BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

11

PROGRAM YEAR:2000/2001REPORT #:PAP 00-4NAME:WILLIAM WELSH

D. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, pages 6 and 7.

SUMMARY OF RESULTS

• This summary section must be filled out by all grantees, one for each project area

Information on this form is confidential subject to the provisions of the *Freedom of Information Act.*

Name	WILLIAM	WEISH	Referenc	: Number <u>Oc/01</u> P13
LOCATION Project Area Location of Description <u>N.W</u> <u>THE</u> Prospecting <u>B</u> Main Comm Known Mine <u>MU</u>	N/COMMODITIES a (as listed in Part A) _ Project Area NTS _ of Location and Acce OF FT ST J NbRTH RD Assistants(s) - give na ARBARD WEA nodities Searched For eral Occurrences in Pr RRDY RIDGE	93K/ 8.9 ss <u>PROSPECTING</u> <u>AMES</u> , <u>ACCESS</u> <u>AND</u> THE F ame(s) and qualifications <u>SH</u> HONS B. <u>P+</u> Pd CR, roject Area <u>PINCH</u> <u>CHROMITE</u> (93)	MINFILE Lat <u>54°-38</u> AREA 15 ALONG TO THE AREA INCIAI LAKE RD of assistant(s) (see Program Rep SC GEOLOGICAL	No. if applicable <u>93K/12.46.43.</u> Long <u>124°-26'</u> <u>THE</u> <u>PINCHI FAULT</u> <u>15 GAINED VIA</u> gulation 13, page 6) <u>ENGINISERING</u> <u>Y MINE (93K 049</u>)
WORK PEI 1. Convention 2. Geological 3. Geochemin 4. Geophysical 5. Physical W 6. Drilling (r 7. Other (specific)	RFORMED onal Prospecting (area) al Mapping (hectares/s ical (type and no. of sa cal (type and line km) Work (type and amoun no. holes, size, depth in ecify))	5000 5000	Ha 17a () 1: 2000
Best Disco Project/Clair Location (sh Best assay/sa Description <u>SERPEN</u> <u>NICKE</u> <u>LENSE</u>	EXAMPLE 1 SUP TO	1 MTN <u>4⁰-39'-08''</u> L <u>FPM Ni 793 PP</u> strocks, anomalies <u>Min</u> <u>RIDOTITE CONT</u> <u>COMITE MAGN</u> <u>56.40 Mg</u>	Commodities Mg No ong <u>124°-30'-11"</u> I MCN 1360 PPM H NERALISATION 15 TAINING BLUE GRU ESITE OCCURS 1 03	Cr Hg Elevation <u>93</u> 5 M g > 1596 Mg HOSTED BY EEN OKIDES OF 95 VEINS AND
FEEDBACK: AND BENGF	comments and sugges EFFICIENTLY IT TO THE	tions for Prospector Assis ADMINISTEREI MINING INDU	stance Program PROG AND PROVIDE ISTRY	AM IS WELL RUN

REPORT ON RESULTS

- Those submitting a copy of an Assessment Report or a report of similar quality that covers all the key elements listed below are not required to fill out this section.
- Refer to Program Regulation 17D on page 6 for details before filling this section out (use extra pages if necessary)
- Supporting data must be submitted with the following TECHNICAL REPORT or any report accepted in lieu of.

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

Name WILLIAM	WELSH	$\underline{\qquad} Reference Number \underline{OO/o1 - P13}$
--------------	-------	---

1. LOCATION OF PROJECT AREA [Outline clearly on accompanying maps of appropriate scale.]

PROSPECTING BREA LIES ALONG THE PINCHI FAULT APPRick 26 KM S.E. TO 36 KM N.W. OF FORT ST. JAMES

2. PROGRAM OBJECTIVE [Include original exploration target.]

THE PROGRAM OBJECTIVES WERE TO TEST THREE POTENTIAL
TARGETS FOR PLATINUM GROUP ELEMENTS.
1) HYDROTHERMAL PGE ASSOCIATED WITH SERPENTINIZED PERIDOTITE
ALONG THE PINCHI FAULT.
2) POLEOPLACER PGE, ASSOCIATED WITH CHROMITE IN THE MATRIX OF
THE TAKLA GROUP CONGLOMERATE UNIT.
3) SHALE HOSTED PGE, HOSTED BY A CARBONACEOUS SHALE UNIT (TAKLA)

3. PROSPECTING RESULTS [Describe areas prospected and significant outcrops/float encountered. Mineralization must be described in terms of specific minerals and how they occur. These details must be shown on accompanying map(s) of appropriate scale; prospecting traverses should be clearly marked.]

SE	RPENTIZ	LED F	CRIDOTIS	RE WAS	SAMPLA	ED FR	om	TWO	MAIN	AREIS
()()()()()()	SUNSHIN	IE/CALE	× Sou	ITH OF	MURRA	1 RiDo	-E			
/		/								
2)	PINCH	1 MTN	MAGN	IESITE,	NORTH	OF F	INCH	1 LAI	(E	
Mo	ST OF	THE	SAMPLE	S EXCEN	EDED 7	HE I	DETRO	TION	LIM	1.1
FO	<u>r Mg</u>	AND	THESE	WERE	ANBMAL	045	FOR	Ni C	C AN	<u>D</u> Hg
N	O APPR	EC IABLE	<u>E QUAN</u>	TITIES	OF PG	E WE	RE	FOUN	D,	
			-						· · · · · · · · · · · · · · · · · · ·	
					-					

.

