BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2000/2001REPORT #:PAP 00-9NAME:ED MCCROSSAN

D. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, pages 6 and 7.

SUMMARY OF RESULTS

• This summary section must be filled out by all grantees, one for each project area

Information on this form is confidential subject to the provisions of the Freedom of Information Act.

Name ED MC CROSSAN P35 ____ Reference Number OL LOCATION/COMMODITIES Project Area (as listed in Part A) Maha Ha River MINFILE No. if applicable 0921 230 Location of Project Area NTS _092L05 Lat 50 27 08 Long 127 45 10 orthwest of Por Description of Location and Access つの Ka. A Alice van couver d access 20 JS. pegn south of Pt. Alice. Prospecting Assistants(s) - give name(s) and qualifications of assistant(s) (see Program Regulation 13, page 6) Cu. An-Main Commodities Searched For 230, 324, 325 106 Known Mineral Occurrences in Project Area_ <u>042L</u> WORK PERFORMED APPROX 20 Km 1. Conventional Prospecting (area) 2. Geological Mapping (hectares/scale)_ pock sm 3. Geochemical (type and no. of samples) 4. Geophysical (type and line km) ____ 5. Physical Work (type and amount) ______ STAKING 6. Drilling (no. holes, size, depth in m, total m) 7. Other (specify) **Best Discovery** QUEFT Commodities Project/Claim Name_ Location (show on map) Lat. 50° 27'30" N Long 127º 45 W Elevation 167-00m Best assav/sample type rock grad sanuples dissema Description of mineralization, host rocks, anomalies_ purite chalcopyrite ~aah1t atite volcanics YRF FEEDBACK: comments and suggestions for Prospector Assistance Program RESEARCH. DATA COMPILATION & I CAE ME SHOULD BE CHARGE ABLE SHOULD BE DAIL FEE

B.C. Ministry of Energy and Mines Prospectors' Assistance Program

> Technical Report Part D Report on Results

> > By:

Ed McCrossan, P.Geo.

204-1225 Barclay Street Vancouver, B.C. V6E 1H5

Tel/Fax: (604) 681-7362 email: edmccrossan@hotmail.com website: www.geocities.com/circlepacific

Reference Number: 00/01-P35

November 8, 2000

Table of Contents

1.	Location of Project Area(s)	1
2.	Program Objective	1
3.	Prospecting and Geochemical Results	1
4.	Claim Staking	2

Figures

- 1. Location Map (before page 1)
- 2. Geochemical Sample Location Map and Analyticial Results
 - 2A) Scrutor Area (after page 2)
 - 2B) Mahatta River and Yreka South Areas (back pocket)
- 3. Claim Map (Q2-Q9) (after page 2)

Appendices

- I. Analytical Results
- II. Queen Claim; Geochemical Assessment Report

Location of Project Areas

The Scrutor project area is located approximately 250 km. northwest of Nanaimo on Vancouver Island (Figure 1). The area is road accessible via highway 19 and Canfor logging roads which exit the Island Highway south of Nimpkish Lake at the Zeballos turnoff. Active logging roads are followed along the north shore of Atluck Lake and then south along the Sally Road to the area of interest.

The main project area is located in the Mahatta River – Cleagh Creek area approximately 20 km west-northwest of Port Alice on Vancouver Island. This area is accessible by Western Forest Products logging roads which begin south of Port Alice on the east side of the Neroutsos Inlet.

The third project area, referred to as Yreka South, is located 6 km west of Port Alice on the west side of Neroutsos Inlet.

Program Objective

The exploration program was designed to locate Cu-Au porphyry and/or quartzcarbonate Au-Ag- base metal vein, shear, or breccia mineral occurrences or deposits. The areas also have the potential to host carbonate replacement (skarn) mineralization.

Target host lithologies included the Bonanza Group volcanics and associated sediments of Lower Jurassic age, as well as the Upper Triassic sediments of the Quatsino and Parson Bay Formations. These volcanics and sediments were sampled extensively in areas adjacent or close to intrusive contacts with the Island intrusions of mid-late Jurassic age.

Minfile locations of interest within the project areas were also investigated and sampled.

Prospecting and Geochemical Results

Prospecting was carried out along logging roads of all ages, except where active logging operations were underway.

In the Scrutor area (Figure 2A), composite lithological samples were collected from drainages sourced from the north-eastern and eastern portions of the old Scrutor claim that had been visited previously by the author during 1998.

Geochemical sampling results indicate low level anomalies in molybdenum. lead, zinc, silver and arsenic for this area (Appendix I).

Molybdenum values ranged up to 105 ppm (sample #20456), lead values were as high as 303 ppm (sample #20456), zinc values were also up to 303 ppm (sample #20458) and arsenic values ranged up to 127 ppm (sample #20456). The highest silver value was 2.2 gpt (sample #20459).

In the Mahatta River – Cleagh Creek area (Figure 2B), logging roads were prospected in detail and most samples were grab or chip samples of altered and pyritized Bonanza Group lithologies taken adjacent to contacts with quartz monzonitic to dioritic Island intrusions or within or close to faulted, sheared or fractured areas. Some samples were also collected from the intrusive stocks.

For a detailed discussion of prospecting and geochemical results from the Queen Claim, refer to Appendix II which contains the geochemical assessment report for that claim.

Elsewhere in the Mahatta River – Cleagh Creek area, the Q2 - Q9 claim group returned unexceptional assay results with the highest numbers being a zinc assay of 197 ppm (sample # 20751) and a silver result of 1.5 gpt (sample #20463).

In the eastern portion of the Mahatta River – Cleagh Creek area, an aeromagnetic total field anomaly exceeding 5,000 nanoteslas (Geological Survey of Canada Map 7220 G, 1992), was investigated and sampled (sample #'s 20701 – 20719) with discouraging results. Only low level anomalies were obtained for copper, zinc, and arsenic. A gold anomaly of 20 ppb was also returned (sample #20719). The monzonitic to dioritic intrusion in this area was magnetic, however.

In the Yreka South area (Figure 2B), thirty-eight samples were collected and returned analytical results anomalous in copper, zinc, silver and arsenic. Copper values ranged up to 249 ppm (sample #20584), zinc assays were as high as 267 ppm (sample #20587), arsenic numbers were up to 53 ppm (sample #20727) and the same sample contained 0.6 gpt silver.

