BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2000/2001REPORT #:PAP 00-6NAME:STEVE BELL

 D. TECHNICAL REPORT One technical report to be completed for each project area. Refer to Program Regulations 15 to 17, pages 6 and 7. SUMMARY OF RESULTS 	Ministry of Energy and Mines Energy and Minerals Division	
This summary section must be filled out by all grantees, one for each project area	confidential subject to the provisions of the <i>Freedom of Information Act</i> .	
	ber <u>00101 - P19</u>	
LOCATION/COMMODITIES Project Area (as listed in Part A) <u>McQuARRIE LAKE</u> MINFILE No. if Location of Project Area NTS <u>73L ID</u> <u>Quick</u> Lat <u>54° 34' N</u> Description of Location and Access <u>14 km north of Houston B.C.</u> <u>Access BN Motor Vehicle on The Hidden Lake</u> BN HIKING.		
Prospecting Assistants(s) - give name(s) and qualifications of assistant(s) (see Program Regulation	13, page 6)	
Main Commodities Searched For <u>BASE METALS</u>		
Known Mineral Occurrences in Project Area NONE		
WORK PERFORMED 1. Conventional Prospecting (area) 50 km ³ 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 77 °B" Horizon Society, 1 Rock 4. Geophysical (type and line km) 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify)	<	
Best Discovery Project/Claim Name Commodities Location (show on map) Lat. Long Elevat Best assay/sample type	ion	
Description of mineralization, host rocks, anomalies No Sol ANOMALY I No SIGNIFICANT MINERALIZATION.		
FEEDBACK: comments and suggestions for Prospector Assistance Program		

BC Prospectors Assistance Program - Guidebook 2000

ł

 D. TECHNICAL REPORT One technical report to be completed for each project area. Refer to Program Regulations 15 to 17, pages 6 and 7. 	Ministry of Energy and Mines Energy and Minerals Division		
 SUMMARY OF RESULTS This summary section must be filled out by all grantees, one for each project area 	Information on this form is confidential subject to the provisions of the Freedom of Information Act.		
Name <u>S. BELL</u> Reference Nur	nber <u>00/01- P19</u>		
LOCATION/COMMODITIES			
Project Area (as listed in Part A) <u>FLATTOP</u> MINFILE No. it	f applicable		
Location of Project Area NTS <u>93 L/6 THAUTIL RIVER</u> Lat 54° 20' N	Long 127° 03' W		
Description of Location and Access <u>5km × 15 km RECTANGLE LOCATED</u> OF HOUSTON B.C. <u>ACCESS</u> VIA GOLD CREEK FSR. F.S.R WITH A 5 KM HIKE.	25 Km WSW AND CANYON		
Prospecting Assistants(s) - give name(s) and qualifications of assistant(s) (see Program Regulation	n 13, page 6)		
Main Commodities Searched For <u>Au - BASE METALS</u>			
Kasan Mineral Occumences in Design Anon N. 15			
WORK PERFORMED 1. Conventional Prospecting (area) 75 km ² 2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) 247 Soil, Till AND STREAM SAMPLE 4. Geophysical (type and line km) 5. Physical Work (type and amount)	is + 5 Rock		
6. Drilling (no. holes, size, depth in m, total m)			
7. Other (specify)			
Best DiscoveryProject/Claim Name $STARDUST$ Commodities $Cu Pb Z$ Location (show on map)Lat. $54^{\circ} Z1' J$ Long $126^{\circ} 55' E$ ElevaBest assay/sample typeSoilSAmPLE1150 PPm Cu, 404 PPm	2N, ition <u>33co feet</u> Pb, 798 PPm Za		
Description of mineralization, host rocks, anomalies PARITIC VOLCANIC ROC <u>COPPER MINERALIZATION NEAR SEDEMENTARY</u> <u>C.C.</u> <u>SOUS AT CONTACT ARE ENRICHED IN COPPER, A</u> <u>AND ZINC.</u> <u>POSSIBLE</u> VMS HORIZON.	RSENIC, LEAD		
FEEDBACK: comments and suggestions for Prospector Assistance Program			

 One technical report to be completed for each project area. Refer to Program Regulations 15 to 17, pages 6 and 7. 		Ministry of Energy and Mines Energy and Minerats Division	
 Keler to Frogram Regulations 15 to 17, pages 0 and 7. SUMMARY OF RESULTS This summary section must be filled out by all grantees, one 	Information on this form is confidential subject to the provisions of the <i>Freedom of</i> <i>Information Act</i> .		
Name S. BELL	Reference Num	per <u>DD/01-P19</u>	
Location of Project Area NTS <u>73</u> L/9	TION IS A 13 UN T OF PEROW B.C.	Long <u>126° 24' E</u> IT <u>CLAIM</u>	
Main Commodities Searched For COPPER - Au			
Known Mineral Occurrences in Project Area <u>JAck</u> RI	ABBIT SHEAR ZONE		
WORK PERFORMED Conventional Prospecting (area) <u>3 km²</u> Geological Mapping (hectares/scale) Geochemical (type and no. of samples) <u>15 'B" Ho</u> Geophysical (type and line km) <u>500 m MACNE</u> Physical Work (type and amount) <u>57R1 PPINE</u> Drilling (no. holes, size, depth in m, total m) <u>25 EA HoL</u> Other (specify)	ZO M ³ , SOIL AND L	es ocse Rock	
Best Discovery	commodities COPPER F	· · · · · · · · · · · · · · · · · · ·	

Technical Report Prospectors Assistance Program 2000

On Field Work Done

Between June 14 and October 8, 2000

In the Omineca Mining District NTS Maps 93 L/6, 93 L/7, 93 L/9, 93 L/10 Submitted by Steve Bell Reference # 00/01-P19

January 2001

Table of Contents

Introduction	1
Summary of Work	2
McQuarrie Lake Location	3
Flattop Location	7
Flattop West	10
Flattop East	12
Stardust Claims	13
Palomino Claims	20

Figures

Anomalous	Copper	in Soils	McQuarrie	Lake	Fig.	4
Magnetic	Survey B	Palomino	Claims		Fig.	11

<u>Appendix</u>

.

Statistical Summary Soils Stardust Claims	A
Multi Element ICP Analysis Results	в
Invoices Geochemical Analysis	С

Prospecting Program 2000

Funding was received to support an exploration program in the Ominica mining district of British Columbia. The exploration targeted favorable terrain at project locations near Houston B.C. which were explored using conventional prospecting techniques. The 65 day program commenced on June 14, 2000 and was designed to achieve the following objectives.

- (1) Identify anomalous drainages which may indicate nearby base metal mineralization located between Minefile 93L #30 (Lakeview) and 93L #25 (Del Santo) near McQuarrie lake.
- (2) Detect precious metal mineralization on the south east slopes of Flattop mountain.
- (3) Determine the significance of fracture controlled pyrite mineralization and anomalous metals in soils found on the Stardust claim group located south east of Flattop mountain.

Summary Prospecting 2000

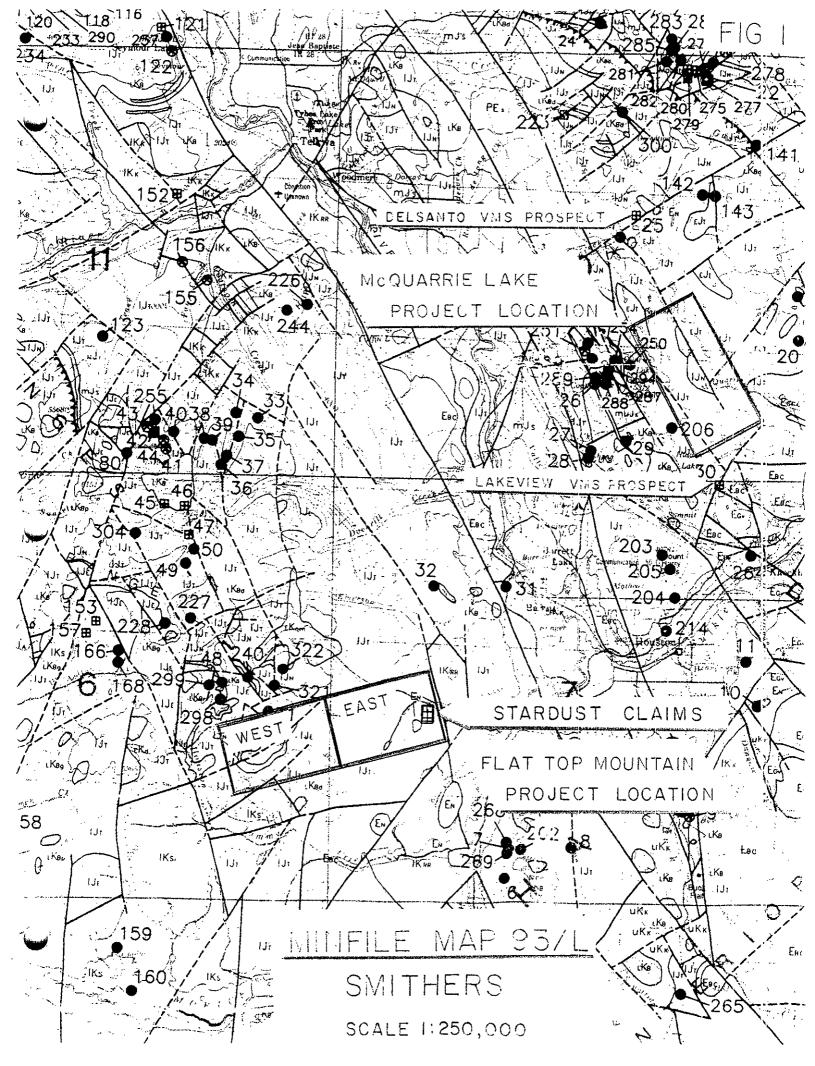
- (1) Weak copper mineralization was observed in propylytic volcanic rocks at McQuarrie Lake. Seventy-nine soil samples were collected near this location however significant metals were not detected.
- (2) The West half of the Flattop project location was prospected using conventional techniques. No new mineralization was found.
- (3) In the East half of the Flattop project location 11 stream and till samples, 229 soil samples and 5 rock samples were collected. Anomalous Copper, Arsenic, Lead and Zinc in soils were observed near volcanic / sedimentary contacts on the Stardust claim group.
- (4) After 50 prospecting days results from the Flatttop west and McQuarrie lake locations had proved not encouraging and the decision was made to allocate the remaining project time and resources to further explore the Palomino claim group. Here detailed sampling was carried out in order to determine the gold distribution across a 4m shear / vein which outcrops on the property.

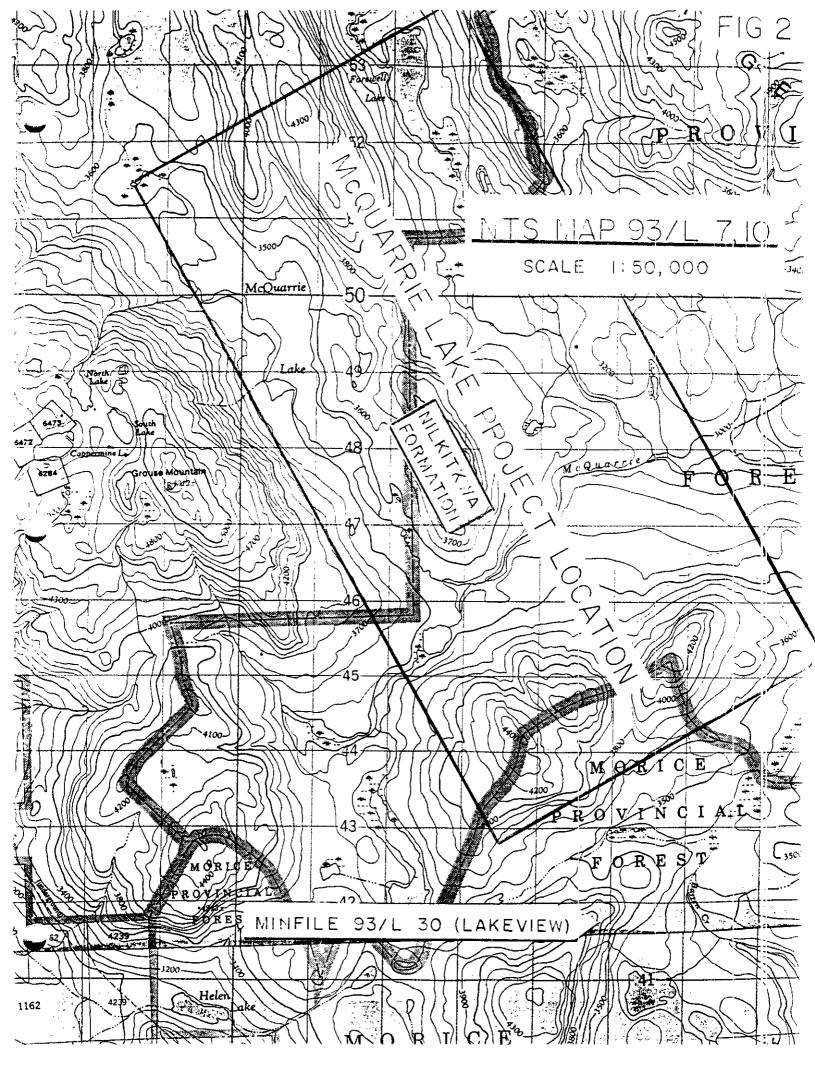
Technical Report McQuarrie Lake Project Location

The McQuarrie lake prospecting area includes the terrain within a 5km x 10 km rectangle centered 16 km north of Houston B.C. (see fig. |). The NTS 93/L and 10 map sheet coordinates are 604800 N by 653000 E (see fig. 2).

a) Access

The southern portion of the McQuarrie lake location is accessible by motor vehicle by taking the Hidden lake F.S.R. 14 km north of Houston. There is no vehicle access to the northern portion of the location and McQuarrie lake is accessible by float plane or by hiking.


b) Work History:

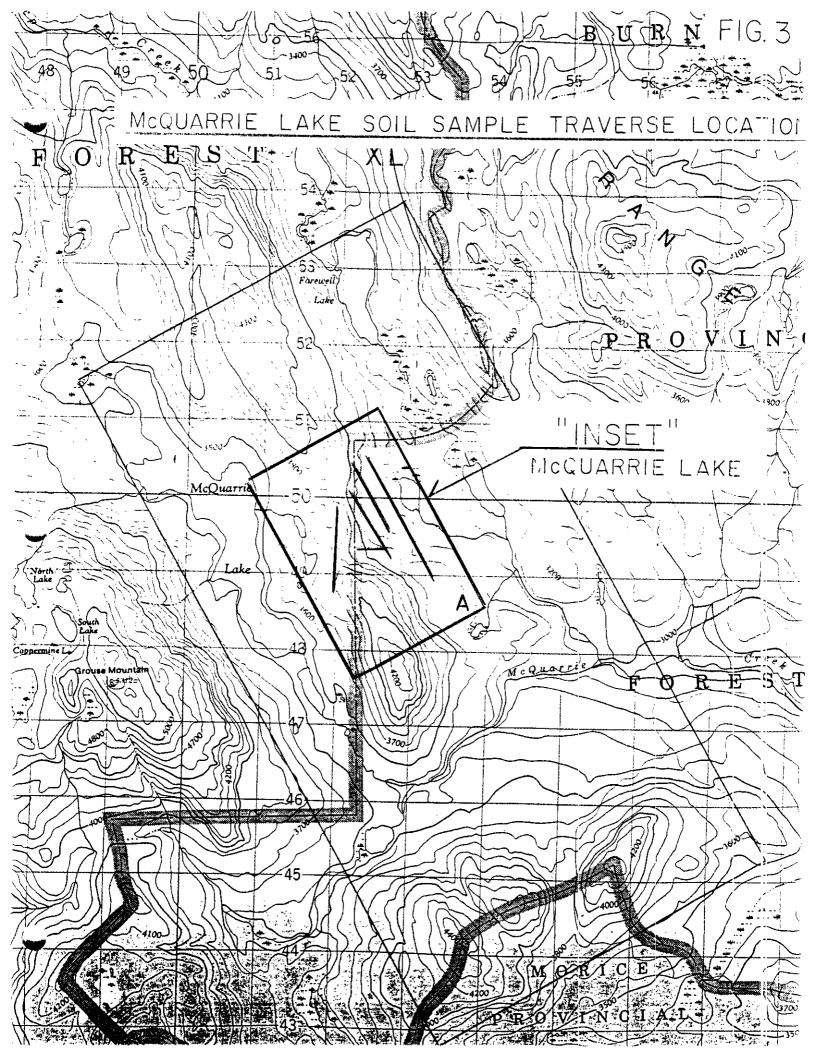

The area was initially examined by prospectors in 1914 when copper and zinc showings were discovered and developed on Grouse mountain 5 km west of the McQuarrie lake location. Regional exploration for copper porphyry deposits took place later in the 1960's. Presently the area is being reevaluated for its volcanogenetic massive sulphide potential.

(c) Prospecting Target

i) Commodity: Cu, Pb, Zn, Au, Ag

ii) Deposit type: Volcanogenetic Massive Sulphide

d) General Geology / Mineralization

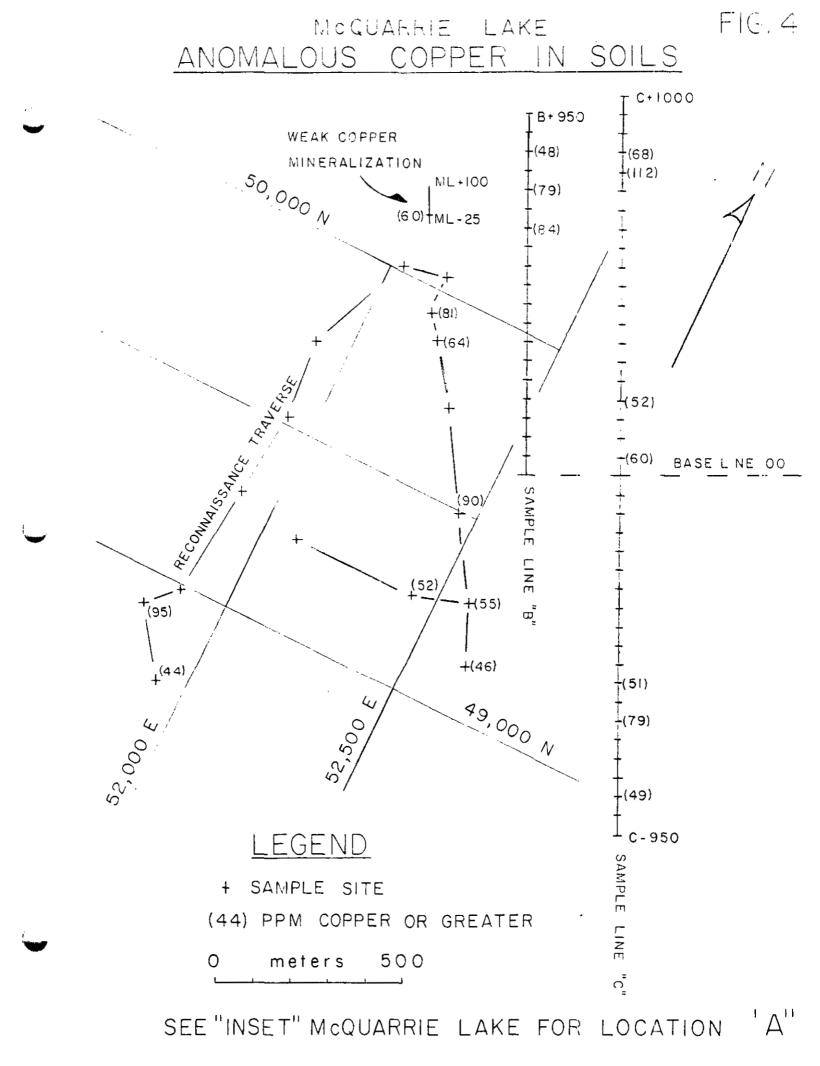

The McQuarrie lake project location lies at the South end of the Babine mountain range. The topography is fairly rugged with a number of small forest covered hills reaching over 4000 feet in elevation.

Jurassic age Hazelton group volcanic arc assemblage rocks occur in the area. Nilkitwa formation rocks within the project location are primary exploration targets since this formation hosts the Del Santo VMS prospect 10 km to the north west. A few km south of the McQuarrie lake location is the Lake View prospect which has VMS characteristics.

No reports can be found in the public record which describe mineralization within the McQuarrie lake project area.

Program (McQuarrie lake)

The geologic setting at McQuarrie lake is favorable since it lies within a north trending belt of mineral showings which display VMS characteristics. New clear cuts were examined north of minfile # 30 (Lakeview) and south of the project location for mineralization with negative results. Five prospecting days were used to conventionally prospect the project area. Small hills which could conceal rhyolite were targeted. Most of these were covered by overburden and no determination cculd be made. Other erosion resistant outcrops were common Topley intrusives. Malachite with minor chalcopyrite was observed with propylitic andesite at one location near the center of the project area (see inset fig.3).


Program (McQuarrie Lake) cont.

This general area was chosen for a more detailed survey. Here weak copper mineralization was also found in a light colored rock outcropping near Nilkitkwa formation volcanics. (see fig. 4) for location. Here minor chalcopyrite and Hematite occur with quartz on fractured surfaces. The host rock is a light green colored felsic rock that may be a rhyolite or altered andesite.

Propylitic amygdaloidal andesitic boulders were found about 75 meters to the east on a steep down slope. Amygdules are chlorite filled and there is fine grained pyrite (1-2 percent) dispersed throughout the matrix. A sample of this rock was analyzed (Sample MLR-1). No anomalous metals were detected.

Six "B" horizon soil samples were taken along a north-south line (samples ML+100 to ML-25) spacing at 25m, on the down slope side of the pyritic boulders. The results were negative with only one slightly anomalous sample at 60 ppm cu.

Fifteen reconnaissance style "B" horizon soil samples were collected in an overburden covered valley situated between Topley intrusions which outcrop in the north and Nilkitkwa formation in the south. The drainage to the east was tested by Fifty-eight "B" horizon soil samples taken along two north-south sample lines. Sample line "B" and line "C" are 250 m apart and the sample spacing is 50m. (see fig.4)

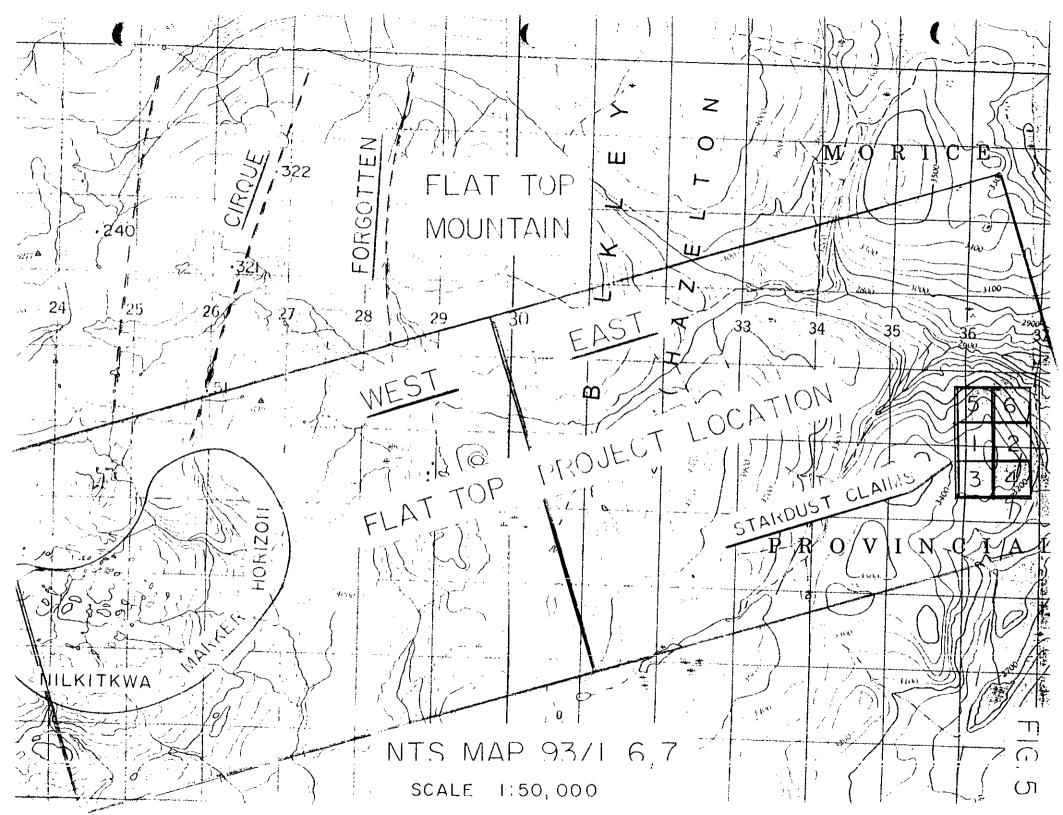
Discussion (McQuarrie Lake)

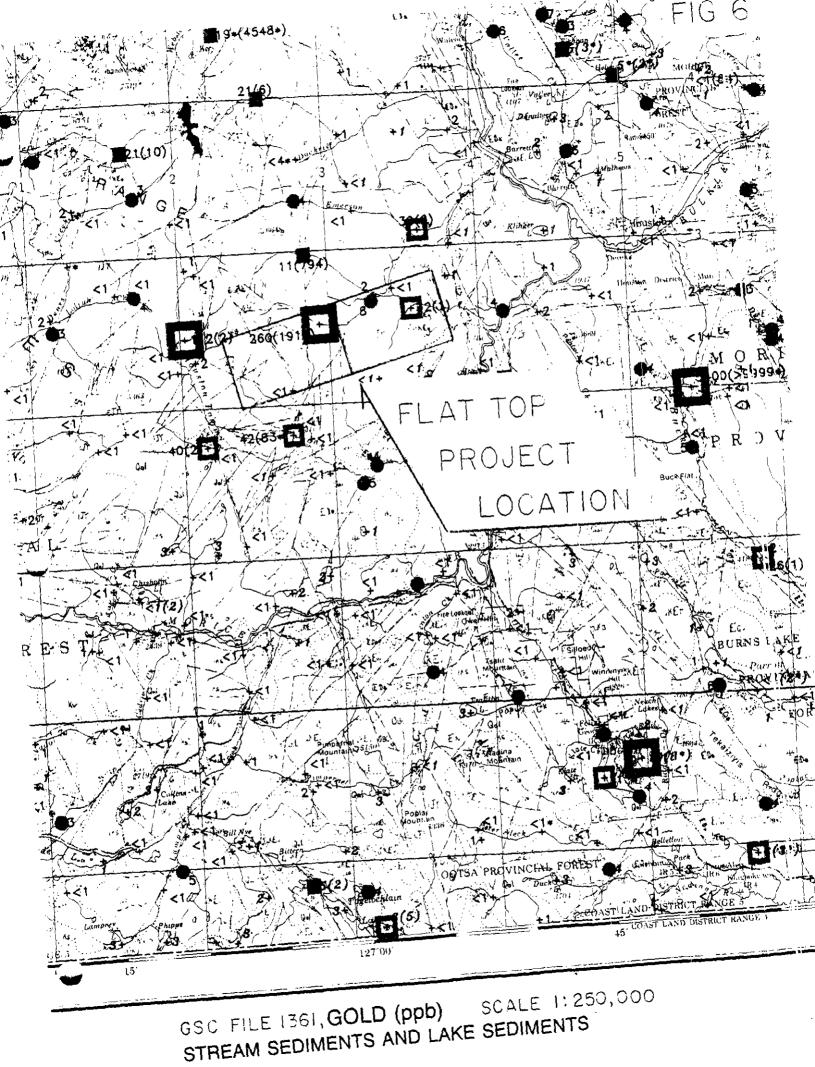
No soil anomaly was detected and only isolated above threshold (> 44 ppm copper) samples were encountered. This pattern may be attributed to weak copper mineralization found in the underlying bedrock. The absence of a significant soil anomaly and the generally low lead-zinc values found in soils reduces the VMS potential. The presence of felsic volcanic rocks improves the possibilities, however the rocks encountered appear to be largely altered intermediate to mafic volcanics of felsic composition and not true rhylolite.