REPORT ON RESULTS (continued)

3. PROSPECTING RESULTS (continued) (SEE ATTACHED REPORT) _____ ____

REPORT ON RESULTS (continued)

4. GEOCHEMICAL RESULTS [Describe all survey types done (rock, soil, silt) and their objective. Show clearly on accompanying map(s) of appropriate scale all sample sites along with all significant values. Any anomalous areas should be indicated on maps by the use of contouring, variable symbol sizes, or some other suitable technique. Include a discussion/interpretation of results. A copy of analysis/assay certificates must be included with sample numbers from map. Details of individual rock samples taken are encouraged. Significant geochemical values obtained must be stated.]

SEE	ATTACHED	REPORT)			
					· ···
				<u> </u>	
			· · · · · · · · · · · · · · · · · · ·		
		· · · · · · · · · · · · · · · · · · ·			
		- 1			
· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·			······································
					· · · · · · · · · · · · · · · · · · ·
					······································
				,	
	·····				
		····	<u> </u>		
····					
·····					
· ·-·-		·			
	· · · · · · · · · · · · · · · · · · ·		-		······
	<u> </u>				
		· · · · · · · · · · · · · · · · · · ·			
		· · · · · · · · · · · · · · · · · · ·			
		·			

REPORT ON RESULTS (continued)

NIA

5. GEOPHYSICAL RESULTS [Specify the objective of the survey, the method used and the work done. Discuss the results and show the data on an accompanying map of appropriate scale. Any anomalous areas must be indicated on maps by the use of contouring, or some other suitable technique.]

5. OTHER RESULTS [**Drilling** - describe objective, type and amount of drilling done. Discuss results, including any significant intersections obtained. Indicate on a map of appropriate scale the drill-hole collar location, the angle of inclination and azimuth. Drill logs correlated with assay results must be included. **Physical Work** - describe the type and amount of physical work done and the reasons for doing it (where not self-evident). This includes lines/grids, trails, trenches, opencuts, undergound work, reclamation, staking of claims, etc. Discuss results where pertinent.]

NJA				··· ··· <u>·</u> ····	-	
			·····			
						· · · · · · · · · · · · · · · · · · ·
						····
						·····
				<u> </u>		
						<u> </u>
	0.1.11	011	$\overline{\langle}$		Nou 20	2/2000
ature of Grantee _	Willin	Ma		Date	NUV X	1 2000

BC Prospectors Assistance Program - Guidebook 2000

PROSPECTING IN THE PINCHI LAKE/FORT ST. JAMES AREA

A. Introduction

Prospecting was carried out along the Pinchi fault zone near Fort St. James, B.C. and northwest past Pinchi Lake to Tezzeron Lake, by William and Barbara Welsh, for a total of 26 days from July 1-26, 2000. A total of 32 rock samples were collected and 24 were analyzed by fire assay for Pt, Pd and Au. I.C.P. analysis for 32 elements was done on a selected suite of twelve of the samples. As well, several small creeks were panned in order to detect the presence of gold and heavy minerals, but for the most part the creeks cut through thick glacial till and did not necessarily represent the underlying geology. One pan concentrate from a creek draining Pinchi Mountain was analysed for Pt, Pd, and Au. Geological mapping was carried out throughout the area.

The selection of the Pinchi-Fort St. James area for prospecting was guided by G.S.C. bedrock mapping which depicted three ultramafic "intrusions (harzburgite-peridotite units which are actually crustal fault slices), associated with the Pinchi fault. These intrusions were mapped by Ash et al (GSB Open File 1993-9) as "mantle tectonite" with fault-associated magnesite alteration zones labeled as "carbonatized harzburgite". The carbonatized harzburgite that was mapped during this prospecting program contained blue and green annabergite, or "nickel bloom".

Dr. Larry Hulbert, of the G.S.C., relayed the following information regarding hydrothermal PGE deposits:

"The main requirements to get hydrothermal PGE mineralization are: a proximal ultramafic body regardless of origin, and a hydrothermal system that passes through the UM rocks. If the hydrothermal products are rich in selenium (selenides or Se-rich sulphides) all the better. It would also appear from my experience that the more oxidizing the conditions during precipitation of mineralization from the hydrothermal system the better, i.e. fO2 ~ to hematite buffer or even more oxidizing....Any hydrothermal system that cuts UM rocks must be analyzed because you never know. If the adjacent sedimentary rocks are rich in Se, Te, As (black shales) then the right conditions may arise to produce hydrothermal PGE's." (pers. comm., 2000).

It should also be mentioned that a carbonaceous black shale unit, rich in arsenic, molybdenum, and zinc, was mapped to the northeast of the Pinchi fault zone, and this unit was considered a strong candidate for potentially hosting PGE mineralization.