Claim Staking

One 4 post claim and eight 2 post claims, for a total of 28 units, were staked in the Mahatta River – Cleagh Creek area.

The Queen claim is the 4 post claim which was staked due to the prospective geology and the widespread alteration and pyritization associated with an intrusive stock, as well as predominant structures, within the claim boundary.

The Q2-Q9 claims are eight adjoining 2 post claims which were also staked over prospective geology displaying widespread alteration and pyritization within a felsic volcanic unit of the Bonanza Group.

Appendix I

Analytical Results

ACME ANAL	YTIC	AL I ACC	.ABO	RATO		S LT	D.		852 I	. н	ASTI	NGS	ST.	VAN	ICOU	VER	BC	V6A	1R	5	PH	ONE	(604) 253	3-31	58 F	AX (6	04)	253-	171(5
ΔΔ			· · · ·				- * <u>-</u>		GE	осн	EMI	CAL	AN	ALY	SIS	CE	RTI	FIC	ATE											a I	N
						Mc	<u>Cro</u> 20	<u>ssa</u> 4 - 1	<u>n, E</u> 225 Ba	<u>d</u> P rclay	ROJ St.,	ECT Vanc	<u>NO</u> ouver	NE BC V	Fі 6Е 1Н	le 5 s	∦ A ubmit	.003 ted b	864 y: Ec	l McCr	Pag	e 1									
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni Ppm	Co ppm	Mn ppm	Fe X	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na X	K X	<u>Sasa</u> ⊮ ppn	Au** ppb
B 20451 B 20452 B 20453 B 20454 B 20455	<1 1 7 1 4	48 21 66 16 3	7 14 58 10 8	92 78 230 85 4	<.3 <.3 <.3 .3 1.1	47 7 48 7 3	24 17 46 15 1	1599 1745 3285 1200 98	6.55 4.39 14.20 5.27 .47	8 3 10 2 <2	<8 <8 <8 <8 9	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 6 4 2	149 67 20 69 2	.4 .3 2.8 .4 <.2	ও ও ১ ৩ ৩ ৩ ৩ ৩ ৩ ৩	4 <3 6 3 <3	172 115 61 113 4	2.09 3.89 .35 4.86 .04	.105 .105 .052 .137 .004	18 17 39 22 2	95 18 35 16 25	1.86 1.43 .41 1.41 .02	123 105 306 92 10	.42 <.01 .04 .01 <.01	<3 3 5 4 8	4.10 2.68 2.07 1.64 .06	.35 .07 .03 .11 .01	.09 .12 .27 .10 .01	2 <2 <2 2 8	6 5 4 4 2
B 20456 B 20457 B 20458 B 20459 B 20460	105 3 4 3 5	13 14 6 4 3	303 23 53 155 <3	83 5 303 155 6	1.4 .7 1.0 2.2 .7	7 1 5 1 5	<1 <1 2 1	69 40 2985 396 85	1.34 2.96 .93 .58 1.13	127 16 4 5 60	10 10 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 <2 12 10 2	3 18 22 4 5	.3 <.2 2.9 .6 <.2	35 8 3 6 <3	<3 <3 <3 <3 <3	7 14 1 3 7	.06 .01 3.16 .03 .03	.018 .032 .015 .015 .006	1 23 24 10	20 18 10 8 13	.02 .01 .12 .01 .01	8 336 50 317 45	<.01 <.01 <.01 <.01 <.01	7 4 7 3 8	.16 .25 .67 .38 .39	.01 <.01 .01 .01 .15	.02 .04 .43 .30 .04	3 5 <2 5 <2	4 9 2 ~2 3
B 20461 B 20462 B 20463 B 20464 B 20464 B 20465	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																														
RE B 20465 B 20466 B 20467 B 20468 B 20469	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$																														
