BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR: 1999/2000

REPORT #:

PAP 99-47

NAME:

EDWARD FREY

B. TECHNICAL REPORT

- · One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations 15 to 17, page 6.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Nome France a Cary	Reference Number 99/2000 P/36
Name EDWARD D. FREY	Reference Number 99/2000 / 736
LOCATION/COMMODITIES 7AGG87 Design (so Sixted in Part A)	MINIEU E NE (Camalicate)
ProjectyArea (as listed in Part A) CHINOOK MOUNTAIN	
	~Lat 51° 17'30"N Long 120°05'W
Description of Location and Access VICINITY OF CHINO	OK MOUNTAIN ~ 15 KM NNE
FROM BARRIERE VIA GENIER LAKE AND	LLUNIE CREEK FUNEST ALLESS
Main Commodities Searched For GOLD AND COPPER	
Known Mineral Occurrences in Project Area "Lower" AND	"UPPER" SHOWINGS OF CU-AU GOSSAN
& "GOLD ZONE" CU & AU (SEE MAPS CM-2	CM-3). ANDMALOUS AU &/OR CU AT
FIVE BCGS TILL SAMPLE SITES	
WORK PERFORMED	
1. Conventional Prospecting (area) 613 HECTARE	5
2. Geological Mapping (hectares/scale) 279 HECTAR	ES 1:5,000 (IN PART #~1:2,500)
3. Geochemical (type and no. of samples) 105 ROCK + 1	I TILL 30 Au + 28 ELEMENT ICP EACH
4. Geophysical (type and line km) / (ALSO 9 ROCK (OF	91) ASSAYED)
5. Physical Work (type and amount)	
6. Drilling (no. holes, size, depth in m, total m)	
7. Other (specify)	
SIGNIFICANT RESULTS	
Commodities Copper Clair Location (show on map) Lat. ~5/°/6'07" N Long ~	m Name N/A (MAP CM-I)
Best assay/sample type 5/13 ppm Cu/FLOAT: 5M. ~30 x 20 x 20 cm 5AMPLE 99 RE29	ALL ANGULAR BOULDER
~30 x 20 x 20 cm SAMPLE 99 RE29	<u> </u>
Description of mineralization, host rocks, anomalies MASSIV	E SULPHIDE BRECCIA, DARK GREY
BASALT VERY FINE - FINE GRAINED, PYRITE	MINOR CHALCOPYRITE AND
BORNITE, MINERALIZED FLOW-TOP BREC	C/A ?
IN VICINITY (450 m NE): 330 pph Au (GE	FORMERICALLY ANOMALOUS) SAMPLE
99 RE 26 CHERT WITH HEMATITE ON FRA	CTURES, MATTLER GREY RIBBON
CHERT (BEDS 4-10 CM THICK) INTERBEDDE	
TUFF (< ICM THICK)	

Supporting data must be submitted with this TECHNICAL REPORT

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations 15 to 17, page 6.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name EDWARD D. FREY	Reference Number 99/2000 P136
LOCATION/COMMODITIES	
ProjectyArea (as listed in Part A) LITTLE DIXON LAKE	MINFILE No. if applicable
Location of Project Area NTS 82 M/4 ~ La	t 5/° //' N Long //9° 57' W
Description of Location and Access VICINITY OF LITTLE DIXON . BARRIERE VIA DIXON LAKE FOREST ACCESS ROAD & FROM LITTLE DIXON LAKE Main Commodities Searched For GOLD AND COPPER	BRÁNCH ROADS NW L SE
Known Mineral Occurrences in Project Area NONE. ANOMALOUS BCGS TILL SAMPLES (TWO SITES).	GOLD (44 & 40 ppb) ## TWO
WORK PERFORMED	
1. Conventional Prospecting (area) 202 HECTARES	
2. Geological Mapping (hectares/scale) 183 HELTARES / ~ 3. Geochemical (type and no. of samples) 30 ROCK + 1 TILL	-1:3000
3. Geochemical (type and no. of samples) 30 ROCK + 1 TILL	309 AU + 28 PLEMENT ICP EACH
4. Geophysical (type and line km)	
5. Physical Work (type and amount)	
6. Drilling (no. holes, size, depth in m, total m)	
7. Other (specify)	
SIGNIFICANT RESULTS Commodities Claim Name	
Location (show on map) Lat Long	Elevation
Best assay/sample type No SIGNIFICANT RESU	L75
Description of mineralization, host rocks, anomalies	

Supporting data must be submitted with this TECHNICAL REPORT

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations 15 to 17, page 6.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name	EDWARD D. FR	7EY	Reference Number 99/2000 P136
LOCATION	//COMMODITIES		
Project Area	(as listed in Part A)	MOUNT FADEAR	MINFILE No. if applicableN/A
Location of I	Project Area NTS 82 M	4 & SE BORDER 92 P/1	Lat ~51° 03' N Long 1/9° 59'
			(NE) ~ 40 ROAD KM SE FROM
BARRIERE	VIA NORTH CICERO CA	REEK FOREST ACCESS ROA	DE CICERO CH. BRANCH ROADS #.
$\frac{d(5w)\sim 2}{d}$	6 ROAD KIN SE FADIN C	BARRIFRE YIA LOUIS CREEK	RO. & MCKNIGHT CREEK FOREST A
Main Comiti	odities Searched For	LU AND COPPER	
Known Mine	ral Occurrences in Project A	Trea NONE, ANOMAL	OUS ARSENIC (81258 ppb)
IN TWO	OF THREE BCGS TI	LL SAMPLES (THREE	51765)
WORK PER	RFORMED		
1. Convention	nal Prospecting (area)	342 HECTARES	
2. Geological	Mapping (hectares/scale)_	263 HECTARES/~	1:3000
3. Geochemic	cal (type and no. of samples)) 29 ROCK + 3 TILL	30g Au + 18 ELEMENT ICH BACH
4. Geophysic	al (type and line km)		
	ork (type and amount)		
6. Drilling (n	o. holes, size, depth in m, to	tal m)	
7. Other (spec	cify)	\	
	NT RESULTS	Claim Nam	e
			Elevation
_	<u>-</u>	SIGNIFICANT RESUL	
Dest assay/sa	nthie type	JIBNIFICARI KESUL	13
Description o	funitarelization host rocks	anomalias	
Description o	i intheranzation, nost rocks,	, Anomanes	
····			
			· · · · · · · · · · · · · · · · · · ·
			

Supporting data must be submitted with this TECHNICAL REPORT

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

RD

PROJECT SUMMARY

Prospecting and geological mapping examined the vicinity of ten sites of anomalous till mineralization discovered by BCGS regional sampling programs in the western part of the Adams Plateau. An eleventh site (Mount Fadear Area - 979345) proposed for study was abandoned due to private property access restrictions. Five till sites are in the Chinook Mountain area and contain anomalous gold, two of these also have anomalous copper. The two till sites in the Little Dixon Lake area contain anomalous gold. The three till sites in the Mount Fadear area contain anomalous arsenic.

In this project, 164 bedrock samples were collected and analyzed for gold (30g) and 28 elements (ICP) and nine of these samples were also assayed selectively for gold, silver, and copper. In addition fifteen till exposures from the vicinity of nine of the target sites were sampled and analyzed in the same manner.

SIGNIFICANT RESULTS

- 1. the discovery in the Chinook Mountain Area of a small boulder of massive sulphide mineralization, apparently from an unknown source. The angular float is ~30x20x20 cm, massive sulphide breccia in basalt of the Fennell Formation. It contains >75% sulphides and iron oxide: pyrite, chalcopyrite, limonite, and minor bornite. The sample (99RE29) yielded 5113 ppm copper. The setting and exploration potential of this discovery and those of result #2 are outlined below in the section "979167 (Map CM-1)"
- 2. the discovery in the Chinook Mountain Area of geochemically anomalous gold within bedded chert (sample 99RE26) increases the exploration potential for the chert-basalt contact zones and opens the prospect of an exhalitive origin for some of the cherts in the area. The anomalous chert contains 330 ppb gold and is near the copper bearing float.

OVERALL OBSERVATIONS

CHINOOK MOUNTAIN AREA

Massive and pillowed basalt of the Devonian to Permian Fennell Formation of the Slide Mountain Tectonic Terrane is the dominant bedrock of the area. It is in the form of a series of numerous flows that dip steeply west. Pillowed flows, identified mainly by selvage remnants and subselvage varioles, are a significant component. Well defined pillows are rare and most observed were small (<30 cm). Flow top breccia is common in both massive and pillowed flows. The basalt is mostly grey to dark grey, very fine grained and sparsely amygdaloidal. Silica alteration is pervasive in most of the prospected areas, varying slightly in intensity. Oxidation to limonite and, to a much lesser degree, hematite is not as common. Seams, veinlets and narrow lattice-stockwork zones of quartz and minor carbonate are common in the "Gold Zone" (Map CM-3) and in the area southeast of site 979162 (Map CM-2). The regional metamorphic grade is lower greenschist.

Interbedded intermittently within the basalt flows are chert, cherty tuff, lapilli tuff, and argillite. The chert is mainly in well bedded ribbon chert accumulations, from less than one to more than thirty metres stratigraphic thickness. The chert also occurs as patchy infillings, overlying some pillows and within some flow top breccias. Most individual chert beds are 4-10 cm thickness, aphanitic to finely tuffaceous. Internally, truncated bedding and primary(?) deformation features are preserved. The pale grey-grey green-white chert beds are defined individually by thin (<1-4, rarely to 10, cm) interlayers of dark grey siliceous and weakly fissile lapilli tuff and argillite. The lapilli fragments are 1-4 cm. Argillite dominates some of the sedimentary sequences.

A granodiorite stock, coeval or an apophysis of the Cretaceous Baldy Batholith, intrudes the basalt in the northeastern part of the area (Map CM-4).

The gold (28 ppb), silver (581 ppb) and copper (465 ppm) till anomalies of BCGS sample 979124 appear to have resulted from the massive sulphide mineralization of the historic "Louise" "Upper" showings, 540 m and 430 m (respective). Project sampling of the showings yielded up to 4.45 g/t Au, 40.0 g/t Ag and 13.2% Cu.

979126 (Map CM-4)

Project prospecting to 800 m up ice from the 62 ppb gold anomaly of BCGS sample 979126 did not find a probable source of it. To supplement scarce bedrock exposure, I sampled till adjacent to the BCGS site and at two other sites, 310 m and 200 m horizontally (northwest), and ~20 m vertically above the anomaly. All three samples yielded only 16% (10 ppb Au) of the target anomaly. However the vicinity of the anomaly warrants further prospecting downstream in the deeply incised valley of Newhykulston Creek. Glacial ice movement toward the anomalous site may have been influenced more by local preglacial topography than regional forces.

The disparity of results between the BCGS till sample and my sample adjacent to it (99TE263) is a reminder of the great variability of till deposits and the need for replicate sampling.

Although insignificant by themselves, the locally geochemically anomalous gold (80 ppb), silver (1.0 ppm), copper (504 ppm) and phosphorous (5680 ppm) results from bedrock sample 99RE115 suggest the presence of hydrothermal activity along the contact of Fennell Formation basalts with the granodiorite stock of the Baldy Batholith.

The source of the 247 ppb gold anomaly in BCGS stream sediment sample 791189 also remains to be examined further. It may be within the granodiorite, or the volcanic rocks along the southern contact of the granodiorite, buried by thick till cover. Additional targets are the uplands east and southeast of the sample that also drain into Newhykulston Creek.

979162 (Maps CM-2, CM-3)

Although covered extensively with till, the up ice terrain northwest of BCGS till sample 979162 has few till exposures suitable for hand sampling. Project sampling 1020 m north-northwest (99TE621) and 540 m south-southeast (99TE622) of the anomalous site yielded, respectively, 10 and 5 ppb Au and 112 and 110 ppm Cu. The BCGS sample contained 51 ppb Au & 376 ppm Cu. The reductions in gold (90%) and copper (70%) in the south sample are consistent with further down ice dilution from the source of the anomaly. However the north sample probably represents dilution from the mineralization of the "Lower" and "Upper" showings (see section "979124" above).

Prospecting northwest and north of the anomalous site, 700 to 1300 m to the east slope and ridge of Chinook Mountain, did not find a gold or copper source. The source may lie within sulphide(?) mineralization suggested by the undrilled north-northwest striking electromagnetic conductors that have been identified beneath the swampy area 400-600 m to the northwest and a parallel conductor 100-150 m from the BCGS till anomaly (Map CM-2).

Previous drilling in the "Gold Zone" (Map CM-3) found inconsistent sulphide mineralization in thin chert-argillite lenses. The best drilling results were up to 435 ppb gold and 7.83% copper. Surface sampling preceding the drilling program discovered up to 13 g/t gold from unidentified sites. Prospecting the area in the present project was not successful in identifying significant surface mineralization. One sample (99RE160) of silicified and brecciated basalt with quartz veinlets is geochemically anomalous in gold (330 ppb) and a very weak gold anomaly of 85 ppb occurs in a sample (99RE113a) of strongly silicified pillowed basalt, flow top breccia. A till sample (99TE241) from the upper slope of the area contains 5 ppb gold and 218 ppm Cu. Further gold prospecting in the area is warranted but would require selective overburden removal to provide adequate bedrock exposure.

979167 (Map CM-1)

Project till sampling at one site, 200 m east of BCGS sample 979167, did not confirm the 50 ppb gold obtained by the BCGS; till sample 99TE671 yielded 5 ppb gold.

Extensive project prospecting within a 1000 m northwestern arc of the till anomaly resulted in the discovery of two mineralization anomalies (highlighted on Map CM-1). Samples 99RE29 and 99RE26 are discussed in the first section of this summary. It is improbable that the till gold anomaly came from the relatively low (330 ppb) gold content of chert sample 99RE26. Detailed sampling of the numerous bedded chert-basalt flow contacts and flow top breccia zones within the basalts of this area is warranted. These contacts and zones are foci of the pervasive silica alteration observed in the basalts, argillites, and some of the tuffs. They may also have been conduits for gold bearing hydrothermal fluids.

The size and angularity of the copper bearing float suggest a nearby source. However project prospecting within 700 m north-northwest of the discovery site was not successful. The long distance (4.5 km), northerly bearing from the site, and lack of strong similarity of mineralization, suggest that the massive sulphide breccia did not originate at the historical "Lower" or "Upper" showings (Maps CM-2, CM-3). A more local source, within a kilometer northwest of the site is highly probable.

99 RE 29) A

Previous ground geophysical surveys in the map area did not extend west of the copper float discovery site. Within the geophysically surveyed area in the vicinity of the site, several electromagnetic conductors remain undrilled, e.g. note grid and conductor "N" on Map CM-1.

979244 (Map CM-5)

Project prospecting to 1500 m up ice from the 50 ppb gold anomaly of BCGS sample 979244 did not find its source. Additional project till sampling at three sites within 300 m north and 150 m south of the anomaly supplemented the extremely poor bedrock exposure on the ~500 m high ridge that rises immediately west and northwest of the till sites. The project till results are (north to south): 10, 30, 5, 5 ppb gold. These data, and the negative bedrock prospecting results, are not conclusive. Confirmation of a northwestern source of the till anomaly would require test pitting within the forested upland or a suitable biogeochemical survey.

The valley of Delta Creek, upstream from the till sites, and its northeastern drainage slope also are possible source areas, if the anomaly-depositing ice movement was controlled by local topography.

LITTLE DIXON LAKE AREA

The area is within the Devonian and or Mississippian map unit EBF and Mississippian map unit EBP of the Eagle Bay Assemblage, Kootenay Terrane, as mapped by Schiarizza and Preto (see Index Map, this report). Comments in this report are confined to project observations. The bedrock is a sequence of weakly to strongly schistose, clastic metasedimentary and pyroclastic metavolcanic rocks. The metasediments mainly occupy the southwest half of the prospected areas and vary from chert-argillite to pebble sandstone and conglomerate. The pyroclastic rocks are in the northeast half and are mafic in composition. They vary from lithic to lapilli tuffs to very coarse tuff breccia. Transposed bedding and foliation strike consistently northwest and dip low to moderately to the northeast in all rock types. Deformation also is displayed as clast flattening, tightly isoclinal folding at a scale of a few centimetres, rare crenulation cleavage and secondary folding. In contrast, primary depositional features such as graded bedding and low angle planar crossbedding also are preserved in some of the metasediments.

969188 (Map LD-1)

Prospecting of the quadrant within one kilometre northwest from the 44 ppb gold anomaly of BCGS sample 969188 did not find its source. Bedrock in the prospected area is almost completely till covered. The maximum gold obtained from bedrock is 20 and 30 ppb (99RE2 and

99RE76, in chert and argillite). A till sample (99TE188) 180 m northwest of the anomalous site contained only 5 ppb gold. These results are not conclusive and should not deter additional prospecting. Guided by soil sampling on a detailed grid, selective overburden stripping of the 1-2 m thick lodgment till should be considered, particularly in the apparently northwest striking contact zone between the pyroclastic and metasedimentary rocks of the area.

969134 (Map LD-2)

Prospecting within one kilometre northwest of this anomalous BCGS till sample site (40 ppb gold) was hampered severely by an almost complete absence of outcrop. The hummocky, dead-ice terrain with its possibly thick cover of ablation till presents a difficult exploration challenge. The strong schistosity and sericite alteration in the possible shear zones observed 1.4 km northwest of the anomaly do not contain significant gold (maximum 20 ppb in a sericite-talc-quartz schist, 99RE82).

MOUNT FADEAR AREA

The northeast target area (Map MF-1) is part of Schiarizza and Preto's (see Index Map, this report) Lower Paleozoic map unit EBS of the Eagle Bay Assemblage, Kootenay Terrane. The southwest target area (Map MF-2) is adjacent to the southern extent of Schiarizza and Preto's mapping and may be part of their Mississippian map unit EBP. The comments in this report section are project observations.

Map area MF-1 contains a northwest striking sequence of schists and phyllitic schists, interspersed with weakly foliated greywacke and quartzite. The sandstones are evenly textured, fine grained and do not display bedding or foliation. The schists and phyllitic schists have a strong foliation: planar, wavy, or crenulated, that strikes generally northwest and dips mainly northeast ~40°-60°. They also display steep and shallow plunging metre-scale folding with variable plunge directions. Fine grained, recrystallized quartz veins, up to one metre, wide are common within the schist-phyllites. The schist-phyllites also host trace chalcopyrite, bornite and weak gossans. However significant mineralization is absent in all rock types of the area.

969024 (Map MF-1)

Prospecting northwest from BCGS till sample site 969024 was judged, on examination of the site, not practical in this project because of the dense forest cover of its steeply sloping terrain. Alternatively, the area east-southeast of the site was prospected because its equally steeply sloping surface recently had been deforested and replanted in two large tracts, providing more opportunity for bedrock and float exposure. The area is between two forest access branch roads, providing additional outcrop and mapping control. A suitable lodgment till exposure on the upper road is 1 km down-ice from the BCGS site and provides some comparison.

Prospecting did not extend the BCGS till anomaly of 81ppm arsenic into the area. The down-ice till sample (99TE0241) contains <5 ppm arsenic but it has more than twice the copper content: 89 ppm vs. 39 ppm. Both samples contain negligible gold. Bedrock sampling did not reveal significant mineralization. The source of the anomalous arsenic remains unresolved.

Map area MF-2 contains mainly weakly metamorphosed clastic sedimentary rocks: argillite, shale, siltstone, sandstone and minor conglomerate. Most of these rocks are strongly carbonaceous and weather with a sooty coating of fine grained graphite. A small body of coarse grained hornblende peridotite intrudes the sediments in the east part of the area. The sediments are complexly folded throughout the area, varying from flattened isoclinal folds a few centimetres in amplitude to larger systems observable through their fracture cleavage-bedding relationships.

969076 (Map MF-2)

Prospecting to one kilometre northwest from the 58 ppm arsenic anomaly of BCGS sample 969076 did not confirm its source. One sample of argillite-siltstone (99RE41) 420 m northwest from the anomalous till site contains 65 ppm arsenic, 10 ppb gold and 440 ppm zinc. A project till sample (99TE761) 430 m west-southwest and ~100 m upslope from the BCGS site contains 25

ppm arsenic and 5 ppb gold. The till covering the 800 m wide area between samples 99RE41 and 99RE137 may hide the source.

979349 (Map MF-2)

A project till sample (99TE491) collected adjacent to BCGS sample 979349 approximately replicates the anomalous arsenic content of the latter: 30 ppm vs. 45.2 ppm. Similar ratios occur in their silver contents: 200 ppb vs. 528 ppb; and copper: 162 ppm vs. 129 ppm. Prospecting to 1.5 km northwest from this site did not find a source for these anomalies. An argillite-siltstone sample (99RE132) one kilometre from the site contains 60 ppm arsenic and 20 ppb gold. These results are too low to have been the source of mineralization that produced the till anomalies. The till covered upslope within 800 m northwest of the till anomaly remains a favourable prospecting target but additional work would require selective removal of the >2 m thick overburden.

REFERENCES

- Bobrowsky, P.T., Leboe, E.R., Dixon-Warren, A, Ledwon, A., MacDougall, D. and S.J. Sibbeck (1997): Till Geochemistry of the Adams Lake Plateau North Barriere Lake Area (82M/4 and 5). B.C. Ministry of Employment and Investment, Open File 1997-9, 26p. & appendices.
- Bobrowsky, P.T., Paulen, R., Little, E., Prebble, A., Ledwon, A. and R. Lett (1998): Till Geochemistry of the Louis Creek Chu Chua Creek Area (NTS 92P/1E and 92P/8E). B.C. Ministry of Energy and Mines, Open File 1998-6, 26p. & appendices.
- Casselman, Scott (1995): 1995 Diamond Drilling Report on the CM Property, Barriere, B.C. Inco Limited, Assessment Report 24,180.
- Casselman, Scott, and Cameron Bell (1994): 1994 Geological, Geophysical and Lithogeochemical Report on the CM Property, Barriere, B.C. Inco Limited, Assessment Report 23,653.
- Clarke, Tiro (1990): Annual Report on the 1989 Exploration Program. CM 1-7 Claims near Barriere, B.C. Minnova Inc. Private Report, 22p. & appendicies.
- Farmer, R. (1988): Assessment Report, Barriere Lakes Project, CM Claims 1988 Diamond Drilling. BP Minerals Limited, Assessment Report 18,039.
- Farmer, R., and S.J. Hoffman (1987): Assessment Report. Linecutting, Geophysics, Geochemistry, Geology and Diamond Drilling on the CM 1-6 Mineral Claims. BP Minerals Limited, Assessment Report 16,596.
- Farmer, R., and Alan Wynne (1986): Assessment Report. Linecutting and Geophysical Survey, CM 1-6 Mineral Claims. BP Minerals Limited, Assessment Report 15,180.
- French, A.G. and T. Clarke (1990): Annual Report on the 1990 Exploration Program. CM 1-7 Claims near Barriere, B.C. Minnova Inc. Private Report, 20p. & appendices.
- Jackaman, W., Matysek, P.F. and S.J. Cook (1992): British Columbia Regional Geochemical Survey, NTS 92P Bonaparte Lake, Stream Sediment and Water Geochemical Data. B.C. Ministry of Energy, Mines and Petroleum Resources, Preliminary Report RGS 36.
- Schiarizza, P. and V.A. Preto (1987): Geology of the Adams Plateau-Clearwater-Vavenby Area. B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1987-2, 78p.

SAMPLE DESCRIPTIONS - 1999 PROSPECTING

BEDROCK: all are in situ grab samples unless noted float, chip (section), or (outcrop) composite TILL: all are lodgement till samples, hand excavated after removing colluvial cover;

NOTES:

sample numbers not used or not analyzed: 99RE3, 4, 15, 16, 56, 65, 120, 145

total bedrock samples analyzed: 164

total till samples analyzed: 15

Bm - massive basalt; (unless noted) very fine grained, grey-dark grey

Chert - (unless noted) aphanitic, pale grey

Cherty Tuff - (unless noted) aphanitic to fine grained

vfg, fg, mg, cg - grain sizes: very fine (<1mm), fine, medium, coarse(>3mm);

diss. - disseminated

CHINOOK MOUNTAIN AREA

MAP CM-1

ы	= 1	D(\sim	v.

99RE17 (float)	Bm.	fa ablation c	last, 40	cm, si	ub-angular
----------------	-----	---------------	----------	--------	------------

99RE18

Bm, fg, flat outcrop

99RE19

Bm, vfg-fg

99RE20

Bm; cut by 4-6 cm wide dike (strike 090°), black, vfg, lamprophyre?