The Dog Creek placer occurrence, located to the south of the prospecting area, contains both gold and platinum, and although the source of the platinum is not known, it is assumed that the placer gold originated from local listwanite-gold shear zones which are parallel to the Pinchi fault.

As well, a conglomerate member of the Takla Group sediments was described in "Geology and Economic Minerals of Canada", GSC Economic Geology Report No.1 (p.434), as follows:

"Near Fort St. James the Takla Group contains clasts of serpentine in conglomerate and grains of chromite in the matrix that were derived from the ultramafic intrusions emplaced into the Cache Creek Group of the Pinchi Geanticline."

It is reasonable to assume that PGE could be associated with the chromite in the matrix if it were present in sufficient quantity.

This conglomerate unit, together with adjacent listwanite alteration zones, and the oily black shale in the hangingwall of the fault zone comprised three exploration targets for PGE mineralization in the vicinity of the Pinchi Lake Mercury Mine. Perhaps, the best sites for testing these targets are on the mine property itself, where the hydrothermal activity was most intense, but the property is fenced off and owned by Cominco Ltd., and not available for exploration.

B. Prospecting Targets

1. Hydrothermal PGE deposits

The model for this type of PGE deposit is described in GSC Open File 1440. "Geological Environments fo the Platinum Group Elements". Anomalous concentrations of platinum occurs in a wide variety of hydrothermal deposit types. These occurrences demonstrate that platiinum can be mobilized and concentrated by relatively low temperature hydrothermal processes. The hydrothermal deposit types in which platinum has been reported have been classified into two categories: the U-Au-Pd-Pt type, examples of which are Coronation Hill and Nicholson Bay, and the Pt-Pd-Au type, for which Rathburn Lake, deposits of the New Rambler and Centennial Ridge District (Wyoming) and the Cliff showing of the Shetland (Unst) ophiolite are taken to be examples. Of the latter type, the common feature at the various localities is that the mineralization occurs along structurally controlled zones in mafic-ultramafic bodies. McCallum et al, (1976) favour the interpretation that the New Rambler deposit was formed at a temperature of around 350° C. from hydrothermal solutions that leached the ore metals from the surrounding mafic rocks rather than by alteration or remobilization of a magmatic sulphide deposit. The highly altered ultramafic rocks of Pinchi Mountain (now termed magnesite) would seem to fit this model, but the surrounding veins and stockworks in both the magnesite and adjacent limestone did not contain appreciable quantities of platinum group elements.

There are three known hydrothermal PGE deposits in British Columbia in which mercury is also an ore mineral: Dan (093K 018), AT 2 (093K 048), and Laurion (082ESW109). Of particular relevance to this prospecting program is Dan, which lies along the Pinchi fault, and hosts Hg-Cr-Pt mineralization within the same lithological units as found in the vicinity of Pinchi Lake. Since hydrothermal activity was greater around the Pinchi Lake mercury mine, it was hoped that PGE values would be more greatly enhanced than those found at the Dan occurrence (158 ppb Pt), but as it turned out the opposite was true, even though values for chromium and nickel were comparable. Both the Dan

occurrence and the ultramafic rocks which were sampled around Pinchi Lake, are hosted by listwanite-type alteration.

		ppb			
	Hg	<u>Ni</u>	Cr	<u>Pt</u>	Pd
"Dan" occurrence	300	150	1700	158	n/a
Pinchi Mtn.	2000	2000	1000	20	16

2. Shale-hosted Ni-Zn-Mo-PGE

An unusually oily shale unit was discovered in the hangingwall of the Pinchi fault zone, which was sampled and assayed, in case the high carbon content (the rock smelled of oil) acted as a catalyst to precipitate PGE Although this shale unit was higher in arsenic, zinc, and molybdenum, the Pt and Pd content was no more than that of the ultramafic rocks.

3. Paleoplacer U-Au-PGE-Sn-Ti-diam-mag-gar-zir

As described above, there is a conglomerate unit in the Takla Group, located immediately adjacent to the Pinchi fault, which has the potential to contain PGE associated with chromite. This conglomerate unit is invariably associated with listwanite-altered serpentinite along the Pinchi fault. However, in fact, the chromite content that was observed was less than one percent, and Pt-Pd assays were similar to those of the listwanite rocks. For the most part, this unit was highly weathered and good outcrop was difficult to find.

C. Summary of Prospecting Activity

- 1. <u>Teardrop</u>: The Teardrop F.S. road accesses an area to the southeast of Fort St. James in the vicinity of Jumping Lake, in which the Takla conglomerate was mapped by the G.S.C. over a distance of 12 kilometres. Although the roads traversed the conglomerate several times, it was actually only seen in one location, off the main road. To the south of this occurrence, there was a contact with a shale unit, and the rest of the area was covered by thick overburden, so it might be assumed that the mapping was based on air photo interpretation.
- 2. Sunshine/Calex (MINFILE 093K 046,048)

This area is located on the North Road, 5.7 km east of the Canfor Mill. A new logging road has been built to the north of the main road, which crosses three rocky knolls that trend approximately 075°. Further to the east, where the North Road swings north, the ridges trend north as well. These latter north-south

structures are felt to be associated with mercury mineralization in the vicinity of the Pinchi fault. The Calex and Sunshine occurrences lie along such a north-trending structure. Along that same trend, were rocks exhibiting tectonite features (blueschist) which are distinctly different from the harzburgite found on Murray Ridge: glaucophane-lawsonite-chlorite schist.

