BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2000/2001REPORT #:PAP 00-8NAME:SHAWN TURFORD

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM

B. TECHNICAL REPORT

Name: <u>Shawn Turford</u> Ref #: <u>P21 2000/01</u>
LOCATION/COMMODITIES-
Project Area: <u>Bell</u> Minfile #: <u>n/a</u> Location of Area NTS: <u>103H/11W</u> Lat: <u>59 39'</u> Long: <u>129 21'</u>
Description of location & access: <u>Hwy 35 to Hwy 16 from Francois</u> Lake to Terrace, thence to Kitimat. From M.K. Marina with 24' boat down Kitimat Arm, Douglas channel to Kitkiata Bay.
Main Commodities Searched for: <u>Au., Ag., Cu.</u>
Known Mineral Occurrences in Project Area: <u>Ecstall minfile</u> (103H013) Steelhead (103H036) and Horsefly (103H014)
WORK PERFORMED-
1.Conventional prosp. road construction and log blocks 2.Geological Mapping in connection with the above. 3.Geochemical 73 rock & silt samples 4.Geophysical
SIGNIFICANT RESULTS- very high Ag, Zn & Pb samples with good Cu and Au values with anomalus Au background.
Commodities Ag, Zn, Pb, Cu & Au Claim Name: not as yet claimed
Location/Lat: Long: Elevation:
Best assay/sample type:grab sample #167985 2.74%Pb, 2.92%Zn, 117. gm/mt Ag & 0.82gm/mt Au.
Description of mineralization, host rocks, anomalies:
There appears to be at least 2 maybe 3 structures in a very large highly pyrotized metamorphic zone. I believe the host rocks to be meta sediments also containing amphibolite, schist and gneiss Also noted is guartz sericite schist which is very important as this is also identified with the "Extall" massive sulfide deposites. The "A" road appears to be somewhat anomalus in Cu & Au. The best

The "A" road appears to be somewhat anomalus in Cu & Au. The best assay in a grab sample from "A" road was #61954-1784 ppm Cu and

<u>21.4ppb Au</u>

As we prospected Northward "B1" road produced even higher assays,: #61966-37.73 Mo, 1737ppm Cu and 141.1 ppb Au. # 61969-1985 ppm Cu, 12048ppm Zn, and 83.9ppb Au. The "B2" road didn't produce as good results but the "C1" road again produced some highly anomalus Au samples. The "C2" road also produced some above background Au, with one sample -#61979- 499ppb Au. The "D1" road (most northern) also produced some interesting returns on assays. #61984-1023.73ppm Cu, 77.5 ppb Au. The "D2" road was the most interesting with grab samples from an outcrop that was cut from road construction and gave us good exposure. The four samples taken gave us the best assay results. Sample # 167985-88 inclusive (see assay results). Because this is new ground and has not been previously prospected or worked on it will take a more indepth examination to see what we really have. What we do know is that we have two seperate zones of highly altered rocks that have been observed along the "Cl" and "D2" roads. Both areas have considerable strike length of over 2 to 3 Kms running N-NW to S-SE consisting of chlorite-sericite schist, quartz- sericite schist mixed dacitic to rhyolitic(?) rocks. Accurate identification of the host rocks in the two zones is difficult. We believe they would be classed as metasedimentary bounded by altered hornblend diorite of the Coast Plutonic complex.

2.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$			DICAL	LABO)RAT lite	ORIE d Cc	:S I).)	LTD.		8		П. (н. н.).			- 11 - M	. Ja NAL		et e se e	n juga -	ata kart			¥1	HONE	(604) 40)- 3 T	58 FAX	1003		A	Δ
NmPLE# NM Cut Ppm ppm </th <th></th> <th></th> <th>۰.</th> <th><u>Hudr</u></th> <th><u>30n</u></th> <th>Bay</th> <th><u>/ E</u></th> <th>[xp]</th> <th>800</th> <th><u>& I</u> - 7(</th> <th>)ev.</th> <th>Pend</th> <th>0.] ler St</th> <th><u>Ltđ</u> ., Va</th> <th></th> <th><u>ROJI</u> /er BC</th> <th>ECT V6C</th> <th>BEI 168</th> <th><u>JL A</u> Submi</th> <th><u>RC</u></th> <th>)AD by: I</th> <th>Fj ≀alph</th> <th>le Keef</th> <th># 1 e</th> <th>7003</th> <th>22</th> <th>L</th> <th>(a)</th> <th></th> <th></th> <th>ſ</th> <th>T</th>			۰.	<u>Hudr</u>	<u>30n</u>	Bay	<u>/ E</u>	[xp]	800	<u>& I</u> - 7()ev.	Pend	0.] ler St	<u>Ltđ</u> ., Va		<u>ROJI</u> /er BC	ECT V6C	BEI 168	<u>JL A</u> Submi	<u>RC</u>)AD by: I	Fj ≀alph	le Keef	# 1 e	7003	22	L	(a)			ſ	T
187 217.25 36.44 80.9 820 44.6 25.1 345 4.91 3.4 <1 10.0 .8 61.7 .35 .30 .31 95 1.52 .007 1.6 39.8 .85 79.1 .079 1 2.84 .153 .61 3.7 .18 17 3.4 1. 1955 3.07 125.94 38.81 100.2 522 45.7 20.6 395 2.71 1.1 <.1 3.3 <.1 33.2 .24 .16 .07 78 .82 .064 <.5 76.7 1.11 138.3 .089 2 1.93 .102 .22 1.3 .13 15 1.6 .53 346.44 11.70 43.6 476 13.9 18.6 326 2.34 2.8 <.1 9.2 .17 .29 .09 46 .33 .033 <.5 16.2 .83 14.4 .66 .0 13.4 .1 .14 .1 2.7 .25 .08 83 .28 .054 <.5 19	AMPLE#					_																										
GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS.	51952 51954 51955 51957 51958	.87 3.07 .53	217.25 125.94 346.44	5 36.44 4 38.81 4 11.70	80.9 100.2 43.6	820 4 522 4 5 476 1	44.6 45.7 13.9	25.1 20.6 18.6	345 395 326	4.91 2.71 2.34	3.4 1.1 2.8	<.1 <.1 <.1	10.0 3.3 9.2	.8 61 <.1 33 <.1 2	1.7 3.2 2.9	.35 . .24 . .17 .	30 . 16 . 29 .	31 95 07 78 09 46	1.52 .82	.007 .064 .033	1.6 <.5 <.5	39.8 76.7 16.2	.85 1.11 1 .83	79.1 138.3 14.4	.079 .089 .066	1 2.8	84 .153 93 .102 94 .050	3 .61 3.7 2 .22 1.3 0 .02 4.7	7 .18 3 .13 7 .06	17 3. 15 1. 13 1.	4 1.36 6 .09 4 .13	5 1 9 5 3 1
GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS.	1961 1964 E 61964 TANDARD DS2 TANDARD S-1	2.06 2.11	54.31 56.08	1 5.71 8 5.86	57.4 58.8	156 6 162 6	61.6) 64.0) 36 8	128.6 132.4	470 490	7.24 7.42 3.13	3.4 3.4 61 1 2	<.1 <.1 21 7 1	5.5 3.8 198.6	.3 31 .2 30 .3 6 25	1.5 0.9 8 5 10	.11 .	18 . 18 . 45 10.	12 104 13 107 97 76	2.37	.090 .092 .092	1.6 1.7 17.3 1	22.2 25.1 161.9	1.85 1.94 .62 J	48.8 51.9 157.7	.059 .064 .097	<1 1. 2 1. 4 1.	74 .013 75 .016 74 .032	3 .16 1.7 6 .16 1.8 2 .15 7.7	7.06 8.06 71.88	24 1. 19 1. 224 2.	5 .10 6 .08 3 1.88	0 1 8 1 8 1
UPPER LIMITS - AG, AU, NG, W, SE, TE, TL, GA, SN = 100 PPH, BO, CO, CO, SB, BI, TH, U, B = 2,000 PPH, CO, PS, ZN, NI, NN, AS, Y, LA, CA = 10,000 PPH - SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reiset Reruns. DATE RECEIVED: JUL 7 2000 DATE REPORT MAILED: July 21/00 SIGNED BY			F30 - 3	30 00 6	GM SAM		180	1 ML 2	2-2-2	2 HCL-	- 8003	5- H20	AT 95	5 DEG.	. C FO	OR ONE	E HOUR	AND	IS DI	LUTED	TO 6	00 ML	, ANA	ALYSIS	BY J	CP/ES	: & MS.					
DATE RECEIVED: JUL 7 2000 DATE REPORT MAILED: July 21/00 SIGNED BY				AG,	АU, КС 1	i, W, <u>Sampl</u>	SE, es b	TE, eginn	īL, ling	GA, S <u>'RE'</u>	iN = ' are	100 Р <u>Reru</u> r	PM; M <u>ns and</u>	O, CO I 'RRE), CD, <u>' are</u>	, SB, <u>e Reĵe</u>	BI, T Ct Re	H, U, <u>runs.</u>	8 = 4	2,000	РРМ; ≁	CU, I	°В, ∠	.N, NI	, MN,	A5,	/, LA,	UK = 10	1,000	ггл.		
	DATE	RECEI	VED:	JUL	7 20	00 3	DAT	E RI	epo!	RT 1	MAIL	ED:	An	ly,	21 k	י הס	SIC	INED	BY.	<u> </u>	<u>h.</u> -		р. т	QYE,	C.LEO	IG, J	. WANG	; CERTIF	IED B	.C. AS	SAYER	S
												l		.[1							J										
																											-					
																											·					
																											·					

All results are considered the confidential property of the client. Acme assumes the trabilities for actual cost of the analysis only.

ANALYTICAL L	ABORATORIES LTD	•	852 E	HAS	TINGS	ST. V	VANCOUV	ER B	C V	6A 11	26	Ĩ	PHOI	NE (6	04)253-3158 FAX	(604)253-1716
(ISO 9002 Acc	redited Co.)			-	N 2 1		LYSIS								20001 (b)	44
Hu	dson Bay Exp	<u>1. s</u>	Dev.	Co.	Ltd.	PRO	JECT I	<u>BELT</u>		ROAD	E	rile	€ # fa	AU	02221 (b)	
for Hu	-	800 -	700 W. P	ender	St., Vano	ouver	BC V6C 1G	8 SL			катр	n kee				
	SAMPLE#	Cs	Ge Hf	NÞ	Rb Sc	Sn	S Ta	Zr	Y	Ce	In	Re	Be		Sample	1
		ppm	ppm ppm	ppm	ppm ppm	ppm	% рр п	ppm	ppm	ppm	ppm	ppb	ppm	ppm	gm	
•	61952	1 10	<.1 <.02	.03 2	26.6 1.1	.3 2	2.52 <.05	.1	4.98	8.0 <	.02	4	.1	5.6	30	
	61954	.38	.1 <.02		8.9 5.4		2.77 <.05			2.5	.02	2		4.4	30	
	61955	. 19	.1 .02		6.0 4.0		.24 <.05	. =	3.05	.9 <		<1		6.5	30 30	
	61957	.03	.1 <.02		.8 3.4		.16 <.05		2.54 2.98	.7 .7		<1 <1		2.3		
	61958	.06	.1 <.02	. 10	1.0 2.4	.4	.70 \.05	••	2.70	••		•	•••			
	61961	1.19	.2 <.02	.33 4	6.7 12.0	1.4	1.92 <.05		5.46		.05	<1	- •	8.9	30	
	61964	.14	.1 <.02		5.6 6.4		5.92 <.05		5.29		.02	3		9.1 9.7	30 30	
	RE 61964	.14	.1 <.02		5.7 6.8		6.13 <.05 .03 <.05			3.8 31.85		<1 <1		15.0	30	Į
	STANDARD DS2 STANDARD S-1	1.22	<.1 .72	.50	4.4 9.2	1.5	<.01 <.05	40.4	15.39	32.8	.05	<1		11.5	30	
·										<u> </u>						

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK Samples beginning 'RE' are Reguns and 'RRE' are Reject Reguns.

Data____FA

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

acmit AN	ALYT	LAD	LABC	RAT	ORI	ES	LTD	•	8	352	E. 1	HAST	INGS	ST.	VANC	IVU0	RI	3C	V67	1 1R	.6	· . P	HONE	60)	4)253.	-315	8 FAX	:(60	4)25	3-17	16
	0 900	02 Ac	cred Iude							Dev	. c	ο.	Ltd	PR	OJEC	TB	ELI	L A	R	DAD				A00	2222		(a)			Æ	A
AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppb				Fe %	As ppm	U ppm	Au ppb	Th. ppm p		d St m ppr		V ngq n	Ca %	P X	La ppm	Cr ppm	Mg X	Ва ррт	Ťi %	B A1 ppm %	Na %	K ₩ %Xppm	T1 ppm	Hg Se ppb ppr		
1951	. 66	63.65	4,98	54.3	123	18.6	19.5	944	2.54	3.6	.4	2.2	.5 19	.1 .1	3 .15	08	3 63	. 54	. 088	3.7	30.6	. 95	160.2	.112	<1 1.75	.017	.17 <.2	.10	45 .1	7.04	5.7
1953			2.38	27.1	135	9.8	8.8	327		÷ ·	.2	3.2				.03	39	.54	.094		21.3		196.5		2 1.12		.13 <.2	•			3.0
1956	.96	40.93	3.82					1467			.3	7.0	.3 20			2.07	43		. 096	3.5			230.0		<1 1.27	.011	.08 .2	. 07			
1959	1.16	184.03	2.69				19.1				.3	4.5	.4 5		• • • •	3.04	72	. 19	.049	1.5	48.6		102.9		2 2.06			.06			4.4
1960	. 56	45.01	4.53	48.1	131	18.4	10.8	428	2.74	1.1	.2	8.2	.6 18	.7 .1	2.10	.07	57	.53	.095	2.8	40.6	1.15	148.3	.110	1 1.63	.015	.17 .4	.06	55 .6	5 .10	4.8
962	1.51	57.02	4.19	77.2	143	27.4	27.9	1489	5.62	13.3	.5	7.1	.7 14	.5.3	7.17	. 08	3 93	.46	.127	3.0	54.9	1.29	190.1	.102	2 1.83	.009	.19 <.2	.10	48 1.3	3.04	4.5
61962			4.42			-					.5	34.5	.7 15	.2 .4	1.10	5 .00	3 97	.48	.132	3.1	59.6	1.34	199.3	.106	2 1.90	.010	.20 <.2	.11	50 1.3	3.06	4.7
ANDARD S-1	1.05	30.52	9.82	47.3			13.0			2.2	.6	2.2	2.7 43	.7 .0	6.10	.14	153	.45	.041	12.2	41.6	.52	87.2	.363	2 4.07	.101	.06 <.2	.12	31 .4	\$.02	10.1
		127.95	21 74	100.0					2 12	£0.4	20 0	211 2	2 5 26	4 10 6	E 10 74	11 40	רל ו	52	002	15 /	158.6	61	151.3	087	1 1 69	030	.15 8.4	1 92	248 2 /	5 2 02	58

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: -140 SILT Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)	에는 사람이 있는 것 같아요. 이렇게 잘 있는 것 같아요. 이렇게 가져져서 있었다. 이렇게 안전하는 것 같이 가지 않아요. 아주 가지 않아요. 이렇게 가지 않는 것 같아요. 나는 것 말 수 있는 것 나라.
	GEOCHEMICAL ANALYSIS CERTIFICATE L. & Dev. Co. Ltd. PROJECT BELL A ROAD File # A002222 (b)
SAMPLE#	800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Ralph Keefe
	ppm
61951 61953 61956 61959 61960	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
61962 RE 61962 Standard S-1 Standard DS2	.56 .1 < .02
DATE RECEIVED: JUL 7 2000 DATE R	EPORT MAILED: July 31/00 SIGNED BYD. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ISO 900	CAL LABO 2 Accred				LTD.	•	· ·.	· .							. V NAI		· · · ·								F	HOI	NE	(60	4)	253	3-3	15	8	FAX	(6	04)	25	3-17	16
<u>tt</u>	<u>Hudson</u>	Ba	(y _)	Exp											JEC er B												A	00	22	23		· ·	()	a)			-	Ĩ	T
	SAMPLE#	Mia ppm	Cu ppr	i Pb I ppa	Zn ppma	Ag pob	N1 ppa	Co pp a	Min ppm	Fe	As pope	U ppa		Th : ppma py		id S mar pp	ito Bi Ma popu	V ppa	Ca 1	P X p	La Xpas	Cr ppm	*g X p	Ba 1 pa	11 18 pg	B A'	I Ne	6 K	W PPM	т т1 рря	Hg ppb	Se ppn		•					
	61965 61966	37.73	1737.19	3 3.60 9 13 23	610 1	3318	18.2	62 0	538	13 62 1	122 0	.3 14	1.1	.2 2	5 1.6	7.3	5 10.08	79	.36	082	.6 86	8.0 1.	94 18	.6 .13	6 4	1 1 77	.044	1.58	1.3	. 11	146	42.9 4	4 97	8.3					
Missing - 61968	> 61967 61969 STANDARD DS2	3.17	1985.69	5 7.28 9 5.56 7 34.81	12048 3	1942	26.1	61.2	687	11.59	31 B	<.1 8	9.68	.1 10	7 114.1	1.1	3 1.3	99	.85	102	.5 43	3.8 2.	48 13	1.12	9	1 2.2	.057	.73	2.0	. 12	605	23.7	98	7.0					
	STANDARD S-1	1 06	30 51	9 52	53 5	46	14.2	14.6	504	4.41	2.3	.6	2.5	2.9 48	3 <.0	1.0	9.19	168	.50	046 12	.9 4	17.	58 95	.9 .39	0	1446	5 . 119	.06	<.2	. 13	40	.4	.03	11.7					

61968 WAS SENT. NO RETURN. VISIBLE MALACHITE STAINING

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data MA

														_				
ANALYTICAL LABORATORIES L	D.	8	52 1	8. H	ASTI	NGS	ST.	VAN	COUV	ER I	C V	76A .	1R6		PHO	VE ((604)253-3158 FAX (604)253-1716	
(ISO 9002 Accredited Co.)			GE	IOCH	FEMT	CAL	AN	ALY	STS	CEI	TTF	ICA	TE	". · ·	. '			
									· · · ·					·. ·	·. · ·		aks de transmert 🗛 🗛	
Hudson Bay Expl	. &	Dev	t. C	.o.	Ltd	. P	ROJ	ECT	BEI	LI	3-1	ROA	$\mathbf{D}^{(i)}$	Fil	e #	AC	002223 (b)	
<u>AIGGOU DUI DUI</u>	800) • 70	ກຸມ.	Pende	r St.	Van	COUVE	P. BC V	6C 1G	8 S	ubmitt	ed by	Rai	ph Ke	efe Ö	sti i	ai se da se la la calence 🖿 🖬	
																		<u> </u>
SAMPLE#	Cs	Ge	Hf	Nb	Rb	Sc	Sn	s	Та	Ζr	Y	Ce	In	Re	Be	Li	Sample	
	ppm						ррп	x	ppm	ppm	pom	ppm	ppm	ppb	ppm	ppm	n gm	
<u> </u>				FF			(<u> </u>		<u> </u>	· · ·					
61965	1.11	.1	<.02	.32	5.9	1.0	.z	2.92	<.05	.2	5.07	3.5	<.02	<1	.2	3.3	5 30	
61966	.42	4	<.02	.20	14.6	5.7	.5	5.48	<.05	.4	.89	1.5	.06	6	.1	3.9	> 30	
61967	.06	.3	<.02	.24	1.3	2.4	.3	14.01	<.05	.2	.54	.5	.02	1	<.1	.3	\$ 30	
61969	.49	.4	.02	.23	19.3	3.5	.4	10.09	<.05	.3	2.16	1.2	.24	<1	.2	9.1	30	
STANDARD DS2	3.04	<.1	.04	1.45	12.7	2.9	27.3	.03	<.05	3.0	7.70	31.8	5.29	<1	.7	15.0) 30	
	1.22					~ ~		<.01	< OF	101	45 70	77 0	05	11	0	11.5	5 30	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK

DATE RECEIVED:

Data

. :

÷.