99RE21

Bm, pale grey-green, weakly hematitic

99RE22 (float)

Chert-Cherty Tuff; angular boulder fragments, tree uprooting, possibly in situ, trace vfg pyrite

99RE23

amygdaloidal Basalt, grey-dark grey, fg

99RE24

Lapilli Tuff, 1-4 cm interbed with 99RE25, vfg-fg, weakly fissile, flattened(?) lapilli to 4 mm, trace diss. pyrite

99RE25

Chert, 4-10 cm ribbon interbed with #99RE24, pale grey - faint grey-

green, <1% diss. pyrite specks

99RE26

ribbon Chert-Cherty Tuff, mottled dark grey, aphanitic to fine grained, intrabed shearing, weakly hematitic fractures; 330 ppb GOLD, (geochemically anomalous) project discovery

99RE27

ribbon Chert, weakly limonitic

99RE28

ribbon Chert-Cherty Tuff, edges of beds bleached to 1 cm, few limonite

spots

	99RE29 (float)	Bm-massive sulphide breccia; 20x30 cm angular boulder, >75% sulphides, vfg-fg pyrite, chalcopyrite, limonite, minor bornite; 5113 ppm COPPER, primary project discovery		
	99RE30	Bm, pillowed, dark grey, bleached fractures, trace diss. vfg pyrite		
	99RE31	Bm, mg-cg, few grains euhedral magnetite 1-3 mm		
	99RE32 (chip)	ribbon Chert-Cherty Tuff, 10-15 cm spaced fracture cleavage; 50 cm sample section across strike		
	99RE33 (chip)	pillowed Basalt, light grey, moderately silicified; 25 cm sample section underlying #99RE32 and, in part, #99RE34		
	99RE34	Cherty Tuff, dark grey-black		
	99RE35 (float)	Argillite, subcrop?; 2-3 cm beds, silicified, weakly fissile, trace pyrite		
	99RE36 (chip)	ribbon Chert, grey, beds to 6 cm; dark grey, deeply recessive, 1-2 cm Argillite interbeds, silicified, weakly fissile; 20 cm sample section		
	99RE37	Bm, pillowed (remnants), variolitic; flow-top breccia; weakly limonitic		
	99RE121 (com	posite) Bm, grey, fg, strongly silicified		
	99RE122 (chip)	Bm, patchy Chert, strongly silicified and foliated, weakly limonitic; 50 cm sample section		
	99RE123	Bm, fg, 15-25 cm spaced fracture cleavage (blocky)		
	99RE124	Bm, white Quartz-Calcite Veinlets (stockworks) zone to 5 cm wide		
	99RE125	Bm, brecciated in part (flow top breccia?)		
	99RE126	Bm, grey, moderately silicified		
	99RE127 (float	pillowed Basalt, flow top breccia; small white Quartz Vein		
	99RE152	bleached Bm, strongly silicified; patchy white Chert		
TILL:	99TE671	moderately indurated, brown-grey, silty till; 20-30% clasts, matrix supported, most 4-8 cm, range 2-15 cm, subangular-subrounded, most mafic volcanic, few chert and metasedimentary; 5 ppb Au, 28 ppm Cu		
BEDRO	ገ ዮ	MAP CM-2		
DEDK	99RE13	Bm, variolitic, moderately silicified		
	99RE14 (float)	dull white Quartz Vein, angular, 15x20x10 (wide) cm, fg-mg		
	99RE52	pillowed Basalt, silicified selvages		

99RE53 pillowed Basalt, small pillows, 15-25 cm diameter, flow top breccia, moderately silicified and limonitic

99RE113b (float, composite of numerous angular boulder remnants) Bm, moderate silicification; intensive Quartz-Calcite Veinlets,

99RE150 Bm, vfg-mg, silicified in part, trace fg pyrite

99RE151 Bm, moderately silicified

99RE164 Bm, strongly silicified; Quartz Veinlet lattice-stockwork

99RE165 (float) pale grey-green Bm, vuggy in part, strongly silicified, 1% vfg-fg diss. pyrite; "heavy"

99RE166 (float) Bm, pillowed, strongly silicified; intensive Quartz Veinlet folia

99RE167 variolitic, pillowed Basalt, strongly silicified, trace vfg pyrite

99RE168 pillowed Basalt, strongly silicified, 1% vfg pyrite

99RE169 (float) pillowed Basalt, strongly silicified and limonitic; Quartz-Calcite veinlets

99RE170 (float, frost heaved subcrop) grey, platy Chert, limonitic (weak gossan?), trace vfg pyrite; few Quartz Veinlets

TILL:

99TE241 (description in following section; site also on Map CM-3)

99TE621 (description in following section; site also on Map CM-3)

99TE622 hard, weakly fissile, olive, silty-clay till; 40% clasts, matrix supported,

most 3-5 cm, angular-subangular, mafic volcanic;

5 ppb Au, 110 ppm Cu

MAP CM-3

BEDROCK:

99RE46 (float) pale green-grey, fg Bm, weakly chloritic

99RE47 pillowed, amygdaloidal Basalt, vfg

99RE48 Bm, strongly silicified

99RE49 Bm, fg, strongly silicified

99RE50 Bm, weakly silicified and limonitic

99RE51 Bm, fg, stongly limonitic

"LOWER SHOWING" (historical showing; project reviewed mineralization)
99RE84 (chip) black-dark grey Gossan, Argillite-Chert, >10% vfg diss. pyrite; 30 cm
section; 1.14 g/t Au, 2649 ppm Cu

99RE85 massive pyrite, vfg-fg, minor chalcopyrite, strongly limonitic; 4.45 g/t Au. 4.6% Cu

	99RE86	massive pyrite and malachite, vfg-fg; 920 ppb Au, 40 g/t Ag, 10.3% Cu
	99RE87 (chip)	massive malachite, vfg; weakly limonitic and hematitic; 25 cm section; 1.42 g/t Au, 35.4 g/t Ag, 10.95% Cu
	99RE88	black platy Chert-Argillite, weakly limonitic; structurally overlies #99RE87; 6188 ppm Cu
	99RE89 (float)	as #99RE85; 2.72 g/t Au, 35.9 g/t Ag, 3.71% Cu
	99RE90	Ferrocrete (limonite cemented pyrite breccia), vfg malachite, minor vfg chalcopyrite; 2.06 g/t Au, 35.6 g/t Ag, 13.2% Cu
	99RE91	platy Chert, Argillite breccia
	99RE92	massive limonite, Chert; 2403 ppm Cu
	99RE93	massive pyrite, vfg-fg; platy Chert, Quartz veinlets; 1.38 g/t Au, 5.72% Cu
"UP	PER SHOWING 99RE94	" (historical showing; project reviewed mineralization) massive grey pyrite, strongly limonitic, minor fg magnetite and chalcopyrite; 2.64% Cu
	99RE95	massive vfg pyrite, minor magnetite; Chert breccia; adjacent to #99RE94; 1.12% Cu
	99RE96	massive vfg pyrite; Chert breccia; minor vfg-fg chalcopyrite, magnetite, malachite and bornite; strongly limonitic; manganese coating; 6455 ppm Cu
	99RE97 (chip)	pyrite-limonite fault gouge; 20 wide (also sample width); 5319 ppm Cu
	99RE98	platy Chert-Argillite, strongly silicified and limonitic; 1251 ppm Cu
	99RE99	platy Chert, massive vfg pyrite clots to 5 cm, diss. vfg pyrite
(end	d of "Upper Show	ring" sample list)
	99RE100 (float,	scree) Bm, strongly silicified, fracture breccia, <1% cg pyrite
	99RE101 (chip)	Bm, strongly silicified and limonitic, manganese coated fracture breccia,
		1-2% vfg pyrite; 50 cm section
	99RE102 (chip)	1-2% vfg pyrite; 50 cm section
	99RE102 (chip)	1-2% vfg pyrite; 50 cm section as #99RE101; adjacent
	99RE102 (chip)	1-2% vfg pyrite; 50 cm section as #99RE101; adjacent as #99RE101; adjacent to #99RE102 Bm, strongly silicified; patchy Chert; 1-3% diss. vfg pyrite; 4 m NW of

99RE107 (float) Bm, brecciated, strongly silicified; patchy Chert
99RE108	Bm, moderately silicified, 1% vfg diss. pyrite, closely spaced fracture cleavage
99RE109	Bm, strongly silicified; patchy Chert; blocky (10-15 cm) fracture cleavage
99RE110	Bm, " , 1% vfg diss. pyrite
99RE111	Bm, " ", fracture breccia
99RE112	grey-white Quartz Vein, fg-mg, recrystallized, 30 cm wide
99RE113a	pillowed Basalt, flow top breccia, strongly silicified, weakly limonitic
99RE153	pale grey Bm breccia, clasts to 3 cm, strongly silicified
99RE154 (chip) Bm (fine fragments) fault gouge-gossan, grey to ochre, weakly hematitic; 40 cm section
99RE155 (chip) 10 cm section from centre of #99RE154 gouge-gossan; dark grey-black
99RE156 (chip) adjacent to #99RE154 and similar; coarse Bm-amygdaloidal, strongly silicified, weakly chloritic; 30 cm section
99RE157 (chip) Bm, strongly silicified; platy Chert; fracture breccia, weak gossan; 50 cm section
99RE158	grey Bm, strongly silicified, few Quartz-Calcite string veins
99RE159	pale green-mottled grey-white Bm fracture breccia, strongly silicified, weakly chloritic and limonitic, trace vfg pyrite
99RE160	Bm fracture breccia, strongly silicified, manganese coated, weakly hematitic; few Quartz Veinlets 330 ppb GOLD (geochemically anomalous project discovery)
99RE161	Bm, flow top breccia, 1-2 cm clasts; strongly silicified, manganese coated, trace vfg pyrite
99RE162	grey Chert fracture breccia, trace vfg pyrite
99RE163	dull grey-green Chert, vfg pyrite in fine fractures, patchy manganese coating
99TE241	very hard, light brown, silty (minor sand and clay) till; 50% clasts, matrix supported, most 1-5 cm, angular, mafic volcanic; 5 ppb Au, 218 ppm Cu
99TE621	hard, brown-grey, silty-sandy till; 30-40% clasts, matrix supported, most 4-10 cm, subangular-subrounded, mafic volcanic; 10 ppb Au, 112 ppm Cu

TILL:

BEDROCK: 99RE8		MAP CM-4
		Granodiorite porphyry, <5% pale mauve K-spar (microcline?) phenocrysts, to 2 cm, subhedral; matrix white feldspar-quartz, minor clear quartz, 1-4 mm, euhedral-subhedral; 1% matrix angular-flattened, 5 mm- 2 cm hornblende-biotite xenoliths(?); weak flattening fabric
	99RE9	Granodiorite, massive and porphyritic
	99RE10 (float)	Bm, vfg-fg, weakly hematitic, 1% vfg diss. pyrite
	99RE11 (comp	oosite) Bm, moderately silicified
	99RE12 (float,	till clast) angular cobble, light grey-white Quartz Vein, fg recrystallized, trace pyrite
	99RE114	Granodiorite pegmatite, feldspar-quartz-(minor) muscovite, subhedral, to 4 cm
	99RE115	Bm, vfg-fg, breccia (flow top?), 1% fg-mg magnetite, strongly silicified, weakly limonitic; 80 ppb Au, 504 ppm Cu, 5680 P (geochemical curiosities)
	99RE116	pillowed and variolitic Basalt, flow top breccia, strongly silicified; weak foliation
TILL:	99TE261	very hard, weakly fissile, dark brown-grey, silty till; >60% clasts, matrix supported, most 3-5 cm, range 1-15 cm, subangular, mafic volcanic, rare granitic; 10 ppb Au, 64 ppm Cu
	99TE262	moderately indurated, grey-olive brown, sandy till; >60% clasts, matrix supported, most 3-5 cm, rarely >8 cm, subangular -subrounded, mafic volcanic, rare granitic; 10 ppb Au, 47 ppm Cu
	99TE263	very hard, grey, silty-sandy till; 70% clasts, matrix supported, most 2-10 cm, angular-subangular, mafic volcanic, rare granitic; 10 ppb Au, 81 ppm Au
		MAP CM-5
BEDR	99RE5	Bm, fg; vfg diss. pyrite
	99RE6	Bm, bleached
	99RE7	Bm, fg-cg, basal flow?
	99RE117	Bm, bleached, strongly silicified, 1-2% vfg diss. pyrite
	99RE118a	Bm, strongly silicified, weak gossan, trace pyrite

Bm, grey-bleached, strongly silicified, trace pyrite

Bm, strongly silicified, weak gossan, manganese coating, trace pyrite

99RE118b

99RE119

_		

99TE441 very hard, grey, silty till; >70% clasts, matrix supported, most 2-5 cm,

angular-subangular, rare small boulder; clasts >90% vfg mafic volcanic,

rare granitic; 10 ppb Au, 64 ppm Cu

99TE442 moderately indurated, grey-brown, sandy-silty till; >50% clasts, matrix

supported, most 2-5 cm, subangular-subrounded, mafic volcanic, rare

granitic; 30 ppb Au, 88 ppm Cu

99TE443 very hard, grey-dark brown, silty-sandy-minor clay till; 40-60% clasts,

matrix supported, 2-25 cm, average 5 cm, angular-subangular, most

mafic volcanic, sparse granitic; 5 ppb Au, 48 ppm Cu

99TE444 hard, grey-brown, silty-sandy till; 30-40% clasts, matrix supported, 2-5

cm, rarely >10 cm, subangular-angular, ~5% subrounded, most mafic

volcanic; 5 ppb Au, 44 ppm Cu

LITTLE DIXON LAKE AREA

MAP LD-1

BEDROCK:

99RE1 (composite) grey-dark grey Chert-Argillite, thinly bedded to 2-3 cm, weak

gossan in part

99RE2 dark grey-black Chert-Argillite, 20% clear-white Quartz, seam to 2 cm

wide infolded

99RE54 dark grey Lapilli Tuff, mafic, fine lapilli to 3-4 mm, few fg quartz eyes;

99RE55 Quartz Vein, 2-3 cm, cutting mafic Lapilli Tuff-Lithic Tuff, 20% lapilli

to 4 mm, weakly chloritic

99RE57 grey Lithic Tuff, mafic, chloritic

99RE58 mafic Lithic Tuff

99RE59 pale green Lapilli Tuff, lapilli to 4 mm

99RE60 grey Sandstone, fg, arkose-greywacke(?), weakly chloritic

99RE61 Pebble Sandstone-Conglomerate, polymictic, subangular-subrounded

clasts to 5 cm, few flattened, beds 1-5 cm

99RE62 pale green Lithic Tuff, sheared, weakly sericitic and chloritic

99RE63 grey-black Quartzite, minor limonite spoting

99RE64 white Quartzite

99RE76 (chip) black Argillite, weak gossan; 50 cm section

99RE77 (chip) Chert-Argillite, 4 m section, includes 1 m wide stratabound weak

gossan of #99RE76

99RE78 (composite) pale grey-white Quartz Vein, fg; sample of 2 m length

TILL:

99TE881

99RE66

hard, dark brown, silty-sandy till; carbonate matrix, 30% clasts, matrix supported, most 2-5cm, angular-subangular (50%) and subangular-

subrounded (50%), metasedimentary, 5% granitic;

5 ppb Au, 34 ppm Cu, 10 ppm As

MAP LD-2

R				

Tuff Breccia, polymictic clasts to 25 cm; sampled mafic matrix

99RE67 (float) grey Sandstone, fg greywacke, 20% limonite spots;

99RE68 grey Lithic Tuff, clasts to 15 mm; greywacke?; limonite spots 1-2 mm

99RE69 pale grey Quartzite, weakly hematitic; mg Lithic Tuff

99RE70 grey Sandstone, fg, weak gossan

99RE71 Tuff Breccia, vcg, mafic, flattened clasts to 15 cm, rare felsic clasts

99RE72 Lapilli Tuff-Tuff Breccia, moderate gossan

99RE73 bleached Sandstone, greywacke

99RE74 Sandstone, greywacke, graded bedding

99RE75 grey Argillite-Slate, moderate fracture gossan

99RE79 (composite) bleached quartz-sericite Schist, vfg-fg, strongly fissile, weak

gossan; 5 m section

99RE80 bleached quartz-sericite-muscovite Schist, fg, limonite pits to 3 mm

99RE81 sericite-talc-quartz Schist, vfg-fg

99RE82 as #99RE81, and strong yellow limonite staining

99RE83 dark brown Limestone Breccia (fracture breccia?), to 10% quartz-calcite

veinlets

MOUNT FADEAR AREA

MAP MF-1

BEDROCK:

99RE138 bright grey muscovite Schist, strong foliation

99RE139 grey-white Quartz Vein, fg, recrystallized, to 10 cm wide, cuts #99RE138

obliquely

99RE140 (float) pale green Sandstone, fg greywacke, weakly chloritic

99RE141 (float) grey Granodiorite porphyry, cg feldspar-quartz-biotite matrix, few subhedral feldspar phenocrysts to 10 mm

	99RE142	pale green muscovite-chlorite Schist, fg, 30% small Quartz Veins, fg, recrystallized		
	99RE143	grey-green, green mica Schist, fg;		
	99RE144	as #99RE143		
	99RE146	grey muscovite Schist-Phyllite, fg, weak gossan		
	99RE147	grey-white Quartz Vein, fg recrystallized, in grey muscovite Schist, fg, trace chalcopyrite		
	99RE148	grey muscovite-sericite Schist, fg-mg; gossan, trace chalcopyrite and bornite		
	9 9 RE149	grey-white Quartz Vein, as #99RE147, no visible sulphides		
TILL:	99TE0241	moderately indurated, dark grey-black, silt-clay till; 30-40% clasts,matrix supported, most platy, 1x3 cm, few >5 cm, angular, mica schist; <5 ppb Au, 89 ppm Cu, <5 ppm As		
DEDD/	ook.	MAP MF-2		
BEDRO	99RE38	dark grey-black Argillite-Siltstone, strongly graphitic, gossan		
	99RE39	as #99RE38		
	99RE40	as #99RE38		
	99RE41	grey-light brown Argillite-Siltstone		
	99RE42	light green Peridotite, cg, 20% subhedral hornblende		
	99RE43	as #99RE41		
	99RE44 (float)	light green Peridotite, large sub angular boulder		
	99RE45	grey-black Argillite-Siltstone, strongly graphitic, weak pyritic gossan		
	99RE128	grey-dark grey Siltstone-Shale, gossan, weakly carbonate		
	99RE129 (float	composite) white Quartz Vein, vfg recrystallized, trace tourmaline; in roadbed		
	99RE130 (float	composite) white Quartz Vein, cg recrystallized, weak gossan		
	99RE131	grey Siltstone, graphitic, gossan		
	99RE132	light grey Argillite-Siltstone		
	99RE133	grey-brown Sandstone, greywacke, fg, minor Siltstone, Shale, graphitic		
	99RE134	as #99RE133 plus gossan and trace chalcopyrite; "heavy"		

99RE135 black Argillite-Siltstone, graphitic, weak gossan

99RE136 (float) white Quartz Vein, vfg recrystallized; vfg pyrite in cavities; in roadbed

99RE137 light grey-brown Shale-Siltstone, fracture breccia, gossan

TILL:

99TE491 moderately indurated, dark brown-black, silty (very minor clay) till;

carbonate matrix, 40% clasts, matrix supported, most 1-2 cm, few to 5

cm, subangular, graphitic sedimentary, rare granitic;

10 ppb Au, 162 ppm Cu, 30 ppm As

99TE761 very hard, dark brown, silty-clay(<5%) till; carbonate matrix, 20% clasts,

matrix supported, most 3-5 cm, subangular, graphitic sedimentary, 5%

limestone and granitic;

5 ppb Au, 107 ppm Cu, 25 ppm As

LEGEND

CHINOOK MOUNTAIN AREA 1999 PROSPECTING

MAPS CM-1, CM-2, CM-3, CM-4 & CM-5

BALDY BATHOLITH (stock)

Cretaceous

GD GRANODIORITE

m massive por porphyritic peg pegmatitic

FENNEL FORMATION

Devonian to Permian

MAFIC METAVOLVANIC ROCKS

B BASALT
m massive
p pillowed
v variolitic
amyg amygdaloidal
ftbx flow top breccia

CLASTIC / CHEMICAL METASEDIMENTARY ROCKS

Ch CHERT

hy

Ct CHERTY TUFF

hyaloclastite

Lt LAPILLI TUFF
Arg ARGILLITE

ALTERATION: INTENSE, Moderate, weak

Sil silica Lim limonite Hem hematite

Ca calcite / carbonate
Mn manganese
Chl chlorite
Gos gossan
Qv quartz vein
Bx brecciation

MINERALIZATION

Py pyrite Mag magnetite chalcopyrite Сру malachite Mal Born bomite Αu gold silver Ag Cu copper

SYMBOLS:

OX NO

Outcrop: large, small, none

141

Bedding: inclined,

top direction known,

vertical

1 1

Foliation: inclined, vertical

Fracture Cleavage: inclined, vertical

 $\sqrt{}$

Pillowed Basalt: facing direction known

, Ψ

Glacial Straie

Drainage, Flow Direction, Swamp Maps CM-4,5

Steep Downslope, Maps CM-4,5

Cliff, Scarp: ticks on low side

Cut Block Boundary, Maps CM-4,5

D_{XXX}

Claim Post & Claim Name

SAMPLES:

All rock and till samples were ICP analyzed for gold (30 g) and 28 additional elements; several samples from the historical "Upper" and "Lower" showings (Map CM-3) also were assayed for gold, silver, and copper;

certificates attached.

99RE### 1999 rock grab sample unless noted: float, chip (section width), or outcrop composite;

SIGNIFICANT RESULTS: MAP CM-1

99RE26 - 330 ppb Au, 118 ppm Cu, & 110 ppm Cr geochemically anomalous; mottled grey ribbon chert/cherty tuff, hematite on fractures.

99RE29 - 5113 ppm Cu - massive sulphide breccia; pyrite, chalcopyrite, bomite; angular float boulder.

MAP CM-3

"Lower Sh	owing"			
	g/t Au	g/t Ag	% Cu	ppm Cu
99RE84	1.14			2649
99RE85	4.45		4.60	
99RE86		40.0	10.30	
99RE87	1.42	35.4	10.95	
99RE88				6188
99RE89	2.72	35.9	3.71	
99RE90	2.06	35.6	13.20	
99RE93	1.38		5.72	
"Upper Sh	owing"			
99RE94			2.64	
99RE95			1.12	
99RE96				6455
99RE97				5319

[&]quot;Gold Zone"

99RE160 - 330 ppb Au - geochemically anomalous; basalt fracture breccia, strong Mn alteration, few quartz veinlets.

99TE## 1999 prospecting: lodgement till

Gold and Copper Results	Location Map
99TE241 - 5 ppb Au / 218 ppm Cu	CM-2,3
99TE261 - 10 ppb Au / 64 ppm Cu	CM-2,4
99TE262 - 10 ppb Au / 47 ppm Cu	E
99TE263 - 10 ppb Au / 81 ppm Cu	E
99TE441 - 10 ppb Au / 64 ppm Cu	CM-5
99TE442 - 30 ppb Au / 88 ppm Cu	«
99TE443 - 5 ppb Au / 48 ppm Cu	•
99TE444 - 5 ppb Au / 44 ppm Cu	•
99TE621 - 10 ppb Au / 112 ppm Cu	CM-2,3
99TE622 - 5 ppb Au / 110 ppm Cu	CM-2

97#### lodgement till: B.C. Geological Survey samples Open File 1998-6; (Bobrowsky et al., 1998)

Gold	and Copper Results	Location Map
979124 - 28 ppb	Au and 465 ppm Cu	CM-2,3
979126 - 62 ppb	Au	CM-2,4
979162 - 52 ppb	Au and 376 ppm Cu	CM-2
979167 - 50 ppb	Au	CM-1
979244 - 50 ppb	Au (Map CM-5)	CM-5

79#### stream sediment: B.C. Geological Survey

Regional Geochemical Survey 36

(Jackaman et al., 1992)

791189 - 247 ppb and 13 ppb Au (replicate samples); Map CM-4

791190 - 3 ppb Au; Map CM-4

REFERENCES

- Index Map: southwest part of B.C. Geological Survey, Paper 1987-2, Figure 4: Schiarizza, P. and V.A. Preto (1987): Geology of the Adams Plateau-Clearwater-Vavenby Area, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1987-2, 78p.
- Maps CM-1 and CM-2: base maps by Inco Exploration: Casselman, Scott (1995): 1995 Diamond Drilling Report on the CM Property, Barriere, B.C. Inco Limited, Assessment Report 24,180.
- Map CM-3: base map by Inco Exploration:

Casselman, Scott (1993): 1993 Geological and Lithogeochemical Report on the CM Property, Barriere, B.C. and Geochemical and Terrain Analysis Assessment Report of the CM Claims. Inco Exploration and Technical Services Inc., Assessment Report 23,155.

- Maps CM-4 and CM-5; base maps are photo-enlarged tracings of 1:20,000 scale B.C. Forest Service Orthophoto Base Map Series 92P.040 and 92P.030, respectively.
- Bobrowsky, P.T., Paulen, R., Little, E., Prebble, A., Ledwon, A. and R. Lett (1998): Till Geochemistry of the Louis Creek - Chu Chua Creek Area (NTS 92P/1E and 92P/8E). B.C. Ministry of Energy and Mines, Open File 1998-6, 26p. & appendices.

Farmer, R., and S.J. Hoffman (1987): Assessment Report. Linecutting, Geochemistry, Geology and Diamond Drilling on the CM 1-6 Geophysics. Mineral Claims. BP Minerals Limited, Assessment Report 16,596.

Jackaman, W., Matysek, P.F. and S.J. Cook (1992): British Columbia Regional Geochemical Survey, NTS 92P - Bonaparte Lake, Stream Sediment and Water Geochemical Data. B.C. Ministry of Energy, Mines and Petroleum Resources, Preliminary Report RGS 36. 30-Aug-99

1.115

ECO-TECH LABORATORIES LTD.

10041 East Trans Canada Highway KAMLOOPS, B.C.

V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 99-365

PO BOX 1437 KAMLOOPS, BC V2C 6L7

ATTENTION: ED FREY

No. of samples received: 4

Sample type: Till

PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Ed Frey

Values in ppm unless otherwise reported

	<i>Weights(g)</i> Et #. Tag # -230 +230 Au(ppb) Ag Al % As Ba Bi Ca % Cd Co Cr Cu Fe % La Mg % Mn Mo Na % Ni P Pb Sb Sn Sr Ti % U V W Y Zn																															
Et #.	Tag#	-230	+230	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Y	Zn
1	99TE441	67	10441	10	<0.2	1.88	10	135	15	0.62	<1	25	61	64	3.11	<10	0.94	533	<1	0.01	44	550	20	<5	<20	21	0.23	<10	70	<10	43	48
2	99TE442	73	10476	30	<0.2	1.82	5	75	10	0.68	<1	33	63	88	3.39	<10	1.06	586	<1	0.02	40	600	18	10	<20	16	0.25	<10	83	<10	53	37
3	99TE443	79	8222	5	<0.2	1.89	5	110	10	0.41	<1	19	58	48	3.22	20	0.79	507	<1	0.01	41	730	20	<5	<20	14	0.12	<10	64	<10	26	54
4	99TE444	72	8601	5	<0.2	1.34	<5	90	15	0.56	<1	19	50	44	2.51	<10	0.70	387	<1	0.01	33	520	14	10	<20	12	0.21	<10	62	<10	55	33
QC DA																																
1	99TE 44 1			_	<0.2	1.86	10	125	15	0.62	1	24	60	63	3.08	<10	0.93	527	<1	0.01	44	560	20	5	<20	18	0.23	<10	69	<10	46	46
3	99TE443			10	-	"	-	-	-	-	-		-	_	-		-		· ·	-	-	-		-	-20	-	0.23	-10	-	-10		
Stand GEO'9	ard:			120	1.6	1.67	60	155	10	1.83	<1	18	59	87	3.85	<10	0.98	656	<1	0.02	22	690	22	10	<20	54	0.09	<10	72	<10	7	69

df/344 XLS/99 Fank J. Pezzotti, A.Sc.T.

8.C. Certified Assayer

9-Nov-99

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4 ICP CERTIFICATE OF ANALYSIS AK 99-392R

PO BOX 1437 KAMLOOPS, BC V2C 6L7

Phone: 250-573-5700 Fax : 250-573-4557 ATTENTION: ED FREY

No. of samples received: 4

Sample type: Till

PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Ed Frey

Values in ppm unless otherwise reported

		Weig	hts(g)																													
Et #.	Tag#	-230	+230	Au(ppb)	Ag	Al %	Аş	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	Ü	٧	W	Υ	Zn
1	99TE261	36	11882	10	<0.2	2.01	<5	145	10	0.69	<1	28	70	64	3.30	<10	1.09	744	<1	0.04	45	770	16	10	<20	31	0.16	<10	76	<10	33	51
2	99TE262	90	5065	10	<0.2	0.94	10	60	<5	0.60	<1	13	35	47	1.89	<10	0.52	256	<1	0.03	18	840	8	<5	<20	20	0.12	10	45	<10	31	21
3	99TE263	43	5744	10	<0.2	1.96	20	115	5	0.63	<1	24	69	81	3.10	<10	0.99	482	<1	0.03	43	560	16	5	<20	19	0.18	<10	74	<10	41	44
4	99TE671	108	5457	5	<0.2	1.66	<5	60	15	0.62	<1	17	45	28	2.32	<10	0.67	227	<1	0.02	24	220	10	10	<20	8	0.24	<10	72	<10	30	26
QC DA	ATA:																															
Repea	ıt:																															
1	99TE261			-	<0.2	2.00	10	135	5	0.68	<1	28	70	64	3.29	<10	1.09	743	<1	0.03	46	790	18	<5	<20	30	0.17	<10	75	<10	35	51
2	99TE262			10	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Stand GEO'9				120	1.2	1.74	65	155	5	1.84	<1	19	64	86	3.86	<10	0.96	684	<1	0.02	24	690	24	15	<20	54	0.08	<10	77	<10	7	72

df/376 XLS/99 ECO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

ECO-TECH LABORATORIES LTD.