3. Murray Ridge (MINFILE 093K 012)

Murray Ridge is a prominent hill immediately north of the area described above, and the site of the local ski hill. It was mapped as Harzburgite, variably serpentinized and with variably developed tectonite fabric, containing dunite as pods and dykes with trace to 2% chromite. For the most part, the chromite that was seen was less than 1%, and could be considered minor at best.

4. Conglomerate Hill

Another prominent hill is located on the south shore of Pinchi Lake and can be accessed off the Tachie road. It was mapped as Takla group, and the hill consists of Takla sediments capped by mafic volcanics. The Takla conglomerate was not observed at this location.

5. Pinchi Lake Mercury Mine (MINFILE 093K 047,049)

The area around the Pinchi Lake Mercury Mine and the north shore of Pinchi Lake was prospected, but for the most part the land is privately-owned. The mine property itself is fenced off. Rocks that were observed along the shoreline are mostly greywacke and siltstone.

6. <u>Rogue Slice</u> Off the west-trending road that accesses Pinchi Mountain, there was an unusual fault slice bounded by a vertical cliff at least 30 metres high. The rocks consist of rusty-weathering carbonatized harzburgite containing disseminated sulphides and blue glaucophane and green annabergite. Mantle tectonite features were not observed, but the cliff face is unusual because it occurs in an area of gently rolling hills.

7. Pinchi Lake Magnesite (MINFILE 093K 065)

Altered serpentinite is exposed on the southwest face of Pinchi Mountain. Air photos show these rustyweathering rocks as covering most of the top of the mountain. This area was previously staked as a magnesite deposit, in which magnesian carbonate occurs as veins or lenses, veined by cherty quartz. The MgCO³ content was quoted as being 56.4%. Blue and green oxides are present as small flecks and there is about 0.5% sulphides. This area was felt to be the most likely place to host hydrothermal PGE mineralization because the ultramafic rocks are so intensely altered, and they are bounded by veined and brecciated limestone, but this was found not to be the case.

8. Tezzeron Listwanite Zone (L4) (MINFILE 093K 050)

Another interesting target was found to the northwest of Pinchi Mountain, consisting of an arcuate, northwest-trending fault zone, The rocks consist of rusty-weathering, carbonatized harzburgite, containing minor sulphides in quartz-carbonate veins and the same blue and green oxides mentioned above. Cinnabar was observed, but only to a minor extent. The geometry of this zone was notable because it consisted of three or more stacked, upthrusted blocks, bounded by a steep slope on the western side.

9. Tachie Road (MINFILE 093K 079)

Prospecting was carried out in the region lying between Stuart and Pinchi lakes, along the southwestern edge of the Pinchi fault zone. A promising float sample of brecciated and mineralized harzburgite was obtained from roadbed material from a logging road in the area behind Pope Mountain, but it could not be determined where this material came from originally.

Rock Sample Descriptions

Samplo	Accov No.	<u> </u>	Dł	Dd	Location	Description
Sample	Assay NO.	Au	<u> </u>	ru		
51J-001					reardrop	noat, chert people congiomerate (too clean
						to be Takia, well-cemented
STJ-002					leardrop	conglomerate/breccia, adjacent to matic
				·····		volcanics - chert pebbles in f.gr. Sil. matrix
STJ-003			··· • • • • • • • • • • • • • • • • • •		Teardrop	float; f.gr. dk.grey basalt (Takla)
STJ-004					Congl. Hill-talus slope	a med,.gr.gabbro, more felsic lenses; dark
					below cliff	weathering
STJ-005					Congl. Hill, west	gabbro, rusty weathering, more felsic than #5,
STJ-006					Congl. Hill - lower on	gabbro, coarser grained, lenses of more
					scree slope	felsic material
STJ-007	349935	2	<5	6	Calex, beside pond	epidote-chlorite schist-dunite
STJ-008	349936	<2	<5	6	Calex beside pond	carbonatized harzburgite. CO3 along
		_	-	-		fractures, slickensided
STJ-009	349937	<2	<5	10	Calex roadside	altered peridotite containing abundant pale
010 000	0.0007	-				blue diauconhane
ST.L010	340038	2	<5	6	Caley, along new rd	altered peridotite mariposite carbonate in
	348830	~		0	Calex, along new rd.	breccia
STJ-011					Pinchi L4	bleached mafic volcanic, rusty on
						weathered surfaces
STJ-012					Pinchi L4	dk.grey limestone, silicified, intensely
						microfractured
STJ-013		6	<5	6	Pinchi mtn. Road	rusty, sheared, veined mafic volcanic
						similar to #11, diss. py
STJ-014		4	<5	4	Pinchi mtn. Road	intensely altered listwanite "pipe" adjacent
						to #13: reddish brown limonite, annabergite
STJ-015	,	<2	15	<2	Calex, knoll on skid ti	poorly-sorted, rusty, heavily weathered
		_		-		conglomerate: dirty, crumbly matrix
STJ-016			· · · · · · · · · · · · · · · · · · ·		Calex o/c on hwy	CO3-rich serpentinite ~1% f or diss sulph
0.00.0						same microfract. Pattern seen in limestone
						near Tezz I : samil veinlets enidote chrom
ST L017		<2	<5	2	Pinchi I A	rusty red-brown magnesite diss green
010-017		~2	~5	4		annahemite
ST L018		2	-5	~?	Dinchi I 4	less altered peridotite than #17 variably
010-010		~2	~5	~2		rustu on woothorod outfoooo
CT L 040	240020		-10		Direbi ele ereut	tale chlorite achiet/aces
212-018	349939	4	<10	4		taic-chionite schisuserpentinite, with tenses
071000	0.400.40	_		- 40		of red cinnabar along foliation
STJ-020	349340	4	10	16	Pinchi clearcut - eor	rusty-weathering serpentinite with diss.
						f.gr.sulphides (Py,Po) in CO3 veinlets
STJ-021	348741	4	20	4	magnesite @ 9 km	orange-weathering magnesite, sandy texture
						diss. Py, cpy, blue and green oxides after
<u></u>						chromite, nickel sulp., minor erythrite
STJ-022	348142	8	<10	4	rogue slice (cliff)	orange-weathering serpentinite, less altered
						than #21, but containing blue and green
						oxides; criss-X qtz. Veinlets
STJ-023	347543	6	10	6	Tsilcoh falls	oily black shales, weathered; overlain by
						relatively unaltered sil limestone; diss f.or.
						sulphides
						· ···
	I				I	I