11 results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANA	5 901	02 Ac	creć	lite	d C	.0.)		n an an An an an An an an		11 - W.	. YANYA 20	1C., 3 1.7	YX 3 4	9280.04	ST. V ANA	3. 7 Y E M P M	12 - 12 in the		48,2023	2005.03	Constraint and the second s			X	£			193		<u> 1986</u>		Ĩ
AA																						् •ो <i>६</i>	#_`	200	122'	24		(a)		220		Ň
		Huc	<u>lsor</u>	<u>1 Ba</u>	<u>ıy</u>	Exr	<u>pl.</u>	<u>&</u> 80'		V 3	Co.	LT der	<u>ca.</u> st.	Pr Vanc	ROJE	BC V6	<u>ВЕЦ</u> С 168	J E	itted	by:	Ralph	Kee	fe	. The second s	17	3¢		Ì	62	igge Lage		
	tinig.	<u></u>	<u> </u>	<u> </u>	<u></u>	<u></u>	<u></u>		<u> </u>	- 14 - 14 - 14 - 14 - 14 - 14 - 14 - 14	<u> </u>							V Ca		<u></u> La				• Ti	В	A1	Na	K	W T	1 Hg	Se	Те
SAMPLE#	Mo			Zn	Ag) Ni ppm	CO TICO	Mn 1 Opr	i Fe na ¥	. As ≰ppnt	; U ⊧ppni		ul in ∕bippn	h Sr m ppm	r Col m pom		ppm	ppm X	٤ ٢	ррт					ррт	*	*	x pp	n pp	m ppb	ppm p	pm_
	ppm													6 19.7		i .11	.12	74.53	3 .101	3.1	48.1	1.19	151.0	.118	1	2.13	.018	.20 .	4.0	8 84	1.2 .	12
61970 61971	1 68	66.33 82.33	4 32	73.7	7 103	3 17.7	7 19.1	1 1467	/ 2.70	ΰ 6 .U	.3	3 7.0	0.7	7 10.5	5.41	.15	.10	58.30	0.078	2.5	33.9	.91	149.5	5.10/	<11 21	1.45	.005	15	3.0	9 44	1.1	.09
05 61071	1 75	87 58	4 31	79 1	1 118	3 18.7	7 20.1	1 1588	8 2.79	9 6.1	2	2 4.4	4./	/ 10.5	5 .45	.14	.04	60 . Ju 153 . 45	5.041	12.2	41.6	.52	87.7	2.363	2	4.07	.101	.06 <,	2 .1	2 31	.4 .	02
STANDARD S-1 STANDARD DS2	1.05 14.25	30.52 127.95	9.82 31.74	47.3 159.0	34 3 270	13.4	13.0	1 840	0 3.13	3 60.4	20.0	211.	2 3.5	5 26.4	+ 10.65	10.76	11.48	72 .52	2 .092	15.4	158.6	.61	151.3	.087	17	1.69	.030	.15 ö.	4 1.9	2 240	2.0 2.	02
																						•										
GRE	OUP 1F	30 - 30 Mits -	10.00 r	GM SAI	MPLE	., 18r	0 ML	2-2-	·2 HCI	L-HNO	3-H20	TA C	95 Df	EG. (J FOR C	ONE HO	UR AND) IS DI B =	LUTED) TO C PPM מ	500 ML • CU,	., AN/ PB,	ALYSI ZN, F	SBT AI, MP	ICP/I N, AS	ES ⊾ ;, V,	: M5. LA,	CR =	10,00	00 PPI	4.	
UPF	PER LI	MITS -	- AG, A	AU, HG	iG, W,	₩, SE,	, TE,	, 16,	, GA,	SN =		Prm;	no,	and (1985/ s	are Re	eiect F	Reruns.				•	•	-	-							
)num		• =	~.			<u> </u>	<u> </u>			-	Λ	1	1	31/m				\cap	T	_			• •	-	• •						~~[
DATE R	ECEI	VED:	JUŁ	7 20	000	DA"	TE F	REPC	ORT	MAI	LED	: Y1	nh	43	, ന) S	IGNE	DBY				.D. 1	TOYE,	C.LE	ONG,	J. 1	WANG;	CERI	IFIEU) B.c.	ASSA	(Er
	-		-									U		1	1						1											
												¢.	•	/																		
																										•						
																-																
															**																	
																															_	

ACME	ANAL	YTIC 9002	AL L	ABOR	(ATO	RII	SL.	rD.			3. J. C		18. M.		990 M	in the	NCOUN	98 <i>91</i> 2			CARLES IN	42C3		PHON	NE (6	04)2	253-	315	8 P.	AX ((-17		Ĩ
		gan.					Expl		с. П	- North	CN 3	8261	MAL C		438° SA	728 M (d)	SIS	27433893		21331	1830 T.	2089-V	्र • • • • •	2 H	AO	022	25		(a	1			Ą	A	
			<u>100</u>			<u>/ B</u>	<u>175</u>	80	300 •	700	W. Pe	ender	r St.	, Var	ncouve	er BC	V6C 10	G 8	Subm	ittec	d by:	Ralph	h Kee	fe			<u> </u>	A1-			<u></u>	<u>نان (</u>		<u> </u>	
MPLE#	Мо ррта	Cu ppm				Ni ppm				As ppm		Au ppb		n Sr nippnn		I Sb ppm	Bi ppm	V ppm	Ca X		La ppm		-	Ва ррпя		B ppm	A1 *	Na X	K X			-	Se ppm	Te ppm	
7996 7997 7998	.85 1.83 2.47	15.72 31.83	7.30 15.20 2.74	58.9 116.4 41.0	65 135 35	2.7 5.7 2.9	1 3.6 7 .8 7 1.8 9 4.9 8 24.2	64 419 2 421 1	.47 1 2.98 2 1.77	10.4 21.9 .4	<.1 <.1 .1	3.8 .8	<.1 <.1 1.6		.41 .89 .17	.32 .16 .35 .08 .15	.02 .05 .02	2 . 2 12	.21 1.48 1.32	.077 .154 .019	<.5 <.5 3.1	18.2 14.1 6.6 13.8 9.1	.05 .92 .57	9.8 85.0 35.6	<.001 <.001 5.006	4 2 2	.08 .34 .51	.022 .043 .009	.11 .02 .12 .04 .18	5.2 11.0 3.5	<.02 .02 .02	10 15 8	1.9 <.1 .2 <.1 <.1	.03 08. 02.>	1
000	2.22	20.47 21.54	9.94 10.25 34.81	45.5 48.4	5 332 347 257	3.8	8 14.8 8 15.1 8 12.5	131 2 130 2 841 3	2.25 2.33 3.13 é	2.7 3.0 61.1	<.1 <.1 21.7	3.8 2.5 198.6	1.0 1.0 3.6) 4.5) 4.4 5 28.5	.23 .23 10.37	9.45	.11 10.97	14 76	.11 .53	.017 .092	2.0 17.3	15.4 15.8 161.9 41.7	.45 .62	7.9 157.7	001 · .001	<1 4	.50 1.74	.032	.01 .15	7.7	.04 1.88	7 6 224 40		1.88	
	UPPER	P 1F30 R LIMIT IPLE TY	TS - A	AG, AU,	J. HG.	ີ້	180 M SE, T es beg	TE TI	I GA	A SN	i ≃ 10	ON PPM	M- MO	0 00	CD.	SB. E	BI. TH	L U.	B =	2.00	IO PPM	M: CU.	PB.	ZN.	NI. M	IN. AS	S. V.	LA,	CR =	10,0	000 P	PM.			
DATE	••••			JUL 7		0 1	DATE	REI	PORT	MA	ILB	D: (jn	ly.	<i>ə</i> 1/ı	N	SIG	NED	BY.	C.	ĥ.		.D.	TOYE	, C.LI	EONG,	J. 1	WANG;	CER	TIFIE	D 8.4	C. AS	ISAYEI	2S	
												U		, ,								J													
																																	1		

Data KrA

ACME ANA	LYTICAL LABOR 9002 Accredi	ited Co.)	•	· . ·	·	stra i s	ta de la com	10 - 11	VANCO	S - 1 - 1	115	in the second	21.00	1.111	1.51 1.5	FIIOI	, , , , ,	04)42		7AI (60	
AA					• .	· .	ICAL	•	· . '	۰.	Q. 24	·			· · ·						
	Hudson	Bay Expl.	<u>& T</u> 800)ev. • 700	W. Pen	Lto der St	1. Pl	ROJE	BC V60	BELI 2 168	<u>L B</u> Su	-2 bmitt	ROA ed by	D : Raij	File sh Kee	e # fe	A0	0222	5	(b)	
		SAMPLE#	Cs ppm		Hf ppnn p		b Sc m ppm		s X	Ta ppm p	Zr ppm	Y ppm		tn ppm	Re ppb	Be ppm		Sample gm			
		167995 167996 167997 167998 167999	.04	<.1 · <.1 · <.1 ·	<.02 . <.02 . <.02 . <.02 .	.02 . .04 . .03 1.	4.3 8.4 11.6	5.1 11.3 .2	.08 <	.05 .05 .05	.1 .1 .2	8.02 2.42 4.99 4.26 8.62	.4 .9 6.3	<.02 <.02 <.02	<1 <1	<.1	.4 3.8	30 30 30 30 30			
		168000 RE 168000 STANDARD DS2 STANDARD S-1	.07	<.1 ·	<.02 <.02 .04 1 .72	.02 .	7 2.9	.2 27.3	.83 < .03 <	.05	.1 3.0	1.05 1.06 7.70 15.39	4.3 31.8	<.02 5.29	<1	<.1 .1 .7 .9	3.3	30 30 30 30			
UPPE	UP 1F30 - 30.00 GM ER LIMITS - AG, AU AMPLE TYPE: ROCK	I SAMPLE LEACHED N J, HG, W, SE, TE, Samples begin	TL. G	A. SN	= 100	PPM; M	0, CO,	CD. S	B. BI.	TH. L	U. B	= 2.0	JOO PF	M: CU	, PB,	ZN,	NI, M	N, AS,	V, LA, 1	T = W'AM) PPN.
						•		./		TONR	ת תי	"C	.L			TOVE	C 1		LIANC-	CERTIFIE	B.C.
DATE RE	CEIVED: JUL 7	7 2000 DATE R	EPOR	T MA	ILED	'Yr	m 2	שיןו	5	IGNE	so e	91. . .		• • • •	1	TUTE	,	EONG, J			
						11	('							1						
						U	ł							l							
				-		U									1						
						U		,						,	I						
						U		,)	1						
						U								J	ĺ						
						U									ſ						
						U									ſ						
						U								j	ſ						
						U								,	1						
						U									1						
						U								,	1						
						U									1						
						U									1						
						U									1						
						U									1						
						U									1						
						U															

1997 - 19 💌 🍽

		Hud	lson	<u>Bay</u>	Exp	<u>pl.</u>							ROJE(A00	2226	5	(a)			
SAMPLE#	Mo ppm	Cu ppm		Zn Ag ppm ppt				Fe %		U ppm		Th S spin pp		Sb ppm	Bi ppm pp	V Ca xm \$3		La ppm	Cr ppm		Ba ppm	Ti % p			a K Ki Ki pp		Hg S Ppb pp	
167993 167994 RE 167993 STANDARD S-1 STANDARD DS2	.78 .55 1.05	43.81 84.62 30.52	6.25 6.25 9.82	59.0 124 78.6 87 57.8 130 47.3 34 159.0 270	7 21.2 0 35.3 4 13.4	17.6 26.2 13.0	1319 3 1332 4 455 3	1.63 .11 .90	5.3 5.5 2.2	.6 .6	6.9 1 5.9 1 2.2 2	1.0 36. 1.5 18. 1.0 35. 2.7 43. 3.5 26.	0 .14 8 .08 7 .06	.07 .10	.08 7 .04 12 .14 15	3.37 5.83 3.45	.096 .233 .041	4.8 3.61 12.2	42.5 102.0 41.6	1.22 1 2.14 2 .52	111.2 231.2 87.2	.106 .173 .363	1 2.2 1 2.3 2 4.0	25 .009 38 .006 07 .101	5 .48 <. 9 .17 <. 5 .47 <. 1 .06 <. 0 .15 8.	2 .09 2 .12 2 .12	64 31 31	.7 .4
UPPI	ER LIM	HITS -	0.00 G AG, A -140	M SAMPLE U, HG, W SILT	W, SE,	, TΕ,	TL, G	A, SI	N = 1	100 PI	PM; MO	D, CO,	C FOR O CD, SB 'RRE' a	, BI, 1	ΞΗ, Ο,	8 = 3	2,000	TO 6 PPM;	00 ML CU, 1	, ANA PB, Z	LYSIS 'N, NI	BY I , MN,	CP/ES AS,	& MS. V, LA,	, CR =	10,00	0 PP M.	
DATE RE	CEIV	ÆD:	JUL	7 2000	DAT	re Ri	EPOR	T M	AILE	ED:	9n	ly :	31/ot) si	GNED	ву.	/) - 	h.		.D. T(OYE, I	C.LEO	NG, J.	. WANG	; CERT	IFIED	B.C. /	SSA
										U		1							J									

.ME ANALYTICAL LABOR (ISO 9002 Accredi	ted Co.)				· · · ,	· · ·	VANCOUV LYSIS	•	. ·		· · ·	•	 			•	ter Norden	504)253
Hudson	Bay Expl.	<u>& De</u> 800 - 7	v. Cc 700 W. P	o. Lt ender St	d. Pi t., Vano	ROJE	CT BE	LL <u>B</u> 8 Sul	<u>-2</u> bmitte	ROAT) F Ralph	ile Keef	₽ ₽	A00	2226	((b)	
	SAMPLE#	Cs (ppm p)	Ge Hf pm ppm			Sn ppm	S Ta % ppm	Zr ppm		Ce ppm		Re xpb p		Li S ppm	ample gm			
	167993 167994 RE 167993 STANDARD S-1 STANDARD DS2	1.04 <.	.1 <.02 .1 <.02 .1 <.02 .1 .65 .1 .04	.87 9 .48 16	.1 3.4 .9 7.8 .2 8.7	.4 .3 1.6	.03 <.05 .03 <.05 .02 <.05 .01 <.05 .02 <.05	.6 · .3 37.5 1	14.35 3	10.3 7.1 30.9	.04	3 3 <1	.4 1 .2 1 .6 1 .8 1 .4 1	1.6 1.7 0.3	30 30 30 30 30 30			
GROUP 1F30 - 30.00 GM UPPER LIMITS - AG, AU - SAMPLE TYPE: -140 S	HG, W, SE, TE, SILT <u>Samples</u>	TL, GA, beginning	SN = 10 g <u>'RE'</u> a	O PPM; are Reru	MO, CO, Ins and	CD, SE <u>'RRE'</u> a	B, BI, TH are Rejec	, U, В t <u>Rerur</u>	= 2,0' <u>nş.</u>		; .0,	PB, 2	.N, N	i1, MN	, AS, V,	LA, UN	(- 10,0	
DATE RECEIVED: JUL 7	2000 DATE R	LEPORT	MATLE:	D: An	Лу З	1/00	SIG	NED B	x.C	:.h	 	1 0. т	ΟYE,	C.LEC)NG, J. W	ANG; C	ERTIFIE	D B.C. AS
				U	1	1					/							
															·			

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Dala<u>.</u>FA

	(150																SIS																<u>/ </u>		
ŤĽ			Hud	<u>son</u>	Ba	<u>y E</u>	xp]	L	<u>s D</u> 300 -	ev. 700	<u>Cc</u> ¥. P	o.] ender	<u>st.</u>	<u>. P</u> Van	ROJ couve	E <u>C'l</u> r BC	<u>' BE</u> V6C 1	<u>LL</u> 68	<u>C</u> - Subm	<u>l R</u> itteo	OAD I by:	F Ralpi	'llé h Kee	2 # fe	A01)22.	21		(a)			L		
ample#	Mo ppm	Cu ppm		Zn ppm	Ag ppb	Ni ppm	Со ррп		Fe X	As ppm	U ppm	Au ppb	Th ppm	Sr ppm	Cd ppm	Sb ppm	8i ppm	V ppm	Ca *	P X	La ppm	Cr ppm	Mg X	Ba ppm		B ppm	A] X	Na Z	K X	W ppm	ד) ppm	Hg ppb	Se ppm	Te ppm	-
8051 8052 8053 58054 58055	1.78 1.77 .48	50.68 20.34 47.55 18.84 13.34	18.83 11.35 10.49	78.8 88.1 14.8	328 397 278	3.2 8.3 5.8	17.1 20.8 15.7	1131 812 125	5.19 4.20 4.05	2.9 9.6 16.4	.2 .3 .4	160.4 16.4 9.1 7.2 168.2	1.6 1.1 4.2	8.6 75.7 4.3	.38 .27 .09	.15 .34 .38		5 .20 6	.32 .37 2.23 .08 3.73	.176 .138 .107	3.9 3.4 5.0	7.3	.09 .85 .02	26.8 65.0 95.6 85.9 61.4	<.001 .023 .001	<1 <1	.44 .97 .23	.007	.34 .19	3.2	.45	16 9 8	2.4 2 3.9 <.1 <.1 1.6 1	.59 .39 .46	
8056 8057 8058 ANDARD DS2 ANDARD S-1	6.65 .58 14.18	13.69 25.29 73.44 133.27 30.51	2.34 3.71 34.81	3.2 78.5 163.0	429 973 257	13.0 8.2 36.8	24.7 21.2 12.5	31 2140 841	5.87 4.99 3.13	3.8 9.9 61.1	.1 .3 21.7	137.4	2.9 1.2 3.6	10.2 61.9 28.5	.02 .26 10.37	.14 .47 9.45	.09 5.92 1.39 10.97 .15	7 17 76	.18 3.99 .53	.103 .255 .092	3.5 17.3	7.2 6.6 61.9	.02 1.55 .62	23.1 103.2 157.7	.001 .005 .097	1 2 4	.64 1.74	.017 .018 .032	.16 .18 .15	3.3 1.1 3.2 7.7 <.2	.09 .18 1.88	13 23 224	.3 5.0 2 1.0 1 2.3 1 .4	2.88 1.23 1.88	6
	UPPER	P 1F30 LIMI IPLE T	TS - A	G, AU	, HG,	,₩,	SE, 1	IE, T	L, G/	N, SN	= 10	O PPN	I; MO	, со,	CD,	SB, I	BI, TH	, U,	B≠	2,00	O PPM	; CU,	ΡВ,	ZN, 1	NI, M	N, AS	, v,	LA,							
DATE	e rec	EIVE	D:	JUL 7	200	0 I	ATE	re	POR	r Ma	ILE	D: (Jul	¹ 7 a) /0	ס	SIG	ned	BY.	<u>C</u> .	h.		70.	TOYE	, C.LI	EONG,	J. 1	IANG;	CERI	rifie	D B.(C. AS	SAYER	IS	

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data<u>#</u>FA

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) Hudson Bay Expl.	& I)ev.	GEC	OCHI	EMIC	CAL PI	ANA ROJE	VANCOU ALYSIS ECT BE BC V6C 1	CE LL	RTIF C-1	ICAT ROAD	E F	File	≥ #		253-3158 FAX(604)253-1716 227 (b)
SAMPLE#	Cs ppm	Ge ppm	∦f ppm	Nb ppm	Rb ppn	Sc ppm	Sn ppm	S Ta X ppn			Ce ppm	In ppm	Re ppb	Be ppm		le gm
168051 168052 168053 168054 168055	.22 2.69 .45	<.1 <.1 <.1	<.02 <.02 <.02	.04 .03 .04	8.4 6.5 22.7 7.1 4.3	.8 1.6 7.	.2 .1 .2	7.15 <.05 5.07 <.05 3.84 <.05 3.74 <.05 4.16 <.05	_2 _3 _4	5.61 7.25 3.49	6.9 6.5 <	.03 .02 .02	<1	•••	1.0 13.2	30 30 30 30 30 30
168056 168057 168058 Standard DS2 Standard S-1	3.04	.1 <.1 <.1	<.02 <.02 .04	.03 .08 1.45	3.1 5.8 6.8 12.7 4.4	.7 2.0 2.9	.2 .2 27.3	2.05 <.05 7.32 <.05 3.70 <.05 .03 <.05 <.01 <.05	.5 1 3.0	2.50 4.96 7.70	2.9 < 7.0 < 31.8 5	.02 .02 .29	_	<.1 .1 .7	.2 4.8 15.0	30 30 30 30 30

はノ

Data

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACMB	(150	9002	Acc		.ted	Co	•)			ev.	GE(Co	осни 5. 1	MIC.	AL: AL PRO: Vancouv	NALY	SIS BE	CI LL	SRT C-	IFI 2 R	CAI OAI	:E) F	il€	: #		04)2!)222			(a				A	<u>i i</u>	
SAMPLE#	Мо ррт	Cu ppm	Рb ppm	Zn ppm	Ag ppb	Ni ppสา	Со ррт			As ppm	U ppm	Au ppb		Sr Co pm pp		Bi ppm	V ppm	Ca X	P X	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	A1 \$	Na Xa	K X	W ppm	T1 ppm	Hg ppb	Se ppm	Te ppm	G pp
51973 51974 51975	1.22	33.37 41.72 20.44	33.70	101.8	427	-	15.7	825 1219 711	4.68	-			1.920 2.928 915	.9 .9	3.38	.69 .62 .76	10 7 6	2.00		11.0	10.6 3.5 4.3	.57 .54 .27	41.5 44.2 57.5	.005	4	. 47	.018 .018 .024		1.0 1.4	.09 .10 .09	31	4.7 1.4 2.2	.18 .22 .17	
51976 51978	.71	18.73 18.53	15.62	88.3	202		7.3	484		3.6	.2 .2		1.1 18 2.0 6			.51 .59	8 5	.72	.098 .051	1.6	6.4 8.1		70.1 69.1		2	.48	.024 .014	.11 .13		.07 .06	10 17	.9 .7	.15 .36	1
51979 51980 RE 61980 STANDARD DS2	1.87 1.86	12.20 38.40 38.84 129.22	3.38 3.60		233 228	4.0	12.3 12.0	2316 2301	4.91 4.97	.9 .7 .8	.1 .1	499.2 27.8 28.1 210.5	5.0 69 .7 54 .7 54	.1 1.8	3.07 5.07	.32 .06 .06	27 27	•	.096 .097	2.3 2.2		1.18 1.16	77.9 53.7 51.5 138.1	.004	4 1 2 1	. 88 . 89	.019 .020 .020 .031	.22 .09 .08	.6 .6 .6 7 4	.11 .05 .04 1.82	40 15 22 236	.6 <.1 <.1 2.3	.08	5. 5.
STANDARD DS2 STANDARD S-1		29.70						432			.5					.13	73 145			15.5 10.9	150.4 35.2		81.8				.113		<.2	*	230 44	.4	.05	

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

	<u>& Dev. Co. Ltd. PROJECT BELL C-2 ROAD</u> File # A002228 (b) 800 - 700 W. Pender St., Vancouver BC V6C 168 Submitted by: Ralph Keefe
SAMPLE#	Cs Ge Hf Nb Rb Sc Sn S Ta Zr Y Ce In Re Be LiSample ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
61973	.17 <.1 <.02 .04 3.3 1.1 .2 4.66 <.05 .1 5.65 11.7 <.02 <1 .1 6.6 30
61974	.13 <.1 <.02 .04 4.1 1.0 .1 5.71 <.05 .1 9.82 21.0 .02 <1 .2 3.4 30
61975	.11 < .1 < .02 .02 4.1 .5 .1 4.71 < .05 .1 2.11 5.2 < .02 2 .1 1.0 30
61976	.10 <.1 <.02 .14 2.9 .9 .1 3.71 <.05 .7 3.27 3.1 <.02 <1 <.1 4.1 30
61978	.11 <.1 <.02 .03 3.5 .6 .3 .07 <.05 .1 .70 2.4 <.02 <1 .1 .6 30
61979	.28 <.1 <.02 .06 6.1 1.3 <.1 3.78 <.05 .1 7.06 10.5 <.02 2 .1 1.5 30
61980	.18 <.1 <.02 .04 2.4 1.8 <.1 .38 <.05 <.1 3.08 4.5 <.02 <1 .1 13.2 30
RE 61980	.18 <.1 <.02 .04 2.4 1.7 <.1 .37 <.05 <.1 3.04 4.4 <.02 <1 .1 13.1 30
	3.28 <.1 .04 1.39 12.4 2.8 26.4 .03 <.05 2.6 7.51 30.9 5.32 <1 .7 14.5 30
	1.15 < 1 .55 .36 4.1 8.3 1.3 < .01 < .05 34.6 13.65 28.5 .05 <1 .7 10.4 30
AG, AU, HG, W, SE, TE,	ITH 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ing 'RE' are Reruns and 'RRE' are Reject Reruns. PORT MAILED: $\int duy 24/N$ SIGNED BYD. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAY

s are considered the confidencial property of the tilent. Acme assumes the tibbilities for actual cost of the analysis only.

Data / _ FA

.