Therefor the weak copper mineralization is most likely related to the emplacement of nearby Topley intrusions rather than an exhalative process. The pyrite bearing andesite tested was barren. This suggests that the propylitization is not associated with a significant metal bearing system.

Since soil geochemistry does not indicate more than weak copper mineralization further exploration is not warranted here at this time.

Technical Report Flattop Location


The Flattop prospecting area includes the terrain within a 5km x 15km rectangle centered 25 km WSW of Houston B.C. (see fig. 1) The NTS 93/L 6 and 7 map sheet coordinates are 602400C N by 630000 E. (see fig.5)


a) Access

The Stardust claim group and the eastern half of the Flattop location are accessible by motor vehicle by taking the Gold Creek F.S.R. 15 km south west of Houston. Access to the western half is by hiking north 5 km from the end of the Canyon F.S.R. located 30 km south west of Houston.

b) Work History:

The general area was explored by Phelps Dodge Corp. in the 1960's for porphyry copper mineralization. In 1987 interest mid renewed and claims were staked north of the project location vas after the release of a government geochemical survey. Major drainages in the Flattop mountain watershed showed anomalous precious metal values (See fig. 6). Atna resources, Noranda and Geostar mining conducted follow up geochemistry on Flat Top mountain which identified fault controlled precious metals minfile locations mineralization at 93L #321 and #322. (Assessment reports 19293, 20391, 21888 and 22888). In 1999 S.Bell detected anomalous base metals in soils and fracture controlled pyrite mineralization on the Stardust claim group.

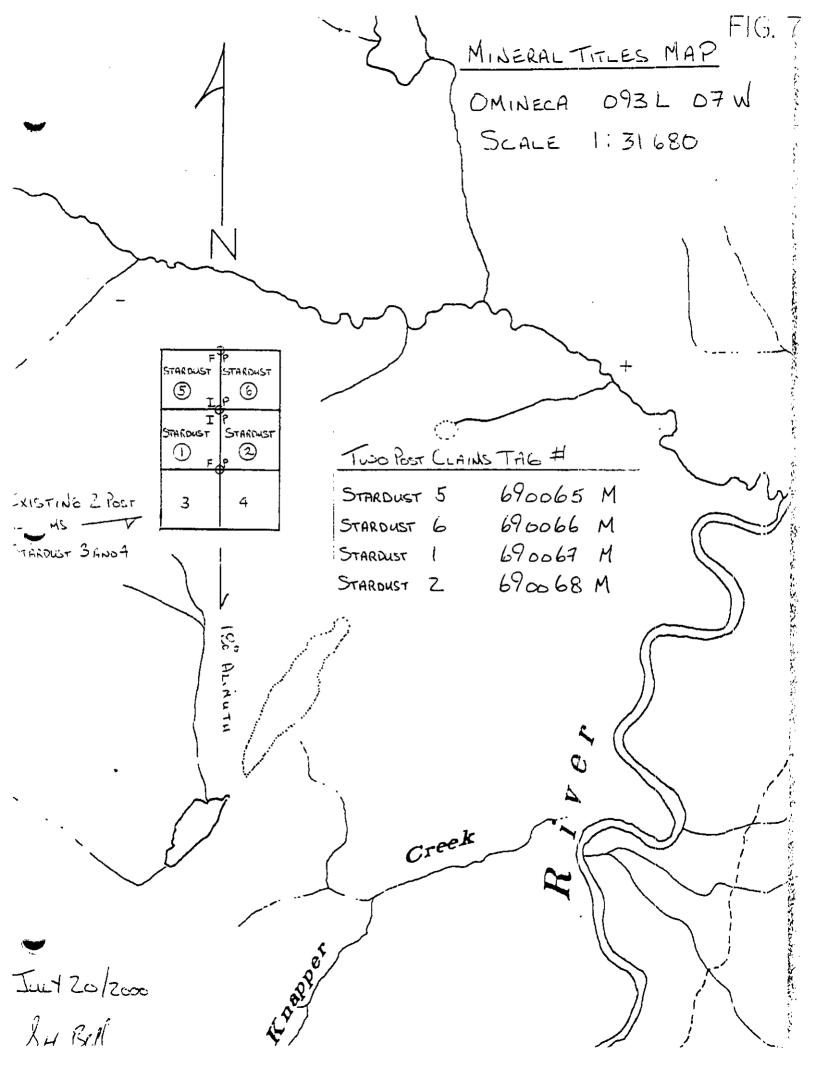
c) Prospecting Target

i) Commodity: Au, Ag

- ii) Deposit type: Precious metal mineralization controlled by major NNE fault structures.
- d) General Geology:

The Flattop project location is within the Telkwa and Bulkley ranges, part of the Hazelton group of mountains. Here streams drain steep slopes into east flowing tributaries of the Morice river. Elevations range from 2500 to 5700 feet and the majority of the slopes below 5000 feet are forest covered.

Jurassic age Hazelton group volcanic rocks dominate. These rocks comprise a marine and non-marine arc assemblage. In the western portion of the Flattop prospecting area there is a marker horizon of Nilkitkwa shallow marine sediments, limestone and tuff. Non marine rocks however are more plentiful. These are mainly rhyolitic to andesitic flows, pyroclastics, lahar, air fall tuffs and breccias. The upper Cretaceous to Eocene is represented by a variety of felsic intrusions. Flattop mountain hosts precious metal mineralization related to the plutonism associated with these intrusive rocks.


Widespread lithogeochemical anomalies on Flattop mountain indicate a regional metallogenous terrain enriched in precious metals.

e) Mineralization:

widespread copper/gold North of the project area mineralization has been investigated by Atna resources. This mineralization is associated with major NNE trending faults. The trace of these faults (see fig. 5) extend into the Western portion of the project area. The ridge minfile #322 and Jewelry Box mineral showings lie on the Cirque fault. Gold values in rock tested by Atna along this fault range to 1.2 oz/ton Au with anomalous As, Sb, Cu, Pb, Ag, Ba, and Zinc. The mineralization on Flattop is described by Atna as being structurally controlled precious metal mineralization superimposed on a large copper-gold system related to the contact between an intrusive complex and the overlying volcanic rocks.

In 1999 fracture controlled pyrite/quartz mineralization in a tuff/breccia containing anomalous copper at 2662 ppm was noted within the prospecting area. The Stardust claims were staked (see fig.7) to cover the exposure after anomalous amounts of base metals were detected in soils near the showing. The mineralization is spatially related to volcanic / sedimentary contacts and a topographic lineament, possibly a fault which from the headwaters of Knapper creek to Gold trends. NNE creek. There is also a granitic out crop possibly a Bulkley intrusion on the property.

No reports can be found in the public record which describe other mineralization within the Flat Top project area.

Program (Flattop West)

The geochemical signature of the Flat Top watershed is notably similar to that found in the vicinity of Dome mountain which hosts significant precious metal bearing mesothermal veins (50km NE of the project area). At Dome mountain the quartz veins occur in high angle faults hosted by lower Jurassic andesites, tuff and breccias of the Nilkitkwa formation. These rock units are present at Flattop and were the primary targets to be identified and explored.

Thirteen prospecting days were allocated to explore the Flattop west location. Traverses were made from a clear cut at 626800 E x 6019200 N on UTM map 93 L/9 Thautil River, north to the Nilkitkwa marker horizon. Hiking distances range from 5.0 to 10.0 km. Four major south east flowing tributaries of Houston Tommy creek were followed. The creeks have eroded steep gullies which expose the stratigraphy for examination. Unfortunately beyond the creek beds till and colluvial debris cover the steepest slopes.

When interesting float rock or mineralization was encountered traverses were made along ridges above the creek and small test holes were dug with a trenching tool to expose bedrock. Hand panning was tried but not proven to be very efficient due to the lack of water at higher elevations. In many places stream sediment has been sluiced out by the freshet or buried by several feet of rounded cobbles.

 $|\bigcirc$

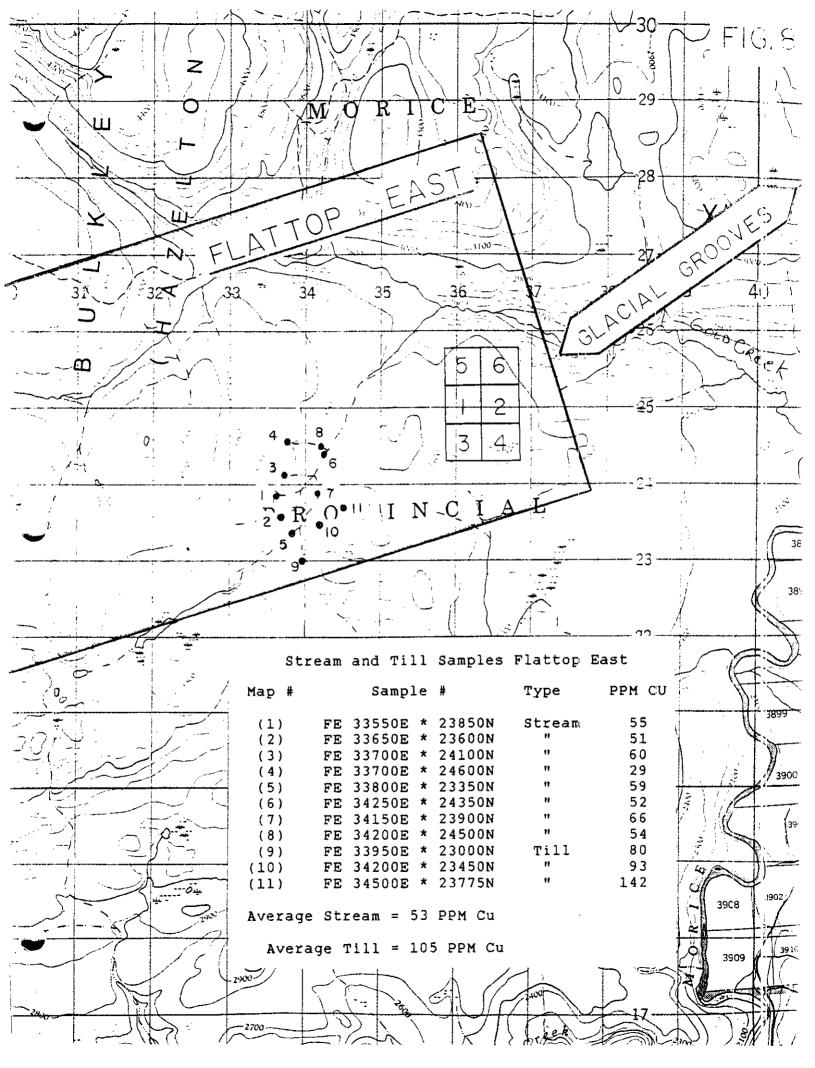
<u>Discussion</u> (Flattop West)

Pyritized volcanic rock was the most common style of mineralization encountered. Much rusty bedrock was attacked in order to make this determination. Pyritic float rock was found to originate from bedrock sources which carry small amounts of fine grained evenly distributed pyrite. These appear to be zones of regionally propylitized volcanic rock. Vein material in float was also encountered. Calcite vein filling predominated followed by quartz. There may have been very little quartz flooding of the local country rock. Barite was not observed.

Intrusive rocks chiefly andesitic dykes were found cutting Nilkitwa sediments and limestone. These were examined for signs of skarn. The limestone near intrusive contacts is slightly pyritized and recrystallized but shows no sign of skarn mineralization. The limestone units here are thin <10m and probably not very continuous.

At two separate locations minor chalcopyrite in green andesite was observed. Efforts made to detect significant mineralization associated with these occurrences were not successful. They appear to be small localized enrichments of copper only and occurrences of the type commonly found in the Hazelton volcanic rocks.

The presence of important mineralization in this terrain cannot be be ruled out however. Huge volumes of bedrock remain concealed by overburden. It is very likely that new logging roads will eventually uncover something of value.


Program (Flattop East)

Eight prospecting days were used to explore the terrain and watershed in the Flattop east project area (see fig.5). No new mineralization was detected. Bedrock exposures were examined where small creeks have eroded through till and colluvial soils. Excessive overburden and difficult terrain hampered the conventional prospecting effort.

Jurassic Telkwa formation rocks however are well exposed in fresh road cuts on the upper end of the Gold creek forest service road. The exposures are chiefly comprised of green to purple sub aerial to shallow marine volcanic rock of intermediate composition. Narrow beds of impure limestone are present in the volcanic pile. The beds dip gently toward the east and strike in a northerly direction. The local stratigraphy is cut by at least one steeply dipping andesitic dyke and a small plug of granite. The granite appears to be a relatively fresh Cretaceous Bulkley intrusion.

Stream sediment and till samples were collected south west of the Stardust claim group (see fig.8). These samples test sediments and till in the probable down ice direction from mineralization located on the Stardust claim group.

The stream samples average 53 ppm copper which is in the upper 95 percentile for copper in area stream sediments. (GSC open file 1361). Local threshold values for copper in till is taken at 44 ppm copper. The three till samples (# 9,10 and 11) average 105 ppm copper.

Program (Flattop East) Stardust claim group

The Stardust claim group is located 16.5 km south west of Houston B.C. The six two post claims are located at the top of a small hill overlooking an easterly flowing tributary of the Morice river called Gold creek. The claims were staked to cover mineralization which outcrops on the Gold Creek Forest service road. Here pyritic volcanic rock is enriched in copper and nearby soils contain anomalous amounts of copper, arsenic, lead and zinc.

The Stardust claim group is located in the eastern half of the Flattop prospecting location. The group consists of six two post claims (see fig. 7).

Stardust	1	#	378980	July	20,	2000
Stardust	2	#	379881	July	20,	2000
Stardust	3	ŧ	373180	Nov.	11,	1999
Stardust	4	#	373181	Nov.	11,	1999
Stardust	5	#	378982	July	20,	2000
Stardust	6	Ħ	378982	July	20,	2000

Summary of work (Stardust claim group)

A detailed soil sampling program was conducted across two previously identified volcanic / sedimentary contacts located on the Stardust claim group. 226 soil and 5 rock samples were analyzed for anomalous metals. Overburden was stripped and small test holes were dug to reveal bedrock.

Summary of work (Stardust claim group) cont.

A) <u>Geochemical</u> survey

i) Soil development

The soil overlies glacial till and locally derived colluvium. On local hills the soil is generally thin and poorly developed with little accumulation of organic matter. In gullies and drainages however the soil is well developed with a rich organic layer. The till varies in thickness from a few meters to tens of meters.

ii) Drainage pattern

There is a well defined drainage system. Easterly flowing tributaries of the Morice river drain the entire area. The dominant down slope direction across the Stardust claim group is toward the north east.

iii) Glacial History

Glacial ice has overrode the entire area and has produced a glacial topography in both till and bedrock. Glacial history is complex. Glacial grooves in local bedrock indicate north easterly to south westerly ice movement.

iv) Geochemical target

The prospecting target for the Flattop project area is fault controlled precious metal mineralization however the Stardust claim group may host mineralization related to a volcanogenetic exhalative process. The survey was designed to test for this type of mineralization based upon the following assumptions. Summary of work (Stardust claim group) cont.

 a) Host rocks are Hazelton group shallow marine volcanic rocks and sediments.

b) Mineralization is stratabound and located at an ancient sea floor horizon.

c) The target is relatively small therefor residual soil anomalies which overlie mineralization may be subtle.

v) Sample sites

Sample sites were chosen to test for residual anomalies in soils which overlie two adjacent volcanic / sedimentary contacts. Samples were collected along sample lines at intervals of 15m. Line spacing varies between 75m and 150m.

vi) Survey control

Grid lines were prepared using compass and hip chain to locate sample sites. Lines run north west to south east at right angles to the down slope direction. The +00 grid line passes through the Stardust 1 and 6 initial post locations (UTM grid coordinates 636300 E x 6024800 N). Sample sites were marked with flagging and labeled with the grid coordinates.

vii) Sampling procedure

A trenching shovel was used to dig 25 cm to 30 cm sample holes to test "B" horizon soils. Soil samples were put into labeled 4" x 7" kraft paper bags and shipped to the Assayers Canada laboratory in Vancouver for analysis. There the samples were prepared and an ICP analysis was performed (see ICP analysis Stardust project).

<u>Observations</u> (Stardust claim group)

Elevated values of base metals and path finder elements were found over volcanic / sedimentary contacts. (see scil geochemistry plan). Maximum values detected in soils include the following, copper 1150 ppm, arsenic 1436 ppm, lead 404 ppm and zinc 798 ppm. Anomalous amounts of these metals peak near outcrop exposed on the Gold West forest service road. They form three distinct anomalies which stem from the outcrop and trend in a down slope direction where they merge to form a single scil anomaly.

Anomaly #1 arises from pyritized volcanic rocks which outcrop 100 m west of the +00 base line. The soils here are enriched in copper. Anomaly #2 is a copper, lead and zinc soil anomaly centered over the +00 base line. Here the anomalous soils overlie a black limey argillite which is in contact with pyritic volcanic rocks. Anomaly #3 is a zinc anomaly associated with a second volcanic / sedimentary contact.

5 rock samples were collected at 4 locations marked with an "R" on the soil geochemistry plan. From east to west the samples are labeled as follows, S+00, S+90w, S+105w, S+110w and SDR-1. Sample S+00 is float rock found directly over Anomaly #2. It appears to be a highly oxidized and fractured pyritic tuff light green in color which carries anomalous copper at 991 ppm. Samples S+110w and SDR-1 are float rock collected at anomaly #1 The samples are green colored andesite. Pyrite is present as disseminations and fracture fillings with quartz.

Observations (Stardust claim group)

Samples S+110w and SDR-1 carry significant values of copper at 1871 ppm and 1559 ppm respectively. Samples S+90 and S+105 are two one inch by 75 cm core samples taken from bedrock exposed at anomaly #1. They assay 698 ppm and 912 ppm copper. All five samples are enriched in arsenic but none contain anomalous amounts of lead or zinc.

The local statigraphic sequence from footwall to hanging wall is as follows.

- green andesite.
 (anomaly #1, Cu, As)
- 2) black argillite
- 3) green tuff breccia (anomaly #2, Cu, As, Pb, Zn)
- 4) fresh andesite
- 5) black argillite (anomaly #3,Zn)
- 6) cherty tuff

The most important horizon appears to be that associated with the tuff breccia which gives rise to a strong polymetallic soil anomaly.

Anomalous metals in soils are detectable in a down slope direction for 400m. The dispersal of metals in this direction is most likely controlled by hydromorphic processes. Copper being the most mobile followed by arsenic, zinc and lead. Till samples collected directly south west of the claim group contain anomalous copper. This suggests that there may also have been down ice dispersal of metals as well.

<u>Discussion</u> (Stardust Claim group)

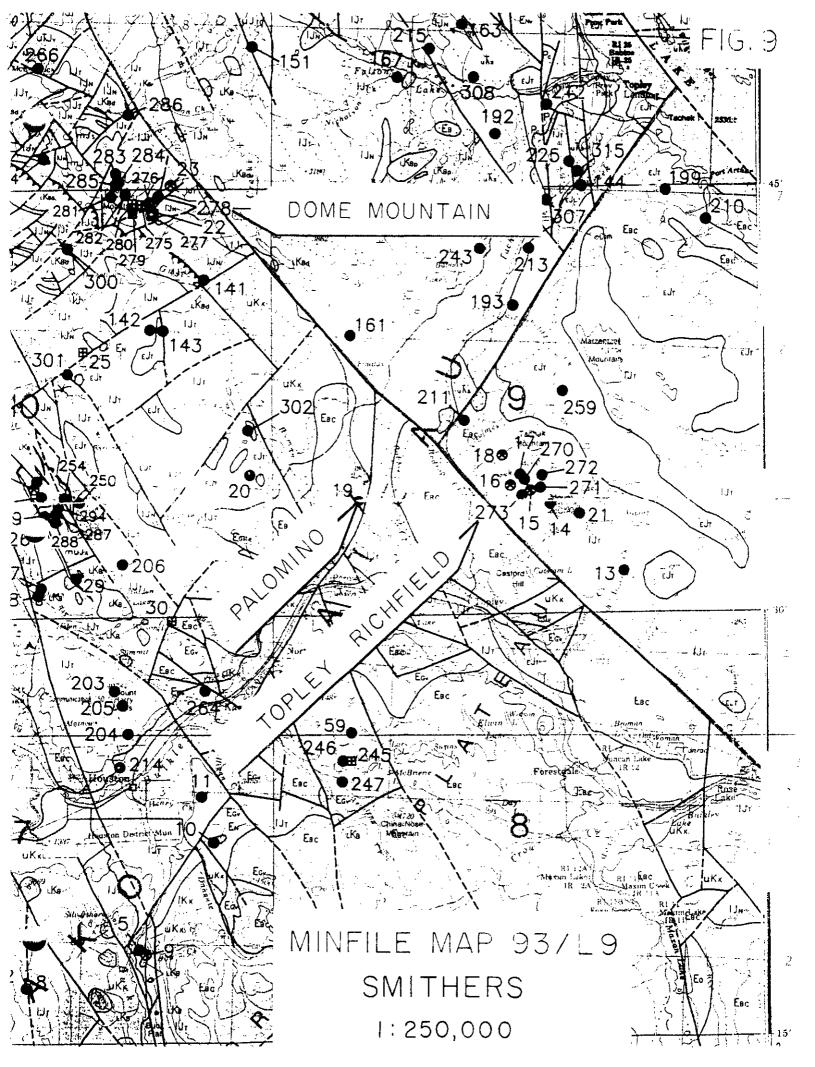
Copper in the 500 ppm to 2000 ppm range has been detected in bed rock exposures on the Stardust claims. The local soils are likewise enriched and reflect the presence of this mineralization. The copper is associated with footwall volcanic rocks in contact with hanging wall sediments. Anomalous lead and zinc were not detected in bedrock however the soil geochemistry suggests its presence near this sedimentary contact.

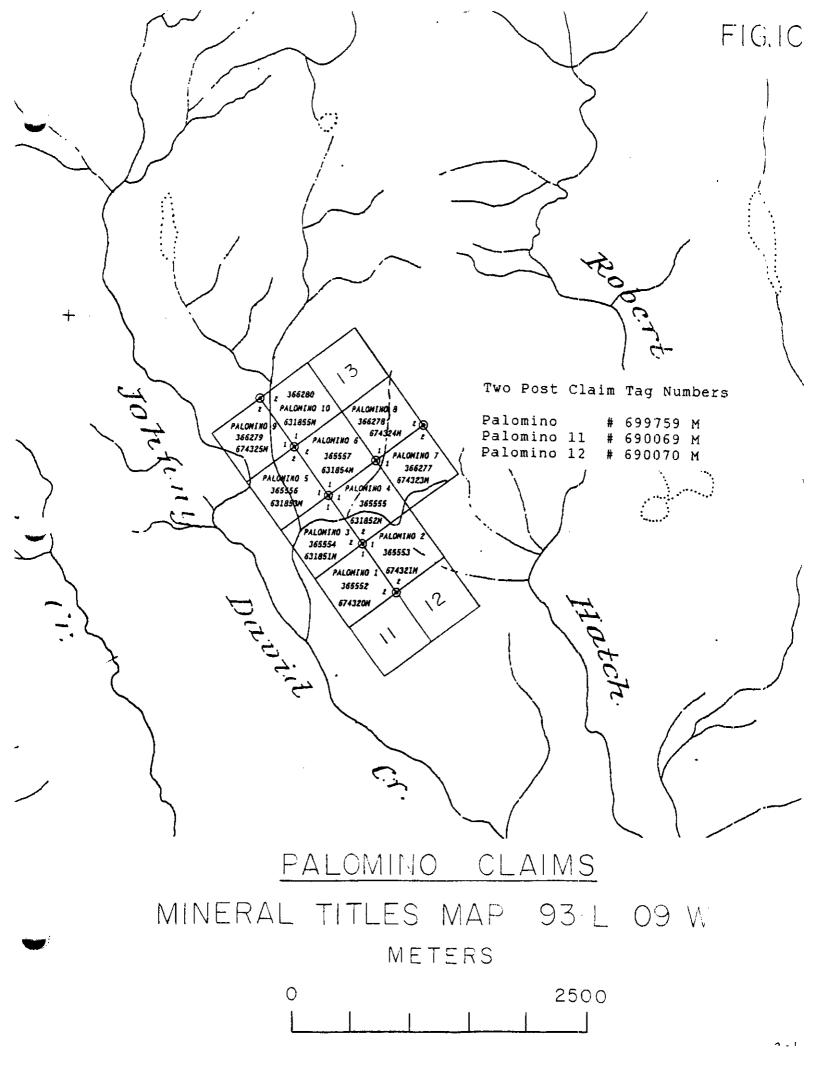
Some strata bound base metal enrichment is expected near volcanic / sedimentary horizons and is attributed to normal sea floor processes which concentrate them there. However the strength of the mineralization here seems to be significantly greater than that which is generally associated with a typical sea floor horizon found in Telkwa formation rocks. Therefor this mineralization could be attributed to a distal volcanogenetic process. Near by intrusive rocks do not appear to be related however weak copper mineralization is often associated with them and a connection is possible.

The only sulphide mineral observed in bedrock is pyrite. In weathered float rock the pyrite has been almost completely altered to limonite. In this environment base metals would be readily mobilized and carried away by ground water. Secondary copper minerals have therefor not been observed at this location. Zinc mineralization is particularly vulnerable and may be the reason why it has not been detected in place.

<u>Conclusion</u> (Stardust Claim group)

The overburden should be stripped over anomaly #2 to obtain fresh samples of bedrock. If strataform lead/zinc mineralization is present a volcanogenetic connection could be established. If a vocanogenetic nature can be established further exploration in an attempt to trace this horizon may be warranted.