					ł	<u></u>
Sample	Assay No.	Au	<u>Pt</u>	Pd	Location	Description
STJ-024	346944	<2	<5	4	Pinchi clearcut 2nd "rogue slice"	steep slopeo/c on top; rusty magnesite qtz veins, diss. sulph, Py, cpy, annabergite
STJ-025	346345	<2	5	6	Pinchi clearcut	carbonatized harzburgite, diss. sulp, rusty weathering, sandy texture
STJ-026		12	5	4	Calex n.fault	altered dunite, with diss. sulph, approx.60% olivine, minor chromite with broken edges
STJ-027	349946	<2	20	8	Calex knoll	conglomerate/peridotite from contact ; highly weathered, rusty & crumbly
STJ-028		<2	<5	<2	Pinchi mag. List.cont	silicified limestone, microfract., veined and cross-veined by CO3, with Py
STJ-029		2	<5	8	Pinchi clearcut	rusty, sheared magnesite, in fragments <a>
STJ-030		<2	<5	4	calex -new road	altered dunite with pale blue glaucophane sampled from muskeg at base of ridge
STJ-031		4	<5	<2	2nd Tezz, Rd.	rusty, f.gr. pyritic black argillite with CO3 along layers
STJ-S01	silt	28	<5	2	Pinchi mag.	lt. brown, some magnetite

G.P.S. Coordinates on mapping traverses

Waypoint	Easting (m)	Northing (m)	Comments
1	435025	6030612	km 17 intersection on Tearcrop Rd.
2	433893	6028934	
3	429390	6028077	
4	428824	6027883	Sample STJ-001 (float)-conglomerate
5	429755	6028970	
5	429834	6028655	o/c - imestone
7	436200	6030749	o/c Sample STJ-002 - conglom/breccia
8	436414	6030789	o/c Sample STJ-003-Takia voics (dasait)
9	43/10/	0030830	0/c - Diack Shale
10	415449	0044548	
11	41/088	6043791	road splits
12	417206	6045982	
13	414286	6040/11	Sample St J-004,5, 6 medio coarse-gr gabc
14	414596	6040409	07100700
15	42/658	6039240	S1J-007,8,9
16	409040	6053601	
17	410921	6052678	T
18	407061	6059971	Tezzeron road
19	405328	6061221	Tezzeron Lake STJ-011-Dieached, rusty ma
20	407075	6059/18	STJ-012 - Diack imestone-microtractured
21	408181	6056399	SIJ-013,14-rusty, sneared voics, veins
22	412/55	6052966	o/c-similar to above
23	414975	6052263	
24	414875	0051949	
25	427801	0039709	SIJ-015 congiomerate
20	429010	0040038	OT 1.046 metic votes weised and microfr
2/	427994	0039203	STJ-010 - manc voics, venied and micron.
28	400244	0000710	STJ-017 - magnesile with green annabergit
29	403982	0000011	STJ-018 - less altered peridolite
30	401000	0036606	O/C grey argume
31	401003	0029033	STJ-019 taic-serpentinite with jasper
J∠ 20	402010	0000920	deenty insided stream (pan cone ST S01)
33	402431	003/044	ST L 021 moonesite + appaberrite
35	405400	6056643	ST L022 "mone slice"- shear cliff tectonite
36	#10101	6052401	o/c ST L023 -oily black shale @ limestone c
30	419191	6052701	o/c 2 km on north road to Tezz. Mafic volcs
38	403331	6050503	ST L024 another roque slice n end of 1.4 zo
30	401143	6058007	ST L025 magnesite diss sulphides
40	401572	6059054	mad junction centre of claim block
40	401519	6059061	
42	410456	6053352	o/c limestone
42	410133	6044472	ove innestone
43	419100	6030660	ST L026 new logging road - dunite
44 15	427530 A27AAR	6030600	#2 cliam post RW/ 1&2
40 AR	427161	6039170	#2 claim post BW 3&4
40 A7	427463	6039540	#1 nost BW 586
1T AR	427Q3A	6030651	
		0000001	