•

2) 2) 41

ACME	ANAI ISO	YT1 900	CAL	LAB(lare(DRAT(ORI I C	ES 0,)	LTI				S 10 10	1.220			T. V Anai	. E 🚓	ta serve	52. S.	4. 11				P	HONE	e (6 0	(4) 2		315	1.4.1.3	<u>AX (</u>	604) 25	53-1 X	716	
			Hu	daor	<u>1 Ba</u>	y Y	Ext	1.			v.	Co.,	Lt	d.	PR	OJEC uver 8	2T	BEL)	L C	-2	RO/	D				AO C)22	29		{a)					
SAMPLE#		Мо нгри	Cu pýn			Ag ppb			o Ma n ppm		As ppm				Sr ppm	Cd ppm	Sb ppm		V ppm	Ca ¥		La pm	Cr ppm	Mg ¥	Ba ppm		B ppm	Al t	Na ¥	K Y p			Hg : Sph pi	Se 1 pm pg	Γe xm p	
61972 61977 RE 61977 STANDARD C STANDARD S		.43 .45 3.91 1	17.45 17.97 128.56	3.52 3.65 33.13		90 105 262	4.1 4.1 35.9	11.0 11.2 11.8	1859 1891 845	2.74 2.79 3.14	1.3 1.2 61.0	1.1 1.1 21.8	14.8 221.6	.9 1.0 3.4	34.9 35.1 26.7	. 15 10. 35-1	10.74	.06 .06 11.09	35 36 73	.77 .1 .79 .1 .52 .0	.77 5 .84 5 .90 15	.0 I .3 .3 15	9.5	.71 1 .72 1 .61 1	164.6 166.5 152.4	.097 .098 .088	<1 <1 2	1.12 1.14 1.70	.004 .004 .030	.26 < .26 < .16 8	.2 .2 .4 1	.15 .15 .85 2	50 51 251 2	.9 .0 .9 .0 .4 1.9)222))222))25	.6 .8 .8
	UPPEI	R LIM	lits -	0.00 (AG, / -140	NU, HG	, W,	, SE,	TE,	, TL,	GA,	SN =	100	PPN; I	10, (co, c	FOR ON D, SB, RE' Br	, B1,	TH, (U, 8	= 2,0	000 P	PM; (5U, P	B, Z	N, N1	L, MN	, AS	, V,	LA,	CR =	10,	000	PPM.			
DATE	i rec	BIV	ÆD:	JÜL	7 200	0	DAT	r I	REPO	RT 1	MAII	BD 3	Jr	rli	131	re' er	, s	IGNE	DB	<u>ч.</u> С	، 	اب. ا	 [а. ти	DYE,	C.LE	ONG,	J. 1	JANG;	CERI	IFI	ED B	.c. /	ASSAY	ERS	
																							I	1												
·																																				
<u></u>	<u></u>	<u>are :</u>	eensie	dered	the e	nf:	dont		27020	<u> </u>	of th	= =1 {	ent.	<u>^</u>	- 222		he li	[a b ;]]	tics	<u>far</u>	<u>cotuc</u>	<u>il co</u>	<u>st of</u>	' th <u>c</u>		lysia	i ant	÷	·_•			2.	, 	L <u>.</u>		

- ..

ACAE ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

652 B. HASTINGS ST. VANCOUVER BC V6A 1R6 GEOCHEMICAL ANALYSIS CERTIFICATE

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT BELL C-2 ROAD File # A002229 BOG - 700 W. Perder St., Varcouver BC VGC 108 Submitted by: Reiph Keefe

SAMPLE#	Cs ppm	Ge ppri	H f ppn					s X		Zr ppm						Sample gm	
61977	2.62 2.66 3.42	<.1 <.1 <.1	<.02 <.02 .04	.80 .82 1.38	17.1 16.8 12.8	1.4 1.4 2.9	.1 .1 26.7	.03 < .04 <	4.05 4.05 4.05	<.1 <.1 2.5	8.3 8.8 30.6	<.02 <.02 5.19	<1 <1 <1	.1 .2 .4	9.1 8.9	15 15	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: -140 SILT <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

All pennis are considered the confidencial property of the client. Acme assume the fightlifted for actual cost of the analysis only

PHONE (604) 253-3158 FAX (604) 253-171

(b)

ACMS AND (ISO	0 900	02 Ac	creć	lited	d Co	».)		De	v.	G Co	EOG	CHE Ltd		CAL PRO	ST. V ANA JECT	LYS BE	IS LL	CE LO	RT: WEI	CFI R D	СА Л -1	r e Roa	D	Fi		04)25 # A0			PAX	(604 (a)	•	53-3	171	5
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn		Ni	Со	800 Mn	- 7 Fe	00 ¥ As	. Per U ppm	nder : Au	St., Th	Vanc	cd	BC Vé Sb ppm	C 1G8 Bi	3 · · ·	Subm Ca	itted P	La ppn	Ralp Cr	h Kea Mg	efe Ba	Ti	B A	1 Na X X	1 K		T1 ppm j	-			Ga ppm
61989 61990 61991 61992 61993	.23 .25 1.98	67.63 56.81 41.75 28.19 37.26	2.27 1.75 4.43	80.0 49.2 67.9	77 4 45 3 78 1	19.8 38.7 18.6	22.3 17.8 12.1	746 3 558 3 448 3	8.62 8.09 2.31	1.0 .9 2.1	<.1 <.1 2.1	3.0 3.1 2.6	.3 .2	8 15.6 2 14.0 5 25.4	.09 .06 .10	.10 .10	.02 <.02 .04	112 92 70	.48 .32 .37	.159 .119 .093	.8 5, 2.9	104.2 90.7 40.3	2.16 1.54 1.18	528.8 319.5 159.1	.227 .188 .142	<1 2.4 <1 2.3 <1 1.9 4 1.6 <1 1.6	35 .015 92 .009 59 .032	5 1.09 9 .65 2 .41	2. 5 <.2 L <.2	.17 .12 .14	19 17 24	.3 .3 < .6	.02 .02 .03	5.7 4.7 4.9
61994 61995 61996 61997 61998	.61 1.80 .94	11.37 12.24 13.16 21.03 13.20	1.93 2.51 6.52	27.4 32.3 36.2	50 58 67 1	4.5 4.4 12.2	6.7 6.4 10.0	418 373 582	L.67 L.96 L.98	1.5 2.0 1.6	.4 .6 .4	1.5 1.5 2.4	1.1 1.1 1.0	7 12.1 15.7 14.2 17.6 7 16.9	.07	. 12 . 10 . 12 . 11 . 15	. 03 . 06 . 04	38 43 49	.42 .30 .44	.151 .094 .133	2.3 1.8 2.2	7.6 9.6 26.5	.68 .77 .88	184.1 166.8 202.4	.097 .131 .125	<1 1.3 <1 1.0 1 1.3 <1 1.3 <1 1.3)5 .011 32 .011 33 .014	1.37 1.39 4.44	7 <.2 9 <.2 4 <.2	.10 .13 .13	14 29 30	.3 .5 .4	.02 .03 .03	2.8 3.8 3.6
RE 61990 STANDARD DS2 STANDARD S-1	12 01	128 56	22 12	160 5	262 1	25 Q	11.8	R45 (3 14	61 0	21 8	221 F	3.4	1 26.7	10.35	10.74	11.09	- 73	. 52	.090	15.3	159.5	.61	152.4	. 088	<1 2.3 2 1.3 2 4.0	70 .03	0.LU	b 8.4	1.85	251 4	2.4.1	.92	0. 0
UPF	PER LI	30 - 3 MITS - TYPE:	AG, /	υ, на	i, W.	SË,	ΤE,	TL,	GA,	SN =	: 100	PPM;	MO	, CO,	C FOR (CD, S 'RRE'	3, BI	, ТН,	υ,	B =	2,00	D TO PPI T	600 M; CU,	4L, A , PB,	NALYS ZN,	IS B' NI, I	Y ICP/E MN, AS,	S&M: V,L/	S. A, CR	: = 1(),000	PPM	! .		

DATE RECEIVED: JUL 7 2000 DATE REPORT MAILED: July 3/ SIGNED BY.

Data -FA

(ISO 9002 Accredited	1		GEC	CHE	SMIC	AL :	ANA	LYS.	IS CI	RTI	FICA	TE				n in the second s	
Hudson Bay															le	# A002232	(b)
	800	- 700	W. Pe	ender	St.,	Vanco	uver	BC Vố	C 1G8	Submit	ted by	/: Ral	ph Kee	efe			· 📕
S	AMPLE# Cs ppm				Rb ppm	Sc ppm	Sn ppm		Ta Z ppni pp		Y Ce nippni			Be		Sample gm	
· · · · · · · · · · ·								.02 <						<u> </u>	19.3	30	
	1989 1.23 1990 1.74				29.4 36.4			.02 <		1 1.77 2 1.60			<1		18.0	30	
	1									1 1.09			<1		15.5	30	
					22.8			.01 <								30	
		<.1						.25 <		4 3.55			<1		42.5		
0	1993 2.81	<.1	<.02	.71	20.5	2.1	.2	.04 <	.05 .	2 2.40	0 5.0	.02	<1	.2	14.5	30	
4	1994 1.30	<.1	- 02	97	16 7	1 5	7	.04 <	05	1 1.70	0 2 0	.03	<1	2	7.0	15	
		<.1						.02 <		2 2.89			<1		6.3	30	
		<.1						.02 <		2 2.2			<1		6.7	30	
		<.1						.03 <		3 2.40			<1		8.5	30	
6	1998 1.21	<.1	<.02	1.26	20.7	.9	.2	.04 <	.05 .	2 1.60	6 3.5	.04	<1	.4	6.0	30	
_		_					_							-			
	E 61990 1.66							.03 <		1 1.59			<1		17.2	30	
									.05 2.				<1		14.3	30	
3	TANDARD S-1 1.25	5.1	.05	.47	4.2	0./	1.0	.01 \	. 15 51.] 14.3.	5 30.7	.04	<1	.0	10.3	30	
GROUP 1F30 - 30.00 GM SAM UPPER LIMITS - AG, AU, HG																	
		GA, SN	1 = 10	00 PPM	1; MO,	co, c	CD, SB	B, BI,	ΤH, U,	B = 2,							
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	6, W, SE, TE, TL, (<u>Samples</u> begin	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.
UPPER LIMITS - AG, AU, HG - SAMPLE TYPE: -140 SILT	5, W, SE, TE, TL, (<u>Samples begin</u>	GA, SN ning '	i = 104 ′ <u>RE' a</u>	0 PPM are Re	i; MO, eruns a	CO, C and <u>'R</u>	CD, SB <u>RRE' a</u>	B, BI, are <u>Re</u>	TH, U, j <u>ect R</u> e	B = 2, runs.	,000 PI 0 F	PM; CU >), РВ,	ZN,	NI, M	IN, AS, V, LA, CI	R = 10,000 PPM.

All results are considered the confidential property of the alient. Acmo accumen the lightlities for actual onet of the analysis only.

Data FA

		<u>ludsc</u>	on B	ay 1			BOC	700	4. Pe	nde)) 1	št.,	Varia	COLVE	r BC	9600		Subm	c Di (tred	by: 1	(CAL IIICh) Xeef	*11 e	e #	AU	022:	ru		18)			
IPL.E#	Mo ppri	Cu Ppm		Zn ppm	Ag ppb ;	Ni ppm	Co Hr pprin ppre		As ppm	U pprin	Au ppb j	Th ppm		Cd ppra		Bi ppm p	V Ca opm 3		La ppm	Cr ppm	Mg X	Ва ррт	Ti X (W ppm			e Te n ppm	
983 984 Andard DS2 Andard S-1	14.61	7.08 1023.73 129.22 29.70	31.53	29.4 163.2	1406 (260 37	5.1 11 7.0 1	1.6 332 1.7 810	6.66 3.07	2.1 55.2 1	.3 9.92	77.5 10.5 :	.58 3.42	7.3 7.8 1	0.53 9	.32 9.65 1	. 83 .0. 95	42 .63 73 .53	3.095 3.089	1.4	8.5 150.4	.49 .58	20.0 138.1	.127 .085	21. 71,	06 .00i 67 .03	6.70 1.16) 1.2 5 7.4 :	.14 L.82 2	32 7.3 36 2.3	3 1.95	4.1
U	ROUP 1F: PPER LII SAMPLE	MITS -	AG, AL), HG,	W, SE	, TE,	TL, G	A, SN	i = 100) PPM;	; НО,	co,	CD,	SB, E	91, T	Η, Π,	B = {	2,000	PPN;	cu, i	РВ, 2	EN, N1	L, MN,	AS,	V, LA	, CR					
DATE 1	RECEI	VED:	JUL 1	7 2000	DA	te i	RPOR	т М2	ilei	:. J	nl	y z	24/0	0	SIG	INED	BY.	Ç.,	h.		.D. T	OYE,	C.LEO	NG, J	. WANG	i; CE	ERTIFI	ED B.	.C. A	SSAYERS	\$
										•										,											

Dala_UFA

	ay Expl. 6	800 Cs	700 Ge	W. Pers	lar St. Nb Rb	, Vanc	ouver t	S T	C8 \$	ubaltt	ed by	Raip In	n Kee Re	fe		Sample			b)	
		ppm	ppm	ppm p	pm ppm	ppm	ppm	X ppr	n ppm	ppm	ppm	ppm	ppb	ppm	ppn	gm				
	61983 61984 Standard DS2 Standard S-1	.36 3.28	.1 <.1	.03 . .04 1.	61 20.2 39 12 <i>.</i> 4	.9 2.8	.4 5 26.4		5 1.4 5 (2.6)	7.51	2.7 30.9	<.02 5.32	1 <1 <1 <1	<.1 .1 .7 1 .7 1	.9 4.5	30 30 30 30				
GROUP 1F30 - 30.00 G UPPER LIMITS - AG, A	U, HG, W, SE, TE,	TL, G	A, SN	= 100	PPM; MO	, co,	CD, 58	, ВІ, ТІ	H, U, E	3 = 2,0	000 PP	M; CU,	P8,	ZN, N	II, M	N, AS, V	, LA, CR	= 10,0		
- SAMPLE TYPE: ROCK	7 2000 DATE I	REPOR	т ма	ILED:	gn	ly 2	4/rv	sid	NED :	ву С).L		1 . d.	TOYE,	C.L	E ON G, J.	WANG; C	ERTIFIE	D 8.C. ASS	AYERS
					0	1	1					/								

Data K PA

ACME AN			LABO	RAT	ORI		JTD.		8	52	E. 1	HAS	FIN	3S :	ST. V	ANCO	DUVE	RE	C	V6A	1R	6	Į	PHON	E (6	04)	253	-31	58 I	'AX	(60	4)25	3-1	716
		04 AC				0.,				GI	EOC	HEN	(IC	AL .	ANA	LYS:	IS	CEF	TI	FIC	TAT	2	,							алан 1917 - М				
TT	H	Iudso	ол Е	Зау	Ex	pl.	<u>&</u>								JECT Duver										le	# ⊉	100:	223	1		(a))		. T
SAMPLE#	Mo ppm	Cu ppm	Pb ppm		n Ag n ppb		Со ррт	Mn ppm	Fe X	As ppm	U ppm			Sr ppm		Sb ppm		V apprn			La ppm	Cr ppm	Mg X	Ba ppm		8 рряп	A1 %	Na %				Hg Se pb ppn		Ga ppr
61981 61982 61985 61986 61987	1.50 1.91 .91	3.63 10.96 9.79 8.43 11.65	2.66 1.88 1.87	45.1 50.1 40.7	47 65 50	1.6 2.6 3.7	6.5 10.7 4.9	492 782 273	1.88 2.12 1.68			1.3 .8 1.6	.3 .3 .3	10.2 14.0 17.5 18.4 20.1	. 08 . 22 . 13	.08 .09 .13 .11 .16	.03 .05 .06	41 42 34	.15 .24 .23	. 037 . 058 . 059	.8 1.3 1.7	3.9 2.5 6.2	.59 .70 .54	174.4 257.3 175.8	.160 .166 .119	1 1 2	1.06 1.26 1.14	.007 .006 .009	.38 < .43 < .25 <	.2 .2 .2	.10 .15 .08	33 .6 24 .4 36 .5 31 .5 27 .7	. 04 . 05 . 03	3.5 3.7 3.4
61988 RE 61988 STANDARD S-1 STANDARD DS2	.59 1.05		3.46 9.82	44.1 47.3	71 34	9.9 13.4	11.0 13.0	1152 455	2.29 3.90	2.2 2.2	.4 .6	4.9 2.2	.9 2.7	25.5 43.7	.08 .06	.10	.06 .14	45 153	.47 .45	.098 .041	4.2 12.2	12.8 41.6	.60 .52	139.3 87.2	. 092 . 363	1	1.21 4.07	.023 .101	.19 < .06 <	.2 .2	.09 .12		.02 .02	3.8 10.1
UP	OUP 1F PER LI SAMPLE	MITS - TYPE:	AG, A -140	AU, HO	G, ₩,	SE, <u>Sampl</u>	TE, les b	TL, (<u>ægin</u>	GA, S ning	SN = 'RE'	100 / _are	PM; <u>Reru</u>	MO, Ins a	co, i nd (, BI, <u>re Re</u>	TH, ject	U, B <u>Reru</u>	= 2 <u>ns.</u>	,000 Դ 1	ррм; Р	cυ,	РВ,	ZN, N	II, M	N, A:	S, V,	, LA,	CR =		-		SSAY	ERS
													1									/												

Data AFA

ACA ANALYTICAL LABORATORIES LTD (ISO 9002 Accredited Co.)	852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE(604)253-3158	FAX (604) 253-1716
	GEOCHEMICAL ANALYSIS CERTIFICATE	
Hudson Bay Expl. &	Dev. Co. Ltd. PROJECT BELL UPPER D-1 ROAD File # A002231 800 - 700 W. Pender St., Vancouver BC Vác 168 Submitted by: Ralph Keefe	(b)
SAMPLE#	Cs Ge Hf Nb Rb Sc Sn S Ta Zr Y Ce In Re Be Li Sample	
	ppm ppm ppm ppm ppm ppm % ppm ppm ppm pp	
61981	.30 <.1 <.02 1.61 4.7 .6 .3 .04 <.05 .2 .64 2.0 .02 <1 .1 1.0 30	
61982	.51 <.1 <.02 1.38 13.5 .5 .8 .02 <.05 .1 .51 1.5 <.02 <1 .1 1.2 30	
61985	.72 .1 <.02 1.44 16.6 .5 .2 .02 <.05 .1 .81 2.4 <.02 <1 .2 2.9 30	
61986	.60 <.1 .03 .89 10.2 1.0 .2 .02 <.05 .2 1.31 3.3 <.02 <1 .2 4.5 30 .86 .1 <.02 .92 19.3 .7 .2 .01 <.05 .1 .74 1.6 <.02 2 .1 3.2 30	
61987	.86 .1 <.02 .92 19.3 .7 .2 .01 <.05 .1 .74 1.6 <.02 2 .1 3.2 30	
61988	.93 <.1 <.02 .75 9.8 2.0 .3 .02 <.05 .7 3.70 8.6 <.02 <1 .3 8.3 30	
RE 61988	.93 <.1 <.02 .69 9.8 2.1 .3 .02 <.05 .6 3.58 8.6 .02 2 .2 7.9 15	
	1.25 <.1 .65 .49 4.2 8.7 1.6 .01 <.05 37.5 14.35 30.9 .04 <1 .8 10.3 30	
STANDARD DS2	3.43 <.1 .04 1.45 12.4 2.8 27.3 .02 <.05 2.8 7.71 29.6 5.55 1 .4 14.8 30	. <u></u>

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: -140 SILT <u>Samples beginning (RE' are Reruns and (RE' are Reject Reruns</u>)

;

.

Data Mr.

All results are considered the confidential property of the client. Acme accumes the traditives for accumations, of the analysis only.

