Steep		Fe carb., Imst	
127711	Silt	Tiger 12	September 21, 1999	2	5	5 Low	basalt	basalt	divide with April
127712	Silt	Tiger 11	September 21, 1999	1	5	i Mod.		seds, fe carb., qtz, syenite	·····
127713	Silt	Tiger 13	September 22, 1999	1.5	5	5 Mod.		lmst, syenite	LapT in Imst as frag's
127714	Silt	Tiger 13	September 22, 1999					lmst, quartzite, syenite	some syenite is pyritic
127715	Silt	Tiger 13	September 22, 1999				1996 - 64	imst, carb vnits	1 piece of syenite
127716	Silt	Tiger 9	September 27, 1999	2.5	5	5 Mod.		mixed sit, syenite, Imst	upstream of 126562
127717	Silt	Tiger 7	September 28, 1999	1	5	5 Mod.		Fe carb., green sit	······
127718	Silt	Tiger 7	September 28, 1999	1	5	i Mod.		basalt	
127719	Silt	Tiger 7	September 29, 1999	2	5	Mod.		basalt, tan sit	
127720	Soil	N. of Tiger	October 3, 1999					calcareous tuffa	yellow brown soil in road cut
127721	Silt	N. of Tiger	October 3, 1999	0.5	0	Steep		lmst, pinkish	svenite ?
	1			1		1	1		

	[<u>.</u>	1	·	1)	7 11 1	ر ۲۰ ا	ר' י		N	۴)	1 1 1 1	1	5	,	ŗ.		1	7	r1	
--	---	----------	---	---	-----	--------	---------------	------	--	----------	---	---	----------------	---	---	---	----	--	---	---	----	--

Tiger Silts	and Soils	- 1999 Sai	mple Descriptions			·····		····· • • • • • • • • • • • • • • • • •	
			. <u>.</u>					·····	
				Cree	k Data	1	Geology		Other
Sample #	Туре	Claim	Date Taken	Width (m)	Depth (cm)	Gradient	Bedrock	Float	
127751	Silt	S. of Tiger	September 20, 1999	1	20	Low			
127752	Silt	S. of Tiger	September 20, 1999	1.5	20	Low		dk. Grey cherty imst	· · ···· ··
127753	Silt	Tiger 14	September 22, 1999	2	30	Low		grey imst	
127754	Soil	Tiger 4	September 23, 1999	2.6				lmst	soil near Poorman Adit
127755	Silt	Tiger 7	September 28, 1999	1.5	20		mafic volc.		· · · · · · · · · · · · · · · · · · ·
127756	Silt	Tiger 7	September 28, 1999	1	10	Low	Seds		:
127767	Silt	Tiger 5	September 29, 1999	1	20	······		Fe carb. Lmst	· · · · · · · · · ·
127758	Silt	Tiger 5	September 29, 1999	1.5	15			Fe carb marron Sit	
127759	Soil	Tiger 5	September 29, 1999	30	1			Fe carb.	soil across 30 m debris flow
127760	Moss Mat	Tiger 5	September 30, 1999	1	10	Steep		lmst	
127761	Silt	Tiger 5	September 30, 1999	0.4	4	Steep		Sit, imst	
127762	Silt	Tiger 5	October 3, 1999	1	15	· ···· · ·			

Sample #	Туре	Claim	Rock Type	Mineralization	Comments
26501	Grab	Tiger 1	skarned quartzite	Py	gossanous yellow brown float at 50.5 km Spur road
26502	Grab	Tiger 4	syenite	Ру	Chili Zone, typical sheared slightly gossanous syenite
26503	Float	Tiger 9	skarn	Ру	skarned limestone as float near snow filled April trenches
26504	Float	Tiger 10	syenite	ру,ро,сру	fractured med. Grained, some veining, near snow filled April trench
26505	Float	Tiger 9	mafic volc.	Mt, Py	magnetic with pyrite and chalcopyrite veinlets
26506	float	Tiger 7	skarned Imst	· · · · · · · · · · · · · · · · · · ·	rusty, altered limestone
31651	Float	N. of Tiger	skarned quartzite	Ру,сру	qtz. Veined, sst,qtzite with Cpy blebs, and possible Aspy ?
31652	Float	Tiger 1	syenite ?	ру	marginal skarn zonw, sericite, K-spar, cherty layered
31653	Float	Tiger 8	skarn	py	siliceous, gossanous. Pyrite blebs, 57 km on Lussler Main
31654	Float	Tiger 6	skarn	ру,сру,ро	skarned gossanous float boulder, 56.8 km on Lussier Main
31655	Float	Tiger 8	syenite	ру	gossanous, pyritic (5%), oxidized syenite
31658	Float	Tiger 6	limestone	ру	brecciated, gossanous, skarned, 56.5 km on Lussier Main
27601	Float	Tiger 10	skarn	cpy,mt,py	massive cpy+ mt skarn small boulder found on drill road between "Hot" Hole 1 and 2
27602	Float	Tiger 10	syenite	ру	brown Fe carb alt'd syenite with qtz stckwrk at "Hot" Hole 4 site
27603	grab	Tiger 10	quartz vein	ру	+2m qtz vein located behind Hole 4 in creek, surround by pyritic syenite
27604	grab	Tiger 10	marble	cpy, tetrahedrite	white marble with malachite, coarse cpy and thin coatings of tetrahedrite on fractures
27605	Float	S. of Tiger	limestone	py,PbS	semi-massive py in fault brecciated lmst, silica flooding, fine grey Sx probably galena
27606	Float	S. of Tiger	mafic flow	py	skarned (actinolite), qtz veins, foliated, diss py, calcite amygdules
27607	grab	Tiger 12	syenite	**************************************	qtz stckwrk veining in rustty orange brown syenite, no sulphides observed
27608	grab	Tiger 12	quartz veins	ру	< 10 cm quartz veins in syenite intrusion, some veins vuggy with coarse py, bull white-darker grey
27609	Float	Tiger 12	skarned syenite ?	РУ	< 10 % py in brown-purplish f.g rock, pyrite in clots and veinlets
27610	float	Tiger 3	Goethite	Fe, Cu, Tetrahedrite	slect grab of Fe oxide with abundant secondary Cu (malachite, brochantite?) from Poorman shaft
27611	float	Tiger 1	limestone	mat,azurite	buff-brownish vuggy limestone with silica flooding, veins to 3 cm, metallic-red hematitie, tr mal+azuri
27612	float	Tiger 1	limestone	mał,azurite	goss. Dark red to orange brown limonite qtz boxwork, vuggy pyritic qtz veins, minor malachite staini
27613	float	Tiger 1	Goethite	mal,azurite	massive Fe float from Moutainview area, dark red brown
27614	Float	Tiger 10	Syenite	pyimt	20 cm wide Fe oxide alt'n in large sysnite boulder, weathered out py and tr. Mt
27615	Float	Tiger 10	quartz vein	ру, сру	rusty orange red qtz vein hosted in syenite with coarse cpy in centre, malachite staining, coarse py
27616	Float	Tiger 7	siltstone ?	сру,ру	qtz veins with limonitic boxwork with minot malachite hosted by pale green siliceous siltstone
27617	Float	Tiger 5	siltstone	pγ	orange brown weathered grev siltstone with 2 % fine py

i -

Sample #	Туре	Claim	Rock Type	Mineralization	Comments
27618	grab	Tiger 1	Goethite	Fe,Cu,Tetrahedrite,Pb\$	Massive fe from Mountainview Adit
27619	grab	Tiger 1	Goethite	Fe,Cu,Tetrahedrite,PbS	high grade of massive tetrahedrite veins with minor qtz in limonitic boxwork
27620	grab	Tiger 5	limestone	Fe	fault zone in limestone, pink brx. Lmst, Fe03, limonite with hematite veining
27621	float	Tiger 5	quartzite	РУ	gossanous pyritic (2-3%), hard f.g with tiny elongate xtals in grey matrix
27654	grab	Tiger 10	Syenite	tr. Py	20m wide dyke, various grabs across,pinkish brown
27655	chip	Tiger 1	Limestone	gossanous shear	40 cm chip across red brown oxidized shear, previous soil Pb 742 ppm
27656	chip	Tiger 1	Limestone	brecciated	30 cm brecciated limestone, wallrock to 127655
27657	grab	Tiger 1	Silty limestone	spinel ?	sheared, silty black, clayey, double sided pyramid xtals
27658	grab	Tiger 4	Syenite	tr. Py	Chili plug, att'd bleached at southern contact
27659	grab	S. of Tiger	tuffa		calcareous tuffa, vuggy, warm spring deposit
27660	grab	S. of Tiger	Conglomerate	blue-green ?	zeolite or malachite ?, intraformational cong. Hosted in limestone
27661	grab	Tiger 11	Quartz vein	tr. Py	30 cm north trending quartz vein with minor lim. Hosted in basalt
27662	float	Tiger 12	Skam	20% ру	70 cm x 1 m semi-massive pyrite boulder of skarned limey seds
27663	chip	Tiger 3	Minz'd Shear	Fe,Tetrahedrite,Cu	Poorman Shaft- 1.5 m chip across western lens
127664	chip	Tiger 3	Brx. Lmst	Fe,Tetrahedrite,Cu	Poorman Shaft- 0.4 m chip between main lens, brx. Lmst
27665	chip	Tiger 3	Minz'd Shear	Fe,Tetrahedrite,Cu	Poorman Shaft- 1 m chip across eastern lens (as 127663)
127666	chip	Tiger 3	Goethite Float	Fe,Tetrahedrite,Cu	Poorman Adit- fe float, assumed to be material mined from collapsed adit
27667	float	Tiger 3	Brx. Lmst	tr. Py	pinkish brx. Lmst from cliff face above
27668	float	Tiger 3	Hornfelsed SLT	tr. Py, Po	dark brown gossan of Shepherd Formation in fault contact with Imst
27669	float	Tiger 3	Quartzite	tr Py	pyrtic quartzite, fractured, Shepherd Formation
127670	grab	Tiger 4	Quartz/Carb. Vein	tr. Py	4m vein below collapsed adit south of Tiger cabin, fault related, weakly gossanous
127671	float	Tiger 1	Goethite Float	Fe,Tetrahedrite,Cu	semi-massive fe float below collapsed Tiger south adit, assumed material mined
127672	float	Tiger 1	Quartz Veins	Mal, Cpy	< 10 cm quartz vein stockwork with malachite staining, minor cpy hosted in large lmst boulder
27673	float	Tiger 1	Goethite Float	Fe,Tetrahedrite,Cu	massive fe float boulder, from area south of Mountainview
127674	float	Tiger 9	Schist	Ру	coarsely pyritic (< 1 cm), many rock types with py- fine seds, quartzites, peripheral to orebody ??
127676	float	Tiger 9	Quartzite		quartz stockworked veined quartzite, bullish white
127676	grab	W. of Tiger 7	Quartzite	tr. Py	quartz stockworked veined quartzite, bullish white
127677	float	Tiger 1	Goethite	Fe	massive Fe float, only piece noted, possible northward extension ?
27678	float	Tiger 7	Basalt	Py	large (< 2 cm) pyrite cubes in weakly alt'd basalt
127679	grab	Tiger 7	Veins	Tetrahedrite	semi-massive tetrahedrite veins (<2 cm) in brx. Pinkish coloured lmst
127680	grab	Tiger 1	Massive Sx.	Fe,Tetrahedrite,PbS	Moutainview Adit- pods of massive sx < 30 cm in shear in limestone traced for + 15 m
127681	grab	Tiger 1	Quartz/Carb. Vein	tr. Py	as 127670, on trend on north side of Tiger valley, < 4m wide
127682	grab	Tiger 13	Svenite	Pv 1-3 %	pyritic svenite, forms gossanous patches in ~ 50 m creek exposure

·

Page 5

İ

11/11/99

.

and the

A DESCRIPTION OF A DESC

10.001

100 S.1. 55 0000 - 011

1.011 - 1016 - 2

Appendix III: Rock, Soil and Stream Sediment Samples Tabulated Analytical Results

ί.

h.,...

ς.

,

`

ς.

۲ .

.

~

•

۰.

٣

ς.

~

.

.....

۲

۰.

.

. .

[

Sample #	Туре	Claim	Au	Ag	As	Bi	Cu	Mo		Pb	Sb	Zn	Cert. #
			ppb	ppm	ppm	ppm	ppn	n ppm		ppm	ppm	ppm	
400554	0	T akad						00		740			00004
120001	SOIL	Tiger 1	< >		00		-Z:	92.	3	(42	. 0	: Ja	A9921
126552	Silt	liger 1	<5	0.2	10	<	2	18	4	28	2	30	A9921
126553	Silt	liger 4	<5	0.2	60	<	2	22	3	24		48	A9921
126554	Moss Mat	Tiger 6	10	0.8	22	<	2.	48	5	48		64	A9921
126555	Silt	N. of liger	<5	<.2	12	<	2	20	4	26	<2	54	A9921
126556	Silt	N. of Tiger	<5	<.2	10	<	2	20	4	12	<2	44	A9921
126557	Silt	N. of Tiger	<5	<.2	14	<	2	31	4	34	2	80	A9921
126558	Silt/Soil	Tiger 1	<5	0.2	5	<	2	10	3	34	6	50	A9921
126559	Silt	N, of Tiger	<5	0.2	12	<	2	35i	4	52	2	64	A9921
126560	Silt	Tiger 2	<5	<.2	32	<	2	18	4	20	2	36	A9921
126562	Silt	Tiger 9	<5	<.2	10	<	2	94	3	24	<2	52	A9921
126563	Silt	Tiger 9	25	<.2	: <u>18</u>	<	2	30	3	24	<2	78	A9921
126564	Silt	Tiger 10	5	<.2	22	<	2	70	2	40	<2	128	A9921
126565	Silt	Tiger 7	<5	<.2	16	<	2	31	3	16	<2	74	A9921
126566	Silt	Tiger 7	5	<.2	22	<	2	27	2	24	<2	72	A9921
126567	Silt	Tiger 7	<5	0.2	22	<	2	28 i	4	22	2	50	A9921
126568	Silt	Tiger 7	<5	0.4	8	<	2	24	4	38	8	- 44	A9921
126569	Silt	Tiger 7	5	0.6	16	<	2	45 i	4	72	6	5 8	A9921
126570	Silt	Tiger 8	25	<.2	6	<	2	49 !	5	18	<2	- 58	A9921
126571	Silt	Tiger 8	<5	<.2	6	<	2	40	4	24	<2	86	A9921
126572	Silt	Tiger 8	<5	<.2	14	<	2	21	3	38	<2	58	A9921
126573	Silt	Tiger 6	<5	0.4	16	<	2	71	4	254	2	524	A9921
126574	Silt	Tiger 6	15	0.8	18	<	2	45 i	3	184	2	144	A9921
126575	Silt	Tiger 6	<5	<.2	22	<	2	25	3	28	<2	66	A9921
126576	Silt	Tiger 2	10	0.2	20		2	43	4	74	4	72	A9921
126577	Silt	N. of Tiger	55	<.2	12	<	2	16	3	10	<2	32	A9921
126578	Silt	N. of Tiger	30	<.2	: 10	<	2	15	3	16	<2	60	A9921
126579	Silt	N. of Tiger	35	<.2	12	<	2	16	3	22	<2	62	A9921
126580	Silt	N. of Tiger	10	<.2	2	<	2	6	4	10	<2	38	A9921
126581	Silt	N, of Tiger	<5	<.2	<2	<	2	8	3	10	<2	36	A9921
126582	Silt	Tiger 10	10	<.2	16	<	2	152	3	30	<2	70	A9921
126583	Silt	Tiger 10	10	<.2	50	<	2	143	3	34	<2	70	A9921
126584	Silt	Tiger 10	20	< 2	6	<	2	58	3	12	<2	42	A9921
126585	Silt	Tiger 10	10	< 2	10	<	2	24	3	16	<2	32	A9921
126586	Silt	Tiger 12	<5	0.2			2	8	3	14	2	28	A9921
126587	Silt	Tiger 10	55	< 2	2		-	65	3	12	<2	28	A9921
176599	Silt	Tiger 12	10	~~~	10		-	40	1	17	<2	29	Δ9921
120000	Gilt	Tiger 12	100	~.4	1V 1 1 1 1		2		2	22	27	90 88	10021
120303	OIL		100	~.4			<u>6</u> :	191	3	30			10004