10041 East Trans Canada Highway

ICP CERTIFICATE OF ANALYSIS AK 99-433R

PO BOX 1437 KAMLOOPS, BC V2C 6L7

Phone: 250-573-5700 Fax : 250-573-4557

KAMLOOPS, B.C.

V2C 6T4

ATTENTION: ED FREY

No. of samples received: 2

Sample type: Till

PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Ed Frey

Values in ppm unless otherwise reported

Weight (g) -230 +230

Et #	Tag#	Mesh	Mesh	Au(ppb)	Ag	Al %	As	Ва	Bi Ca%	6 Cd	Co	Сг	Cu l	Fe %	La M	Mg %	Мп	Mo Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
1	99TE621	61	3859	10	<0.2	2.34	10	190	15 0.7	9 <1	25	104	112	3.64	20	1.53	431	<1 0.02	48	250	14	10	<20	32	0.26	<10	108 ·	<10	56	40
2	99TE881	85	9080	5	<0.2	0.79	10	65	5 1.7	9 <1	17	27	34	2.42	20	0.45	497	<1 0.02	30	1360	12	<5	<20	81	0.05	<10	28	<10	24	53

QC DATA:

Repeat: 1 99TE621	10	<0.2	2.29	10	180	15	0.77	<1	25	103	109	3.61	20	1.50	427	<1	0.02	47	250	14	15	<20	30	0.26	<10	105	<10	55	40
Standard: GEO'99	115	1.0	1.69	60	155	15	1.80	<1	18	59	85	3.86	20	0.94	647	<1	0.02	25	750	24	5	<20	53	0.10	<10	7 4	<10	8	71

df/433 XLS/99 EGO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.
E.C. Certified Assayer

ICP CERTIFICATE OF ANALYSIS AK 99-537R

PO BOX 1437 KAMLOOPS, BC V2C 6L7

ATTENTION: ED FREY

No. of samples received: 1

Sample type: Till

PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Ed Frey

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

		Weights(g)																												
Et #.	Tag#	-230 +230 Au	(ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr Ti %	U	٧	W	Y	Zn
1	99TE622	39 4173	5	<0.2	3.55	50	180	15	0.94	<1	31	123	110	5.10	<10	1.39	816	<1	0.02	59	670	14	10	<20	31 0.21	<10	143	<10	49	52
QC DAT	' A :																													
Repeat: 1	99TE622		5	<0.2	3.63	60	175	15	0.96	<1	32	124	110	5.16	<10	1.41	812	<1	0.02	60	700	14	<5	<20	30 0.22	<10	14 5	<10	51	52
Standar GEO'99			125	1.0	1.79	65	155	10	1.78	<1	20	64	85	3.83	<10	0.99	650	<1	0.02	24	680	18	10	<20	56 0.08	<10	78	<10	8	70

df/537 XLS/99 ECO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

ECO-TECH LABORATORIES LTD.

10041 East Trans Canada Highway

ICP CERTIFICATE OF ANALYSIS AK 99-562R

PO BOX 1437 KAMLOOPS, BC V2C 6L7

ATTENTION: ED FREY

No. of samples received: 4

Sample type: Till

PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Ed Frey

Phone: 250-573-5700 Fax : 250-573-4557

KAMLOOPS, B.C.

V2C 6T4

Values in ppm unless otherwise reported

		Weig	hts(g)																												
Et #.	Tag #	-230	+230	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Υ	Zn
1	99TE0241	70	4767	<5	<0.2	2.24	<5	85	5	0.05	<1	21	41	89	4.65	30	1.23	455	6 <0.01	82	330	22	<5	<20	8	<0.01	<10	17	<10	<1	79
2	99TE241	29	5675	5	<0.2	4.50	10	145	10	1.61	<1	54	140	218	6.68	<10	2.48	1956	<1 0.03	78	530	18	10	<20	160	0.28	<10	182	<10	91	86
3	99TE491	70	6583	10	0.2	1. 64	30	85	10	1.13	3	31	40	162	5.46	<10	1.08	933	7 < 0.01	53	1510	16	<5	<20	91	0.05	<10	49	<10	<1	200
4	99TE761	87	7037	5	<0.2	1.57	25	80	10	2.45	2	24	52	107	4.17	10	1.07	733	2 0.02	49	1150	14	5	<20	144	0.08	<10	47	<10	<1	145
QC DA	ATA:																														
Repea	it:																														
1	99TE0241			-	<0.2	2.13	<5	75	5	0.05	<1	20	39	86	4.48	30	1.17	438	5 < 0.01	80	350	22	<5	<20	6	<0.01	<10	17	<10	<1	77
4	99TE761			<5	-	-	-	-	-	-	-	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-
Stand GEO'9				115	1.0	1.77	70	150	10	1.80	1	18	63	82	3.83	<10	0.96	683	<1 0.02	23	670	22	5	<20	54	0.09	<10	75	<10	6	66

df/546D XLS/99 Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

B. TECHNICAL REPORT

- · One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations 15 to 17, page 6.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name <u>EDWARD D. FREY</u>	Reference Number 99/2000 P/36
LOCATION/COMMODITIES	
Project Area (as listed in Part A) MOUNT FAO.	EAR MINFILE No. if applicable N/A
Location of Project Area NTS 82 M/4 & 55 80AL	0ER 92 P/1 Lat ~5103'N Long 119°57'W
	MT. FADEAR . (NE) ~ 40 ROAD KM SE BROM BARA
VIA NORTH CICERO CREEK FOREST ACCES	S ROAD & CICERO CK. BRANCH ROADS #5 & #6.
Main Commodities Searched For GOLD AND	E VIA LOUIS CASEN RO. & MCKNIGHT CK. FOREST A
Main Commodities scarcing For Burning	LUPTER
Known Mineral Occurrences in Project Area NONE	. ANOMALOUS ARSENIC (81, 58, 45 p.
IN THREE BLGS TILL SAMPLES (1	NREE SITES)
	·····
WORK PERFORMED	
1. Conventional Prospecting (area) 342	HECTARES
2. Geological Mapping (hectares/scale) 263	HECTARES /~ 1:3000
3. Geochemical (type and no. of samples) 29 R	OCK + 3 TILL /30 An + 18 ELEMENT ICH EACH
4. Geophysical (type and line km)	
5. Physical Work (type and amount)	
6. Drilling (no. holes, size, depth in m, total m)	\ \
7. Other (specify)	
SIGNIFICANT RESULTS	
	Claim Name
	Long Elevation
	T RESULTS
Description of mineralization, host rocks, anomalies	

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

LEGEND

LITTLE DIXON LAKE & MOUNT FADEAR AREAS 1999 PROSPECTING

MAPS LD-1, LD-2, MF-1 & MF-2

EAGLE BAY ASSEMBLAGE

Devonian to Mississippian

INTRUSIVE ROCKS

GD GRANODIORITE

UM ULTRAMAFIC (peridotite)

CLASTIC / CHEMICAL METASEDIMENTARY ROCKS (includes some pyroclastics)

AGL AGGLOMERATE ARG ARGILLITE

CH CHERT

CT CHERTY TUFF
CONG CONGLOMERATE

GPH GRAPHITE LHT LITHIC TUFF LPT LAPILLI TUFF

LST LIMESTONE PHY PHYLLITE QTE QUARTZITE

SS SANDSTONE

SSP PEBBLE SANDSTONE

SLTST SILTSTONE SH SHALE SCH SCHIST

SLATE

TALC

TBX TUFF BRECCIA

ALTERATION: INTENSE, Moderate, weak

Lim limonite **Hem** hematite

Ca calcite / carbonate

Chl chlorite Gos gossan

Gm green mica (Cr or V)

Mus muscovite
Ser sericite
Qv quartz vein
Bx brecciation

MINERALIZATION

Py

pyrite

Cpy

chalcopyrite

Born bornite

Qz

Tour tourmaline quartz

SYMBOLS:

Outcrop: large, small, none

Bedding: inclined,

top direction known,

vertical

Foliation: inclined, vertical

Fracture Cleavage: inclined, vertical

Fold Axial Trace: antiform, synform, plunge known

Fault

Glacial Straie

Steep Downslope

Cliff, Scarp: ticks on low side

Drainage, Flow Direction, Swamp

Cut Block Boundary

SAMPLES:

All rock and till samples were ICP analyzed for gold (30 g)

and 28 additional elements; certificates attached.

99RE###

1999 rock grab sample unless noted: float, chip (section

width), or outcrop composite;

```
Gold / Copper / Arsenic Location Map

99TE0241 - <5 ppb / 89 ppm / <5 ppm

99TE491 - 10 ppb / 162 ppm / 30 ppm

99TE761 - 5 ppb / 107 ppm / 25 ppm

99TE881 - 5 ppb / 34 ppm / 10 ppm

LD-1
```

97#### lodgement till: B.C. Geological Survey samples

Open File 1997-9; (Bobrowsky et al., 1997):

```
Gold / Copper / Arsenic Location Map
969024 - 6 ppb / 39 ppm / 81 ppm MF-1
969076 - 5 ppb / 125 ppm / 58 ppm MF-2
969134 - 40 ppb / 72 ppm / 36 ppm LD-2
969188 - 44 ppb / 51 ppm / 12 ppm LD-1
```

Open File 1998-6; (Bobrowsky et al., 1998):

979349 - 6ppb / 129 ppm / 45 ppm MF-2

REFERENCES

- Index Map: southwest part of B.C. Geological Survey, Paper 1987-2, Figure 4: Schiarizza, P. and V.A. Preto (1987): Geology of the Adams Plateau-Clearwater-Vavenby Area. B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1987-2, 78p.
- Maps LD-1 and LD-2: base maps are photo-enlarged tracings from 1:20,000 scale B.C. Forest Service Orthophoto Base Map Series 82M.011.
- Map MF-1: base map is a photo-enlarged tracing from 1:15,000 scale B.C. Forest Service Orthophoto Base Map Series 82M.001.
- Map MF-2: base map is a photo-enlarged tracing from 1:20,000 scale B.C. Forest Service Orthophoto Base Map Series 82M.001 and 92P.010.
- Bobrowsky, P.T., Leboe, E.R., Dixon-Warren, A, Ledwon, A., MacDougall, D. and S.J. Sibbeck (1997): Till Geochemistry of the Adams Lake Plateau North Barriere Lake Area (82M/4 and 5). B.C. Ministry of Employment and Investment, Open File 1997-9, 26p. & appendices.
- Bobrowsky, P.T., Paulen, R., Little, E., Prebble, A., Ledwon, A. and R. Lett (1998): Till Geochemistry of the Louis Creek Chu Chua Creek Area (NTS 92P/1E and 92P/8E). B.C. Ministry of Energy and Mines, Open File 1998-6, 26p. & appendices.

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
email: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ASSAY AK 99-465

ED FREY PO BOX 1437 KAMLOOPS, BC V2C 6L7 21-Sep-99

Rocks

ATTENTION: ED FREY

No. of samples received: 19

Sample type: Rock

PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: E. Frey

		Au	Αu	Ag	Ag	Cu
ET#.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)
4	99RE84	1.14	0.033	-	-	-
5	99RE85	4.45	0.130	-	-	4.60
6	99RE86	-	-	40.0	1.17	10.30
7	99RE87	. 1. 4 2	0.041	35.4	1.03	10.95
9	99RE89	2.72	0.079	35.9	1.05	3.71
10	99RE90	2.06	0.060	35.6	1.04	13.20
13	99RE93	1.38	0.040	-	-	5.72
14	99RE94	-	-	-	-	2.64
15	99RE95	· •		-	-	1.12
QC/DA	TA:					
Standa	ard:					
STD-M	!	1.31	0.038	-	-	-
Mp-IA		-	-	-	-	1.44

ECO-TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

Page 1

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4 ICP CERTIFICATE OF ANALYSIS AK 99-364

PO BOX 1437 KAMLOOPS, BC V2C 6L7

Phone: 250-573-5700 Fax : 250-573-4557 ATTENTION: ED FREY

No. of samples received: 5

Sample type: Rock

PROJECT #: Nane Given SHIPMENT #: None Given

Samples submitted by: Ed Frey

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Сr	Cu	Fe %	La N	vig %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Sr Ti %	U	V	W	Υ	Zn
1	99RE1	<5	0.4	0.11	<5	30	<5	2.65	1	6	126	11	2.01	<10	0.09	862	5	0.01	11	340	12	<5	<20	69 < 0.01	<10	2	<10	<1	24
2	99RE2	20	0.4	0.04	<5	15	<5	0.03	<1	<1	136	5	0.30	<10 <	<0.01	26	14	<0.01	3	550	8	<5	<20	1 <0.01	<10	18	<10	1	<1
3	99RE5	<5	<0.2	2.20	<5	25	15	0.67	<1	30	90	61	4.36	<10	1.75	677	<1	0.03	45	640	8	10	<20	5 0.22	<10	77	<10	34	50
4	99RE6	<5	<0.2	2.41	<5	40	10	0.99	<1	32	67	56	4.91	<10	1.65	662	<1	0.03	41	790	8	10	<20	2 0.32	<10	97	<10	50	59
5	99RE7	<5	<0.2	1.94	<5	35	10	0.65	<1	28	45	51	4.05	<10	1.31	639	<1	0.03	28	670	6	10	<20	9 0.25	<10	75	<10	47	49
QC DA																													
1	99RE1	<5	0.2	0.11	<5	25	<5	2.51	<1	6	137	10	1.89	<10	0.09	818	5	0.01	11	330	12	<5	<20	66 <0.01	<10	2	<10	<1	21
Repea 1	<i>t:</i> 99RE1	<5	0.4	0.12	<5	25	5	2.62	<1	6	124	11	1.99	<10	0.10	843	5	0.01	11	330	12	<5	<20	66 <0.01	<10	2	<10	2	24
Standa GEO'9		120	1.2	1.78	60	150	<5	1.84	<1	20	64	86	3.82	<10	0.96	645	<1	0.02	2 5	690	22	5	<20	54 0.09	<10	76	<10	7	65

df/337 XLS/99 FCO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

31-Aug-99

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 99-390

ED FREY
PO BOX 1437
KAMLOOPS, BC
V2C 6L7

Phone: 250-573-5700 Fax : 250-573-4557

ATTENTION: ED FREY

No. of samples received: 28

Sample type: Rock

PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Ed Frey

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn	Mo Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Υ	Zn
1	99RE8	5	<0.2	0.90	<5	55	10	0.62	<1	10	109	4	2.00	20 0.70	356	<1 0.04	12	870	8	<5	<20	55	0.14	<10	43	<10	27	33
2	99RE9	5	<0.2	0.95	5	125	15	0.64	<1	10	97	5	2.18	20 0.72	377	<1 0.05	, 9	1070	6	5	<20	35	0.16	<10	51	<10	29	34
3	99RE10	<5	<0.2	0.92	<5	245	10	1.07	<1	10	50	19	1.32	<10 0.51	180	<1 0.11	17	730	4	10	<20	14	0.20	<10	44	<10	52	10
4	99RE11	<5	<0.2	0.75	<5	20	<5	1.07	<1	12	55	43	1.39	<10 0.65	231	<1 0.11	17	780	4	10	<20	<1	0.14	<10	51	<10	43	11
5	99RE12	5	<0.2	1.50	<u>.</u> 5	30	10	1.49	<1	13	54	58	1.56	<10 0.49	182	<1 0.13	23	760	4	5	<20	<u>2</u> 1	0.19	<10	62	<10	47	11
6	99RE13	<5	<0.2	1.86	<5	25	15	1.23	<1	21	70	45	2.72	<10 1.28	418	<1 0.10	34	580	6	10	<20	6	0.25	<10	82	<10	52	28
7	99RE14	5	<0.2	0.02	<5	<5	<5	0.02	<1	<1	178	2	0.23	<10 <0.01	32	6 <0.01	5	<10	8	<5	<20	<1	<0.01	<10	1	<10	<1	<1
8	99RE17	<5	<0.2	2.31	<5	35	20	1.64	<1	20	25	4	4.62	<10 0.89	457	<1 0.04	. 2	1370	8	5	<20	4	0.18	<10	104	<10	89	21
9	99RE18	<5	<0.2	2.46	<5	55	20	1.46	<1	27	33	5	5.30	<10 1.13	606	<1 0.03	10	1470	6	<5	<20	2	0.19	<10	159	<10	76	27
10	99RE19	<5	<0.2	3.15	<5	35	20	2.61	<1	20	33	6	5.29	<10 1.01	772	<1 0.03	1	1480	6	<5	<20	4	0.18	<10	60	<10	100	26
11	99RE20	5	<0.2	2.61	<5	45	15	3.18	<1	6	103	3	3.13	<10 0.17	670	<1 0.03	; ;	410	8	<5	<20	<1	0.09	<10	2	<10	182	24
12	99RE21	<5	<0.2	1.73	<5	120	15	1.69	<1	6	72	5	3.42	<10 0.22	875	1 0.04	. 2	570	4	<5	<20	<1	0.08	<10	1	<10	166	39
13	99RE22	<5	<0.2	0.62	<5	175	10	0.50	<1	7	254	6	0.91	20 0.57	170	<1 0.03	36	1260	2	5	<20	<1	0.08	<10	45	<10	72	4
14	99RE23	<5	<0.2	3.34	<5	30	25	2.77	<1	31	148	52	4.26	<10 1.80	751	<1 0.08	51	640	8	10	<20	5	0.37	<10	125	<10	80	48
15	99RE24	5	<0.2	1.17	5	395	<5	0.05	<1	3	66	131	2.35	20 0.85	262	3 <0.01	26	420	6	10	<20	<1	<0.01	<10	31	<10	3	107
16	99RE25	30	<0.2	0.54	<5	65	<5	0.12	<1	11	101	75	2.28	10 0.40	138	2 <0.01	28	730	<2	<5	<20	<1	<0.01	<10	19	<10	12	45
17	99RE26	330	8.0	1.01	<5	140	<5	0.02	<1	4	110	118	2.89	<10 0.60	293	7 <0.01	16	240	8	<5	<20	<1	<0.01	<10	21	<10	<1	107
18	99RE27	<5	<0.2	0.55	<5	170	<5	0.03	<1	2	99	26	1.45	<10 0.38	217	1 <0.01	14	230	6	<5	<20	2	<0.01	<10	12	<10	<1	38
19	99RE28	5	<0.2	1.77	<5	345	5	0.78	<1	17	91	102	3.50	<10 1.18	996	<1 0.03	37	570	14	<5	<20	12	0.17	<10	65	<10	45	72
20	99RE29	35	<0.2	2.31	15	70	<5	1.01	2	97	151	5113	>10	10 1.64	449	24 0.02	: 50	1500	14	<5	<20	6	0.17	<10	137	<10	8	164

Et#.	Tag #	Au(ppb)	Ag	Al %	As	Ва	Bi	Ca %	Cd	Co	Сг	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	₽b	Sb	Sn	Sr	Ti %	U	٧	W	γ	Zn
21	99RE30	5	<0.2	3.85	<5	540	15	1.29	<1	30	51	96	4.98	<10	2.65	1703	<1	0.16	50	330	10	5	<20	25	0.13	<10	143	<10	21	54
22	99RE31	<5	<0.2	4.56	10	45	<5	3.23	<1	14	72	76	1.53	<10	0.70	293	<1	0.41	29	430	16	10	<20	79	0.09	<10	55	<10	24	13
23	99RE32	5	<0.2	2.26	5	915	5	1.20	<1	13	114	99	3.22	<10	1.46	1797	<1	0.04	43	690	18	15	<20	13		<10	72	<10	45	123
24	99RE33	<5	<0.2	2.73	<5	75	20	1.42	· <1	34	45	65	4.72	<10	2.04	1063	<1	0.04	59	610	10	10	<20	6	0.32	<10	127	<10	69	65
25	99RE34	<5	<0.2	1.25	<5	455	<5	0.97	<1	8	141	71	1.79	<10	0.58	352	<1	0.01	24	590	12	<5	<20	7	0.10	<10	36	<10	37	50
		·			_		_		•	_					0,00	002	•	0.01	- 1	000	12	-0	120	,	0.10	~10	50	~10	31	30
26	99RE35	20	<0.2	0.60	10	340	<5	0.16	<1	6	95	55	2.15	10	0.32	317	4	<0.01	29	930	8	10	<20	15	<0.01	<10	49	<10	17	118
27	99RE36	10	<0.2	0.49	<5	275	<5	0.04	<1	2	62	33	1.42	<10	0.29	311	2	<0.01	12	300	8	5	<20	<1	< 0.01	<10	22	<10	<1	38
28	99RE37	10	<0.2	0.90	25	45	20	8.38	<1	49	101	88	7.32	<10	3.10	1607	7	0.01	171	3060	6	15	<20	216	0.02	<10	30	<10	1	116
																					_				****				•	,,,
																											-			
<u>QC DA</u> Respli																														
1	99RE8	5	<0.2	0.88	<5	50	10	0.66	<1	10	110	4	1.97	20	0.69	344	<1	0.04	13	860	8	5	<20	51	0.13	<10	41	<10	26	31
								****				•				•	•	0.01	•••	000	•	•	-20	J1	0.15	~10	71	~10	20	ગા
Repea	t:																													
1	99RE8	5	<0.2	0.87	<5	50	10	0.60	<1	10	104	3	1.94	20	0.68	336	<1	0.04	12	850	6	<5	<20	50	0.13	<10	44	~10	24	04
10	99RE19	<5	<0.2	3.11	<5	30	20	2.57	<1	21	33	6	5.29	<10	1.00	777	<1	0.03	2	1470	8	<5	<20				41	<10	24	31
19	99RE28	5	<0.2		<5	360	5	-	<1	17	99	103	3.51	<10	1.17	999								2		<10	59	<10	102	27
13	3311LZQ	J	70.2	1.77	~0	300	J	0.00	~1	11	99	103	3.51	~10	1.17	999	<1	0.03	40	580	14	5	<20	13	0.18	<10	65	<10	49	72
Standa	ard:																													
GEO'9		115	1.0	1.80	50	150	10	1.86	<1	18	64	84	3.82	<10	0.96	64 6	<1	0.02	25	680	22	<5	<20	5 5	0.10	<10	71	<10	9	67

df/405 XLS/99 ECO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

ICP CERTIFICATE OF ANALYSIS AK 99-432

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ATTENTION: ED FREY

ED FREY

V2C 6L7

PO BOX 1437

KAMLOOPS, BC

No. of samples received: 41

Sample type: Rock

PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Ed Frey

Et#	. Tag#	Au(ppb)	Ag	Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr Ti%	U	v	w	Υ	Zn
1	99RE38	5	0.6	0.49	<5	125	<5	0.16	2	9	41	71	3.08	<10	0.13	356	9	0.03	20	840	8	<5	<20	40 <0.01	<10	19	<10	<1	148
2	99RE39	5	0.2	1.46	<5	110	<5	0.20	<1	11	38	78	3.38	10	1.11	307	6	<0.01	15	1160	22	5	<20	22 <0.01	<10	31	<10	<1	106
3	99RE40	5	0.6	1.10	<5	80	<5	1.15	5	15	60	113	4.03	10	0.71	430	14	0.01	47	1150	8	5	<20	99 < 0.01	<10	43	<10	<1	338
4	99RE41	10	<0.2	0.78	65	120	<5	0.14	3	6	56	35	3.60	10	0.25	302	28	0.01	42	750	12	<5	<20	15 < 0.01	<10	59	<10	<1	440
5	99RE42	<5	<0.2	1.73	<5	1 1 5	<5	0.71	<1	22	65	93	3.15	<10	1.32	497	<1	0.02	20	1230	4	15	<20	45 0.11	<10	46	<10	6	48
6	99RE43	5	0.2	1.47	<5	110	10	0.13	<1	5	34	27	3.79	<10	1.13	184	5	0.03	5	1260	10	<5	<20	21 <0.01	<10	37	<10	<1	59
7	99RE44	< 5	<0.2	2.58	<5	250	5	0.57	<1	27	202	89	3.22	<10	2.58	717	<1	0.02	79	1040	6	20	<20	41 0.10	<10	43	<10	<1	43
8	99RE45	5	0.4	1.39	<5	130	<5	0.18	<1	8	40	70	4.05	<10	0.93	292	5	0.02	15	1180	10	<5	<20	26 < 0.01	<10	26	<10	<1	61
9	99RE46	< 5	<0.2	2.56	<5	75	15	0.88	<1	26	32	55	4.67	<10	1.86	746	<1	0.03	28	490	6	10	<20	3 0.16	<10	88	<10	37	48
10	99RE47	< 5	<0.2	2.21	<5	80	15	1. 61	<1	26	98	33	2.97	30	2.19	511	<1	0.08	102	1790	8	20	<20	167 0.22	<10	68	<10	48	53
		_			_																								
11	99RE48	<5	<0.2		<5	60	20	1.55	<1	31	26	83	5.11	<10	1.56	677	<1	0.03	24	700	10	15	<20	13 0.26	<10	124	<10	65	66
12	99RE49	<5	<0.2		< 5	60	25	1.22	<1	34	30	67	5.89	10	2.22	828	<1	0.07	47	660	8	<5	<20	16 0.24	<10	120	<10	50	69
13	99RE50	< 5	<0.2	2.31	<5	40	20	1.06	<1	30	80	64	3.76	<10	2.10	530	<1	0.05	60	440	8	10	<20	13 0.26	<10	87	<10	42	47
14	99RE51	<5	<0.2	1.92	<5	55	10	0.75	<1	30	93	67	3.33	<10	1.91	469	<1	0.04	60	500	6	20	<20	4 0.25	<10	62	<10	35	45
15	99RE52	<5	<0.2	1.68	<5	20	10	0.97	<1	23	102	68	2.40	<10	1.36	409	<1	0.06	43	370	6	15	<20	11 0.25	<10	53	<10	40	32
40	000000	- =	-0.0	4.00	. =			2.00																					
16	99RE53	<5 -5	<0.2		<5 	55	15		<1	24	84	58	2.75	<10		470	<1	0.05	42	460	8	10	<20	7 0.28	<10	66	<10	45	40
17	99RE54	<5 -5	<0.2	4.63	<5 - •	65	15	6.18	1	45	228	49	7.86	20	4.71	1320	3	0.01	93	1200	4	10	<20	232 0.02	<10	249	<10	<1	87
18	99RE55	<5 .e	<0.2	-	<5 	40	10	>10	<1	15	81	48	3.74	10		1290	4	0.01	16	720	26	15	<20	386 <0.01	<10	52	<10	<1	47
19	99RE57	<5 -5	0.2	1.62	<5 -5	70	5	1.86	<1	18	26	13	3.63	20	0.65	662	3	0.02	2	1040	20	5	<20	57 <0.01	<10	17	<10	<1	91
20	99RE58	<5	<0.2	1.65	<5	165	<5	0.42	<1	21	29	148	4.43	10	0.49	542	4	0.01	8	1810	12	<5	<20	20 <0.01	<10	24	≺10	<1	73
21	99RE59	<5	<0.2	2.68	. .∈	70	15	1.45	-4	40	24		5.04	40	4.00	440		0.04	45	4400	_	_							
.22	99RE60	<5			<5 <5	70	10		<1 1	18	34	52	5.31	10		418	4	0.01	12	1430	6	5	<20	61 <0.01	<10	39	<10	<1	111
		T.	<0.2		_	80			<1	28	365	13	5.34	20	2.21	929		0.01	90	1390	8	10	<20	221 < 0.01	<10	104	<10	<1	60
23 24	99RE61 99RE62	5 5	<0.2		<5 ~€	60 45	20	4.73	<1 1	22	294	17	3.99	10	1.39	848		<0.01	79	1340	8	5	<20	172 < 0.01	<10	61	<10	4	40
2 4 25		_	<0.2	-	<5 •	45 45	<5	0.14	<1	3	115	4	0.59	20	0.02	93		<0.01	7	520	<2	<5	<20	9 <0.01	<10	2	<10	3	6
25	99RE63	<5	<0.2	0.05	5	15	<5	0.02	<1	3	136	19	0.47	<10 Pa	<0.01 age 1	397	ь	<0.01	9	30	6	<5	<20	1 <0.01	<10	1	<10	<1	8