<u>Huds</u>	on B	iy F	<u>xpl</u>		700	W. Pe	nder St	, vanc	COUVER BI	C V6C 1	<u>SLL</u> 68 5	<u>D-2</u> Submíti	ted by:	Ralph	Keeft			2 - E S	<u> </u>			
SAMPLES	Ho ppm	Cu ppm	Pb ppm	≥rs A psan pg	g IN1 C b ppm pp	o Hin Fi a pyra 1	e As U Lippe pue	Au îk poto pope	in Sr Ed m ppm ppm	1 Sb 1 ppm p	81 V Xpm ppm	Ca P I I	La Cr ppes mons	Hg Ba 1, ppm			Na K E E pj					
167985 167986	4 09	725.60 26	719.60 27	965.0 9999	9 2.9 11	321 3 54	0 23 4 <.L	1301.7 .5	3 8.8 63.25 5 12.3 369.80	1 13 17	42 11	.30 .104	1.0 42.4	.29 76.0	052	3570	107 .44 L	.4 .56	423 19.7	55 32 L	5	
167987 167988 167989	4 73	497 75 21	066 90 55	229.6 9999		441 3.6	1 32.1 .1	1148.3 4	4 5.8 429.50 4 7.2 768 90 3 9.7 4 99	73 37	17 11	. 15 . 060	1.0 74 3	.40 63.4	047	7 55.0	102 .31 1	. 1 . 70. 1	511 20.9	63 67 1	1	
168060 168061	24 60	36.68	25.09	38.1 39	7 7.2 16	3 126 5.5	7 4 1 < 1	93.4	3 9.0 1.01 2 11.6 22	2 23 .	.14 6	. 24 . 089	5 6.5	. 14 - 32.9	.014	1 41.0	115 .19 Z	.\$.10	13 1.5	.59 L.	D	
	23.92 052 14.61 5-1 .95	129.22	31.53	163.2 26	9 37.0 11.	7 810 3 0	7 55 2 19 9	210.5 3.0	2 11.1 21 4 27.6 10.53 5 44 8 <.91	9 65 10.	.95 73	.53 .089	15.5 150.4	.58 138.1	. 085	7 1.67 .0	101 . 16 7	.4 1.8Z	Z36 2.3	1.95 6.	. Q	
COOLD 1530 - 30 0	0 04 54		180 M	1 2-2-1		1103-112	0 AT 0	DFG.	C FOR ON	F HOUR	AND I		ΙΤΕΟ ΤΟ	600 MI	L. ANA	LYSIS	BY ICF	/ES &	MS.			
		C 11	CC TI	C 71	CA 64	100		00 CO	CU 65	R1 11	NE ED	R = 7	000 PP	M. CU.	PB. Z	N. NE	. MN. A	(S. V.		CR = 1	0,000 P	PM.
													17									
	111 7 20	00 T	ነልጥም	ספפס	917 M	ATT.RD	$\cdot 0$	les 3	2/1/m2) sig	NED	BY	h.		1.D. TO	OYE, (.LEONG	, J.	WANG;	CERTI	FIED 8.0	C. ASSAYE
DATE RECEIVED: J	IUL 7 20	00 I	DATE	REPO	RT M	AILED	:: Jø	ly ?	04/ov) șig	NED	BY.Ç	h.		.D. T	OYE, C	C.LEONG	, J.	WANG;	CERTI	FIED 8.0	C. ASSAYEI
DATE RECEIVED: J	IUL 7 20	00 I	DATE	REPO	RT M	AILED	:: Av	ly 2	04/ov) sig	ined	BY .Ç	i		.D. T(OYE, (C. LEONG	, J.	WANG;	CERTI	FIED 8.0	C. ASSAYEI
DATE RECEIVED: J	IUL 7 20	00 I	DATE	REPO	RT M	AILED	: Jø	ly 2	24/ov) sig	INED	BY.	V.~		I.D. T(OYE, C	C. LEONG	i, J.	WANG;	CERTI	FIED 8.0	C. ASSAYEI
DATE RECEIVED: J	IUL 7 20	00 I	DATE	REPO	RT M	AILED	:: 9 <i>r</i>	ly 3	74/ov) sig	INED	BY.Ç			.D. T(OYE, C	C . L EONG	, J.	WANG;	CERTI	FIED 8.0	C. ASSAYEI
DATE RECEIVED: J	IUL 7 20	00 I	DATE	REPO	RT M	AILED	:: 9 <i>v</i>	ly 3	04/ov) sig	NED	ВҮ.↓	<i>י.</i>		I.D. TI	OYE, (C.LEONG	i, J.	WANG;	CERTI	FIED 8.0	C. ASSAYEI
DATE RECEIVED: J	IUL 7 20	00 I	DATE	REPO	RT M	AILED	e: Jø	ly 2	04/ov) sig	INED	BY.			. D. T(OYE, (C . L EONG	i, J.	WANG;	CERTI	FIED 8.0	C. ASSAYE
DATE RECEIVED: J	IUL 7 20	00 I	DATE	REPO	RT M	AILED	e: Jø	ly 2	04/ov) sig	INED	BY.	/		1 .D. T(OYE, (C . L EONG	, J.	WANG;	CERTI	FIED 8.0	C. ASSAYE
DATE RECEIVED: J	IUL 7 20	00 Σ	DATE	REPO	RT M	AILED	e: Gr	ly 2	04/ov) sig	INED	BY.			1 .D. T(OYE, C	C . L EONG	, J.	WANG;	CERTI	FIED 8.0	C. ASSAYE
DATE RECEIVED: J	IUL 7 20	00 I	DATE	REPO	RT M	AIL BD	e: Jø	ly 2	04/ov) 51G	INED	BY.			f.d. T(OYE, C	C . L EONG	, J.	WANG;	CERTI	FIED 8.0	C. ASSAYE
DATE RECEIVED: J	IUL 7 20	00 Σ	DATE	REPO	RT M	AILED	e: Jø	ly 2	04/ov) 51G	INED	BY.			1 .D. T(OYE, C	C.LEONG	, J.	WANG;	CERTI	FIED 8.0	C. ASSAYEI
DATE RECEIVED: J	IUL 7 20	00 Σ	DATE	REPO	RT M	AILED	e: Jø	ly 2	04/ov) sig	INED	BY.			f. D. T(OYE, C	C.LEONG	, J.	WANG;	CERTI	FIED 8.0	C. ASSAYE
DATE RECEIVED: J	IUL 7 20	00 Σ	DATE	REPO	RT M	AILED	e: Jø	ly 2	04/ov) sig	INED	BY.			f.d. T(OYE, C	C.LEONG	, J.	WANG;	CERTI	FIED 8.0	C. ASSAYE
DATE RECEIVED: J	IUL 7 20	00 Σ	DATE	REPO	RT M	AILED	e: Jø	ly 2	04/ov) 51G	INED	BY.			f.d. T(OYE, C	C . L EONG	, J.	WANG;	CERTI	FIED 8.0	C. ASSAYE

(ISO 9002 Accredited Co.)		85	25.		nuseien.	- 	ST. V ANA	ar san ta							PHO	NE (6	04) 253 -	3158 PAX(604)253-1716
Hudson Bay Expl.			. Ca	s. 1	<u>Ltd</u>	PI		CT I	BEL	L E)-2	ROA	D.			AO	02233	(b)	tt.
SAMPLE#	Cs ppn	Ge	Hf ppm	Nb	Rb ppm	Sc	Sn	s X i	Ta	Zr ppm	Y Pprit	Ce ppm	ln ppm	Re	Be ppm		Sample gm		
		ppm				ppn	ppm		<u> </u>	hand -			<u>_</u>	<u></u>					
167985	. 09				4.8			.03 <		.!	.81		.02				30		
167986	.73		<.02		19.8			.20 <			1.10					1.8	30		
167987	.21				8.2	-		.15 <.			1.18					1.1	30		
167988	.50				16.7			.43 <			1.24					2.1	30		
167989	. 86	<,1	<.02	. 14	26.8	.7	.1 2	.27 <	.05	•1	1.43	3.9	<.02	<1	.2	3.4	30		
168060	.40	<.1	<.02	. 25	9.9	1.6	.2 2	.06 <	.05	.1	1.62	1.6	<.02	3	.1	2.5	30		
168061	.11	<.1	<.02	.08	8.0	.6		.98 <		.1	.59	1.2	<.02	3	.1	1.2	30		
RE 168061					8.0			.06 <	.05	.1		1.1		2	.1	1.3	30		
	3.28	<.1	.04	1.39	12.4	2.8	26.4			2.6	7.51	30.9	5.32	<1	.7	14.5	30		
	1.15	< 1					1.3 <							<1	.7	10.4	30		

cata / 4a

GROUP 1730 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-Z HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK Samples beginning 'RE' are Refuns and 'RRE' are Reject Refuns.

All nearly and considered the confidential property of the client. Acmo accumes the liabilities for actual cast of the analysis only.

ΛΛ										G)	LOC	HEM.	LCA	L I	ANAI	LYSI	sc	.F.K	L.T	LTC	CTA:				· . ·					,			$\mathbf{\Lambda}$
ΤT		Huc	lson	Ba	iy .	Exp	1.	& 800	<u>Dev</u> 70	. (0 W.	Co. Pend	Lt.	<u>d.</u> ., Va	PRO	JJE(CT B	<u>ELI</u> 168	J D Su) <u>-2</u> ibmi	RC tted)AD	Fi Raiph	le Keef	# . e	00A	223	4		(a)	· · ·			
SAMPLE#	Мо ррп	Си ррт	Pb ppm	Zn ppin	Ag ppb	Ni ppm	Co ppm	Mn ppm	Fe لا		U ppm		Th ppm		Cd ppm	Sb ppm	Bi ppm		Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti X	B ppm	A1 I ¥	Na X	K ₩ ¥ppm			Se opmi j	Te ppm
167990 167991 167992 168059 RE 168059	.49 .81 2.70	11.26 21.99 9.56 11.18 11.63	6.43 2.45 9.17	93.4 66.2 45.0	99 82 82	6.0 3.7 2.5	14.8 12.1 8.8	758 957 668	2.50 2.37 2.33	.5 .8 1.0 .8 .9	.3 < 1 < 1 .3 .3		.5 2 .1 1 .1 1 .8 2 .8 2	7.6 9.5 3.0	.09 .45 .17 .16 .16	.20 .16 .14 .13 .13	.03 .02	62 45 36	.42 .38 .26	.072 .138 .103 .075 .074	.6 .6	7.5 1	.37 .03 .75		203 181 .158	<1 1. <1 1.	76 .02 45 .00 21 .00	10 .8 09 .9 09 .4	55 <.2 82 <.2 58 <.2 43 <.2 45 <.2	.24 .21 .18	17	.6 .5 .4	.02 .03 .04 .03 .03
STANDARD S-1 STANDARD DS2	1.05																					41.6 158.6							06 <.2 15 8.4				

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data

NALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)			· .	1.1		100.000) - E	VANCOU LYSI:	Cardo,	Sec. 2		1.1		PHOI	NE (6	04)253-31	58 FAX	(604) 253-1716 AA
Hudson Bay Expl.	& I 800 -	ev. 700	<u>C</u> C W. P	D . ender	<u>st.</u>	<u>PR</u> Vanco	OJE uver	CT BI	<u>ELL</u> 168	D-2 Submit	ROA ed by	D : Ral	Fil ph Ke	e# efe	A0	02234	(b)	
SAMPLE#	Cs ppm	Ge ppm				Sc ppm	Sn ppm	S T X pp	a Zo ni ppi		Ce ppm	In ppm			Li ppm	Sample gm		
	.14	.1	<.02 <.02	1.27	29.0	.7 .5	.1 .2	.01 <.0 .01 <.0 .01 <.0 .02 <.0	5. 5.	1 .68 1 .59	1.9 1.3 1.2 2.4	<.02	<1 2	.3	5.7 7.8 6.4 5.1	30 30 30 30		
RE 168059	.25	.1 <.1	<.02	1.18	21.8	.7 8.7	.2 1.6	.02 <.0	5.5 537.5	2 .91 5 14.35	2.6	<.02	<1 ,	.8	5.6 10.3 14.8	15 30 30		

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: +140 SILT <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

DATE RECEIVED: JUL 7 2000 DATE REPORT MAILED: JUL 31/00 SIGNED BY C. There D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

	Accredited Co.) <u>Rudson Bay Expl</u>		ASSAY CERT	CT BEI	L D-2	ROAD F	16 # A00223)R	
	<u>2019-01-2017-01-01-2017-01-</u>	SAMPLE#	Cu Pi	5. t	**pA	Au** gm/mt		1999-1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19	
		167985 167986 167987 167988 167988 167989	.049 .37 .072 2.75 .238 2.56 .163 2.07 .008 .17	.59 2.92 3.36 6.24 .06	16.2 117.8 112.3 103.6 7.2	.12 .82 .77 .78 .16			
		168060 168061 RE 168061	.002 .01 .004 <.01 .004 <.0	.02	<.3 .4 <.3	.06 .01 .01			
	- SAMPLE TYPE	1.000 GN SAMPLE, AGUA E: ROCK PULP AG** Wing (RE1 are Reruns	& AUR* BY FIRE A	SSAY FRON	IAT. SH	100 ML, AMALYS PLE.	ED BY ICP-E\$.		
DATE RECEIVED	1 SEP 15 2000 DATE RE	PORT MAILED: Se	pt 26/w	SIGNED	ву.С.	K	TOYE, C.LEONG, J. WA	NG; CERTIFIED B.C. ASS	ATERS
		,	f			1			
	•								
	· · · · · · · · ·							L	1
All results are co	nsidered the confidential p	roperty of the ctient.	Acme assumes the	e liabilit	ios for ac	tual cost of	the analysis only.	Data_F	<u></u>

.

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM

B. TECHNICAL REPORT

1. . .

Name: Shawn Turford Ref #: P21 2000/01

LOCATION/COMMODITIES-

Project Area: <u>REACH:TSA Target</u> Minfile #: <u>93E-003</u> Location of Area NTS: <u>93E 11W</u> Lat: <u>53 32</u> Long: <u>127 27</u>

Description of location & access: <u>By Cessna 180 floatplane from</u> Francois Lake to a point on the Southwest shore of Troitsa Lake

Main Commodities Searched for: Cu., Au., Ag.

Known Mineral Occurrences in Project Area: <u>Cu, Mo in the Troitsa</u> Lake showing.

WORK PERFORMED-

1.Conventional prosp.<u>Prospect gossanous area including ravines in</u> between feldspar porphyry dykes.

2.Geological Mapping as per attatched map sheet
3.Geochemical /13 rock and silt samples
4.Geophysicalnil
5.Physical Work nil
6.Drilling nil
7.Other
SIGNIFICANT RESULTS- none at this time
CommoditiesClaim Name:

Location/Lat:_____Long:____Elevation:_____ Description of mineralization, host rocks, anomalies:

The TSA target is a continuation of my 1999 investigation of a large gossanous area (1500 meters wide x 2000 meters long and open to the South). The gossan has several mineralized bands of parallel running, porphyry stockwork. The sediment zones in between the feldspar porphyry dykes have also been intruded with Zn, Cu, Ag mineralization. Numerous (7 known) seperate mineralized dykes have bisected the highly altered gossanous zone of sediments and volcanics. This summer, mineralization was discovered in the ravines to the West which extended the mineralization zone appreciatibly. In October, Paul Wojdak and I prospected the furthest outcrop to the Western edge of the gossan and was, however, poorly mineralized and no sulphides were noted. To the South, at least 8 other feldspar porphyry dykes are mapped (D. MacIntyre 1985), and two other minfile showings occurr; 93E-005 and 93E-009. This is the Upper Cretaceous age class with the Bulkley Intrusions included. I plan on prospecting the Southern portion in 2001.

Days?

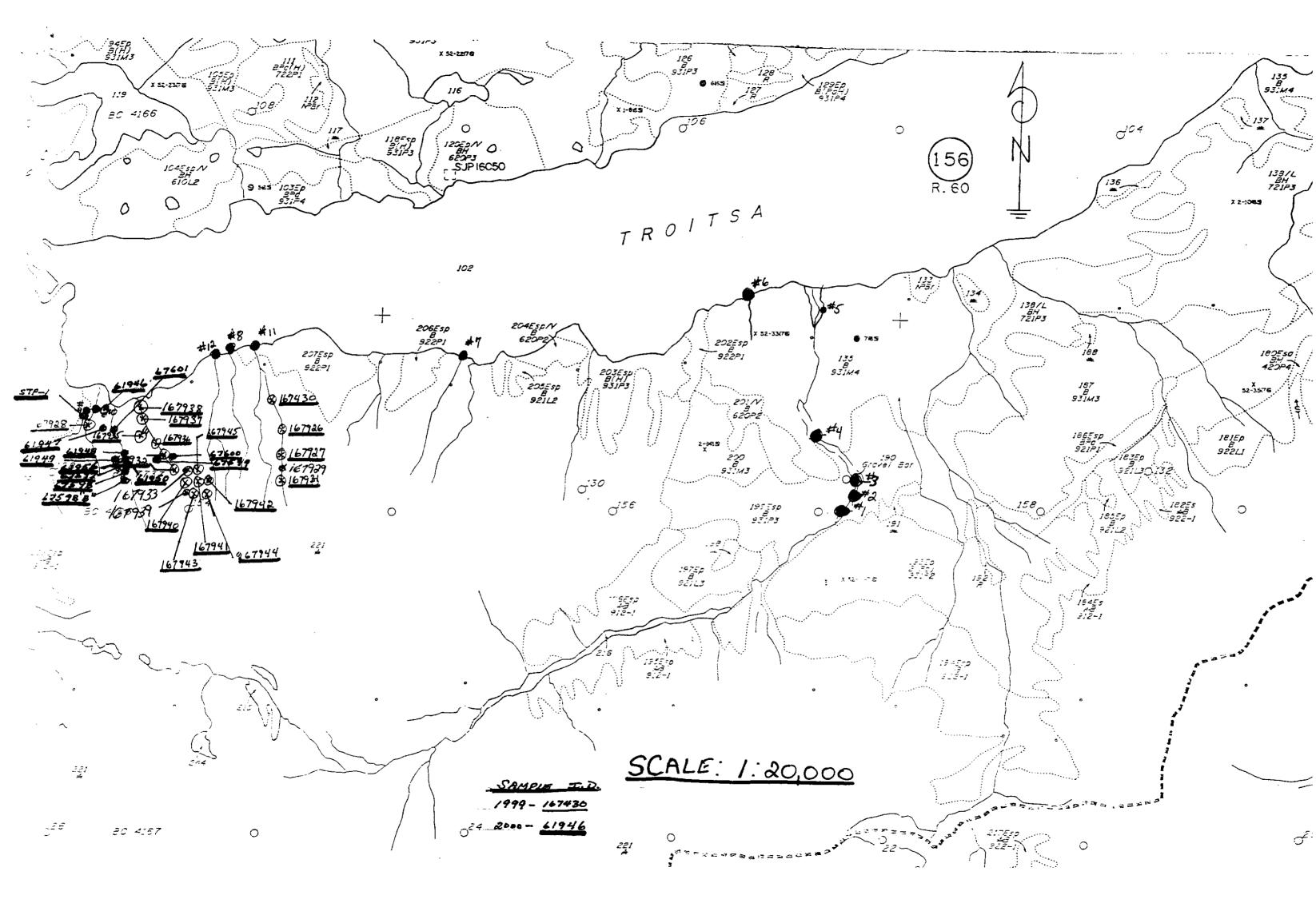
		た	5A																																		
60, 30 d	Å	ANI (ASI	17:17. 0000	2	UCT (adi	ted	Co.)		1.	G 2 T		СНІ	:	CAL Lt	ST. AN d.	NLY PRC	SI Je	s (Ct	CEI Re	EAC	PIC H	ат Fi	t le	H A	002				315 a)	8 7		:04)	253		
	SAMPLE	Mo ppm	Çı Dix		Pb pate p	Zn	Ag ppb	Nn pp#	Co	Nn pon	Fe	As	U	ن ش <u>ور</u> ا	w Th HD pps	Si Si	Cd	S	<u>نې</u>		Y		P	La ppm	Cr pp#	Ħg	-	Ti X	8 ppm	Al T	Na X	K T			Hg S ppb pp		Te Ga pan pom
956996	61950 67600 67598 51947 67601	3.59 4.51 6.92 3.18	151 1 228 4 246 5 1974 3 2006 0	5 / 0 7.0 3 8 5 7	42 31 14 7 38 66	1576	1333 444 1350	12.4	3.8 4.4 4.0	257 - 36 303	6 19 1 11 2.73	11.4 14 S 5.4	.6 2.1	13. 8. 31.	9 4.4	3.1 4.1 20.1	.02 .05 .28	2.8	97 1311 122	2.85 1 1.09 2.50	101 2 73	10 05 55	.166 .006 .058	9.6 7.6	7.5	1.02 .03 1.49	21.5 50.9 56.7	.007 .001 .041	ব ব ব ব	1.43 .26 1.75	.015 .016 .042	.31 .21 .38	24 35 27	18 06 .24	<51 251 6	4 2 1 3. 4 1.	27 10.0 17 11.0 78 .9 01 14.6 55 18.6
0 12506	61949 61946 67599 67597 61948	3.08 2.20 1.20	26.2 949.1 13.0 138.0 219.0	3 12. 3 11. 5 4.	89 43 48 49 11 9	3.8 9.8 9.7	859 112 99	2.8	8.0 21.9	813 433 123	3.52 3.79 .68	3.8 2.8	.2 5 1.4	43. 1.	462 3.8 53.4 05.8 84.1	41. 21. 23	.03 - 14 .07		1926 161 131	5.20 1.16 1.44	46 2 66 <2	2.01 .70 .62	107 . 108 . 008	8.3 4.6 14.0	9.7 27.1 35.3 10.7 14.0	1.01 1.31 .02	70.2 48.3 214.1	.004 .080 .001	<1 <1 2	1.59 1.40 .21	.028 .038 .035	. 19 . 31 . 18	2.0 3.4	.09 .18 .06	<5 8	3.3.1	38 1.0 11 7.8 40 14.4 47 .7 48 1.6
1716 T	67596 675788 RE 675988 STANDARD	2.98	1644.4 4813.1 4835.7 126.3	2.17	65 5 1	0.31	3440	28	44	66 67	2 66	1.00 36.9	14	208	45.7	5.9	€.44 \ .44	23.6	63 82 23 81	1 16	40	.13	.010	57 58	28.9 11.3 9.4 157.8	. 02	32.7	.001 .001	<} <1	.28	.009	.20	39.7 39.8	.06 .06	15 1 20 1	0 25. 0 26.	28 15.0 86 1.1 29 1.1 85 5.9
604 253	Standard DAT	GRC UPF 3	NDARD UP 1F3 ER Lit Sati L	50 - 1155 1175	30 00 - AG. ; Kut	. AU .:K	NG	w pi motes	begii	, TL, <u>nnin</u> s	, GA, 1 ' <u>26</u>	SN - ' ai t	130 R_C	i ppi i unai	; HO and /	RRE	C FOR CD, are	S8, I	el, ct R	TH, I erun	U, 8 <u>6.</u>	i = 2	,000 7	ppn; T	τυ,	РВ,	ZN, N	1, PR	I, AS	, ν .	;LA,				рн. :. Абя	AYER	5
LABS																																					
ACME																																					
39 FR																																					
17:																																					
4,00																																					
AUG	Alt	result	s are	cons	ider	ed ti	he coi	ntider	tial	pro	perty	ofi	ine c	lie	ii. A	, and	55486	s th	a 11	ab	itic	is fo	r ac	tusl	cost	of t	h e an	al y <u>s</u> i	i ș	ly.				Da	ta	FA	<u></u>

.

۲.

1

DATICLE L. U.	HNOM ALOUS
S-SILT	PRECIDIAS METALS (AG-AU)
R - Rock	BASE METALS (MO, CU, ZN)
17101 - Marine Citation	Autor Autor


---- -

7601 -MASSING NUKPhide

٩

.