B 20470 B 20471 B 20472 B 20473 B 20473 B 20474	1 <1 <1 <1 1	10 6 97 68 64	8 <3 <3 7 13	55 44 71 66 53	<.3 <.3 <.3 <.3 <.3	67 115 92 90 58	31 43 48 56 30	889 875 1175 1315 945	6.27 8.01 9.61 8.07 4.81	7 10 4 9 8	<8 9 16 13 <8	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	27 22 30 39 152	-3 -3 -4 -2 -4	<3 5 <3 <3 <3	ব্য ব্য ব্য ব্য ব্য	141 228 176 191 128	2.37 .34 .75 1.16 1.54	.082 .062 .051 .056 .056	3 4 1 2 1	54 94 91 76 68	3.07 4.22 4.62 4.11 2.38	19 14 17 45 20	.29 .15 .32 .36 .36	15 <3 <3 8 6	3.92 3.90 4.15 4.59 2.67	.19 .15 .14 .09 .08	.04 .04 .01 .03 .03	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 3 2 4 3
B 20475 B 20476 B 20477 B 20478 B 20478 B 20479	2 7 3 1 1	9 167 26 14 6	12 12 9 <3 5	35 58 47 50 48	<.3 <.3 <.3 <.3 <.3	5 18 4 2 <1	62 44 17 12 9	459 1035 775 756 653	5.30 8.72 6.17 5.64 5.44	9 16 2 3 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	10 12 19 23 22	.4 .4 .2 <.2	4 ব্য ব্য ব্য ব্য	4 7 <3 3 3	78 105 107 98 100	.66 .50 1.11 1.28 1.28	.167 .187 .165 .171 .169	5 10 11 11 11	4 17 7 4 4	2.18 4.05 2.01 1.93 1.73	14 24 36 38 30	.28 .31 .41 .38 .36	<3 <3 7 21 48	2.20 3.89 2.03 1.95 1.80	.22 .17 .22 .24 .24	.01 .01 .07 .07 .08	<2 <2 <2 <2 <2 <2 <2	3 5 2 3 2
B 20480 B 20481 B 20482 B 20483 STANDARD C3/AU-R	2 1 2 26	31 50 79 83 61	<3 7 <3 6 38	51 97 58 54 167	<.3 <.3 <.3 <.3 5.3	1 2 2 39	16 13 16 14 12	848 642 814 741 775	6.78 5.56 7.06 5.74 3.41	5 6 3 5 55	<8 <8 <8 <8 21	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 22	19 12 12 16 29	.3 .5 .2 <.2 22.4	<3 <3 <3 <3 17	<3 3 <3 24	117 86 109 97 75	1.01 .91 .76 .97 .56	.181 .159 .173 .179 .094	12 10 13 11 18	5 3 4 5 160	2.38 1.83 2.43 2.08 .62	31 24 34 22 152	.45 .36 .42 .35 .08	3 21 3 3 22 22 3 22 3 3 22 3 3 22 3 3 22 3	2.32 1.72 2.39 2.02 1.82	.27 .17 .25 .24 .05	.08 .08 .06 .06 .18	<2 <2 <2 <2 16	4 2 3 <2 495
STANDARD G-2	2	2	4	45	<.3	10	4	547	2.13	<2	8	<2	5	99	.2	<3	<3	40	.72	.104	8	77	.64	282	.13	3	1.29	.19	.60	2	<2
	GRC UPF ASS - S <u>San</u>	DUP 10 PER LI SAY RE SAMPLE SAMPLE	D - 0. IMITS ECOMMU E TYPE bogi:	.50 G - AG ENDED E: RO oning	M SAMP , AU, FOR F CK R15 (RE)	PLE LE HG, W ROCK / SO 600 are F	EACHE N = 1 AND C C Corun	D WIT OO PPI ORE S AU** c and	H 3 ML M; MO, AMPLES GROUP <u>'RRE</u> '	2-2-2 CO, (IF CL 3B - are F	2 HCL- CD, SE J PB Z 30.00 Reject	HNO3- 3, BI, 2N AS 9 GM S <u>Ror</u> u	-H2O / , TH, > 1%, SAMPLE	AT 95 U&1 , AG : E ANAI	DEG. B = 2, > 30 F LYSIS	C FO ,000 PPM & BY I	R ONE PPM; (AU > CP-ES	HOUR CU, P 1000	, DIL B, ZN PPB	UTED '	TO 10 MN, /	ML, . As, v	ANALY: , LA,	SED B CR =	Y ICP 10,0	-ES. 00 PPI	1.				
DATE RECE	IVEL): (DCT 2	2000	DA	TE I	REPO	RT 1	AILE	D: /	$ \partial u $	ŧ.	2./0	0	SIGN	ÆD	ву.(\sim	·	. TOY	E, C	LEON	3, J.	WANG;	CERT	IFIED	B.C.	ASSA	YERS	
All results a	re con	sider	ed th	ie cor	nfider	ntial	prop	erty (of the	clier	it. Ac	me as	/ sumes	the	liabi	litie	es for	acti	ualc	j ost of	the	anal	ysis (only.	;			Data	<u>.</u>	A	-