<u>Waypoint</u>	Easting (m)	<u>Northing (m)</u>	<u>Comments</u>
49	427838	6039863	STJ-027 top of knoll - listwanite
50	428407	6039771	
51	402853	6057315	
52	402763	6057437	STJ-028 silicified limestone, veined
53	402721	6057463	#1 post, BW7
54	403065	6057045	#1 post, BW8
55	403303	6056879	o/c limestone contact
56	403555	6056761	#2 post, BW8
57	410421	6053281	o/c limestone
58	418903	6052306	o/c dirty black shale
59	401153	6059682	#1 post, BW 9&10
60	401369	6059283	
61	401382	6059270	#1 post, BW 11&12
62	401443	6059183	STJ-029 rusty listwanite
63	401629	6058888	#2 post, BW 11&12
64	414762	6055386	STJ-031 - rusty argillite 2nd Tezz. Rd,
65	414430	6013995	Dog Creek placer
66	416376	6014467	o/c Battleship bay, (Tachie Rd)

ALS Chemex

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: KETTLE RIVER VENTURES

619 NORTH FORK RD., R.R. #1 LUMBY, BC V0E 2G0

Project :

Comments: ATTN: WILLIAM WELSH

CERTIFICATE OF ANALYSIS A0025603

								 20000	
SAMPLE	PREP CODE	Au ppb ICP	Pt ppb ICP	Pđ ppb ICP					
STJ 13 STJ 14 STJ 15 STJ 17 STJ 18	205 226 205 226 205 226 205 226 205 226 205 226	6 4 2 2 2 2 2 2	55 55 55 75 75 75 55	6 4 < 2 2 < 2 < 2					
STJ 20B STJ 26 STJ 28 STJ 29 STJ 30	205 226 205 226 205 226 205 226 205 226 205 226	<pre> < 2 12 < 2 2 < 2 < 2 < 2 < 2 </pre>		6 4 < 2 8 4					
STJ 31 STJ 32	205 226 205 226	42	< 5 < 5	4 < 2				7,1	
	<u> </u>	L J	- <u> </u>	i	i	I		Mia	لم

**

Page Number : 1 Total Pages : 1 Certificate Date: 21-AUG-2000 Invoice No. P.O. Number :10025603 : RIH Account

ALS Chemex

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: KETTLE RIVER VENTURES

619 NORTH FORK RD., R.R. #1 LUMBY, BC V0E 2G0 **

Page Number : 1-A Total Pages : 1 Certificate Date: 02-AUG-2000 Invoice No. : 10023956 P.O. Number : STJ Account : RIH

Project :

Comments: ATTN: WILLIAM WELSH

CERTIFICATE OF ANALYSIS A0023956 PREP A1 ĸ Au ppb Pt ppb Pd ppb Ag As B Ba Be Bi Ca Cđ Co Cr Cu Fe Ga Ηg SAMPLE CODE Ł ICP ICP ICP pp∎ ¥ pp∎ ppmppm ppm ppm ጜ ppm ppm ppmppm * ppm ppb 349935 205 226 2 < 5 6 0.2 0.12 < 2 20 < 10 < 0.5 < 2 0.26 < 0.5 90 491 1 4.32 10 10 < 0.01 349936 205 226 < 2 < 5 6 < 0.2 0.04 < 2 < 10 < 10 < 0.5 < 2 0.06 < 0.5 95 190 1 4.34 10 < 10 < 0.01 205 226 349937 < 2 < 10 < 0.5 0.05 < 10 < 0.01 < 5 10 < 0.2 0.09 < 2 < 10 < 2 < 0.5 88 391 1 4.35 10 205 226 2050 349938 200 < 0.5 1.15 < 0.5 965 0.02 2 < 5 6 < 0.2 0.09 < 2 10 < 2 67 8 3.15 10 205 226 349939 < 10 < 0.5 4 < 10 2150 0.94 < 0.5 56 26 1.44 < 10 50 0.19 4 < 0.2 0.74 < 2 < 2 9 349940 205 226 527 27 4.49 < 10 < 0.01 10 16 < 0.2 0.16 < 2 < 10 < 0.5 < 2 0.05 0.5 95 10 4 10 205 226 349941 20 < 0.2 < 0.5 1.59 < 0.5 74 793 3.81 1360 < 0.01 4 4 0.09 2 10 60 < 2 8 < 10 205 226 349942 8 < 10 4 < 0.2 0.06 < 2 80 30 < 0.5 < 2 0.37 < 0.5 65 389 3 2.86 10 50 < 0.01 349943 205 226 6 10 0.2 2.04 12 < 10 40 0.5 < 2 5.23 2.0 20 111 67 3.56 < 10 50 0.11 6 349944 205 226 < 0.2 3.54 50 36 151 75 80 0.10 < 2 < 5 4 < 2 100 1.0 < 2 3.62 0.5 4.56 10 349945 205 226 < 2 5 6 < 0.2 0.09 < 2 < 10 < 10 < 0.5 < 2 0.06 < 0.5 94 331 2 4.43 10 < 10 < 0.01 205 226 349946 < 2 20 8 < 0.2 0.24 < 2 < 10 < 10 < 0.5 < 2 0.15 < 0.5 80 708 1 3.86 10 < 10 < 0.01