26 99RE64	Zn	Υ	W	٧	U	Sr Ti%		Sn	Sb	₽b	P	Ni	Na %	Мо	Mn	Mg %	La	Fe %	Cu	Cr	Co	Cd	Ca %	Bi	Ва	As	Al %	Ag	Au(ppb)	. Tag#	Et#
27 99RE66	3	<1	<10	1	<10	1 <0.01		<20	<5	<2	60	9	0.01	3	323	<0.01	<10	0.53	13	137	4	<1	0.01	<5	20	<5	0.05	<0.2	<5	99RE64	26
28 99RE67	70	5		213				<20	5	22	1180	11	0.03	1	1126	2.31	30	5.40	76	50	23	<1	1.47	10	295	<5	2.21	<0.2	<5	99RE66	27
29 99RE68 5 <0.2 1.76 10 150 10 2.11 <1 23 56 54 5.14 40 1.92 1187 4 0.03 16 1220 8 <5 <20 311 0.02 <10 187 <10 <1 30 99RE69 <5 <0.2 1.35 5 680 10 1.29 <1 23 32 68 3.53 40 0.88 836 <1 0.02 7 1390 52 <5 <20 247 0.08 <10 120 <10 21 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	79	<1			•				10	14			0.03	4	1120	2.58	20	6.28	43	30	27	<1	1.14	15	185	<5	2.48	<0.2	5	99RE67	28
30 99RE69	76	•							<5	8			0.03	4	1187	1.92	40	5.14	54	56	23	<1	2.11	10	150	10	1.76	<0.2	5	99RE68	29
31 99RE70	74								<5	52		7	0.02	<1	836	88.0	40	3.53	68	32	23	<1	1.29	10	680	5	1.35	<0.2	· <5	99RE69	30
32 99RE71	1.4					0,00																									
32 99RE71	74	8	<10	111	<10	69 <0.01	, .	<20	5	10	1590	15	0.02	5	854	1.99	60	5.06	70	56	19	<1	2.22	<5	200	<5	2.03	<0.2	<5	99RE70	31
33 99RE72 15 1.0 0.52 <5 165 5 0.06 <1 3 58 37 2.92 10 0.18 74 13 <0.01 11 610 68 <5 <20 35 <0.01 <10 24 <10 <1	74	•												5	1064	2.61	40	6.03	53	18	23	<1	2.81	10	290	<5	2.33	<0.2	<5	99RE71	32
	85	=							<5			11	<0.01	13	74	0.18	10	2.92	37	58	3	<1	0.06	5	165	<5	0.52	1.0	15	99RE72	33
34 99RE73 5 <0.2 0.20 <5 125 <5 1.56 <1 5 52 7 1.34 20 0.04 470 3 0.03 3 520 4 <5 <20 115 <0.01 <10 4 <10 12	17	-				•			<5		520	3	0.03	3	470	0.04	20	1.34	7	52	5	<1	1.56	<5	125	<5	0.20	<0.2	5	99RE73	34
35 99RE74 <5 0.4 3.32 20 205 5 4.63 1 39 79 155 6.97 50 2.93 1497 5 <0.01 32 2880 16 10 <20 392 <0.01 <10 89 <10 2	90			89					10	16		32	<0.01	5	1497	2.93	50	6.97	155	79	39	1	4.63	5	205	20	3.32	0.4	<5	99RE74	35
	•••			-	•							•									,										
36 99RE75	46	<1	<10	17	<10	21 <0.01	ı	<20	<5	18	520	13	<0.01	4	51	0.13	<10	1.86	10	63	2	<1	0.05	5	120	5	0.38	0.8	10	99RE75	36
37 99RE79 15 0.4 0.26 <5 105 <5 0.38 <1	<1	_		2	-		1	<20	<5			5	0.05	4	65	< 0.01	10	0.82	7	98	1	<1	0.38	<5	105	<5	0.26	0.4	15	99RE79	37
38 99RE80 10 0.2 0.15 <5 50 <5 1.36 <1 3 56 6 1.28 10 0.04 451 4 0.01 2 110 6 <5 <20 46 <0.01 <10 2 <10 2	16	•		2					<5		110	2	0.01	4	451	0.04	10	1.28	6	56	3	<1	1.36	<5	50	<5	0.15	0.2	10	99RE80	38
39 99RE81	15	7		1	<10	33 <0.01	1	<20	<5	6	240	4	<0.01	2	618	0.03	<10	1.29	11	52	4	<1	1.25	<5	115	<5	0.23	0.2	10	99RE81	39
40 99RE82 20 0.4 0.20 <5 75 <5 0.03 <1 <1 27 4 0.49 <10 <0.01 21 2 0.01 3 190 22 <5 <20 23 <0.01 <10 4 <10 4	<1	4		4	_		l	<20	<5	22	190	3	0.01	2	21	<0.01	<10	0.49	4	27	<1	<1	0.03	<5	75	<5	0.20	0.4	20	99RE82	40
41 99RE83 5 0.4 0.10 <5 40 <5 8.29 <1 4 72 23 3.96 20 3.08 1739 4 0.02 3 320 16 25 <20 552 <0.01 <10 16 <10 13	66	13		16				<20	25	16	320	3	0.02	4	1739	3.08	20	3.96	23	72	4	<1	8.29	<5	40	<5	0.10	0.4	5	99RE83	41
	00		. •																												
			-									•																			
QC_DATA:																															
Resplit:																															Resp
1 99RE38 5 0.6 0.50 <5 115 <5 0.19 1 9 38 69 3.25 10 0.14 357 9 0.02 21 870 8 <5 <20 40 <0.01 <10 20 <10 <1	153	<1	<10	20	<10	40 <0.01	1	<20	<5	8	870	21	0.02	9	357							-							_		1
36 99RE75	48	<1	<10	16	<10	21 <0.01	l	<20	<5	16	560	14	<0.01	5	51	0.13	<10	1.94	10	58	2	<1	0.06	5	110	<5	0.35	0.8	10	99RE75	36
																														_	_
Repeat:																					_					_	0.40		-		Repe
1 99RE38 5 0.6 0.49 <5 120 <5 0.16 1 9 40 68 3.09 <10 0.13 357 9 0.03 20 830 6 <5 <20 34 <0.01 <10 19 <10 <1	147	<1	<10	19	<10				<5	6				9								•							_		1
10 99RE47 <5 <0.2 2.29 <5 75 15 1.75 <1 27 100 33 3.04 30 2.25 533 <1 0.09 103 1830 8 20 <20 183 0.23 <10 72 <10 49	52	49	<10	72	<10				20	8				<1												_			•		
19 99RE57 <5 <0.2 1.59 <5 65 <5 1.82 <1 18 25 13 3.58 20 0.64 656 4 0.02 3 1010 18 5 <20 55 <0.01 <10 18 <10 <1	89	<1	<10	18	<10	55 <0.01	1	<20	5													•							<5		
36 99RE75 - 1.2 0.40 <5 125 <5 0.09 <1 2 65 10 1.89 <10 0.15 59 4 <0.01 14 530 18 <5 <20 21 <0.01 <10 18 <10 <1	46	-4	<10	18	<10	21 <0.01	l	<20	<5	18	530	14	<0.01	4	59	0.15	<10	1.89	10	65	2	<1	0.09	<5	125	<5	0.40	1.2	-	99RE75	36
		٠,۱																													
Standard:		<u>~1</u>																												-tt-	C4
05000		<u> </u>												,						5 0	40	_ a	4.07	45	470	٥-	4.70	4.0	405		
GEO'99 125 1.4 1.76 65 170 <5 1.82 <1 20 54 87 3.86 10 0.92 653 <1 0.02 25 660 24 10 <20 56 0.08 <10 76 <10 9	72		<10	73	<10				10	22	680	22	0.02		679		10	3.85	91	58	18	<1	1.87	10	170	65	1.78	1.2	125	99	GEO'

df/432 XLS/99

17-Sep-99

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 99-465R

ED FREY PO BOX 1437 KAMLOOPS, BC V2C 6L7

ATTENTION: ED FREY

No. of samples received: 19

Sample type: Rock

PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: E. Frey

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La N	⁄lg %	Mn	Mo Na%	Ni	P	Pb	Sb	Sn	Sr Ti%	U	V	W	Υ	Zn
1	99RE76	30	<0.2	0.13	15	55	<5	0.09	<1	5	113	60	3.84	<10	0.02	69	15 0.01	17	810	10	<5	<20	40 < 0.01	<10	22	<10	<1	156
2	99RE77	10	0.2	0.03	5	15	<5	0.04	<1	<1	110	10	0.56	<10 <	<0.01	39	12 < 0.01	5	360	50	<5	<20	12 < 0.01	<10	9	<10	1	47
3	99RE78	10	<0.2	0.02	5	5	<5	0.02	<1	<1	162	16	0.56	<10 <	<0.01	42	18 <0.01	6	300	62	<5	<20	12 <0.01	<10	13	<10	<1	58
4	99RE84	>1000	28.0	0.16	200	245	<5	0.05	1	13	103	2649	3.89	10 <	<0.01	72	71 0.01	3	610	678	90	20	42 0.02	<10	14	<10	<1	101
5	99RE85	>1000	29.2	0.09	1090	90	<5	0.01	11	124	45 >1	10000	>10	<10 <	<0.01	7	113 <0.01	13 >	10000	184	<5	<20	2 <0.01	10	21	<10	<1	1541
6	99RE86	920	>30	0.45	255	90	<5	0.01	4	73	89 >1	10000	>10	<10	0.10	60	217 <0.01	11 >	10000	80	<5	<20	2 < 0.01	10	177	<10	<1	500
7	99RE87	>1000	>30	0.23	395	100	<5	0.06	15	115	69 >1	10000	>10	<10 <	<0.01	23	317 < 0.01	11 >	10000	360	35	<20	<1 <0.01	10	46	<10	<1	2550
8	99RE88	45	1.0	2.74	175	195	<5	0.32	2	11	267	6188	6.83	<10	2.10	974	16 < 0.01	49	2700	64	10	<20	15 < 0.01	<10	155	<10	9	276
9	99RE89	>1000	>30	0.05	330	80	<5	0.01	4	148	49 >1	10000	>10	<10 <	<0.01	10	116 < 0.01	6 >	10000	142	<5	<20	1 <0.01	10	6	<10	<1	352
10	99RE90	>1000	>30	0.25	380	110	<5	0.03	11	228	62 >1	10000	>10	<10 <	<0.01	15	333 <0.01	17 >	10000	512	70	<20	15 <0.01	10	43	<10	<1	1677
11	99RE91	45	<0.2	1.03	10	610	<5	0.09	<1	1	87	470	2.80	<10	0.68	257	8 < 0.01	11	190	14	<5	<20	4 <0.01	<10	38	<10	<1	43
12	99RE92	340	6.2	0.93	205	115	<5	0.02	2	12	195	2403	>10	<10	0.41	19	119 <0.01	7	2310	56	<5	<20	3 < 0.01	10	264	<10	<1	215
13	99RE93	>1000	27.7	0.06	320	90	<5	0.01	3	166	75 >1	10000	>10	<10 <	<0.01	12	57 < 0.01	10 >	-10000	116	15	<20	<1 <0.01	10	13	<10	<1	199
14	99RE94	75	4.0	0.06	<5	95	<5	0.02	3	101	8 >1	10000	>10	<10 -	<0.01	321	106 < 0.01	7	<10	<2	<5	<20	3 < 0.01	10	4	<10	<1	130
15	99RE95	50	3.4	0.24	<5	115	<5	0.03	2	41	3 >1	10000	>10	<10	0.13	864	132 <0.01	2	<10	<2	<5	<20	2 <0.01	10	13	<10	<1	110
16	99RE96	30	1.0	0.05	<5	105	<5	0.02	2	80	8	6455	>10	<10	0.19	849	138 <0.01	4	<10	<2	<5	<20	4 < 0.01	10	6	<10	<1	62
17	99RE97	75	3.0	1.30	75	305	<5	0.09	1	45	97	5319	>10	<10	0.52	401	175 <0.01	17	260	4	<5	<20	6 0.01	10	69	<10	<1	219
18	99RE98	15	0.4	2.19	20	875	<5	0.16	<1	7	94	1251	7.57	<10	2.33	241	36 < 0.01	24	290	8	10	<20	4 < 0.01	10	66	<10	<1	90
19	99RE99	10	<0.2	1.78	5	95	<5	0.13	<1	10	73	361	4.57	<10	1.24	963	7 < 0.01	35	770	10	10	<20	<1 <0.01	<10	88	<10	<1	35

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi (Ca %	Cd	Co	Сг	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	РЬ	Sb	Sn	Sr	Ti %	U	٧	W	Υ	Zn
																-					•									
Respli																														
1	99RE76	35	0.2	0.15	20	60	<5	0.09	1	6	117	70	4.07	<10	0.03	78	15	0.01	18	890	10	<5	<20	42	<0.01	<10	24	<10	<1	169
Repea	t:																													
ĺ	99RE76	35	<0.2	0.13	20	55	<5	0.09	<1	6	109	74	3.81	<10	0.02	66	15	0.01	16	820	12	<5	<20	40	<0.01	<10	22	<10	<1	157
10	99RE90	>1000	>30	0.24	370	110	<5	0.03	10	226	58 >1	10000	>10		<0.01	15	325	<0.01		10000	486.	65	<20		<0.01	60	40	<10	<1	1585
Standa	ard:																													
GEO'9		115	1.0	1.71	65	150	<5	1.79	<1	18	62	93	3.85	<10	0.96	647	<1	0.02	25	690	20	10	<20	60	0.07	<10	74	<10	8	68

df/465 XLS/99

ICP CERTIFICATE OF ANALYSIS AK 99-536

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ATTENTION: ED FREY

ED FREY

V2C 6L7

PO BOX 1437

KAMLOOPS, BC

No. of samples received: 53 Sample type: Rock PROJECT #: None Given

SHIPMENT #: None Given Samples submitted by: Ed Frey

Et #	. Tag#	Au(ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Си	Fe %	La I	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	W	Υ	Zn
1	99RE100	<5	<0.2	1.13	<5	185	5	0.33	<1	9	85	58	2.21	<10	0.77	449	<1	0.01	15	400	8	10	<20	8	0.06	<10	16	<10	26	46
2	99RE101	<5	<0.2	3.07	<5	25	10	2.76	<1	26	45	73	4.17	<10	1.44	566	<1	0.04	29	620	6	15	<20	5	0.20	<10	133	<10	55	49
3	99RE102	5	<0.2	3.06	<5	25	20	1.87	<1	30	32	76	5.08	<10	1.80	728	<1	0.05	32	590	6	15	<20	8	0.20	<10	134	<10	56	60
4	99RE103	5	<0.2	3.19	<5	40	25	1.75	<1	36	70	79	5.56	<10	1.92	933	<1	0.04	43	630	8	15	<20	8	0.13	<10	194	<10	78	63
5	99RE104	<5	<0.2	2.88	<5	55	15	2.11	<1	26	34	65	4.31	<10	1.53	712	<1	0.05	31	610	6	15	<20	7	0.20	<10	122	<10	50	55
6	99RE105	5	<0.2	2.21	<5	45	20	2.91	<1	24	115	34	3.84	<10	2.11	903	<1	0.02	44	450	6	20	<20	27	0.07	<10	84	<10	39	33
7	99RE106	5	<0.2	3.86	5	40	35	1.95	<1	38	38	77	6.05	<10	2.29	964	<1	0.03	28	630	12	25	<20	2	0.39	<10	163	<10	70	64
8	99RE107	<5	<0.2		<5	15	10	0.81	<1	18	127	5	2.24	10	1.00	312	<1	0.31	33	510	8	15	<20	<1	0.14	<10	42	<10	37	13
9	99RE108	5	<0.2		5	30	20	2.45	<1	25	36	66	4.40	<10	1.59	699	<1	0.07	24	550	10	20	<20	5	0.14	<10	110	<10	48	54
10	99RE109	<5	<0.2	3.12	<5	20	20	2.14	<1	31	31	70	4.67	<10	1.83	634	<1	0.04	34	630	12	15	<20	5	0.18	<10	87	<10	54	55
11	99RE110	<5	<0.2	4.00	5	25	30	2.43	<1	36	46	82	5.50	<10	2.37	827	<1	0.04	33	620	10	25	<20	3	0.24	<10	127	<10	69	59
12	99RE111	<5	<0.2	3.42	<5	30	25	2.07	<1	31	20	67	5.27	<10	1.64	698	<1	0.08	29	710	10	15	<20	15	0.19	<10	100	<10	60	61
13	99RE112	15	<0.2		10	45	25	4.51	<1	28	62	44	4.57	<10	2.33	957	<1	<0.01	29	440	8	20	<20	27	0.19	<10	132	<10	69	42
14	99RE113A		0.2		40	40	10	1.01	<1	31	177	53	5.28	<10	1.65	988	2	0.01	59	510	6	15	<20	4	0.03	<10	182	<10	51	58
15	99RE113E	5	<0.2	3.04	<5	20	25	2.81	<1	29	74	56	3.65	<10	1.73	609	<1	0.07	54	580	10	20	<20	8	0.18	<10	72	<10	59	49
16	99RE114	5	<0.2	0.65	<5	145	< 5	0.24	<1	6	98	5	1.50	10	0.44	340	<1	0.04	9	360	8	5	<20	17	0.05	<10	25	<10	16	33
17	99RE115	80	1.0		<5	55	<5	3.13	<1	16	271	504	6.22	<10	0.40	198	5	0.21	30	5680	30	<5	<20	93	0.04	<10	354	<10	19	25
18	99RE116	<5	<0.2	2.51	<5	15	10	2.03	<1	14	63	50	1.34	<10	0.66	191	<1	0.08	24	660	10	15	<20	21	0.10	<10	24	<10	35	14
19	99RE117	<5	<0.2	2.01	<5	20	25	0.82	<1	31	113	44	3.49	<10	1.65	633	<1	0.03	46	640	8	15	<20	7	0.22	<10	41	<10	37	62
20	99RE118A	. 5	<0.2	2.29	<5	30	25	0.70	<1	32	74	51	4.53	<10	1.79	716	<1	0.03	43	810	10	10	<20	4	0.19	<10	64	<10	46	66
21	99RE118E	5	<0.2		<5	15	25	0.80	<1	31	88	47	3.97	<10	1.84	587	<1	0.02	44	670	8	15	<20	<1	0.26	<10	57	<10	39	53
22	99RE119	5	<0.2		<5	30	20	0.76	≺1	31	93	49	4.40	<10	2.00	728	<1	0.04	42	700	8	20	<20	2	0.16	<10	68	<10	42	61
23	99RE121	5		2.85	<5	35	15	1.12	<1	32	38	74	4.77	<10	2.23	718	<1	0.04	57	620	10	25	<20	8	0.20	<10	76	<10	38	55
24	99RE122	5	<0.2		<5	35	30	1.27	<1	38	32	74	5.25	<10	2.53	933	<1	0.08	68	670	12	15	<20	8	0.32	<10	110	<10	53	61
25	99RE123	<5	<0.2	2.75	<5	45	20	1.30	<1	31	36	66	4.74	<10 P	1.88 age 1	817	<1	0.08	44	420	8	15	<20	8	0.14	<10	90	<10	38	59

Et :	. Tag#	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La I	Mg %_	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr Ti%	U	v	w	Υ	Zn
26	99RE124	10	<0.2	4.14	<5	30	20	4.96	<1	25	59	118	3.51	<10	1.07	460	<1	0.01	30	430	10	15	<20	3 0.13	<10	93	<10	42	30
27	99RE125	10	<0.2	3.67	<5	25	25	2.52	<1	34	82	74	5.06	<10	2.24	813	<1	0.07	53	710	12	25	<20	5 0.20	<10	94	<10	67	60
28	99RE126	5	<0.2	2.57	<5	25	15	1.49	<1	29	30	58	4.30	<10	1.94	670	<1	0.08	50	590	8	15	<20	5 0.24	<10	89	<10	41	50
29	99RE127	120	<0.2	3.26	10	50	15	3.18	<1	21	66	48	3.32	<10	1.27	628	<1	0.02	24	490	10	20	<20	<1 0.18	<10	95	<10	37	37
30	99RE128	10	0.6	0.73	<5	70	<5	0.55	8	16	36	84	4.11	<10	0.40	436	10	0.02	27	1080	6	<5	<20	84 < 0.01	<10	35	<10	<1	357
31	99RE129	5	<0.2	0.04	<5	<5	<5	0.02	<1	1	129	13	0.58	<10	<0.01	34	5	<0.01	8	10	<2	<5	<20	<1 <0.01	<10	1	<10	<1	38
32	99RE130	10	<0.2	0.02	<5	<5	<5	0.07	<1	<1	172	4	0.28	<10	<0.01	62	5	<0.01	6	<10	<2	<5	<20	<1 <0.01	<10	<1	<10	<1	5
33	99RE131	15	8.0	0.58	<5	60	<5	0.13	1	5	66	35	1.99	<10	0.33	140	16	0.02	13	850	6	<5	<20	8 < 0.01	<10	30	<10	2	139
34	99RE132	20	0.2	1.57	60	95	10	1.93	<1	12	52	69	3.31	<10	1.15	557	2	0.01	11	1070	14	10	<20	178 0.07	<10	38	<10	16	68
35	99RE133	10	0.2	2.06	<5	70	5	1.98	<1	22	43	122	4.25	<10	1.46	867	5	0.02	29	1260	6	10	<20	133 <0.01	<10	44	<10	3	76
36	99RE134	10		2.25	<5	90	<5	0.27	<1	16	48	129	4.82		1.54	353	5	0.02	20	1230	12	5	<20	34 < 0.01	<10	46	<10	<1	92
37	99RE135	15	0.4	0.32	<5	90	<5	0.13	2	18	40	112	4.03		0.03	372	20	0.02	55	840	6	<5	<20	15 <0.01	<10	14	<10	<1	425
38	99RE136	10	<0.2	0.03	<5	<5	<5	0.08	<1	<1	114	10	0.29	<10		39	3	<0.01	5	30	<2	<5	<20	2 < 0.01	<10	1	<10	<1	15
39	99RE137	10	<0.2	1.65	<5	80	<5	0.83	<1	11	60	84	3.68			275	5	0.01	19	1170	10	10	<20	49 0.01	<10	49	<10	<1	54
40	99RE138	5	<0.2	0.29	<5	10	<5	0.03	<1	3	75	3	0.80	10	0.09	198	2	<0.01	9	110	6	<5	<20	<1 <0.01	<10	2	<10	<1	15
44	99RE139	E	40 O	0.40	aF.	-F		0.00	-4	3	400	_	0.00	.40	004	474			40	=0	4.0	_							
41		5		0.18	<5 -5	<5	<5	0.02	<1	_	162	7			0.04	471		<0.01	10	70	12	<5	<20	<1 <0.01	<10	2	<10	<1	10
42	99RE140 99RE141	5 <5	<0.2 <0.2	3.75 0.17	<5 <5	70 25	25 <5	4.50 0.71	<1 <1	47 2	202	2		_	3.53	1330	6	0.03	113	670	6	5	<20	164 < 0.01	<10	148	<10	<1	82
43 44	99RE141	ຸດ 5	<0.2	0.17	~ 5	25 15	ຸດ <5	0.71	<1	5	150	4	0.63		0.04	422	4	0.01	7	200	26	<5 -5	<20	47 <0.01	<10	1	<10	5	8
45				2.12	~≎ <5	40	20	1.14	~ı <1	-	108	8 48	1.34	<10	0.21	332	ت ه۔	0.01	13	120	10	<5	<20	<1 <0.01	<10	4	<10	<1	26
40	99NE 143	~0	40,2	2.12	~0	40	20	1.14	~1	41	183	40	3.00	<10	1.95	636	<1	0.01	52	620	8	20	<20	42 0.37	<10	68	<10	28	82
46	99RE144	5	0.2	0.42	<5	20	<5	0.05	<1	8	99	15	0.82	10	0.15	1131	3	0.02	12	130	12	<5	<20	2 < 0.01	<10	3	<10	3	22
47	99RE146	5	<0.2	1.75	15	35	<5	0.08	<1	18	61	44	3.95	20		1057	4	0.01	33	310	28	<5	<20	4 0.02	<10	14	<10	<1	75
48	99RE147	15	<0.2	0.14	<5	<5	<5	0.09	<1	4	191	59	0.59	<10		241	5	0.01	8	30	16	<5	<20	2 <0.01	<10	<1	<10	<1	5
49	99RE148	<5	<0.2	1.08	<5	25	<5	0.04	<1	25	68	71	3.00	10	0.56	758	5	0.01	22	200	60	<5	<20	3 0.01	<10	7	<10	<1	55
50		<5	0.4	0.83	<5	5	<5	0.43	<1	10	147	9	1.89	<10		2897	5	0.01	14	350	98	5	<20	22 <0.01	<10	6	<10	<1	39
																						=		•••		-		- 1	00
51	99RE150	<5	<0.2	2.48	<5	30	15	1.01	≺1	26	51	68	3.54	<10	1.97	592	<1	0.04	40	330	10	20	<20	10 0.17	<10	80	<10	19	46
52	99RE151	<5	<0.2	2.58	<5	20	20	1.56	<1	28	59	61	4.09	<10	1.82	643	<1	80.0	52	480	10	10	<20	2 0.25	<10	87	<10	40	49
53	99RE152	<5	<0.2	1.77	<5	420	10	0.72	≺ 1	14	86	35	2.90	<10	1.38	822	<1	0.05	27	700	8	15	<20	7 0.12	<10	61	<10	26	44