ACHE ANALYTICAL

McCrossan, Ed PROJECT NONE FILE # A003864

Data_/

ACME ANALTTICAL													<u> </u>			<u> </u>		<u></u>													
SAMPLE#	Mo DDM	UU MCC	Pb	Zn	Ag	Ni	Co	Min	Fe %	As	U mqq	UA Maq	Th ppm	Sr ppm	Cd	Sb ppm	Bi pom	V maa	Ca %	P %	La ppm	nJ mag	Mg %	Ba pom	Ti X	B	Al %	Na %	K X	W	Au** ppb
B 20484 B 20485 B 20486 B 20487 B 20488	<1 <1 1 1 <1	97 60 156 29 6	4 7 10 5 <3	45 60 47 50 58	<.3 .6 .6 .3 <.3	81 105 96 99 36	65 78 52 75 27	1011 1785 927 1142 917	10.21 11.06 7.34 8.65 12.63	15 20 11 10 12	<8 <8 <8 <8 <8 12	<2 <2 <2 <2 <2 <2 <2	2 3 2 2 3	18 13 10 13 23	.5 .4 .4 .2 <.2	ব ব ব ব ব ব ব ব ব ব ব	3 <3 <3 <3 <3 3	198 236 204 173 177	.51 .54 .86 .66 1.98	.048 .050 .056 .053 .042	3 3 2 2 3	82 85 87 83 12	4.44 6.46 4.38 4.59 1.92	34 68 41 31 27	.44 .42 .50 .36 .07	3 3 3 3 7	3.21 4.71 2.71 3.22 1.47	.04 .02 .04 .04 .02	.03 .04 .03 .03 .11	3 3 3 2 2	<2 5 <2 <2 <2 <2
B 20489 B 20490 B 20491 B 20492 B 20493	<1 <1 3 1 <1	10 3 2 6 48	3 5 8 3 3	11 16 12 9 27	.3 .4 .3 .3 <.3	10 12 7 14 6	5 9 12 10 7	188 426 180 210 682	3.22 4.37 2.94 3.73 3.83	2 4 3 5 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	5 5 3 4 3	9 19 5 3 10	<.2 <.2 <.2 <.2 <.2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	3 3 3 3 3 3 3 3	53 87 28 50 47	.44 .59 .20 .15 .34	.091 .139 .062 .093 .210	13 10 5 11 13	11 18 19 17 8	.75 .85 .85 1.18 .71	6 13 5 6 15	.14 .09 .07 .01 .02	3 4 3 3 4 4	.62 .81 .72 1.07 1.16	.08 .07 .07 .07 .05	.01 .05 .01 .01 .03	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 <2 <2 3 <2
B 20494 B 20495 RE B 20495 B 20496 B 20497	<1 <1 <1 <1 1	2 1 1 2	<3 3 3 3 3 3	11 9 10 8 6	<.3 <.3 <.3 .4 <.3	1 2 2 3	6 22 22 19 2	273 112 114 109 169	3.95 4.71 4.78 4.72 2.60	7 148 146 229 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	3 2 3 2 3	16 3 3 21	<.2 <.2 <.2 <.2 <.2 <.2	ও ১০০ ৩০ ৩০ ৩০	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	2 • 1 <1 1 56	1.10 .34 .34 .34 .67	.197 .205 .206 .203 .135	15 11 12 11 10	5 5 5 10	.37 .57 .58 .57 .50	8 9 10 8 4	<.01 .02 .02 .03 .13	3 3 3 3 3 3 3	.30 .68 .69 .66 .44	.08 .08 .08 .09 .09	.02 .01 .01 .01 .02	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 2 <2 2 2 2
B 20498 B 20499 B 20500 B 20557 B 20558	<1 <1 <1 1 <1	2 1 2 11 13	4 3 3 3 3 6	22 7 8 20 21	.3 .6 <.3 .4 <.3	6 10 3 1 3	9 8 1 3 22	423 694 134 442 486	4.22 4.71 .85 5.68 6.27	34 218 2 19 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	3 2 3 3 <2	5 40 21 9 8	<.2 <.2 <.2 <.2 <.2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	ও ও ও ও ও ও ও	61 204 5 59 65	.30 6.01 .94 .95 .69	.154 .101 .009 .176 .216	13 4 8 7 9	8 16 15 4 4	1.30 1.88 .44 1.08 1.71	13 14 3 10 12	.01 .16 <.01 .28 .23	<3 4901 17 24 <3	1.48 2.27 .24 .98 1.40	.07 .04 .08 .09 .08	.03 .05 .01 .04 .01	<2 <2 <7 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2
B 20559 B 20560 B 20561 B 20562 B 20563	<1 2 18 <1	1 3 2 2 1	6 9 3 3 3	19 20 4 10 47	.4 .4 <.3 <.3 .3	<1 1 2 3 5	16 17 2 19 8	344 324 19 166 471	6.59 8.17 1.96 2.28 4.51	7 <2 4 8 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	2 3 <2 3	11 9 2 2 6	<.2 <.2 <.2 <.2 <.2	3 3 3 3 3 3 3	<3 4 <3 <3 3	16 12 7 5 36	.96 .62 .01 .01 .18	.202 .216 .027 .022 .087	11 17 16 4 14	5 1 14 8 12	1.12 1.30 .01 .01 .02	8 5 4 11 14	.01 .01 <.01 <.01 .03	3 3 3 3 3 3 3 3 3 3	1.45 1.40 .15 .24 .26	.06 .06 .07 .06 .07	.02 .01 .03 .04 .01	2 2 2 4 3	<2 2 2 4 4
B 20564 B 20565 B 20566 B 20567 B 20568	19 3 1 2 2	26 2 16 3 3	6 <3 18 3 4	19 32 151 23 45	<.3 <.3 <.3 <.3 <.3	4 3 2 3	3 1 <1 <1	57 107 191 103 421	1.17 1.64 1.68 1.47 2.77	6 5 8 3 14	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 5 2 9 4	6 4 2 2 2	<.2 <.2 .3 <.2 <.2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	उ उ उ 5 उ	14 8 3 15 5	.07 .03 .02 .01 .01	.045 .008 .002 .007 .002	2 24 20 100 35	10 17 17 22 13	.02 .05 .01 .01 .01	10 36 29 25 145	<.01 <.01 .01 .01 <.01	5 3 3 3 3 3 3 3	.48 .25 .15 .18 .28	<.01 .03 .07 .05 .06	.12 .23 .04 .11 .15	<2 2 7 3 4	<2 <2 8 <2 2
B 20569 B 20570 B 20571 B 20572 B 20573	5 <1 4 2 5	2 6 3 2	<3 3 6 4 5	2 8 12 12 18	<.3 <.3 <.3 <.3 <.3	1 2 1 3 1	<1 1 6 <1	19 34 111 119 120	.81 1.70 2.40 1.44 2.65	3 4 3 <2 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	<2 4 <2 5 2	1 1 1 2 1	<.2 <.2 <.2 <.2 <.2	८३ ८३ ८३ ८३ ८३	<3 3 <3 3 <3	3 6 1 8 5	<.01 <.01 .01 .10< <.01	.001 .001 .001 .001 .001	8 26 13 41 16	12 15 13 25 8	<.01 .01 .04 .01 .01	8 7 6 5 6	<.01 <.01 <.01 .01 <.01	3 3 3 3 3 3 3 3 3	. 12 . 15 . 17 . 13 . 19	.09 .08 .08 .09 .07	.01 .04 .02 .02 .02	2 2 3 4 3	2 2 ~2 4 2
STANDARD C3/AU-R Standard G-2	26 1	65 3	41 6	166 41	5.7 <.3	41 9	12 4	804 555	3.56 2.12	59 <Ž	28 <8	2 <2	22 6	28 73	24.1 <.2	15 <3	25 <3	73 35	.59 .67	.097 .107	18 8	169 76	.64 .63	148 225	.09 .13	25 <3	1.83 .96	.04 .08	.17 .49	16 2	481 <2