Sample #	Туре	Claim	Au	Ag	As	Bi		Cu	MO	PD	SD	Zn	Cert. #
	· ·· ·		ppb	ppm	ppm	ppm		ppm	ppm	ppm	ppm	ppm	1
407704	0:14	T 40				; ;	-0	004		63		400	400200
12//01	SIIC	Tiger 10	20	<.2	64	 	< <u>2</u>	33.1		54	· ~4	190	A3923:
12//02		Tiger 10	00	<.Z	52	 ··· ···- ··	4	400	4	34	1 ~2	440	A3323
127703	Silt	Tiger 10	15	<.2	12		<2	108	1	24	9i ≤2 ⊡ ∠2	110	A9929:
12//04	Silt	liger 8	<0 	<.Z	<u> </u>	 	<2; 201	200		10	N 54	62	A3323
12//05	501	liger 1	<0	<.2	. 10	 	< <u>Z</u>	12	3			50	A9929:
127706	Soll	liger 1	< > < >	· <.2	20	'	<2	27	3	8	4	54	A9929:
127707	Silt	S. of liger	<5	<.2	6		<2	21	1	18	< <u> <</u>	54	A9929
127708	Silt	S. of Tiger	<5	<.2	<2		<2	25	2	12	< <u> <</u> 2	54	A9929
127709	Silt	S. of Tiger	<5	<.2	<2	 	6	5	<1	14	<2	22	A9929
127710	Silt	Tiger 14	<5	<.2	<2		<2	34	<1	10	<2	42	A9929
127711	Silt	Tiger 12	<5	<.2	2	 	<2	189	3	10	<2	98	A9929
127712	Silt	Tiger 11	<5	<.2	6	l	<2	46	2	8	<2	58	A9929
127713	Silt	Tiger 13	<5	2	6		<2	21	1	28	<2	100	A9929
127714	Silt	Tiger 13	<5	<.2	2		2:	21	<1	20	<2	52	A9929
127715	Silt	Tiger 13	<5	<.2	6		<2	31	<1	18	<2	48	A9929
127716	Silt	Tiger 9	<5	<.2	4		<2	95	3	38	<2	62	A9930
127717	Silt	Tiger 7	30	<.2	12		<2	29	4	28	<2	108	A9930
127718	Silt	Tiger 7	<10	<.2	10		<2:	40	3	24	i <2	70	A9930
127719	Silt	Tiger 7	<10	<.2	6		<2	31	1	34	<2	56	A9930
127720	Soil	N. of Tiger	<5	<.2	<2		<2.	15	<1	2	<2	40	A9930
127721	Silt	N. of Tiger	<5	<.2	<2		2	9	<1	14	2	22	A9930
417754	0:14	C of Tigor					2	16	1	- 16		22	10020
121121		S. of Tiger	<0 25	<.Z	-2	 	4	10	~1	20	~~~	JZ 24	A0070
12//52	SIIT	5. of Tiger	<u><</u> 5	<.Z	<		~2	21	1	40	2	34	A0020
12//53		liger 14	070	· <.2	< <u> <</u> 2		0	2260	<u> </u>	4005		4225	A3323
12//54	5011	liger 4	2/5	1.8	628	 	00	3360	1	1990	300	1335	A9323
12//55	Silt	liger /	<5	0.2	12		<2	აშ	3	; J∠	~2		58
127756	Silt	Tiger 7	<5	<.2	26		<2	34	2	82	<2	118	A993093 58
127757	Silt	Tiger 5	10	<.2	6		<2	24	<1	36	<2	42	A993093
127758	Silt	Tiger 5	<5	<.2	14		<2	38	1	42	<2	42	A993093
127759	Soil	Tiger 5	5	0.2	22		<2.	51	1	34	8	104	A993093
127760	Silt	Tiger 5	25	2.2	40		<2	94	2	254	6	192	50 A993093
127761	Silt	Tiger 5	<5	<.2	12		<2	22	3	40	<2	84	50 A993093
· · ·						ļ		1			<u> </u>		58

-

[•

	iype	Claim	AU	Au (g/t)	Ag	As	Bi	Cu	MO	PDĮ	SO	Zn	Cen. #
			ppb		ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	1
													4002420
26501	grab	liger 1	<5:		0.4	18	<2	31	3	8	<21	~~ 42	A992 IJU
26502	grab	Tiger 4	<5		< 0.2	12	<2	50	1	10	<2	12	A992130
26503	float	Tiger 9	<5		0.2	10:	<2	276	4	10	<2	10	A99213
26504	float	Tiger 10	175	—	8.0	6:	<2:	142	3	20	<2	46	A992130
26505	float	Tiger 9	<5		<2	14	<2	49	<1	8	<2!	32	A992130
26506	float	Tiger 7	5		<.2	4:	<2	17	1	4	<2	4	A992130
31651	float	N. of Tiger	<5		<.2	4	<2	666	2	4	<2	<2	A992130
31652	float	Tiger 1	<5		0.2	12	<2	19	5	6	<2	<2	A992130
31653	float	Tiger 8	<5		<.2	2	<2	65	- 4	<2	<2	- 2	A992130
31654	float	Tiger 6	<5	i	1	14	<2	951	48	<2	2	2	A992130
31655	float	Tiger 8	<5		0.2	2	<2	127	4	2	<2	12	A992130
31656	float	Tiger 6	<5		0.2	10	<2!	81	18	2	<2.	16	A992130
		71	4005		75 6	102	In Adda	>10000		466	Q	1545	100700
27601	ricat	Tiger 10	1625		10.01	102	inu	2000		1001		1040	1000000
27602	Tioat	liger 10	310		<.z	26	<2	290		42	<u>~</u>	40	A99235
27603	grab	Figer 10	45		<.Z	10:	<2	100	1	12	<u> </u>	10	A00200
27604	grab	iger 10	10		1.2	326		15/5	<1	<2	82		A33239
27605	float	S. of Tiger	<5		1.8	34	<u> </u>	/3	r>	4/2	12	20	1000000
27606	float	S. of Tiger	<5		<.2	<2	<2	120	5	<2	<2	28	1439299L
27607	grab	Tiger 12	35		<.2	<2	<2	11	1	2	<2	166	A992990
27608	grab	Tiger 12	120		5.4	2	16	71	3	24	<2	2	A992990
27609	float	Tiger 12	<5		<.2	<2	2	426)	1	4	<2	32	A992990
27610	float	Tiger 3	>10000	15.1	>100.0	>10000	int	>10000	<1	1175j	>10000	6310	A992990
27611	float	Tiger 1	1175		>100.0	2820	(ntf*	>100001	<1	620	3090	2270	A992990
27612	float	Tiger 1	455		27.4	954	Intf"	>10000	<1	1300	404	444	A992990

e ...

•

~

Ň

~

s.

-

Sample #	Type	Claim	4	Ar (mit)			<u>-</u>	· · · · · ·					
	Type			Au (grg	Ag		31		MO	РБ.	Sb	- Z	n:Cert. #
		<u> </u>					ppn	inide	ррт 	ppm ·	ppm	ppr	n
127654	grab	Tiger 10	<5:		0.4	6	<2	63	1	10	4	2	5 A992990
127655	chip	Tiger 1	<5		0.6	42	<2	96	14	1130	4	64	A992990
127656	chip	Tiger 1	<5		0.2	2:	2	16	<1	234	6	10	A992990
127657	grab	Tiger 1	, <5		<.2	<2:	<2	391	<1	6	2	1	2 A992990
127658	grab	Tiger 4	<5	_	<.2	8:	<2	45	<1	<2	<2	1	A992990
127659	grab	S. of Tiger	<5		<.2	<2.	<2	20	<1	6	2	12	A992990
127660	grab	S. of Tiger	<5		<.2	<2	<2	15	1	<2	2		A992990
127661	grab	Tiger 11	<5		0.6	2	<2	183	1	<2	<2		A9929908
127662	float	Tiger 12	<5		<.2	61	<2	97	4	14	<2	8	A9929908
127663	chip	Tiger 3	1745	i	1.8	4370	26	6190	36	2530	1045	2540	A9929908
127664	chip	Tiger 3	470		4.4	480	24	836	1	600	402	528	A9929908
127665	chip	Tiger 3	6900		4.2	2980	102	3250	24	4250	2150	2230	A9929908
127666	chip	Tiger 3	1530	;	2.2	3370	104	7430	49	2600	2450	2870	A9929908
127667	float	Tiger 3	10		<.2	26	2	23	<1	12	18	26	A9929908
127668	float	Tiger 3	<5		<.2	4	<2:	9	1	6	4	4	A9929908
127669	float	Tiger 3	<5		<.2	81	<2	173	1	6	2	2	A9929908
27670	grab	Tiger 4	<5		0.6	22	<21	72	1	16	2	12	A9929908
127671	float	Tiger 1	55		2.8	3480	<2	243	149	1170	441	106	A9929908
27672	float	Tiger 1	15		2.4	1870	<2!	2470	2	8	194	108	A9929908
27673	float	Tiger 1	30		2	1415	<2	676	11	900	56	880	A9929908
<u> </u>		;		· · · ·						· · · ·			:
27614	float	Tiger 10	280		0.8	2	<2:	31	<1	12	<2	14	A9930933
27615	float	Tiger 10	260	· · · · · · · · · · · · · · · · · · ·	13.6	278	38	2210	2!	194	46	36	A9930933
27616	float	Tiger 7	30		4.2	21	6	2020	5	200	<2	20	A9930933
27617	float	Tiger 5	<5		<.2	14	<2	12	1	6	<2	2	A9930933
27618	grab	Tiger 1	>10000	16.95	>100.0	>10000	Intf*	>10000	6	5300	>100001	5250	A9930933
27619	grab	Tiger 1	2930		>100.0	8520	intf* !	>10000	5	>1000	2050	8870	A9930933
27620	areh	Tiner 5	1165		261	1110	-2	1775	44	0	967	2020	A0020022
27621	float	Tiger 5	70		20	1110	<u>~~~</u>	1110		172	72	2930	-440300333
27674	floet	Tiner 4	-6		+	101	<u></u>	300 37	<u>ः</u> । • •	102			40070022
27675	float	Tiger 9	10		+.v k n	10		70	- 1	201		40 2	40030033
27676	arab	W. of Tiger	<5		< 21	<2		70		54	<2	0 8	A9930933
	3.20	7				~6		,	1				
27677	float	Tiger 1	20		2.2	3930	<2:	163	20	292	142	384	A9930933
27678	float	Tiger 7	<5		<.2	18	<2	351	3	12	4	14	A9930933
27679	grab	Tiger 7	1675	-	>100.0	3650	Intf"	>10000	3	1030	>10000	4270	A9930933
27680	grab	Tiger 1	2270		>100.0	>10000	intf*	>10000	10	>1000	24801	>10000	A9930933
27681	grab	Tiger 1	<5		1	336	<2	198	11	3981	12	66	A9930933
	<u> </u>												

-

ь.

•

.

.

Tiger Rock Sampling - 1999 Chemex Results
 Overlimit - Assays

	Ag a/toone	Cu %	Pb %	Zn %
	gronne	/0	/U	/0
127618	833	14.85		
- 127619	1465	5.37	69.1	
127679	228	3.83		
127680	1065	5.44	50.4	5.14
. 127601		23.4		
127610	2620	27.7		
127611	270	1.37		`
127612		1.2		
127613	1710	22.2		0.97

.

s. -

-

~ : •

-

•

-

•

.

-

-

•

Appendix IV:

-

ы.

.

Chemex Labs Ltd. Certified Analysis

.