Technical Report Palomino Location


The Palomino prospecting area is located within the boundaries of the palomino claim group. The 13 two post claims are centered 6 km north east of Perow B.C. The claims cover minfile occurrence #9 Jack Rabbit (see fig. 9, 10).

a) Access is by motor vehicle from Houston B.C. via. Highway 16 turning North at Perow. Follow the Byman forest service road to the North road. Turning right travel to the Johnny David creek FSR. This road passes through the North end of the claim group.

b) Work history

Claims were first staked in 1927 to cover the Jack Rabbit shear zone which outcrops in the valley of Johnny David creek. A short adit was driven to explore the zone after copper sulphides from the shear returned high gold values. Early work was focused on mineralized zones along the creek and no work was done to test for the shear beyond the valley. In 1967 a regional airborne magnetic survey was conducted over the project area and a magnetic anomaly was detected (Map 5312 G Topley). In 1973 Phelps Dodge Corp. (Assessment #4760) conducted a magnetometer survey over the Jack Rabbit shear to define lithologic trends. Peter Ogryzlo mapped local geology in 1985 (Assessment #13845). Another magnetometer survey was conducted in 1987 by Rosalie Resources (Assessment #16071). In 1997 the present owner conducted soil geochemisty and performed a self potential survey.

c) Prospecting target

i) Commodity: Cu, Au

ii) Deposit type: Vein copper and related copper-gold porphyry

d) General geology:

The claims are underlain by Hazelton Group volcanics of the Lower Jurassic Telkwa formation. Ogryzlo describes the volcanic rocks as variegated volcanic breccias and tuff of intermediate to felsic composition. Anhydrite being common on partings with calcite filling cavities and veins. He notes that epidote is present and appears to be more abundant near the mineralized showings.

There is an elliptical magnetic high of 100 gammas relief shown on map 5312 G Topley which is centered over the claim group. The anomaly trends in a northerly direction and is over 1km in length. The Jack Rabbit shear and QFP dyke are located on its south east boundary.

e) Mineralization:

Volcanic rocks are cut by a 20m wide quartz feldspar porphyry dyke. The dyke contains angular laths of bleached feldspar and rounded quartz eyes. The bleaching appears to be caused by sericitization and kaolinization of the dyke. Pyrite makes up 1-2% of the rock and copper values across the dyke are 1000 ppm.

21

22

Mineralization cont.

The Jack Rabbit shear zone outcrops 20 m west of the dyke. The host rocks are described by Ogryzlo as andesitic fragmentals, rhyolitic pyroclastics and tuff. The feldspar laths in the volcanic rocks have been epidotized and the ground mass contains both greenish epidotized fragments and rounded black fragments (magnetite). The shear is 4m wide and contains zones of fault breccia cemented with guartz and clay. The gouge is bleached pale green and carries traces of specular hematite.

The only visible sulphide mineralization is pyrite and chalcopyrite which appear in about equal proportions. There are disseminations throughout the zone. Massive small sulphide sulphides occur in narrow 1cm sub parallel veins and small replacement type lenses up to 15 cm in diameter. Near surface oxidation has converted the sulphides to reddish brown limonite. The rocks adjacent to the shear are highly magnetic and the shear itself contains magnetic breccia fragments. Disseminated chalcopyrite with k-feldspar and epidote are present in the and foot wall rocks near the shear. There are hanging wall limited exposures beyond Johnny david creek where till conceals the bedrock.

Program (Palomino)

Two sampling programs were undertaken at the Palomino location in order to achieve the following two objectives.

- A) Determine the gold distribution across the Jack Rabbit shear zone.
- B) Investigate the northern half of the aeromagnetic anomaly

<u>Summary of work</u> (Program A)

The Jack Rabbitt shear zone has been sampled before. The chip and grab samples collected however do not indicate how the gold values are distributed. A detailed sampling program was carried out in order to make this determination. A series of rock core samples were taken across the shear in order to provide of unoxidized material from uniform samples precise locations. The samples were then used to provide information about the relative abundance of gold and copper across the shear. The site was first prepared by stripping 20 cubic meters of loose rock and overburden from the shear to reveal the footwall of a collapsed adit.

The shear zone is 4m wide (true width) and dips toward the west at an angle of 70-75 degrees. Vertical 70 cm long core samples were taken at 20 cm intervals across the shear. Each sample corresponds to an equivalent 20 cm sample taken across the true width of the shear.

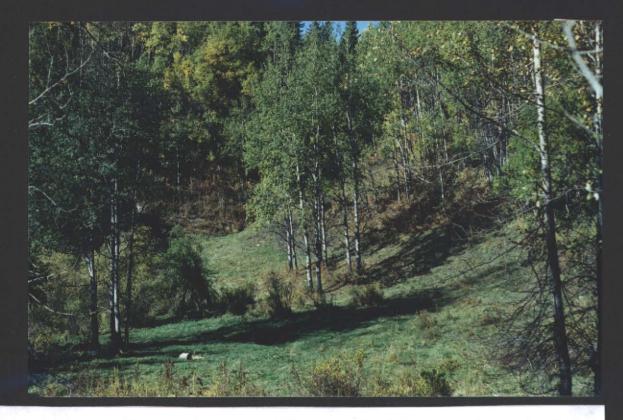


Photo 1. Johnny David creek valley looking north west along the trace of the Jack Rabbit fault.

Photo 2. Jack Rabbit fault looking south east showing collapsed adit circa 1928.

Program A cont.

The drilling was done with a hand held packsack style core drill. A four foot XRT rod with a short core barrel and a XRP thin walled diamond bit were used with the drill to provide a 1 inch diameter core.

Twenty five core samples were extracted. The samples were put in labeled sample bags and sent to Assayers Canada for analysis. The drill holes were then plugged and marked for photographic documentation.

Sample taking proceeded across the strike of the shear from hanging wall (west) to the footwall (east) as follows.

- a) Samples JR-1 to JR-7 were taken from vertical holes and are equivalent to a sample taken across a 20cm true width.
- b) Samples JR-8 and JR-9 were drilled at an angle and depth to test a true width equivalent of 40 cm each.
- c) Samples JR-10 to JR-19 were taken from vertical holes and are equivalent to a sample taken across a 20cm true width.
- d) Samples JR-20 and JR-21 were taken from holes drilled at an inclination of 60 degrees and test a zone of replacement style mineralization over a true width equivalent of 50cm.
- e) Samples JR-22 to JR-25 were drilled into the footwall at an angle of 45 degrees to a depth of 50cm. Hole spacing is 50 cm. The samples represent true widths of 45cm each.

Photo 4. Core sample locations in footwall

#5 Altered shear/vein material
 with replacement style sulphide
 mineralization. (Left)

13

14

17 16 15

#6 Limonite stained sub parallel sulphide bearing veinlets (footwall side) (Right)

Photo 7. Core samples JR shear zone.



Photo 8. Core samples JR shear zone.

Observations (Program A)

Gold values range from background levels to a high of 6.5 g/tonne at JR-6. Cooresponding copper values are from 71 ppm to +10,000 ppm. Average gold values are low since the gold content is directly related to the sulphide content. Where massive sulphide mineralization was intersected higher gold values were obtained (samples of massive sulphide mineralization consistently assay over 32 g/tonne gold). The core samples include larger proportions of barren gangue which reduces the overall grade.

The shear is unusually deficient in lead, zinc and pathfinder elements. There is however a slight enrichment of molybdenum from sample JR-1 to JR-6 which probably marks the transition from hanging wall rock. Samples JR-9 to JR-12 contain only anomalous amounts of copper and gold. These samples test a large block which has moved from the hanging wall into the shear zone. At this location part of the shear has been faulted into the footwall. The original workings appear to have followed the hanging wall contact and are centered on the higher grade mineralization at JR-6. The excavation was stopped just where this mineralization has been displaced into the footwall.

Discussion (Program A)

A geophysical survey is required to detect sulphide mineralization along the trace of the Jack Rabbit shear. Where sulphides are indicated a diamond drill can be employed to test for economic concentrations. **Steve Bell**

Attention: Steve Bell

Project: Palomino

Sample: Rock

FOOT WALL

Assaye. Canada 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V0447 RJ Date : Oct-06-00

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
JR-01	0.6	0.50	<5	30	0.5	<5	4.50	<1	22	19	1041	7.82	0.22	2.46	1215	20	0.03	15	1630	10	5	10	<10	102	0.01	106	<10	11	82	7
JR-02	1.0	0.56	25	40	0.5	<5	4.48	<1	23	18	3270	6.79	0.31	2.49	1270	34	0.02	16	1570	14	5	11	<10	93	0.01	103	<10	12	89	7
JR-03	1.2	0.63	20	40	0.5	< 5	3.92	<1	24	19	4075	6.42	0.37	2.28	1050	60	0.03	15	1780	18	5	10	<10	71	0.01	104	<10	11	97	7
JR-04	0.4	0.50	5	30	0.5	<5	4.50	<1	17	18	1897	5.83	0.29	2.34	955	86	0.02		1570	14	S	9	<10	77	<0.01	99	<10	12	92	6
JR-05	1.2	0.44	20	20	0.5	<5	4.10	<1	18	21	4001	6.12	0.20	2.15	930	24	0.03	12	1610	20	<5	11	<10	70	<0.01	113	<10	10	135	6
																									-0.01				226	15
1R-06	27.8	0.47	335	20	0.5	10	3.98	<1	61	11	>10000				1365		0.02		1600	150	5	8	<10	68	<0.01	107	<10	9		15
JR-07	1.2		5	70			4.80		21	16	3359			3.59			0.02		1370	38	5	8	<10	100	0.01	113	<10	13	211 92	9 9
JR-08	0.8		<5	30			3.33		37	19	1757	1		2.07			0.03		1600	14	5	12	<10	85	<0.01 <0.01	136 107	<10 <10	11	49	7
JR-09	<0.2		<5	30					20	26	775			1.60			0.03		1630	10	5	11	<10	83	0.01	146	<10	12	48	8
JR-10	<0.2	0.45	<5	20	0.5	< 5	3.94	<1	13	19	71	6.85	0.12	1.56	890	<2	0.04	13	1710	8	5	13	<10	139	0.01	140	<10	14	-10	0
			_									6.06	0.10		700	-7	0.04	13	1860	8	5	10	<10	89	0.01	141	<10	10	43	7
JR-11	<0.2		<5	20			2.66		12	19	81			1.28			0.04		1670	18	5	9	<10	134	0.02	119	<10	13	74	10
JR-12	1.0		5	90			4.16		40	21	374			2.61			-		1360	34	5	9	<10	102	0.01	118	<10	12		13
JR-13	2.2		5					-	39	14	3348	>15.00	0.27				0.02		1770	38	5		<10	85	0.01	97	<10	13		10
JR-14	6.4		25						40	16	9346	11.40					0.02		1390	26	5	6	<10	125	< 0.01	80	<10	13		7
JR-15	1.8	0.46	35	30	0.5	< 5	6.51	<1	28	14	4469	0.04	0.32	3.39	1180	2	0.02	15	1390	20	,	0	~10	125	-0.01	00	~10	•••	100	,
10.44		0 73	10	10	0.5	i <5	5.75	<1	44	14	1804	8.37	A 52	3.23	1075	4	0.02	19	1460	20	5	9	<10	113	0.01	102	<10	13	139	8
JR-16		0.73	10 <5						31	13	806			3.53			0.02		1240	18	5	9	<10	122	0.01	111	<10	13		8
JR-17	0.4 0.6		<5						21	18	1534			1.55			0.03		1720	18	5	12	<10	77	0.01	151	<10	14	108	8
JR-18	0.8		<5						14	22	780			0.97			0.03		1570	6	<5	13	<10	63	0.01	135	<10	13	38	7
JR-19 JR-20		0.55	· · ·	50					37	14	2037	10.10			1260		0.02		1660	26	5	8	<10	93	0.01	108	<10	12	88	9
JK-20	2.0	0.57	,	50												-														
JR-21	8.6	0.58	40	40	0.5	5 5	3.93	<1	47	16	>10000	12.73	0.19	2.72	1360	4	0.02	18	1490	36	5	10	<10	81	0.01	117	<10	10	77	10
JR-22		0.93	15						41	15	2316	14.79	0.39	3.60	1600	12	0.02	22	1710	34	5	13	<10	94	0.01	169	<10	14	206	13
JR-23		1.54	<5						33	14	3244	11.29	1.00	3.38	1505	24	0.03	19	1760	20	5	12	<10	111	0.04	158	<10	14	91	10
JR-24	0.8		<5						29	14	4005	9.58	0.70	2.87	1390	36	0.02	19	1780	16	5	10	<10	108	0.02	134	<10	13	94	8
JR 25	1.2		5	50					21	14	4473	6.75				48	Ū.ŪŽ	13	1810	16	<5	9	<10	96	<0.01	101	<10	12	80	6
30 A.J			-		\$ 14					- •		•																		

Cause 1 of 1

Signed.

HANGING WALL

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D 1.H20

C

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

Geochemical Analysis Certificate

0V-0447-RG1

Company: Steve Bell Project: Palomino Attn: Steve Bell Oct-11-00

We *hereby certify* the following geochemical analysis of 24 rock samples submitted Sep-27-00 by Steve Bell.

Sample Name	Au PPB	Au g/t			
JR-01	71	·····		······································	
JR-02	23				
JR-03	35				
JR-04	16				
JR-05	140				
JR-06	5734	6.50	*		
JR-07	328				
JR-08	169				
JR-09	9				
JR-10	3				
JR-11	4	<u></u>			
JR-12	401				
JR-13	658				
JR-14	1910	1.96			
JR-15	144				
JR-16	167			<u> </u>	
JR-17	67				
JR-18	15				
JR-19	3				
JR-20	1106	1.28			
JR-21	2978	2.94	· · · · · · · · · · · · · · · · · · ·		
JR-22	98				
JR-23	78				
JR-24	53				

Tı-

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

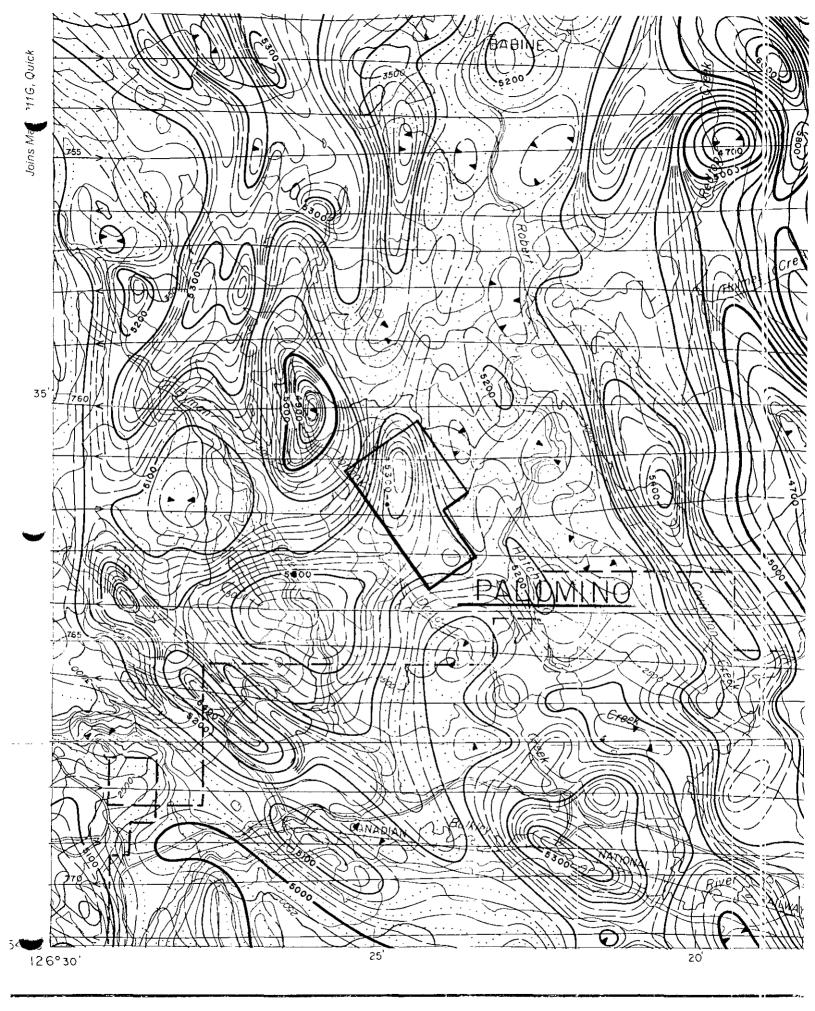
Quality Assoying for over 25 Years

Geochemical Analysis Certificate 0V-0447-RG2 **Steve Bell** Oct-11-00 Company: Project: Palomino Attn: Steve Bell We *hereby certify* the following geochemical analysis of 1 rock sample submitted Sep-27-00 by Steve Bell. Sample Au Name PPB 48 JR-25

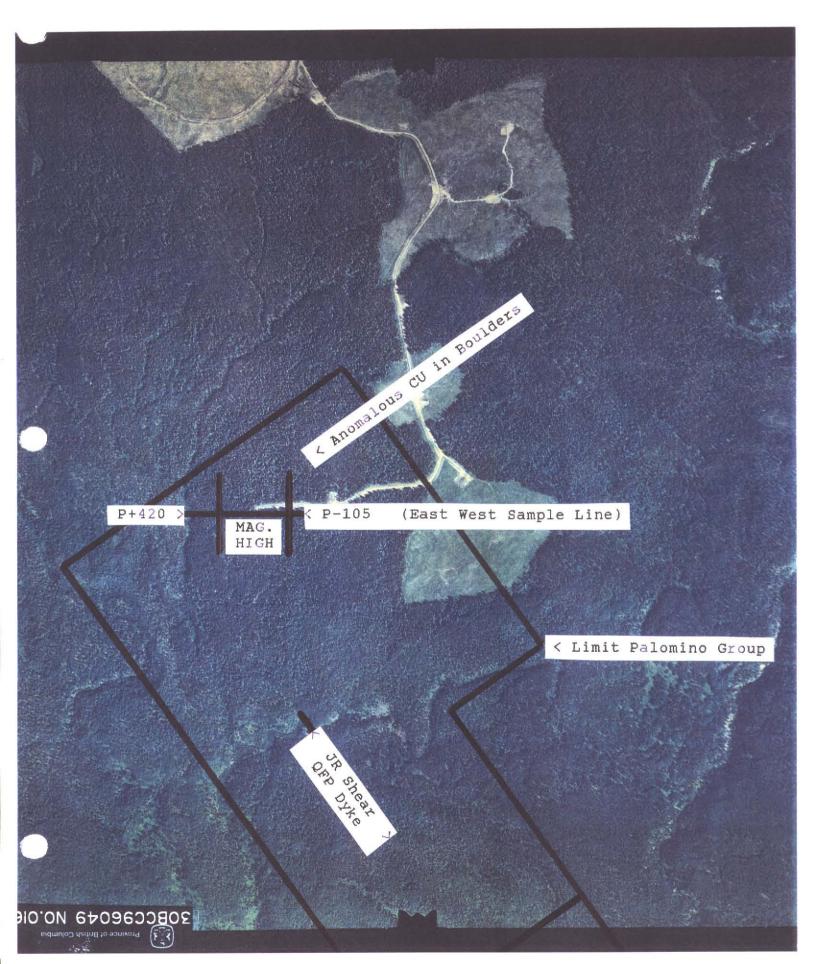
Certified by

Fee.

<u>Summary of work</u> (Program B)


The focus of previous exploration has been largely centered upon the Jack Rabbit shear zone and the potential for structurally controlled precious metal mineralization. Little attention has been given to the aeromagnetic anomaly and its potential connection to intrusive rocks which may host porphyry copper-gold mineralization.

Ground based magnetometer surveys have been conducted in the vicinity of the Jack Rabbit shear and the nearby quartz feldspar porphyry dyke. The mineralization here is clearly related to magnetic rock. Magnetite was probably created in the country rock during the emplacement of the felsic intrusion. Other alteration assemblage minerals, K-feldspar, epidote, calcite, anhydrite and chalcopyrite are present. The known mineralization occurs near the southern end of the aeromagnetic anomaly.


A Sharpe ES-180 hand held magnetometer was used to detect the aeromagnetic anomaly on the ground close to its northern periphery. An east west sample line which crosses the magnetic anomaly at right angles was then established. Fifteen standard "B" horizon soil samples were collected along this line at 30 m intervals. The samples are labeled P+60 to P+420. These were sent to Assayers Canada along with two pieces of mineralized float rock which were found during the survey.

26

MAP 5312 G TOPLEY

PALOMINO CLAIMS

Observations (Program B)

The ground based magnetic anomaly is approximately 300 meters wide and is about 1250 meters long in a north-south direction. It has a maximum relief of about 1250 gammas (see fig. 11). Anomalous metals were not detected in soils however the thick overburden may prevent the development of residual anomalies.

Anomalous copper was observed in boulders found lying on the south west slopes of a small hill located 200 meters north-west of the magnetic anomaly. The entire area is covered by a blanket of till and the depth to bedrock is unknown. However the boulders form a train which appear to be locally derived. They range in size from several kg to several tonnes.

The rock is a green colored volcanic of andesitic composition. Propylitic alteration assemblage minerals are present. Epidote dominates the ground mass and feldspar laths have been epidotized. Accessory minerals include calcite, quartz and chalcopyrite. A sample (# P27) with visible chalcopyrite assayed 650 ppm copper. The rock is non magnetic.

In the ditch of a logging road which crosses the magnetic anomaly several chalcopyrite bearing pieces of float were found. The float rock is highly magnetic and of andesitic composition. This float is similar to P27. However the ground mass contains darker minerals which have not been epidotized.

27

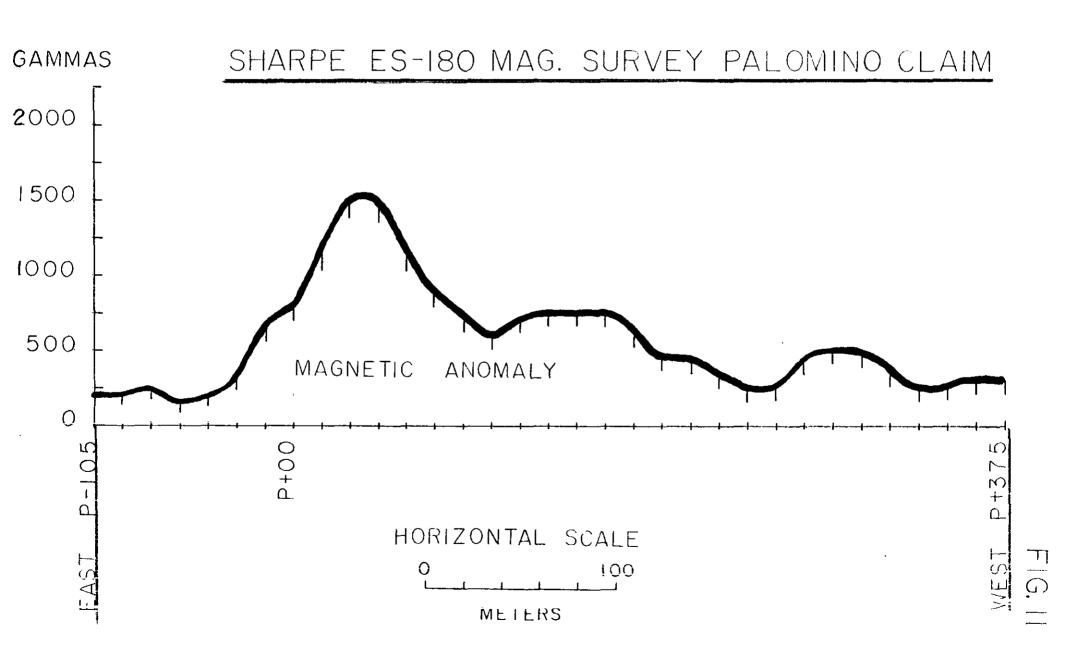


Photo 9. Truck located at north end of aeromagnetic anomaly Palomino claim group

Photo 10. Propylitized boulder Palomino claim group.

A stronger argument can now be made for the mineral potential of the terrain at the Palomino claims.

At a claim group scale Favorable exploration criteria at Palomino include.

- Felsic intrusive rock in the form of a large quartz feldspar porphyry dyke could be related to a nearby sub-volcanic porphyry system.
- Intermediate to felsic rocks indicate favorable bi-modal volcanism.
- 3) Lithogeochemical anomalies are present in both intrusives and Hazelton volcanics.
- The Jack Rabbit Fault may provide local structural control for high grade Cu-Au mineralization.
- 5) Volcanic rocks associated with mineralization are magnetic and coincident with a large areomagnetic anomaly.
- 6) Evidence of widespread hydrothermal propylitization.
- Geochemical data (field work 1998) indicate elevated values of copper in till.

Recommendations (Palomino)

Study rock geochemistry and map pattern of alteration. Conduct IP and EM surveys to identify drill targets. 29

APPENDIX A

.

.