Et#	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	٧	W	<u>Y</u>	Zn
QC D	ATA:																													
Resp	it:																													
1	99RE100	10	<0.2	1.24	<5	205	10	0.39	<1	10	86	60	2.35	<10	0.83	469	<1	0.01	15	450	12	15	<20	6	0.09	<10	20	<10	30	48
36	99RE134	15	<0.2	2.30	<5	80	<5	0.27	<1	16	4 5	127	4.88	<10	1.59	335	5	0.02	19	1230	14	15	<20	30	<0.01	<10	47	<10	<1	94
Repe	at:																													
1	99RE100	5	<0.2	1.24	<5	200	5	0.39	<1	10	91	61	2.35	<10	0.82	471	<1	0.02	15	440	10	15	<20	6	0.08	<10	20	<10	28	48
10	99RE109	<5	<0.2	3.21	<5	.20	25	2.25	≺1	31	31	71	4.72	<10	1.85 .	642	<1	0.04	37	630	12	15	<20	6	0.19	<10	87	<10	58	55
19	99RE117	5	<0.2	2.03	<5	20	30	0.86	<1	31	118	44	3.51	<10	1.65	653	<1	0.03	46	640	8	15	<20	9	0.24	<10	38	<10	39	62
36	99RE134	15	<0.2	2.24	5	80	<5	0.27	<1	16	48	129	4.81	<10	1.53	352	5	0.02	20	1260	14	10	<20	29	<0.01	<10	45	<10	<1	92
45	99RE143	-	<0.2	1.97	<5	40	20	1.06	<1	38	172	45	2.82	<10	1.84	604	<1	0.01	50	590	8	20	<20	39	0.35	<10	64	<10	24	78
Stand	lard:																													
GEO'	99	135	1.0	1.80	65	150	5	1.80	1	20	64	85	3.82	<10	0.98	649	<1	0.02	25	680	24	10	<20	52	0.09	<10	76	<10	8	68
GEO'	99	125	0.8	1.82	65	145	<5	1.81	<1	18	65	85	3.85	<10	0.96	655	<1	0.02	25	680	22	10	<20	58	0.09	<10	76	<10	8	70

df/484 XLS/99

15-Oct-99

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 99-561

PO BOX 1437 KAMLOOPS, BC V2C 6L7

ATTENTION: ED FREY

No. of samples received: 18

Sample type: Rock

PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: E. Frey

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Mo N	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	w	Υ	Zn
1	99RE153	<5	<0.2	2.92	<5	20	10	3.02	<1	29	81	64	4.58	<10	1.45	669	<1	0.05	29	480	12	<5	<20	7	0.34	<10	135	<10	46	60
2	99RE154	<5	<0.2	3.26	<5	45	10	2.59	<1	40	114	59	5.91	<10	2.31	936	<1	0.08	66	590	18	<5	<20	13	0.49	<10	189	<10	72	67
3	99RE155	<5	<0.2	2.94	<5	65	20	1.72	<1	45	85	63	6.59	<10	2.47	992	<1	0.03	61	640	16	<5	<20	12	0.57	<10	208	<10	84	75
4	99RE156	<5	<0.2	3.83	<5	60	20	2.73	<1	48	167	54	6.97	<10	2.73	1189	<1	0.03	76	650	20	<5	<20	24	0.59	<10	228	<10	86	76
5	99RE157	<5	<0.2	3.23	<5	40	10	2.82	<1	38	127	62	5.77	<10	2.33	919	<1	0.05	64	550	20	10	<20	17	0.44	<10	170	<10	62	80
6	99RE158	<5	<0.2	2.84	<5	30	<5	2.91	<1	30	120	49	4.27	<10	1.68	624	<1	0.03	49	490	16	5	<20	7	0.32	<10	136	<10	44	53
7	99RE159	<5	<0.2	3.24	<5	35	10	2.03	<1	38	39	58	6.68	<10	1.97	1050	<1	0.01	32	570	18	<5	<20	5	0.36	<10	163	<10	44	79
8	99RE160	330	0.4	1.22	60	45	<5	2.88	<1	18	50	23	4.07	<10	0.92	736	4	0.01	21	260	6	15	<20	15	0.01	<10	116	<10	9	40
9	99RE161	15	<0.2	2.07	<5	40	10	3.27	<1	22	42	46	3.91	<10	1.14	691	<1	0.04	17	340	10	<5	<20	11	0.28	<10	127	<10	52	50
10	99RE162	<5	<0.2	1.21	<5	60	<5	0.89	<1	15	81	43	2.81	<10	0.97	761	<1 <	<0.01	30	300	10	<5	<20	8	0.10	<10	33	<10	25	40
11	99RE163	<5	<0.2	1.30	<5	80	<5	0.30	<1	16	88	72	3.00	<10	0.91	597	<1 <	<0.01	31	320	10	<5	<20	9	0.08	<10	42	<10	24	58
12	99RE164	<5	<0.2	2.43	<5	30	10	3.15	≺1	27	60	48	3.70	<10	1.28	544	<1	0.06	54	570	16	<5	<20	7	0.36	<10	101	<10	55	64
13	99RE165	<5	<0.2	3.54	<5	20	15	3.75	<1	41	78	54	5.74	<10	2.46	705	<1	0.01	43	580	18	<5	<20	3	0.45	<10	141	<10	40	69
14	99RE166	<5	<0.2	2.81	<5	20	10	3.91	≺1	29	90	54	4.01	<10	1.39	634	<1	0.06	56	580	16	5	<20	10	0.38	<10	113	<10	55	56
15	99RE167	<5	<0.2	2.27	<5	20	10	3.14	<1	27	63	4 5	3.71	<10	1.26	583	<1	0.06	53	510	12	<5	<20	8	0.30	<10	95	<10	43	57
16	99RE168	<5	<0.2	2.72	<5	25	15	2.42	<1	45	108	55	5.32	<10	1.88	776	<1	0.05	72	640	26	<5	<20	7	0.39	<10	116	<10	42	75
17	99RE169	10	<0.2	0.32	45	15	<5	1.79	<1	11	119	173	1.70	<10	0.25	370	3 <	<0.01	20	180	<2	<5	.<20	3	<0.01	<10	23	<10	8	20
18	99RE170	30	<0.2	0.30	135	135	<5	0.10	<1	2	83	23	1.30	<10	0.14	178	2 <	<0.01	7	430	12	<5	<20	<1	<0.01	<10	11	<10	10	14

QC DATA:																													
Resplit: 1 99RE153	<5	<0.2	3.01	<5	20	10	3.13	<1	31	77	72	4 .77	<10	1.50	705	<1	0.05	30	520	14	<5	<20	7	0.36	<10	139	<10	4 7	62
Repeat: 1 99RE153 10 99RE162		<0.2 <0.2		<5 <5	15 60	10 <5	2.91 0.91	<1 <1	27 16	71 84	59 44	4.20 2.89	<10 <10	1.39 1.00	629 788	<1 <1	0.0 4 0.01	28 32	450 320	16 8	<5 5	<20 <20		0.31 0.11	<10 <10	130 34	<10 <10	42 25	70 40
Standard: GEO'99	120	1.0	1.70	65	150	<5	1.86	<1	20	61	74	3.83	<10	0.97	697	<1	0.01	24	670	22	< 5	<20	55	0.11	<10	75	<10	9	85

Et#. Tag# Au(ppb) Ag Al% As Ba Bi Ca% Cd Co Cr Cu Fe% La Mg% Min Mo Na% Ni P Pb Sb Sn Sr Ti% U V W Y Zn

df/546B XLS/99

ED FREY

ero-TECH LABORATORIES LTD.

ROCK SAMPLES MAP INDEX

20-Aug-99

Phone: 250-573-5700

Fax : 250-573-4557

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 99-364

ED FREY PO BOX 1437 KAMLOOPS, BC V2C 6L7

REF.# 99/2000 P136

ATTENTION: ED FREY

No. of samples received: 5

Sample type: Rock

PROJECT #: None Given SHIPMENT #: None Given

Samples submitted by: Ed Frey

PROJECT MAP

Values in ppm unless otherwise reported

	<u> Ct</u>		Au(ppb)	Ag	Al %	AS	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La I	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	- 11	v	W	v	7
LD-1	1	99RE1	<5	0.4	0.11	< 5	30	<5	2.65	1	6	126	11	2.01	<10	0.09	862	5	0.01	11	340	12	<5	<20		<0.01	<10				Zn
LP-1	2	99RE2	20	0.4	0.04	<5	15	<5	0.03	<1	<1	136	5	0.30	<10	<0.01	26		<0.01	3	550		<5	<20				۷.	<10	<1	24
	3	99RE5	<5	<0.2	2.20	< 5	25	15	0.67	<1	30	90	61	4.36	<10	1.75	677		0.03	45	640	8	10	<20		<0.01.	<10	18	<10	1_	<1
CM-S	4	99RE6	<5	<0.2	2.41	<5	40	10	0.99	<1	32	67	56	4.91	<10	1.65	662	<1	0.03	41	790	8	10			0.22	<10	77	<10	34	50
	5	99RE7	<5	<0.2	1.94	<5	35	10	0.65	<1	28	45	51	4.05	<10	1.31	639	<1	0.03	28	670	6	10 10	<20 <20		0.32 0.25	<10 <10	97 75	<10 <10	50 47	59 49
	QCI	DATA:																													
	Res	nlit:																													
	1	99RE1	<5	0.2	0.11	<5	25	<5	2.51	<1	6	137	10	1.89	<10	0.09	818	5	0.01	11	330	12	<5	<20	66	<0.01	<10	2	<10	<1	21
	Rep		_																												
	1	99RE1	<5	0.4	0.12	< 5	25	5	2.62	<1	6	124	11	1.99	<10	0.10	843	5	0.01	11	330	12	<5	<20	66	<0.01	<10	2	<10	2	24
		idard:	400	4.0	4 75	••		_																							
	GEC	799	120	1.2	1.78	60	150	< 5	1.84	<1	20	64	86	3.82	<10	0.96	645	<1	0.02	25	690	22	5	<20	54	0.09	<10	76	<10	7	65

df/337 XLS/99 ECO-TECH LABORATORIES LTD.

rahk J. Pezzotti, A.Sc.T. B.C. Certified Assayer

31-Aug-99

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

ICP CERTIFICATE OF ANALYSIS AK 99-390

PO BOX 1437 KAMLOOPS, BC V2C 6L7

ATTENTION: ED FREY

No. of samples received: 28

Sample type: Rock

PROJECT #: None Given SHIPMENT #: None Given

Samples submitted by: Ed Frey

	Et #.	Tag#	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Сг	Cu	Fe %	La Mg %	Mn	Mo Na%	Ni	P	РЪ	Sb	Sn	Sr	Ti %	1.1	v	w	~	Zn
	1	99RE8	5	<0.2		<5	55	10	0.62	<1	10	109	4	2.00	20 0.70	356	<1 0.04	12	870	8	<5	<20	55	0.14	<10	43	<10	27	33
	∆ -²	99RE9	5	<0.2	0.95	5	125	15	0.64	<1	10	97	5	2.18	20 0.72	377	<1 0.05	9	1070	6	5	<20	35	0.16	<10	51	<10	29	34
· M'	3	99RE10	<5	<0.2	0.92	<5	245	10	1.07	<1	10	50	19	1.32	<10 0.51	180	<1 0.11	17	730	4	10	<20	14	0.20	<10	44	<10	52	10
Cir	4	99RE11	<5	<0.2	0.75	<5	20	<5	1.07	<1	12	55	43	1.39	<10 0.65	231	<1 0.11	17	780	4	10	<20	<1	0.14	<10	51	<10	43	11
	5	99RE12	5	<0.2	1.50	<5	30	10	1.49	<1	13	54	58	1.56	<10 0.49	182	<1 0.13	23	760	4	5	<20	21	0.19	<10	62	<10	47	11
	7						-								•	*							<u> </u>	0.10	-10	V2	-10	77	11
cM-	~ 6	99RE13	<5	<0.2		<5	25	15	1.23	<1	21	70	45	2.72	<10 1.28	418	<1 0.10	34	580	6	10	<20	6	0.25	<10	82	<10	52	28
	<u> </u>	AA 17 1 1 1 1		<0.2		<5	<5	<5	0.02	<1	≺1_	178	2	0.23	<10 <0.01	32	6 < 0.01	5	<10	8	<5	<20		<0.01	<10	1	<10	<1	<1
	8	99RE17	_	<0.2		<5	35	20	1.64	<1	20	25	4	4.62	<10 0.89	457	<1 0.04	2	1370	8	5	<20		0.18	<10	104	<10	89	21
	9	99RE18	<5	<0.2		<5	55	20	1. 4 6	<1	27	33	5	5.30	<10 1.13	606	<1 0.03	10	1470	6	<5	<20		0.19	<10	159	<10	76	27
	10	99RE19	<5	<0.2	3.15	<5	35	20	2.61	<1	20	33	6	5.29	<10 1.01	772	<1 0.03	1	1480	6	<5	<20		0.18	<10	60	<10	100	26
			_																				-			70	-10	.00	20
	11	99RE20	5	<0.2	2.61	<5	45	15	3.18	<1	6	103	3	3.13	<10 0.17	670	<1 0.03	3	410	8	<5	<20	<1	0.09	<10	2	<10	182	24
.٧	12	99RE21	<5	<0.2	1.73	<5	120	15	1.69	<1	6	72	5	3.42	<10 0.22	875	1 0.04	2	570	4	<5	<20	<1	0.08	<10	1	<10	166	39
	13	99RE22	<5	<0.2	0.62	<5	175	10	0.50	<1	7	254	6	0.91	20 0.57	170	<1 0.03	36	1260	2	5	<20	<1	0.08	<10	45	<10	72	4
	14	99RE23	<5	<0.2	3.34	<5	30	25	2.77	<1	31	148	52	4.26	<10 1.80	751	<1 0.08	51	640	8	10	<20	5	0.37	<10	125	<10	80	48
	15	99RE24	5	<0.2	1.17	5	395	<5	0.05	<1	3	66	131	2.35	20 0.85	262	3 < 0.01	2 6	420	6	10	<20	<1	<0.01	<10	31	<10	3	107
	40																									•.		•	107
	16	99RE25	30	<0.2	0.54	<5	65	<5	0.12	<1	11	101	75	2.28	10 0.40	138	2 < 0.01	28	730	<2	<5	<20	<1	<0.01	<10	19	<10	12	45
	17	99RE26	330	8.0	1.01	<5	140	<5	0.02	<1	4	110	118	2.89	<10 0.60	293	7 < 0.01	16	240	8	<5	<20		<0.01	<10	21	<10	<1	107
	18	99RE27	<5	<0.2	0.55	<5	170	<5	0.03	<1	2	99	26	1.45	<10 0.38	217	1 < 0.01	14	230	6	<5	<20		<0.01	<10	12	<10	<1	38
	19	99RE28	5	<0.2	1.77	<5	345	5	0.78	<1	17	91	102	3.50	<10 1.18	996	<1 0.03	37	570	14	<5	<20	12	0.17	<10	65	<10	45	36 72
	20	99RE29	35	<0.2	2.31	15	70	<5	1.01	2	97	151	5113	>10	10 1.64	449	24 0.02	50	1500	14	<5	<20	. —	0.17	<10	137	<10		164
																					-		~	-, , ,	- , 0	107	710	0	104

	Et #.	Tag#	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %		v	127		_
	21	99RE30	5	<0.2	3.85	< 5	540	15	1.29	<1	30	51	96	4.98	<10	2.65	1703	<1	0.16	50							<u> </u>	V	W	Υ	Zn
•	22	99RE31	<5	<0.2	4.56	10	45	<5	3.23	<1	14	72	76	1.53	<10	0.70	293	<1			330	10	5	<20	25	0.13	<10	143	<10	21	54
١, ١	23	99RE32	5	<0.2	2.26	5	915	5	1.20	<1	13	114	99	3.22	<10	1.46	1797	•	0.41	29	430	16	10	<20	79	0.09	<10	55	<10	24	13
Ň	24	99RE33	<5	<0.2	2.73	<5	75	20	1.42	· <1	34	45	65	4.72	<10	–		<1	0.04	43	690	18	15	<20	13	0.14	<10	72	<10	45	123
7	25	99RE34	<5	<0.2	1.25	< 5	455	< 5	0.97	<1	8		71			2.04	1063	<1	0.04	59	610	10	10	<20	6	0.32	<10	127	<10	69	65
			_		1.20	-0	400	٠.,	0.57	~1	o.	141	71	1.79	<10	0.58	352	<1	0.01	24	590	12	<5	<20	7	0.10	<10	36	<10	37	50
	26	99RE35	20	<0.2	0.60	10	340	ع د	0.46		_	A.E.																			
	27	99RE36	10	<0.2	0.49	<5		<5	0.16	<1	6	95	55	2.15	10	0.32	317		<0.01	29	930	8	10	<20	15	<0.01	<10	49	<10	17	118
	28	99RE37	10	<0.2		-	275	<5	0.04	<1	2	62	33	1.42	<10	0.29	311	2	<0.01	12	300	8	5	<20	<1	<0.01	<10	22	<10	<1	38
	20	OU/ES!	10	~0.2	0.90	25	45	20	8.38	<1	49	101	88	7.32	<10	3.10	1607	7	0.01	171	3060	6	15	<20	216	0.02	<10	30	<10	1	116
																												-	-,,,	•	110
	QC DA Respli																														
	1	99RE8	5	<0.2	88.0	< 5	50	10	0.66	<1	10	110	4	1.97	20	0.69	344	<1	0.04	13	860	8	5	<20	51	0.13	<10	41	<10	26	31
- 1	Repeat	t <i>:</i>																													
	1	99RE8	5	<0.2	0.87	<5	50	10	0.60	<1	10	104	3	1.94	20	A 60	220		^ ^4			_									
	10	99RE19	<5	<0.2	3.11	<5	30	20	2.57	<1	21	33	6			0.68	336	<1	0.04	12	850	6	<5	<20	50	0.13	<10	41	<10	24	31
	19	99RE28	5	<0.2	1.77	<5	360	5	0.80	<1	17	99	103	5.29	<10	1.00	777	<1	0.03	2	1470	8	<5	<20	2	0.17	<10	59	<10	102	27
			_		•	••	000	•	0.00	~!	17	99	103	3.51	<10	1.17	999	<1	0.03	40	580	14	5	<20	13	0.18	<10	65	<10	49	72
	Standa	rd:																													
	GEO'99		115	1.0	1.80	50	150	10	1.86	<1	18	64	84	3.82	<10	0.96	646	<1	0.02	25	680	22	<5	<20	55	0.10	<10	71	<10	9	67

df/405 XLS/99

ICP CERTIFICATE OF ANALYSIS AK 99-432

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ED FREY
PO BOX 1437
KAMLOOPS, BC
V2C 6L7

ATTENTION: ED FREY

No. of samples received: 41
Sample type: Rock
PROJECT #: None Given
SHIPMENT #: None Given
Samples submitted by: Ed Frey

																	•										mou by	, ,	v,			
:	Et#		Au(ppb)		Al %	As	Ва	Bi	Ca %	Cd	Co	Cr	Сп	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	РЬ	Sb	Sn	Q.	Ti %		.,	141	.,		
	7	99RE38	5	0.6	0.49	<5	125	<5	0.16	2	9	41	71	3.08	<10	0.13	356										U	٧	W	Y	Zn	
	2	99RE39	5	0.2	1.46	<5	110	<5	0.20	<1	11	38	78	3.38	10	1.11		-		20	840	8	<5	<20	40	<0.01	<10	19	<10	<1	148	
_	3	99RE40	5	0.6	1.10	<5	80	< 5	1.15	5							307		<0.01	15	1160	22	5	<20	22	<0.01	<10	31	<10	<1	106	
l . A	. 4	99RE41	10	<0.2	0.78	65	120	_	•	_	15	60	113	4.03	10	0.71	430	14	0.01	47	1150	8	5	<20	99	<0.01	<10	43	<10	<1	338	
W.	5	99RE42	<5					<5	0.14	3	6	56	35	3.60	10	0.25	302	28	0.01	42	750	12	< 5	<20			<10	59	<10			
4.	•	0011L42	~5	<0.2	1.73	<5	115	<5	0.71	<1	22	65	93	3.15	<10	1.32	497	<1	0.02	20	1230	4	15	<20	45		_	-		<1 -	440	
	_																					•	15	~20	40	0.11	<10	46	<10	6	48	
•	6	99RE43	5	0.2	1.47	<5	110	10	0.13	<1	5	34	27	3.79	<10	1.13	184	5	0.03	5	1000	46										
	7	99RE44	<5	<0.2	2.58	<5	250	5	0.57	<1	27	202	89	3.22	<10	2.58	717			_	1260	10	<5	<20	21	<0.01	<10	37	<10	<1	59	
	8	99RE45	5	0.4	1.39	<5	130	<5	0.18	<1	 8	40						<1	0.02	79	1040	6	20	<20	41	0.10	<10	43	<10	<1	43	
	9	99RE46	<5	<0.2		<5	75	15					<u>70</u>	4.05	<10	0.93	292	5	0.02	15	1180	10	<u><5</u>	<20	_ 26	< 0.01	<10	26	<10	<1	61	
_	10	99RE47	<5	<0.2	2.21	_			0.88	<1	26	32	55	4.67	<10	1.86	746	<1	0.03	28	490	6	10	<20	3	0.16	<10	88	<10	37	48	
	5	OBITE	73	~0.2	2.21	<5	80	15	1.61	<1	26	98	33	2.97	30	2.19	511	<1	0.08	102	1790	8	20	<20	167	0.22	<10	68	-			
CM		000540	_																			•	-•		10,	0.22	~10	00	<10	48	53	
		99RE48	<5	<0.2	2.77	<5	60	20	1.55	<1	31	26	83	5.11	<10	1.56	677	<1	0.03	24	700	10	46	-00	40							
	12	99RE49	<5	<0.2	3.32	<5	60	25	1.22	<1	34	30	67	5.89	10	2.22	828	<1	0.07	47			15	<20	13	0.26	<10	124	<10	65	66	
	13	99RE50	<5	<0.2	2.31	<5	40	20	1.06	<1	30	80	64	3.76	<10	2.10		-			660	8	<5	<20	16	0.24	<10	120	<10	50	69	
	14	99RE51	<5	<0.2	1.92	<5	55	10	0.75	<1	30	93	67	3.33		_	530	<1	0.05	60	440	8	10	<20	13	0.26	<10	87	<10	42	47	
	15	99RE52	<5	<0.2	1.68	<5	20	10	0.97	<1	23				<10	1.91	469		0.04	60	500	6	20	<20	4	0.25	<10	62	<10	35	45	
CM	L		•			-0	2.0	10	0.51	~1	23	102	68	2.40	<10	1.36	409	<1	0.06	43	370	6	15	<20	11	0.25	<10	53	<10	40	32	
٠.	16	99RE53	-5	<0.2	4.00	45				_	_																	•••	.,0	40	JŁ	
	17	99RE54				<5	55	15	0.83	_<1	24	84	58	2.75	<10	1.51	470	<1	0.05	42	460	8	10	<20	7	0.28	<10	00	-40			
	- 11		<5	<0.2		<5	65	15	6.18	1	45	228	49	7.86	20	4.71	1320	3	0.01	93	1200	<u>,</u>	10	<20	222			66	<10	45	40	
	18	99RE55	<5	<0.2	2.16	<5	40	10	>10	<1	15	81	48	3.74	10		1290	4	0.01	16	720	7			232	0.02	<10	249	<10	<1	87	
	19	99RE57	<5	0.2	1.62	<5	70	5	1.86	<1	18	26	13	3.63	20			-				26	15	<20	386	<0.01	<10	52	<10	<1	47	
١.	20	99RE58	<5	<0.2	1.65	<5	165	< 5	0.42	<1	21		•			0.65	662	3	0.02	2	1040	20	5	<20	57	<0.01	<10	17	<10	<1	91	
LO-	7		•	0.2		-0	.00	-0	0.42	~1	21	29	148	4.43	10	0.49	542	4	0.01	8	1810	12	<5	<20	20	<0.01	<10	24	<10	<1	73	
レ	21	99RE59		-0.0	0.00																							'	-10	~1	7.5	
	20		<5	<0.2	2.68	<5	70	15	1.45	<1	18	34	52	5.31	10	1.26	418	4	0.01	12	1430	6	5	<20	64	-0.04	-40	••				
	22	99RE60	<5	<0.2	2.87	<5	80	10	4.70	<1	28	365	13	5.34	20	2.21	929		0.01	90	1390	=	•			<0.01	<10	39	<10	<1	111	
	23	99RE61	5	<0.2	1.89	<5	60	20	4.73	<1	22	294	17	3.99	10	1.39	848	_				8	10	<20		<0.01	<10	104	<10	<1	60	
	24	99RE62	5	<0.2	0.16	<5	45	<5	0.14	<1	3	115	4		-				<0.01	79	1340	8	5	<20	172	<0.01	<10	61	<10	4	40	
	25	99RE63	<5	<0.2	0.05	5	15	<5	0.02	<1	-		•	0.59	20	0.02	93		<0.01	7	520	<2	<5	<20	9	<0.01	<10	2	<10	3	6	
				-0.2	5.55	3	13	~,	0.02	~ 1	3	136	19	0.47	<10		397	6 -	<0.01	9	30	6	<5	<20	1	<0.01	<10	1	<10	<1	8	
															ra	ge 1									-		. •	•	-,0	71	O	