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CERTIFICATE

A9921299

(RDS) - TRAVIS, ADAM

Project: TIGER P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 27-0CT-1999.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
230 202 229	39 39 39	sieve to -200 mesh save reject ICP - AQ Digestion charge
≠ NOTE		

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

10: TRAVIS, ADAM 3579 LANSBURY COURT WESTBANK BC

WESTBANK, BC V4T 1C5, CANADA

A9921299

Comments: ATTN: ADAM TRAVIS

ANALYTICAL PROCEDURES

CHEMEX CODE	NUMBER	DESCRIPTION	METHOD	DETECTION LIMIT	LIMIT
983 2118 2119	39 39 39	Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock	FA-AAS ICP-AES ICP-AES	0.2 0.01	10000 100,0 15,00
2120 557 2121	39 39 39	As ppm: 32 element, soil & rock B ppm: 32 element, rock & soil Ba ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES	10 10	10000 10000 10000
2122 2123 2124	39 39 39	Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES	0,5 2 0.01	100.0 10000 15.00
2125 2126 2127	39 39 39	Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES	0.5 1 1	500 10000 10000
2128	39 39	Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Ca ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES	1 0,01 10	10000 15.00 10000
2130 2131 2132	39 39 39	Hg ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES	1 0.01	10000
2131 2134 2135	39	Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES	0.01	15.00
2136 2137 2138	39 39 39	Na %: 32 element, soll & rock Ni ppm: 32 element, soll & rock	ICP-AES ICP-AES ICP-AES		10.00
2139 2140 551	39 39 39	Ph ppm: 32 element, soil & rock S %: 32 element, rock & soil	ICP-AES ICP-AES ICP-AES	2	10000
2141 2142 2143	39 39 39	Sc ppm: 32 element, soil 5 rock Sc ppm: 32 elements, soil 5 rock Sr ppm: 32 element, soil 5 rock	ICP-AES ICP-AES ICP-AES		10000
2144 2145 2146	39 39 39	Ti %: 32 element, soil & rock Tl ppm: 32 element, soil & rock U ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES	10 10	10000
2147 2148 2149	39 39 39	V ppm: 32 element, soil & rock W ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock	ICP-AES ICP+AES ICP-AES	1 10 2	10000 10000 10000

S ab e ex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

TRAVIS, ADAM

3579 LANSBURY COURT WESTBANK, BC V4T 1C5, CANADA

Paye Humber 1-A Total Pages 1 Certificate Date: 07-JUL-1999 Invoice No. 19921299 P.O. Number 1 Account 1902 RDS Account

.

]

1 1 []]]

Project : TIGER Comments: ATTN: ADAM TRAVIS

											CE	RTIFI	CATE	OF A	NAL	/SIS	4	\9921	299		
SAMPLE	PRI COI	ep De	Au ppb FA+AA	Ag ppm	Al %	As ppm	в mqq	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg
126551 126552 126553 126554 126555	230 230 230 230 230	202 202 202 202 202 202	<pre></pre>	1.0 0.2 0.2 0.8 < 0.2	0,06 0.71 1.98 1.46 1.17	56 10 60 22 12	10 < 10 < 10 < 10 < 10 < 10	10 100 50 280 40	< 0.5 < 0.5 0.5 0.5 < 0.5	<pre>< 2 < 2</pre>	6.62 10.95 9.00 7.69 7.41	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	9 6 11 8 10	3 10 64 16 12	92 18 22 48 20	>15.00 1.14 2.09 1.84 2.12	<pre>< 10 < 10 10 10 10 10 10</pre>	<pre>< 1 < < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	0.01 0.09 0.11 0.13 0.11	<pre>< 10 < 10 10 < 10 < 10 20</pre>	4.60 7.35 7.62 5.12 5.14
126556 126557 126558 126559 126560	230 230 230 230 230 230	202 202 202 202 202 202	<pre>< 5 < 5</pre>	< 0.2 < 0.2 0.2 0.2 < 0.2 < 0.2	1.32 1.37 0.53 1.65 1.56	10 14 6 12 32	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10 10</pre>	60 60 20 90 70	0.5 < 0.5 < 0.5 0.5 < 0.5	<pre>< 2 < 2</pre>	5.43 8.56 13.45 6.46 8.73	< 0,5 < 0,5 < 0.5 < 0.5 < 0.5 < 0.5	11 6 3 7 8	15 16 3 20 41	20 31 10 35 18	2.52 1.57 0.80 2.06 1.53	<pre>< 10 < 10 < 10 < 10 10 10 10</pre>	<pre>< 1 < 1</pre>	0.15 0.09 0.05 0.12 0.11	20 10 < 10 10 < 10	3.43 5.60 9.74 4.30 7.25
126562 126563 126564 126565 126565 126566	230 230 230 230 230 230	202 202 202 202 202 202	<pre></pre>	<pre>< 0.2 < 0.2</pre>	2.02 2.70 3.12 2.67 2.52	10 18 22 16 22	<pre>< 10 < 10 < 10 10 < 10 < 10 < 10</pre>	220 540 240 260 170	< 0.5 0.5 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0.75 0.55 0.77 0.60 0.74	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	10 11 10 15 16	19 21 26 24 17	94 30 70 31 27	1.05 2.77 2.43 3.52 3.75	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.20 0.19 0.17 0.20 0.25	10 30 10 30 30	2.44 1.88 5.08 1.61 2,13
126567 126568 126569 126570 126571	230 230 230 230 230 230	202 202 202 202 202 202	<pre></pre>	0.2 0.4 0.6 < 0.2 < 0.2	1.12 0.87 1.79 2.23 3.50	22 B 16 6 6	<pre>< 10 < 10</pre>	200 220 260 70 200	<pre>< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5</pre>	<pre></pre>	6.51 11.75 5.89 5.93 1.63	<pre>< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5</pre>	10 7 14 7 10	14 10 14 37 60	28 24 45 49 40	2.65 1.62 3.20 1.86 2.83	<pre>< 10 10 < 10 < 10 < 10 < 10 10</pre>	<pre>< 1 < 1</pre>	0.11 0.05 0.10 0.09 0.10	10 < 10 10 10 10	4.52 8.36 4.70 4.90 2.16
126572 126573 126574 126575 126575 126576	230 230 230 230 230 230	202 202 202 202 202 202	<pre></pre>	<pre>< 0,2 0.4 0.8 < 0.2 0.2</pre>	1,58 1,30 1,20 2,85 1,93	14 16 18 22 20	<pre>< 10 10 (10 10 10 (10 (10</pre>	80 160 170 330 110	< 0.5 0.5 < 0.5 0.5 0.5	<pre> < 2 < 2 </pre>	9.86 9.44 5.95 4.38 6.05	<pre></pre>	9 6 9 10 9	64 30 13 53 21	21 71 45 25 43	1.82 1.41 2.19 2.75 2.40	10 < 10 < 10 < 10 < 10 < 10	<pre> { 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 </pre>	0.19 0.09 0.11 0.25 0.11	10 < 10 10 20 10	6.82 6.33 4.30 3.98 4.12
126577 126578 126579 126580 126581	230 230 230 230 230 230	202 202 202 202 202 202	55 30 35 10 < 5	<pre>< 0.2 < 0.2</pre>	0.94 1.36 2.37 1.11 1.20	12 10 12 2 < 2	<pre>< 10 < 10 10 < 10 < 10 < 10 < 10 < 10</pre>	50 70 140 50 50	<pre>< 0.5 < 0.5 0.5 < 0.5 < 0.5 < 0.5 < 0.5</pre>	<pre> < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2</pre>	7.50 7.87 5.05 12.20 10.60	<pre>< 0.5 < 0.5</pre>	10 9 9 5 5	12 15 23 10 12	16 15 16 6 8	2.12 2.10 2.50 1.36 1.47	<pre>< 10 < 10 10 < 10 < 10 < 10 10</pre>	<pre> { 1 < 1 < 1 < 1</pre>	0,13 0.17 0.16 0.09 0,09	10 10 10 < 10 < 10	4.81 4.60 3.03 7.97 6.87
126582 126583 126584 126585 126585 126586	230 230 230 230 230 230	202 202 202 202 202	10 10 20 10 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2,51 2,18 1,49 1,28 0,70	16 50 6 10 8	<pre>< 10 < 10</pre>	120 200 80 30 50	1.0 1.0 0.5 < 0.5 < 0.5	<pre></pre>	2.00 1.88 8.25 10.35 13,45	<pre>< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5</pre>	9 9 6 4	38 27 23 25 16	152 143 58 24 8	2.35 3.77 2.20 1.53 0.94	10 < 10 10 < 10 < 10	<pre>< 1 < 1</pre>	0.12 0.07 0.11 0.08 0.06	30 30 10 10 < 10	3.23 1.13 4.78 5.39 8.59
126587 126588 126589 126590	230 230 230 230 230	202 202 202 202 202	55 10 100 165	< 0.2 < 0.2 < 0.2 0.2	1.20 2.99 1.75 1.30	2 10 12 6	<pre>< 10 < 10 < 10 < 10 10</pre>	60 140 80 60	<pre>< 0.5 < 0.5 0.5 < 0.5 < 0.5</pre>	<pre></pre>	7.63 0.72 1.42 11.85	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 19 11 10	18 24 19 38	65 40 131 17	2.02 4.61 2.58 2.07	10 10 < 10 10	$\bigcap^{\left(\begin{array}{c}1\\ \\1\\ \\1\end{array}\right)}$	0.10 0.41 0.32 0.16	10 30 20 10	5.52 2.70 3.47 7.81
[<u> </u>													CERTIEN				l I	5	

CERTIFICATION:__

.•

d. ap S ех nen

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

3579 LANSBURY COURT WESTBANK, BC V4T 1C5, CANADA

1

•] ۲

]

Pros Number 3 P Tuai r tiges ... Certificate Date: 07-JUL-1999 Invoice No. : 19921299 P.O. Number : Account :RDS

Project : TIGER Comments: ATTN: ADAM TRAVIS

										CE	RTIFI	CATE	OF A	NALY	SIS	AA	99212	99
SAMPLE	PREP CODE	Mn ppm	Мо ррш	Na %	Ni ppm	P Ppm	Pb Mdđ	S %	Sb ppm	Sc ppm	Sr PPM	Ti %	Tl ppm	U PPm	V PP n	W PPm	Zn ppm	
126551	230 202	240	9 (0.01	34	180	742	0.03	6	< 1	15 <	0.01	< 10	10	2	10	38	
126552	230 202	275	4 <	0.01	14	940	28	0.08	2	2	34 (0.01	< 10	< 10	12	< 10	30	
126553	230 202	385	3 (0.01	36	680	24	0.06	2	5	34	0.04	< 10	< 10	36	< 10	48	
126554	230 202	455	5 <	0.01	14	1320	4 B	0.16	2	3	46	0.01	(10	< 10 < 10	10	2 10	54 54	
126555	230 202	360	4 <	0,01	18	590	26	0,03	< 2	4		. 0.01	· · ···	· 10	13	10		
126556	230 202	495	4 <	0.01	18	790	12	0.04	< 2	5	39 <	0.01	< 10	< 10	15	< 10	44	
126557	230 202	355	4 <	0.01	12	710	34	0.06	2	3	33	0.02	(10	(10	10	2 10	50	
126558	230 202	385	3 (0,01		500	54	0.00	0	1	20	0.01	2 10	(10	19	(10	64	
126559	230 202	565	4 (0.01	14	0.90	24	0.00	2	2	23	0.02	< 10	< 10	24	< 10	36	
126560	230 202	430	4 (0.01	41	016	<u></u>	v.v.	4	<u> </u>			· 10					
126562	230 202	635	3 <	0.01	14	610	24	0.05	< 2	3	45	0.07	< 10	10	24	(10	52	
126563	230 202	670	3 <	0.01	15	860	24	0.06	< 2	4	42	0,04	(10	10	24	C 10 C 10	18	
126564	230 202	750	2	0,01	15	/90	40	0.06		4	194	0.11	2 10	2 10	79	2 10	74	
126565	230 202	905	1 4	0.01	20	700	24	0.03	23	5	14	0.05	< 10	< 10	26	< 10	72	
126566	230 202	740	4 \	0.01	24	,00				-			1 10					
126567	230 202	720	4 <	0.01	15	820	22	0.11	2	4	40	0.01	< 10	< 10	1.4	< 10	50	
126568	230 202	445	4 <	0.01	10	510	38	0.04	6	2	58	0.01	< 10	< 10	15	(10	44	
126569	230 202	605	4 <	0.01	17	620	72	0.04	6	5	35	0.03	< 10	< 10	29	(10	56	
126570	230 202	380	5	0.01	16	730	18	0.06		3	50	0.07	< 10 < 10	(10	55	(10	30 86	
126571	230 202	260	4 (0,01	27	350	29	0,03	× 2	*	17	V.12	<u> </u>	、 IV		× 10		
126572	230 202	380	3 (0.01	35	870	38	0.07	(2	4	51	0.09	< 10	< 10	33	< 10	58	
126573	230 202	355	4 <	0.01	21	560	254	0.06	2	2	24	0.03	< 10	< 10	20	(10	524	
126574	230 202	440	3 <	0.01	15	750	184	0.08		د ح	36 CC	0.01	< 10 < 10	(10	10	(10	194	
126575	230 202	695	3 (0,01	10	9/0	28	0.07	× 4		24	0.03	(10	(10	21	< 10 < 10	75	
126576	230 202	220	4 (0.01	10	/10	14	0.03	•				(10	. 10				
126577	230 202	370	3 <	0.01	16	610	10	0.04	< 2	4	38	< 0.01	< 10	< 10	13	< 10	32	
126578	230 202	360	3 <	0.01	15	610	16	0.03	(2)	4	49	C 0.01	< 10	< 10 < 10	15	< 10	6U 60	
126579	230 202	515	3 (0,01	1/	600	22	10.01		2	30	0,01	2 10	10	13	< 10	102	
126580	230 202	305	4 4	0.01	10	4/0	10	0.03	2	2	43	< 0.01	< 10	< 10	12	¢ 10	36	
120281	230 202	200	3 \	0.01	10	710		v.vi								• •-		
126582	230 202	625	3	0,01	17	960	30	0,06	< 2	4	65	0.11	< 10	< 10	65	< 10	70	
126583	230 202	890	3 (0.01	10	750	34	0.02	< 2	5	45	0.12	< 10	< 10	127	< 10	70	
126584	230 202	625	3 <	0.01	18	990	12	0.04	< 2	4	52	0.03	< 10	< 10 (10	47	(10	42	
126585	230 202	435	3 <	0.01	16	1090	16	0.04	< 2	2	91	0,03	(10	< 10 < 10	18	< 10	32	
126586	230 202	335	3 <	0.01	12	530	14	0,03	2	T	20	0.01	< 10	10	12	10	20	
126587	230 202	415	3 <	0.01	10	670	12	0.02	(2	2	72	0.06	< 10	10	60	< 10	28	
126588	230 202	705	1	0.01	17	790	12	0.01	< 2	7	26	0,15	< 10	< 10	59	< 10	38	
126589	230 202	480	3	0.01	12	710	38	0.04	< 2	4	51	0.13	< 10	< 10	68	< 10	66	
126590	230 202	435	2 <	0,01	28	680	16	0,03	< 2	3	64	0.07	< 10	< 10	31	(10	26	
																	\cap	1
L			····														-\+	10

CERTIFICATION:

5 AM # #

1

ſ

ſ

.td. abs L Chemex

Analytical Chemists * Geochemists * Registered Assayers North Vancouver 212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

1 To: TRAVIS, ADAM

3579 LANSBURY COURT WESTBANK, BC V4T 1C5, CÁNADA

A9921300

[]

)

3

Comments: ATTN: ADAM TRAVIS

CERTIFICATE

A9921300

(RDS) - TRAVIS, ADAM

Project: P.O. # : TIGER

Samples submitted to our lab in Vancouver, BC. This report was printed on 27-OCT-1999.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
205 226 3202 229	12 12 12 12	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge
+ 170001		

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
983	12	Au ppb: Fuse 30 g sample	FA-AAS	5	10000
2118	12	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
2119	12	Al %: 32 element, soil 5 rock	ICP-AES	0.01	15.00
2120	12	As ppm: 32 element, soil 5 rock	ICP-AES	2	10000
557	12	B ppm: 32 element, rock & soil	ICP-AES	10	10000
2121	12	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	12	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
2123	12	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
2124	12	Ca %; 32 element, soil & rock	ICP-AES	0,01	15,00
2125	12	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
2126	12	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2127	12	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
2128	12	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
2150	12	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
2130	12	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
2131	12	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
2132	12	K %: 32 element, soil ; rock	ICP-AES	0.01	10.00
2151	12	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	12	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
21.35	12	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	12	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
2137	12	Na %, 32 element, soil & rock	ICP-AES	0.01	10,00
2138	12	N1 ppm: 32 element, soil & rock	ICP-AES	1	10000
2139	1 12	P ppm: 32 element, soil & rock	ICP-AES	10	10000
2140	12	Pb ppm: 32 element, soll & rock	ICF-AES	o 01	10000
551	12	S %: 32 element, rock & soll	ICF~AES	0.01	3,00
2141	12	SD ppm: 32 element, soll & rock	ICF-AES	2	10000
2142	12	SC ppm: 32 elements, soll & lock	ICF-AES	1	10000
2143	12	Sr ppm: 32 element, soll & rock	108-865 Tod 280	 	10 00
2144	14	T1 %: 32 Clement, SOII & FOCK	ICF-RED TOD NDO	0.01	10,00
2145		Ti ppar 32 element, soli 5 rock	ICF*AES	10	10000
2146		U ppm: 32 element, soil & rock	ICP-ALD	10	10000
2147		V ppm: 32 element, soil & rock	ICF-ALS TCD-ARC	10	10000
2148		w ppm: 32 element, soll & lock	TCD-NDC	201	10000
2148 2149	12	w ppm: 32 element, soll & rock Zn ppm: 32 element, soll & rock	ICP-AES ICP-AES	2	10004

۴

ANALYTICAL PROCEDURES

.abs **1** C T C T ٢.... :**d**.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

3579 LANSBURY COURT WESTBANK, BC V4T 1C5, CANADA

1 .

f umb A Total Pages :1 Certificate Date: 07-JUL-1999 Invoice No. : 19921300 P.O. Number : []] RDS Account

......

~1

Project : TIGER Comments: ATTN: ADAM TRAVIS

THE ADA TO THE TO THE T

CERTIFICATION:__

										CE	RTIF	CATE	OF A	NAL	YSIS	A	9921	300		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	Al %	As ppm	8 ppm	Ва ррш	Be PP m	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga PPm	Вбш Ц	K %	La ppm	Mg
126501 126502 126503 126504 126505	205 22 205 22 205 22 205 22 205 22 205 22	26 < 5 26 < 5 26 < 5 26 < 5 26 175 26 < 5	0.4 < 0.2 0.2 0.8 < 0.2	0.16 0.47 1.97 0.64 3.17	18 12 10 6 14	<pre>< 10 < 10</pre>	20 850 40 290 390	< 0.5 1.0 < 0.5 < 0.5 < 0.5	<pre>< 2 < 2</pre>	0.23 0.56 1.37 1.03 0.35	< 0,5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 3 56 7 26	208 68 80 41 186	31 50 276 142 49	3.91 1.55 4.25 2.47 9.34	<pre>< 10 < 10 10 < 10 30</pre>	<pre>< 1 < 1</pre>	0.21 0.20 1.21 0.29 2.71	<pre>< 10 50 10 10 10 10</pre>	0.08 0.11 2.00 0.32 2.24
126506 131651 131652 131653 131653 131654	205 22 205 22 205 22 205 22 205 22 205 22	26 5 26 < 5	< 0.2 < 0.2 0.2 < 0.2 < 0.2 1.0	0.73 0.16 0.52 3.55 1.34	4 4 12 2 14	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	40 10 10 < 10 20	< 0.5 < 0.5 < 0.5 1.5 < 0.5	<pre> < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2</pre>	0.04 0.06 0.34 1.43 2.44	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 4 8 3 105	103 204 97 54 110	17 666 19 65 951	1.57 1.31 2.69 1.93 14.70	<pre>< 10 < 10</pre>	<pre>< 1 < 1</pre>	0.43 0.10 0.33 0.87 0.27	10 < 10 < 10 10 < 10	0.05 0.03 0.05 0.83 0.71
131655	205 2:		0.2 0.2	1.59 3.60	2 10	< 10 < 10	30 100	< 0.5 < 0.5	< 2 < 2	2.61 3.06	< 0.5 < 0.5	23 25	158 249	127 81	3.80 3.85	< 10 10		0.15 1.14		0.70
l													· · · · · ·	CEDTIE			Na	och 1	5k	

abs \mathbb{C}^{-1} d ex

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

٠

3579 LANSBURY COURT WESTBANK, BC V4T 1C5, CANADA

 P
 μmbe
 β

 Total rages
 :1

 Certificate Date:
 07-JUL-1999

 Involce No.
 :19921300

 P.O. Number
 :

 Account
 : RDS
 Πβ

Project : TIGER Comments: ATTN: ADAM TRAVIS

] TR(]ADA() () ()

.

											CE	RTIFI	CATE	OF A	NALY	SIS	4	9921300	
SAMPLE	PR CO	EP DE	Mn ppm	Mo ppm	Na L	Ni ppm	P ppm	Pb PPm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U PPm	V PPm	W PPm	Zn ppm	
126501 126502 126503 126504 126505	205 205 205 205 205 205	226 226 226 226 226 226	30 330 265 785 90	5 1 4 3 < 1	<pre>< 0.01 0.08 0.04 0.07 0.02</pre>	8 1 27 3 33	1260 520 1230 710 1040	8 6 10 20 8	1.68 0.03 2.45 0.74 0.30	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 4 6 21	17 4 81 12 235 5	0,01 0.05 0.61 0.04 0.48	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	<pre>< 10 < 10 < 10 10 10 10 10</pre>	3 40 137 54 498	< 10 < 10 < 10 < 10 < 10 < 10	< 2 12 10 46 32	. 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 / 1 /
126506 131651 131652 131653 131653 131654	205 205 205 205 205	226 226 226 226 226 226	5 20 5 15 110	1 2 5 4 48	<pre>< 0.01 < 0.01 < 0.01 < 0.01 0.24 < 0.01 <</pre>	8 8 16 86	350 130 1760 1010 1160	4 4 6 < 2 < 2	1.06 0.40 2.63 1.04 >5.00	<pre></pre>	1 < 1 1 4 < 1	7 ((0.01 (0.01 (0.01 0.04 0.15	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	<pre>< 10 < 10 < 10 < 10 < 10 < 10 30</pre>	7 2 5 18 14	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 40</pre>	4 < 2 < 2 2 2	
131655 131656	205	226	235 135	4 18	0.01 0.05	132 125	1290	2 2	0.55	< 2 < 2	1 2	25 98	0.21 0.30	< 10 < 10		55			1
L															CERTIF		ł:	. Nauch	tek .

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

CERTIFICATE

A9929908

(RDS) - TRAVIS, ADAM

Project: TIGER ROCKS 2 P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 05-0CT-1999.

	SAM	PLE PREPARATION
CHEMEX	NUMBER SAMPLES	DESCRIPTION
205 226 3202 229	36 36 36 36	Geochem ring to approx 150 mesh 0-3 Kg crush and split Rock - save entire reject ICP - AQ Digestion charge
* NOTE	1:	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W. To: TRAVIS, ADAM

3579 LANSBURY COURT WESTBANK, BC V4T 1C5

A9929908

۳

1

Comments: ATTN:ADAM TRAVIS

ANALYTICAL PROCEDURES UPPER CHEMEX NUMBER DETECTION CODE SAMPLES DESCRIPTION METHOD LIMIT LIMIT -----983 36 Au ppb: Fuse 30 g sample FA-AAS 5 10000 997 2 Au g/t: 1 assay ton, grav. FA-GRAVIMETRIC 0.07 1000.0 Ag ppm: 32 element, soil & rock 100.0 2118 ICP-AES 0.2 36 Al %: 32 element, soil & rock ICP-AES 0.01 15.00 2119 36 2120 As ppm: 32 element, soil & rock ICP-AES 2 10000 36 557 36 B ppm: 32 element, rock & soil ICP-ABS 10 10000 2121 36 Ba ppm: 32 element, soil & rock ICP-AES 10 10000 2122 36 Be ppm: 32 element, soil & rock ICP-AES 0.5 100.0 2123 36 Bi ppm: 32 element, soil & rock ICP-ARS 2 10000 2124 36 Ca %: 32 element, soil & rock ICP-ARS 0.01 15.00 ICP-ARS 2125 36 Cd ppm: 32 element, soil & rock 0.5 500 ICP-ARS 10000 2126 36 Co ppm: 32 element, soil & rock 1 2127 36 Cr ppm: 32 element, soil & rock ICP-AES 1 10000 2128 36 Cu ppm: 32 element, soil & rock ICP-AES 1 10000 36 ICP-AES 15.00 2150 Fe %: 32 element, soil & rock 0.01 Ga ppm: 32 element, soil & rock ICP-ABS 2130 36 10000 10 2131 36 Hg ppm: 32 element, soil & rock ICP-AES 1 10000 2132 36 K %: 32 element, soil & rock ICP-AES 0.01 10.00 La ppm: 32 element, soil & rock ICP-AES 2151 36 10 10000 2134 36 Mg %: 32 element, soil & rock ICP-AES 0.01 15.00 2135 36 Mn ppm: 32 element, soil & rock ICP-ARS 10000 5 2136 36 Mo ppm: 32 element, soil & rock ICP-ABS 1 10000 2137 36 Na %: 32 element, soil & rock ICP-AES 0.01 10.00 2138 Ni ppm: 32 element, soil & rock ICP-AES 10000 36 1 2139 P ppm: 32 element, soil & rock ICP-AES 10000 36 10 Pb ppm: 32 element, soil & rock 2140 36 ICP-AES 2 10000 551 S %: 32 element, rock & soil ICP-AES 0.01 5.00 36 2141 36 Sb ppm: 32 element, soil & rock ICP-ABS 10000 2 2142 36 Sc ppm: 32 elements, soil & rock ICP-AES 10000 1 2143 36 Sr ppm: 32 element, soil & rock ICP-ABS 10000 1 2144 Ti %: 32 element, soil & rock ICP-AES 36 0.01 10.00 2145 36 T1 ppm: 32 element, soil & rock ICP-AES 10 10000 2146 U ppm: 32 element, soil & rock ICP-ABS 10000 36 10 36 V ppm: 32 element, soil & rock ICP-ABS 2147 1 10000 2148 36 W ppm: 32 element, soil & rock ICP-AES 10 10000 2149 36 Zn ppm: 32 element, soil & rock ICP-AES 2 10000