STARDUST

Statistical Summary for Soil ICP Analysis

Date:	Nov 9/00
Client:	Steve Bell
Sample Type:	Soil
Analysis Type:	ICP - Aqua regia leach
Element Count:	30
Sample Count:	226
Assayers Canada Files:	0V-0346
	0V-0372
	0V-0406
	0V-0464

Ê

£

(Summary of Statistics

Variable:	Ag (ppm)	AI (%)	As (ppm)	Ba (ppm)	Be (ppm)	Bi (ppm)	Ca (%)	Cd (ppm)	Co (ppm)	Cr (ppm)	Cu (ppm)	Fe (%)	K (%)	Mg (%)	Mn (ppm)
Sample size	226	226	226	226	226	226	226	226	226	226	226	226	226	226	226
Detection Limit	0.2	0.01	5	10	0.5	5	0.01	1	1	1	1	0.01	0.01	0.01	10
Average	0.223009	2.03898	63.0973	138.496	0.373894	2.59956	0.550619	0.661504	11.8407	26.1947	63.2168	4.86429	0.0637611	0.631903	1148.87
Median	0.1	1.95	22.5	130	0.25	2.5	0.33	0.5	10	26	30	4.46	0.06	0.57	810
Mode	0.1	1.56	15	130	0.25	2.5	0.14	0.5	9	25	15	4.41	0.04	0.59	475
Geometric mean	0.160148	1.94772	29.1435	130.058	0.348173	2.5621	0.375986	0.573267	10.5152	25.535	34.3637	4.67316	0.0584105	0.570451	867.06
Variance	0.0710238	0.394327	17751.5	2821.73	0.0223599	0.406711	0.426767	0.570467	53.8856	31.2775	12164.8	2.1801	9.20E-04	0.119054	1.16E+06
Standard deviation	0.266503	0.627955	133.235	53.1199	0.149532	0.637739	0.653274	0.755293	7,34068	5.59263	110.294	1.47652	0.0303244	0.345042	1077.09
Standard error	0.0177275	0.0417709	8.86265	3.53348	9.95E-03	0.0424218	0.0434551	0.0502413	0.488295	0.372016	7.33664	0.0982164	2.02E-03	0.0229518	71.6468
Minimum	0.1	0.53	2.5	60	0.25	2.5	0.05	0.5	2	7	1	0.89	0.02	0.13	80
Maximum	2.2	4.75	1435	400	1	10	7.06	8	75	44	1150	12.73	0.3	2.78	7805
Range	2.1	4.22	1432.5	340	0.75	7.5	7.01	7.5	73	37	1149	11.84	0.28	2.65	7725
Lower quartile	0.1	1.64	15	100	0.25	2.5	0.19	0.5	8	23	16	4.03	0.04	0.45	510
Upper quartile	0.2	2.29	55	160	0.5	2.5	0.73	0.5	14	30	72	5.32	0.08	0.69	1355
Interquartile range	0.1	0.65	40	60	0.25	0	0.54	0	6	7	56	1.29	0.04	0.24	845
Skewness	3.76018	0.944966	6.77766	1.63073	1.27447	8.43785	5.63355	8.46084	4.05811	-1.55E-04	6.09664	1.94774	2.8116	3.29551	2.9956
Standardized skewness	23.0774	5.79955	41.5966	10.0083	7.82183	51.7858	34.5749	51.9269	24.9059	-9.48E-04	37.417	11.9539	17.2557	20.2256	18.385
Kurtosis	18.2201	1.4831	59.3947	4.24295	3.06483	85.2246	48.3212	78.9229	26.7905	0.940591	49.0106	6.74463	16.511	15.8641	11.9198
Standardized kurtosis	55.9112	4.55113	182.262	13.0202	9.40492	261.525	148.281	242.188	82.2109	2.88635	150.397	20.697	50.6667	48.6816	36.5779
Coeff. of variation	119.503	30.7975	211.158	38.355	39.9932	24.5326	118.643	114.178	61.9953	21.3502	174.469	30.3542	47.5594	54.6036	93.7517
Sum	50.4	460.81	14260	31300	84.5	587.5	124.44	149.5	2676	5920	14287	1099.33	14.41	142.81	259645

Variable:	Mo (ppm)	Na (%)	Ni (ppm)	P (ppm)	Pb (ppm)	Sb (ppm)	Sc (ppm)	Sn (ppm)	Sr (ppm)	Ti (%)	V (ppm)	W (ppm)	Y (ppm)	Zn (ppm)	Zr (ppm)
Sample size	226	226	226	226	226	226	226	226	226	226	226	226	226	226	226
Detection Limit	2	0.01	1	10	2	5	1	10	1	0.01	1	10	1	1	1
Average	2.23009	0.0119248	21.3761	971.15	23.7345	3.60619	6.21681	5	18.0044	0.0435619	88.0177	5	12.8186	190.354	4.16372
Median	1	0.01	19.5	760	14	2.5	5	5	16	0.04	80	5	6.5	144	4
Mode	1	0.01	18	610	12	2.5	3	5	9	0.03	68	5	2	133	3
Geometric mean	1.59335	0.0112361	19.4828	829.964	16.8624	3.26625	5.07265	5	15.9557	0.0370447	83.523	5	7.26562	158.649	3.77711
Variance	9.53794	1.93E-05	115.249	374328	1224.21	4.49312	23.0683	0	91.4089	1.31E-03	1302.94	0	330.354	18768.8	4.01308
Standard deviation	3.08835	4.39E-03	10.7354	611.824	34.9888	2.1197	4.80295	0	9.5608	0.0361329	36.0963	0	18.1756	136.999	2.00327
Standard error	0.205434	2.92E-04	0.714109	40.6979	2.32742	0.141	0.319488	0	0.635975	2.40E-03	2.40109	0	1.20903	9.11305	0.133255
Minimum .	1	5.00E-03	4	100	4	2.5	1	5	5	5.00E-03	21	5	1	19	1
Maximum	30	0.02	98	4150	404	20	45	5	88	0.49	424	5	177	798	14
Range	29	0.015	94	4050	400	17.5	44	0	83	0.485	403	0	176	779	13
Lower quartile	1	0.01	16	590	10	2.5	3	5	10	0.03	71	5	3	110	3
Upper quartile	2	0.01	25	1200	24	5	8	5	25	0.06	94	5	16	223	5
Interquartile range	1	0	9	610	14	2.5	5	0	15	0.03	23	0	13	113	2
Skewness	5.38918	1.11064	3.267	2.06665	7.10691	3.95568	3.3562	0	2.19481	8.60841	4.7872	0	4.70523	2.26659	1.68702
Standardized skewness	33.0751	6.81636	20.0506	12.6837	43.6174	24.2773	20.5981	0	13.4703	52.8325	29.3805	0	28.8775	13.9108	10.3538
Kurtosis	37.0903	-0.142891	17.6599	5.9203	67.0872	22.5341	19.7194	0	11.8266	103.913	36.8736	0	32.8197	5.52666	4.03593
Standardized kurtosis	113.817	-0.438483	54.1922	18.1674	205.868	69.1493	60.512	0	36.2918	318.873	113.153	0	100.712	16.9594	12.3849
Coeff. of variation	138.486	36.8205	50.2215	62.9999	147.417	58.7793	77.2574	0	53.1025	82.9461	41.0103	0	` 141.791	71.9707	48.1125
Sum	504	2.695	1831	219480	5364	815	1405	1130	4060	9.845	19892	1130	2897	43020	941

For the purposes of these statistics, values that are below the detection that for a certain element are set equal to 1/2 of the detection that element

(]

()	
Highest	Values

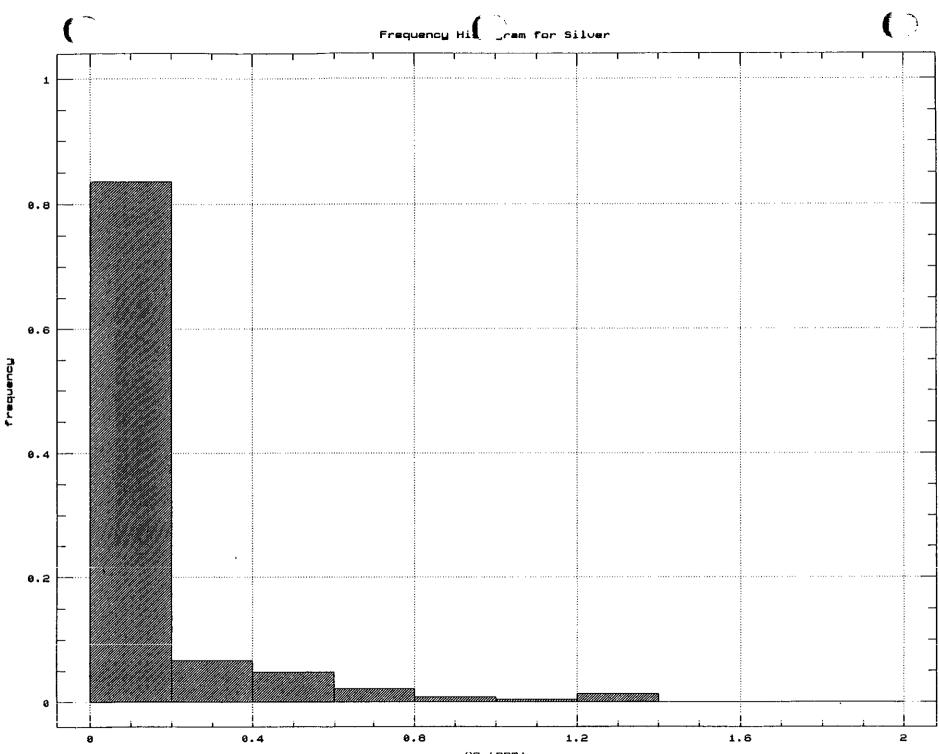
Sample	Mo (ppm)	Sample	Na (%)	Sample	Ni (ppm)	Sample	P (ppm)	Sample	Pb (ppm)
50S x 30W	30	250N x 30E	0.02	200S x 45E	98	125S + 060E	4150	S+15W	404
S+30W	20	400N x 150E	0.02	S+15W	84	350S + 105E	3730	S+30E	226
S+15W	18	150N x 60W	0.02	S+90W	68	125S + 030W	3590	50S x 15W	150
S+00E	14	150N x 105W	0.02	S+30W	64	S+30W	2810	50S x 135W	102
250N x 120E	12	150N x 30E	0.02	150N x 30E	47	75N x 75E	2730	150N x 225W	96
150N x 135E	12	S+150E	0.02	125S + 045E	42	S+150E	2700	150N x 30E	94
250N x 30E	8	350S + 420E	0.02	350S + 060E	42	50S x 30W	2660	50S x 00W	92
S+150E	8	250N x 15W	0.02	250N x 120E	41	350S + 420E	2340	200S x 45E	88
S+90W	8	350S + 000E	0.02	S+105E	41	S+00E	2270	150N x 150W	82
250N x 60E	8	250N x 30W	0.02	350S + 390E	38	350S + 435E	2220	75N x 00	82

Sample	Sb (ppm)	Sample	Sc (ppm)	Sample	Sn (ppm)	Sample	Sr (ppm)	Sample	Ti (%)
S+30W	20	75N x 255W	45	200S x 75W	<10	350S + 420E	88	50S x 225W	0.49
S+15W	15	S+15W	24	400N x 150W	<10	75N x 255W	50	S+135W	0.14
S+00E	15	S+30W	23	275S + 187E	<10	150N x 30E	41	S+15E	0.13
150N x 30E	10	150N x 135E	22	75N x 255W	<10	275S + 187E	38	400N x 150E	0.11
150N x 150E	10	200S x 45E	19	350S + 390E	<10	150N x 120W	37	150N x 15E	0.09
75N x 00	10	150N x 30E	18	400N x 135W	<10	400N x 45W	35	S+90W	0.09
150N x 135E	10	350S + 390E	17	250N x 30E	<10	400N x 15E	35	S+30E	0.09
275S + 187E	5	S+15E	17	250N x 150W	<10	250N x 60E	35	400N x 45E	0.08
75N x 255W	5	150N x 90E	17	350S + 360E	<10	200S + 180E	35	150N x 45E	0.07
250N x 30E	5	150N x 60W	16	50S x 90W	<10	250N x 120E	34	400N x 15E	0.07

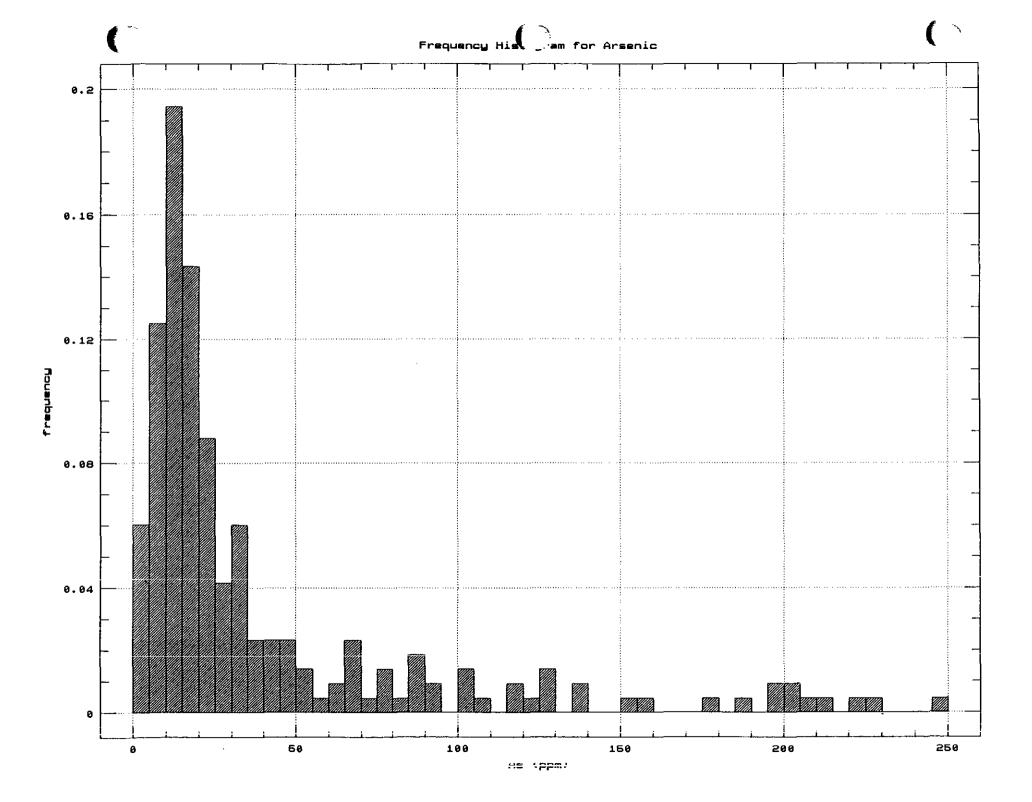
Sample	V (ppm)	Sample	W (ppm)	Sample	Y (ppm)	Sample	Zn (ppm)	Sample	Zr (ppm)
50S x 225W	424	200S x 75W	<10	75N x 255W	177	200S x 45E	798	50S x 225W	14
S+15E	288	400N x 150W	<10	200S x 45E	99	S+150E	726	350S + 390E	13
S+135W `	197	275S + 187E	<10	250N x 120E	85	50S x 90W	715	150N x 60W	10
50S x 120W	176	75N x 255W	<10	350S + 195E	77	S+30W	715	275S + 015E	10
200S + 105E	169	350S + 390E	<10	S+15W	72	S+165E	699	S+30W	10
150N x 60W	168	400N x 135W	<10	50S x 90W	65	150N x 45E	665	275S + 187E	9
200S x 75E	165	250N x 30E	<10	350S + 390E	56	S+90W	643	75N x 255W	9
S+45E	156	250N x 150W	<10	150N x 135E	50	75N x 255W	593	200S x 45E	9
S+30W	156	350S + 360E	<10	400N x 105E	48	150N x 150E	567	150N x 30E	9
S+30E	150	50S x 90W	<10	150N x 90E	42	50S x 00W	563	S+00E	9

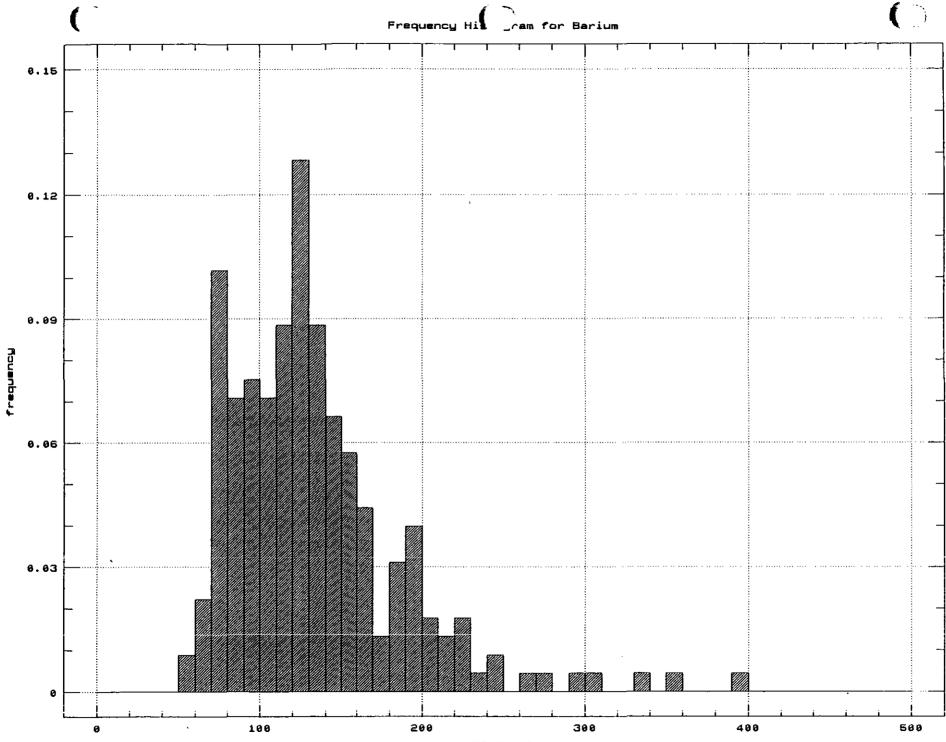
ı

(Highest Values

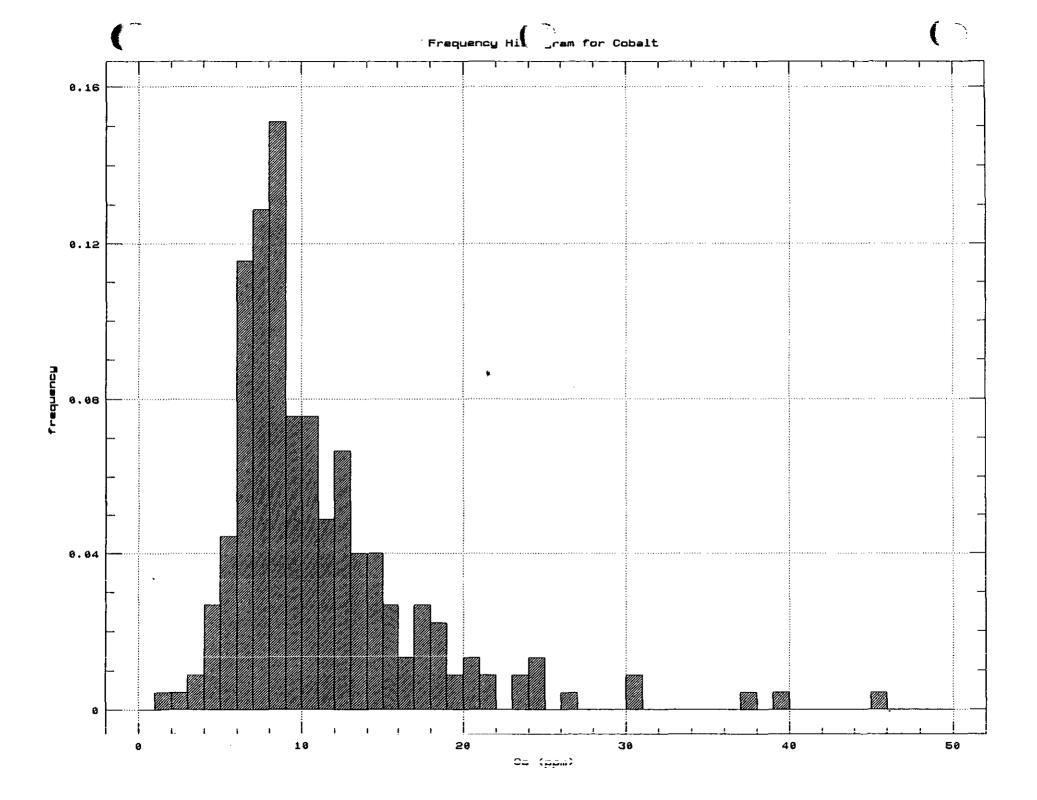

Sample	Ag (ppm)	Sample	AI (%)	Sample	As (ppm)	Sample	Ba (ppm)	Sample	Be (ppm)
S+15W	2.2	150N x 90W	4.75	S+15W	1435	200S x 75W	400	200S x 75W	1.0
50S x 30W	1.4	150N x 45E	3.90	S+30W	970	400N x 150W	360	75N x 255W	1.0
200S + 150E	1.4	75N x 105W	3.70	S+00E	555	275S + 187E	340	350S + 390E	1.0
S+30W	1.4	S+00E	3.70	S+45E	360	75N x 255W	310	50S x 90W	1.0
350S + 240E	1.2	S+15E	3.69	S+15E	335	350S + 390E	300	400N x 150W	0.5
125S + 045W	1.0	150N x 135E	3.63	150N x 135E	325	400N x 135W	280	275S + 187E	0.5
200S + 195E	1.0	75N x 255W	3.37	150N x 30E	300	250N x 30E	270	400N x 135W	0.5
75N x 255W	0.8	350S + 060E	3.31	150N x 45E	270	250N x 150W	250	250N x 30E	0.5
50S x 90W	0.8	150N x 60E	3.30	150N x 150E	270	350S + 360E	250	250N x 150W	0.5
75N x 00	0.8	50S x 45E	3.27	50S x 15W	255	50S x 90W	240	350S + 360E	0.5

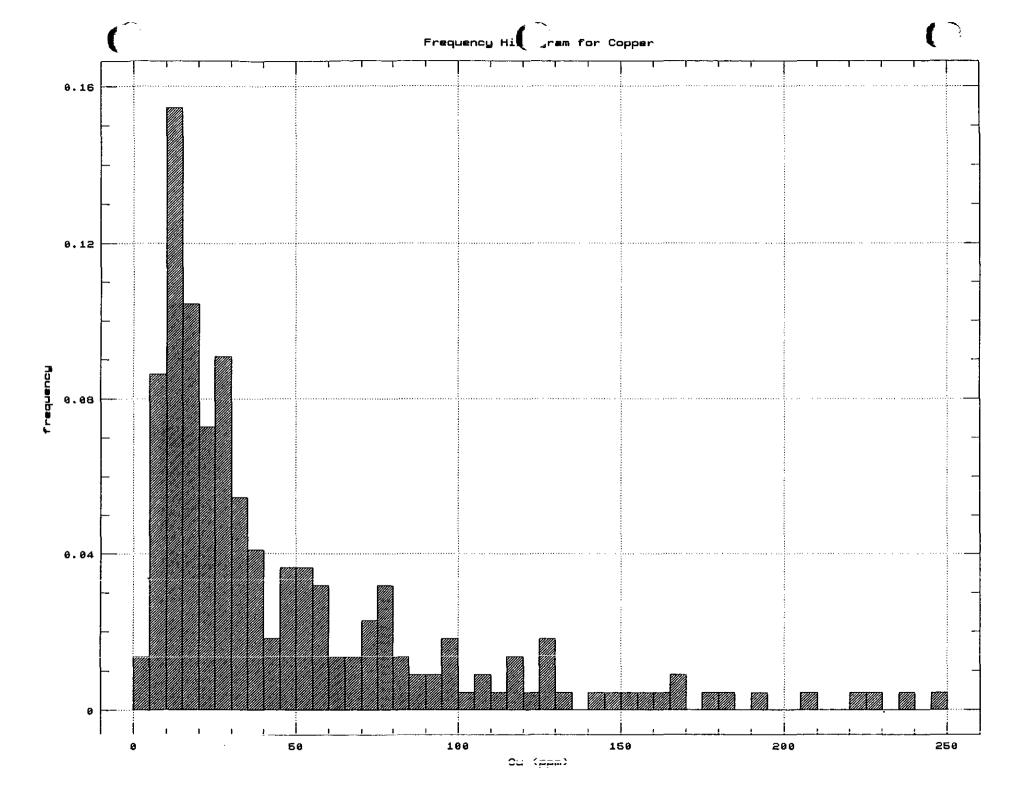
Sample	Bi (ppm)	Sample	Ca (%)	Sample	Cd (ppm)	Sample	Co (ppm)	Sample	Cr (ppm)
S+00E	10	S+15W	7.06	75N x 255W	8	S+15E	75	75N x 255W	44
350S + 420E	5	S+30W	4.44	50S x 90W	8	S+00E	46	150N x 30E	42
350S + 015E	5	50S x 90W	2.25	150N x 180W	3	150N x 60W	40	S+105E	41
350S + 045E	5	400N x 45W	1.82	125S + 045W	2	S+45E	38	350S + 390E	40
<u>S+15W</u>	5	250N x 60E	1.76	150N x 150W	2	S+135W	31	150N x 135E	39
S+45E	5	250N x 120E	1.68	75N x 15W	2	50S x 225W	31	150N x 45E	38
S+30W	5	400N x 15W	1.51	150N x 225W	2	S+15W	27	250N x 150W	37
200S x 75W	<5	75N x 90W	1.47	200S x 75W	1	150N x 45E	25	150N x 120W	37
400N x 150W	<5	400N x 090E	1.46	150N x 120W	1	S+30W	25	200S x 75W	36
275S + 187E	<5	150N x 90W	1.45	350S + 195E	1	S+30E	25	250N x 120E	35

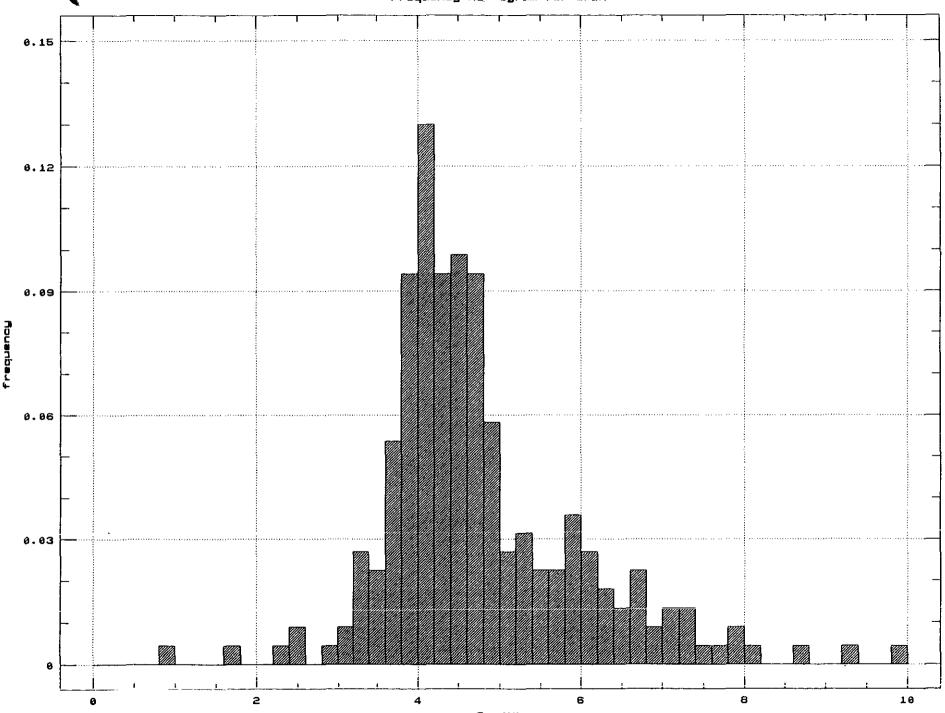

Sample	Cu (ppm)	Sample	Fe (%)	Sample	K (%)	Sample	Mg (%)	Sample	Mn (ppm)
S+90W	1150		12.73	350S + 420E	0.30	50S x 225W	2.78	200S x 45E	7805
S+15W	711	S+30W	11.84	400N x 150E	0.18	350S + 060E	2.63	S+15W	7190
75N x 255W	550	50S x 225W	10.98	150N x 15E	0.15	S+15E	2.59	S+00E	5230
S+00E	532	S+15E	9,94	400N x 15E	0.15	S+135W	2.01	250N x 120E	4965
150N x 60W	310	150N x 60W	9.27	S+15E	0.15	S+30W	1.60	50S x 90W	4820
S+15E	283	S+15W	8.79	75N x 255W	0.13	S+30E	1.47	150N x 135E	4120
75N x 90W	247	150N x 135E	8.11	150N x 120W	0.13	75N x 75W	1.35	150N x 30E	3875
150N x 30W	236	S+45E	7.89	200S + 105E	0.12	S+120W	1.29	150N x 150E	3850
150N x 30E	228	150N x 60E	7.89	150N x 105E	0.12	S+00E	1.27	350S + 060E	3715
75N x 120W	225	50S x 120W	7.70	150N x 30E	0.11	150N x 30E	1.17	S+90W	3675