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACHE ANALYTICAL

McCrossan, Ed PROJECT NONE FILE # A003864

Data 🗡 FA

SAMPLE#	Mo ppm	Çu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg X	Ba ppm	Ti %	B ppm	Al %	Na %	K X	₩ ppm	Au** ppb
B 20574 B 20575 B 20576 B 20577 B 20578	7 2 6 6 2	2 2 4 4 25	3 <3 <3 3 4	13 3 26 29 29	.7 <.3 .3 .7 <.3	2 2 3 3 6	1 2 2 2 16	72 2 15 1 184 3 206 3 1003 5	2.29 1.11 5.70 5.88 5.27	4 <2 5 5 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	3 <2 2 2 2	1 1 2 2 18	<.2 <.2 <.2 <.2 <.2 <.2	ব্য ব্য ব্য ব্য ব্য	3 3 3 3 3 3 3	4 <1 2 3 57	<.01 <.01 .02 .02 1.20	.001 .001 .001 .001 .001	19 3 17 16 11	10 11 15 20 28	<.01 <.01 .09 .11 1.00	6 5 7 6 27	<.01 <.01 <.01 <.01 .23	14 6 16 14 13 1	.16 .12 .19 .20 .94	.09 .09 .07 .07 .17	.02 .02 .02 .02 .02	3 3 4 4 2	3 2 2 <2 <2 <2
B 20579 B 20580 B 20581 B 20582 B 20583	3 4 4 4	5 3 12 3 3	5 3 3 5 3	45 2 4 16 10	.4 .3 <.3 <.3	4 2 1 2 2	20 1 <1 5 3	1393 6 1373 1 242 2 516 5 535 4	5.24 1.71 2.59 5.15 5.05	10 3 8 4 4	<8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 2 2 2 2 2 2 2 2 2 2	43 31 5 5 11	<.2 <.2 <.2 <.2 <.2	ও ও ও ও ও ও	3 3 3 3 3 3 3 3 3	24 <1 <1 10 4	5.55 4.31 .73 .66 .76	.159 .014 .017 .116 .113	14 10 12 15 14	6 12 14 9 8	1.07 .14 .16 .39 .56	18 10 11 12 10	<.01 <.01 .01 .02 <.01	9 15 1 11 1 10	.53 .26 .17 .47 .46	.03 .04 .16 .12 .03	.17 .15 .24 .21 .15	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 <2 <2 <2 <2 <2
B 20584 B 20585 B 20586 B 20587 B 20588	<1 <1 3 4 4	249 47 21 149 10	<3 <3 <3 <3 <3	52 125 48 267 40	<.3 <.3 <.3 <.3 .3	9 55 4 48 3	30 31 4 38 2	1666 6 2021 7 564 2 3443 7 412 3	5.06 7.06 2.28 7.19 3.87	4 2 2 14 3	<8 13 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 <2 3 <2 2	11 22 11 20 1	.3 .3 <.2 .9 <.2	ও ও ও ও ও	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	164 132 13 177 23	2.56 8.67 .47 4.83 .04	.061 .071 .012 .104 .020	10 7 18 16 27	7 89 13 86 9	.90 .14 .27 .08 .04	20 31 21 41 9	.02 .01 <.01 .04 <.01	91 71 7 81 9	.93 .34 .82 .36 .93	.05 .02 .10 .02 .01	.08 .13 .04 .18 .12	<> ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	<2 3 <2 5 3
RE B 20588 B 20589 B 20590 B 20591 B 20592	4 2 1 <1	11 11 <1 99 45	<3 <3 <3 5 5	40 9 54 171 63	.3 <.3 <.3 <.3 <.3	3 4 9 29 27	2 23 40 31	407 3 185 980 9 2374 6 1774 6	5.82 .73 9.19 5.87 5.90	3 <2 5 11 5	<8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2 <2	1 8 10 6 14	<.2 <.2 .3 1.4 .4	<3 <3 <3 <3 <3	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	23 17 230 138 225	.04 1.54 .78 .18 1.10	.020 .041 .094 .068 .088	27 6 7 8 6	8 22 9 25 34	.04 .11 2.81 .18 2.69	9 3 12 62 48	<.01 .10 .09 .01 .26	9 4 64 61 103	.93 .25 .18 .27 .08	.01 .09 .10 .05 .10	.12 .01 .08 .09 .05	<2 3 2 4 2 4 2	4 3 3 3 3 3
STANDARD C3/AU-R Standard G-2	27 2	67 4	36 5	169 44	5.4 <.3	40 9	12 5	793 3 535 2	8.47 2.06	60 <2	23 <8	<2 <2	23 5	29 84	23.8	20 <3	24 <3	74 34	.57 .66	.095 .104	19 7	175 77	.62 .62	154 255	.08 .13	29 1 9 1	.87 .06	.04 .12	.17 .53	17 2	482 2

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

ACME ANALYTICAL LABORATORIES LTD. (ISO 9002 Accredited Co.)

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

GEOCHEMICAL ANALYSIS CERTIFICATE

PHONE (604) 253-3158 FAX (604) 253-1716

44

McCrossan, Ed File # A004285 Page 1 204 - 1225 Barclay St., Vancouver BC V6E 1H5 Submitted by: Ed McCrossan