		、 、		\$A	MP	IES_	-200	o	/	999		
SAMBLE	ppw		,	L'	0		s A MYLE		ppm	n P	pb ppk	ppm
SAMPLE No.	<u> </u>	Cu	AG	Au			No	<u>~10</u>	Cu	_ <u></u> /6	Au	ZA!
61950	3.59	151.15	142	. 4.1	R		23	1.13 1.31 4.48	32.53 51,85 117.65	1/5 102 235	2.1	98 ;) 124 : 2
67600	4.51	728·4	<u>(333</u>	<u>/3.3</u>	R		4	1.92	35.43	191	4.0 3.2	51
67598	4.92	246.6	±44	8.2	R		6	464 4.98 5.15	1 07.3/ 26.88 115.41	224 163 222	4.6 5.8 6.4	5,14 10,7.3 94.7
6/947	3.18	1974.3	1350	31.9	R		8	27.68	316.82	i	<u>18.9</u> <u>372</u>	12:16
6760/	1.85	2006.0	1354	14.3	R	r ~	10	4.04	82.14	259	13.0	1243
61949	1.81	26.25	119	1.4	R		12	27.56 28.6 <u>8</u>	226 95	1359 238	8.5 (4.4	21'8
61946	3.05	949.13	859	43.3	R		167926	25.30	19.21 1929.97	87	1.5 2575	5.11
67599	2.20	/3 .03	112	1.6	R	•	28	3.39	246.07	- 336	7.7	37.4
67597	1.20	138.05	- 99	1.6	R		24	4.05		583	16.6	71.396
6194B	2.47	-219.09	166	5-8	R		3/	2.53	40.57	39	2.9	37.8
67596	2.42	1644.40	1361	37.3	R	•	32	2.9B	6 39.54	834	12.4	65.3
675983	2.98	4813.12	13440. F	208.4	<i>R</i> .	-	33	3.79	8.76	44	1.4	1E
5TP-1	- - -	t I	 	. 4	S		34	6.70	11.99	50	2.0	46
		1				·	167975	/3.43	4621.9	7465	<u>85.9</u>	79.6
			ł	· •		-	34	4.22	20.24	66	2.2	14
			4				167937		2333.67		470.4	123.5
	1					•	38		5-688.34	2420	1444	5.54
							39		8545.S	1/7 24	14420	81.7
						•	16 79 40		2 272.19	237/	<u>27./</u>	72.8
	ļ						41			<u>/02:17</u>	90.2	87.1
							42	492	771.09	732 <u>7/844</u>	11.6	76-0
						•	43		39494		<u>/34.8</u>	827
	· !								5 674.91	8.4.50	<u>160.9</u>	1011.5
	- - - -			•			167945	19.08	ז / ץ ₩. / 7	1850	<u>48-0</u> ,	62-7
ļ	·	ļ	Ļ									

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM

B. TECHNICAL REPORT

Name: Shawn Turford Ref #: P21 2000/01

LOCATION/COMMODITIES-

Project Area:<u>Reach:Tout Lake target</u> Minfile #:<u>93E053, 93E071,</u> <u>93E072</u> Location of Area NTS:<u>93E14E</u> Lat:<u>53 57'</u> Long:<u>127 01'</u>

Description of location & access: <u>Travel by truck and trailer from</u> <u>Francois Lake to Owen East F.S.R., then Morice Tahtsa F.S.R. to</u> <u>Hill Tout F.S.R. then prospecting Roads and blocks to the south.</u>

Main Commodities Searched for: Cu., Au, Ag, Mo.

Known Mineral Occurrences in Project Area: <u>Porphery type Cu.</u> <u>deposit Such as Huckleberry Mines 35 Km southwest.</u>

WORK PERFORMED-

1.Conventional prosp.<u>Prospecting roads and blocks south of Tout</u> Lake

2.Geological Mapping as per map sheet

 3.Geochemical
 44 rock and silt samples taken.

 4.Geophysical
 nil

 5.Physical Work
 nil

 6.Drilling
 nil

 7.Other
 nil

Alexandre en la construcción de la Tempe

SIGNIFICANT RESULTS- some very high assays taken from log block to the south.

Commodities	• ,		Claim Nam	e:	in the second
Location/Lat:		Long:	-	Elevation:	

Best assay/sample type:___

Description of mineralization, host rocks, anomalies:

Country rock is coarse to medium grained fragmental volcanics, andesites and felsitic rocks of the Hazelton group. These rocks have been intruded by at least two types of intrusive rocks. Small outcrops and outcrop areas of differentiated granitic rock with compositions varying from guartz monzonite to grano- or guartz diorite. The southern area south of Tout lake the rock is a quartz monzonite porphyry which changes to a finer more even grained

granoiorite or quartz diorite. Two anomalus zones appear in the area. One is where Mr Ronald Busson as his Tout claims and the other lies to the south east.

Harridraer - e u

1

3. 15.

	udson Bay Expl. & Dev. Co. Ltd. PROJECT REACH File # A003508 Page 1 (a) 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Ralph Keefe
SAMPL	PLE# Mo Cu Po Zn Ag או Co mn Fe 'ר U Au Ta Sn Cd Sb Bi V Ca P La Cr *g ਜੇਰ Ti E ' ב ע ppm ppm ppm ppm ppm ppm ppm ppm ppm ppm
ST-20	
ST-1	
ST-22	
ST - 13	
ST-Z	2 .75 496.12 5 40 98 4 555 9.3 70 5 495 7.85 219 1 .2 147 6 .3 7.3 .34 10.04 7.11 177 12 .057 2.1 18 9 1.45 46 8 .063 1 2 14 022 46 1.7 51 23 2.1 3 59 11.8
ST - 25	
ST - 5	
ST - 19	
ST-1	
ST - 12	12 1 47 2782.71 5 64 227 8 5803 22 2 159 3 745 18.98 143.0 .2 221.9 3 3 3 41 .59 16.37 114 12 070 1.1 16.4 1 86 27.6 018 1 3 96 005 22 1 7 .15 9 11 5 3.65 18 6
51-27	27 10 60 354.57 4.93 32 5 467 6 1 544 1 208 9 92 13 2 6 27 1 1 41.1 .04 .23 3.12 65 38 052 4.0 9 4 87 38.3 138 <1 1 53 112 88 969 7 93 <5 8 8 86 6.5
ST-4	a 3 17 124.24 3.84 61 4 208 1.8 9 5 242 4 31 1 6 < 1 7 9 .7 6.9 09 .31 1.77 16 .15 .057 3 1 9.1 52 73 9 014 <1 88 030 18 7 3 16 <5 .7 .68 4 0
ST - 17	
57-7	
ST- 30	30 .57 846.76 8 50 208 2 1958 103.4 91.7 1883 11.75 22.6 <.1 71 1 3 38 3 .29 .39 5 45 175 1.39 .086 3 1 260.1 3 96 197 5 260 1 4 22 .029 3 61 7 3 90 12 .6 .73 17.0
ST - 28	
ST-8	
ST - 10	
ST-24 RE ST	
ST- 6	
ST - 18	
51-25	
ST - 22 51 - 31	
21-21	
51-3	
ST - 16	
ST - 32	
ST - 23	
ST - 9) 1.57 299.21 17.35 71 0 6528 5 1 2 5 473 13 52 13.5 .1 212.7 .1 16 8 .05 .64 28.60 196 .18 036 6 13 2 1 17 3° 2 250 1 1 35 018 24 17 2 23 18 1 2 12 43 22 7
ST - 21	
57-19	
57 - 19 ST - 26	16 65 43 28.45 9.30 22 9 200 3.6 7.1 111 3 96 8 1 3 16 5 2 3 6 9 .02 47 4.00 11 .09 025 2.2 14.9 26 37 8 027 2 48 .053 18 11 3 09 27 .9 29 3 5 DARD 052 13.79 124.26 33.97 153.3 258 35 2 12 8 803 3.00 57 8 19 0 217 3 3 5 26.5 10 60 9 88 10 68 76 51 088 15 0 157.9 .59 149.6 088 2 1 65 028 .16 7 6 1 85 246 2 1 1.91 5.7

All regults are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data____ FA

i

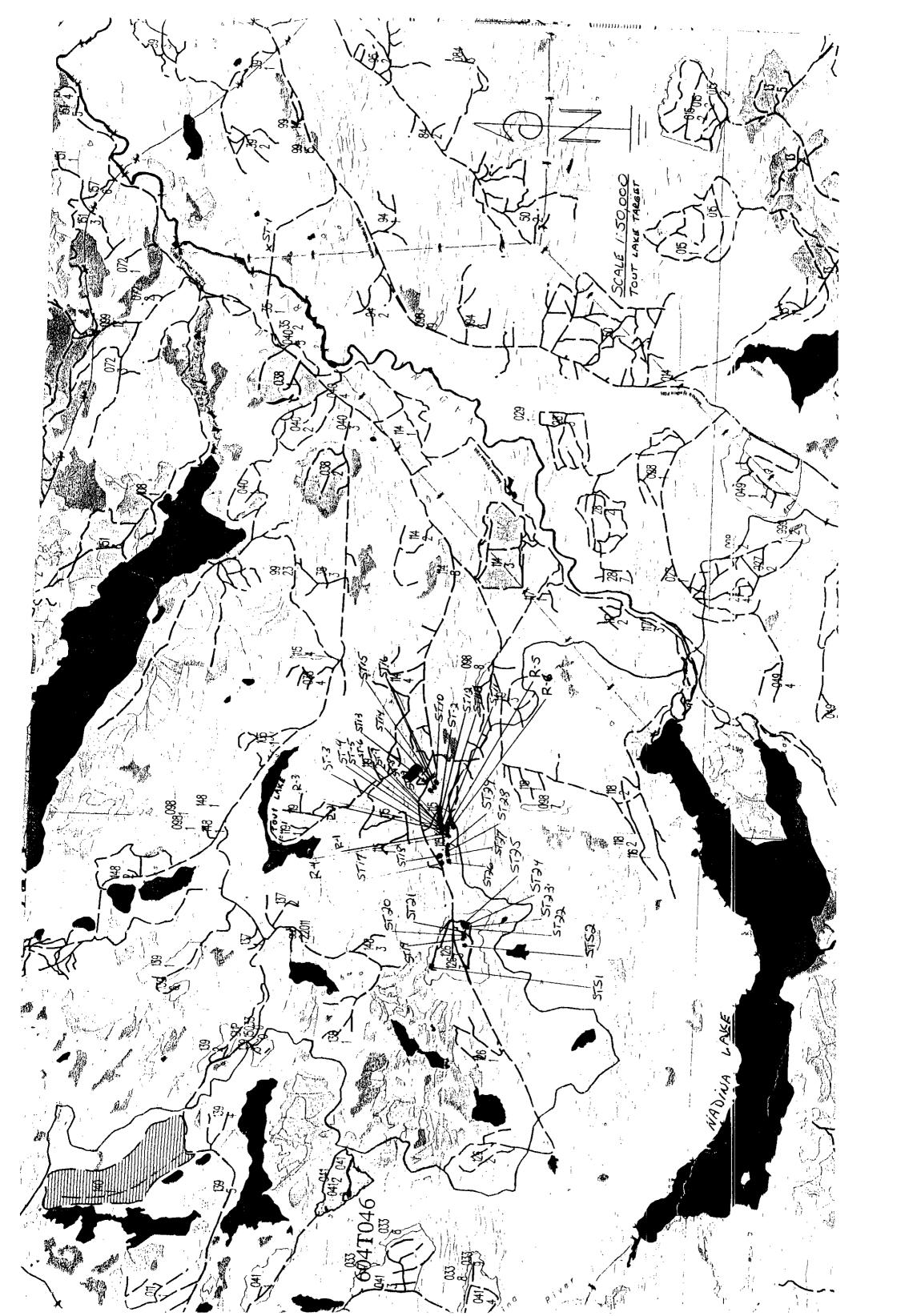
٠.

ŤŤ ACHE ANALYTIC

Hudson Bay Expl. & Dev. Co. Ltd. PROJECT

and the second sec	ROJECT PEDCIL	
+	No Cu - 12 H Co H Te As H	
	ppm	
	por	
ST-14	ppm	
ST-118	3 47 51806 04 19 10 4 53 2 18 16 3 F mou	
R-2		
R-60	372 101 113 9 524 45 97 51 461 30 12016 3 < 1 .7 14.19 35.23 20 17 10 50 116 72 14 4 10 88 0 004 <1 40 005 20 45 10	
R - 5	3 57 412 89 8 58 23 9 615 17 10 4 53 2 18 16 3 .5 95 6 2.1 ppm	
	3 47 5180 04 10 14 1907 3 99999 105 9 671 0 632 28 8 236 0 <1 25	1 7 14.19 35.23 20 17 10 <<01 003 <<5 20 4
R-3	10 5 606 10 26 965.3 3 4990 2 3 7.1 17 48 07 45 12 21 091 2 6 21 6 18 34 0 009 1 1 24 047 14 11 0 08 5 4 36 6 9	
R-6	9 92 184.93 60.87 133 6 P03 5 2 10 5 10 5 10 5 10 5 10 5 10 5 10 5	
6-D	1 80 524 54 212 37 1950 3 477 1 11.6 1 37 4 3 10 p	
R-1	9 92 184.93 60.87 133 6 603 5 3 19 9 334 7 78 11.6 1 37 4 3 10 0 .50 89 1 10 58 32 041 9 19 6 71 23 7 .105 <1 1 19 041 22 13 3 15 8 19 05 50 2 7 .19 193 .54 26 8 7 1 80 524 54 212 37 19500 3 4731 15 1 9 7 802 6 31 1651.1 <1 80.7 .4 3 3 154 04 2.45 15.28 13 .22 .089 2.7 12.1 .19 32 9 009 2 59 004 42 3 1 13 240 7 08 12 .88 2506 17 103.19 9177 9 5907 5 8 19 3 711 12 89 467.2 4 184 1 2 2 0 63.59 .67 55 07 92 .10 046 8 8 (1 1 2 12 7 .105 <1 1 19 041 22 13 3 15 8 19 .43 6.1 274 239.36 19.66 281.9 381 5 0 11 1 482 6.16 4.3 <1 16 1 12 2 0 63.59 .67 55 07 92 .10 046 8 8 107 3 034 1 2 17 .016 59 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.9 2.	
¹² -50	28 2506 17 10 10 0 12 7 363 3 98 25 7 7 0 0 0 12 12 7 363 3 98 25 7 7 0 0 0 0 12 12 12 7 363 3 154 04 2 45 15 28 13 22 089 2 1 10 04 2 2 13 3 15 0 14 12 12 13 15 0 14 12 12 13 15 0 14 12 12 13 15 0 14 12 12 13 15 0 14 12 12 13 15 0 14 12 13 15 0 14 12 12 13 15 0 14 12 13 15 0 14 12 12 13 15 0 14 12 13 15 0 14 12 12 13 15 0 14 12 13 15 0 14 12 13 15 0 14 12 13 15 0 14 13 15 0 14 12 13 15 0 14 1	
R-4	274 28 76 10 19 917 9 5907 5 8 19 3 711 12 89 467 2 4 19 49 167 2 50 95 83 9 02 50 79 12 1 19 32 9 009 2 59 004 42 3 1 19 43 6.1	
	281.9 381 50 11 1 482 5 16 4 3 41 4 1 2 2 0 6 3.59 .67 55 07 92 10 13 14 1 20 5 98 107 3 034 1 2 17 015 50 3 0 11 1 220 7 08 1 2	
RE R-d		
STANDARD DC2	2 00 235.71 18.29 231 4 365 5 2 11 4 470 cm	
00000000	14.19 126 69 32 66 162 9 270 33 4 12 9 270 33	
	2 66 235.71 18.29 281 4 365 5 2 11 4 479 6 06 3 2 < 1 17 8 4 8.3 2 12 .45 1 24 49 44 055 1 3 16.7 .78 22.5 104 <1 1 25 043 16 5 0 09 10 6 .40 6.3 14.19 126 69 32 66 162 9 270 33 4 12 1 810 3.01 60.0 18 9 216 2 3 7 27.9 10 29 9 75 10.98 75 .51 088 15 6 156.2 58 147 7 .087 2 1 65 .029 15 7 7 1 58 243 6.3	
Sample type ROCK RISO ADD Sample		
Source Samples beginnin	g RE' are Reruns and 'RRE' are Reject Reruns	
	2 08 235.71 18.29 231 4 365 5 2 11 4 479 6 06 3 2 < 1 17 8 4 8.3 2 12 .45 1 24 49 44 055 1 3 16.7 .78 22.5 104 < 1 28 044 16 5 0 09 10 6 .40 6.3 14.19 126 69 32 66 162 9 270 33 4 12 1 810 3.01 60.0 18 9 216 2 3 7 27.9 10 29 9 75 10.98 75 51 088 15 6 156.2 58 147 7 .087 2 1 65 .629 15 7 7 1 88 242 2 1 190 6 0	

All nonvite are considered the confidential property of the client. Abre assumed the lighilities for actual cost of the analysis only.


Data - FA

ACHE ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONELDUSI 435+3130 PMALEUT/AUGc) (190 9002 Accredited Co.) 870 GEOCHEMICAL ANALYSIS CERTIFICATE ö. & Dev. Co. Ltd. PROJECT REACH File # A003509 Hudson Bay Expl (a) 800 - 700 W. Pender St., Vancouver BC V6C 108 Submitted by: Ralph Keefe Δ. and the second SAMPLEE Zii Ag Na Co Na Fe As il Au Th Sn Cu Sb. Bí V Ua P La Cr May Ba Tí B. Ál Maa K. W. Th Hag Se Te Ga fio. Ŭ₩. Ph ()()() 5.88 110.03 20 23 221 9 404 13.6 46.2 6423 5 95 30.0 5 17 5 8 28.7 1 31 1 43 1 22 51 .59 .070 8.3 16.8 39 245.5 023 <3 1 71 009 08 .7 .24 41 .7 .25 4.1 51-51 4 10 93 03 23 28 238 3 393 11.4 13.4 3740 3.42 31.1 5 12.0 .5 25.3 1 70 1.79 1.90 49 55 .031 0.7 16.7 40 220.2 .022 -3 1 59 .009 .08 3 .17 62 .6 .35 4.5 \$1-52 566356336 RF 51-52 4.01 92.86 22.93 234.3 397 11.3 13.4 3664 3.38 30.9 .5 18.4 5.25 2 1.68 1.78 1.91 48 56 .078 8.5 16.8 .40 216.6 .020 <3 1.56 .010 .08 .3 .16 47 .6 .39 4.5 STANDARD DS2 14.40 125 62 31 20 156.6 260 35.5 11.5 811 3.06 57.7 18.5 202.5 3.7 28.7 10 02 10.04 10.42 76 .54 .688 15.8 166.4 .60 157.6 .097 <3 1.75 .031 .18 6 9 1 85 240 2 2 1 85 6.1 GROUP 1730 - 30,00 GH SAMPLE, 180 HL 2-2-2 WCL-HH03-H20 AT 95 DEG. C FOR DNE HOUR AND IS DILUTED TO 600 NL, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, NG, N, SE, TE, TE, GA, SN = 100 PPH; NO, CO, CD, SB, BI, TH, U, B = 2,000 PPH; CU, PB, ZN, NI, NN, AS, Y, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: SILT S140 400 зJ ···· • DATE RECEIVED: SEP 11 2000 DATE REPORT MAILED: Sept 50 / 50 $^{\circ}$ œ **r**∿+ $^{\circ}$ ភ័ 61 d, Ó õ U) LAR **BCME** ŭĽ, i1. œ বা ഗ rn. Date # FA All results are considered the confidential property of the client. Ache essumes the liabilities for ectual cost of the analysis only.

...

----Ø S)

ò \odot

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM

B. TECHNICAL REPORT

Name: <u>Shawn Turford</u> Ref #: <u>P21 2000/01</u>

LOCATION/COMMODITIES-

Project Area: <u>Chelaslie area</u> Ass. report #: <u>3810</u>, <u>3254</u>, <u>4403</u>, <u>4610</u> <u>9653</u>, <u>10323</u> & <u>22535</u>

Location of Area NTS: <u>93F 5/E</u> Lat: <u>53</u> 28 Long: <u>125</u> 32 to 52 and <u>area</u>

Description of location & access: <u>Travel by truck and trailer from</u> <u>Francois Lake to West Frasers barge site on Ootsa lake then</u> <u>Southeast onto Table Top Mountain road, then onto Jim Boots road</u> <u>prospecting all side roads and old 'WT" claims. Also travelling</u> <u>further East to prospect Old "Bull" claims and new logging roads</u> <u>and blocks in area. Also prospected were roads to the Western side</u> <u>of the Chelaslie main, North of Chelaslie river, including the C-10</u> <u>block and old "JR" claims.</u>

Main Commodities Searched for: Cu, Au, Ag.

Known Mineral Occurrences in Project Area: <u>Skarn associated plutons</u> <u>Chess (EXO) claims WT and Bull claims</u> WORK PERFORMED-

1.Conventional prosp. prospecting logging roads andblocks also silting creeks in all areas of interest. Also restaking "WT" claims. Now "Lucy"claims.

2.Geological Mapping <u>as per map sheet</u>

3.Geochemical <u>58 rock and silt samples</u> 4.Geophysical <u>nil</u> 5.Physical Work <u>nil</u> 6.Drilling <u>nil</u> 7.Other

SIGNIFICANT RESULTS-

Commodities Cu, Ag & Au Claim Name: Lucy 1 to 4 inclusive Location/Lat:53 28 Long: 125 32 Elevation: Best assay/sample type: Quartz diorite; Skarn; sample # 61932-Cu 2079 ppm Description of mineralization, host rocks, anomalies:

<u>Prospected all three known Plutons in the area. I had three main targets in my Chelaslie project plus roads and log blocks.</u> The "WT" target (claims) were prospected and samples taken in the Skarn zone (quartz diorite). Staking was carried out but results of the assays when returned, turned out to be very poor. We expected them to be much better. A large quartz diorite outcrop was investigated to the West but no sulphides were found.

The "Bull or Precious Metals" target (claims) were also prospected and samples were taken. Host rocks are rhyolitic and andesitic volcanics with minor epiclastic sediments, intruded by rhyolite dikes which are in turn cut by diabase dikes. There was a quartz vien stockwork and a breccia zone, hosted in mafic tuff and breccia's. Assessment report #4610 discussed an anomalous zone that was not properly prospected to the Northwest. We searched the whole area but were unable to find any outcrop in this "anomalous" zone that would assist us in up grading the property even with the new logging that took place.

The "JR" target (skarn) area (old JR claims) which was Northwest of the Chelaslie river pluton, was prospected. The rocks appeared to be too "cold" as minor pyrite and iron staining were noted but no other sulphides were present. A few samples were taken but poor assays were recieved as expected.

The East Jim Smith road was also prospected with multiple outcropping of breccia's and sediments but no suphides were noted. The C-10 block and roads were prospected. The South side of C-10 block exposed 3 skarn outcrops. Skarn #2 assays revieled some elevated Cu, Ag & Au numbers but nothing of great significance. The "pluton" I saw from the aircraft was investigated but it turned out to be a bleached white tuff and rhyolite rock quarry with a darker sediment, conglomerate, parallelling the West side. No sulphides were seen or sampled.