_f

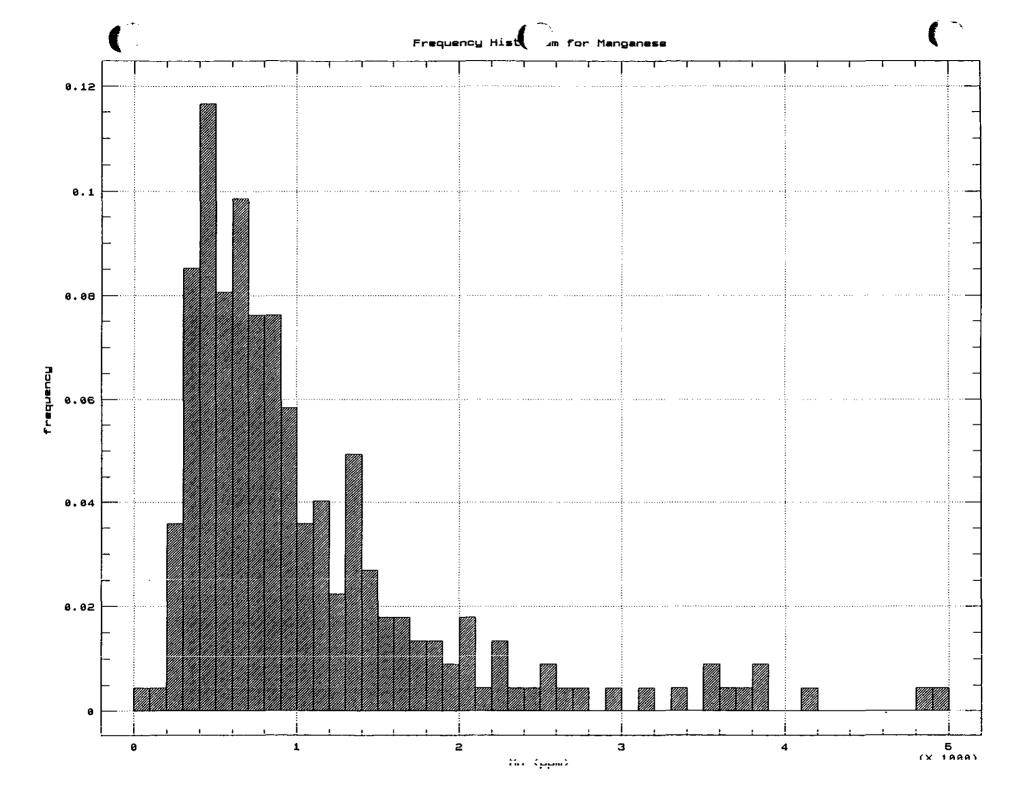
1

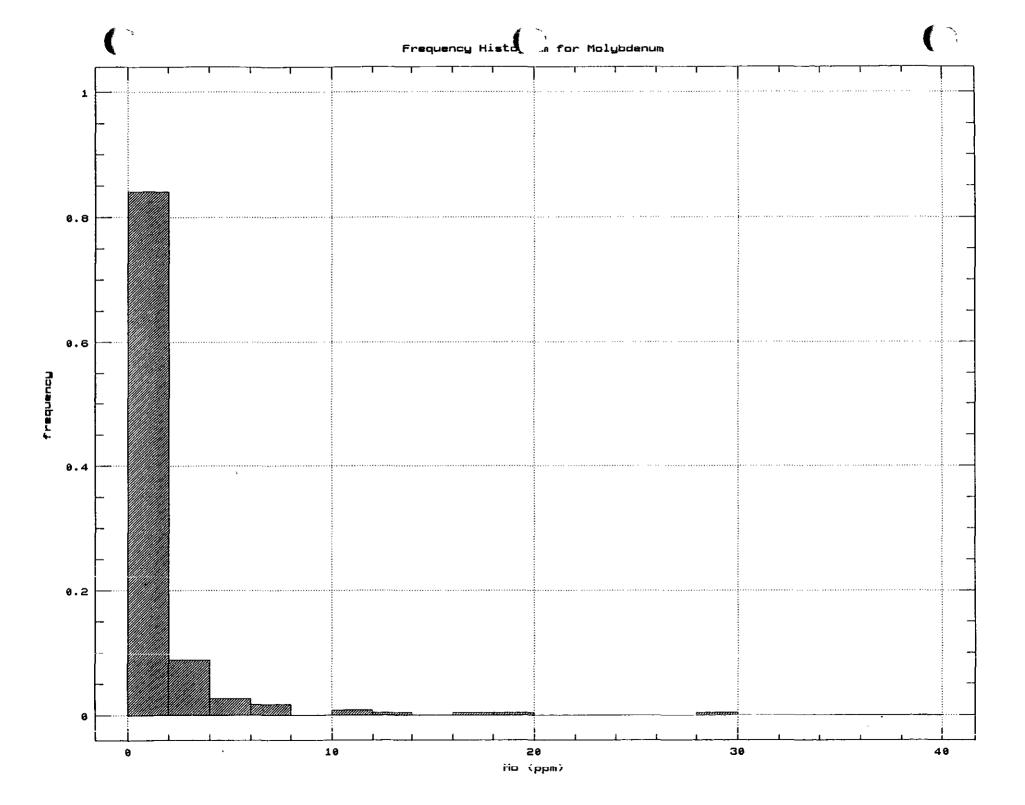


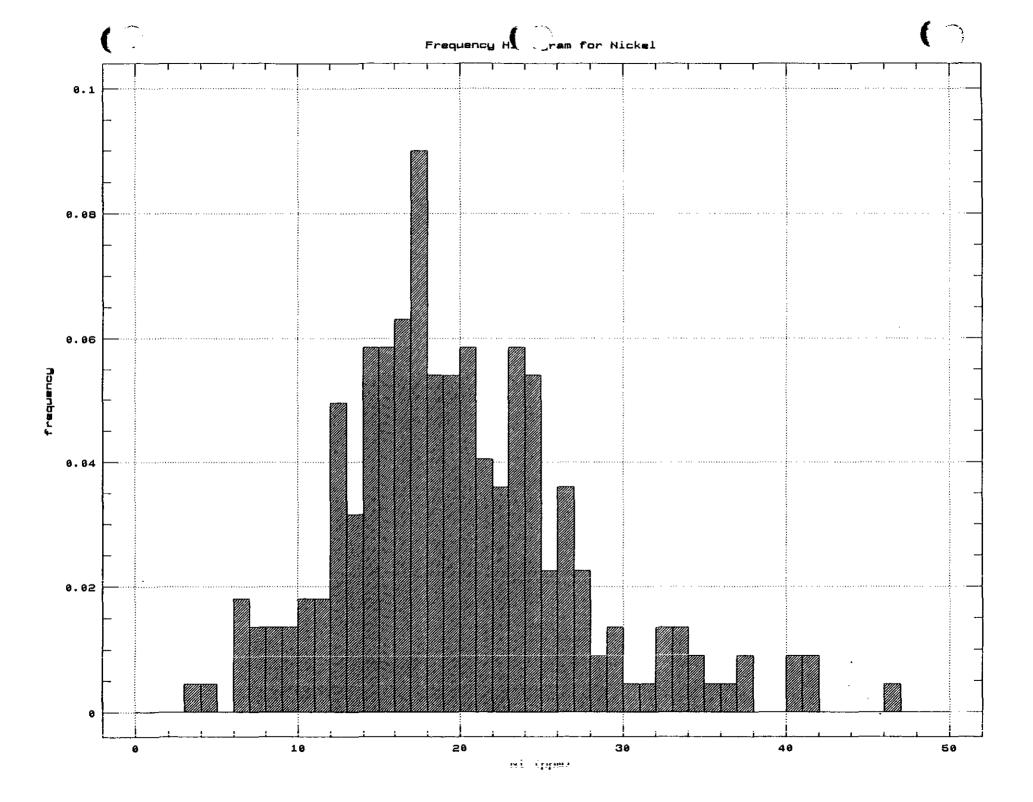

Ag (ppm)

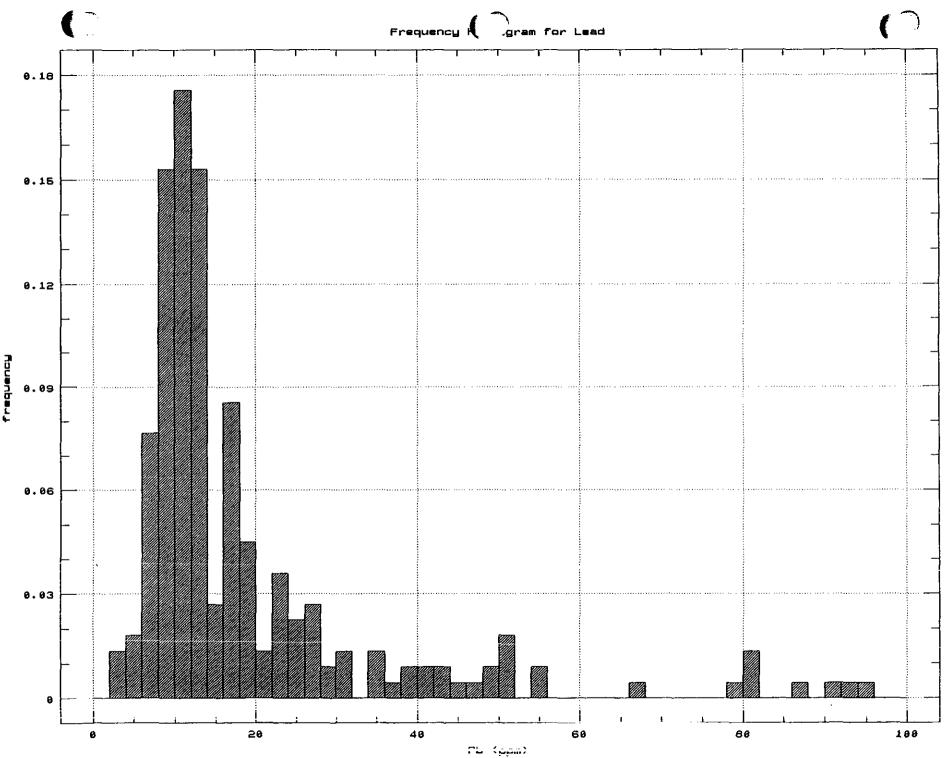


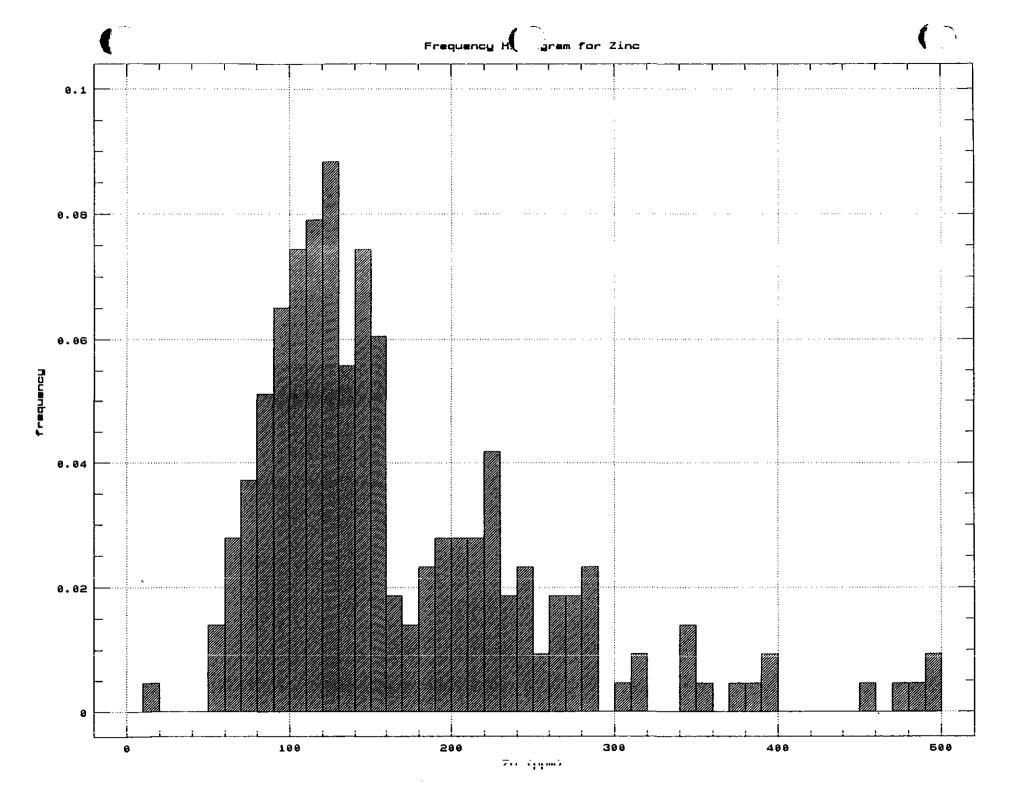
22 (ppm)










FL ())

ĩ

APPENDIX B

,

.

ICP DATA

-

54

Attention: Steve Bell

Project: McQuarrie Lake

Sample: Soil

Assay Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V0345 SJ Date Aug-08-00 :

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	Р ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W pom	Y mqq	Zn ppm	Zr ppm
ML -25	• •	0.00	-					-	_												••	••	••			••	•••	••		
	0.2			180	< 0.5		0.22	1	8	17	14	3.38	0.12				<0.01	12	520	10	<5	2	<10	21	0.03	55	<10	2	127	2
ML +00	0.2	1.38	10	240	0.5	<\$	0.85	<1	11	28	60	3.84	0.05	0.59	935	<2	0.01	24	640	16	<5	6	<10	73	0.02	54	<10	9	113	5
ML +25	<0.2	1.41	10	140	0.5	<\$	0.21	<1	8	22	28	3.84	0.04	0.49	400	<2	<0.01	17	430	10	<5	3	<10	20	0.02	56	<10	3	82	3
ML + 50	<0.2	1.19	10	150	<0.5	<\$	0.17	<1	8	21	27	3.68	0.04	0.49	510	<2	<0.01	17	560	8	<5	3	<10	15	0.03	56	<10	3	92	2
ML +75	<0.2	1.08	10	120	<0.5	<\$	0.15	<1	8	20	23	3.68	0.04	0.39	405	<2	<0.01	14	350	10	<5	3	<10	15	0.02	58	<10	2	74	2
ML +100	<0.2	1.05	5	200	<0.5	<5	0.15	<1	7	17	10	3.49	0.04	0.25	530	<2	< 0.01	11	820	10	<5	2	~10	14	0.02	58	- 10	1		2
C +00	<0.2	1.17	<5	190	<0.5		0.19	<1	5	17	13	2.40	0.03	0.43			< 0.01	12		4	<5	2	<10	14	0.02	38	<10	4		2
C +50	0.2	3.22	10	490	1.5	<5	1.04	1	10	36	× 60	5.30	0.06	0.59	-	2		34	1930	12	5	12	<10 <10	10 84	0.02	57	<10		62	2
C +85	<0.2	1.82	10	510	0.5	<5	1.15	1	12	27	32	4.89	0.05	0.54	3685	<2	0.01	25		16	<5	7	<10	92	0.01	57	<10	46		9
C +200	0.6	2.67	15	780	1.0	<5	1.57	2	13	34	- 52	5.13	0.07	0.69		<2	0.01	37		16	<5	12					<10	20		7
						-		-					0.07	0.05	2350	~	0.01		1330	10	~)	12	<10	147	Q.01	65	<10	44	165	9
C +250	<0.2	1.50	5	220	<0.5	<\$	0.34	<1	7	20	10	3.54	0.02	0.44	265	<2	<0.01	17	320	8	<5	3	<10	24	0.02	57	<10	3	70	5
C +300	<0.2	1.31	10	120	<0.5	<\$	0.09	<1	7	20	19	3.63	0.03	0.45	365		< 0.01	16	690	8	< 5	3	<10		0.03	55	<10	2	74	3
C +350	0.2	1.33	10	130	<0.5	<\$	0.09	<1	8	21	15	3.91	0.03	0.38	450	<2	<0.01	14	1170	10	<5	3	<10	7	0.02	58	<10	2	• ·	3
C +400	0.2	1.73	10	140	0.5	<\$	0.12	<1	7	22	10	4.80	0.05	0.38	295	<2	< 0.01	14	2010	10	<5	3	<10	13	0.02	69	<10	2		4
C +450	0.2	0.92	<5	150	<0.5	<\$	0.14	<1	3	12	10	2.50	0.04	0.17	205	<2	< 0.01	6		6	<5	2	<10	15	0.02	46	<10	2	49	2
																							++					-		-
C +500	<0.2	1.35	5	150	<0.5	<\$	0.15	<1	7	22	17	3.61	0.03	0.54	355	<2	< 0.01	17	530	6	<5	3	<10	12	0.02	58	<10	3	80	2
C +550	<0.2	0.76	5	100	<0.5	<\$	0.10	<1	4	15	7	2.74	0.04	0.25	235	<2	<0.01	8	320	6	<5	2	<10	9	0.04	57	<10	1	48	2
C +600	<0.2	1.13	5	180	<0.5	< 5	0.20	<1	7	21	16	3.93	0.04	0.32	275	<2	<0.01	9	440	8	<5	2	<10	19	0.04	79	<10	3	106	3
C +650	0.2	1.39	5	150	<0.5	<\$	0.21	<1	7	19	9	4.59	0.04	0.23	335	<2	0.01	9	780	12	<5	2	<10	12	0.03	79	<10	2	90	3
C +700	<0.2	1.27	5	190	<0.5	<5	0.14	<1	7	20	15	4.04	0.03	0.36	355	<2	<0.01	12	650	10	<5	3	<10	10	0.03	67	<10	3	92	2
																					_	_		-•			-10	-		-
C +750	<0.2	2.21	15	210	0.5	<5	0.13	<1	9	25	25	4.55	0.08	0.56	430	2	<0.01	22	1110	10	<5	4	<10	11	0.02	59	<10	5	118	4
C +800	0.4	2.77	10	460	1.5	<5	1.15	<1	12	39	112	5.33	0.06	0.65	2355	2	0.01	34		18	<5	14	<10	92	0.01	65	<10	63	116	9
C +850	<0.2	1.46	5	460	0.5	<5	1.01	<1	8	24	- 68	3.74	0.04	0.52	805		<0.01	19	920	12	<5	6	<10	50	0.02	50	<10	21	86	6
C +900	0.2	0.97	5	80	0.5	<5	0.04	<1	5	8	5	4.72	0.04	0.13	260		<0.01	7	850	8	<5	3	<10	4	0.01	39	<10	3	54	5
C +950	<0.2	1.27	5	90	0.5	<5	0.05	<1	6	14	11	4.29	0.03	0.30	330		<0.01	11	970	10	<5	3	<10	5	0.02	45	<10	2	79	4
C +1000	<0.2	1.01	5	160	<0.5	<5	0.17	<1	6	19	9	3.99	0.07	0.25	305	<2	<0.01	9	970	8	<5	2	<10	13	0.03	72	<10	2		2

Page 1 of 1

A .5 gm sample is digested with 10 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

El .

-

Attention. Sleve Den

Project: McQuarrie Lake

Sample: Rock

Assay Canada 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V0345 RJ Date : Aug-08-00

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
MLR-1	0.6	3.04	<5	20	<0.5	<5	0.74	<1	80	22	33	10.24	0.02	2.39	1710	<2	<0.01	18	1780	24	5	2	<10	31	0.18	120	<10	4	138	12
	\sim																													

\sim	C	\wedge
TROPYLYTIC	GREEN	ANDESITE

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

.

Signad

All

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

Assay Certificate

Company:Steve BellProject:McQuarrie LakeAttn:Steve Bell

0V-0345-RA1 Aug-08-00

We *hereby certify* the following assay of 1 rock sample submitted Jul-31-00 by Steve Bell.

Sample Name	Au g/tonne	
MLR-1	0.01	

Certified by

Attention: Steve Bell

Project: Stardust

Sample: Rock

Assay Canada 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423
 Report No
 :
 0V0346 RJ

 Date
 :
 Aug-08-00

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample	Ag	AI	As	Ba	Be	Bi	Ca	Cd	Co	Сг	Cu	Fe	K	Mg	Mn	Mo	Na	Ni	P	Pb	Sb	Sc	Sn	Sr	Ti	V	W	Y	Zn	Zr
Number	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	%	%	ppm	ppm	%	ppm	%	ppm	ppm	ppm	ppm	ppm						
SDR-1	0.6	1.20	590	10	<0.5	5	0.15	i <1	48	50	1559	10.18	0.01	0.62	585	<2	, 0.02	19	880	20	10	7	<10	2	0.03	53	<10	8	i 46	9

A .5 gm sample is digested with 10 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

.

.

HI , Signed

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Quality Assaying for over 25 Years

Assay Certificate

Company:Steve BellProject:StardustAttn:Steve Bell

0V-0346-RA1

Aug-08-00

We *hereby certify* the following assay of 1 rock sample submitted Jul-31-00 by Steve Bell.

Sample Name	Au g/tonne	
SDR-1	0.02	

Certified by

the

Attention: Steve Bell

Project: Stardust

Sample: Soil

Canada Assaw 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

0V0346 SJ **Report No** : Aug-08-00 Date :

30

2

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Со ррт	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	Р ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
505 x 45E	0.2	3.27	65	80	0.5	<5	0.16	<1	18	21	180	5.96	0.03	0.62	655	<2	0.01	26	870	18	<5	7	<10	10	0.03	110	<10	5	223	8
50S x 30E	0.4	2.98	50	120	0.5	<5	0.14	1	16	19	67	6.64	0.04	0.49	655	<2	0.01	17	2110	28	< 5	5	<10	9	0.04	142	<10	3	399	6
505 × 15E	0.2	1.00	10	100	<0.5	<5	0.24	1	7	19	15	3.34	0.05	0.27	485	<2	0.01	8	420	12	< 5	2	<10	9	0.02	74	<10	1	122	2
50S × 00W	0.2	2.30	180	110	0.5	<\$	0.54	<1	15	22	101	5.50	0.10	1.02	2550	4	0.01	24	990	92	5	9	<10	11	0.03	73	<10	11	563	4
50S × 15W	0.8	1.56	255	90	0.5	<5	0.09	<1	8	23	21	4.82	0.04	0.49	900	4	0.01	18	1830	150	S	4	<10	5	0.02	68	<10	7	493	3
50S × 30W	1.4	1.94	205	120	0.5	<5	0.14	<1	11	32	34	6.03	0.07	0.45	2080	30	0.01	22	2660	56	5	4	<10	б	0.02	93	<10	4	492	4
50\$ × 45W	0.6	1.66	40	90	<0.5	<5	0.09	<1	8	23	15	4.41	0.04	0.51	630	2	0.01	19	1200	22	< 5	3	<10	8	0.03	70	<10	2	212	3
505 × 60W	<0.2	1.89	25	80	<0.5	<5	0.72	<1	8	22	12	3.78	0.03	0.52	350	2	0.01	20	390	14	<5	3	<10	15	0.03	58	<10	4	77	4
505 x 75W	<0.2	1.84	15	100	<0.5	<5	0.19	<1	8	26	18	4.54	0.04	0.59	415	2	0.01	21	520	12	<5	3	<10	13	0.04	74	<10	3	130	3
505 × 90W	0.8	2.83	40	240	1.0	<5	2.25	8	12	31	73	3.90	0.06	0.46	4820	4	0.01	30	2180	24	5	13	<10	26	0.02	51	<10	65	715	8
50S × 105W	0.2	1.14	35	80	<0.5	<5	0.56	<1	6	17	22	4.62	0.04	0.27	325	4	0.01	9	420	38	<5	2	<10	10	0.05	89	<10	2	91	3
505 × 120W	0.2	2.45	200	90	<0.5	<5	0.26	<1	16	26	53	7.70	0.11	0.97	1510	4	0.01	17	740	26	5	6	<10	9	0.07	176	<10	2	260	5
505 x 135W	0.2	2.13	55	80	<0.5	<5	0.21	<1	13	20	58	6.59	0.04	0.80	565	2	0.01	16	670	102	5	5	<10	10	0.05	150	<10	3	154	4
505 x 150W	0.2	1.59	50	70	<0.5	<5	0.14	<1	9	18	28	5.82	0.04	0.70	475	2	0.01	11	740	14	<5	3	<10	7	0.04	139	<10	1	199	3
505 x 165W	<0.2	0.94	5	100	<0.5	<5	0.28	<1	4	14	15	3.22	0.03	0.28	235	2	0.01	7	360	10	<5	2	<10	10	0.04	71	<10	2	110	2
505 × 180W	<0.2	2.53	10	200	0.5	< 5	0.65	<1	10	24	56	4.45	0.05	0.53	1170	2	0.01	17	580	26	<5	9	<10	20	0.02	86	<10	13	153	5
50S x 195W	<0.2	1.92	15	130	<0.5	<5	0.32	<1	7	24	18	4.55	0.03	0.45	325	<2	0.01	15	740	14	<5	3	<10	15	0.04	75	<10	2	74	4
505 x 210W	<0.2	2.13	30	120	0.5	<5	0.24	<1	11	24	42	4.97	0.06	0.76	650	2	0.01	18	740	18	5	5	<10	14	0.03	81	<10	3	112	3
505 x 225W	<0.2	2.96	35	70	<0.5	<5	0.34	<1	31	13		10.98	0.03	2.78	1170	2	0.01	12	1130	14	<5	11	<10	18	0.49	424	<10	3	190	14
2005 x 75E	0.2	1.99	40	100	0.5	<5	0.20	<1	22	17	57	6.85	0.07	0.54	2715	2	<0.01	14	1370	36	<5	4	<10	7	0.04	165	<10	7	191	4
																											_			
2005 x 60E	<0.2		25	150			0.41	<1	13	28	28	5.44	0.09	0.83	1380		<0.01		1500	10	5	5	<10	13	0.02	114	<10	3		4
200S x 45E	0.6	1.34	225	220			0.63	<1	24	28	158	6.18	0.05	0.17	7805		<0.01	98	1880	88	5	19	<10	9	0.01	80	<10	99	798	9
200S x 30E		1.43	60	60			0.68	<1	9	25	33	4.76	0.04	0.24	1210		<0.01	19	1600	24	<5	3	<10	13	0.02	73	<10	7	118	4
2005 x 15E	0.2	1.92	90	180	0.5	<5	0.94	<1	13	21	39	5.35	0.09	0.42	1605		< 0.01	19	1710	18	<5	8	<10	16	0.02	69	<10	27	158	6
2005 x 00W	<0.2	1.98	10	190	Ú.5	<3	Û.91	<i< td=""><td>10</td><td>25</td><td>19</td><td>3.94</td><td>0.05</td><td>0.57</td><td>860</td><td><2</td><td>0.01</td><td>22</td><td>820</td><td>10</td><td><5</td><td>5</td><td><10</td><td>18</td><td>0.02</td><td>60</td><td><10</td><td>?</td><td>92</td><td>5</td></i<>	10	25	19	3.94	0.05	0.57	860	<2	0.01	22	820	10	<5	5	<10	18	0.02	60	<10	?	92	5
																-					_	_		• -						_
2005 x 15W	0.6	1.68	30	150			0.96	<1	10	28	28	4.04	0.05	0.42		2		24		14	<5	6	<10	15	0.03	63	<10	16		7
200S x 30W		1.65	20	160			0.10	<1	7	25	15	4.87	0.05	0.49	455		< 0.01	18	1570	8	<5	3	<10	7	0.03	79	<10	2		3
2005 x 45W		1.72	15	150			0.55	<1	9	23	16	3.93	0.05	0.55	845		< 0.01	20	690	10	<5	4	<10	15	0.02	64	<10	6	107	3
2005 x 60W	0.2	1.42	20	150			0.13	<1	5	21	14	4.21	0.07	0.32	485		< 0.01	12	610	8	<5	3	<10	8	0.03	74	<10	2	144	2
200S x 75W	0.2	3.12	ĺŪ	400	1.0	<5	0.75	1	11	36	76	4.64	0.08	0.72	1890	2	0.01	35	1260	14	<5	11	<10	27	0.01	69	<10	28	145	8

A .5 gm sample is digested with 10 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:

\$De

Attention: Steve Bell

Project: Stardust

Sample: Soil

Assayt. _ Canada 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

()

£...