CERTIFICATION:

Said / ETAD

ALS Chemex

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: KETTLE RIVER VENTURES

619 NORTH FORK RD., R.R. #1 LUMBY, BC V0E 2G0 Page Number :1-B Total Pages :1 Certificate Date: 02-AUG-2000 Invoice No. : I0023956 P.O. Number : STJ Account : RIH

Project :

Comments: ATTN: WILLIAM WELSH

CERTIFICATE OF ANALYSIS A0023956

**

Ni Pb Ti Tl U ۷ W PREP La Mq Mn Мо Na P S Sb Sc Sr Zn SAMPLE CODE ppm 8 ppm ppm Ł ppm ppm ppm 8 ppm ppm ppm Ł pp ppm ppm pp∎ ppm 349935 205 226 < 10 >15.00 640 <1 < 0.01 1910 < 10 < 2 0.01 < 2 7 8 < 0.01 < 10 < 10 16 < 10 26 349936 205 226 < 10 >15.00 665 < 1 < 0.01 2010 10 < 2 0.01 2 5 1 < 0.01 < 10 < 10 7 < 10 22 349937 205 226 < 10 >15.00 685 < 1 < 0.01 1790 < 10 < 2 < 0.01 2 5 < 1 < 0.01 < 10 < 10 12 < 10 26 349938 205 226 < 10 >15.00 380 < 1 0.04 1340 < 10 < 2 0.06 < 2 6 86 < 0.01 < 10 < 10 23 < 10 20 < 10 349939 205 226 < 10 0.42 295 < 1 < 0.01 41 430 < 2 0.06 < 2 1 112 0.01 < 10 < 10 13 50 730 5 14 < 10 38 349940 205 226 < 10 >15.00 < 1 < 0.01 2010 90 < 2 < 0.01 2 1 < 0.01 < 10 < 10 349941 205 226 < 10 14.55 585 1765 < 10 < 2 0.07 6 73 < 0.01 < 10 < 10 22 < 10 32 < 1 0.03 < 2 < 10 < 10 349942 205 226 < 10 >15.00 475 < 1 0.02 1415 10 < 2 < 0.01 < 2 5 15 < 0.01 16 < 10 14 349943 205 226 10 2.08 720 6 0.03 94 1080 10 0.22 < 2 11 235 0.07 < 10 < 10 150 < 10 170 349944 205 226 < 10 3.32 585 0.02 225 1130 2 < 0.01 < 2 4 102 0.50 < 10 < 10 75 < 10 80 1 349945 205 226 < 10 >15.00 675 < 1 < 0.01 2000 < 2 < 0.01 < 2 4 1 < 0.01 < 10 < 10 9 < 10 30 40 349946 205 226 < 10 >15.00 < 1 < 0.01 1710 40 < 2 < 0.01 6 1 < 0.01 < 10 < 10 17 < 10 22 615 < 2

CERTIFICATION: 2010/ CETA9

ALS Chemex

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave.,North VancouverBritish Columbia, CanadaV7J 2C1PHONE: 604-984-0221FAX: 604-984-0218

To: KETTLE RIVER VENTURES

619 NORTH FORK RD., R.R. #1 LUMBY, BC V0E 2G0

**

Page Number :1 Total Pages :1 Certificate Date: 21-AUG-2000 Invoice No. : 10025604 P.O. Number : Account :RIH

Project :

Comments: ATTN: WILLIAM WELSH

CERTIFICATE OF ANALYSIS A0025604 Pđ ppb PREP Au ppb Pt ppb SAMPLE ICP ICP ICP CODE 2 235 --28 < 5 STJ-S01 IH! CERTIFICATION: 1

PINCHI LAKE AREA

EGEND

SCALE: 1:20,000

LATE TRIASSIC-EARLY JURASSIC

Takla Gp., greywacke, siltstone, minor limestone interbeds

Takla Gp. -mafic volcs conglomerate

LATE PALEOZOIC-EARLY MESOZOIC

PPeq Cache Creek Gp. - limestone

PPcc Cache Creek Gp. - argillite

PPcc Cache Creek Gp - basalt diabase, gabbro

MISSISSIPPIAN-TRIASSOC MANTLE ROCKS

Oceanic Ultramafites-peridotite, harzburgite, serpentinite, dunite

magnesite, veined by qtz-CO3 veinlets, diss. sulphides, nickel bloom

Blueschist, assoc. with the Pinchi Fault

- 55 + G.P.S. Waypoint
- 60X MINFILE Occurrence
- 29 ROCK SAMPLE
- S01 STREAM SEDIMENT SAMPLE

~~ FAULT

NOTE: LIMITS OF MAPPING INDICATED BY AREAS COLOURED

OF BRITISH COLUMBIA Crown Lands

Contour,	index, d	etinit	е.	• •	1. 1	*	3	<u>.</u>	*	•	•	173	-	-20
Contour.	intermed	liate.	defi	nite	(2		2		8	8	2	/	
Contour.	intermed	liate,	inde	tini	te .				÷				/	
Contour.	intermed	liate.	depr	ess	ion					÷	£		/	~
Spot heid	iht													492 .