C		Ana	atytical Cher 212 Brook British Co PHONE: 6	nists * Ge sbank A lumbia, (604-984-	A L eochemists Ne., 1 Canada 0221 FA	Register North Va X: 604-9	red Assaye ancouver V7J 2C1 984-0218	LU . us		Proje Com	3579 LA WESTB V4T 1C ct : ments:	NSBUR ANK, BC 5 TIGER F ATTN:AI	Y COURT	vis					Certifica Invoice I P.O. Nu Account	fe Date: (No. :) mber : :f	992990
PLEASE NO	TE										CE	RTIF		OF A	NAL	YSIS	1	49929	908		
SAMPLE	PRE	:P)E	Au ppb FA+AA	Au FA g/t	Ag ppm	A1 %	As mqq	B Dom	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррш	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm
27601 27602 27603 27604 27605	205 205 205 205 205	226 226 226 226 226 226	1625 310 45 10 < 5		75.6 < 0.2 < 0.2 1.2 1.8	0.71 0.26 0.32 < 0.01 0.04	102 26 10 326 34	< 10 < 10 < 10 < 10 < 10 < 10	10 180 150 < 10 < 10	< 0.5 1.0 0.5 < 0.5 < 0.5	Intf* < 2 < 2 6 2	0.10 0.33 1.78 14.80 0.11	25.0 < 0.5 < 0.5 1.0 < 0.5	274 10 8 < 1 64	< 1 70 151 < 1 167	>10000 290 100 1575 73	>15.00 3.04 2.66 0.24 8.62	10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.09 0.17 0.25 < 0.01 0.03	< 10 30 10 < 10 < 10
27606 27607 27608 27609 27610	205 205 205 205 205 205	226 226 226 226 226 226	<pre>< 5 35 120 < 5 >10000</pre>	15.10	< 0.2 < 0.2 6.4 < 0.2 >100.0	3.48 0.04 0.07 2.89 0.05	< 2 < 2 2 < 2 >10000	< 10 < 10 < 10 < 10 < 10 < 10	220 110 430 70 30	0.5 0.5 < 0.5 0.5 < 0.5	< 2 < 2 16 < 2 Intf*	2.79 8.18 0.01 0.57 0.16	< 0.5 0.5 < 0.5 < 0.5 119.0	26 5 1 59 < 1	173 37 172 111 < 1	120 11 71 426 >10000	4.42 3.06 0.97 7.93 >15.00	10 < 10 < 10 30 20	< 1 < 1 < 1 < 1 607	0.64 0.04 0.03 1.55 0.03	< 10 10 < 10 10 < 10
27611 27612 27613 27651 27652	205 205 205 205 205 205	226 226 226 226 226 226	1175 455 5740 >10000 25	17.26	>100.0 27.4 >100.0 15.0 0.8	0.07 0.11 0.06 0.52 1.02	2820 954 >10000 138 12	< 10 < 10 < 10 < 10 < 10 < 10	10 < 10 20 570 230	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	Intf* Intf* Intf* < 2 < 2	1.72 2.54 0.19 0.03 0.30	38.5 11.0 137.5 3.0 < 0.5	< 1 < 1 < 1 1 3	84 60 < 1 100 56	>10000 >10000 >10000 256 63	0.52 4.07 >15.00 1.54 1.65	< 10 < 10 10 < 10 < 10 < 10	242 10 1225 1 < 1	0.04 0.04 0.04 0.28 0.24	< 10 < 10 < 10 10 10
27653 27654 27655 27656 27657	205 205 205 205 205 205	226 226 226 226 226 226	30 < 5 < 5 < 5 < 5		2.2 0.4 0.6 0.2 < 0.2	0.02 0.31 0.04 0.03 0.71	22 6 42 2 < 2	< 10 < 10 < 10 < 10 < 10 < 10	10 250 10 < 10 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 2 < 2	<pre>< 0.01 0.18 2.30 12.55 12.80</pre>	< 0.5 < 0.5 1.5 < 0.5 < 0.5	1 < 1 7 1 1	163 27 13 3 80	67 63 96 16 39	1.16 0.95 >15.00 3.16 0.62	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	< 0.01 0.20 < 0.01 < 0.01 0.08	< 10 30 < 10 < 10 < 10
27658 27659 27660 27661 27662	205 205 205 205 205 205	226 226 226 226 226 226	< 5 < 5 < 5 < 5 < 5		< 0.2 < 0.2 < 0.2 0.6 < 0.2	0.65 0.05 0.37 0.18 2.07	8 < 2 < 2 2 6	< 10 < 10 10 < 10 < 10 < 10	110 < 10 < 10 < 10 < 10 10	1.0 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	1.11 >15.00 9.04 0.09 1.47	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	5 < 1 19 1 129	18 4 113 199 206	45 20 15 183 97	1.17 0.14 2.65 0.90 7.59	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.09 0.02 0.29 0.10 1.23	40 < 10 10 < 10 60
27663 27664 27665 27666 27666 27667	205 205 205 205 205 205	226 226 226 226 226 226	1745 470 6900 1530 10		1.8 4.4 4.2 2.2 < 0.2	0.15 0.03 0.22 0.18 0.03	4370 480 2980 3370 26	< 10 < 10 < 10 < 10 < 10 < 10	20 < 10 100 50 < 10	3.5 < 0.5 4.0 3.0 < 0.5	26 24 102 104 2	0.15 12.00 0.51 0.11 14.45	20.5 6.5 18.0 17.0 < 0.5	4 1 27 4 < 1	11 5 22 9 3	6190 836 3250 7430 23	>15.00 5.73 >15.00 >15.00 1.23	< 10 < 10 < 10 < 10 < 10 < 10	< 1 5 14 3 < 1	< 0.01 < 0.01 0.02 0.03 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10
27668 27669 27670 27671 27671 27672	205 205 205 205 205	226 226 226 226 226 226	< 5 < 5 < 5 55 15		< 0.2 < 0.2 0.6 2.8 2.4	0.46 0.35 0.09 0.10 0.03	4 8 22 3480 1870	< 10 < 10 < 10 < 10 < 10 < 10	40 60 < 10 40 < 10	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.16 0.06 0.09 0.09 3.22	< 0.5 < 0.5 < 0.5 0.5 2.0	3 5 2 58 < 1	50 99 208 11 174	9 173 72 243 2470	1.31 2.57 0.72 >15.00 1.99	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 6 43	0.33 0.23 0.03 0.04 0.01	< 10 < 10 < 10 < 10 < 10 < 10
27673	205	226	30		2.0	0.16	1415	< 10	20	1.5	< 2	0.07	0.5	27	18	676	>15.00	< 10	< 1	0.02	< 10

* INTERFERENCE: HIGH Cu ON Bi & P.

CERTIFICATION:

· Xauch Isk

5						,,	04 0210				ments: /	ALIN:AU								
PLEASE NOT	Ë										CE	RTIFI	CATE	OF A	NALY	'SIS	4	19929	908	
SAMPLE	PRI CO	EP DE	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	9 ppm	Pb ppp	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppan	V ppm	M M	Zn ppm	
7601	205	226	0.34	485	< 1	0.08	40	Intf*	166	>5.00	6	5	17	0.03	< 10	< 10	100	< 10	1545	
7602	205	226	0.05	1070	< 1	0.04	4 ∡	820 1040	22	1.04	< 2	5	150 218	0.03	< 10 < 10	< 10 < 10	124	< 10 < 10	16	
7604	205	226	9.73	310	< 1	< 0.01	1	20	< 2	0.10	82	< 1	224 4	0.01	< 10	< 10	4	< 10	82	
7605	205	226	0.05	20	< 1	< 0.01	1880	10	472	>5.00	12	< 1	4 •	: 0.01	< 10	< 10	1	< 10	20	
7606	205	226	5.27	490	5	< 0.01	69	1370	< 2	0.80	< 2	11	89	0.06	< 10	< 10	109	< 10	28	
7607	205	226	3.62	2420	1	0.01	6 3	340	2	0.02	< 2 < 2	2	1540 -	0.01	< 10 < 10	< 10 < 10	197	< 10	166	
17609	205	226	1.49	200	1	0.03	34	2210	4	2.43	< 2	23	10	0.37	< 10	< 10	328	< 10	32	
7610	205	226	0.04	5	< 1	0.07	14	Intf*	1175	2.11	>10000	4	24 -	0,01	< 10	< 10	< 1	< 10	6310	
7611	205	226	1.09	130	< 1	< 0.01	5	Intf*	620	0.58	3090	< 1	12	0.01	< 10	< 10	5	< 10	2270	
7612	205	226	1.55	145	< 1	< 0.01	4	Intf*	1300	0.09	404	< 1	14 -	< 0.01	< 10	< 10 < 10	34	< 10 < 10	444 >10000	
7613	205	226	0.13	220	1	0.07	10	310	1795	0.14	4690	< 1	27	0.01	< 10	< 10	5	< 10	270	
7652	205	226	0.31	570	< 1	0.04	2	550	22	0.01	2	1	57	0.03	< 10	< 10	30	< 10	46	
7653	205	226	< 0.01	10	3	< 0.01	3	50	10	0.03	2	< 1	1	0.01	< 10	< 10	2	< 10	4	
7654	205	226	0.02	320	1	0.09	< 1	100	10	0.04	4	< 1	78		< 10	< 10	21	< 10	26	
7656	205	226	8.89	125	< 1	0.01	9	50	234	0.03	6	< 1	28	< 0.01	< 10	< 10	2	< 10	16	
7657	205	226	7.61	100	< 1	< 0.01	9	70	6	0.06	2	3	24	0.04	< 10	< 10	13	< 10	2	
7658	205	226	0.11	170	< 1	0.09	< 1	420	< 2	< 0.01	< 2	3	18	< 0.01	< 10	< 10	8	< 10	B	
7659	205	226	1.52	70	< 1	< 0.01	3	70	6	0.06	2	< 1	28	< 0.01	< 10	< 10	1 75	< 10	12	
7661	205	226	0.18	40	1	0.01	10	70	< 2	0.04	< 2	< 1	3	0.03	< 10	< 10	26	< 10	6	
7662	205	226	1.29	25	4	0.03	318	4270	14	>5.00	< 2	5	141	0.15	< 10	< 10	70	< 10	8	
7663	205	226	0.16	20	36	< 0.01	35	230	2530	0.01	1045	< 1	3	< 0.01	< 10	50	35	< 10	2540	
7664	205	226	8.32	135	1	0.01	8	40	600	0.03	402	< 1	47	< 0.01	< 10	< 10	60 105	< 10	528	
7665 7666	205	226	0.35	600 80	49	< 0.01 < 0.01	105	200	2600	< 0.01	2450	< 1	3	< 0.01	< 10	40	20	< 10	2870	
7667	205	226	9.87	55	< 1	0.01	7	40	12	0.03	18	< 1	56	< 0.01	< 10	< 10	32	< 10	26	
7668	205	226	0.09	5	1	< 0.01	10	680	6	0.54	4	2	7	< 0.01	< 10	< 10	5	< 10	4	
7669	205	226	0.03	10	ī	< 0.01	12	750	6	0.82	2	5	B	< 0.01	< 10	< 10	4	< 10	2	
7670	205 205	226	0.06	15	1	< 0.01	12	40 160	16	< 0.01	2	< 1	1	< 0.01 < 0.01	< 10 < 10	< 10 ≰0	2	< 10 < 10	12 106	
7672	205	226	2.32	50	2	< 0.01	4	< 10	8	0.26	194	< 1	6	< 0.01	< 10	< 10	1	< 10	108	
7673	205	226	0.27	40	11	< 0.01	229	280	900	0.04	56	< 1	2	< 0.01	< 10	10	22	< 10	880	
7668 7669 7670 7671 7672 7673	205 205 205 205 205 205	226 226 226 226 226 226 226	0.09 0.03 0.06 0.15 2.32 0.27	5 10 15 15 50 40	1 1 149 2 11	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	10 12 12 194 4 229	680 750 40 160 < 10 280	6 6 16 1170 8 900	0.54 0.82 < 0.01 0.01 0.26 0.04	4 2 44 194 56	2 5 < 1 < 1 < 1 < 1 < 1	7 B 1 4 6 2	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 0 < 10 = 10	5 4 2 12 1 1 22	< 10 < 10 < 10 < 10 < 10 < 10 < 10	4 2 106 108 880	

[]]] []] ab **e**

,

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

3579 LANSBURY COURT WESTBANK, BC V4T 1C5

.

٦

٦

THUR ADA

1

A9930347

Comments: ATTN:ADAM TRAVIS

С	ERTIFI	CATE A9930347			ANALYTICAL	PROCEDURES		
(RDS) - T Project:	RAVIS, AL TIGER	DAM ROCKS 2	CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
Samples This rep	submitt port was	ed to our lab in Vancouver, BC. printed on 06-OCT-1999.	384 301 316	3 5 1	Ag g/t: Gravimetric Cu %: Conc. Nitric-HCL dig'n Zn %: Conc. Nitric-HCL dig'n	РА-GRAVIMETRIC Даз Дая	3 0.01 0.01	3500 100.0 100.0
	SAM	PLE PREPARATION		-				
CHEMEX	NUMBER SAMPLES	DESCRIPTION						
212	5	Overlimit pulp, to be found						

Chemex
Analytical Chemists * Geo
212 Brooksbank Av
British Columbia, Ca

.abs Ltd. (

5

ochemists * Registered Assayers North Vancouver V7J 2C1 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: TRAVIS, ADAM

3579 LANSBURY COURT WESTBANK, BC V4T 1C5

Page Number :1 Total Pages :1 Certificate Date: 06-OCT-1999 Invoice No. :19930347 P.O. Number : RDS Account

1

· · · · · ·

•

**

1

Project : TIGER ROCKS 2 Comments: ATTN:ADAM TRAVIS

					CERTIFIC	ATE OF A	NALYSIS	A99	30347	
SAMPLE	PREP CODE	Ag FA g/t	Cu %	Zn %						
127601 127610 127611 127612 127613	212 212 212 212 212 212	2620 270 1710	23.4 27.7 1.37 1.20 22.2	 0.97						
								:		
								12A	24)

.ab

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

3579 LANSBURY COURT WESTBANK, BC V4T 1C5

1

7

•

1

[]]

.....

A9929909

Comments: ATTN:ADAM TRAVIS

CERTI	FICATE	A9929909			ANALYTICAL P	ROCEDURES	6	1
• TRAVIS,	, ADAM ER SILTS 2		CHEMEX	NUMBER	DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit
:			0.93			B) 114		10000
es submi	tted to cur lab) in Vancouver, BC.	2118	2	Ad point 12 element, soil £ rock	TCD_NPS	φ 1. γ	100.00
report w	as printed on 0	1-OCT-1999.	2119	2	Al &: 32 element, soil & rock	TCD-1RS	0 01	15 00
			2120	2	As DDM: 32 element, soil & rock	TCP-XES	2	10000
			557	2	B ppm: 32 element, rock & soil	TCP-ARS	10	10000
			2121	2	Ba pom: 32 element, soil & rock	ICP-AES	10	10000
			2122	2	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
		······································	2123	2	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
C A			2124	2	Ca %: 32 element, soil & rock	ICP-ABS	0.01	15.00
ЭA	MITLE PREP/	ARATION	2125	2	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
			2126	2	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
			2127	2	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
ex inumbi	ER		2128	2	Cu ppm: 32 element, soil & rock	ICP- AES	1	10000
E SAMPL	ES	DESCRIPTION	2150	2	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
ļ			2130	2	Ga ppm: 32 element, soil & rock	ICP-ABS	10	10000
			2131	2	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
01 2	Dry, sieve (to -80 mesh	2132	2	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
02 2	save reject		2151	2	La ppm: 32 element, soil & rock	ICP-AES	10	10000
29 2	ICP - AQ Dig	gestion charge	2134	2	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
Í	l l		2135	2	Mn ppm: 32 element, soil & rock	ICP-XES	5	10000
ļ			2136	2	Mo ppm: 32 element, soil & rock	ICP- NES	1	10000
i			2137	2	Na %: 32 element, soil & rock	ICP-AES	0.01	10.00
			2138	4	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
			2139	2	P ppm: 32 element, soll & rock	ICP-AES	10	10000
			X140	1 4	PD ppm: 32 element, soil & rock	ICP-AES	2	10000
			201	1 5	S %; 32 element, rock & soll	ICP-AES	0.01	5.00
1			0140	4	AD DDM: 32 element, soil & rock	ICP-AKS	2	10000
			2143	4	SC ppm: 32 elements, soll & rock	ICP-AES	1	10000
			2143	1 1	of pom: 32 element, soil & rook	ICP-AES	1	10000
<u> </u>			2145	2	TI WI JA GIGBORL, SOII & FOCK	TOD ARA	0.01	10.00
2 .1	6 700b- <i></i> i		2146	2	U DDm: 32 alament, soil & rock	TCP-ARS	10	10000
4 41409 0	t icP package 1.	s suicable for	2147	2	V ppm: 32 element soil & rock	TCD-JPS	1	10000
metals	un solt and	FOCK Samples.	2148	2	W mome 32 element soil & rock	TCD- 1PG	10	10000
tion is	which the fit.	lata aray 31	2149	2	Zn ppm: 32 element, soil & rock	TCP-ARS	10	10000
P CP C	Dossibià Illoomb	ive alv: Al, A Na ga mi		1 -	an ppm: of themene, built a rook	101-480	4	10000
, ca, c	t, da, n, na, n	y, Na, SI, TI,						
-								
								1
								ĺ
					· · · · ·			

(RDS) - TRA

Project: P.O. # :

Samples su This repor

 	SAMPLE PREPARATION												
CHEMEX	NUMBER	DESCRIPTION											
201 202 229	222	Dry, sieve to -80 mesh save reject ICP - AQ Digestion charge											
* NOTE	1:												

The 32 ele trace met Elements f digestion Ba, Be, Ca T1, W.