-;

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No:0V0346 SJDate:Aug-08-00

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
2005 x 90W	<0.2	1.78	20	160	<0.5	<5	0.11	<1	8	22	26	4.79	0.04	0.52	465	<2	<0.01	16	5 9 0	8	<5	3	<10	8	0.03	77	<10	2	97	3
2005 x 105W	<0.2	2.25	20	140	0.5	<5	0.14	<1	8	25	24	5.32	0.05	0.58	505	<2	<0.01	19	950	10	<5	4	<10	8	0.02	89	<10	4	144	3
2005 x 120W	0.4	2.92	25	90	0.5	<5	0.48	1	9	26	33	4.49	0.03	0.35	350	<2	0.01	17	490	14	< 5	7	<10	12	0.02	76	<10	20	165	6
2005 x 135W	0.2	1.34	15	140	<0.5	<5	0.51	1	9	17	33	3.77	0.03	0.34	890	2	0.01	10	490	12	< 5	3	<10	13	0.02	76	<10	5	117	2
2005 × 150W	<0.2	1.56	5	130	<0.5	<5	0.22	<1	6	19	30	3.46	0.03	0.48	355	<2	<0.01	13	460	4	<5	3	<10	9	0.03	62	<10	4	69	2

•

Attention: Steve Bell

Project: Stardust

Sample: Soil

Canada Assay

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

0V0372 SJ Report No : Date Aug-23-00 :

the.

20

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	к %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
125S + 060E	0.2	2.76	35	120	0.5	<5	0.26	<1	11	21	34	6.32	0.08	0.62	870	<2	0.01	15	4150	20	5	6	<10	9	0.02	119	<10	2	247	5
1255 + 045E	0.4	3.23	45	190	0.5	<5	0.20	<1	14	30	33	4.72	0.05	0.58	890	2	1	42	870	18	<5	4	<10	11	0.02	70	<10	5	219	4
125S + 030E	<0.2	1.91	10	110	0.5	<5	0.28	<1	8	24	21	4.13	0.05	0.58	445	<2	0.01	22	650	12	<5	3	<10	16	0.03	66	<10	5	117	3
125S + 022E	0.2	2.30	20	210	0.5	<5	0.95	<1	9	31	30	4.10	0.10	0.68	680	<2	0.01	28	1000	12	<\$	11	<10	23	0.02	63	<10	24	94	7
1255 + 015E	<0.2	1.67	15	110	<0.5	<5	0.20	<1	8	23	16	4.01	0.06	0.53	550	<2	0.01	16	600	10	<5	3	<10	12	0.04	69	<10	5	153	3
125S + 000E	0.2	1.99	15	200	<0.5	<5	0.22	<1	7	24	11	4.81	0.05	0.55	430	<2	0.01	18	1850	10	<5	4	<10	13	0.02	77	<10	3	204	4
125S + 015W	0.2	1.94	50	130	<0.5	<5	0.14	<1	8	28	11	4.73	0.04	0.45	470	2	0.01	19	1380	16	<\$	3	<10	10	0.02	77	<10	2	213	3
1255 + 030W	0.6	1.68	20	190	<0.5	<5	0.22	1	8	25	9	4.56	0.05	0.45	835	2	0.01	16	3590	14	<5	3	<10	12	0.03	75	<10	2	261	3
125S + 045W	1.0	1.66	30	210	<0.5	<5	0.21	2	11	25	11	4.44	0.04	0.49	1910	6	0.01	19	1440	32	<5	2	<10	13	0.03	79	<10	4	290	з
125S + 060W	0.6	1.93	20	110	<0.5	< 5	0.16	<1	8	26	12	4.71	0.03	0.51	700	<2	0.01	20	1000	12	<5	3	<10	11	0.03	80	<10	2	133	3
														_								_						_		
200S + 105E		3.22	15	140	0.5	<5	0.17	<1	13	25	77	6.76	0.12	0.94	905	<2	0.01	18	1880	10	<5	8	<10	9	0.02	169	<10	3	+	5
200S + 120E		1.13	25	120	<0.5	<5	0.13	<1	8	18	19	4.02	0.04	0.27	2280	2	0.01	9	810	24	<5	2	<10	7	0.02	87	<10	3	83	2
2005 + 135E	0.2	1.64	10	130	<0.5	<5	0.20	<1	8	22	15	4.38	0.10	0.38	650	<2	0.01	14	560	14	<5	3	<10	9	0.03	79	<10	З	130	3
200S + 150E	1.4	2.00	30	120	0.5	<5	0.32	<1	11	23	27	5.00	0.05	0.31	1000	<2	0.01	14	520	22	<5	4	<10	9	0.03	94	<10	4	159	3
200S + 165E	<0.2	1.76	10	120	<0.5	<5	0.18	<1	8	25	14	3.98	0.04	0.52	560	<2	0.01	18	370	10	<5	4	<10	14	0.04	72	<10	6	82	3
						_			-							-					_									
2005 + 180E	<0.2	2.29	25	80	0.5	<5	0.85	<1	7	25	32	4.38	0.03	0.52	395	<2	0.01	18	660	12	<5	10	<10	35	0.02	83	<10	23	94	5
2005 + 195E	1.0	1.78	20	130	0.5	<5	0.82	1	10	27	24	3.93	0.05	0.52	1335	2	0.01	21	630	12	<5	8	<10	19	0.02	63	<10	20	210	7
2005 + 210E	0.4	1.41	20	90	<0.5	<5	0.14	<1	5	20	8	4.19	0.03	0.35	305	<2	0.01	12	710	10	<5	2	<10	9	0.02	76	<10	1	107	3
200S + 225E	0.4	1.41	10	100	<0.5	<5	0.14	1	7	18	14	4.09	0.04	0.31	685	<2	0.01	10	2030	8	<5	3	<10	7	0.02	84	<10	2	156	2
275S + 000E	<0.2	1.78	10	90	<0.5	<5	0.20	<1	9	24	13	3.79	0.04	0.54	695	<2	0.01	21	1520	12	<5	3	<10	13	0.03	63	<10	4	108	2
							0.07		•					0.50				20	1070			•		20		60				
2755 + 015E	0.4	1.85	10	190	0.5	<5	0.87	<1	9	31	28	4.00	80.0	0.58	1120	<2	0.01	28	1070	14	< 5	9	<10	20	0.02	63	<10	22	119	10
2755 + 030E		1.53	20	100	<0.5	<5	0.16	<1	6	22	8	3.82	0.03	0.43	400	<2	0.01	18	490	8	< 5	-	<10	9	0.03	69	<10	3	95	2
275S + 075E		1.64	10	150	<0.5	<5	0.59	<1	8	25	14	3.67	0.06	0.55	995	<2	0.01	18	760	10	<5	6	<10	16	0.03	65	<10	13	97	4
275S + 090E	<0.2	1.57	10	140	<0.5	<5	0.19	<1	5	23	9	4.18	0.04	0.43	510	<2	0.01	15	540	10	<5	3	<10	10	0.04	74	<10	3	128	3
275S + 105E	<0.2	1.31	15	70	⊲0.5	<5	0.18	<1	5	20	25	3.87	0.03	0.23	515	2	0.01	13	\$40	14	<5	4	<10	ê	0.03	73	<10	5	91	Ē
275S + 120E	<0.2	1.96	15	130	0.5	<5	0.18	<1	8	24	22	4.16	0.04	0.57	475	<2	0.01	20	470	14	<5	4	<10	10	0.03	72	<10	6	78	3
2755 + 165E	<0.2	2.04	20	100	0.5	<5	0.33	<1	10	20	26	4.66	0.07	0.61	815	<2	0.01	17	420	12	<5	4	<10	10	0.01	100	<10	3	84	3
2755 + 180E	<0.2		15	130	0.5	<5	1.05	<1	7	23	129	3.71	0.05	0.44	400	<2	0.01	16	530	12	<5	. 8	<10	23	0.02	77	<10	29	72	5
2755 + 187E	0.2	2.10	15	340	0.5	<5	0,70	<1	12	30	53	5.05	0.07	0.57	1400	2	0.01	25	610	16		10	<10	38	0.02	75	<10	24	77	9
2755 + 195E		1.55	10	200	0.5	<5	0.19	<1	7	21	28	3.40	0.04	0.39	700	<2	0.01	15	670	10	<5	3	<10	16	0.01	61	<10	9	87	3
2733 T 173E	∿ 0. 2	1.33	10	200	0.3	- 1	0.19	-1	1	÷÷		2.40	0.04	w.27		- 6	0.01			10	~	-	-10	10	0.01	01		,	¢7	د

Page 1 of 3

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signad:

Attention: Steve Bell

Project: Stardust

Sample: Soil

Assay. _ Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No 0V0372 SJ : Date Aug-23-00 :

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Со ррт	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Рb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
																_					_							_		
275S + 210E	<0.2	1.84	10	140		<5	0.11	<1	8	25	19	3.98	0.04	0.53	400		, 0.01	22		10	<5	3	<10	11	0.02	68	<10	3	101	3
2755 + 225E	<0.2	1.71	10	130	<0.5	<5	0.11	<1	7	22	18	3.77	0.04	0.53	405	<2	0.01	17	610	10	<5	3	<10	10	0.02	64	<10	3	94	2
350S + 075W	<0.2	0.80	<5	80	<0.5	<5	0.07	<1	3	13	4	2.52	0.03	0.14	255	<2	0.01	5	690	10	<5	2	<10	6	0.04	52	<10	1	56	2
350S + 060W	<0.2	1.53	5	80	<0.5	<5	0.08	<1	6	17	10	3.08	0.03	0.28	330	<2	0.01	10		14	<5	3	<10	7		56	<10	2	78	2
3505 + 045W	<0.2	0.53	<5	60	<0.5	<5	0.05	<1	2	7	1	0.89	0.02	0.13	80	<2	0.01	4	100	6	<5	1	<10	8	0.04	21	<10	1	19	1
3505 + 030W	<0.2	1.17	<5	80	< 0.5	<5	0.12	<1	5	18	8	2.55	0.03	0.46	270	<2	0.01	13	370	8	<5	3	<10	9	0.04	48	<10	3	52	2
3505 + 015W	<0.2	1.61	15	170	<0.5	<5	0.11	<1	7	21	10	3.82	0.04	0.44	610	<2	0.01	16		10	<5	3	<10	9	0.02	64	<10	2	147	2
3505 + 000E	0.2	2.71	15	190	0.5	<5	0.63	<1	9	25	15	4.04	0.05	0.46	475	2		25		12	<5	6	<10	19	0.02	64	<10	12	101	5
3505 + 015E	0.2	1.56	55	170	0.5	5	0.25	<1	8	22	14	4.74	0.04	0.25	880	2		17		12	5	2	<10	10	0.01	72	<10	3	147	3
3505 + 030E	<0.2	1.52	15	110	<0.5	<5	0.16	<1	9	21	11	3.91	0.04	0.45	510	<2	0.01	15		12	<5	3	<10	8	0.03	69	<10	3	102	3
3305 - 0302				••••			0.10		-				0.01	02			0.01		.,			5			0.00	•••		2	101	2
3505 + 045E	0.2	1.86	120	140	0.5	5	0.29	<1	14	20	42	6.34	0.06	0.58	2280	4	0.01	38	1840	26	5	8	<10	10	0.01	60	<10	19	311	4
350S + 060E	0.2	3.31	90	120	0.5	<5	0.48	<1	16	35	124	7.16	0.04	2.63	3715	2		42		18	5	9	<10	15		112	<10	11	149	6
350S + 075E	<0.2	1.26	15	90	<0.5	<5	0.19	<1	6	19	9	4.04	0.04	0.32	430	<2	0.01	12	840	14	<5	2	<10	10	0.03	73	<10	3	122	2
350S + 090E	0.2	1.53	20	80	<0.5	<5	0.15	<1	7	21	13	4.45	0.05	0.43	435	<2	0.01	13	1780	12	<5	4	<10	8	0.02	75	<10	5	141	3
350S + 105E	<0.2	2.02	30	130	0.5	<5	0.29	<1	8	24	20	4.50	0.05	0.55	480	<2	0.01	18		12	5	3	<10	14	0.02	77	<10	4		3
3505 + 120E	0.2	1.49	15	100	<0.5	<5	0.17	<1	7	22	11	4.27	0.04	0.39	430	<2	0.01	14	450	16	<5	3	<10	9	0.04	78	<10	2	125	3
350S + 135E	<0.2	1.68	25	110	0.5	<5	0.32	<1	9	24	17	4.03	0.04	0.51	690	<2	0.01	17	600	12	<5	3	<10	13	0.03	72	<10	13	81	3
350\$ + 150E	0.2	1.55	15	110	0.5	<5	0.33	<1	9	23	15	3.87	0.06	0.47	800	<2	0.01	17	590	12	<5	3	<10	13	0.03	68	<10	11	109	3
3505 + 165E	0.4	1.85	35	110	0.5	<5	0.38	<1	15	24	56	4.92	0.05	0.76	1550	<2	0.01	21	710	22	<5	5	<10	14	0.02	96	<10	16	124	4
350S + 180E	0.2	1.24	30	90	<0.5	<5	0.24	<1	9	21	24	3.69	0.03	0.42	725	<2	0.01	15	350	12	5	3	<10	11	0.03	68	<10	8	87	3
350S + 195E	0.6	2.01	15	210	0.5	<5	0.78	1	12	29	86	4.41	0.06	0.66	1320	<2	0.01	28	580	18	<5	13	<10	25	0.02	68	<10	77	116	7
350\$ + 210E	<0.2	1.47	5	170	<0.5	<5	0.47	<1	7	21	13	3.20	0.05	0.54	355	<2	0.01	17	480	10	<5	3	<10	32	0.03	57	<10	6	65	, з
3505 + 225E	<0.2	1.38	10	140	<0.5	<5	0.25	<1	7	20	11	3.30	0.05	0.51	475	<2	0.01	17	540	8	<5	3	<10	16	0.04	58	<10	7	68-	2
350S + 240E	1.2	2.38	30	130	0.5	<5	0.13	<1	11	25	29	5.21	0.04	0.41	965	<2	0.01	24	850	18	5	4	<10	9	0.02	86	<10	5	114	3
3505 + 255E	ŷ.Ż	1.15	<5	ŶÛ	<û, 5	<5	Ū.11	<1	4	15	7	1./5	0.03	0.34	200	<2	0.01	9	400	6	<5	2	<10	9	0.02	35	<10	2	51	1
350S + 270E	<0.2	1.23	<5	80		<5	0.13	<1	5	18	7	Z.36	0.04	0.40	285	<2	0.01	11	370	4	<5	2	<10	10	0.04	44	<10	2	63	2
3505 + 285E		1.49	10	130	<0.5	<5	0.18	<1	7	21	19	3.39	0.04	0.55	385	<2	0.01	16	590	10	<5	3	<10	15	0.04	63	<10	5	98	2
3505 + 300E	0.2	1.53	<5	130	<0.5	<5	0.12	<1	6	20	14	2.81	0.03	0.46	270	<2	0.01	13	290	8	<5	3	<10	12	0.03	49	<10	3	64	2
350\$ + 315E	<0.2	1.20	5	100	<0.5	<5	0.16	<1	7	21	10	3.29	0.04	0.47	615	<2	0.01	14	740	8	<5	2	<10	13	0.03	58	<10	2	87	2
350S + 330E	Q.2	2.04	15	160	0.5	<5	0.21	<i< td=""><td>ß</td><td>24</td><td>24</td><td>4.35</td><td>0.05</td><td>0.65</td><td>465</td><td><2</td><td>0.01</td><td>17</td><td>760</td><td>10</td><td>5</td><td>4</td><td><10</td><td>13</td><td>0.03</td><td>81</td><td><10</td><td>7</td><td>129</td><td>3</td></i<>	ß	24	24	4.35	0.05	0.65	465	<2	0.01	17	760	10	5	4	<10	13	0.03	81	<10	7	129	3

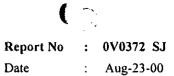
.

Signod:

.

(

Steve Bell


Attention: Steve Bell

Project: Stardust

Sample: Soil

Assayer J Janada 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

ŝ

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	Al %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
350S + 345E	0.2	2.06	15	160	0.5	<5	0.21	<1	8	25	28	4.29	0.05	0.61	440	<2	0.01	20	610	10	<5	4	<10	15	0.03	78	<10	5	110	3
3505 + 360E	0.2	2.85	15	250	0.5	< 5	0.80	<1	9	28	39	4.23	0.06	0.58	560	<2	0.01	24	530	12	<5	8	<10	32	0.02	76	<10	19	85	5
350S + 375E	<0.2	1.38	10	110	<0.5	<5	0.28	<1	7	21	8	3.58	0.04	0.41	300	<2	0.01	14	280	8	<5	Э	<10	13	0.03	66	<10	4	83	з
350S + 390E	<0.2	3.12	15	300	1.0	< 5	1.00	<1	14	40	64	4.83	0.10	0.83	1330	<2	0.01	38	640	16	< 5	17	<10	28	0.01	71	<10	56	122	13
3505 + 405E	<0.2	2.24	10	160	0.5	<5	0.19	<1	7	24	17	4.39	0.04	0.56	355	<2	0.01	20	660	10	<5	4	<10	14	0.03	71	<10	5	109	3
350S + 420E	<0.2	1.78	35	200	0.5	5	0.15	<1	9	8	19	6.18	0.30	0.40	535	<2	0.02	7	2340	18	5	3	<10	86	0.01	52	<10	5	102	4
350S + 435E	<0.2	1.76	10	120	<0.5	<5	0.16	<1	7	22	13	4.05	0.04	0.44	525	<2	0.01	14	2220	8	< 5	3	<10	10	0.03	68	<10	2	110	3
3505 + 450E	<0.2	2.40	25	110	0.5	<5	0.18	<1	8	23	29	4.80	0.07	0.52	660	<2	0.01	17	1570	10	<5	5	<10	9	0.02	84	<10	5	104	4

A .5 gm sample is digested with 5 ml 3:1 HCVHNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

.

Ith.

Attention: S. Bell

Project: Flat Top West

Sample: Soil

Assay Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V0396 SJ Date Sep-08-00 :

 ZZ_1

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

														A	jua Re	egia D)igesti	on														
		,	/ F	LA	T TO	G	Μοι	(NT)	HIN	J					-	•	-															
	Sample		Ag	AI	As	Ba	Be	Bi	Ca	Cd	Co	Сг	Cu	Fe	к	Ma	Mo	140	Mo	A.F.	n	O.	C L	<u> </u>	<u> </u>	0 .			147	v	-	~
Σ	Numbe		ppm	%		ppm		ppm	%	ppm	ρpm	pom	ppm	%	%	Mg %	Mri pprn	Mo ppm	Na %	Ni ppm	P Ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W mqq	Y mqq	Zn ppm	Zr ppm
ÉAN	364775	<i>رج</i> x 20795N	<0.2	1.81	20	1.45	<0.5		0.04									_												-		
1 Ki		x 21000N	<0.2	1.53	20	140 110	<0.5	<5 <5	0.84	<1 <1	13 15	30 24	36 35	4.75 5.00	0.05	0.80 0.86	1545 1540	<2 <2	0.02	15 13	900 970	14	<5 <5	8 8	<10	23	0.04	96	<10	16	158	5
(n)		x 21725N	0.4	2.37	40	150	0.5	<5	0.72	<1	14	53	64	5.09	0.06	1.27	1215	2	0.02	25		16 24	5	11	<10 <10	25 22	0.09 0.03	113 108	<10 <10	14 19	160 196	6 6
	28300E	× 28050N	<0.2	2.64	<5	90	<0.5	<5	0.13	<1	13	58	51	5.31	0.04	1.18	1000	<2	0.01	26		12	<5	4	<10	10	0.11	105	<10	4	159	4
	28325E	x 28050N	<0.2	2.55	<5	70	<0.5	<5	0.14	<1	10	45	30	4.53	0.03	1.00	580	<2	0.01	20		10	5	3	<10	10	0.07	84	<10	5	119	3
٦,																																_
لم م		x 28050N	<0.2		<5	60	<0.5	<5	0.10	<1	9	36	28	4.67	0.03	0.85	785	<2	0.01	15	1140	10	< 5	2	<10	8	0.03	77	<10	5	106	3
í,		x 28050N	< 0.2	2.39	<5	90	< 0.5	<5	0.06	<1	8	33	25	4.63	0.05	0.78	880	< 2	0.01	13		10	5	2	<10	9	0.03	78	<10	6	102	3
011		x 28050N x 28050N	<0.2 <0.2	2.24 1.51	<5 <5	110 70	<0.5 <0.5	<5 <5	0.17	<1 <1	9 7	32	24	4.30	0.04	0.87	725	<2	0.01	13		8	5	2	<10	10	0.03	75	<10	10	95	3
Ŭ		× 28050N	<0.2	2.25	<5	70	< 0.5	<5	0.07 0.07	<1	7	31 28	15 17	4.27 4.09	0.04 0.05	0.63 0.66	510 645	<2 <2	0.01 0.01	10 11	1070 920	8 10	<5 <5	1	<10	8	0.02	80	<10	4	73	3
									0.07	••	,		17	4.05	0.05	0.00	645	~2	0.01		920	10		1	<10	7	0.03	73	<10	4	87	3
	C-050		0.2	1.69	10	280	0.5	<5	0.31	<1	7	27	38	3.44	0.04	0.56	535	<2	0.01	21	620	16	<5	5	<10	26	0.01	52	<10	12	101	3
	C-100		0.2	1.81	20	180	0.5	<5	0.11	<1	8	24	20	4.80	0.07	0.44	395	<2	0.01	18	710	24	<5	4	<10	9	0.02	63	<10	3	176	4
	C-150		<0.2	1.14	5	130	<0.5	<5	0.12	<1	5	19	10	2.69	0.03	0.40	305	<2	0.01	11	230	10	<5	3	<10	14	0.03	49	<10	4	62	2
	C-200		<0.2	1.26	5	180	<0.5	<5	0.15	<1	7	21	13	3.50	0.04	0.51	520	<2	0.01	15	530	12	<5	З	<10	14	0.02	55	<10	4	95	2
	C-250		<0.2	1.48	5	160	0.5	<5	0.28	<1	8	26	20	3.41	0.03	0.59	595	<2	0.01	18	400	12	<5	4	<10	21	0.03	58	<10	7	88	3
	C-300		<0.2	1.31	10	170	0.5	<5	0.23	<1	7	21	12	3.29	0.03	0.43	325	<2	0.01	13	350	12	<5	3	<10	17	0.02		-10		107	-
	C-350		<0.2	1.49	5	200	0.5	<5	0.30	<1	8	26	27	3.29	0.05	0.59	640	<2	0.01	19	490	12	<5	5	<10 <10	25	0.03 0.03	55 53	<10 <10	4 13	102 88	2
	C-400		<0.2	1.49	5	200	0.5	<5	0.31	<1	8	25	21	3.60	0.06	0.62	675	<2	0.01	19	520	14	<5	4	<10	26	0.03	56	<10	8	100	3
	C-450	<u>v</u> d	0.2	2.56	10	390	0.5	<5	1.12	1	12	36	42	4.80	0.10	0.76	1070	2	0.02	31	1050	20	<5	9	10	70	0.01	70	<10	24	148	7
	C-500	-7 -7	<0.2	1.22	5	130	<0.5	<5	0.10	<1	9	24	25	4.07	0.03	0.32	415	2	0.01	18	330	14	<5	з	<10	11	0.04	76	<10	3	93	3
	C-550	- I		3 45																												
	C-550 C-600		0.2 <0.2	3.45 1.52	10 10	440 350	1.5 0.5	<5 <5	0.70 0.53	<1 <1	15 10	50	✓ 51	5.53	0.09	1.09	1010	<2	0.01		1240	22	<\$	12	<10	56	0.01	79	<10	28	172	8
	C-650	<u>r</u>	0.2	3.03	10	640	1.5	<5	0.96	1	10	27 41	24 * 79	3.91 5.62	0.05 0.08	0.59 0.58	795 2670	<2 <2	0.01 0.01	20 32	510 1480	16 20	<5	5	<10	33	0.02	61	<10	8	120	4
	C-700	RRI	0.2	2.59	10	130	0.5	<5	0.19	<1	11	40	19	6.19	0.00	0.66	420	<2	0.01	23		20 14	<5 <5	9	<10 <10	77 13	0.02	87	<10	32	169	6
	C-750	Ψ.	<0.2	1.73	5	240	0.5	<5	0.32	<1	9	27	37	3.61	0.04	0.62	805	<2	0.01	19	430	12	<5	4	<10	24	0.06 0.03	102 59	<10 <10	3 5	163 100	10
		Pro 1																-		-•				•						v	100	2
	C-800	4	0.2	2.46	10	140	0.5	<5	0.18	<1	11	40	34	4.47	0.04	1.00	400	<2	0.01	34	540	10	<5	5	<10	12	0.05	72	<10	3	118	7
	C-850	<u>ل</u> ہے	<0.2	1.30	5	190	<0.5	<5	0.28	<1	7	26	28	2.97	0.04	0.60	510	<2	0.01	20	320	12	<5	4	<10	19	0.04	51	<10	5	59	3
		S.	<0.2	1.04	S	130	< 0.5	<5	0.28	<1	7	21	16	2.77	0.04	0.54	350	<2	0.01	16	340	10	<5	3	<10	17	0.05	44	<10	4	57	3
	B+000		< 0.2	1.38	5	230	0.5	<5	0.15	<1	6	20	21	2.76	0.04	0.42	485	<2	0.01	12	420	12	<5	2	<10	16	0.02	46	<10	5	81	2
	B+050		<0.2	1.39	5	180	0.5	<5	0.20	<1	7	23	23	3.40	0.03	0.59	460	<2	0 01	16	400	12	<5	3	<10	16	0.02	54	<10	5	83	2

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

.

Sinned

Attention: S. Bell

Project: Flat Top West

Sample: Soil

Assay. - Canada 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V0396 SJ Date : Sep-08-00

AL.