M.

 \Diamond

For complete reference to symbols, see "Specifications and Guidelines for Digital Baseline Mapping at 1:20 000" published by the Ministry of

Digital data and additional copies of this map are available through MAPS-BC, Surveys and Resource Mapping Branch, Ministry of Crown

This map was produced in 1992, for the B.C. Ministry of Crown Lands. under its Terrain Resource Information Management (TRIM) initiative. by the Digital Mapping Group Limited (DMG), from 1:70,000

200	400	600	800	1000	1200	1400
-	-	-	-			

LEGEND

Transportation

Road, paved	
Landmark features Building, to scale, symbolized Built up area Fence Transmission line	~□ <i>'////////////////////////////////////</i>
Drainage and related features Coastline/River/Stream, definite Coastline/River/Stream, indefinite River/Stream, intermittent River/Stream, split	88

Flooded land 委 乘 XXXX +

± 206

Relief features

Contour, index, definite

Vegetation

Control data Control point, horizotal, permanently marked . . 🛆 86H1234 Control point, vertical, permanently marked . . . 🔿 86HA456

Cadastral

Surveys of Federal and Provincial Crown Land Sub-division of Provincial Crown Land Rights-ot-way:

District lot/Township section/Indian reserve . Mineral claim/Coal or Phosphate licence . . . Rights-of-way, transportation

1/4 section/Foreshore lot/Subdivision/ Right-ct-way, utilities

 \Diamond

For complete reference to symbols, see "Specifications and Guidelines for Digital Baseline Mapping at 1:20000" published by the Ministry of Environment, Lands, and Parks,

Notes

Digital data and additional copies of this map are available through MAPS-BC, Surveys and Resource Mapping Branch, Ministry of Environment, Lands, and Parks, Parliament Buildings, Victoria B.C. V8V IX4.

Approximate Mean Declination 1994 for Centre of Map Decreasing 13.3' Annually

936 059	934 050	
	-3K.060	931.05
93K.049	93K.050	93J.04

00-04 (2)

This map was produced in 1994, for the B.C. Ministry of Environment, Lands & Parks, Surveys & R[®]source Mapping Branch, under it's Terrain Resource Information Management initiative, from 1:70000 scale aerial photography flown in July, 1987.

Elevations in metres above Mean Sea Level.

LEGEND

Transportation	
Road, paved, Road, gravel Road, rough Trail/Cutilne/Selsmic line Railway, single track Railway, double track Railway, double track Railway, multiple track Railway, abandoned Wall, retaining Cut/Fill Bridge, to scale, symbolized Tunnel, to scale, symbolized	$\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
Lanamark leatures	57 -
Building, to scale, symbolized	11/1/1
Built up area	1//////
Transmission line	
Tower	
Drainage and related features	
Coastline/River/Stream, definite	
Coastline/River/Stream, indefinite	
River/Stream, split	\rightarrow
Lake, definite	\sim
Lake, indefinite	
Dyke	·····
Flooded land	
Swamp/Marsh	委 举
Beaver dam	****
Island, symbolized	+ '
Water level	± 206
Relief features	
Contour, index, definite	200-
Vegetation	
Wooded area	\square
Control data	
Control point, horizotal, permanently marked Control point, vertical, permanently marked	▲ 86Н1234 ⊙ 86НА456
Cadastral	
Surveys of Federal and Provincial Crown Land Sub-division of Provincial Crown Land Rights-of-way:	
Township	
District lot/Township section/Indian reserve	
Mineral claim/Coal or Phosphate licence	
Rights-of-way, transportation	
1/4 section/Foreshore lot/Subdivision/ Rights-of-wdy, utilites	
Cadasi al lie	\diamond

For complete reference to symbols, see "Specifications and Guidelines for Digital Baseline Mapping at 1:20,000° published by the Ministry of Environment, Lands, and Parks.

Notes

Digital data and additional copies of this map are available through MAPS-BC, Surveys and Resource Mapping Branch, Ministry of Environment, Lands, and Parks, Parliament Buildings, Victoria B.C. VBV IX4.

Approximate Mean Declination 1994 for Centre of Map Decreasing 13.4' Annually

	1	1
93K.068	93K.069	93K.070
/ 93K.058	93K.059	93K.060
93K.048	93K.049	93K.050

Adjoining Sheet Index in the British Columbia Geographic System. 00.04 3

This map was produced in 1994, for the B.C. Ministry of Environment, Lands & Parks, Surveys & Resource Mapping Branch, under it's Terrain Resource Information Management Initiative, from 1:70 000 scale aerial photography flown in August, 1987.