0-	Et#.		Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Сг	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	7-	
<u> </u>	26	99RE64	<5	<0.2	0.05	<5	20	<5	0.01	<1	4	137	13	0.53		<0.01	323	3		9	60	<2	<5	<20		<0.01	<10			•	<u>Zn</u>	
	27	99RE66	<5	<0.2	2.21	<5	295	10	1.47	<1	23	50	76	5.40	30		1126	1	0.03		1180	22	5	<20	_	0.11	<10	1	<10	<u><1</u>	3	_
	28	99RE67	5	<0.2	2.48	<5	185	15	1.14	<1	27	30	43	6.28	20		1120	4	0.03	8		14	10	<20	175	0.03		213	<10	5	70	
	29	99RE68	5	<0.2	1.76	10	150	10	2.11	<1	23	56	54	5.14	40	1.92	1187	Á	0.03	16	1220	8	<5	<20	311	0.03	<10	205	<10	<1	79	
	30	99RE69 ·	<5	<0.2	1.35	5	680	10	1.29	<1	23	32	68	3.53	40	0.88	836	<1	0.02	7		52	<5	<20	247		<10	187	<10	<1	76	
																7.05	500		0.0 <u>£</u>	,	1330	02	~5	~20	241	0.08	<10	120	<10	21	74	
	31	99RE70	<5	<0.2	2.03	<5	200	<5	2.22	<1	19	56	70	5.06	60	1.99	854	5	0.02	15	1590	10	5	<20	169	-0.04	-40			_		
	32	99RE71	<5	<0.2	2.33	<5	290	10	2.81	<1	23	18	53	6.03	40	2.61	1064	5	0.03	6	1630	28	10	<20		<0.01	<10	111	<10	8	74	
	33	99RE72	15	1.0	0.52	<5	165	5	0.06	<1	3	58	37	2.92	10	0.18	74	_	<0.01	11	610	68	<5	<20		<0.01	<10	124	<10	<1	74	
N,	34	99RE73	5	<0.2	0.20	<5	125	<5	1.56	<1	5	52	7	1.34	20	0.04	470	3	0.03	3	520	4	-∍ <5	<20		<0.01	<10	24	<10	<1	85	
•	35	99RE74	<5	0.4	3.32	20	205	5	4.63	1	39	79	155	6.97	50	2.93	1497	_	<0.01	32	2880	16	10	<20	-	<0.01	<10	4	<10	12	17	
																4.50		•	-0.01	JZ.	2000	10	10	~20	392	<0.01	<10	89	<10	2	90	
	36	99RE75	10	8.0	0.38	5	120	5	0.05	<1	2	63	10	1.86	<10	0.13	51	4	<0.01	13	520	18	<5	<20	24	-0.04	-40	4.4	-10			
	37	99RE79	15	0.4	0.26	<5	105	<5	0.38	<1	1	98	7	0.82		<0.01	65	4		5	270	22	<5	<20		<0.01 <0.01	<10	17	<10	<1	46	
	38	99RE80	10	0.2	0.15	<5	50	<5	1.36	<1	3	56	6	1.28	10	0.04	451	4	0.01	2	110	6	<5	<20		<0.01 <0.01	<10	2	<10	6	<1	
	39	99RE81	10	0.2	0.23	<5	115	<5	1.25	<1	4	52	11	1.29	<10	0.03	618	•	<0.01	4	240	6	<5	<20			<10	2	<10	2	16	
	40	99RE82	20	0.4	0.20	<5	75	<5	0.03	<1	<1	27	4	0.49		<0.01	21	2		3	190	22	-5 <5	<20		<0.01 <0.01	<10	1	<10	7	15	
	41	99RE83	5	0.4	0.10	<5	40	<5	8.29	<1	4	72	23	3.96	20	3.08	1739	4	0.02	3	320	16	25	<20	552 ·		<10	4	<10	4	<1 	
																		•	0.02	J	320	10	23	~20	992	~U.U1	<10	16	<10	13	66	
	QC D	ΔΤΔ.																		•									-			
	Respi																															
	1	99RE38	5	0.6	0.50	<5	115	<5	0.19	4	•	20	-00	0.05				_														
	36	99RE75	10	0.8	0.35	<5	110	-5 5	0.06		9	38	69	3.25	10	0.14	357	9	0.02	21	870	8	<5	<20		<0.01	<10	20	<10	<1	153	
	-	CONETO		0.0	0.55	~5	110	Ş	0.06	<1	2	58	10	1.94	<10	0.13	51	5	<0.01	14	560	16	<5	<20	21	<0.01	<10	16	<10	<1	48	
	Repe	et:																														
	i	99RE38	5	0.6	0.49	<5	120	<5	0.16	1	9	40	68	3.09	<10	0.13	267	_	0.00			_	_									
	10	99RE47	<5	<0.2	2.29	<5	75	15	1.75	<1	27	100	33	3.04	30	2.25	357	9	0.03	20	830	6	<5	<20		<0.01	<10	19	<10	<1	147	
	19	99RE57	<5	<0.2	1.59	< 5	65	< 5	1.82	<1	18	25	13	3.58	20	0.64	533 656	<1	0.09		1830	8	20	<20		0.23	<10	72	<10	49	52	
	36	99RE75	-	1.2	0.40	<5	125	<5	0.09	<1	2	65	10	1.89	<10	0.15		4	0.02	3	1010	18	5	<20		<0.01	<10	18	<10	<1	89	
					0		,	-0	0.00	٠,	_	05	10	1.08	~10	U. 15	59	4	<0.01	14	530	18	<5	<20	21 -	<0.01	<10	18	<10	<1	46	
	Stano	lard:																														
	GEO'9	99	125	1.2	1.78	65	170	10	1.87	<1	18	58	91	3.85	10	0.98	679	<1	0.02	22	680	22	10	-20	50	0.40	4.5					
	GEO'9	99	125	1.4	1.76	65	170	<5	1.82	<1	20	54	87	3.86	10	0.92	653	<1	0.02	25	660	22	10	<20 <20		0.10	<10	73	<10	8	72	
						•		_		•		•	Ŭ,	5.00		0.52	000	~1	U.UZ	23	000	24	10	<20	56	80.0	<10	76	<10	9	69	

df/432 XLS/99

17-Sep-99

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ICP CERTIFICATE OF ANALYSIS AK 99-465R

PO BOX 1437 KAMLOOPS, BC V2C 6L7

ATTENTION: ED FREY

No. of samples received: 19

Sample type: Rock

PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: E. Frey

3	Et #.	Tag #	Au(ppb)		Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La Mg%	Mn	Mo Na%	Ni P	РЬ	Sb	e	O- T'A					
_ \	1	99RE76	30	<0.2		15	55	<5	0.09	<1	5	113	60	3.84	<10 0.02	69	15 0.01	17 810	10	<5	Sn	Sr Ti%	U		W	<u> </u>	Zn
TD-,	2	99RE77	10		0.03	5	15	<5	0.04	<1	<1	110	10	0.56	<10 <0.01	39	12 < 0.01	5 360	50	<5	<20 <20	40 < 0.01	<10	22	<10	<1	156
	3	99RE78	10		0.02	5	5	<5	0.02	<1	<1	162	16	0.56	<10 <0.01	42	18 <0.01	6 300	62	√ 5	<20 <20	12 < 0.01	<10	9	<10	1	47
	-	99RE84	>1000	28.0	0.16	200	245	<5	0.05	1	13	103	2649	3.89	10 <0.01	72	71 0.01	3 610	678	90	20	12 <0.01 42 0.02	<10	13	<10	<1	58
	5	99RE85	>1000	29.2	0.09	1090	90	<5	0.01	11	124	45 >	10000	>10	<10 <0.01	7	113 < 0.01	13 >10000	184	<5	<20	42 0.02 2 <0.01	<10 10	14	<10	<1	101
	6	99RE86	920	>30	0.45	255	0.0	_											,		-20	2 ~0.01	10	21	<10	<1	1541
	7	99RE87	>1000	>30	0.45 0.23	255	90	<5 	0.01	4	73		10000	>10	<10 0.10	60	217 < 0.01	11 >10000	80	<5	<20	2 <0.01	10	177	<10	4	E00
	8	99RE88	45	1.0	2.74	395 175	100 195	<5 -E	0.06	15	115		10000	>10	<10 <0.01	23	317 < 0.01	11 >10000	360	35	<20	<1 <0.01	10	46	<10	<1 <1	500
Λ	. 9	99RE89	>1000	>30	0.05	330	195	<5 ~5	0.32	2	11	267	6188	6.83	<10 2.10	974	16 <0.01	49 2700	64	10	<20	15 < 0.01	<10	155	<10	9	2550 276
	10	99RE90	>1000	>30	0.25	380	110	<5 <5	0.01 0.03	11	148 228		10000	>10	<10 <0.01	10	116 <0.01	6 >10000	142	<5	<20	1 < 0.01	10	6	<10	<1	352
V				•••	0.20	-		-0	0.03	11	220	02 >	10000	>10	<10 <0.01	15	333 <0.01	17 >10000	512	70	<20	15 <0.01	10	43	<10	•	1677
Ch	11	99RE91	45	<0.2	1.03	10	610	<5	0.09	<1	1	87	470	2.00	-40 000										. •	•	.0
	12	99RE92	340	6.2	0.93	205	115	<5	0.02	2	12	195	2403	2.80	<10 0.68	257	8 < 0.01	11 190	14	<5	<20	4 < 0.01	<10	38	<10	<1	43
	13	99RE93	>1000	27.7	0.06	320	90	<5	0.01	3	166		10000	>10 >10	<10 0.41	19	119 <0.01	7 2310	5 6	<5	<20	3 < 0.01	10	264	<10	<1	215
	14	99RE94	75	4.0	0.06	<5	95	<5	0.02	3	101		10000	>10	<10 <0.01 <10 <0.01	12	57 <0.01	10 >10000	116	15	<20	<1 <0.01	10	13	<10	<1	199
	15	99RE95	50	3.4	0.24	<5	115	<5	0.03	2	41		10000	>10	<10 <0.01	321 864	106 < 0.01	7 <10	<2	< 5	<20	3 <0.01	10	4	<10	<1	130
										_		•	.0000	- 10	10 0.15	004	132 <0.01	2 <10	<2	<5	<20	2 <0.01	10	13	<10	<1	110
	16	99RE96	30	1.0	0.05	<5	105	<5	0.02	2	80	8	6455	>10	<10 0.19	849	138 <0.01	4 .40	_	_							
	17	9 9RE9 7	75	3.0	1.30	75	305	<5	0.09	1	45	97	5319	>10	<10 0.15	401	175 <0.01	4 <10	<2	<5 -	<20	4 <0.01	10	6	<10	<1	62
	18	99RE98	15	0.4	2.19	20	875	<5	0.16	<1	7	94	1251	7.57	<10 2.33	241	36 < 0.01	17 260	4	<5	<20	6 0.01	10	69	<10	<1	219
	19	99RE99	10	<0.2	1.78	5	95	<5	0.13	<1	10	73	361	4.57	<10 1.24	963	7 <0.01	24 290	8	10	<20	4 < 0.01	10	66	<10	<1	90
												•	- - ·		1.24	555	7 ~0.01	35 770	10	10	<20	<1 <0.01	<10	88	<10	<1	35

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	٧,	w	v	~-
																									1 70			YV	<u> </u>	<u>Zn</u>
Resplit 1	99RE76	35	0.2	0.15	20	60	<5	0.09	1	6	117	70	4.07	<10	0.03	78	15	0.01	18	890	10	< 5	<20	42	<0.01	<10	24	<10	<1	169
Repeat 1 10	: 99RE76 99RE90			0.13 0.24	20 370	55 110	<5 <5	0.09 0.03	<1 10	6 226	109 58 >1				0.02 <0.01	66 15		0.01 <0.01	16 16 >	820 10000	12 486.	<5 65	<20 <20		<0.01 <0.01	<10 60	22 40	<10 <10	<1 <1	157 1585
Standa GEO'99		115	1.0	1.71	65	150	<5	1.79	<1	18	62	93	3.85	<10	0.96	647	<1	0.02	25	690	20	10	<20	60	0.07	<10	74	<10	8	68

df/465 XLS/99

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2. Kamloops, B.C. V2C 6T4
Phone (250) 573-5700 Fax (250) 573-4557
email: ecotech@mail.wkpowerlink.com

CERTIFICATE OF ASSAY AK 99-465

ED FREY
PO BOX 1437
KAMLOOPS, BC
V2C 6L7

21-Sep-99

ATTENTION: ED FREY

No. of samples received: 19

Sample type: Rock

PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: E. Frey

			Au	Au	Ag	Ag	Cu
	ET#.	Tag #	(g/t)	(oz/t)	(g/t)	(oz/t)	(%)
=	4	99RE84	1.14	0.033	-	-	-
	5	99RE85	4.45	0.130	-	-	4.60
_	6	99RE86	-	-	40.0	1.17	10.30
'ነ	7	99RE87	1.42	0.041	35.4	1.03	10.95
•	9	99RE89	2.72	0.079	35.9	1.05	3.71
	10	99RE90	2.06	0.060	35.6	1.04	13.20
	13	99RE93	1.38	0.040	-	_	5.72
	14	99RE94	-	-	-	-	2.64
	15	99RE95	-	-	-	-	1.12
C	C/DA	TA:					
S	itanda	ard:					
S	TD-M		1.31	0.038	-	-	-
N	lp-IA		-	•	-	-	1.44

ECO-TECH LABORATORIES LTD.
Frank J. Pezzotti, A.Sc.T.

Page 1

B.C. Certified Assayer

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 99-536

ED FREY PO BOX 1437 KAMLOOPS, BC V2C 6L7

ATTENTION: ED FREY

No. of samples received: 53
Sample type: Rock
PROJECT #: None Given
SHIPMENT #: None Given
Samples submitted by: Ed Frey

_	Et #.	. Tag#	Au(ppb)	Ag	A! %	As	Ba	Bi	Ca %	Cd	Co	Сг	Cu	Fe %	La	Mg %	Mn	Мо	Na %	NI	Р	РЬ	Sb	Sn	Sr	Ti %	U	v	w	v	Zn
	1	99RE100	<5	<0.2	1.13	<5	185	5	0.33	<1	9	85	58	2.21	<10	0.77	449	<1	0.01	15	400	8	10	<20	8	0.06	<10	16		36	
	2	99RE101	<5	<0.2	3.07	<5	25	10	2.76	<1	26	45	73	4.17	<10	1.44	566	<1	0.04	29	620	6	15	<20	6	0.20	<10	133	<10	26	46
	3	99RE102	5	<0.2	3.06	<5	25	20	1.87	<1	30	32	76	5.08	<10	1.80	728	<1	0.05	32	590	6	15	<20	٥		<10		<10	55	49
	4	99RE103	5	<0.2	3.19	<5	40	25	1.75	<1	36	70	79	5.56	<10	1.92	933	<1	0.04	43	630	8	15	<20	8	0.20 0.13		134	<10	56	60
-	5	99RE104	<5	<0.2	2.88	<5	55	15	2.11	<1	26	34	65	4.31	<10	1.53	712	<1	0.05	31	610	6	15	<20	7	0.13	<10	194	<10	78	63
	5												•					• •	0.00	01	010	U	13	~20	′	0.20	<10	122	<10	50	55
CN	6	99RE105	5	<0.2	2.21	<5	45	20	2.91	<1	24	115	34	3.84	<10	2.11	903	<1	0.02	44	450	6	20	<20	27	0.07	<10	0.4	-40	20	22
L'	7	99RE106	5	<0.2	3.86	5	40	35	1.95	<1	38	38	77	6.05	<10	2.29	964	<1	0.03	28	630	12	25	<20	2	0.07		84	<10	39	33
	8	99RE107	<5	<0.2	1.88	<5	15	10	0.81	<1	18	127	5	2.24	10	1.00	312	<1	0.31	33	510	8	15	<20	<1	0.39	<10 <10	163	<10	70	64
	9	99RE108	5	<0.2	3.31	5	30	20	2.45	<1	25	36	66	4.40	<10	1.59	699	- <1	0.07	24	550	10	20	<20	~ 1	0.14	<10	42	<10	37	13
	10	99RE109	<5	<0.2	3.12	<5	20	20	2.14	<1	31	31	70	4.67	<10	1.83	634	<1	0.04	34	630	12	15	<20	5	0.14	<10	110	<10	48	54
																		•	3.01	Ψ.	000	12	1.5	720	J	J. 10	~10	87	<10	54	55
	11	99RE110	< 5	<0.2	4.00	5	25	30	2.43	<1	36	46	82	5.50	<10	2.37	827	<1	0.04	33	620	10	25	<20	3	0.24	<10	127	-10	60	50
	12	99RE111	<5	<0.2	3.42	<5	30	25	2.07	<1	31	20	67	5.27	<10	1.64	698	<1	0.08	29	710	10	15	<20	15	0.19	<10	100	<10	69	59
	13	99RE112	15	<0.2	3.31	10	45	25	4.51	<1	28	62	44	4.57	<10	2.33	957		<0.01	29	440	8	20	<20	27	0.19	<10	132	<10	60 60	61
	14	99RE113A	85	0.2	2.35	40	40	10	1.01	<1	31	177	53	5.28	<10	1.65	988		0.01	59	510	6	15	<20	4	0.03	<10	182	<10 <10	69 51	42
:M-1	15	99RE113B	5	<0.2	3.04	<5	20	25	2.81	<1	29	74	56	3.65	<10	1.73	609	<1	0.07	54	580	10	20	<20		0.03	<10	72	<10	59	58 49
																								-20		0.10	~ IU	12	~10	28	49
	1 16	99RE114	5	<0.2	0.65	<5	145	<5	0.24	<1	6	98	5	1.50	10	0.44	340	<1	0.04	9	360	8	5	<20	17	0.05	<10	25	<10	16	22
M.	17	99RE115	80	1.0	2.50	<5	55	<5	3.13	<1	16	271	504	6.22	<10	0.40	198	5	0.21	30	5680	30	< 5	<20	93	0.04	<10	354	<10	19	33
	18	99RE116	<5	<0.2	2.51	< <u>5</u>	15	10	2.03	<1	14	63	50	1.34	<10	0.66	191	<1	0.08	24	660	10	15	<20	21	0.10	<10	24	<10		25
	19	99RE117	<5	<0.2	2.01	<5	20	25	0.82	<1	31	113	44	3.49	<10	1.65	633	<1	0.03	46	640	8	15	<20	 -	0.10	<10	41	سنسب	35	14
4	ζ20	99RE118A	. 5	<0.2	2.29	<5	30	25	0.70	<1	32	74	51	4.53	<10	1.79	716	<1	0.03	43	810	10	10	<20	, A	0.19	_		<10	37	62
W.	•														•			•	3.00		0.0	10	.0	-20	~	U. IB	<10	64	<10	46	66
-	21	99RE118B	5	<0.2	2.19	<5	15	25	0.80	<1	31	88	47	3.97	<10	1.84	587	<1	0.02	44	670	8	15	<20	<1	0.26	-10	67	-40	20	5 0
	22	99RE119	5	<0.2	2.37	<5	30	20	0.76	<1	31	93	49		<10	2.00	728	<1	0.04	42	700	8	20	<20	٠ ر		<10	57	<10	39	53
1	23	99RE121	5	<0.2	2.85	<5	35	15	1.12	<1	32	38	74		<10	2.23	718	<1	0.04	57	620	10	25	<20	8	0.16	<10	68	<u><10</u>	42	61
W.	24	99RE122	5	<0.2	3.30	<5	35	30	1.27	<1	38	32	74		<10	2.53	933	<1	0.08	68	670	12	15			0.20	<10	76	<10	38	55
٦,	25	99RE123	<5	<0.2	2.75	<5	45	20	1.30	<1	31	36	66	4.74	<10	1.88	817	<1	0.08	44	420	ıZ	_	<20 <20	8	0.32	<10	110	<10	53	61
										_		30	-			age 1	017	~ 1	0.00	77	720	0	15	~20	8	0.14	<10	90	<10	38	59
																-															

	Et#		Au(ppb)	Ag	Al %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La Mg %	Mn	Mo Na%	Ni	P	D4.	O.L	_							
	26	99RE124	10	<0.2	4.14	<5	30	20	4.96	<1	25	59	118	3.51	<10 1.07	460				Pb	Sb	Sn	Sr Ti%	U	<u> </u>	W	Y_	Zn	
- \ - \	27	99RE125	10	<0.2	3.67	<5	25	25	2.52	<1	34	82	74	5.06	<10 2.24		<1 0.01	30	430	10	15	<20	3 0.13	<10	93	<10	42	30	
CW	28	99RE126	5	<0.2	2.57	<5	25	15	1.49	<1	29	30	58	4.30		813	<1 0.07	53	710	12	25	<20	5 0.20	<10	94	<10	67	60	
	29	99RE127	120	<0.2	3.26	10	50	15		<1	21	66	48	3.32		670	<1 0.08	50	590	8	15	<20	5 0.24	<10	89	<10	41	5 0	
	30	99RE128	10	0.6	0.73	<5	70	<5	0.55	8	16	36	84	<u>3.32</u> 4.11	· · · · · · · · · · · · · · · ·	628	<1 0.02	24	490	10	20	<20	<1 <u>0.18</u>	<10	95	<10	37	37	
						_	. •		0.00	·		30	04	4.11	<10 0.40	436	10 0.02	27	1080	6	<5	<20	84 <0.01	<10	35	<10	<1	357	
	31	99RE129	5	<0.2	0.04	< 5	<5	< 5	0.02	<1	4	129	42	0.50	-40 -0.04		<u>.</u>												
	32	99RE130	10	<0.2	0.02	<5	<5	<5	0.02	<1	1	172	13	0.58	<10 <0.01	34	5 <0.01	8	10	<2	<5	<20	<1 <0.01	<10	1	<10	<1	38	
_	33	99RE131	15	0.8	0.58	<5	60	-5 <5	0.07	-1	<1 =		4	0.28	<10 <0.01	62	5 <0.01	6	<10	<2	<5	<20	<1 <0.01	<10	<1	<10	<1	5	
1	▶ 33 34	99RE132	20	0.2	1.57	60	95	10	1.93		5	66	35	1.99	<10 0.33	140	16 0.02	13	850	6	<5	<20	8 < 0.01	<10	30	<10	2	139	
1	35	99RE133	10	0.2	2.06	<5	70			<1	12	52	69	3.31	<10 1.15	557	2 0.01	11	1070	14	10	<20	178 0.07	<10	38	<10	16	68	
N_k	•••	***************************************	10	U.E.	2.00	~.3	70	5	1.98	<1	22	43	122	4.25	<10 1.46	867	5 0.02	29	1260	6	10	<20	133 < 0.01	<10	44	<10	3	76	
l •	36	99RE134	10	<0.2	2.25	ء۔	00	.F	0.07		4.5												- -		• •	- , •	·	70	
	37	99RE135	15	0.4	0.32	<5	90	< 5	0.27	<1	16	48	129	4.82	<10 1.54	353	5 0.02	20	1230	12	5	<20	34 < 0.01	<10	46	<10	<1	92	
	38	99RE136	10			<5	90	<5	0.13	2	18	40	112	4.03	<10 0.03	372	20 0.02	55	840	6	<5	<20	15 <0.01	<10	14	<10	<1	425	
	39	99RE137		<0.2	0.03	<5 	<5	<5	80.0	<1	<1	114	10	0.29	<10 <0.01	39	3 <0.01	5	30	<2	<5	<20	2 < 0.01	<10	1	<10	<1		
P		99RE138		<0.2	1.65	<u><5</u>	80	<u><5</u>	0.83	<1	11	60	84	3.68	<10 1.45	275	5 0.01	19	1170	10	10	<20	49 0.01	<10	49	<10	<1	15	
	70	99IVE 130	J	<0.2	0.29	<5	10	<5	0.03	<1	3	75	3	0.80	10 0.09	198	2 < 0.01	9	110	6	<5	<20	<1 <0.01	<10	2	<10		54	
	41	99RE139	_	-0.0	0.40	_	_	_													_		10.01	-10	-	~10	<1	15	
	42	99RE140	-	<0.2	0.18	< 5	<5	<5	0.02	<1	3	162	7	0.68	<10 0.04	471	4 < 0.01	10	70	12	< 5	<20	<1 <0.01	<10	2	<10	-4	40	
	43	99RE141	5	<0.2	3.75	<5	70	25	4.50	<1	47	202	2	9.19	<10 3.53	1330	6 0.03	113	670	6	5	<20	164 < 0.01	<10	148	<10	<1	10	
1	44		<5	<0.2	0.17	<5	25	<5	0.71	<1	2	150	4	0.63	10 0.04	422	4 0.01	7	200	26	<5	<20	47 <0.01	<10	190	<10	<1 <u>-</u>	82	
6		99RE142	5	<0.2	0.54	<5	15	<5	0.04	< 1	5	108	8	1.34	<10 0.21	332	3 0.01	13	120	10	<5	<20	<1 <0.01	<10	4		5	8	
NA	45	99RE143	<5	<0.2	2.12	<5	40	20	1.14	<1	41	183	48	3.00	<10 1.95	636	<1 0.01	52	620	8	20	<20	42 0.37	<10		<10	<1	26	
V	AD	00000444	_			_		_												-			72 U.SI	~10	68	<10	28	82	
	46	99RE144	5	0.2	0.42	<5	20	<5	0.05	<1	8	99	15	0.82	10 0.15	1131	3 0.02	12	130	12	<5	<20	2 <0.01	<10	2	-40	•	20	
	47	99RE146		<0.2	1.75	15	35	<5	0.08	<1	18	61	44	3.95	20 0.84	1057	4 0.01	33	310	28	<5	<20	4 0.02	-	3	<10	3	22	
	48	99RE147	15	<0.2	0.14	<5	<5	<5	0.09	<1	4	191	59	0.59	<10 0.05	241	5 0.01	8	30	16	<5	<20		<10	14	<10	<1	75	
	49	99RE148	<5	<0.2	1.08	<5	25	<5	0.04	<1	25	68	71	3.00	10 0.56	758	5 0.01	22	200	60	<5	<20	2 < 0.01	<10	<1	<10	<1	5	
	50	99RE149	<5	0.4	0.83	<5	5	<5	0.43	<1	10	147	9	1.89	<10 0.45	2897	5 0.01	14	350	98	-5 5	<20	3 0.01	<10	7	<10	<1	55	
. 0				"													- 5.51	1 7	000		Ü	~ZU	22 <0.01	<10	6	<10	<1	39	
CM-2	• 51	99RE150		<0.2	2.48	<5	30	15	1.01	<1	26	51	68	3.54	<10 1.97	592	<1 0.04	40	330	10	20	<20	10 0.47	-40	20				
<u>~</u>	_			<0.2	2.58	<5	20	20	1.56	<1	28	59	61	4.09	<10 1.82	643	<1 0.08	52	480	10	10	<20	10 0.17	<10	80	<10	19	46	
	_	99RE152	<5	<0.2	1.77	<5	420	10	0.72	<1	14	86	35	2.90	<10 1.38	822	<1 0.05	27	700	10			2 0.25	<10	87	<10	40	49	
	_ 1																1 0.00	Æ i	7 00	0	15	<20	7 0.12	<10	61	<10	26	- 44	