7

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
B+100	<0.2	1.47	10	170	0.5	<5	0.22	<1	7	21	18	4.10	0.07	0.46	355	<2	0.01	14	1130	12	<5	3	<10	14	0.02	64	<10	3	162	3
B+150	0.2	1.42	10	130	<0.5	<5	0.16	1	6	22	19	4.29	0.04	0.41	335	<2	0.01	13	780	12	<5	2	<10	14	0.02	63	<10	2	131	3
B+200	<0.2	1.60	10	220	0.5	<5	0.23	<1	7	24	23	3.64	0.05	0.52	470	<2	0.01	16	440	14	< 5	3	<10	22	0.02	56	<10	5	98	2
B+250	<0.2	1.50	5	170	0.5	<5	0.23	<1	10	26	25	3.38	0.04	0.56	730	<2	0.01	18	350	10	<5	3	<10	23	0.02	54	<10	7	95	3
B+300	<0.2	1.36	10	200	0.5	< 5	0.57	<1	9	25	23	3.58	0.04	0.53	825	<2	0.01	17	440	12	< 5	5	<10	50	0.03	56	<10	10	88	4
× Z																														
B+350	<0.Z	1.55	10	260	0.5	<5	0.64	1>	6	26	22	3.75	0.04	0.47	445	<2	0.01	17	410	12	< 5	4	<10	69	0.02	64	<10	2	104	4
B+400	<0.2	1.60	10	240	0.5	<5	0.34	<1	9	25	18	4.65	0.03	0.47	420	<2	0.01	16	300	16	< 5	4	<10	48	0.03	72	<10	6	99	4
B+450	<0.2	1.93	15	280	0.5	<5	0.31	<1	10	25	20	4.44	0.03	0.56	465	<2	0.01	20	550	16	<5	4	<10	33	0.02	64	<10	4	142	3
B+500	<0.2	1.40	10	230	0.5	<5	0.43	<1	8	25	18	3.44	0.04	0.55	710	<2	0.01	17	350	16	<5	4	<10	43	0.02	58	<10	6	83	3
B+550	<0.2	1.65	15	270	0.5	.<5	0.68	<1	11	29	21	4.45	0.06	0.62	1240	<2	0.01	20	550	18	<5	6	<10	64	0.02	69	<10	9	125	6
КR																														
8+600 +	<0.2	1.40	10	220	0.5	<5	0.76	<1	14	27	28	4.05	0.06	0.56	1795	<2	0.01	19	530	18	< 5	5	<10	59	0.03	59	<10	8	157	6
B+650 🔍	0.6	2.29	10	440	1.0	< 5	0.87	1	10	30	· 84	4.83	0.05	0.47	665	<2	0.01	23	680	14	< 5	8	<10	49	0.02	75	<10	29	113	7
B+700 📈	<0.2	1.84	10	160	0.5	<5	0.17	<1	8	29	20	4.97	0.04	0.55	430	<2	0.01	17	1340	16	<5	4	<10	13	0.03	82	<10	2	135	3
B+750	0.2	2.27	20	430	0.5	< 5	0,67	<1	13	36	√79	4.79	0.07	0.68	1220	<2	0.01	25	560	22	< 5	9	<10	37	0.02	74	<10	23	171	5
B+800 J	<0.2	1.58	10	210	0.5	<5	0.23	<1	8	28	28	4.64	0.05	0.48	395	<2	0.01	16	960	12	<5	3	<10	16	0.02	79	<10	3	150	3
V																														
B+850	<0.Z	1.87	10	150	0.5	< 5	0.26	<1	10	37	48 ²	4.33	0.04	0.77	525	<2	0.01	23	600	12	<5	4	<10	17	0.03	67	<10	6	109	3
B+900	<0.2	2.42	10	310	0.5	<5	0.27	<1	10	32	41	5.24	0.06	0.60	495	<2	0.01	21	930	16	<5	5	<10	27	0.02	86	<10	4	180	4

Page 2 of 2

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed

Attention: Steve Bell

Project: STARDUST

Sample: soil

Samala

Assay Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No 0V0406 SJ : Date Sep-21-00 :

15

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi	Ca %	Cđ	Co	Cr	Cu	Fe	ĸ	Mg	Mn	Мо	Na	Ni	٩	Pb	Sb	Sc	Sn	Sr	Ti	v	w	Y	Zก	Zr
	1.1.1	~	բրա	γμιι	hhuu	քքա	79	ppm	ppm	mqq	ppm	%	%	%	ppm	mqq	%	ppm	ppm	mqq	ppm	ppm	ppm	ppm	%	mqq		mqq		ppm
75N x 75E	0.6	1.96	5	120	<0.5	<5	0.23	<1	7	26	15	4.41	0.06	0.41	600	<2	0.01	16	2730	8	~E	-								
75N x 60E	0.2	1.79	45	80	<0.5	<5	0.27	<1	9	24	30	4.73	0.07	0.44	645		0.01	15		28	<5	2	<10	14	0.04	69	<10	2		3
75N x 45E	<0.2	2.32	95	120	0.5	<5	0.60	<1	10	27	40	5.66	0.09	0.90	865	<2	0.01	21			5	3	<10	16	0.05	95	<10	2	159	3
75N x 30E	0.2	1.60	90	130	<0.5	<5	0.33	<1	8	21	49	4.60	0.10	0.47	895	<2	0.01	13		40	5	4	<10	16		99	<10	5	242	3
75N x 15E	0.4	2.26	105	70	0.5	<5	0.21	<1	10	27	30	5.47	0.07	0.59	1040	2	0.01	20		36	<5	2	<10	15		89	<10	2	263	3
											•••			0.55	1010	2	0.01	20	/30	20	5	3	<10	9	0.03	88	<10	4	242	3
75N x 00	0.8	3.00	230	130	0.5	<5	0.79	<1	17	31	113	6.63	0.09	1.06	3110	4	0.01	27	1080		10	•				_				
75N x 15W	0.2	1.56	35	140	<0.5	<5	1.23	2	9	24	47	4.21	0.07	0.36	1760	6	0.01	17		82	10	8	<10	14	0.05	119	<10	18	454	5
75N x 30W	<0.2	1.23	40	140	<0.5	<5	0.25	<1	9	23	18	4.46	0.07	0.36	1475	2	0.01	13	720	18 12	5	3	<10	18	0.05	77	<10	5	358	3
75N x 45W	<0.2	2.19	90	130	0.5	<5	0.91	<1	16	28	100	5.25	0.08	0.78	1855	2	0.01	27	770	20	<5	2	<10	11	0.05	90	<10	1	221	3
75N x 60W	0.2	2.00	45	120	0.5	<5	0.86	<1	12	27	129	4.33	0.06		1725	4	0.01	19	730		5	6	<10	18	0.04	83	<10	14	237	4
																•	0.01	.,	/30	14	5	5	<10	16	0.03	77	<10	15	204	3
75N x 75W	<0.2	2.86	160	80	0.5	<5	0.17	<1	21	28	167	7.53	0.07	1.35	1400	6	0.01	23	580	18	5	9								
75N x 90W	<0.2	2.13	105	90	0.5	<5	1.47	<1	18	26	247	5.90	0.06	0.53	2005	4	0.01	20	1060	20	5	-	<10	8	0.04	143	<10	5	146	5
75N x 105W	<0.2	3.70	50	110	0.5	<5	0.36	<1	19	29	72	5.61	0.06	0.68	1255	2	0.01	25	890	14	5	6 6	<10	19	0.05	112	<10	18	221	5
75N x 120W	0.2	1.89	25	110	0.5	<5	1.33	<1	11	29	225	4.16	0.07	0.70	1305	<2	0.02	22	1010	14	<5	-	<10	14	0.04	90	<10	9	173	5
75N x 135W	<0.2	2.02	15	120	0.5	<5	0.40	<1	11	28	49	4.17	0.05	0.66	835	<2	0.01	18	470	14	<5	14 6	<10	31	0.03	80	<10	37	133	7
																	0.01		4/0	14	< 3	Б	<10	23	0.03	85	<10	14	79	3
75N x 150W	<0.2	2.00	25	140	<0.5	<5	0.32	<1	10	25	32	5.87	0.06	0.71	680	<2	0.01	15	550	18	5	5		20				_		
75N x 165W	<0.2	2.10	20	140	<0.5	<5	0.23	<1	10	25	17	5.80	0.08	0.67	705	<2	0.01	15	630	18	<5	5 6	<10	20	0.07	118	<10	3	113	4
75N x 180W	<0.2	1.60	10	140	0.5	<5	0.35	<1	9	28	83	3.77	0.04	0.64	770	<2	0.01	18	270	14	<5	7	<10	17	0.06	128	<10	4	179	4
75N x 195W	<0.2	1.97	10	130	<0.5	<5	0.09	1	7	26	15	4.34	0.04	0.51	390	<2	0.01	16	890	8	<5		<10	26	0.03	74	<10	10	117	2
75N x 210W	<0.2	1.13	10	80	<0.5	<5	0.12	<1	6	21	10	3.76	0.05	0.30	380	<2	0.01	8	840	8	<5	-	<10	9	0.03	83	<10	2	227	3
																	0,01	Ū	040	0	~ 3	3	<10	9	0.05	80	<10	1	117	2
75N x 225W	<0.2	2.03	20	150	<0.5	<5	0.13	<1	9	29	15	4.80	0.04	0.54	420	<2	0.01	19	1910	10	<5					•				
75N x 240W	<0.2	1.37	15	90	<0.5	<5	0.23	<1	6	23	11	4.03	0.04	0.44	300	<2	0.01	13	450	12	<5	4	<10	12	0.03	91	<10	2	166	3
75N x 255W	0.8	3.37	40	310	1.0	< 5	1.37	8	14	44	550	5.22	0.13	1.02	2265	<2	0.01	35	910	80	5	-	<10	12	0.04	79	<10	2	128	2
150N x 150E	<0.2	2.22	270	150	0.5	<5	1.16	<1	19	29	91	6.78	0.11	1.07	3850	4	0.02	34	1350	50	10	45	<10	50	0.01	97	<10	177	593	9
150N x 135E	0.4	3.63	325	80	0.5	<5	0.46	<1	21	39	118	8.11	0.09	1.17	4120		0.02	31	1320	56		14	<10	24	0.04	110	<10	36	567	6
																••	0.02	51	1320	20	10	22	<10	10	0.04	136	<10	50	505	9
150N x 120E	<0.2	1.98	125	120	<0.5	<5	0.66	<1	12	29	48	5.29	0.07	0.64	1355	2	0.01	25	780		5	~								
150N x 105E	<0.2	0.92	20	80	<0.5	<5	0.33	1	6	20	12	3.75		0.22	535		0.01	8	690	14	-	6	<10	19	0.05	85	<10	13	229	4
150N x 90E	0.4	1.70	75	80	0.5	<5	1.09	1	13	30	185	4.07	0.06	0.57	2350		0.02	33	690	12 52	<5	2	<10	13	0.06	84	<10	2	134	2
150N x 75E	<0.2	2.84	80	110	0.5	<5	1.13	<1	18	28	38	5.68	0.05	0.59	1410		0.02	18	1060		5	17	<10	26	0.06	67	<10	42	282	4
150N x 60E	<0.2	3 30	155	60	<0.5	<5	0.10	<1	18	35	38	7.89	0.07		1790		0.01	19	790	48 30	5	2	<10	27	0.06	111	<10	12	221	4
									_								0.01		/90	30	5	5	<10	7	0.07	119	<10	5	283	5

Page 1 of 1

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Cigned:

÷

Æ.

Attention: Steve Bell

Project: STARDUST

Sample: soil

Assaye, Canada 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V0406 SJ Date Sep-21-00 :

\$01-

ł,

3.5

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	Р ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
	••			••	••	••		••	••	••	••				••	••		••	••	••	••	••	••	••		••	••	••	••	••
150N x 45E	<0.2	3.90	270	160	0.5	<5	0.67	<1	25	38	76	7.12	0.08	1.09	3585	2	, 0.02	33	1240	52	5	10	<10	24	0.07	119	<10	26	665	6
150N x 30E	<0.2	2.66	300	210	0.5	<5	0.60	<1	24	42	228	7.27	0.11	1.17	3875	2	0.02	47	750	94	10	18	<10	41	0.05	124	<10	40	305	9
150N x 15E	<0.2	2.22	120	160	<0.5	<5	0.73	<1	21	31	170	5.85	0.15	1.04	2025	4	0.02	30	610	24	5	13	<10	27	0.09	101	<10	17	249	5
150N × 00	<0.2	2.01	25	130	<0.5	<5	0.76	<1	15	32	35	4.46	0.11	0.74	1190	2	0.02	24	470	32	5	9	<10	23	0.06	80	<10	10	278	5
150N x 15W	<0.2	2.24	95	150	<0.5	<5	0.73	<1	19	35	85	6.03	0.09	1.05	1835	4	0.02	32	700	28	5	9	<10	26	0.06	97	<10	14	260	7
150N x 30W	<0.2		140	180	0.5	<5	1.35	<1	18	30		6.03	0.07	0.56	1390	4		25		18	5	8	<10	25	0.06	94	<10	36		5
150N × 45W	<0.2	2.67	70	70	<0.5	<5	0.35	<1	15	29	75	7.35	0.08	0.83	930	2		21	720	12	5	5	<10	13	0.07	117	<10	4	133	5
150N × 60W	0.2	2.99	250	220	0.5	<5	1.34	<1	40	34	310	9.27	0.08	0.93	1595	4	0.02	28		24	5	16	<10	29	0.06	168	<10	32	138	10
150N x 75W	<0.2	2.24	20	150	0.5	<5	1.00	1	13	31	117	4.65	0.09	0.67	990	2	0.02	25	750	18	<5	7	<10	26	0.06	83	<10	16	125	6
150N × 90W	<0.2	4.75	25	90	0.5	<5	1.45	<1	15	30	61	4.24	0.04	0.41	670	<2	0.02	18	1050	4	< 5	8	<10	26	0.05	68	<10	29	70	5
											-																			
150N x 105W	<0.2		15		0.5	<5	0.56	<1	11	33	51		0.07	0.72	815	<2	0.02	25	430	12	<5	13	<10	26	0.05	89	<10	21	91	6
150N x 120W	0.2		15	230	0.5	< 5	0.58	1	17	37	147	5.59	0.13	0.77	2175	<2	0.01	27	910	18	<5	9	<10	37	0.03	106	<10	14	163	4
150N x 135W	<0.2		20		<0.5	< 5	0.23	<1	9	26	13	4.62	0.06	0.55	720	<2	0.01	16		10	<5	3	<10	17	0.05	86	<10	3	182	3
150N x 150W		1.26	5		<0.5	<5	0.24	2	-	22	6	3.58	0.06	0.40	680	<2	0.01	11	950	82	<5	3	<10	16	0.06	69	<10	3	343	2
150N x 165W	<0.2	1.65	20	110	<0.5	<5	0.18	1	8	25	7	4.27	0.09	0.50	465	<2	0.01	13	1290	8	<5	4	<10	14	0.06	86	<10	2	193	3
150N × 180W	-0.2	1.61	20	140	<0.5	<5	0.17	3	7	25	9	4.47	0.05	0.50	525	<2	0.01	13	960	36	5	3	<10	15	0.06	91	<10	2	272	3
150N × 180W	<0.2	1.97	35	90	< 0.5	<5	0.17		10	25	15	5.80	0.05	0.50	540	<2	0.01	13		10	5	4		13	0.08	121	<10	2		3 4
								<1	10			3.62	0.03		290			7		8	_	3	<10		0.07					
150N × 210W		1.25	10	100	<0.5	<5	0.14	1	3	20	6			0.30		<2	0.01	-		-	<5	د م	<10	10		82	<10	2		2
150N x 225W	<0.2		20	100	< 0.5	<5	0.20	_	-	27	27	4.66	0.05	0.44	770	<2	0.01	11	870	96 20	<5 5	- 4	<10	12	0.07	99	<10	-		3
150N x 240W	<0.2	2.01	70	100	<0.5	<5	0.33	1	14	27	21	5.90	0.06	0.68	1130	<2	0.01	15	1580	20	2	3	<10	18	0.07	125	<10	4	347	4
150N x 255W	<0.2	2.05	80	100	<0.5	<5	0.53	<1	7	30	23	4.96	0.05	0.50	350	<2	0.01	16	800	10	< 5	4	<10	23	0.06	86	<10	7	171	3
250N x 150E	< 0.2	2.16	35	140	< 0.5	<5	0.45	<1	10	30	18	5.05	0.05	0.64	630	<2	0.01	24	660	16	<5	4	<10	19	0.05	85	<10	10	113	4
250N x 135E	0.2	2.30	210	170	0.5	<5	1.26	<1	19	32	94	6.55	0.10	0.94	3315	4	0.02	34	1490	44	5	12	<10	26	0.04	114	<10	33	400	6
250N x 120E	0.4	2.14	130	160	0.5	<5	1.68	1	22	35	208	5.16	0.07	0.68	4965	12	0.02	41		28	5	15	<10	34	0.04	79	<10	85	317	7
250N x 105E	ū.4	2.07	70	150	0.5	<5	i.i8		14	31	153	4.86	0.07	0.74	1645	2		30		24	- 5	9	<10	30	0.05	81	<10	29	227	8
23000 / 2000									•••							-					-	-								-
250N x 90E	<0.2	1.90	25	150	<0.5	<5	0.68	<1	10	29	30	4.00	0.06	0.59	500	2	0.01	22	240	14	< 5	6	<10	22	0.06	70	<10	5	231	6
250N x 75E	<0.2	1.56	20	120	<0.5	<5	0.49	1	11	29	23	3.91	0.06	0.68	700	4	0.02	26	660	12	5	6	<10	33	0.07	73	<10	10	162	5
250N x 60E	0.6	2.00	110	110	0.5	<5	1.76	<1	13	35	106	4.01	0.05	0.47	2465	8	0.02	23	2160	18	5	6	<10	35	0.03	68	<10	33	194	7
250N x 45E	<0.2	2.20	20	140	<0.5	<5	0.73	<1	16	33	21	4.79	0.08	0.83	1220	6	0.02	27	410	12	< 5	7	<10	24	0.07	85	<10	9	130	5
250N x 30E	0.2	2.73	85	270	0.5	<5	1.26	<1	20	33	99.	6.24	0.09	1.12	2555	8	0.02	27	1630	52	5	11	<10	32	0.06	101	<10	23	487	7
-	_																													

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signed:

Page 2 of 4

Attention: Steve Bell

Project: STARDUST

Sample: soil

Assaye. Canada 8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No 0V0406 SJ : Date Sep-21-00 1

ĦU 1 .

.

4

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

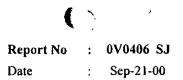
Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V mqq	W	Y ppm	Zn ppm	Zr ppm
									•	••					••	•••		er -		P.P.	F.F	PP	PP	Ppin		Ppm	PP'''	ppm	PP	PPIII
250N x 15E	<0.2	2.26	70	130	<0.5	< 5	0.86	<1	13	29	33	4.66	0.07	0.69	805	2	, 0.02	25	640	20	5	4	<10	31	0.06	76	<10	6	139	4
250N × 00	<0.2	2.07	65	130	<0.5	<5	1.13	<1	15	30	53	5.21	0.11	0.89	1480	2	0.02	22	1430	28	5	9	<10	30	0.06	94	<10	17	236	5
250N × 15W	<0.2	2.20	35	190	0.5	<5	1.11	<1	13	29	119	4.79	0.07	0.58	745	2	0.02	25	990	24	5	7	<10	24	0.05	86	<10	24	195	6
250N × 30W	<0.2	1.88	20	180	<0.5	< 5	0.45	<1	12	31	47	4.40	0.06	0.75	910	<2	0.02	26	430	12	<5	8	<10	26	0.06	79	<10	15	90	5
250N × 45W	0.2	1.86	30	130	0.5	<5	1.38	<1	11	31	131	3.95	0.08	0.61	1690	6	0.02	21	1860	14	<5	7	<10	31	0.04	75	<10	26	113	7
																								• •		-				
250N × 60W	<0.2	1.85	15	150	0.5	<5	1.03	<1	10	30	99	4.10	0.07	0.61	1080	2	0.02	24	1050	14	<5	9	<10	30	0.04	77	<10	23	124	7
250N × 75W	<0.2	1.90	15	160	0.5	< 5	0.41	<1	13	32	39	4.41	0.06	0.69	1175	<2	0.01	23	510	14	<5	7	<10	30	0.04	78	<10	16	100	3
250N × 90W	<0.2	1.78	15	130	<0.5	<5	0.18	1	8	30	53	4.65	0.06	0.41	585	<2	0.01	22	720	14	<5	5	<10	16	0.05	81	<10	17	101	3
250N × 105W	<0.2	2.14	15	160	< 0.5	< 5	0.53	<1	14	31	65	4.49	0.08	0.70	1070	<2	0.01	21	600	18	<5	8	<10	32	0.04	83	<10	26	150	3
250N × 120W	<0.2	1.76	15	160	<0.5	<5	0.47	<1	12	32	42	4.23	0.07	0.71	1220	<2	0.02	21	390	26	<5	9	<10	25	0.06	84	<10	20	153	3
																										•••				•
250N × 135W	<0.2	1.81	15	160	<0.5	<5	0.54	<1	12	30	30	4.01	0.07	0.68	970	<2	0.02	20	450	14	<5	6	<10	24	0.06	85	<10	15	116	3
250N × 150W	<0.2	2.76	50	250	0.5	<5	0.67	<1	13	37	26	4.92	0.09	0.74	935	<2	0.01	27	750	14	5	7	<10	26	0.03	93	<10	11	112	6
250N × 165W	<0.2	1. 9 7	15	200	<0.5	< 5	0.66	<1	11	32	19	4.09	0.11	0.66	925	<2	0.01	22	680	6	<5	5	<10	21	0.05	79	<10	9	111	3
250N × 180W	<0.2	1.86	15	170	<0.5	<5	0.57	<1	9	28	17	3.81	0.06	0.62	795	<2	0.01	20	450	10	<5	5	<10	19	0.05	71	<10	10	133	3
250N × 195W	<0.2	1.97	25	150	<0.5	<5	0.35	<1	9	30	14	4.12	0.08	0.59	445	<2	0.01	19	450	6	<5	4	<10	17	0.05	84	<10	4	181	3
																												-		5
250N × 210W	<0.2	1.66	20	170	<0.5	<5	0.27	1	9	28	8	4.10	0.08	0.49	530	<2	0.01	18	1190	10	<5	4	<10	16	0.06	81	<10	3	218	3
250N x 225W	<0.2	1.67	20	170	<0.5	<5	0.42	<1	9	29	24	3.87	0.06	0.59	720	<2	0.01	18	530	10	<5	5	<10	23	0.05	81	<10	10	94	3
250N × 240W	<0.2	1.45	15	200	<0.5	<5	0.36	1	9	26	19	3.68	0.06	0.40	755	<2	0.01	15	690	10	<5	2	<10	24	0.05	78	<10		144	2
250N × 255W	<0.2	1.66	10	150	<0.5	<5	0.27	<1	8	27	8	4.14	0.05	0.50	380	<2	0.01	16	1490	8	<5	3	<10	17	0.05	78	<10	3	159	2
400N × 150E	<0.2	2.51	20	230	<0.5	<5	0.95	<1	13	28	21	5.13	0.18	1.02	1035	<2	0.02	23	730	12	<5	9	<10	29	0.11	97	<10	13	126	4
																										2.	-10			-
400N × 135E	<0.2	1.58	20	130	<0.5	<5	0.54	<1	10	24	16	4.23	0.04	0.36	990	<2	0.01	16	830	12	<5	2	<10	17	0.05	73	<10	5	150	3
400N × 120E	<0.2	3.22	15	100	<0.5	<5	1.20	<1	10	25	11	4.30	0.03	0.43	395	<2	0.01	18	670	10	< 5	4	<10	29	0.06	62	<10	7	76	4
400N × 105E	<0.2	3.23	35	170	0.5	<5	1.44	<1	18	33	57	5.52	0.05	0.60	1190	<2	0.02	23	1320	30	5	10	<10	31	0.06	95	<10	48	121	5
400N × 090E	0.2	1.82	15	120	<0.5	<5	1.46	1	9	27	49	4.17	0.04	0.51	625	<2	0.02	21	770	12	<5	5	<10	30	0.06	71	<10	16	127	4
400N X 75E	<0.2	1.70	15	120	<0.5	<5	0.5Z	<1	10	32	52	4.33	0.05	0.63	740	<2	0.02	24	560	12	< 5	8	<10	25	0.06	76	<10	23	104	5
																													101	5
400N × 60E	0.2	1.77	20	140	<0.5	<5	1.05	1	12	34	88	4.20	0.08	0.65	1935	4	0.02	26	740	18	5	7	<10	28	0.06	75	<10	19	22 9	5
400N × 45E	0.4	2.21	35	140	<0.5	<5	1.30	<1	15	28	78	4.76	0.09	0.88	1255	<2	0.02	23	780	26	<5	7	<10	27	0.08	90	<10	16	208	4
400N × 30E	<0.2	1.90	15	130	<0.5	<5	0.74	<1	11	35	32	4.05	0.07	0.68	900	2	0.02	27	440	14	< 5	6	<10	25	0.06	69	<10	9	111	5
400N x 15E	<0.2	2.02	30	140	<0.5	<5	0.82	<1	14	34	191	4.96	0.15	0.88	1375	2	0.02	29	990	20	5	11	<10	35	0.07	90	<10	18	158	6
400N X 00	<Û.2	1.91	15	16Û	Û.5	<5	0.90	1	9	30	74	3.99	0.07	0.56	750	<2	0.01	23	950	12	<5	6	<10	27	0.05	68	<10	19	143	Š
																						-	-					- •		•

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Page 3 of 4

Cigned:

Attention: Steve Bell


Project: STARDUST

Sample: soil

Assaye. - Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
400N x 15W	<0.2	1.57	35	140	<0.5	<5	1.51	<1	9	26	60	3.48	0.06	0.54	1315	2	0. 02	19	1160	14	<5	4	<10	30	0.04	68	<10	12	143	4
400N x 30W	<0.2	1.73	25	130	<0.S	<5	1.15	<1	7	29	79	4.00	0.05	0.41	715	2	0.01	18	660	14	<5	4	<10	24	0.06	78	<10	15	115	3
400N x 45W	<0.2	1.84	20	170	0.5	<5	1.82	<1	9	30	69	3.92	0.09	0.59	1010	2	0.02	21	1520	14	<5	6	<10	35	0.04	72	<10	17	160	5
400N x 60W	<0.2	2.04	15	200	<0.5	<5	0.60	<1	8	30	28	4.46	0.07	0.63	520	<2	0.01	20	520	12	<5	7	<10	27	0.05	81	<10	14	128	3
400N x 75W	<0.2	1.90	20	200	0.5	<5	0.45	<1	12	30	19	4.98	0.06	0.62	760	<2	0.01	19	870	14	<5	4	<10	26	0.06	93	<10	5	158	3
400N × 90W	<0.2	1.81	15	230	<0.5	<5	0.42	<1	9	29	17	4.27	80.0	0.57	915	<2	0.01	18	750	12	<5	4	<10	25	0.04	82	<10	6	227	3
400N x 105W	<0.2	2.09	35	230	0.5	<5	0.31	<1	9	28	18	4.41	0.07	0.46	560	<2	0.01	15	700	42	<5	4	<10	23	0.04	95	<10	8	1 9 7	3
400N x 120W	<0.2	0.99	10	190	<0.5	<5	0.29	1	6	22	5	3.60	0.07	0.21	855	<2	0.01	7	570	12	<5	1	<10	18	0.04	80	<10	2	141	2
400N x 135W	<0.2	2.48	25	280	0.5	<5	0.47	<1	10	31	37	4.28	0.07	0.67	1025	<2	0.01	23	840	18	<5	7	<10	31	0.03	83	<10	14	125	4
400N x 150W	<0.2	2.52	25	360	0.5	<5	0.49	<1	11	29	49	4.30	0.06	0.74	1180	<2	0.01	21	860	12	<5	8	<10	28	0.05	84	<10	21	121	4

.