	<i>p</i>	212 Brook British Col PHONE: 6	sbank Av umbia, C 104-984-(ve., 1 Canada 0221 FA	North Va X: 604-9	ncouver V7J 2C1 84-0218			Proje Comr	V4T 1C ct : ments: CE	5 TIGER S ATTN:AD	ILTS 2 DAM TRA	VIS OF A	NAL	YSIS		\992 9	P.O. Nu Account 909	mber : :I	RDS
SANPLE	PREP CODE	Ац ррђ ГА+АА	Ag ppm	A1 %	As ppm	B ppm	Ba ppa	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
27705	201 202 201 202	< 5 < 5	< 0.2 < 0.2	3.93 3.58	10 20	< 10 < 10	70 90	0.5	< 2 < 2	0.10	< 0.5 < 0.5	10 13	17 22	12 21	3.23 3.68	< 10 < 10	< 1 < 1	0.07	< 10 20	0.39
													C	ERTIFIC	CATION:		(Vacel	<u> </u>	

C	Anata 2 B P	nen 12 Brooks kritish Colu HONE: 6	ne) Ists * Geo Isbank Av Imbia, C 04-984-0	chemists /e., l anada 0221 FA	Aegister North Va X: 604-9	SL1 red Assaye ncouver V7J 2C1 84-0218	td.		Projec Comm	3579 LAI WESTBA V4T 1C5 it :] hents: A	NSBUR NK, BC IGER S ATTN:AL	COURT ILTS 2 DAM TRA	r NVIS					Page Number Total Pages Certificate Da: Invoice No. P.O. Number Account	1-B 1 1-OCT-1 19929909 RDS
										CE	RTIFI	CATE	OF	NALY	(SIS	A	\9929	909	·····
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	р ррш	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl ppm	U ppm	V ppm	W ppm	2n ppm		
27706	201 202	390	3	0.01	19 25	1070 660	10 8	0.02	< 2	2 5	10 19	0.10 0.05	< 10 < 10	< 10 < 10	29 26	< 10 < 10	50 54		
																	(

Chemex abs

r

r ---

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

1 N 1 To: TRAVIS, ADAM

r (* 1

3579 LANSBURY COURT WESTBANK, BC V4T 1C5

n

•

.

٦

٣ ٦

A9929911

1.17

]

f 1

7

Comments: ATTN:ADAM TRAVIS

С	ERTIF	CATE	A9929911			ANALYTICAL P	ROCEDURES	5	
(RDS) - T Project:	RAVIS, A TIGER	DAM SILTS 2		CHEMEX	NUMBER	DESCRIPTION	METHOD	DETECTION LIMIT	UPPER LIMIT
P.O. # : Samples This re	submitt port was	ed to our lab printed on 0	in Vancouver, BC. 5-OCT-1999.	983 2118 2119 2120 557 2121 2122	17 17 17 17 17 17 17 17	Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock B ppm: 32 element, rock & soil Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock	FA-AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	5 0.2 0.01 2 10 10 0.5	10000 100.0 15.00 10000 10000 10000 10000
	SAM	PLE PREPA	ARATION	2123 2124 2125	17 17 17	Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock	ICP- AES ICP- AES ICP- AES	2 0.01 0.5	10000 15.00 500
CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION	2126 2127 2128 2150 2130	17 17 17 17 17 17	Co ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	1 1 0.01 10	10000 10000 15.00 10000
230 202 229	17 17 17	sieve to -20 save reject ICP - AQ Dig	0 mesh restion charge	2131 2132 2151 2134 2135 2136 2137 2138 2139 2140 551 2141 2141	17 17 17 17 17 17 17 17 17 17 17 17 17	Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock P ppm: 32 element, soil & rock Pb ppm: 32 element, soil & rock S %: 32 element, soil & rock S %: 32 element, soil & rock S ppm: 32 element, soil & rock S ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	1 0.01 10 0.01 5 1 0.01 1 10 2 0.01 2 1	10000 10000 15.00 10000 10000 10000 10000 10000 5.00 10000 10000
NOTE	1:		- ,,	2143 2144 2145	17 17 17	Sr ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Tl ppm: 32 element, soil & rock	icp -aes Icp-aes Icp-aes	1 0.01 10	10000 10.00 10000
The 32 d trace f Element, digestid Ba, Be, Tl, W,	element metals s for w on is po Ca, Cr,	ICP package i in soil and hich the nit ssibly incomp Ga, K, La, M	s suitable for rock samples. ric-aqua regia lete are: A1, g, Na, Sr, T1,	2146 2147 2148 2149	17 17 17 17	U ppm: 32 element, soil & rock V ppm: 32 element, soil & rock W ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock	icp- aes icp- aes icp- aes icp- aes	10 1 10 2	10000 10000 10000 10000

(-)nex | abs d. ien

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave. North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

3579 LANSBURY COURT WESTBANK, BC V4T 1C5

.): T.....), AD.....

 Numb
 A

 Total Pages
 :1

 Certificate Date: 05-OCT-1999

 Invoice No.
 :19929911

 P.O. Number
 :

 Account
 :RDS

1 - 1

Project : TIGER SILTS 2 Comments: ATTN:ADAM TRAVIS

	-								14. Y		CE	RTIF	CATE	OF A	NAL	/SIS	م	19929	911		
SAMPLE	PR CO	EP DE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	B	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Со ррт	Cr ppm	Cu ppm	Fe بر	Ga ppm	Hg ppm	K %	La ppm	Mg %
127701 127702 127703 127704 127704 127707	230 230 230 230 230 230	202 202 202 202 202 202	25 85 15 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	2.46 1.91 2.47 1.94 1.75	64 52 12 2 6	< 10 < 10 < 10 < 10 < 10 < 10	330 510 110 70 100	2.5 2.5 1.0 0.5 0.5	< 2 2 < 2 < 2 < 2 < 2	1.81 1.90 1.13 2.00 5.41	1.0 1.5 < 0.5 < 0.5 < 0.5	12 16 6 9 13	35 34 34 29 3 9	991 688 108 206 21	2.66 4.93 1.66 1.89 3.20	10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.12 0.17 0.08 0.18 0.11	40 40 30 20 10	1.88 1.34 2.66 2.35 3.81
127708 127709 127710 127711 127711	230 230 230 230 230 230	202 202 202 202 202 202	<pre>< 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.38 0.23 1.45 4.05 2.79	< 2 < 2 < 2 2 2 6	< 10 < 10 < 10 < 10 < 10 < 10	70 20 90 190 190	< 0.5 < 0.5 0.5 0.5 0.5	< 2 6 < 2 < 2 < 2	3.75 13.60 3.37 0.55 0.57	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	16 1 22 35 13	37 9 44 36 27	25 5 34 189 46	3.54 0.43 4.47 4.98 3.10	< 10 < 10 10 20 10	< 1 < 1 < 1 < 1 < 1 < 1 < 1	0.06 0.03 0.09 0.59 0.29	10 < 10 20 < 10 10	2.46 8.71 2.22 2.66 2.21
127713 127714 127715 127751 127752	230 230 230 230 230	202 202 202 202 202 202	<pre>< 5 < 5</pre>	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.13 1.39 1.68 0.74 1.65	6 2 6 < 2 < 2	< 10 < 10 < 10 < 10 < 10 < 10	40 50 40 30 40	0.5 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2	5.71 5.31 6.74 10.85 7.16	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	6 7 7 7 13	24 25 41 26 48	21 21 31 15 21	1.88 2.17 1.94 1.33 2.41	10 10 10 10 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.09 0.13 0.10 0.17	10 10 10 < 10 10	3.69 3.22 4.63 7.10 5.44
127754	230	202	275	< U.2 1.8	0.52	< 2 628	< 10 < 10	30 70	2.0	ъ 66	11.25	÷ 0.5		14	3360	7.66	< 10	4	0.04	< 10	7.08

To: THAVIS, ADAM

3579 LANSBURY COURT WESTBANK, BC V4T 1C5 Page Number :1-B Total Pages :1 Certificate Date: 05-OCT-1999 Invoice No. :19929911 P.O. Number : Account :RDS

Project : TIGER SILTS 2 Comments: ATTN:ADAM TRAVIS

7

1

Chemex

.abs

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

	- <u>r</u> -										CE	RTIF		OF A	ANALY	/SIS	/	A9929911	
SAMPLE	PI Ci	REP	Mn ppm	Mo ppm	Na %	Ni ppm	P mqq	Pb ppm	S %	Sb ppm	Sc ррш	Sr ppm	Ti %	Tl ppm	U Mqq	У шаа	W mqq	Zn ppm	
127701 127702 127703 127704 127707	23) 23) 23) 23) 23)	0 202 0 202 0 202 0 202 0 202	1075 2030 350 600 950	5 4 1 1 1	0.05 0.04 0.03 0.03 0.01	21 21 13 17 33	1660 1740 1060 1010 920	62 54 24 16 18	0.17 0.21 0.12 0.05 0.04	< 2 < 2 < 3 < 3 < 3	3 6 3 3 4	197 217 58 55 49	0.08 0.08 0.09 0.08 0.08	< 10 < 10 < 10 < 10 < 10 < 10	60 10 < 10 < 10 < 10	89 156 62 51 24	< 10 < 10 < 10 < 10 < 10 < 10	190 198 118 62 54	
127708 127709 127710 127711 127712	23 23 23 23 23 23	0 203 0 203 0 203 0 203 0 203	830 190 935 345 665	2 < 1 < 1 3 2	< 0.01 0.01 < 0.01 0.03 0.01	41 8 57 27 18	850 180 910 1420 740	12 14 10 10 8	0.05 0.03 0.02 0.05 0.04	< 2 < 2 < 2 < 2 < 2 < 2 < 2	4 < 1 8 10 5	44 - 37 - 42 64 18	<pre> 0.01 0.01 0.01 0.25 0.13 </pre>	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	20 5 28 72 38	< 10 < 10 < 10 < 10 < 10	54 22 42 98 58	
127713 127714 127715 127751 127752	23) 23) 23) 23) 23)	0 202 0 202 0 202 0 202 0 202	580 680 580 440 270	1 < 1 < 1 < 1 < 1 < 1	0.01 0.01 0.02 0.01 0.01	17 15 23 21 38	1370 1680 1260 480 890	28 20 18 16 28	0.05 0.06 0.04 0.04 0.05	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 3 3 2 5	39 50 52 27 25	0.01 0.02 0.04 0.01 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	14 18 20 13 30	< 10 < 10 < 10 < 10 < 10 < 10	100 52 48 32 34	
127754	230	202	100		0.01	9 42	330 570	8 1995	0.04	2 956	1 1	29 4 69 4	; 0.01 ; 0.01	< 10 < 10	< 10 10	8 79	< 10 < 10	30 1335	

CERTIFICATION:

+ / Martina

Chemex Laps Ltd.

Analytical Chemists ' Geochemists ' Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 3579 LANSBURY COURT WESTBANK, BC V4T 1C5, CANADA

<u>ገ AD/"</u>

1 TF

A9930933

٦

100

Comments: ATTN: ADAM TRAVIS

A9930933

(RDS) - TRAVIS, ADAM

Project: TIGER 3 ROCKS P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 29-0CT-1999.

	MBER	
CHEMEX NU CODE SAN	MPLES	DESCRIPTION
205 226 3202 229	20 20 20 20 20	Geochem ring to approx 150 mesh 0-3 Kg crush and split Bock - save entire reject ICP - AQ Digestion charge

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W.

			ROCEDURES		
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOĐ	DETECTION LIMIT	upper Limit
983 997	20 1	Au ppb: Fuse 30 g sample Au g/t: 1 assay ton, grav	FA-AAS FA-GRAVIMETRIC	5	10000
2118	20	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
2119	20	Al %: 32 element, soil ; rock	ICP-AES	0.01	15.00
2120	20	As ppm: 32 element, soil & rock	ICP-AES	2	10000
557	20	B ppm: 32 element, rock & soil	ICP-AES	10	10000
2121	20	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122	20	Be ppm: 32 element, soil ; rock	ICP-AES	0,5	100.0
2123	20	Bi ppm: 32 element, soll & rock	ICP-AES	2	10000
4144	20	Cd brow 22 element, soll & rock	ICP-AUS	0.01	15.00
2126	20	Co ppm: 32 element, soll & rock	1CF-ALS TCD_XP0	U.5 1	000
2127	20	Cr ppm, 32 element, soil & rock	TCP-AES	1	10000
2128	20	Cu ppm: 32 element, soil & rock	TCP-ARS	1	10000
2150	20	fe %: 32 element. soil & rock	ICP-AES	0 01	15 00
2130	20	Ga ppm: 32 element, soil ; rock	ICP-AES	10	10000
2131	20	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
2132	20	K %: 32 element, soil & rock	ICP-AES	0,01	10.00
2151	20	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	20	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
21.35	20	Mn ppm: 32 element, soil ; rock	ICP-AES	5	10000
2136	20	Mo ppm: 32 element, soil & rock	ICP~AES	1	10000
213/	20	Na % 32 element, soll & rock	ICP-AES	0.01	10.00
2130	20	AI ppm: 32 element, soll & rock	ICP-AES	1	10000
2133	20	Ph ppm; 32 element, soll & fock	ICP-ARS ICP-ARS	10	10000
551	20	S %; 32 element, rock s soil	TCP-AFS	A 01	5 00
2141	20	Sb ppm: 32 element, soil & rock	TCP-AES	0.01	3,00
2142	20	Sc ppm: 32 elements. soil & rock	TCP-AES	1	10000
2143	20	Sr ppm: 32 element, soil & rock	ICP-AES	ī	10000
2144	20	Ti %: 32 element, soil & rock	ICP-AES	0.01	10.00
2145	20	Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	20	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	20	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	20	W ppm: 32 element, soil & rock	ICP-AES	10	10000
2149	20	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

	Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218								Proj∉ Com	VVES I DANN, BC INVOICE NO. V4T 1C5, CANADA P.O. Number Project : TIGER 3 ROCKS Comments: ATTN: ADAM TRAVIS									ndber: F	: RDS	
,				·····							CE	RTIF	ICATE	OF A	OF ANALYSIS			49930	933		
SAMPLE	PREP	1	u ppb FA+AA	Au FA g/t	Ag ppm	Al %	As pp n	B PPm	Ba ppm	Be ppm	Bi ppm	Ca ۴	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Нд РРш	K E	La pp n
7614 7615 7616 7617 7618	205 2 205 2 205 2 205 2 205 2 205 2	26 26 26 26 26	280 260 30 < 5 10000	 16.95	0,8 13.6 4.2 < 0.2 >100.0	0.22 0.10 0.49 0.34 0.11	2 278 2 14 >10000	10 < 10 < 10 10 < 10	40 110 100 30 50	<pre>< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5</pre>	<pre></pre>	0.01 0.57 0.88 0.06 0.27	< 0.5 < 0.5 < 0.5 < 0.5 154,5	<pre>< 1 < 1 < 2 1 < 1 < 1 < 1 < 1</pre>	22 144 116 57 < 1	31 2210 2020 12 >10000	1.25 1.01 1.40 1.80 >15.00	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10 10</pre>	<pre>< 1 < 1 1 < 1 < 1 2190</pre>	0.16 0.05 0.09 0.30 < 0.01	40 < 10 < 10 10 < 10
7619 7620 87621 87674 87675	205 2 205 2 205 2 205 2 205 2 205 2	26 26 26 26 26 26	2930 1165 70 (5 10		>100.0 26.0 2.4 0.4 0.4	0.03 0.26 0.34 0.55 0.04	8520 1110 58 10 10	<pre>< 10 < 10</pre>	30 40 70 290 10	<pre>< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5</pre>	Tntf* < 2 2 6 < 2	0.24 0.15 0.04 0.03 1.48	101.0 22.0 0.5 < 0.5 < 0.5	<pre> < 1 4 1 20 < 1 </pre>	<pre>(1 21 84 94 169</pre>	>10000 1775 360 27 70	1,45 >15.00 1.33 3.25 0.75	20 10 < 10 < 10 < 10	499 6 11 < 1 2	0.01 0.07 0.28 0.24 0.02	<pre>< 10 < 10 < 10 10 10 < 10 < 10</pre>
27676 27677 27678 27679 27679 27680	205 2 205 2 205 2 205 2 205 2 205 2	26 26 26 26 26 26	<pre>< 5 20 < 5 1675 2270</pre>		<pre></pre>	0.16 0.24 0.98 0.01 0.01	<pre> < 2 3930 18 3650 >10000 </pre>	<pre>< 10 10 < 10 < 10 < 10 < 10</pre>	10 40 390 130 120	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	<pre>< 0.01 0.13 0.01 >15.00 0.17</pre>	<pre>< 0.5 < 0.5 < 0.5 90.5 90.5 96.0</pre>	<pre> { 1 71 10 1 1 </pre>	183 < 1 104 < 1 4	7 163 35 >10000 >10000	0.63 >15.00 3.68 0.54 1.84	<pre>< 10 10 < 10 < 10 < 10 < 10 10</pre>	<pre> < 1 18 < 1 166 492 </pre>	0.04 0.07 0.20 < 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10
27681 27682 27683 27684 27684 27685	205 2 205 2 205 2 205 2 205 2 205 2	26 26 26 26 26	<pre></pre>		1.0 < 0.2 2.2 < 0.2 0.8	0.10 0.41 0.05 0.09 0.27	336 8 602 28 3920	10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 40 < 10 < 10 < 10 10 10</pre>	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	<pre></pre>	0,24 0,38 1,18 4,12 0,23	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	37 3 192 1 7	145 63 74 159 182	198 174 222 44 77	5.89 2.44 >15.00 3.96 2.98	<pre>< 10 < 10 10 < 10 < 10 < 10 < 10</pre>	<pre>< 1 < 1 3 < 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	0.03 0.09 0.01 0.03 0.10	<pre>< 10 20 < 10 < 10 < 10 < 10 < 10</pre>
								·													

CERTIFICATION:____

_*

· Nauch

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver Brilish Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 3579 LANSBURY COURT WESTBANK, BC V4T 1C5, CANADA

TH. ADA.

Г

F Jumbe B Total Pages :1 Certificate Date: 29-OCT-1999 Invoice No. : 19930933 P.O. Number : Account : RDS

1

Project : TIGER 3 ROCKS Comments: ATTN: ADAM TRAVIS

1 1

1 '

r	r——					······································					CE	RTIFI	CATE (DF A	NAL	/SIS	<i>I</i>	19930)933	
SAMPLE	PR CO	EP DE	Mg %	Mn ppm	Mo PP■	Na Ł	Ni PP	P ppm	ър Рр ш	S %	Sb PPM	Sc ppm	Sr ppm	Ti ¥	Tl Ppm	n Wdđ	V ppm	W PPM	Zn ppm	
127614 127615 127616 127617 127618	205 205 205 205 205 205	226 226 226 226 226 226	<pre>< 0.01 0.14 0.50 0.04 0.09</pre>	30 250 295 5 25	<pre>< 1 2 5 4 1 6</pre>	0.08 0.02 < 0.01 < 0.01 0.04	< 1 4 5 7 2	50 50 160 670 Intf*	12 194 200 6 5300	0.03 0.22 0.20 0.19 0.13	<pre> { 2 46 < 2 < 2 < 2</pre>	<pre>< 1 < 1 1 2 < 1</pre>	64 < (41 < (25 < (6 < (30 < (D.01 D.01 D.01 D.01 D.01 D.01	<pre>< 10 < 10</pre>	<pre>< 10 < 10 < 10 < 10 < 10 < 20</pre>	30 17 6 3 79	< 10 < 10 < 10 < 10 < 10 < 10	14 36 20 2 5250	
127619 127620 127621 127674 127675	205 205 205 205 205 205	226 226 226 226 226	0.09 0.22 0.03 0.15 0.76	15 35 5 95 450	5 44 3 < 1 4	0.12 0.04 (0.01 0.04 (0.01	< 1 14 6 11 3	Intf* 530 80 300 70	>10000 9130 132 192 20	3.28 < 0.01 0.73 0.55 0.03	2050 852 72 2 14	<pre>< 1 < 1</pre>	77 < 0 6 < 0 5 < 0 32 < 0 20 < 0	0.01 0.01 0.01 0.01 0.01	<pre>< 10 < 10</pre>	30 10 < 10 < 10 < 10	<pre> < 1 157 5 4 < 1 </pre>	<pre>< 10 30 < 10 < 10 < 10 < 10</pre>	8870 2930 24 20 6	
127676 127677 127678 127679 127680	205 205 205 205 205 205	226 226 226 226 226 226	0.13 0.20 0.67 9.83 0.05	35 35 45 150 5	1 20 3 3 10	<pre>< 0.01 0.01 < 0.01 < 0.01 0.04 1.04</pre>	4 101 9 5 < 1	90 210 160 Intf* Intf*	54 292 12 1030 >10000	< 0.01 < 0.01 0.39 0.81 1.35	<pre></pre>	<pre> < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1</pre>	2 < 0 4 < 0 8 < 0 47 < 0 71 < 0).01).01).01).01).01	<pre>< 10 < 10</pre>	<pre>< 10 < 10 < 10 < 10 < 10 30 20</pre>	1 28 6 2 < 1	<pre>< 10 < 10 < 10 < 10 < 10 < 20</pre>	8 384 14 4270 >10000	
127681 127682 127683 127684 127685	205 205 205 205 205	226 226 226 226 226 226	0.09 0.17 0.23 0.96 0.03	55 45 1245 960 230	11 6 4 6 5	<pre>< 0.01 0.07 < 0.01 < 0.01 0.01 0.04</pre>	52 < 1 899 23 34	40 570 60 130 180	398 38 122 8 78	0.01 0.79 >5.00 0.04 0.01	12 < 2 4 < 2 2	< 1 < 1 4 3 1	1 < 0 81 0 22 < 0 77 < 0 15 < 0	D.01 D.09 D.01 D.01 D.01 D.01	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	3 21 5 3 3	<pre>< 10 < 10 < 10 < 10 < 10 < 10 < 10</pre>	66 10 70 26 14	το Το, το στο στο στο στο στο στο στο στο στο
																			_	
																		,	\cap	,

17

Xau

K	C	Analytical 212 E Britisl PHOI	Chemists * Geochemists * Hegis Brooksbank Ave., North n Columbia, Canada NE: 604-984-0221 FAX: 604	DS LtC. stered Assayers Vancouver V7J 2C1 4-984-0218		3579 LANSBURY COURT WESTBANK, BC V4T 1C5, CANADA Comments: ATTN: ADAM TRAVIS	
C	ERTIFI	CATE	A9931855			ANALYTICAL	. PROCEDURES
(RDS) - T Project:	RAVIS, AD	DAM B ROCKS		CHEMEX	NUMBER	DESCRIPTION	METHOD
P.O. #; Samples This rep	su <u>hmi</u> tte port was	ed to our lab in printed on 25-00	Vancouver, BC. T-1999.	384 301 312 316	4 4 2 1	Ag g/t: Gravimatric Cu %: Conc. Nitric-HCL dig'n Pb %: Conc. Nitric-HCL dig'n Zn %: Conc. Nitric-HCL dig'n	FA-GRAVIMETRIC AAS AAS AAS
	SAM	PLE PREPAR	ATION				
CHEMEX CODE	NUMBER SAMPLES	DI	ESCRIPTION				
212	4	Overlimit pulp,	to be found				

A9931855

upper Limit

3500 100.0 100.0 100.0

DETECTION LIMIT

3 0.01 0.01 0.01

Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 J. Than, ADA.

3579 LANSBURY COURT WESTBANK, BC V4T 1C5, CANADA

C5, CANADA

.

Total Pages :1 Certificate Date: 25-OCT-1999 Invoice No. :19931855 P.O. Number : Account :RDS

Project : TIGER 3 ROCKS Comments: ATTN: ADAM TRAVIS

r	- <u>-</u>	-				CERTIFICA	TE OF A		A99	031855	
SAMPLE	PREP CODE	Ag FA g/t	Cu %	Pb %	Zn %						
127618 127619 127679 127680	212 212 212 212 212	833 1465 228 1065	14.85 5.37 3.83 5.44	69.1 50.4	5.14						
								ERTIFICATION	Port	Pal .)

Г

Chen Analytical Cherr

٦.

Chemex Labs Ltd.

Analytical Chemists ' Geochemists ' Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

СЕ	КI	11	GA	11	E	
				~~~~~		

A9930930

(RDS) - TRAVIS, ADAM

Project: TIGER 3 SILTS P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 22-OCT-1999.

		SAM	PLE PREPARATION
CH	emex DDE	NUMBER SAMPLES	DESCRIPTION
	230 202 229	12 12 5	sieve to -200 mesh save reject ICP - AQ Digestion charge
+ x	OTE	<b>.</b> .	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W. To: TRAVIS, ADAM

3579 LANSBURY COURT WESTBANK, BC V4T 1C5, CANADA

A9930930

1

1

Comments: ATTN: ADAM TRAVIS

CHEMEX         NUMBER         DESCRIPTION         METHOD         DETECTION         UPPER LIMIT           983         12         Au ppb: Fuse 30 g sample         FA-AAS         5         10000           2118         5         Al yraz         12 element, soil & rock         ICP-ARS         0.2         100.0           2119         5         Al Yraz         element, soil & rock         ICP-ARS         0.1         15,00           2120         5         As ppm: 32 element, soil & rock         ICP-ARS         0.0         10000           357         5         B ppm: 32 element, soil & rock         ICP-ARS         10         10000           2121         5         Be ppm: 32 element, soil & rock         ICP-ARS         0.5         100.00           2123         5         Be ppm: 32 element, soil & rock         ICP-ARS         0.5         500           2124         5         CC ppm: 32 element, soil & rock         ICP-ARS         0.0         1         10000           2124         5         CC ppm: 32 element, soil & rock         ICP-ARS         0.0         1         10000           2135         5         C ppm: 32 element, soil & rock         ICP-ARS         0.0         1         100000			ANALYTICAL PI	ROCEDUR	ES	
983       12       Au ppb: Fuse 30 g sample       FA-AAS       5       10000         2118       5       Ag ppm: 32 element, soil s rock       ICP-AES       0.01       15.00         2119       5       Al % is 32 element, soil s rock       ICP-AES       0.01       15.00         2119       5       As ppm: 32 element, soil s rock       ICP-AES       0.01       15.00         2121       5       B ppm: 32 element, soil s rock       ICP-AES       10       10000         2121       5       B ppm: 32 element, soil s rock       ICP-AES       0.5       100,00         2122       5       Be ppm: 32 element, soil s rock       ICP-AES       0.1       15.00         2123       5       Cd ppm: 32 element, soil s rock       ICP-AES       0.1       15.00         2124       5       Cd ppm: 32 element, soil s rock       ICP-AES       1       10000         2124       5       Cu ppm: 32 element, soil s rock       ICP-AES       1       10000         2125       5       Cu ppm: 32 element, soil s rock       ICP-AES       1       10000         2126       5       Cu ppm: 32 element, soil s rock       ICP-AES       1       10000         2130       5       Ga	CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHÓD		UPPER LIMIT
	983 2118 2119 2120 557 2121 2122 2123 2124 2125 2126 2127 2128 2150 2130 2131 2132 2151 2134 2135 2136 2137 2138 2139 2140 551 2141 2142 2143 2144 2145 2146 2147 2148 2149	1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Au ppb: Fuse 30 g sample Ag ppm: 32 element, soil & rock As ppm: 32 element, soil & rock B ppm: 32 element, soil & rock B ppm: 32 element, soil & rock B ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Ca %: 32 element, soil & rock Ca %: 32 element, soil & rock Ca ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock Ga ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock Mg %: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock Ni ppm: 32 element, soil & rock S %: pm: 32 element, soil & rock S % ppm: 32 element, soil & rock S ppm: 32 element, soil & rock N ppm: 32 element, soil & rock S ppm: 32 element, soil & rock S ppm: 32 element, soil & rock S ppm: 32 element, soil & rock S ppm: 32 element, soil & rock S ppm: 32 element, soil & rock	FA-AAS ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	$\begin{array}{c} 5\\ 0.2\\ 0.01\\ 2\\ 10\\ 10\\ 0.5\\ 2\\ 0.01\\ 0.5\\ 1\\ 1\\ 0.01\\ 10\\ 0.01\\ 10\\ 0.01\\ 10\\ 0.01\\ 1\\ 0.01\\ 10\\ 2\\ 0.01\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ $	$ \begin{array}{c} 10000\\ 100.0\\ 15.00\\ 10000\\ 10000\\ 10000\\ 15.00\\ 500\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 1000\\ 10000\\ 10000\\ 1000\\ 1000\\ 10000\\ 10000\\ 1000\\ 1000\\ 0$