ACME AN	NALYTI SO 900							D.		8	52	B.	H	AST	IN	GS	ST	. 1	VAN	COT	UVEI	RВ	C	V6A	1 IF	26		PH	IONE	(60	4)2	53	-31!	58	FAX	:(6)	04)	253	-17	716	100000
ΔΔ	30 300																				s c										· * :	· · · ·		. * •					Δ		i i
TT	۰ <u>.</u>	Ì	Hude	30N	Ba	ay	Ex														CH 168					Fil	Le	#		019 TR						· .		:	T	. T	5< ∖≊ ∎
SAMPLE#	Мо ррт	Cu ppm			(n Ag om ppb	kg Ni ob ppr		Co opm p		Fe X		s i m ppi	U pm	Au ppb	Th ppm		Sr opm		idi S mi pp		Bi ppm	V ppm	~~		P La ≰ppnr		Cr opm	Mg X	Ba	i Ti	i B	(A (1 Na 8 X	la l	K ¥					Te (pm pp	
51935 J.R. 51936 51937 51938 51939	2.16 7.79 1.80	33.97 27.86 27.66 32.98 36.15	12.70 15.62 9.21) 177.5 ? 110.7 . 56.8	5 55 7 248 8 91	55 13.0 18 8.9 01 10.0	.0 12. .9 9. .0 11.	2.5 1 9.1 8 1.6 9	191 2 873 3 950 3	2.74 3.21 3.79	15.0 31.0 12.8	0.0	.4 .5	.7 1.1 .4	2.2 2.3 1.7	326 88 627 291 212	3.3 7.7 1.5	.42 .21 .06		03 3 55 8 14	3.13 8.24 .50	17 38 1 61 2	.26 1.41 2.80	077 142 0 9 0	7 2.7 2 6.3 0 1 .6	7 14 7 10 3 9 6 22 3 19).6).6 1. 2.4 1.	.14 .01 1 .50 1	57.2 126.5 121.5	2 .053 5 .094 5 .102	34 44 22	.72 .72 1.77 6.01	2 .010 7 .065 1 .633	0 .24 5 .23 33 .07	24 1.7 23 1.1 17 .6	7.1 1.1 6.0	15 8 17 2 07 3	87 4. 29 5. 34 3.	.3 .7 .2 .8 .1 .3	76 1. 88 3. 36 7.	.3 1.5 1.6
1940 E 61940 Tandard DS2	1.85	41.26 38.95 132.00	7.88	33.5	5 55	55 11.0	.0 15.	5.1 2	236 4	4.94	8.1	1 .	.8	.8	3.5	23	3.6	.06	16 .3 16 .3 .0 9.1	34	.02	50	. 28	.107	7 3.5	6 7 5 7 1 159	.2	.42	60.6	5.191	13	3 1.12	2 .025	25 .2	25 1.0	0.1	11 3	331.	7 <.(02 2	.9
UP	ROUP 1F3 PPER LIN SAMPLE	IITS -	AG, A	AU, H	HG, W		SE, TE	ΓE, T	TL, G	GA, S	SN =	= 100	O PPI	PM; M	MO, I	со,	, CD ,	, SB	B, B1	31, Т	TH, U	υ, в	= 2,	,000	PPM;	; CU,	, PB	3, ZN	N, NI	L, MN	I, AS	5, V,	LA,	CR							
DATE RE			JUN 2						_										<u>. 160.</u>		<u></u>	÷	_(1	2										~~~~						
		2.		, 6			12	K22			<i>i</i>	-	.)	1)	1.4	1	•			J2122			• • •		•••		10.	L, -		nu,		,			125	0.0		Un, 2.	N.	
																,																									
B /																																									
160																																									

		800 -						·····		<u>.</u>								Cample			
	SAMPLE#	Cs ppm	Ge ppn	Hf ppm	Nb ppm	Rb ppm	Sc ppm	Sn. ppm	s %		Zr ppm	ppm.	Се ррп.	ppm				Sample gm			
	61935	12.82	<_1	.25	.17	4.4	3.8	.5	3.41	<.05	7.5	4.64	6.2	.02	<1	.5	57.4	30			
	61936	6.71			.14					<.05							5.4				
	61937	8.76			.21									.02	<1	.5	44.3	30			
	61938	76.65	.1	.12	.05	2.4	3.7							.02			99.2				
	61939	6.27	.1	.24	.11	5.0	3.6	.5	3.29	<.05	7.3	5.76	11.7	<.02	<1	.4	83.0	30			
	61940	9,58	.1	.31	.35	10.0	5.7	.4	4.51	<.05	8.9	5.64	7,6	.02	<1	.4	10.4	30			
	RE 61940	9.51	.1	.30	.35	10.0	5.7	.4									10.6	30			
	STANDARD DS2	3.05	.1	.04	1.44	12.5	2.8	26.2	.04	<.05	2.6	7.73	28.6	5.35	<1	.5	15.2	30			
GROUP 1F30 - 30.00 GM SA UPPER LIMITS - AG, AU, H	MPLE LEACHED W G, W, SE, TE, Samples begins	VITH 18 TL, GA	 OML ,SNi F'ar	2-2-2 = 100 e Rer	HCL- PPM;	HNO3- MO,	H2O A CO, C	T 95 D, SB	DEG. , BI	C FOR , TH, Recur	ONE U, B	HOUR, = 2,0	, DILU DOO PI	JTED T M; CU	ю 600 I, РВ,) ML, ZN,	ANAL NI,	YSED BY MN, AS,	ICP/ES & MS. V, LA, CR = 1	10,000 PPM.	

. 1-

ı .

.

. . .

:

. . .

1.

BOD TOD U. Pender St., Vancouver BC V6C 1GB Submitted by: Raiph Keefe TARGUT VPLF PD <	PILE# Mo Cu Pp Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bit V Ca Pp La Cr Mg Ba Ti B Ai K N K N K N K N K N K N K N K N N K N T Hig Ser Cd Sb V Ca Si V A Si V A Si V A Si V A Si N A	<u>A</u>		같은 가장 같은 가장	S - S - I	Hude	son]	Bay	<u> </u>	<u>kpl</u>	<u> </u>	Dev	<u>, c</u>	: o.	<u>Lt</u>	<u>.d.</u>	PRO	JEC	CE	'HEI	AS	LIE	F	lile	; #	A0()19:	26							
ppm ppm <th>ppm ppm ppm<th>PLE#</th><th>Mo</th><th><u></u></th><th></th><th></th><th></th><th></th><th>Co</th><th>) Mn</th><th>Fe</th><th>As</th><th>U</th><th>Au</th><th>Th</th><th>Sr</th><th>Cd</th><th>Sb</th><th>Bi</th><th>۷</th><th>Ca</th><th>P</th><th>La</th><th>Cr</th><th>Mg</th><th>Ba</th><th>Ti</th><th>B</th><th>Al</th><th>Na</th><th>KI</th><th></th><th></th><th></th><th></th></th>	ppm ppm <th>PLE#</th> <th>Mo</th> <th><u></u></th> <th></th> <th></th> <th></th> <th></th> <th>Co</th> <th>) Mn</th> <th>Fe</th> <th>As</th> <th>U</th> <th>Au</th> <th>Th</th> <th>Sr</th> <th>Cd</th> <th>Sb</th> <th>Bi</th> <th>۷</th> <th>Ca</th> <th>P</th> <th>La</th> <th>Cr</th> <th>Mg</th> <th>Ba</th> <th>Ti</th> <th>B</th> <th>Al</th> <th>Na</th> <th>KI</th> <th></th> <th></th> <th></th> <th></th>	PLE#	Mo	<u></u>					Co) Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	Ti	B	Al	Na	KI				
31 31 <td< td=""><td>Approximation Signed Signe Signed Signed<</td><td></td><td>ррт</td><td>ppm</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>89</td><td>109 2</td><td>2 89</td><td>123</td><td>2.6</td><td>13.9</td><td>1.28</td><td>103.0</td><td>.118</td><td>4 5</td><td>5.19.</td><td>.484 .</td><td>.89 1.3</td><td>3.59</td><td>9 10 8</td><td>8.4 .2</td><td>.26 12</td></td<>	Approximation Signed Signe Signed Signed<		ррт	ppm															89	109 2	2 89	123	2.6	13.9	1.28	103.0	.118	4 5	5.19.	.484 .	.89 1.3	3.59	9 10 8	8.4 .2	.26 12
0.0 1.85 45.05 7.6 55.7 81 49.2 30.3 758 6.36 4.4 <.1	1/2 4/2 4/2 4/2 4/2 1/2 4/2 1/2 4/2 1/2 4/2 1/2 1/2 4/2 1/2 1/2 4/2 1/2 1/2 4/2 1/2	04-#/s/ 05 h 06 i7	и .80 и 1.30	35.47 27.41 50.87	6.01 5.93 7.32	54.9 21.8 64.1	69 81 150	168.9 7.0 5.7	74.2 4.2 10.1	2 492 2 157 1 308	6.65 4.14 2.23	6.9 2.4 21.0	<.1 <.1 .4	1.7 1.1 1.7	.5 1.2 5.9	28.2 27.7 27.8	.07 .02 .20	.25 .18 .80	.68 `.14 .11	12 8 73	.53 .05 .74	.312	4.1 6.0 3.5	11.7 6.2 14.8	.98 .70 .92	49.2< 40.9< 31.2	<.001 <.001 .143	$ \begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{array} $	1.76 . 1.31 . 1.34 .	.041 . .026 . .077 .	.15 .24 .11 2.4	7 .15 3 .08 4 .07	5 11 4 8 9 2 7 <5	4.02.3 2.31.4 .5.0	41 3 07 4
$\begin{array}{c} 11 \\ 16.16 \\ 56.94 \\ 5.2 \\ 12.4 \\ 566 \\ 2.2 \\ 12.4 \\ 566 \\ 2.2 \\ 1.9 \\ 246 \\ 4.30 \\ 27.7 \\ 21 \\ 1.0 \\ 2.9 \\ 3 \\ 35.8 \\ 18 \\ 1.44 \\ .31 \\ 22 \\ 1.13 \\ .00 \\ 1.2 \\ 2.9 \\ .3 \\ 35.8 \\ .18 \\ 1.44 \\ .31 \\ 22 \\ 1.13 \\ .00 \\ 31.2 \\ 2.9 \\ .3 \\ 2.9 \\ .21 \\ 10.5 \\ 1.13 \\ .22 \\ 1.13 \\ .00 \\ 31.2 \\ 2.9 \\ .21 \\ 10.5 \\ .113 \\ 4 \\ .66 \\ .016 \\ .22 \\ .15 \\ .113 \\ 4 \\ .66 \\ .016 \\ .02 \\ .7 \\ .02 \\ .01 \\ .00 \\ .10 \\ .00 \\ .10 \\ .00 \\ .10 \\ .$	$\begin{array}{c} 11 \\ 16.16 \\ 56.94 \\ 5.2 \\ 12 \\ 3.09 \\ 15.65 \\ 7.60 \\ 37.6 \\ 89 \\ 3.2 \\ 1.5 \\ 1.6 \\ 4.3 \\ 2.1 \\ 5.4 \\ 1.3 \\ 1.6 \\ 3.1 \\ 2.2 \\ 1.3 \\ 3.5 \\ 1.8 \\ 1.4 \\ 3.1 \\ 2.1 \\ 1.3 \\ 2.1 \\ 1.3 \\ 2.1 \\ 1.3 \\ 1.0 \\ 1.2 \\ 2.9 \\ 1.3 \\ 1.2 \\ 2.9 \\ 3.3 \\ 5.8 \\ 1.8 \\ 1.44 \\ .31 \\ 22 \\ 1.13 \\ .00 \\ 3.1 \\ 2.2 \\ 1.3 \\ .00 \\ 1.2 \\ 2.9 \\ 2.3 \\ 2.9 \\ 1.3 \\ 2.9 \\ 2.1 \\ 1.3 \\ 2.1 \\ 1.3 \\ 2.1 \\ 1.3 \\ 2.1 \\ 1.3 \\ 2.1 \\ 1.3 \\ 1.2 \\ 2.9 \\ 1.3 \\ 1.2 \\ 2.9 \\ 1.3 \\ 2.1 \\ 1.3 \\ 2.1 \\ 1.3 \\ 2.1 \\ 1.3 \\ 2.1 \\ 1.3 \\ 1.2 \\ 2.9 \\ 1.3 \\ 2.9 \\ 2.1 \\ 1.3 \\ 2.1 \\ 1.3 \\ 2.1 \\ 1.3 \\ 2.1 \\ 1.3 \\ 1.2 \\ 2.1 \\ 1.3 \\ 1.2 \\ 2.9 \\ 1.3 \\ 2.9 \\ 2.1 \\ 1.3 \\ 2.1 \\ 1.3 \\ 2.1 \\ 1.3 \\ 2.1 \\ 1.3 \\ 1.2 \\ 2.1 \\ 1.3 \\ 1.2 \\ 1.1 \\ 1.3 \\ 1.2 \\ 1.1 \\ 1.3 \\ 1.3 \\ 1.2 \\ 1.1 \\ 1.3 \\ 1.3 \\ 1.2 \\ 1.1 \\ 1.3 $	08 09 #2-5; 10	1.85	46.65 1159.16	7.76	55.7 398.8	81 14316 4127	49.2 5.7 12.5	30.3 4.8 32.0	3 758 3 665 0 1008	6.36 8.62 10.03	4.4 101.4 199.9	<.1 .5 .8	1.8 8.5 12.0	.5 3.4 3.9	35.3 2.4 2.4	.21 1.54 1.16	.44 1.15 1.24	.10 13.31 10.98	41 26 39	.65 .16 .20	.108 .081 .080	4.5 5.8 4.1	38.7 9.7 15.0	1.25 .44 .74	47.8< 40.4 42.7	<.001 .009 .054	12 41 21	2.00 . 1.60 . 1.89 .	.062 .005 .004	.15 .31 2. .39 2.	7 .12 3 .31 7 .41	1 102 1 52	2.3 .7 2.7 1.0	60 4
61912 3.02 15.07 7.83 36.2 90 3.0 1.3 403 5.06 5.0 7 2.2 2.7 15.3 .94 .65 3.32 73 .63 .074 2.6 14.7 .99 52.1 .118 2 2.76 .024 .39 1.5 .36 11 .7 .09 6 13 1.67 230.21 227.83 445.3 2746 5.1 3.8 993 5.96 5.4.0 .7 2.2 2.7 15.3 .94 .65 3.32 73 .63 .074 2.6 14.7 .99 52.1 .118 2 2.76 .024 .39 1.5 .36 11 .7 .09 6 14 21.09 1886.19 46.81 318.4 11203 13.1 57.0 1419 22.08 180.5 1.3 25.2 2.1 3.0 .41 .71 6.67 109 .23 .077 3.3 8.9 .80 14.6 .079 16 3.67 .002 .21 2.1 .29 <5 5.3 1.51 10 15 1.08 81.05 24.42 86.4 609 5.7 9.0 311 3.00 36.5 .7 2.4 5.4 16.5 .36 1.04 1.15 69 .51 .062 6.7 13.1 .94 43.0 .124 2 1.49 .101 .20 2.0 .21 9 .5 .10 6 16 3.07 389.86 664.94 369.6 10372 5.4 1.9 916 4.23 183.3 .9 21.1 5.5 3.1 1.53 1.21 12.21 21 .18 .071 2.5 12.9 .59 60.7 .043 1 1.66 .007 .55 2.8 .48 6 1.2 .21 3 17 5xa4w #3 1.30 28.84 10.27 20.6 145 2.2 6.1 122 1.44 5.5 .2 6.8 .7 15.6 .15 .55 .10 27 .53 .127 7.3 6.6 .19 16.0 .077 2 .42 .051 .06 1.6 .02 6 .6 .05 1 18 1.64 27.28 13.23 44.7 236 2.8 3.6 124 1.10 12.7 .2 3.0 .9 128.2 .26 .43 .32 16 3.16 .110 6.5 11.3 .13 31.8 .076 6 4.53 .482 .07 1.5 .03 6 .4 .05 10 19 2.06 53.36 14.34 44.2 252 2.8 10.2 231 3.63 9.2 .2 1.4 .8 11.1 .23 .45 .25 87 .52 .146 5.9 9.3 1.27 71.9 .221 1 .140 .046 .26 1.6 .13 6 .17 .10 5 20 1.89 153.56 10.53 54.7 407 7.2 40.3 93 4.41 6.4 .4 3.5 1.6 11.9 .20 2.31 .39 44 .26 .021 3.9 8.8 .41 18.7 .132 <1 .70 .31 .16 7.0 1.79 234 2.3 1.79 5 20 1.89 153.56 10.53 54.7 407 7.2 40.3 93 4.41 6.4 .4 3.5 1.6 11.9 .20 2.31 .39 44 .26 .021 3.9 8.8 .41 18.7 .132 <1 .70 .31 .16 7.0 1.79 234 2.3 1.79 5 21 .89 153.56 10.53 54.7 407 7.2 40.3 93 4.41 6.4 .4 3.5 1.6 11.9 .20 2.31 .39 44 .26 .021 3.9 8.8 .41 18.7 .132 <1 .70 .31 .16 7.0 1.79 234 2.3 1.79 5 21 .89 153.56 10.53 54.7 407 7.2 40.3 93 4.41 6.4 .4 3.5 1.6 11.9 .20 2.31 .39 44 .26 .021 3.9 8.8 .41 18.7 .132 <1 .70 .031 .16 7.0 1.79 234 2.3 1.79 5 22 .189 153.56 10.53 54.7 407 7.2 40.3 93 4.41 6.4 .4 3.5 1.6 11.9 .20 2.31 .39 44 .26 .021 3.9 8.8 .41 18.7 .132 <1 .70 .031 .16 7.0 1.79 234 2.3 1.79 5 23 .00 22 14.28 132.00 32.79	61912 3.02 15.07 7.83 36.2 90 3.0 1.3 403 5.06 5.0 7 2.2 2.7 15.3 .94 .65 3.32 73 .63 .074 2.6 14.7 .99 52.1 .118 2 2.76 .024 .39 1.5 .36 11 .7 .09 6 13 1.67 230.21 227.83 445.3 2746 5.1 3.8 993 5.96 5.4 0.7 2.2 2.7 15.3 .94 .65 3.32 73 .63 .074 2.6 14.7 .99 52.1 .118 2 2.76 .024 .39 1.5 .36 11 .7 .09 6 14 21.09 1886.19 46.81 318.4 11203 13.1 57.0 1419 22.08 180.5 1.3 25.2 2.1 3.0 .41 .71 6.67 109 .23 .077 3.3 8.9 .80 14.6 .079 16 3.67 .002 .21 2.1 .29 <5 5.3 1.51 10 15 1.08 81.05 24.42 86.4 609 5.7 9.0 311 3.00 36.5 .7 2.4 5.4 16.5 .36 1.04 1.15 69 .51 .062 6.7 13.1 .94 43.0 .124 2 1.49 .101 .20 2.0 .21 9 .5 .10 6 16 3.07 389.86 664.94 369.6 10372 5.4 1.9 916 4.23 183.3 .9 21.1 5.5 3.1 1.53 1.21 12.21 21 .18 .071 2.5 12.9 .59 60.7 .043 1 1.66 .007 .55 2.8 .48 6 1.2 .21 3 17 5xa4w #3 1.30 28.84 10.27 20.6 145 2.2 6.1 122 1.44 5.5 .2 6.8 .7 15.6 .15 .55 .10 27 .53 .127 7.3 6.6 .19 16.0 .077 2 .42 .051 .06 1.6 .02 6 .6 .05 1 18 1.64 27.28 13.23 44.7 236 2.8 3.6 124 1.10 12.7 .2 3.0 .9 128.2 .26 .43 .32 16 3.16 .110 6.5 11.3 .13 31.8 .076 6 4.53 .482 .07 1.5 .03 6 .4 .051 0 19 2.06 53.36 14.34 44.2 252 2.8 10.2 231 3.63 9.2 .2 1.4 .8 11.1 .23 .45 .25 87 .52 .146 5.9 9.3 1.27 71.9 .221 1.40 .046 .26 1.6 .13 6 .17 .10 5 20 1.89 153.56 10.53 54.7 407 7.2 40.3 93 4.41 6.4 .4 3.5 1.6 11.9 .20 2.31 .39 44 .26 .021 3.9 8.8 .41 18.7 .132 <1 .70 .031 .16 7.0 1.79 234 2.3 1.79 5 20 1.89 153.56 10.53 54.7 407 7.2 40.3 93 4.41 6.4 .4 3.5 1.6 11.9 .20 2.31 .39 44 .26 .021 3.9 8.8 .41 18.7 .132 <1 .70 .031 .16 7.0 1.79 234 2.3 1.79 5 21 .89 153.56 10.53 54.7 407 7.2 40.3 93 4.41 6.4 .4 3.5 1.6 11.9 .20 2.31 .39 44 .26 .021 3.9 8.8 .41 18.7 .132 <1 .70 .031 .16 7.0 1.79 234 2.3 1.79 5 21 .80 32.09 32.79 163.3 263 37.3 12.3 846 3.11 61.4 16.8 193.4 3.6 26.4 10.10 9.11 10.75 74 .53 .091 15.1 159.7 .61 150.9 .091 3 1.70 .031 .16 7.0 1.79 234 2.3 1.79 5 21 .80 2.00 2.79 163.3 263 37.3 12.3 846 3.11 61.4 16.8 193.4 3.6 26.4 10.10 9.11 10.75 74 .53 .091 15.1 159.7 .61 150.9 .091 3 1.70 .031 .16 7.0 1.79 234 2.3 1.79 5 22	11	16.16	56.94	6.52	12.4	586	2.2	2 1.9	246	4.30	27.7	.2	1.0	.4	46.6	. 08	2.51	1.71	40	.72	. 048	.7	9.6	.12	8.2	.175	7 4	.68.	.016 .	.02 3.	.7 <.02	27<	<.1 .0	.04 2
$\begin{array}{c} 1.0 \\ \hline 0.17 \\$	STRACK #3 1.30 28.84 10.27 20.6 145 2.2 6.1 122 1.44 5.5 .2 6.8 .7 15.6 .15 .55 .10 27 .53 .127 7.3 6.6 .19 16.0 .077 2 .42 .051 .06 1.6 .02 6 .6 .05 1 1.30 28.84 10.27 20.6 145 2.2 6.1 122 1.44 5.5 .2 6.8 .7 15.6 .15 .55 .10 27 .53 .127 7.3 6.6 .19 16.0 .077 2 .42 .051 .06 1.6 .02 6 .6 .05 1 1.30 28.84 10.27 28 13.23 44.7 236 2.8 3.6 124 1.10 12.7 .2 3.0 .9 128.2 .26 .43 .32 16 3.16 .110 6.5 11.3 .13 31.8 .076 6 4.53 .482 .07 1.5 .03 6 .4 .05 10 2.06 53.36 14.34 44.2 252 2.8 10.2 231 3.63 9.2 .2 1.4 .8 11.1 .23 .45 .25 87 .52 .146 5.9 9.3 1.27 71.9 .221 1 1.40 .046 .26 1.6 .13 6 1.7 .10 5 2.01 1.89 153.56 10.53 54.7 407 7.2 40.3 93 4.41 6.4 .4 3.5 1.6 11.9 .20 2.31 .39 44 .26 .021 3.9 8.8 .41 18.7 .132 <1 .73 .026 .19 2.1 .12 8 1.9 .25 2 ANDARD DS2 14.28 132.00 32.79 163.3 263 37.3 12.3 846 3.11 61.4 16.8 193.4 3.6 26.4 10.10 9.11 10.75 74 .53 .091 15.1 159.7 .61 150.9 .091 3 1.70 .031 .16 7.0 1.79 234 2.3 1.79 5 GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS.	13 14 15	1.67 21.09 1.08	230.21 1886.19 81.05	227.83 46.81 24.42	445.3 318.4 86.4	2746 11203 609	5.1 13.1 5.7	3.8 57.0 9.0	8 993) 1419) 311	5.96 22.08	54.0 180.5 36.5	.7 1.3 .7	2.2 25.2 24	2.7	15.3 3.0	.94 .41 .36	.65 .71 1.04	3.32 6.67 1.15	2 73 109 69	.63 .23 .51	.074 .077 .062	2.6 3.3 6.7	14.7 8.9 13.1	.99 .80 .94	52.1 14.6 43.0	.118 .079 .124	22 163 21	2.76 . 3.67 . 1.49 .	.024 .002 .101	.39 1. .21 2. .20 2.	.5 .36 .1 .29 .0 .21	6 11 9 <55 1 9	.7. 5.31. .5.	.09 6 .51 10 .10 6
GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS.	GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS.	<i>Sica ku</i> 17 18 19 20	* #3 1.30 1.64 2.06 1.89	28.84 27.28 53.36 153.56	10.27 13.23 14.34 10.53	20.6 44.7 44.2 54.7	145 236 252 407	2.2 2.8 2.8	2 6.1 3 3.6 3 10.2	1 122 5 124 2 231	1.44 1.10 3.63	5.5 12.7 9.2	.2 .2 .2	6.8 3.0 1.4 3.5	.7 .9 .8	15.6 128.2 11.1	. 15 . 26 . 23	.55 .43 .45 2.31	.10 .32 .25	27 2 16 3 87 44	.53 3.16 .52	.127 .110 .146 .021	7.3 6.5 5.9 3.9	6.6 11.3 9.3 8.8	.19 .13 1.27 .41	16.0 31.8 71.9 18.7	.077 .076 .221 .132	2 64 11 <1	.42 . 4.53 . 1.40 . .73 .	.051 .482 .046 .026	.06 1. .07 1. .26 1. .19 2.	.6 .02 .5 .03 .6 .13 .1 .12	26 36 361 281	.4 .1 1.7 . 1.9 .1	.05 10 .10 5 .25 2
		DAT	UPPE - SA	R LIMITS MPLE TYP	S - AG, Pe: Roo	, AU, CK	110 17	0.5	TC	TI 0	CA CH	100		4. 140		- CD - 1	SH R	LT TH	6 EL	R = 1	2 HDC	I PPM		PB.	ZN.	NI. M	IN. AD.	S. V.		. LK -	= 10,0 TIFIE	00 PP	"M.	\YERS	