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni	Со ррт	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	₩ Au** ppm gm/mt
B 20701 B 20702 B 20703 B 20704 B 20705	3 1 3 1 3	18 46 36 31 4	8 <3 4 <3 5	49 52 43 46 64	<.3 <.3 <.3 <.3 <.3	54 99 62 50 4	14 27 19 15 1	362 506 379 539 522	3.02 4.65 3.76 4.39 3.60	3 4 5 4 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	5 3 2 3	26 53 29 30 9	.3 .3 .4 .4 <.2	4 5 5 3	<उ <उ <उ <उ	61 80 81 134 <1	.60 1.35 .85 1.09 .37	.033 .030 .049 .052 .069	4 4 4 13	27 55 27 29 4	1.77 2.89 1.99 2.32 .41	22 32 26 39 29	.12 .11 .13 .16 .08	5 8 4 3 3	1.91 3.58 2.28 2.60 1.16	.10 .24 .12 .06 .10	-06 -10 -09 -06 -09	<2 <.01 <2 <.01 <2 .01 <2 .01 <2 .01 <2 <.01
B 20706 B 20707 B 20708 B 20709 B 20710	2 3 <1 4 3	4 7 13 58 31	5 3 3 3 3 3 3 3	71 9 41 40 30	<.3 <.3 <.3 <.3 <.3	1 7 132 14 4	1 3 26 10 5	512 315 379 578 351	3.73 2.65 5.67 3.59 3.07	5 4 7 10 6	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	4 3 2 2 2 2	10 10 41 13 8	<.2 <.2 .3 .2 <.2	<3 <3 10 3 <3	3 3 3 3 3 3 3 3 3	<1 49 193 27 13	.34 1.32 1.26 .18 .11	.066 .289 .080 .035 .012	15 8 3 20 18	5 7 172 18 10	.44 .48 3.22 .68 .29	41 5 11 22 24	.10 .19 .19 .01 <.01	4 230 4 6 4	1.22 .51 3.28 1.13 .75	.10 .09 .17 .06 .04	- 11 - 02 - 04 - 13 - 13	2 <.01 <2 <.01 <2 .01 <2 .01 <2 .01 <2 <.01
B 20711 B 20712 B 20713 B 20714 B 20715	3 1 1 1 2	45 26 24 15 16	3 3 12 8 <3	67 96 72 113 14	<.3 <.3 <.3 <.3 <.3	49 10 12 11 3	28 14 25 23 4	265 1207 827 1324 193	5.51 5.25 7.13 8.09 3.84	6 14 45 25 <2	<8 <8 <8 <8 <8	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	31 60 6 26	.4 .2 <.2 <.2 <.2	7 <3 8 6 <3	ও ও ও ও ও ও ও	236 39 82 88 2	.82 3.29 .36 .15 .42	.111 .158 .202 .194 .059	5 11 15 11 10	125 10 11 6 6	2.23 .88 .05 .07 .28	78 41 11 15 7	.43 <.01 <.01 <.01 .09	<3 6 11 13 3	3.26 1.06 .78 1.02 .67	.22 .03 .01 <.01 .09	.46 .27 .08 .10 .03	<2 <.01 <2 <.01 2 .01 2 <.01 2 <.01 2 <.01
RE B 20715 B 20716 B 20717 B 20718 B 20719	$\begin{array}{cccccccccccccccccccccccccccccccccccc$.03 .04 .11 .13 .12	<2 <.01 <2 <.01 <2 <.01 2 .01 <2 .02													
B 20720 B 20721 B 20722 B 20723 B 20723 B 20724	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$.22 .23 .23 .21 .09	<2 .01 <2 .01 <2 <.01 2 .01 2 .01 <2 .01													
B 20725 B 20726 B 20727 B 20728 B 20729	<1 1 3 <1 1	94 66 129 17 103	<3 <3 32 3 4	58 93 229 82 118	<.3 <.3 .6 <.3 .4	35 15 20 4 15	27 28 32 24 25	1133 1375 1446 1710 1480	6.41 7.84 8.16 8.14 7.76	7 6 53 17 11	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<> <> <> <> <> <> <> <> <> <> <> <> <> <	35 72 7 26 31	.2 .4 .9 .4	7 5 8 3	ও ও ও ও ও ও	209 238 165 229 183	4.02 4.46 .33 1.97 2.06	.101 .136 .202 .151 .212	7 9 13 8 12	88 39 13 7 17	2.54 2.28 .12 1.53 .84	22 41 53 24 34	<.01 .12 <.01 .02 <.01	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	3.12 2.92 .78 2.77 1.60	.05 .05 .03 .04 .03	.10 .06 .18 .03 .12	<2 <.01 <2 .02 <2 <.01 <2 .03 <2 .02
E 20730 B 20731 B 20732 B 20733 Standard C3/AU-1	<1 3 <1 <1 26	133 7 135 58 62	19 8 6 8 37	199 33 145 52 167	.3 <.3 <.3 <.3 5.3	10 3 24 12 38	25 20 25 17 11	1324 1056 1988 1176 757	7.28 5.73 7.89 6.52 3.33	10 7 11 6 56	<8 <8 <8 <8 20	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 20	34 18 9 11 29	.5 <.2 .8 .4 22.2	5 <3 5 5 16	<3 <3 <3 <3 24	241 28 221 221 78	1 79 1 07 44 92 55	.154 .187 .218 .192 .093	11 7 14 9 18	10 6 19 16 163	1.27 .40 .12 1.44 .59	39 21 44 38 148	.16 <.01 <.01 .33 .09	उ उ उ उ उ उ उ	2.22 1.09 .80 2.24 1.81	.10 .05 .04 .05 .04	.12 .10 .17 .05 .17	<2 <.01 <2 <.01 2 <.01 <2 .01 <2 .01 15 3.67
STANDARD G-2	2	4	6	44	<.3	8	4	549	2.09	<2	<8	<2	5	76	<.2	<3	<3	40	.66	. 105	8	77	.61	230	.13	5	.97	.07	.49	<2 -
	GR UP AS Sa	OUP 1 PER L SAY R SAMPL mples	D - O IMITS ECOMM E TYP begi	.50 G - AG ENDED E: RO nning	M SAMI , AU, FOR I CK R1! 'RE'	PLE L HG, ROCK 50 60 are	EACHE W = 1 AND C C Rerun	D WIT OO PP ORE S AU** s and	H 3 M M; MO AMPLE BY F I 'RRE	L 2-2 , CO, S IF IRE A / are	-2 HC CD, S CU PB SSAY <u>Reje</u>	L-HNO SB, B ZN A FROM C <u>t Re</u>	3-H2O I, TH S > 1 1 A.T <u>runs.</u>	AT 9 , U & %, AG . SAM	5 DEG B = > 30 PLE.	. C F 2,000 PPM	OR ON PPM; & AU	E HOU CU, > 100	R, D) PB, Z O PPE	LUTED ZN, NI 3	ΤΟ 1 , MN,	O ML, AS,	ANAL V, LA	YSED , CR	BY IC = 10,	P-ES. 000 P	PM.			
DATE RECE	IVED	: 0	CT 24	2000	DA	TE I	REPO	RT 1	MAIL	ED:	No	V 3	/സ	ł	SIG	NED	BY.	<u></u> :.		···)·	D. TC	YE, (C.LEON	₩G, J	. WANG	G; CER	RTIFIE	D B.C	. ASS	AYERS
All results a	re co	nside	red t	he co	nfider	ntial	ргор	erty	of th	e clie	ent./	Acme	assum	es th	e lia	bilit	ies f	or ac	tual	cost	of th	e ana	lysis	only	.			Da	ta <u> /.</u>	-FA