Et #	· <u> </u>	Tag#	Au(ppb)	Ag	Al %	As	Ва	Bi	Ca %	Cd	Со	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr Ti%	U	v	w	Υ	Zn
QC D	ATA	ν:																				· · · · · · · · · · · · · · · · · · ·							-	
Resp	lit:																													
1	991	RE100	10	<0.2	1.24	<5	205	10	0.39	<1	10	86	60	2.35	<10	0.83	469	<1	0.01	15	450	12	15	~ 20	C 0.00	.40		-45		
36	991	RE134	15	<0.2	2.30	<5	80	<5	0.27	<1	16	45	127	4.88	<10	1.59	335	•	0.02	19	1230	14	15	<20 <20	6 0.09 30 <0.01	<10 <10	20 47	<10 <10	30 <1	48 94
Repe																											71	-10	-1	,- ,
1		RE100	5	<0.2	1.24	<5	200	-	0.39	<1	10	91	61	2.35	<10	0.82	471	<1	0.02	15	440	10	15	<20	6 0.08	<10	20	<10	28	48
10 19		RE109 RE117	<5 5	<0.2	3.21	<5	.20	25	2.25	<1	31	31	71		<10	1.85 .	642	<1	0.04	37	630	12	15	<20	6 0.19	<10	87	<10	58	55
36		RE134	5 15	<0.2 <0.2	2.03 2.24	< 5	20	30	0.86	<1	31	118	44		<10	1.65	653	<1	0.03	46	640	8	15	<20	9 0.24	<10	38	<10	39	62
45		RE143	15	<0.2	1.97	5 	80	<5	0.27	<1	16	48	129		<10	1.53	352	5	0.02	20	1260	14	10	<20	29 < 0.01	<10	45	<10	<1	92
70	001	INC 175	-	~0.2	1.87	<5	40	20	1.06	<1	38	172	45	2.82	<10	1.84	604	<1	0.01	50	590	8	20	<20	39 0.35	<10	64	<10	24	78
Stand	dard.	:																												
GEO'			135	1.0	1.80	65	150	5	1.80	1	20	64	85	3.82	<10	0.98	649	<1	0.02	25	680	24	10	<20	52 0.09	<10	76	<10		-00
GEO'	99		125	0.8	1.82	65	145	<5	1.81	<1	18	65	85	3.85	<10	0.96	655	<1	0.02	25	680	22	10	<20	58 0.09	<10	76	<10	8 8	68 70

df/484 XLS/99 Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

ICP CERTIFICATE OF ANALYSIS AK 99-561

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

ED FREY PO BOX 1437 KAMLOOPS, BC V2C 6L7

ATTENTION: ED FREY

No. of samples received: 18

Sample type: Rock

PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: E. Frey

	Et #.		Au(ppb)	Ag	Al %	Aв	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	V	w	Υ	Zn
	1	99RE153	<5	<0.2	2.92	<5	20	10	3.02	<1	29	81	64	4.58	<10	1.45	669	<1	0.05	29	480	12	<5	<20	7	0.34	<10	135	<10	46	60
	2	99RE154	<5	<0.2	3.26	<5	45	10	2.59	<1	40	114	59	5.91	<10	2.31	936	<1	0.08	66	590	18	<5	<20	13	0.49	<10	189	<10	72	67
	3	99RE155	<5		2.94	<5	65	20	1.72	<1	45	85	63	6.59	<10	2.47	992	<1	0.03	61	640	16	<5	<20	12	0.57	<10	208	<10	84	75
	4	99RE156		<0.2	3.83	<5	60	20	2.73	<1	48	167	54	6.97	<10	2.73	1189	<1	0.03	76	650	20	<5	<20	24	0.59	<10	228	<10	86	76
•	እ ⁵	99RE157	<5	<0.2	3.23	<5	40	10	2.82	<1	38	127	62	5.77	<10	2.33	919	<1	0.05	64	550	20	10	<20	17	0.44	<10	170	<10	62	80
J.	, _		_																												••
Ch	6	99RE158		<0.2	2.84	<5	30	<5	2.91	≺1	30	120	49	4.27	<10	1.68	624	<1	0.03	49	490	16	5	<20	7	0.32	<10	136	<10	44	53
•	7	99RE159	<5	<0.2	3.24	<5	35	10	2.03	<1	38	39	58	6.68	<10	1.97	1050	<1	0.01	32	570	18	<5	<20	5	0.36	<10	163	<10	44	79
	8	99RE160	330	0.4	1.22	60	45	<5	2.88	<1	18	50	23	4.07	≺10	0.92	736	4	0.01	21	260	6	15	<20	15	0.01	<10	116	<10	9	40
	9	99RE161	15	•		< 5	40	10	3.27	<1	22	42	46	3.91	<10	1.14	691	<1	0.04	17	340	10	<5	<20	11	0.28	<10	127	<10	52	50
	10	99RE162	<5	<0.2	1.21	<5	60	<5	0.89	≺1	15	81	43	2.81	<10	0.97	761	<1	<0.01	30	300	10	<5	<20	8	0.10	<10	33	<10	25	40
			_																										`-		
	11	99RE163		<0.2		<5	80	<5	0.30	<1	16	88	72	3.00	<10	0.91	597	<1	<0.01	31	320	10	<5	<20	9	0.08	<10	42	<10	24	58
	12	99RE164	_	<0.2	2.43	<5	30	10	3.15	<1	27	60	48	3.70	<10	1.28	544	<1	0.06	54	570	16	<5	<20	7	0.36	<10	101	<10	55	64
	13	99RE165	<5	<0.2		<5	20	15	3.75	<1	41	78	54	5.74	<10	2.46	705	<1	0.01	43	580	18	<5	<20	3	0.45	<10	141	<10	40	69
	14 م	99RE1 66	<5	<0.2	2.81	<5	20	10	3.91	<1	29	90	54	4.01	<10	1.39	634	<1	0.06	56	580	16	5	<20	10	0.38	<10	113	<10	55	56
Ŋ	15	99RE167	<5	<0.2	2.27	<5	20	10	3.14	<1	27	63	45	3.71	<10	1.26	583	<1	0.06	53	510	12	< 5	<20	8	0.30	<10	95	<10	43	57
CN																									•			•••	- 10		Ų,
	16	99RE168	<5	<0.2	2.72	<5	25	15	2.42	≺1	45	108	55	5.32	<10	1.88	776	<1	0.05	72	640	26	<5	<20	7	0.39	<10	116	<10	42	75
	17	99RE169	10	<0.2	0.32	45	15	<5	1.79	<1	11	119	173	1.70	<10	0.25	370	3	<0.01	20	180	<2	< 5	·<20	3	<0.01	<10	23	<10	8	20
	18	99RE170	30	<0.2	0.30	135	135	<5	0.10	<1	2	83	23	1.30	<10	0.14	178		<0.01	7	430	12	<5	<20	-	<0.01	<10	11	<10	10	14
																		_		•	100			-LO	-	-0,01	~10		~ IU	10	14

ED	F	R	E	ì

Et #.	Tag #	Au(ppb)	Ag	Al %	As	Ba	Bi Ca	% Co	Co	Cr	Cu	Fe %	La I	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	Ħ	v	w	v	Zn
																		<u></u>						,	-				
QC DA	TA:																												
Resplit 1	<i>:</i> 99RE153	<5	<0.2	3.01	<5	20	10 3.	13 <1	31	77	72	4.77	<10	1.50	705	<1	0.05	30	520	14	<5	<20	7	0.36	<10	139	<10	47	62
	: 99RE153 99RE162	_	<0.2 <0.2		< 5 < 5	15 60	10 2. <5 0.	91 <1 91 <1		71 84	59 44			1.39 1.00	629 788	<1 <1	0.04 0.01	28 32	450 320	16 8	<5 5	<20 <20		0.31 0.11	<10 <10	130 34	<10 <10	42 25	70 40
Standa GEO'99		120	1.0	1.70	65	150	<5 1.	86 < 1	20	61	74	3.83	<10	0.97	697	<1	0.01	24	670	22	<5	<20	55	0.11	<10	75	<10	9	85

df/546B XLS/99

30-Aug-99

KAMLOOPS, B.C.

Phone: 250-573-5700

Fax : 250-573-4557

V2C 6T4

ECO-TECH LABORATORIES LTD.

10041 East Trans Canada Highway

TILL SAMPLES MAP INDEX

ICP CERTIFICATE OF ANALYSIS AK 99-365

ED FREY

PO BOX 1437 KAMLOOPS, BC

REF.# 99/2000 P136

V2C 6L7

ATTENTION: ED FREY

No. of samples received: 4

Sample type: Till

PROJECT #: None Given SHIPMENT #: None Given

Samples submitted by: Ed Frey

- PROJECT MAP

Values in ppm unless otherwise reported

/	Et #.			ghts(g) +230	Au(ppb)	Ag	Al %	As	Ba	Bi Ca	ı %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn.	Мо	Na %	Ni	P	Рb	Sb	Sn	Sr	T: •/	••	W	181	v	- -
۸.	3 4	99TE441 99TE442 99TE443 99TE444	79	10441 10476 8222 8601		<0.2 <0.2 <0.2 <0.2	1.88 1.82 1.89 1.34	10 5 5 <5	135 75 110 90	10 0. 10 0.		<1 <1 <1 <1	25 33 19 19	61 63 58 50	64 88 48 44	3.11 3.39 3.22 2.51	<10 <10 20 <10	0.94 1.06 0.79 0.70	533 586 507 387	<1 <1 <1 <1	0.01 0.02 0.01 0.01	44 40 41 33	550 600 730 520	20 18 20 14	<5 10 <5	<20 <20 <20 <20 <20	21 16	0.23 0.25 0.12 0.21		83 64	<10 <10 <10 <10	43 53	48 37 54 33
	QC DA Repea 1 3				10	<0.2	1.86	10 -	125 -	15 0.	.62	1 -	24	60	63	3.08	<10	0.93	527 -	<1 -	0.01	44	560	20	5	<20 -	18	0.23	<10 -	69	<10	46	46
	Stand: GEO'9				120	1.6	1.67	60	155	10 1.	.83	<1	18	59	87	3.85	<10	0.98	656	<1	0.02	22	690	22	10	<20	54	0.09	<10	72	<10	7	69

df/344 XLS/99

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 99-392R

ED FREY PO BOX 1437 KAMLOOPS, BC V2C 6L7

Phone: 250-573-5700 Fax : 250-573-4557

ATTENTION: ED FREY

No. of samples received: 4

Sample type: Till

PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Ed Frey

Values in ppm unless otherwise reported

Weights(g)

	Et #.	Tag#	-230	+230	Au(ppb)	Ag	Al %	As	Ва	Bi (Ca %	Cd	Co	Сг	Сп	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Ph	Sh	Sn	Sr.	Ti %	- 11	v	147	v	7-
	L 1	99TE261	36	11882	10	<0.2	2.01	<5	145	10	0.69	<1	28	70	64	3.30	<10	1.09	744	<1	0.04	45	770	16	10	-200	74	0.40	-40			<u> </u>	<u> </u>
(M ⁴	2	99TE262	90	5065	10 10	<0.2	0.94	10	60	<5	0.60	<1	13	35	47	1.89	<10	0.52	256	e 1	0.04	10	940	10		~20 ~20	31	0.16	<10	/6	<10	33	51
	3	99TE263	43	5744	10	<0.2	1.96	20	115	5	0.63	<1	24	69	81	3.10	<10	0.02	482	-1	0.03	43	640 ECO	40	-2	<20 -00	20	0.12	10	45	<10	31	21
اسم	4	99TE671	108	5457	5	<0.2	1.66	< 5	60	15	0.62	<1	17	45	28	2 22	~10	0.55	227		0.03	43	560	16	5	<20	19	0.18	<10	7 4	<u><10</u>	41	44
CW	•				•				•••		0.02	-,	1.2	40	20	2.32	~10	U.07	221	< 1	0.02	24	220	10	10	<20	8	0.24	<10	72	<10	30	26

QC_DATA:

Repeat:

1 99TE261 2 99TE262	- 10				135							3.29	<10 -	1.09	743 -	<1 •	0.03	46	790 -	18	<5 -	<20 -	30	0.17	<10 -	75 <1 -	0 3	15 :	51 -
Standard: GEO'99	120	1.2	1.74	65	155	5	1.84	<1	19	64	86	3.86	<10	0.96	684	<1	0.02	24	690	24	15	<20	54	0.08	<10	77 <1	o	7 .	72

df/376 XLS/99 ECO-TECH LABORATORIES LTD. rank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

54 0.08 <10 77 <10 7 72

9-Nov-99

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

ICP CERTIFICATE OF ANALYSIS AK 99-433R

ED FREY PO BOX 1437 KAMLOOPS, BC V2C 6L7

Phone: 250-573-5700 Fax : 250-573-4557

ATTENTION: ED FREY

No. of samples received: 2

Sample type: Till

PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Ed Frey

Values in ppm unless otherwise reported

Weight (g) -230 +230

~ W.	Et #.		Mesh	Mesh	Au(ppb)	Ag	Al %	As	Ba	Bi Ca%	Cd	Co	Cr	Cu Fe%	La Mg%	Mn	Mo Na%	Ni	P	Ph	Sh	Sn	Q- T	9/ 11	.,	142	v	-
<u> </u>	1	99TE621	61	3859	10	<0.2	2.34	10	190	15 0.79	<1	25	104	112 3.64	20 153	421	<1 0.02	40	250		40	011	31 11	76 U			Y	<u> </u>
. 0-	1 2	99TE881	85	9080	5	<0.2	0.79	10	65	5 1.79	-21	17	27	24 2.42	20 1.55	407	ST 0.02	40	250	14	10	<20	<u>32 0.</u>	<u> 26 < 10 </u>	108	<10	56	40
LD-	•				_			• •		0 1.73	-,	1.7	21	34 2,42	20 0,45	497	<1 0.02	30 1	360	12	<5	<20	81 0.6)5 <10	28	<10	24	53

QC DATA:

Repeat:

1 99TE 621	10	<0.2	2.29	10	180	15	0.77	<1	25	103	109	3.61	20	1.50	427	<1	0.02	47	250	14	15 <20	30	0.26	<10	105	<10	55	40
Standard: GEO'99	115	1.0	1.69	60	155	15	1.80	<1	18	59	85	3.86	20	0.94	647	<1	0.02	25	750	24	5 <20	53	0.10	<10	74	<10	R	71

df/433 XLS/99

9-Nov-99

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 99-537R

ED FREY PO BOX 1437 KAMLOOPS, BC V2C 6L7

ATTENTION: ED FREY

No. of samples received: 1

Sample type: Till

PROJECT #: None Given SHIPMENT #: None Given Samples submitted by: Ed Frey

Values in ppm unless otherwise reported

	Et #.		Weights(g) -230 +230 Au(p	pb)	Ag	Al %	As	Ba	Bi	<u>C</u> a %	Cd	Co	Cr	Cu	Fe %	La I	Mg %	Mn	Мо	Na %	Ni	P	РЬ	Sb	Sn	Sr Ti %	11	v	18/	v	7
Μ.	21	99TE622	39 4173	5	<0.2	3.55	50	180	15	0.94	<1	31	123		5.10	<10		816	<1	0.02	59	670	14		<20		<10	143	<10	49	<u>Zn</u> 52
	QC DATA	A:																													
	Repeat: 1	99TE622		5	<0.2	3.63	60	175	15	0.96	<1	32	124	110	5.16	<10	1.41	812	<1	0.02	60	700	14	<5	<20	30 0.22	<10	145	<10	51	52
	Standard GEO'99	t:		125	1.0	1.79	65	155	10	1.78	<1	20	64	85	3.83	<10	0.99	650	<1	0.02	24	680	18	10	<20	56 0.08	<10	78	<10	8	70

df/537 XLS/99 Frank J. Pezzotti, A.Sc.T.
B.C. Certified Assayer

9-Nov-99

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

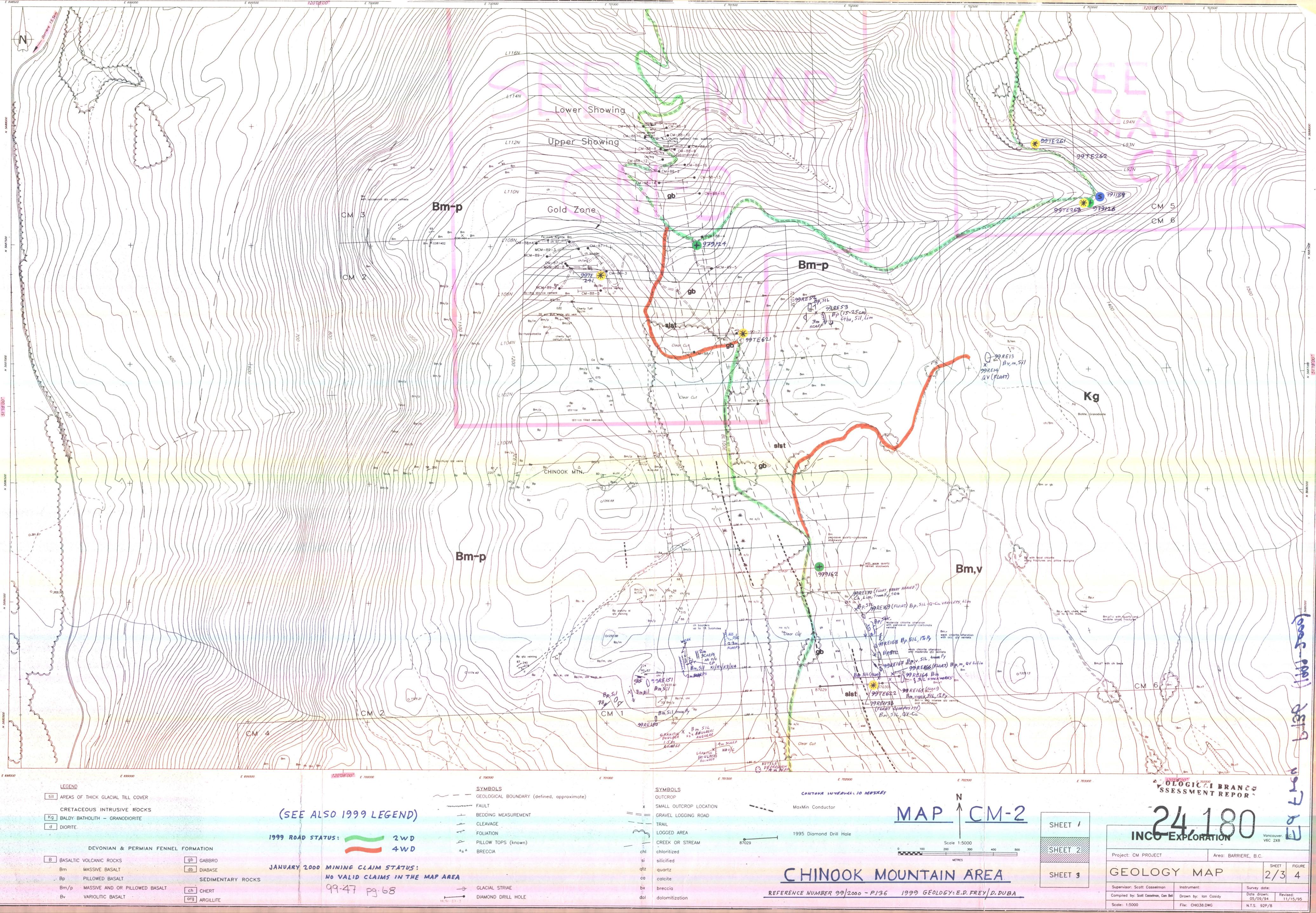
Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 99-562R