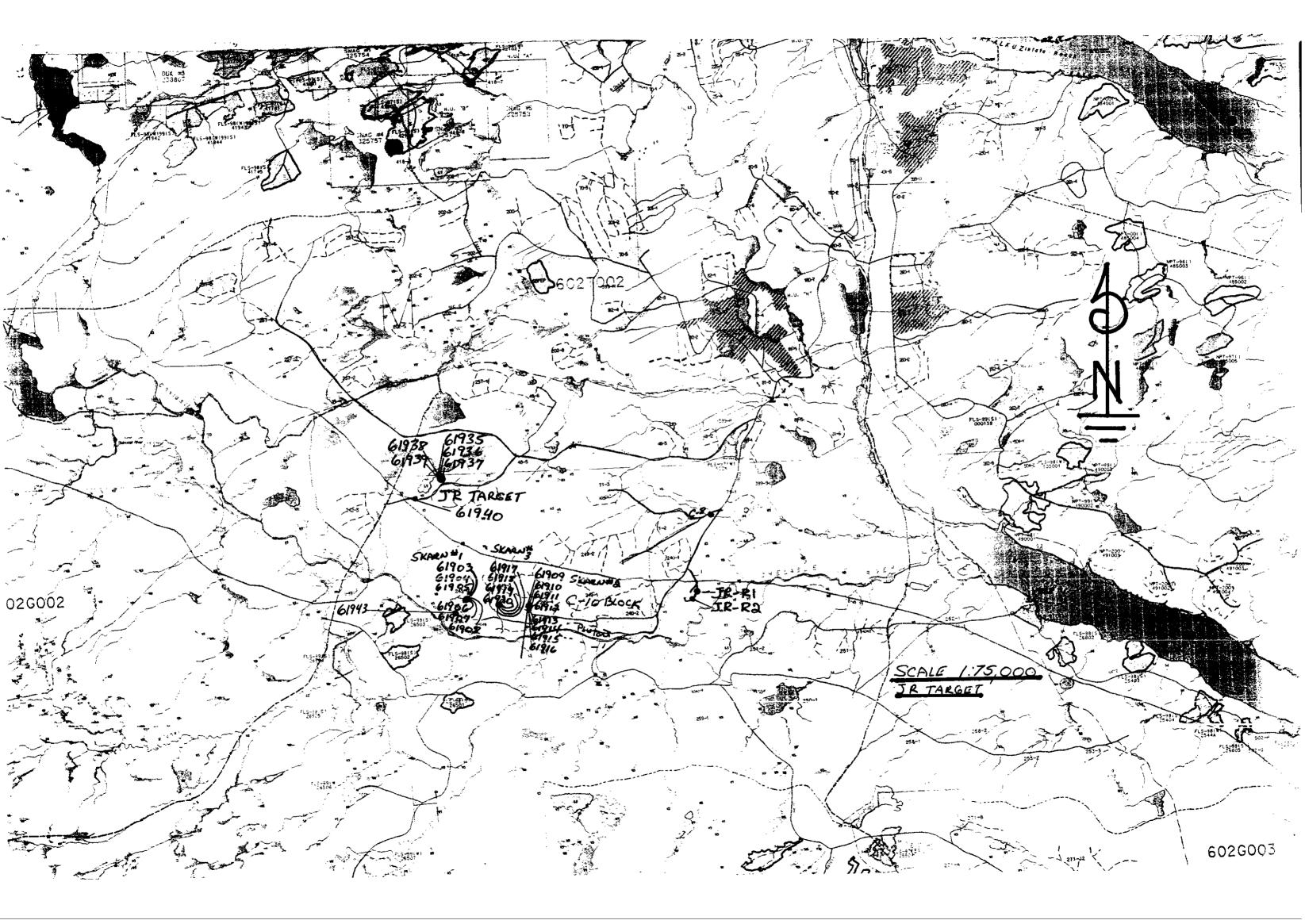
ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 (ISO 9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE

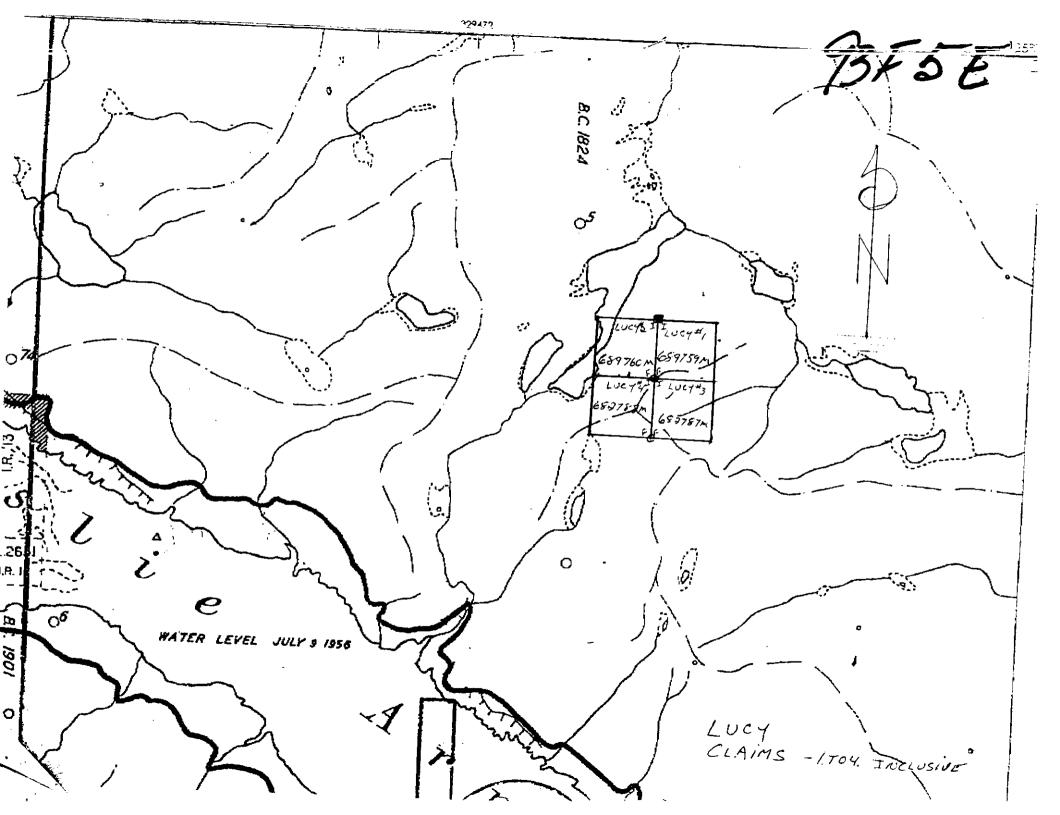
> Hudson Bay Expl. & Dev. Co. Ltd. PROJECT CHELASLIE File # A001926 (b) 800 - 700 W. Pender St., Vancouver BC V6C 1GB Submitted by: Raiph Keefe

이 같은 것같 <mark>다. 이 것은</mark> 것 같은 것은 것은 것이 있는 것이 있는 것이 것 같은 것이 있는 것이 같이 있는 것이 같이 있다. 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있다. 것이 있는 것이 있다. 것이 있는 것이 있다. 것이 있는 것이 있다. 것이 있는 것이 있다. 것이 있는 것이 있는 것이 있는 것이 있는 것이 있는 것이 있다. 것이 있는 것이 있다. 것이 있는 것이 있다. 것이 있는 것이 있다. 것이 있는 것이 없다. 것이 있는 것이 없이 있다. 것이 있는 것이 없다. 것이 것이 있 않이 않이 않이 않이 않이 않이 않이 않아. 것이 있는 것이 없는 것이 없이 않이 않이 않이 않이 않아. 것이 않아, 것이 있 않아, 것이 있 않아, 것이 않아, 것이 있 않아, 것이 없이 않아, 것이 않아, 것이 것이 것이 것이 않아, 것이 않아, 것이 것이 않아, 않아, 것이 않 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않아, 않	1.5.755				S 1 22	A 5 1 2		0.000						<u></u>				
SAMPLE#	Cs	Ge	Нf	NÞ		Sc	Sn	s	Ta	Zr	Y ppm	Ce ppn	In ppm	Re	Be ppm	Li ppm	Sample 911	
	ppm	bbw	bbu	ppm	ppm	ppm	bbu	^	ppm	ppm	PP**	P7***	PPan	PPD	P.1	From		
	1	_	~	~	F.0. 4		7	7 05	< 05		4 59	57	< 02	<1	8	31.6	30	
61903	6.59	•1	.04		50.1			3.05			6.58			2		16.9	30	
61904	1.38	.1	.02		5.7						7.49		<.02			8.2	30	
61905	1.46	<.1			5.7		· · ·				1.18			1				
61906	1.36	.1			6.8		.6				4.75			1		14.0		
61907	2.68	.1	.04	<.02	4.3	.9	<.1	7.44	<.05	.3	5.64	5.2	.06	<1	.4	33.7	20	
										_					_		70	
61908	2.02	.1	<.02	<.02	7.2	1.7	<.1	8.80	<.05		7.86			<1		20.2		
61909	3.89		<.02		20.5				<.05	.4	5.28	11.5	.33	1		41.9		
61910	5.25	.1	<.02	.21	27.2	2.5	3.1	9.99	<.05	.5	8.40	9.4	.21	11	.3	55.8	30	
61911	.63		. 16		1.7			.48	<.05	4.1	1.89	1.7	. 12	11	.2	.9	30	
61912	.79		.21		1.1						4.85		.08	2	.1	2.5	30	
DIVIC	1.17																	
PE (1012	70		20	47	1.1	15	.7	05	< 05	4 9	4.47	2.9	.07	2	.1	2.4	30	
RE 61912	.78		.20								5.57			1		68.7		
61913	8.53	-1	.02								12.50			1		93.0		
61914	2.87	3		.21	19.2	5.0	1.5	13.40						2		27.9		
61915	1.90		.03	.20	10.2	4.0	1.1	1.59	<.05		6.51			4		35.7		
61916	3.98	.1	<.02	.05	35.7	1.4	1.8	3.29	<.05	.2	3.69	4.9	. 15		•4	32.1	50	
	1					-	-						~~	~			70	
61917	.30	.1	.11	.23	1.7	.9	-2	.60	<.05	2.0	7.31	12.2	-02	2		4.9	30	
61918	1.76	<.1	. 19	.13	2.2	.8	.3				5.99			2		6.3		
61919	1.44	.2	.03	.09	12.6	7.4	.3				11.19			6		35.8		
61920	1.08	.1	.22	.22	7.2	2.8	.5	4.07	<.05	3.4	9.72	8.7	<.02	8		14.3		
		.1	.04	1.44	12.5	2.8	26.2	.04	<.05	2.6	7.73	28.6	5.35	<1	.5	15.2	30	

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

.... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS 1 14 4/W SIGNED BY. DATE REPORT MAILED: DATE RECEIVED: JUN 20 2000


All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the enalysis univ.


	ANALY ISO 9		CCT	adit	eđ (20.)		Exc	1	G	EOC Dev	HEM C	IC	AL Lt	ANA d.	LYS PRO	IS JEC	CE	RTI	FIC	CAT ISZ/ F1	s. Ve	† 2	003		JF	153 }	-31! 7 (a)	7	rnx (RG	604 ; E	125 7	311	716	
SAMPLE#	Ho VQU	Cu ppm	PL	-	ז Ag קעק ד				Fe	As	y Dbw	Au	Th	<u></u>	b)		Bi	<u></u>	Ca	P X		Сг	Mg X	Ba ppm	Ti Ti	B	A) ¥	Ka X	K X	₩ ppm	T1 ppm p	tig ppb		Te ppm	Ga pçin
5TD 5+1 JR-R1 JR-R2	4.47	29.90 94.50 4277.85	5.85	5 19.4	295	15.8	36.4	377		3.5	.5	5.0	.4	54.2		1.05	. 50	51	. 80	094	2.5	7.4	.65	86.0	. 087	<11	. 69	170	.15	.7	.07	4	.3	.06	4.4
RE JR-R2 STANDARD DS2	7.93	4291.86	4.99	311.0	7643	14.3	17.7	2135	8.34	1.9	5.2	9.4	.5	4.4	3.08	. 33	3.23	73	1.96	.082	2.5	15.8	.14	2.3	.053	<1	.82	014	.01 9	15.6 -	<.02 3	340 1	10.7	.55	5.8

GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, HN, AS, Y, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK R150 40C Samples beginning (REf and Reruns and (RREf are Reject Reruns.

All results are considered the confidential property of the client. Arme assumes the liabilities for actual cost of the analysis only.

.

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) WT TARGET GEOCHEMICAL ANALYSIS CERTIFICATE Hudson Bay Expl. & Dev. Co. Ltd. PROJECT CHELASLIE File # A001929 800 - 700 W. Pender St., Vancouver BC V6C 1G8 Submitted by: Ralph Keefe W T1 Hq Se Тe Ga Ca P La Cr Ma Ba Ti В A1 Na κ Th Sr Cd Sb Bi v SAMPLE# Co Mn Fe As U Au Сu Pb Zn Ag Nî Мо 8 ¥ DDM x X X DOM DOM DOD DOM ppm ppm x DDM ppm ppm ppm pom pom x ppm pob DDM DOM ppm DDM mag dag mag ppm DDM x nod DDM DDM .02 10.3 .48 120 1.08 .155 14.5 64.2 1.44 81.5 .221 <1 1.79 .084 13 .3 .49 1.8 .36 .7 6.2 31.1 . 22 .17 61926 wr / Lucy 5.40 281.39 3.23 90.7 675 26.0 16.1 1113 4.28 4.0 1.1 .37 154 .52 .165 11.2 78.2 2.24 162.7 .352 <1 2.28 .091 1.50 29.8 1.18 16 .5 .14 13.1 🗖 .04 .06 3.1 4.3 28.0 61927 4.80 323.70 1.63 53.1 637 24.5 12.7 498 5.21 2.7 .9 .01 .18 13.13 61 .44 .103 4.0 24.1 .93 29.7 .126 <1 1.28 .052 .12 2.3 .13 <5 1.9 13.36 7.7 5.34 20.21 4.72 22.2 150 17.9 22.2 192 7.12 5.7 1.8 22.3 17.6 35.0 61928 .22 2.17 114 .79 .189 10.7 57.5 1.38 112.8 .219 <1 1.45 .072 .50 1.8 .35 <5 .8 .35 6.3 5 9.04 181.73 2.50 37.4 340 34.2 19.5 266 3.84 5.0 1.0 1.4 4.3 35.9 .06 61929 42.05 1963.10 9.59 129.9 3466 43.9 29.3 464 8.24 4.3 1.5 6.0 4.1 24.7 1.05 .17 2.64 147 .58 .171 9.7 75.7 2.00 53.8 .289 <1 2.19 .075 .79 2.8 .86 <5 1.5 .56 12.7 61930 .10 .20 1.84 112 1.08 .156 6.2 87.1 1.54 123.8 .226 <1 2.39 .160 .38 1.3 .39 <5 1.1 .27 10.2 16.08 503.83 2.68 48.6 860 45.3 27.1 350 4.48 5.7 1.0 .8 3.1 112.8 61931 20 9.34 109 .40 .160 8.3 71.8 1.71 35.0 .192 <1 1.80 .036 .24 164.6 .22 <5 4.3 2.61 12.7 14.53 2007.42 3.38 105.1 7260 42.6 24.0 283 9.44 11.0 .9 4.5 4.5 49.1 . 36 61932 .22 8.91 114 .41 .166 8.9 74.4 1.77 36.6 .197 <1 1.86 .040 .25 179.9 .24 <5 4.6 2.29 13.1 15.45 2079.23 3.60 108.8 7616 44.9 25.3 299 9.77 11.5 1.0 5.1 4.6 48.4 . 38 RE 61932 .26 .26 7.14 135 .50 .186 5.9 92.2 1.89 23.5 .132 <1 1.92 .033 .11 4.9 .12 <5 1.8 2.20 11.1 19.71 1299.80 3.87 74.9 3785 58.6 31.0 263 7.41 10.4 1.4 5.3 4.4 16.6 61933 9.51 1055.06 3.06 53.7 2016 64.0 35.0 200 5.85 7.4 1.0 7.7 1.7 52.7 .39 .67 5.19 81 .98 .102 6.1 29.9 .64 30.9 .121 1 1.58 .095 .13 3.2 .88 <5 3.3 1.58 7.1 61934 STANDARD DS2 13.93 129.85 31.11 157.5 271 33.7 11.8 822 3.03 62.1 17.8 203.4 3.5 27.7 10.18 8.73 11.39 73 .52 .090 14.1 154.3 .59 148.2 .091 3 1.66 .029 .15 7.3 1.89 241 2.2 1.78 6.2 GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: ROCK DATE REPORT MAILED: JULE 30/00 SIGNED BY .M. Alle .D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS DATE RECEIVED: JUN 20 2000 All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only. υατα FA

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)			GEC	СНЕ	STINC EMIC	AL .	ANA	LYS	IS	CERI	TF	ICA	re		-			3-3158 FAX (604) 253-1716 (b)
					St., 1													
SAMPLE#	Cs ppm	Ge ppn	нf ppm	NÞ ÞÞm	Rb ppm	Sc ppm	Sn ppm	s X	Ta ppm	2r ppm	Y ppm	Ce ppm	In ppm	Re ppb	Be ppm	Li ppm	Sample gm	
61926	3.35	.1	.13	.27	35.3	5.6	1.8	.24	<.05	3.1 9	9.54	32.1	.08	<1	.8	29.8	30	
61927	6.51	.3	.05	.29	121.4	9.0	2.9	1.55	<.05	1.1 6	5.16	21.7	.06	<1	.2	28.3	30	
61928	.77	.1	.13	.35	9.5	2.5	.7	5.62	<.05	4.2 2	2.34	7.5	<.02	<1	.3	16.5	30	
61929	3.23	.1	.10	. 19	36.1	3.5	1.1	1.24	<.05	2.3 8	3.22	22.3	.04	2	.2	25.0	30	
61930	3.42	.2	.11	.41	64.1	8.1	2.1	6.19	<.05	2.5 7	.49	19.1	.27	13	.2	32.7	30	
61931	4.64	.1	.11	.13	30.5	3.5	1.2	1.32	<.05	3.3 5	5.25	13.7	.08	19	.2	35.8	30	
61932	2.18	.3	.10	. 19	21.3	4.0	1.2	4.05	<.05	2.1 3	5.63	15.2	. 12	3	.2	31.9	30	
RE 61932	2.30	.3	.11	.23	22.1	4.5	1.3	4.27	<.05	2.4 3	5.67	16.5	.13	4	.1	35.1	30	
61933	.91	.2	.16	.22	9.8	7.7	1.0	4.43	<.05	3.5 7	7,30	12.2	. 15	9	.2	49.1	30	
61934	2.26	.2	.28	.12	14.0	3.6	3.3	4.26	<.05	8.78	8.62	11.9	. 15	18	.3	19.5	30	
STANDARD DS2	2.98	.1	.05	1.45	12.4	2.8	26.7	.01	<.05	3.2 8	3.00	28.6	5.38	<1	.5	15.8	30	

GROUP 1F30 ~ 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HN03~H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LINITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

PHONE (604) 253-3158 FAX (604) 253-1716 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE WT TARGET 2147 Hudson Bay Expl. & Dev. Co. Ltd. PROJECT CHELASLIE File # A001930 (a) 800 - 700 W. Pender St., Vancouver BC V6C 168 Submitted by: Ralph Keefe ucu AL C K W TI Hg Se Te Ga Ti B Na 8a Ni Co Mn Fe As U Au Th Sr Cd Sb Bi V Ca P La Cr Mg SAMPLE# Mo Cu Pb Zn Ag x ppm ppm ppb ppm ppm ppm X ppm 🕺 X ppm X * % ppm ppm ppb ppm ppm ppm ppm ppm ppm X ppm ppm ppm ppm ppb ppm ppm ppm ppm **PPm** 12.36 124.41 15.79 57.5 2523 24.0 10.0 1521 2.66 6.6 8.3 5.3 1.0 151.5 .67 .97 .19 46 2.46 .134 23.6 29.8 .46 195.4 .047 5 2.50 .011 .12 <.2 .11 138 1.4 .04 5.8 61942 GROUP 1F30 - 30.00 GM SAMPLE, 180 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 600 ML, ANALYSIS BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SH = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: -140 SILT DATE REPORT MAILED: July 5/00 DATE RECEIVED: JUN 20 2000 帯 こ ۴., Data FA All results are considered the confidencial property of the client. Acme accumes the lightinges for account of the analysis only.