			PHONE: (	504-984-	-0221 F	AX: 604-	984-0218	B		Соп	ect : nments:	ATTN: /	ADAM TI	RAVIS							
					No						C	ERTIF	ICAT	EOF	ANAL	YSIS		A993(	0930		<u></u>
SAMPLE	PR	EP DE	Au ppb FA+AA	Ag ppm	A1 %	As PPm	B PPM	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co pp <b>n</b>	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K L	La ppm	M
7716 7717 7718 7719 7721	230 230 230 230 230 230	202 202 202 202 202 202	<pre></pre>	<pre>&lt; 0.2 &lt; 0.2</pre>	1.74 2.31 1.77 2.08 0.54	4 12 10 6 < 2	10 10 < 10 < 10 10	300 450 510 280 10	0.5 0.5 0.5 0.5 < 0.5	<pre> &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2 &lt; 2</pre>	0.62 0.52 1.02 0.87 14.00	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	12 17 19 21 2	26 18 34 29 16	95 29 40 31 9	1.95 3.03 3.93 4.17 0.80	<pre>&lt; 10 &lt; 10</pre>	<pre>&lt; 1 &lt; 1</pre>	0.11 0.11 0.09 0.10 0.04	<pre>&lt; 10     10     10     10     10     &lt; 10</pre>	1.8 1.3 1.2 1.5 8.4
7755 7756 7757 7758 7760	230 230 230 230 230	202 202 202 202 202 202	<pre>&lt; 5 &lt; 5 10 &lt; 5 25</pre>																 		
																		$\left( \right)$	0	10	



#### **f**, ] S _ab

**.**....

)

٢

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

TRAVIS, ADAL

3579 LANSBURY COURT WESTBANK, BC V4T 1C5, CANADA

1 1

* 1

2

,

1

Fundational States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States States Stat

+

r -----

Project : TIGER 3 SILTS Comments: ATTN: ADAM TRAVIS

			<b></b>								<u> </u>	ERTIF	ICAT	EOF	ANAL	YSIS		A99309	30
SAMPLE	PR	EP DE	Mu ppm	Мо ррш	Na %	Ni PPm	P PP	Pb mqq	9	Sb pp∎	Sc ppm	Sr pp	Ti	Tl ppm	U PPm	V PPM	w ppm	Zn ppm	
127716 127717 127718 127719 127719 127721	230 230 230 230 230	202 202 202 202 202 202	620 680 865 745 345	3 4 3 1 × 1	0.01 0.01 < 0.01 < 0.01 < 0.01 0.01	19 17 30 23 8	860 930 1390 1350 330	38 28 24 34 14	0.07 0.07 0.10 0.07 0.03	<pre></pre>	2 4 4 6 < 1	55 33 57 17 22	0.04 0.05 0.01 0.01 < 0.01	<pre>&lt; 10 &lt; 10</pre>	30 30 < 10 < 10 < 10	22 27 30 35 9	<pre>&lt; 10 &lt; 10</pre>	62 108 70 56 22	
127755 127756 127757 127758 127760	230 230 230 230 230	202 202 202 202 202 202 202																	
127761 127762	230 230	202																	
							·												
																		(	1
															CERTIF		N:	>	auch



•

# Chemex Labs Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 TRAVIS, ADAW

3579 LANSBURY COURT WESTBANK, BC V4T 1C5, CANADA

A9930931

1

۲. T

F

٦

7.

1

1

Comments: ATTN: ADAM TRAVIS

C C	ERTIFI	CATE A9930931			ANALYTICAL P	ROCEDURES	S	
(RDS ) - 1	RAVIS, AL	DAM	CHEMEX		DESCRIPTION	METHOD	DETECTION	UPPER
Project: P.O. # .	TIGER	3 SILTS					LIMI I	LIMIT
Samples	submitt	ed to our lab in Vancouver, BC.	983	2	Au ppb: Fuse 30 g sample	FA-AAS	5	10000
This rep	port was	printed on 22-OCT-1999.	2110	1 1	Ag ppm: 32 element, soll & rock	ICP-AES	0.2	100.0
			2120		As now 32 element soil t rock	ICP-AES TOD-ADO	0.01	15.00
			557	i	B ppm: 32 element, rock & soil	TCP-AES	10	10000
			2121	ī	Ba pom: 32 element, soil & rock	ICP-AES	10	10000
			2122	1	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
	· ·		2123 ר	1	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
	SAM		2124	1	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
	QAIR	FEEFNEFANATION	2125	1	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
			2126	1	Co ppm: 32 element, soil 5 rock	ICP-AES	1	10000
OUTWON	humoro		2127	1	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
CHEMEX		DECODIDITION	2128		Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
	SAMPLES	DESCRIPTION	2150	1 1	fe %: 12 element, soll & rock	ICP-AES	0.01	15.00
			2130		Ga ppu: 32 element, soil f rock	ICP-AES	10	10000
201		Dry giovo to .00 moch	2131	1 1	K \$1.32 element soil & rock	ICP-AES		10000
202	2	eave reject	2151	1	La pum: 32 element soil & rock	1CF-A25 TCD-3PC	0.01	10.00
229	า กิ	ICP - AD Digestion charge	2134	ī	Mg % 32 element, soil & rock	TCP-ARS	0 01	10000
	-		2135	1	Mn ppm: 32 element. soil & rock	TCP-AES	5	10000
1			2136	1	Mo ppm: 32 element, soil 5 rock	ICP-AES	ĩ	10000
			2137	1	Na %: 32 element, soil & rock	ICP-AES	0.01	10.00
1			2138	1	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
1			2139	1	P ppm: 32 element, soil & rock	ICP-AES	10	10000
1			2140	1	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
			551	1	S %: 32 element, rock & soil	ICP-AES	0.01	5.00
			2141	1	SD ppm: 32 element, soil & rock	ICP-AES	2	10000
ļ			2142		SC ppm: 32 elements, soll & rock	ICP-AES	1	10000
+ NOTE			2143	1	The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon	ICP-AES	1	10000
C BUJTE	11.1		2145	1	The provest of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second state of the second	ICP-AES ICP-AES	0.01	10,00
The TO	alamont	TCP package is suitable for	2146	1	U ppm: 32 element, soil & rock	ICF-ALS ICP-AES	10	10000
trace	metalg	in soil and rock samples	2147	l ī	V ppm: 32 element, soil & rock	ICP-AES	10	10000
Element	s for w	hich the nitric-agua regia	2148	1	W ppm: 32 element, soil & rock	ICP-AES	10	10000
digesti	on is po	ssibly incomplete are: Al.	2149	1	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000
Ba, Be, Tl, W.	Ca, Cr,	Ga, Ř, La, M̃g, Na, Sr, TÍ,			· ·		-	

1 1

											CE	RTIFI	CATE	OF A	NAL	/SIS	ļ	9930	931		
SAMPLE	PRE	IP DE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	B PPm	Ba ppm	Be pp <b>m</b>	Bi ppm	Ca %	Cđ ppm	Со рра	Cr ppm	Cu pp <b>m</b>	Fe %	Ga ppm	Hg PPm	K %	La ppm	Mg %
7720 7759	201 201	202 202	< 5 5	< 0.2	1.70	< 2	< 10	20	¢ 0,5	< <b>2</b>	>15.00	< 0.5	6	32	15	1.42	< 10	< 1	0.13	< 10	2,86

...

										CE	RTIFIC	CATE	OF A	NALY	'SIS		19930	931	
SAMPLE	PREP CODE	Mn ppm	Mo PPm	Na %	Ni ppn	р ррш	РЬ РРД	5	Sb ppm	Sc ppm	Sr ppm	Ti %	Tl PPm	U ppm	v ppm	M Meta	Zn ppm		·
20 759	201 202 201 202	230	(1)	( 0,01	18	410	2	0.04	( 2	2	22 <	0.01	< 10	< 10	21	< 10	40		
								-											
								·											
																			÷
																	(		1



### Chemex Labs Ltd.

Analylical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 3579 LANSBURY COURT WESTBANK, BC V4T 1C5, CANADA

To: (1101)s, ABarry

A9932258

Comments: ATTN: ADAM TRAVIS

#### CERTIFICATE

A9932258

(RDS) - TRAVIS, ADAM

Project: TIGER 3 SILTS P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 04-NOV-1999.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION
244 229	B	Pulp; prav. prepared at Chemex ICP - AQ Digestion charge
1 NI (1999)		

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W.

					·
CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION	Upper Limit
$\begin{array}{r} 2118\\ 2119\\ 2120\\ 557\\ 2121\\ 2122\\ 2123\\ 2124\\ 2125\\ 2126\\ 2127\\ 2128\\ 2130\\ 2130\\ 2131\\ 2132\\ 2131\\ 2132\\ 2131\\ 2134\\ 2135\\ 2136\\ 2137\\ 2138\\ 2139\\ 2140\\ 5511\\ 2142\\ 2143\\ 2144\\ 2145\\ 2144\\ 2145\\ 2146\\ 2147\\ 2148\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ 2149\\ $	9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock B ppm: 32 element, soil & rock B ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock Fe %: 32 element, soil & rock Mg ppm: 32 element, soil & rock Mg ppm: 32 element, soil & rock Mg ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Nn ppm: 32 element, soil & rock Nn ppm: 32 element, soil & rock Shi ppm: 32 element, soil & rock Shi ppm: 32 element, soil & rock Shi ppm: 32 element, soil & rock Sp ppm: 32 element, soil & rock Pppm: 32 element, soil & rock Si 23 element, soil & rock Si 24 element, soil & rock Sp ppm: 32 element, soil & rock Shi ppm: 32 element, soil & rock Si 24 element, soil & rock Si 24 element, soil & rock Si 24 element, soil & rock Si 24 element, soil & rock Si 29 ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock Si ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	$\begin{array}{c} 0.2\\ 0.01\\ 2\\ 10\\ 10\\ 0.5\\ 2\\ 0.01\\ 0.5\\ 1\\ 1\\ 1\\ 0.01\\ 10\\ 10\\ 0.01\\ 10\\ 0.01\\ 1\\ 0.01\\ 1\\ 10\\ 2\\ 0.01\\ 1\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 2\\ 2\end{array}$	$\begin{array}{c} 100.0\\ 15.00\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 15.00\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10.00\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10000\\ 10$

r 1 r 1

1



,

₹.

### Chemex Labs Ltd.

• •

.

Analytical Chemists * Geochemists * Hogistered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 .`o: ī́Š, AĆ

3579 LANSBURY COURT WESTBANK, BC V4T 1C5, CANADA Num I-A I Total Pages : 1 Certificate Date: 04-NOV-1999 Invoice No. : 19932258 P.O. Number : Account : RDS

λ.

Dauch

.

CERTIFICATION:_

Project : TIGER 3 SILTS Comments: ATTN: ADAM TRAVIS

4											CE	RTIFI	CATE	OF A	NAL	YSIS		49932	258		
SAMPLE	PR CO	ep De	Ag ppm	A1 %	Аз ррш	B ppm	Ba ppm	Be ppm	Bi ppm	Bi Ca Co ppm % pp:	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
127755 127756 127757 127758 127758 127759	244 244 244 244 244 244	229 229 229 229 229 229	0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.92 2.19 0.79 1.38 0.37	12 26 6 14 22	10 10 < 10 < 10 < 10 < 10	320 240 170 470 40	0.5 0.5 < 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	2.67 1.20 7.99 1.45 8.58	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 11 5 10 13	27 20 7 13 3	38 34 24 38 51	1.74 2.67 1.07 1.73 3.51	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 1 < 1 < 1 < 1	0.06 0.13 0.07 0.15 0.11	10 10 < 10 < 10 < 10	0.69 1.21 5.22 0.84 5.56	1045 755 320 595 145
127760 127761 127762	244 244 244	229 229 229	2.2 < 0.2 0.2	1.35 1.90 1.36	40 12 18	10 10 10	300 330 520	< 0.5 < 0.5 0.5	< 2 < 2 < 2	2.79 1.61 4.05	1.0 < 0.5 0.5	10 13 13	16 16 13	94 22 38	2.37 3.45 2.72	< 10 < 10 < 10	< 1 < 1 < 1	0.12 0.16 0.12	10 10 < 10	1,57 1,30 2.66	905 1045 600
																		$\bigcap$	.1		

۴ 

#### Chemex Labs I .td.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: FHAVIS, ADAM

3579 LANSBURY COURT WESTBANK, BC V4T 1C5, CANADA

Page Number : 1-B Total Pages : 1 Certificate Date: 04-NOV-1999 Invoice No. : 19932258 P.O. Number : Account :RDS

Project : TIGER 3 SILTS Comments: ATTN: ADAM TRAVIS

·			<b></b>									CERTIFICATE OF ANALYSIS							A9932258			
SAMPLE	PI CC	REP		Mo ppm	Na %	Ni ppm	P Ppm	Pb ppm	S %	Sb ppm	Sc ррш	Sr ppm	Ti %	Tl ppm	D D D	V ppm	W ppm	Zn ppm			<u> </u>	
127755 127756 127757 127758 127759	244 244 244 244 244	L 229 229 229 229 229 229		3 2 < 1 1 1	0.01 0.01 < 0.01 0.01 < 0.01	11 16 7 9 27	1330 1340 1050 1730 590	32 82 36 42 34	0.19 0.14 0.12 0.26 0.14	< 2 < 2 < 2 < 2 8	1 3 < 1 3 2	57 28 45 68 48	0.03 0.03 < 0.01 0.01 < 0.01	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	13 17 9 12 6	< 10 < 10 < 10 < 10 < 10 < 10	36 118 42 42 104				
127760 127761 127762	244 244 244	229		231	< 0.01 < 0.01 0.01	19 16 18	830 740 1130	254 40 28	0.10 0.04 0.11	6 < 2 < 2	254	31 24 47	0.01 0.02 < 0.01	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	17 29 15	< 10 < 10 < 10 < 10	192 84 496				
																			()			

CERTIFICATION:

· New