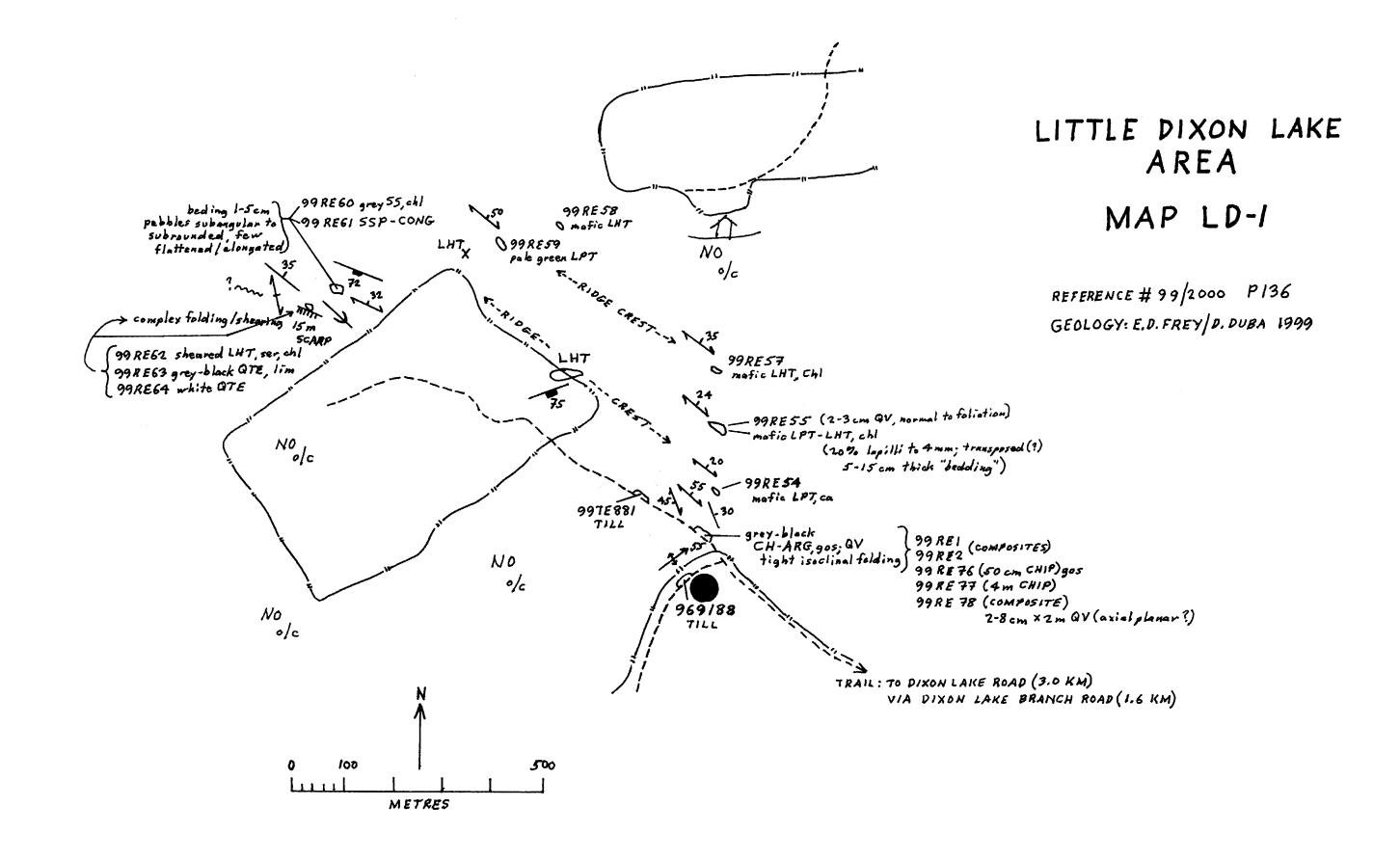
PO BOX 1437
KAMLOOPS, BC
V2C 6L7

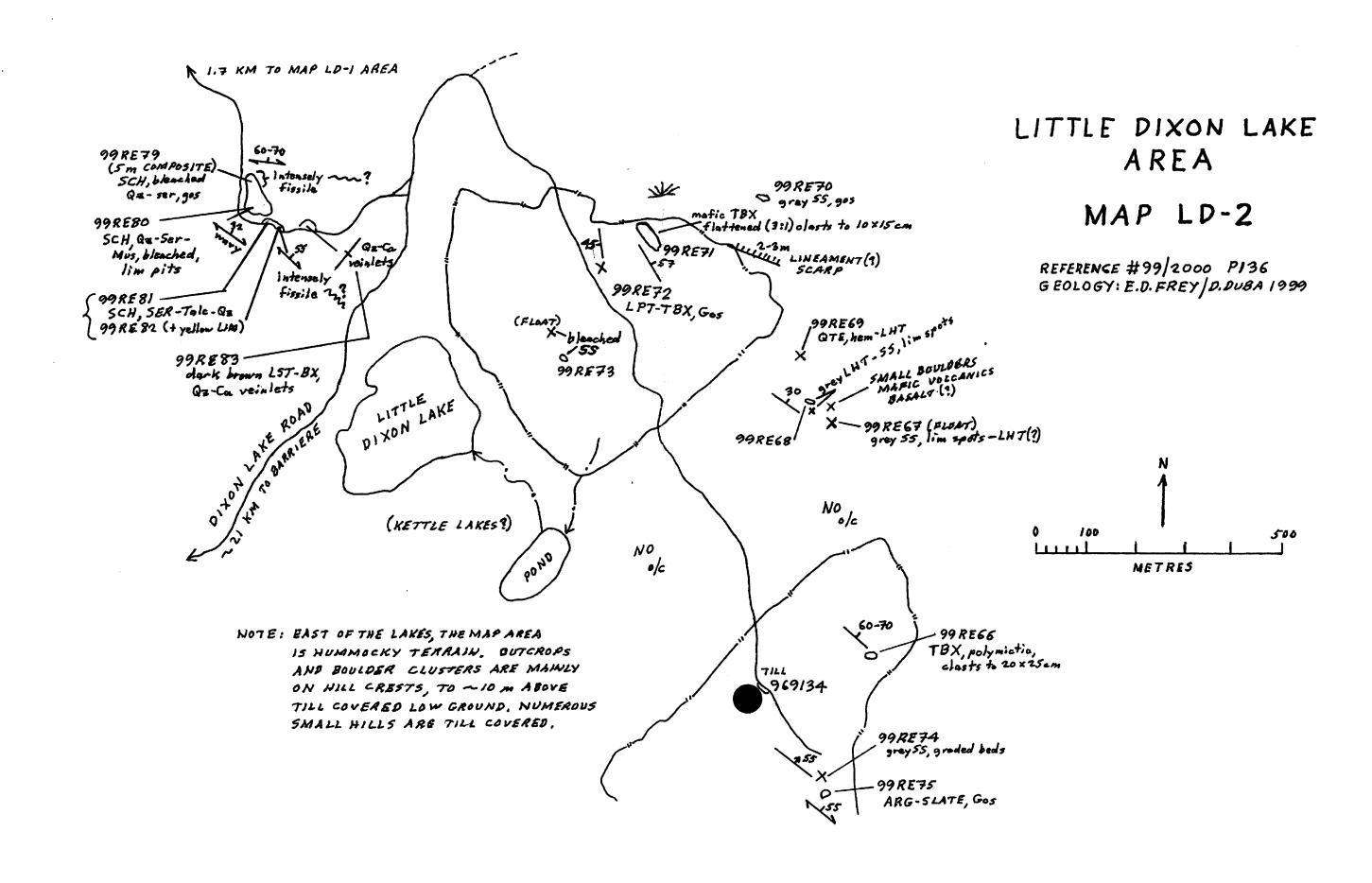
ATTENTION: ED FREY

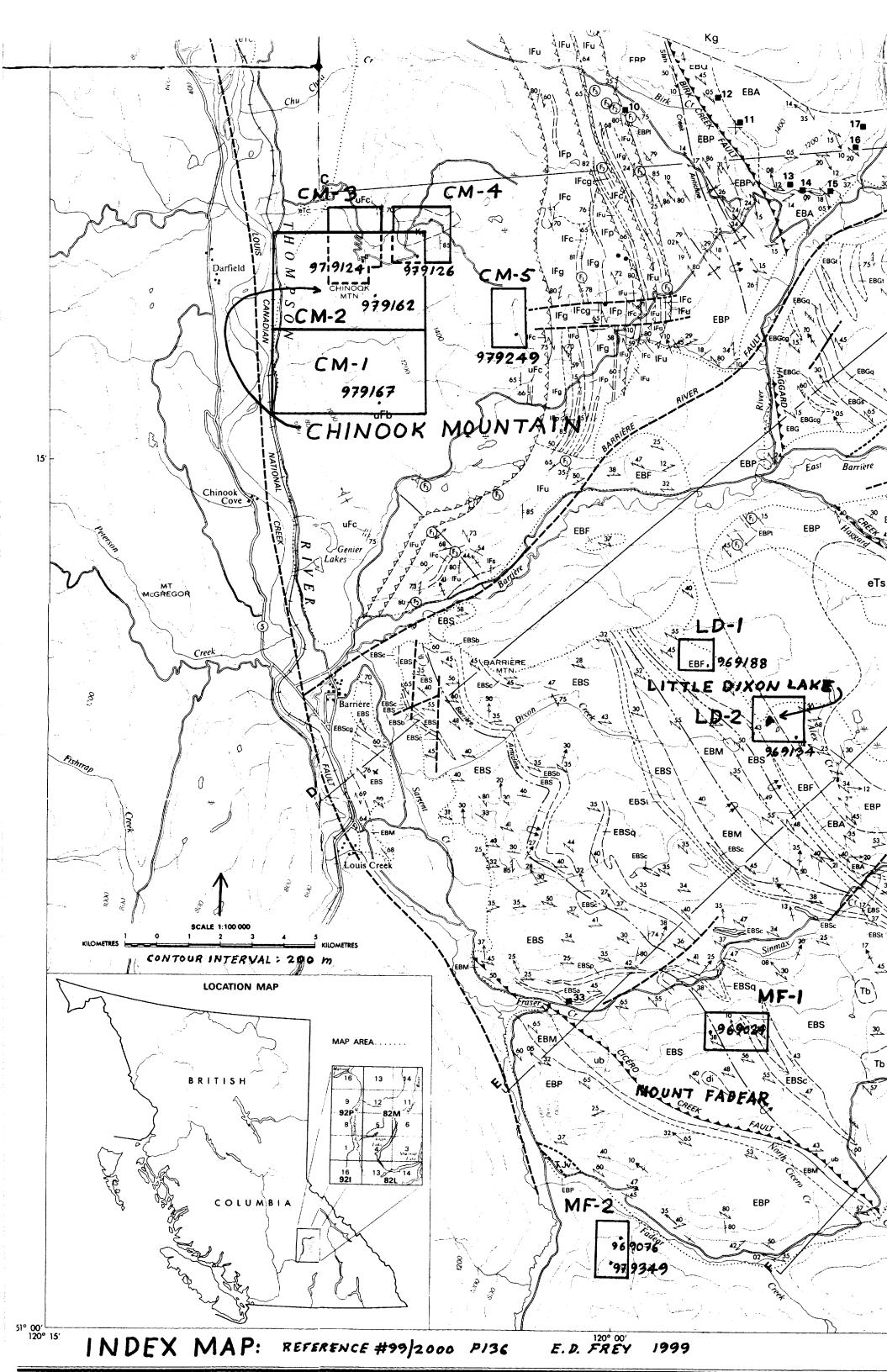
No. of samples received: 4

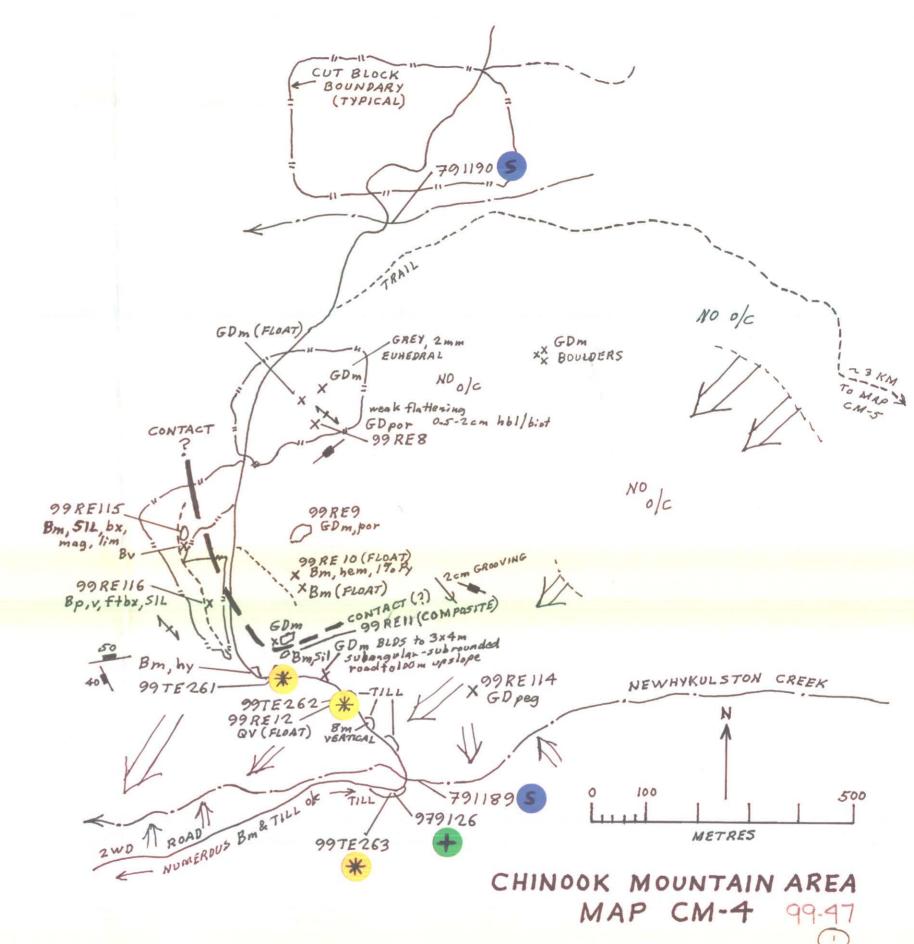
Sample type: Till

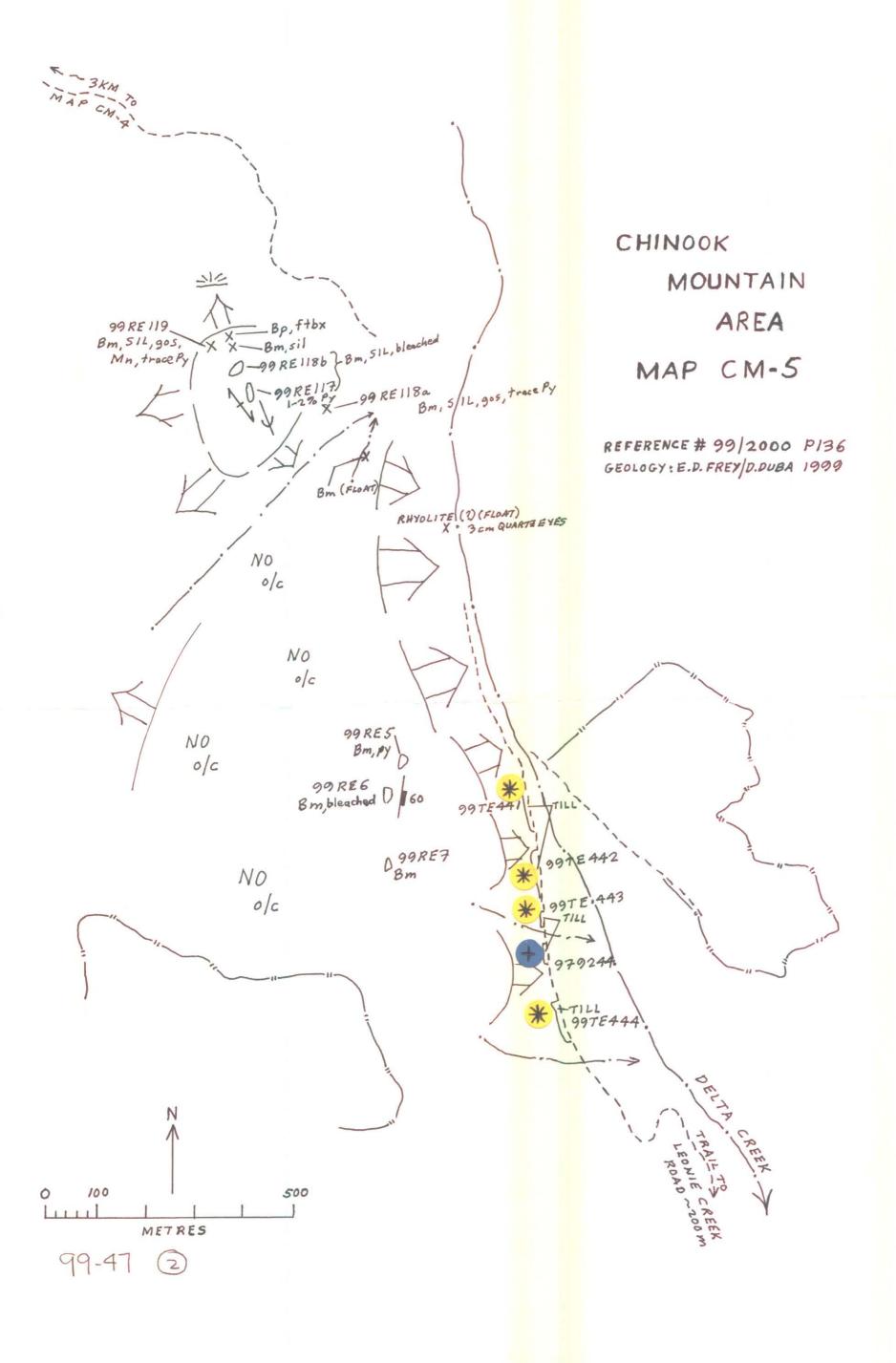

PROJECT #; None Given
SHIPMENT #: None Given
Samples submitted by: Ed Frey

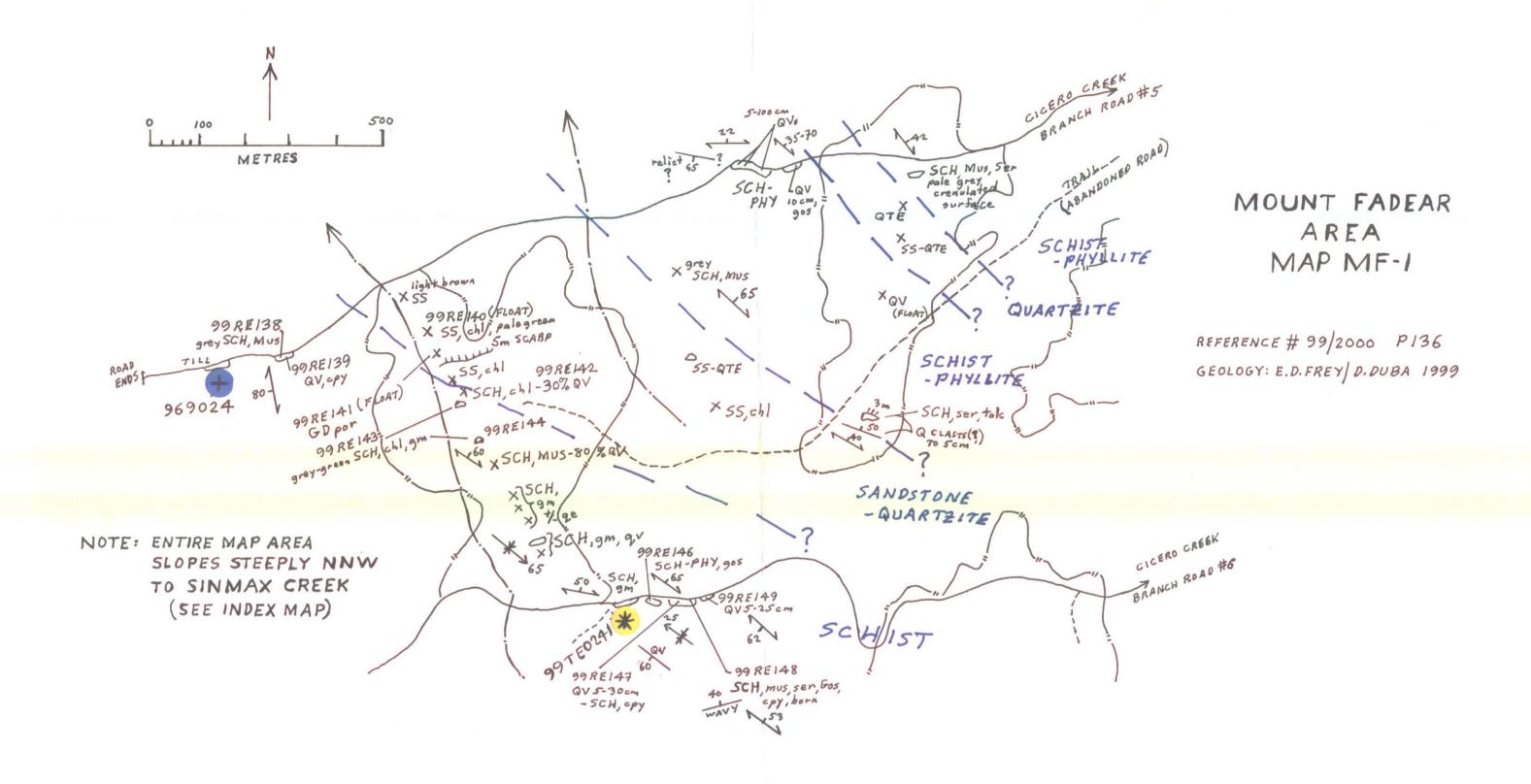

Values in ppm unless otherwise reported

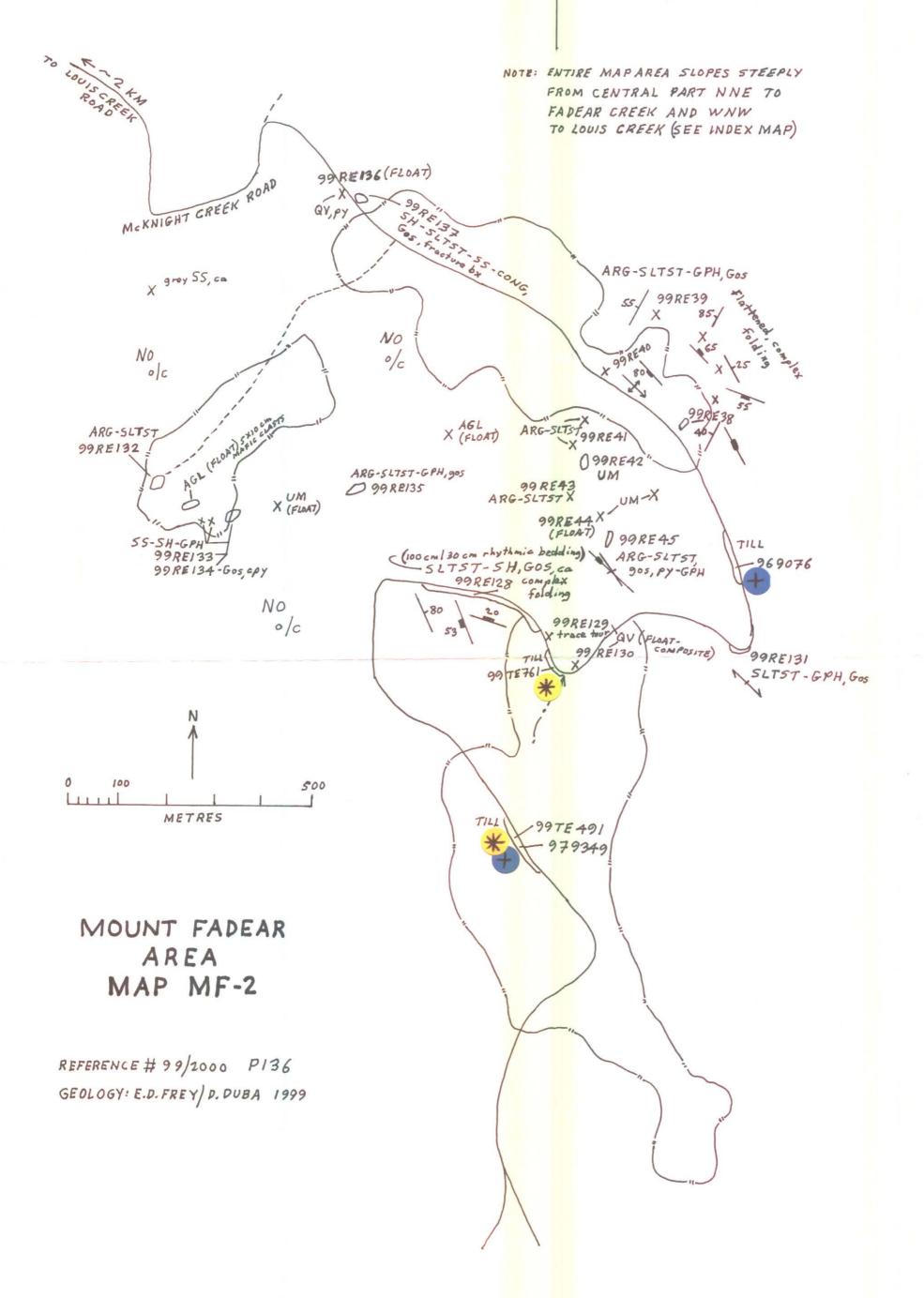

Weights(g)

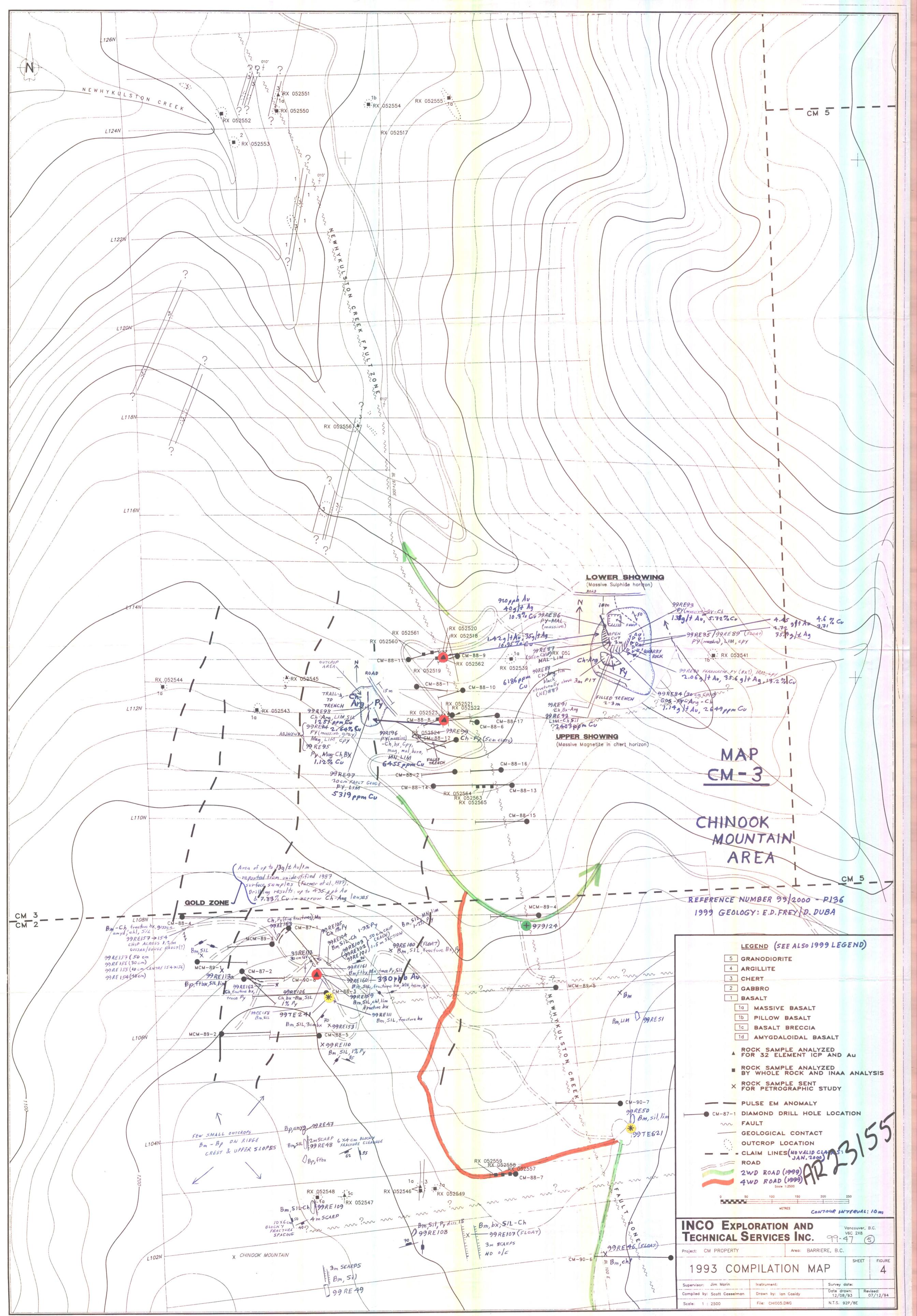

me-1	Et #.	Tag#	-230	+230	Au(ppb)	Ag	Al %	As	Ва	Bi Ca	a %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	P	Pb	Sb	Sn	Sr	Ti %	11	V	w	v	7
Lier	1	99TE0241	70	4767	<5	<0.2	2.24	<5	85	5 C	0.05	<1	21	41	89	4.65	30	1.23	455	6 < 0.01	82	330	22		<20							Zn
CM-3	2	99TE241	29	5675	5	<0.2	4.50	10	145		1.61	<1	54	140		6.68	<10		1956	<1 0.03								<10	17	<10	<1	_ 79
MF-	2 ³ ₄	99TE491 99TE761	7 0 87	6583 7037		0.2 <0.2	-	30 25	85 80	10 1	1.13 2. 4 5	3 2	31 24	40 52	162 107	5.46 4.17	<10 10	1.08 1.07	933 733	7 <0.01 2 0.02		530 1510 1150	18 16 14	10 <5 5	<20 <20 <20	91 144	0.28 0.05 0.08	<10 <10 <10	182 49 47	<10 <10 <10	91 <1 <1	86 200 145
	QC D	ATA:																														
	Repea 1 4	99TE0241 99TE761			- <5	<0.2 -	2.13	<5 -	75 -	5 0	0. 05 -	<1	20	39 -	86	4.48	30 -	1.17	438 -	5 <0.01 	80	350	22	< 5	<20 -	6	<0.01 -	<10 -	17	<10	<1 -	77 -
	Stano GEO'				115	1.0	1.77	70	150	10 1	1.80	1	18	63	82	3.83	<10	0.96	683	<1 0.02	23	670	22	5	<20	54	n na	~10	75	-10	e	66

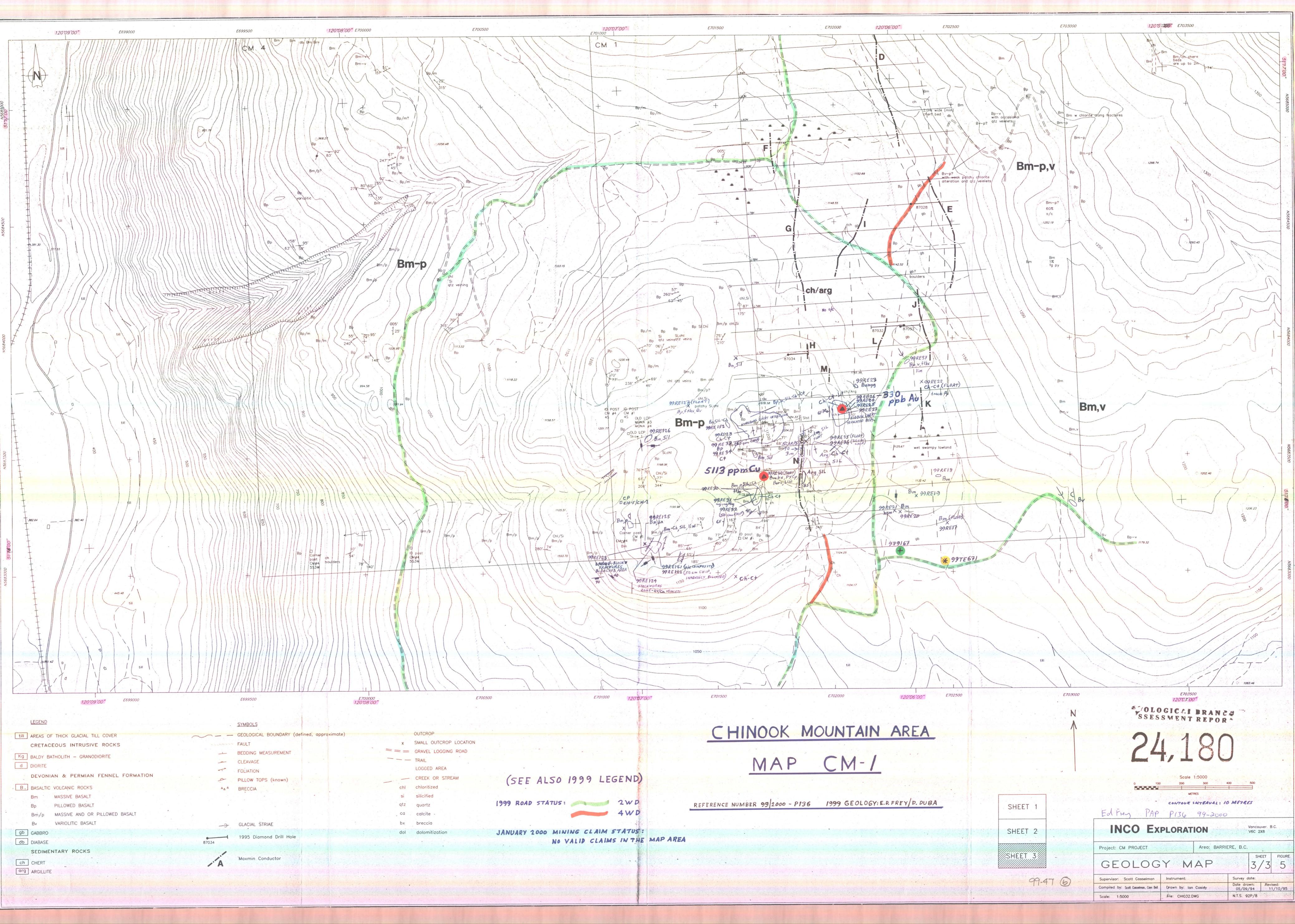

df/546D XLS/99








REFERENCE NUMBER 99/2000 P136 GEOLOGY: E.D. FREY D. DUBA 1999



← 120° W LONG.