£11.

-

Attention: Steve Bell

Project: Palomino, Stardust

Sample: rock

Assay Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V0463 RJ Date : Oct-24-00

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

	-											Aqu	ance		gestit															
	\mathcal{D}_{1}																													
	TALC	MI	30																											
Sample /	Ag	AI	As	Ba	Be	Bi	Са	Cd	Co	Cr	Cu	Fe	к	Mo	Mn	Мо	Na	Ni	Р	Pb	Sb	Sc	Sn	Sr	Ti	v	w	Y	Zn	Zr
Number /	ppm	%								ppm		Fe %	К %	Mg %	ppm	Mo ppm	%	ppm	ppm	ppm	ppm	ppm	mqq	ppm	%	ppm	ppm	ppm		
6					• •										••				••		••	••		••		••	••	••	••	
P26 P27	0.2	1.40) <:	i 70	<0.5	< 5	1.22	<1	19	33	1994	4.34	0.03	1.53	790	<2	0.03	10	1990	8	<5	3	<10	36	0.21	98	<10	8	79	15
 P27	0.2	1.90) <	i 40	<0.5	s <5	1.17	<1	22	37	650	3.95	0.02	1.88	825	<2	0.02	12	1940	6	<5	2	<10	50	0.19	69	<10	7	108	12
SR+00	0.4	1.41	515	i 10	<0.5	5 15	0.09	<1	52	45	991	12.67	0.02	0.46	450	4	0.02	23	1090	18	15	6	<10	2	0.01	51	<10	6	36	14
SR+90W	0.4	1.17	115	5 10	<0.5	< 5	2.91	<1	14	46	698	4.79	0.02	1.15	805	4	0.06	14	1330	10	5	9	<10	15	0.13	71	<10	10	67	10
SR+105W	0.4	1.53	350	10	<0.5	< 5	8.13	<1	17	35	912	6.76	0.02	1.37	1715	2	0.05	31	1710	10	10	15	<10	30	0.12	133	<10	11	88	14
5R+110W	1.0	2.05	5 1040) 10	<0.5	35	0.15	<1	83	41	1871	>15.00	0.03	1.02	325	<2	0.01	48	1220	36	15	10	<10	2	0.04	98	<10	3	54	22

STARDUST

.

-

A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D I H20

Page 1 of 1

Kr.

•

Assayers Canada 8282 Sherbrooke St. Vancouver, B.C. V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423

Quality associant for ever 25 Years

Geochemical Analysis Certificate

0V-0463-RG1

Company:Steve BellProject:Palomino, StardustAttn:Steve Bell

Oct-24-00

We *hereby certify* the following geochemical analysis of 6 rock samples submitted Oct-11-00

Sample Name	Au PPB	
P26	10	
P27	5	
SR+00	11	
SR+00 SR+90W	8	
SR+105W	19	
SR+110W	. 52	

Attention: Steve Bell

Project: Palo., Star., McQua. L., FT East

Sample: SOIL

Canada Assay

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

: Report No 0V0464 SJ Date Oct-24-00 :

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	Р ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
S+180E	0.8	2.47	200	80	0.5	<5	0.16	<1	15	28	68	5.98	0.08	0.80	1085	4	0.01	28	670	42	5	8	<10	11	0.05	103	<10	8	345	4
S+165E	0.4	2.88	215	90	0.5	<5	0.15	<1	16	27	81	7.11	0.09	1.03	1470	2	0.01	29	800	44	5	9	<10	9	0.05	128	<10	8	699	4
S+150E	0.2	2.20	140	200	0.5	<5	0.20	<1	15	29	48	6.38	0.08	0.69	1525	8	0.02	24	2700	52	5	6	<10	12	0.04	116	<10	5	726	4
S+135E	0.2	2.09	105	130	<0.5	<5	0.35	<1	13	29	55	6.09	0.08	0.54	730	2	0.01	25	1940	50	5	5	<10	15	0.05	100	<10	5	379	4
S+120E	0.2	2.10	130	100	0.5	<5	0.23	<1	14	27	52	5.98	0.08	0.60	655	2	0.01	26	1420	28	5	5	<10	14	0.05	100	<10	6	389	3
S+105E	<0.2	2.99	190	150	0.5	<5	0.23	<1	19	41	60	6.46	0.10	1.06	1665	2	0.01	41	1040	20	5	8	<10	17	0.05	108	<10	8	261	4
S+90E	<0.2	1.91	20	120	<0.5	<5	0.23	<1	9	29	22	4.66	0.05	0.58	465	<2	0.01	25	1290	12	<5	4	<10	18	0.07	85	<10	4	186	3
S+75E	0.6	2.04	45	80	<0.5	<5	0.21	<1	11	24	45	5.04	0.06	0.49	995	<2	0.01	18	760	20	<5	4	<10	14	0.06	100	<10	5	217	3
S+60E	0.6	1.77	25	80	<0.5	< 5	0.22	<1	8	23	40	4.48	0.04	0.40	490	2	0.01	15	450	10	5	3	<10	13	0.07	81	<10	4	133	3
S+45E	0.4	2.60	360	90	0.5	5	0.21	<1	38	21	128	7.89	0.07	0.79	2680	<2	0.01	21	1420	40	5	9	<10	12	0.04	156	<10	9	277	5
S+30E \	<0.2	2.87	205	80	0.5	<5	0.31	<1	25	23	79	6.93	0.10	1.47	1440	2	0.01	25	1000	226	5	8	<10	17	0.09	150	<10	9	285	5
S+15E 🖞	<0.2	3.69	335	100	0.5	<5	0.43	<1	75	18	283	9.94	0.15	2.59	2990	<2	0.02	33	880	46	5	17	<10	19	0.13	288	<10	16	265	6
S+00E	0.2	3.70	555	80	0.5	10	0.12	<1	46	27	532	12.73	0.07	1.27	5230	14	0.01	37	2270	68	15	13	<10	6		113	<10	24	271	9
S+15W	2.2	1.13	1435	90	0.5	5	7.06	<1	27	23	711	8.79	0.03	0.63	7190	18	0.01	84	1460	404	15	24	<10		< 0.01	87	<10	72	477	6
S+30₩ &	1.4	2.52	970	80	0.5	5	4.44	<1	25	25	161	11.84	0.09	1.60	3520	20	0.02	64	2810	82	20	23	<10	19	0.03	156	<10	41		10
Ľ																														
S+45W ()	<0.2	2.40	25	130	<0.5	< 5	0.24	<1	12	31	34	4.43	0.07	0.65	750	2	0.01	27	610	12	< 5	5	<10	18	0.07	80	<10	7	100	3
5+60W	<0.2	2.96	55	140	0.5	<5	0.72	<1	13	33	145	4.96	0.08	0.67	710	2	0.02	34	620	20	5	9	<10	20	0.06	86	<10	21	152	4
5+75W	0.2	2.07	45	120	0.5	<5	1.15	<1	- 11	27	77	4.16	0.07	0.48	1065	2	0.02	24	1040	14	<5	5	<10	20	0.05	74	<10	22	148	4
S+90W	0.2	2.07	80	130	<0.5	<5	0.93	<1	17	33	1150	5.03	0.11	0.89	3675	8	0.02	68	650	24	<5	16	<10	21	0.09	86	<10	26	643	5
S+105W	<0.2	1.96	25	110	<0.5	<5	0.65	<1	13	34	129	4.20	0.09	0.77	835	2	0.02	36	290	14	5	8	<10	26	0.06	68	<10	13	289	5
S+120W	0.2	2.97	130	130	<0.5	<5	0.31	<1	20	25	74	6.62	0.07	1.29	1110	2	0.01	24	610	16	5	9	<10	14	0.07	130	<10	5	186	4
S+135W	<0.2	3.26	70	130	0.5	<5	0.43	<1	31	27	109	7.27	0.07	2.01	1425	<2	0.02	24	570	32	5	12	<10	19	0.14	197	<10	9	207	5
S+150W	<0.2	1.56	10	100	<0.5	<5	0.32	<1	9	28	97	3.92	0.05	0.59	500	<2	0.01	20	280	10	< 5	8	<10	18	0.07	80	<10	9	86	3
P+00	<0.2	1.34	<5	160	<0.5	<5	0.35	<1	8	23	27	2.76	0.05	0.51	420	<2	0.02	14	400	8	<5	4	<10	36	0.08	58	<10	6	75	3
P+30W	<0.2	1.18	<5	150	<0.5	<5	0.36	<1	6	21	30	2.46	0.05	0.44	385	<2	0.02	12	330	5	<5	3	<10	36	0.07	53	<10	ó	63	3
P+60W	<0.2	1.37	<5	140	<0.5	<5	0.37	<1	8	25	31	2.87	0.06	0.61	375	<2	0.02	18	520	54	<5	4	<10	36	0.08	57	<10	6	66	4
P+90W 2	<0.2	1.11	<5	120	<0.5	<5	0.26	<1	6	21	20	2.47	0.05	0.46	295	<2	0.01	13	440	6	< 5	з	<10	25	0.08	51	<10	4	65	з
P+120W	0.2	1.21	<5	150	<0.5	< 5	0.31	1	6	20	23	2.36	0.06	0.43	310	<2	0.02	13	390	6	< 5	3	<10	30	0.08	52	<10	4	94	2
P+150W T	0.2	1.86	<5	220	0.5	<5	0.78	<1	8	31	54	3.25	0.08	0.71	490	<2	0.02	22	700	8	< 5	8	<10	57	0.06	64	<10	16	95	4
P+180W 0 JHL 0	<0.2	1.19	<5	170	<0.5	<5	0.32	<1	7	27	25	3.07	0.04	0.43	290	<2	0.02	15	250	8	<5	4	<10	29	0.09	58	<10	6	76	5

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

<u>\$7.1.</u>

.

Attention: Steve Bell

Project: Palo., Star., McQua. L., FT East

Sample: SOIL

.....

Assaye _ Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6 Tel: (604) 327-3436 Fax: (604) 327-3423 Report No : 0V0464 SJ Date : Oct-24-00

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

Sample Number			AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	К %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	Р ppm	Pb ppm	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
0.000				-			_										•••			••	••			• •			FF	F F			FE
P+210W C P+240W C			1.95	5 <5	240	0.5	<5	0.55	<1	9	36	61	4.06	0.07	0.69	685	<2	0.02	23	430	10	<5	7	<10	48	0.08	83	<10	13	84	4
P+270W _			1.34 1.19	<> <5	160 160	<0.5 <0.5	<5	0.40	<1	8	27	24	3.01	0.05	0.56	395	<2	0.02	16	300	8	<5	4	<10	37	0.09	64	<10	7	75	4
P+300W Z			1.04	<5	160	<0.5	<5 <5	0.34	<1 <1	8	27	25	3.13	0.04	0.51	350	<2	0.02	15	350	6	<5	4	<10	32	0.08	68	<10	6	68	3
P+330W 0			1.55	5	220	<0.5	<5	0.28 0.49	<1	7	24 29	24 49	2.86 3.13	0.05 0.05	0.34 0.58	305 350	<2 <2	0.01	12	410	6	<5	3	<10	26	0.07	63	<10	5	82	3
UL I			1.55	3	110	-0.0		0.45	~1		23		3.13	6.03	0.50	220	~2	0.02	19	530	8	<5	6	<10	44	0.06	64	<10	14	62	4
P+360W		0.2	1.58	5	190	<0.5	<5	0.22	<1	6	28	19	4.00	0.06	0.32	235	<2	0.01	13	2300	10	<5	3	<10	26	0.07	82	<10	3	132	3
P+390W	<	0.2	1.38	5	240	<0.5	< 5	0.46	<1	9	31	42	3.37	0.05	0.52	575	<2	0.02	19	440	8	<5	5	<10	40	0.07	70	<10	10	71	3
P+420W	<	0.2	1.52	<5	180	< 0.5	<5	0.58	1	14	38	47	5.46	0.07	0.75		<2	0.02	24	1280	12	<5	7	<10	49	0.07	121	<10	12	119	5
ML 51800E*484	25N <	0.Z	1.74	5	140	<0.5	<5	0.17	<1	8	30	21	3.44	0.06	0.69	445	<2	0.01	22	350	10	<5	4	<10	17	0.04	61	<10	4	108	2
ML 51875E*490	DOON	0.4	4.02	15	900	1.5	< 5	1.10	1	15	56	× 95	5.63	0.15	0.96	2910	2	0.02	49		16	<5	16	<10	95	0.02	84	<10	53	152	8
																						-					•				•
ML 51900E*493	100N <	0.2	2.30	5	270	0.5	<5	0.37	1	10	31	28	3.98	0.08	0.69	910	<2	0.02	26	610	14	<5	5	<10	26	0.03	64	<10	10	117	2
ML 51910E*497	'SON <	0.2	1.33	5	150	<0.5	<5	0.20	<1	5	18	16	2.87	0.04	0.42	250	<2	0.01	13	310	10	< 5	з	<10	17	0.04	49	<10	3	83	2
ML 51920E*495		0.2	1.07	5	90	<0.5	<5	0.09	<1	5	18	11	3.17	0.04	0.30	540	<2	0.01	10	580	10	<5	3	<10	11	0.04	54	<10	2	74	z
ML 51925E*487			2.90	10	820	1.0	<5	1.06	<1	11	41	₹44	4.21	0.07	0.67	1400	<2	0.02	29	970	14	<5	9	<10	49	0.02	68	<10	26	127	6
ML 52010E*500	130N V	0.2	1.58	10	140	<0.5	<5	0.23	<1	7	23	19	4.07	0.04	0.39	305	<2	0.01	14	470	14	<5	Э	<10	24	0.04	72	<10	2	107	2
ML 52100E*492	···· _		1.73	10	150	0.5	<5	0.25	<1	11	27	30	4.04	0.05	0.60	705	<2	0.01	22	540	16	<5	4	<10	16	0.04	62	<10	7	91	2
ML 52150E*499			1.66	15	430	0.5	<5	0.96	1	12	28	¥ 81	3.97	0.08	0.54	1515	<2	0.02	23	920	16	5	7	<10	83	0.03	58	<10	19	156	5
ML 52150E*500			2.10	5	160	0.5	<5	0.43	<1	13	27	37	3.84	0.06	0.52	845	<2	0.01	22	780	12	<5	6	<10	36	0.03	57	<10	17	125	4
ML 52190E*499			1.46	10	260	0.5	<5	0.68	<1	10	25	64	3.75	0.07	0.56	980	<2	0.02	23	890	16	< 5	7	<10	93	0.02	55	<10	19	117	4
ML 52300E*497	'50N ≪< ⊈	0.2	1.25	10	200	0.5	<5	0.48	<1	9	25	31	3.51	0.05	0.56	575	<2	0.02	19	590	14	<5	6	<10	37	0.03	53	<10	10	93	5
ML 52440E+492	50N 2	0.2	- ee	10	380	1.0					2.7	1 = -					_		•												
ML 52450E*495	<u> </u>		2.66 2.56	15	460	1.0	<5 <5	1.10	1	10	37	1 52	4.53	0.10	0.69	1150	<2	0.02	31	920	12	<5	10	<10	89	0.01	62	<10	24	148	6
ML 52570E+493	<u> </u>		1.55	10	400	0.5	<5	1.15 1.67	<1 <1	13 8	38	√90 √sc	5.06	0.12	0.68	1650	<2	0.02	36	1310	20	< 5	12	<10	75	0.01	66	<10	41	176	9
ML 52650E*491	_		1.53	5	190	0.5	<5	0.26	1	10	31 28	/ 55	3.50 3.56	0.06	0.57	855	<2	0.02	23	1250	12	< 5	6	<10	117	0.02	50	<10	20	121	5
FE 33550E*238			2.38	s	210	0.5	~5	0.20 0.54	3	10	20 29	√46 55		0.04	0.54	735	<2	0.01	23	470	12	<5	5	<10	19	0.03	58	<10	12	80	3
12 333300 230	1_	0.4	2.30	5	210	0.5	~ 5	0.54	5	15	29	22	3.66	Ú.Ú6	U.74	2160	<2	0.02	19	690	12	<5	7	<10	31	0.03	80	<10	19	168	3
FE 33650E*236	00N &<	0.2	1.62	15	120	<0.5	<5	0.61	1	12	28	51	4.13	0.06	0.83	1125	<2	0.02	16	770		-5	-	-10	26	0.07					_
FE 33700E*2410			2.20	10	270	0.5	<5	0.64	1	11	29	60	4.30	0.08	0.85	1140	<2	0.02	19	730 790	14 16	<5 <5	7	<10	26	0.07 0.06	95	<10	17	132	3
FE 33700E*2466	-		2.05	10	150	< 0.5	<5	0.19	<1	11	27	29	5.21	0.05	0.67	660	<2	0.02	15	1780	14		•	<10	33		85	<10	28	162	3
FE 33800E*233	<u> </u>		1.63	15	110	<0.5	<5	0.63	<1	14	31	59	4.59	0.06	0.89	1095	<2	0.02	17	870	14	<5 <5	4	<10 <10	12 28	0.07 0.07	103	<10	3	126	3
FE 339508*2300			1.98	25	160	<0.5	<5	0.48	<1	16	49	80	5.05	0.06	1.19	1095	<2	0.02	26	940	24	-	10	<10			107	<10	24	123	3
	1-	-					5		-				2100	0.00		1000	~6	0.02	20	770	24	<5	10	10	28	0.11	146	<10	15	144	3
	4																														
	1																														

A .5 gm sample is digested with 5 ml 3:1 HCI/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

Signod:

Attention: Steve Bell

Project: Palo., Star., McQua. L., FT East

Sample: SOIL

Assaye. Canada

8282 Sherbrooke St., Vancouver, B.C., V5X 4R6

Tel: (604) 327-3436 Fax: (604) 327-3423

Report No : 0V0464 SJ Date : Oct-24-00

MULTI-ELEMENT ICP ANALYSIS

Aqua Regia Digestion

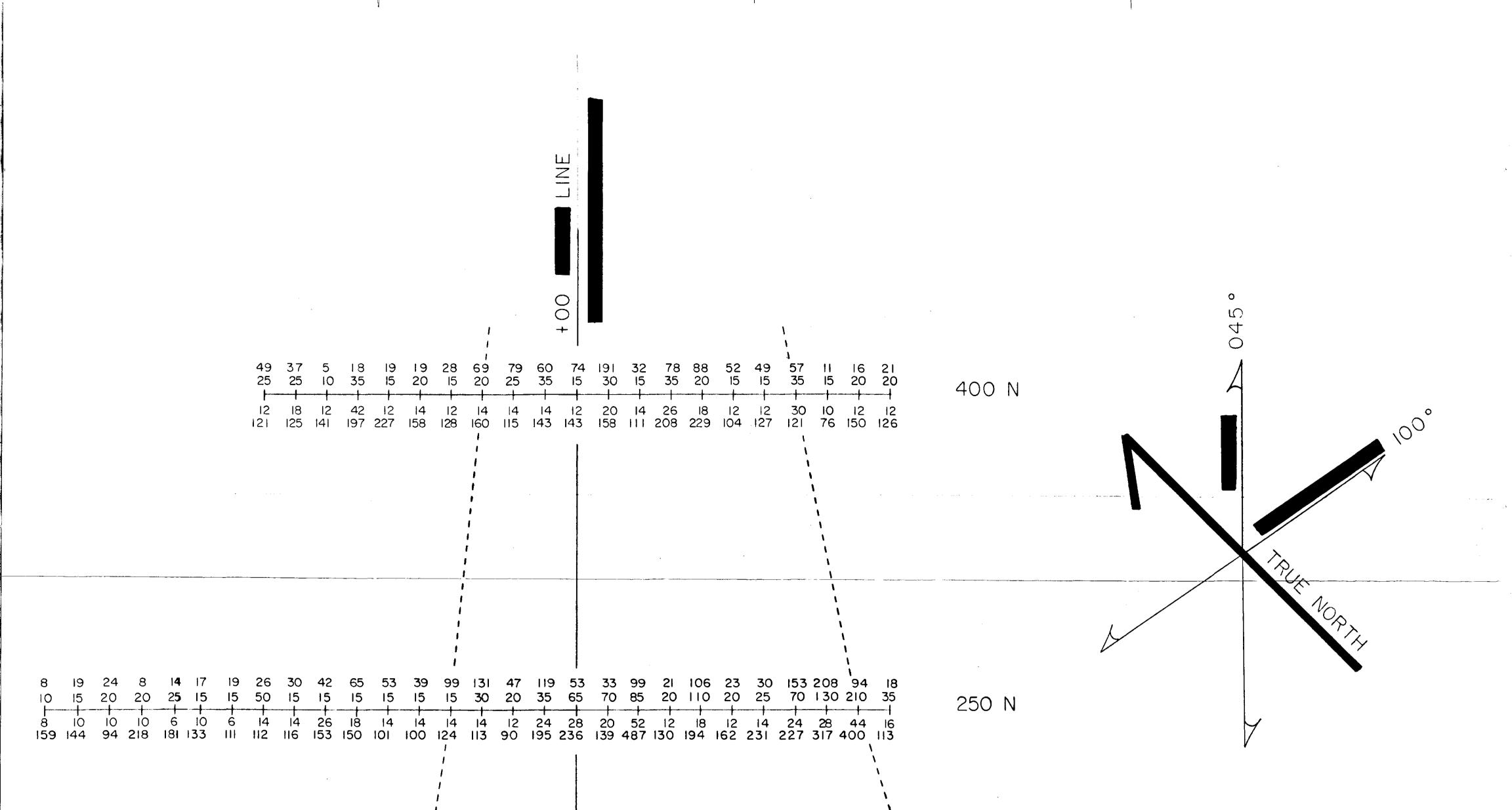
Sample Number	Ag ppm	AI %	As ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm		K %	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	РЬ ррт	Sb ppm	Sc ppm	Sn ppm	Sr ppm	Ti %	V ppm	W ppm	Y ppm	Zn ppm	Zr ppm
FE 34150E*23900N	0.2	2.00	15	160	<0.5	<5	1.05	<1	11	44	66	4.22	0.06	1.07	775	<2	0.02	26	1210	12	<5	7	~10	45	0.05					
FE 34200E*24500N	0.2	2.09	15	190	<0.5	<5	0.90	1	12	28	54			0.84	-	_	0.02	17	930	18		7	<10 <10				<10			3
FE 34200E*23450N	<0.2	1.92	20	260	<0.5	<5	1.83	<1	22	40	93	5.05	0.17		1815	-	0.03	31		20		11	<10		0.11		<10 <10			-
FE 34250E*24350N	<0.2	1.66	10	110	<0.5	<5	0.72	<1	16	52	52	5.08	0.06		1220	_	0.03	24	990	12		8			0.11		<10			9
FE 34500E*23775N	<0.2	2.20	40	190	<0.5	<5	0.74	<1	21	35	142	5.48	0.12	1.37	1880	< 2	0.03	29	980	26		13	<10	40	0.08	126	<10	13 18		4
. .																			,					-10	0.00	120	~10	10	2/0	2

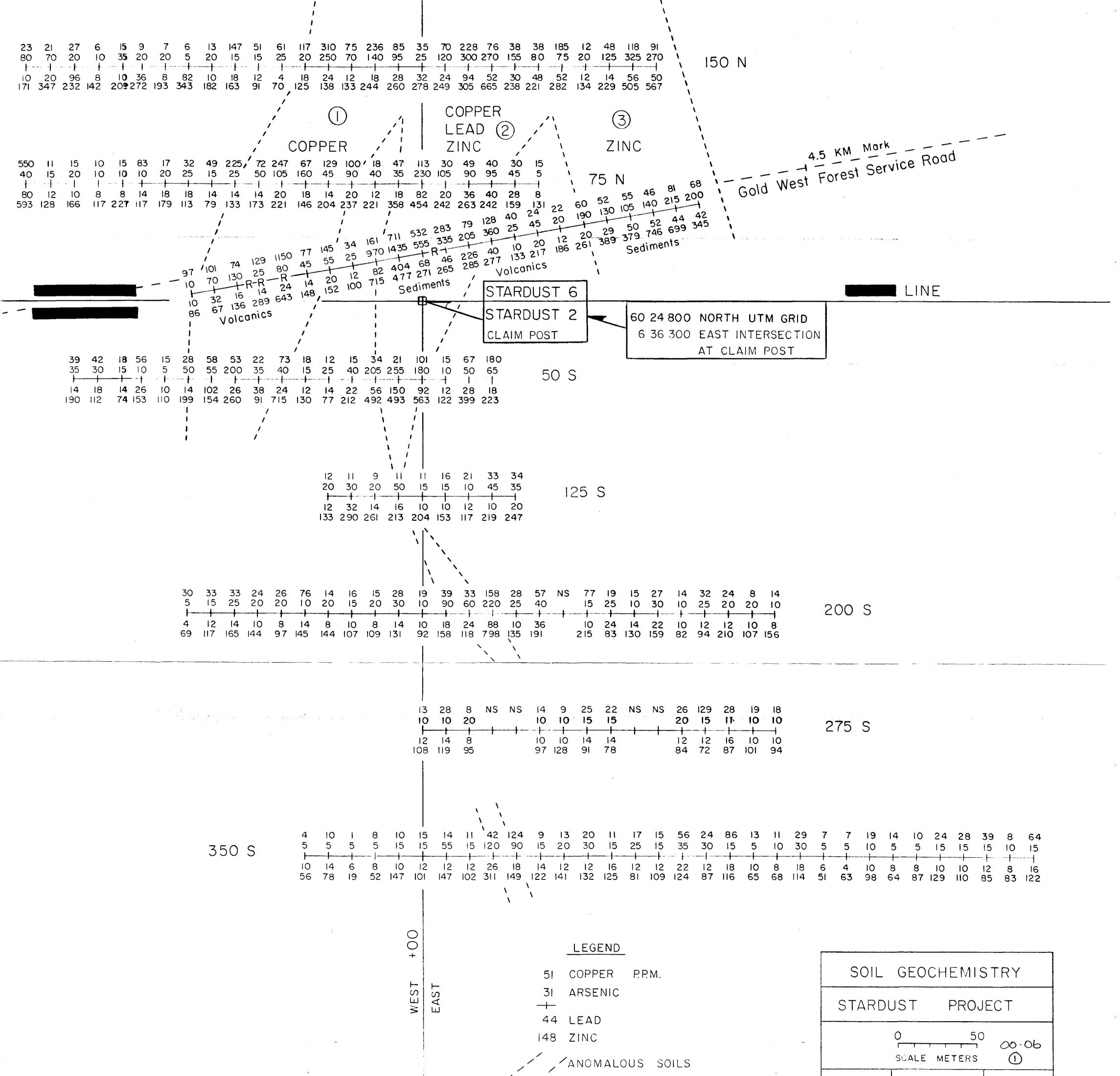
A .5 gm sample is digested with 5 ml 3:1 HCl/HNO3 at 95c for 2 hours and diluted to 25ml with D.I.H20.

•

.

Signed


APPENDIX C


.

.

.

r >