(150 900					GE	OCHEM	ICAL	ANALJ	CSIS C	ERTI	FICATE			영양왕학 2013년 1918년 전 171			
	<u>Hud</u>	son B	ay E	<u>cpl.</u> 800	<u>Dev.</u> 700 W.	Co. Pender S	<u>Ltd.</u> L., Vancol	PROJE	ECT CH V6C 168	ELAS Submit	LIE F ted by: Ra	lle # Iph Keefe	A0019	30	(b)		
SAMPLE#	Cs ppm	Ge ppm	Hf ppm	Nb ppm	Rb ppm	Sc ppm	Sn ppm	S ¥	Ta ppm	Zr ppm	Y ppm	Ce ppm	In ppm	Re ppb	Be ppm	Li ppm	Sample gm
61942	2.21	<.1	.08	2.04	13.4	4.1	.6	.18	<.05	4.0	24.00	35.1	.03	9	.8	22.7	30

GROUP 1F30 - 30.00 GM SAMPLE LEACHED WITH 180 ML 2-2-2 HCL-HNO3-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 600 ML, ANALYSED BY ICP/ES & MS. UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: -140 SILT

JUN 20 2000 DATE REPORT MAILED: July 5/00 DATE RECEIVED:

All results are considered the confidencial property of the client. Nome assumes the liabilition for actual onet of the analysis only.

Data 🖡 FA

1. Y.			Hud	(son	Bay	· 2	5 22		De	Ŷ.	Cơ.	Ľ	۲đ,	P	ioj;	SCT	s cr Chie	LA	ŝL.	Ē	£1	1e	#					2 G (a)						
PLE#	Hio ppm	Cu ppm	PI ND				Co		700 Fe 1	Ås	1928.44	Au	Th	Sr Sr	Cd	<u> </u>		<u>ميد</u> لا		d by P \$	La	Cr Cr	Ng	Ba ppm		8 ppm	A1 1	Na	K	W M			e Te	
	2.05 5.23 .98 5.02	28.99 7.97 4.95 72.51	2.19 55.6	9 30.6 2 12.6 3 12.8 1 99.9	190 1550 1142 93993	5.1 B.2 5.2 13.2	15.4 17 6 1	261 39 57 42	2.58 1.90 1.84 3.21	2 0 71.8 70 1 358.2	< 1 < 1 < 1 < 1 < 1	6.4 19.7 8.8 92.0	.) <.1 <.1 <.1	18.8	.01 07 63 10	.41 3.46 4.51 99.05 5.39	.23 .87 .27 .57	88 5 5 9	.33 .05 .02	.060 .006 .009 .009	2.6 < 5 8 < 5	9.1 21.9 20.7 43.6 21.0	.72 .01 .01	56.5 38.4 258.2 51.8	.099 .001 .001 .003	1 2 2 2	1.15 .17 .14 14	.087 .020 .004 .006	14 Z 15 1 19 5 16 1	.1 .3 .5 .0	05 24 25 27	-5 11 23 81 5		6.6 .7 .6 .9
) 5-1	78 5.62 3.68	104,03 11.50	411.07 1199.42 312.12 110.46 7.61	2 831.8 2 109.1	10389 3037 1936	3.4 7.5 4.9	5.1 1.9 .6	1266 338 59	1.87 4.36 1.63	128_9 247.9 111.2	<.1 <.1 <.1	38.3 71.3 54.3	.3 .2 <.1	21 8	3.81 .25 .06	10.53 6.19 4.39 3.78 .08	-13 -13 -41 -24	13 28 5	.07 .04 .04	045 . 033 . 008	2.8 2.4 3	31.3 10.2 16.3 19.0 40.1	.09 .17 .01	35.5 290.3 37.6	. 069 . 005 . 004	222	. 45 . 53 . 19	.009 .	.32 5 .29 .17 5	.7 .8 .9	24 39 16	19 . 49 1. 18 1.	5 .09 6 .05 1 .02 3 .07 5 .09	1.5
104	.63	7.81 7.98 1.44 13.02 2.05	29.38 5.06 13.96	7 59.7 3 51.0 5 31.9 5 91.2 5 42.6	157 8 157	7.0 1.9	2.8 .4 2.3	131 129 104 253 451	3.04 .76 3.39	153.7 .7 59.7	1.3	1.8 .6 .8	2.0 5.3 1.8	15.0 14.9 12.1 13.9 13 5	.10 .92	2.05 2.10 06 2.83 .05	.43 .07 .45	12 2 11	.26 .10 .29	.099 .018 .105	6.7 25.2 7.9	19.4 17.9 7.0 16 2 5.6	.05 03 .13	19.2 111.1 24.4	.054 015 .062	1 <1 1	.59 .42 84	.072	.09 1 13 11 1	.2 .8 .0	13 - 02 - 21	5. 5<	4 .05 1 <.02 3 .03	4.6 4.7 1.5 6.4 1.8
ndard DS2		42.78 10.79	6.56 41.73	51.9 5 16.6 3 34.5 5 154.3	710	2.7	4_0 3.6	451 136	3.92 3.02 1	75.3 279.3	.6 .3	19.8	2.2	13.0	<.01 .05	1.15	.49 .69 .44 10.93	26 11	.26 .27	100 093	14.5	10.7 21.0	14	30-8 21.4	.020 .039	1	.94	053	15 3 08 1	1.	21 I 11	12 . <5 .	7.30	6.4
	GROUP 1 UPPER 1 - SAMP1	CMJ 15	- AG,	AU, HO	, W, K	\$E, 1	re, 11	L, GA	, SN	= 10	O PPM	; #0,	C0,	, CD.	S∎,∣	82, Ti	AND I N, U, Reject	8 =	2,00	O PP	600 M; Cl	ML, J J, PB,	MALY, ZH,	(\$15 14 14	BY IC MN,	P/ES AS,	2. M ∀, Ъ	5. N, CR	=)	D, 00() PPI	۲.		
DATE	recei	e de la companya de la company	AUG	28 200	10 Di	AT 8	RBP	ORT	MAJ	LED	».S	èpt	; E	3/00	>	SIG	NRD	ÐY.	C	F.			TOT	E, C.	LEON	ŝ, J.	. HAN	G; CE	RTJF	IED I	8.C,	ASS	ATERS	
						-																}												
ŝ			an 2 2 2																															
	- 4 7 444		- - 	-c											•																			

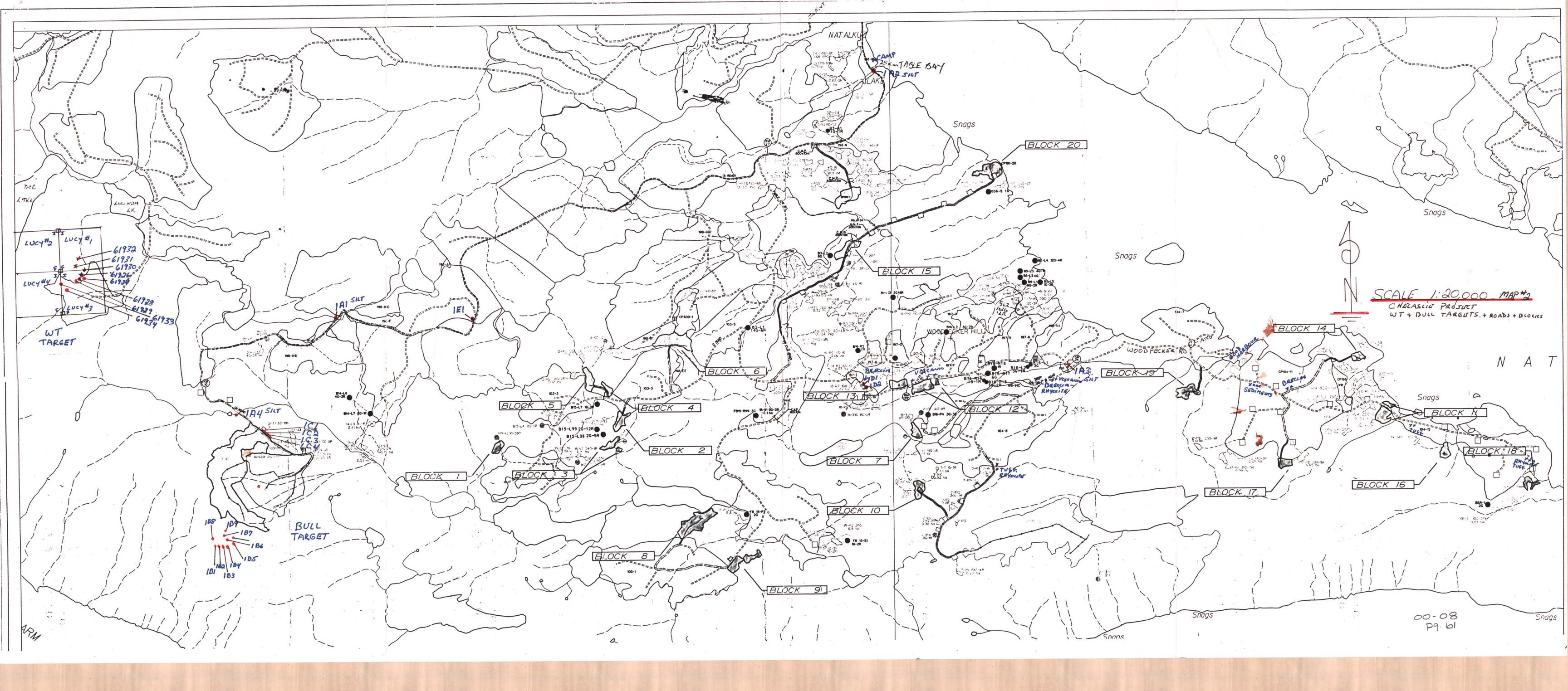
\$

ł

٠.

ļ

SAMPLER	Mo ppon	ເມີ ຍຸດສ	řb ppa	Žni pomi p		-	Man, F Domin	e As 1 ppm	U Open	Au 10 000	ih Şi Xa Dor			16 16	Y C	a P I I	La	Cr ppa	Hg (T pi	Ba Ti Xa I	6 DDM	Al I	Na K I I	W Note:	Ji H Dom Do	g Se bippen
142 144 141 143 145	6.55 1 .56 3.55	56.13 21.21 15.97	11.39 11.53 9.22	47 2 8 52 4 1 64.5 1	09 19.7 02 13.9 27 15.4	8.9 1 8.4 6	665 2.1 130 2.5 285 3.4	3 14.2 7 6.7 8 11.9	14.9 1.1 2.5	.31. 5.9 182. 1.81. 2.31.	4 52.	3 .71 3 .12 9 .24	43	.19 .16 .19	41 3.0 59 .6 57 1.4	0 .154 0 084 8 .124	40.1 19.2 24.1	19.8 26.6 24.8	44 146 29 215 36 120 31 372 37 191	2 .078 5 .024 7 .072 4 .033	11 21 1 21	./6 .0 _93 .0 _33 .0	12 .09 13 .10 28 .09	.4 <.2 2	07 2	4 2.6
RE 1A1 .STD S-1 STAADARD D	1.52 1. 9 5	19.66 32.25	11.13 8.81	50.3 61 6	99-14.0 37-13.1	8.9 j 13.4	987 2.5 477 4_0	0 6.7 5 2.3	1.1	3.1 2 1.5 3	2 49.8 0 47.1	8 .14 7 .09	.42	. 15 . 15	56 .5 63 .4	5 .084 8 .046	18.3 12.1	24.3 40.7	.35 114 .54 89.	.7 .067 3 371	1	.88 .0 .15 .1	12 .09 11 .05	<.2	.07 3 .14 3	2.3
	GROUP 1F	4115 -	AG, A	U, NG,	W. SE	, TE, T	L, 6A,	S# =	100 P	°РМ; ИО	, co, s	CD, SB,	, BI.	TH, U	, 8 ¢	2,000								= 10,	000 Þ	PM.
DATE	- SAMPLE									<u>ere re</u> Sejó						\overline{n}_{l}	م جبہ	- 1 .D	. TOYE.	. C.LE	ONG, .	J. WAN	G; CEI	171719	ið 8.0	. assa
										° qi	• - ,							ļ		•	-,		•			
																								٠		
					-																					
								4																	.	L
ALL res	uits are	consid	ered 1	the con	fident	lat pro	operty	of th	e cis	ent. Ac	MO 331	umes t	the LI	abilit	188 10	of act	usici	bei pf	the a	nelysi	s ont	۷.				

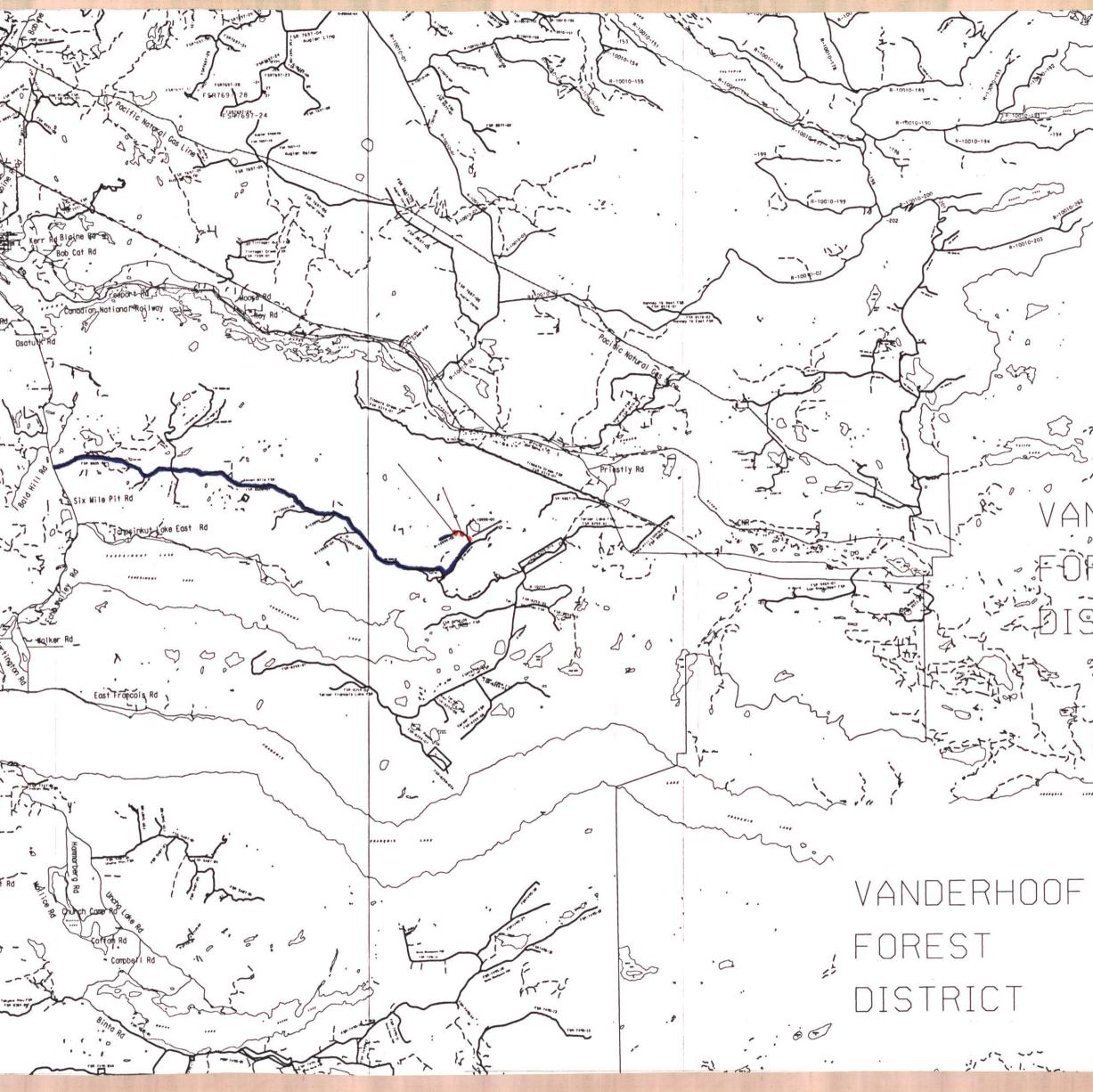

.

ħ da

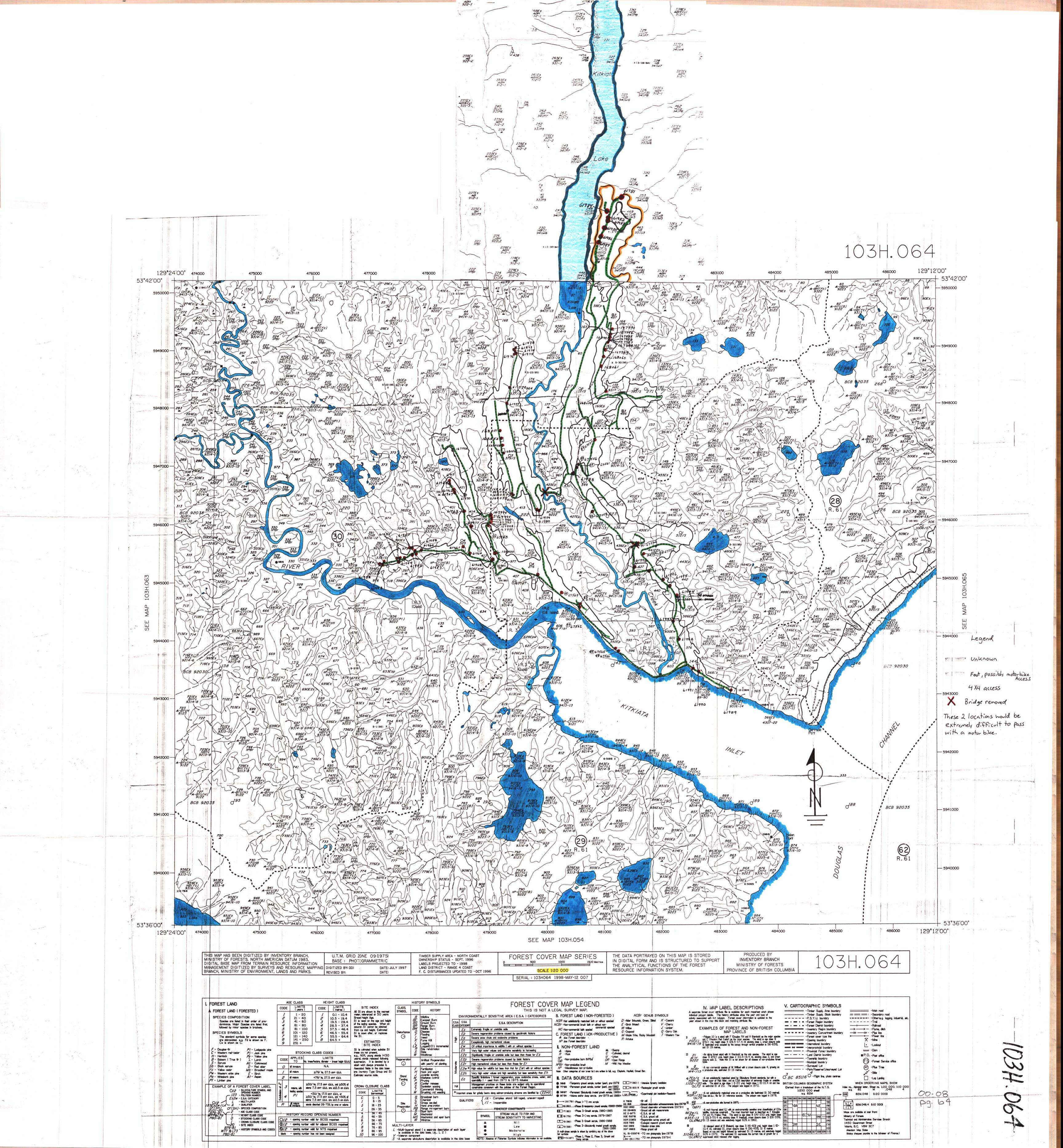
•

£

Č.



BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM


.

B. TECHNICAL REPORT

Name: Shawn Turford	Ref #:P 21
LOCATION/COMMODITIES-	
Project Area: <u>7 mile</u> Location of Area NTS: <u>93 K 4/</u>	Minfile #: <u>n/a</u>
Location of Area NTS: <u>93 K 4/</u>	<u>E Lat: 54 08</u> Long: <u>125 43</u>
Description of location & acc mile road, 19 to 23 km up 7 mi off 7 mile road.	ess: <u>hiway 35 by truck to 7</u> le to new logging roads north and
orr / mire road.	
Main Commodities Searched for	: <u>Mo. Cu.</u>
Known Mineral Occurrences in	Project Area: Endako mines
located 15 miles east of are	
WORK PERFORMED-	• • • • • • • • • • • • • • • • • • • •
1.Conventional prosp. new log	ging and road const north of 7
	<u>ad at 19-23 km.</u>
2.Geological Mapping as per 1	map sheet
3.Geochemical <u>3 samples were</u>	taken 2 rock 1 silt
4.Geophysical <u>nil</u>	
J.FHYSICAL WOLK	
6.Drilling nil	
7.Othernil	
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
SIGNIFICANT RESULTS- nil	
Commodities	Claim Name:
Location/Lat: Long:	_ Claim Name: Elevation:
Best assay/sample type:	
Description of mineralization	, host rocks, anomalies:
Mainly volcanic outcrops, pre-	dominately volcanic basalt and minor
periodic volcanic andesite.	Tuff was turned up in road
construction, and contained a	<u>silvery grey mineral. I sampled two</u>
	<u>eek. I was also "breaking in" a new</u>
	<u> Furmel has done a fair amount of</u>
	e past with various mining companies
	He is quite excited to get back into
an active roll. He plans to s	pend time with me this summerI

17 521 5 2 e C ANDERHOOF ÔREST SFRICT SCALE 1:150,000 00-08 Pg. 63