4	V	
ACME	ANAL	YTICAL

McCrossan, Ed FILE # A004285

Data 🗡 FA

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	Р	La	Cr	Mg	Ba	Ti	В	AL	Na	ĸ	¥	Au**
	ppm	ppm	ppm	. ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ррп	ррт	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	gm/mt
B 20734	2	130	7	144	.4	18	25	1301 7	7.58	18	<8	<2	<2	9	1.0	<3	5	190	-40	.212	15	14	.07	47	<.01	<3	-83	.04	- 13	2	<_01
B 20735	1	139	17	186	<.3	25	34	1870 8	3.63	17	<8	<2	<2	22	1.3	<3	5	221	.53	.213	16	20	.20	321	.01	4	94	.04	.15	2	_01
B 20736	1	68	5	64	<.3	39	30	1248 6	5.80	10	<8	<2	<2	21	.4	5	<3	205	2.20	.107	8	87	2.68	26	< 01	<33	.30	.05	.08	<2	.01
B 20737	1	107	8	80	.3	13	25	1287 7	7 64	11	<8	<2	<2	32	.6	3	<3	228	2.14	.239	12	12	1.70	29	.21	<3 2	.87	.05	.06	<2	< 01
B 20738	2	116	5	95	.5	11	20	1477	7.78	12	<8	<2	<2	24	.8	<3	3	154	1.37	.201	13	11	1.21	35	<.01	<3 2	.38	.03	.12	<2	<.01
P 20730	-1	177	~7	9/	. 7	21	77	1170 3	7 15	12	-9	~3	-2	22		7	7	177	1 74	100	7	75	1 77	E/	34	.7 7	07	OF	11	,	< 01
B 20739	1	91	~ 5	129	~ 7		22	1745 1	0.00	14	~0	~2	~2	1/	.0	ر 7	2	202	74	- 109	11	23	1 57	24	.20	< 2 3 -7 3	0.03	.05	. 11	-4	<_UI
B 20740	-1	8/	7	115	~ 7	14	20	1676 6	00.00	14	~0	~2	~2	72	.0	· · ·	-7	202	2 01	140	10	20	1.27	20	- 20	< <u>5</u> 2	. 92	.05	.00	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<_UI
B 20741	1	70	5	07	~ 7	7	20	1710 3	7 70	11	~0	~2	~2	22	.0	-7	~7	200	2.01	140	10	20	1 77	33	-05	<pre><> 3</pre>	.40	.04	.05	~2	<.UI
D 20/42	1	70	2	97	~	4	24	170/ 3	7 77	10	<u></u>	~2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	27	.4	د» 7	< 3 - 7	190	2.43	. 100	10		1.33	35	-01	< > 2		.04	.08	<2	<.01
RE D 20142		20	0	90	د.>		24	1704 /	1.13	10	~ 0	< <u>2</u>	<2	51	• (<2	< 2	194	2.42	. 139	10	10	1.32	22	-01	<3 2		.04	.08	<2	<.01
B 20743	8	7	4	40	<.3	7	<1	51	.79	3	<8	<2	<2	3	<.2	<3	3	4	.03	.002	37	16	.02	137	<_01	5	.22	.06	.10	2	<.01
B 20744	4	6	<3	13	<.3	1	<1	49 '	1.08	6	<8	<2	<2	2	<.2	<3	3	2	.02	.001	7	12	.02	46	<.01	7	.24	.06	.11	7	<.01
B 20745	7	5	5	34	<.3	5	<1	116 '	1.99	7	<8	<2	<2	1	.2	<3	6	1	<.01	.001	39	11	.01	44	<.01	6	.28	.04	.13	<2	<.01
B 20746	8	10	7	32	<.3	1	<1	128 1	1.81	6	<8	<2	<2	2	<.2	<3	<3	2	<.01<	.001	22	11	.01	131	<.01	5	.22	-04	.11	7	<.01
B 20747	7	6	<3	31	<.3	4	<1	110 2	2.25	8	<8	<2	<2	1	<.2	<3	4	1	<.01	.002	28	12	.01	41	<.01	3	.29	.05	.12	2	<.01
B 20751	2	10	23	197	< 3	<1	4	1533 /	5 23	4	<8	~2	~2	14	8	<3	~3	٦	1 51	180	22	5	85	24	70	6 1	51	07	06		< 01
B 20752	- x	11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	154	< 7	2	5	1528 /	5 14	ž	-0- -28	2	~2	14	.0	ر. ح	~~	6	1 75	100	26	í.	.05	24	.37	4 I 6 1	52	.07	.00	7 Z	< 01
STANDARD C3/AU-1	26	66	रू	165	5.4	78	11	784 7	3 43	57	26	<u>ר</u>	20	30	27 4	16	27	78	57	190	19	167	.05	1/.0	.30	22 1	- 26	.07	.00	10	7.01
STANDARD CJ/AU-T	20	6	~ ~	.05	2.4	0	4	558 2	2 16	-22	24 28	~ ~ ~	20	76	23.4	~7	23	/0 /0		108	10	77	.01	271	1/	22 1	.00	.04	- 17	-2	J.00
STANDARD G-2	2	4	6	44	<.3	9	4	558 2	2.16	<2	<8	<2	4	76	.2	<3	3	40	.67	.108	7	77	.63	231	.14	<31	.01	.07	.50	<2	-

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Appendix II

Queen Property

Geochemical Assessment Report

QUEEN PROPERTY GEOCHEMICAL ASSESSMENT REPORT

Nanaimo Mining Division NTS 92L/5 50° 27' 30"N; 127° 45' W British Columbia, Canada

By:

Ed McCrossan, P. Geo. (604) 681-7362 edmccrossan@hotmail.com www.geocities.com/circlepacific

November 6, 2000

TABLE OF CONTENTS

	Page
Summary	1
Introduction	1
Location and Access	1
Claim Data	1
Topography, Vegetation and Climate	2
History and Previous Work	2
Regional Geology	2
Local Geology	2
Geochemical Sampling and Assay Results	3
Conclusions and Recommendations	4
Cost Statement	4
References	5
Statement of Qualifications	6

Appendices

- 1. Analytical Results
- 2. Rock Sample Descriptions

Figures

- 1. Location Map (after page 1)
- 2. Claim Map (after page 2)
- 3. Geology Map (after page 3)
- 4. Geochemical Sample Location Map and Assay Results. (after page 4)

Summary

The Queen claim consists of 20 units and is located 20 km west of Port Alice on Vancouver Island, British Columbia, Canada.

The property is underlain by Bonanza Group volcanics and associated sediments of Lower Jurassic age. Island intrusions, dating from the middle Jurassic, are also present on the property.

The Les minfile showing located within the claim consists of disseminated chalcopyrite, pyrite, magnetite and hematite hosted by andesitic volcanics. Previous geochemical sampling results from this area assayed between 0.15 and 0.60% copper.

Since northern Vancouver Island has the potential to host precious metal or polymetallic vein, shear, breccia, carbonate replacement, and/or porphyry related mineral occurrences or deposits, further work including geochemical sampling, geological mapping and geophysical surveys are recommended for the Queen claim.

Introduction

The writer visited the Queen property during October, 2000 and completed a preliminary rock geochemical sampling programme, investigated the Les Minfile showing, and reviewed the local geology.

Location and Access

The Queen claim is located 20 km west-northwest of Port Alice on Vancouver Island (Figure 1).

The property is road accessible by Western Forest Products logging roads which begin south of Port Alice on the east side of Neroutsos Inlet.

Claim Data

Claim Name	Tenure #	# of Units	Expiry Date
Queen	380883	20	October 2, 2001

A claim map is included as Figure 2.

Topography, Vegetation and Climate

Topography within the claim area is moderate to steep with elevations ranging between 250 feet (76 meters) and 2,500 feet (760 meters).

Vegetation and climate is typical for the west coast of Vancouver Island.

Second growth vegetation in previously logged areas can be dense and difficult to traverse. Rainfall, at times, can be heavy and continuous.

History and Previous Work

The Les Minfile occurrence (number 092L230) is located within the Queen claim.

The area surrounding the Les showing was investigated during 1969 and 1970 by Skaist Mines Ltd. At that time the company completed geological, geochemical and geophysical surveys.

Regional Geology

The northwestern portion of Vancouver Island is underlain primarily by two thick volcanic-sedimentary cycles:

- 1. The Vancouver Group of Triassic age which includes the Karmutsen volcanics, the Quatsino limestone and the Parson Bay marine sediments; and
- 2. The Bonanza Group volcanic assemblage of Lower Jurassic age.

These volcanic-sedimentary packages were intruded by the Island Intrusions during the middle Jurassic.

Northern Vancouver Island has the potential to host precious metal or polymetallic vein, shear, breccia, skarn (carbonate replacement) and/or porphyry related mineral occurrences or deposits.

Local Geology

The Queen claim is underlain by Bonanza Group volcanics and associated sediments of Lower Jurassic age (Figure 3). The volcanic rocks are andesites and rhyodacites and included lavas, tuffs, agglomerates and breccias.

Some of the lavas were amygdaloidal and/or porhyritic, the tuffs were aphanitic and contained lapilli fragments and crystals; and the agglomerates and breccias were primary volcanic facies.

Legend for Figure 3

- IKL: lower Cretaceous Longarm Formation; volcanic sedimentary rocks, wackes, sandstone, siltstone, shale, conglomerate.
- JI: early to middle Jurassic Island Plutonic Suite, medium grained, equigranular granitoid rocks
- IJB: lower Jurassic Bonanza Group; marine to continental basaltic to rhyolitic lavas, pyroclastic and epiclastic volcanic rocks
- m: mafic
- i: intermediate
- f: felsic
- A: aphanitic
- P: porphyritic
- Y: amygdaloidal
- v: volcanic
- t: tuff
- br: breccia
- f: lavas
- di: diorite
- sn: sandstone
- sl: siltstone
- sh: shale

fault, shear, lineation

_____ geological contact

↓ bedding

230 Minfile occurrence 092L230

Elevation contours (100 feet)

The Bonanza volcanic sequence was intruded in the northeastern portion of the property by a Jurassic stock having a quartz monzonitic to dioritic composition.

The Les Minfile occurrence, associated with the southwestern margin of the stock, consists of disseminated chalcopyrite, pyrite, magnetite and hematite hosted by andesitic volcanic breccias, lavas and tuffs.

Alteration products associated with the mineralization included chlorite, clays and carbonate, as well as silica and tourmaline. The nearby intrusion was also altered and pyritized.

Mineralization and alteration is widespread on the property and previous chip samples have returned assay values between 0.15 and 0.60% copper.

Predominant structures and contacts on the Queen property that may have influenced mineralization, trend northerly, north-northeasterly and north-northwesterly.

Geochemical Sampling and Assay Results

Fifty rock geochemical grab samples were collected along logging road cut exposures within the Queen Claim. Refer to Figure 4¹ and the Appendices for rock sample locations, analytical results, and sample descriptions.

The samples were analyzed by Acme Analytical Laboratories for 30 elements and gold using the ICP-ES method.

In general, the samples consisted of altered and pyritized Bonanza Group volcanic lithologies taken adjacent to the contact with the monzonitic to dioritic intrusion or within or close to faulted, sheared or fractured areas. Some samples were also taken from the stock-like intrusion.

Geochemical sampling results indicate low level anomalies in copper, molybdenum, zinc, silver and arsenic.

Copper values ranged up to 167 ppm (sample #20476), zinc values were as high as 151 ppm (sample #20566), and arsenic values ranged up to 2:29 ppm (sample #20496). The highest silver value was 0.7 gpt (sample #20574).

The highest copper assay was obtained close to the Les Minfile occurrence from which previous chip sampling returned analytical results between 0.15 and 0.60% copper (Minfile 092L230, Capsule Geology).

¹ Note that silver assay results less than 0.3 ppm were plotted as 0.2 ppm.

Conclusions and Recommendations

Northern Vancouver Island has the potential to host precious metal or polymetallic vein, shear, breccia, skarn, carbonate replacement and/or porphyry related mineral occurrences and deposits.

The Island Copper Mine, located 16 km south of Port Hardy and operated by BHP Minerals Canada Ltd. between 1971 and 1994, produced 345 million tonnes of ore averaging 0.41% copper, 0.017% molybdenum, 0.19 gpt gold and 1.4 gpt silver.

Since previous geochemical sampling results from the Queen cloim returned between 0.15 and 0.60% copper, further work is recommended for the property.

An initial phase programme of grid emplacement accompanied by geological, geochemical and geophysical surveys should be followed by a second exploration phase of detailed geological surveys and trenching and a third phase of diamond drilling, if warranted.

References

B.C. Ministry of Energy and Mines: Minfile 092L230, Capsule Geology.

- Dodson, E.D. 1970: Report on the Les Group of Mineral Claims; Mahatta River, B.C. for Skaist Mines Ltd.
- Stokes, R.B. 1970: Geological and Geochemical Report on the Les Claim Group for Skaist Mines Ltd.

Statement of Qualifications

I, Ed McCrossan of 204 – 1225 Barclay Street, Vancouver, British Columbia hereby certify:

- 1. I am a graduate of the University of British Columbia (1984) and hold a B.Sc., degree in geology.
- 2. I have been employed in my profession by various mining companies since graduate and have worked on projects in Canada, U.S.A., Thailand, China, Argentina, Chile, Bolivia, Peru, Venezuela, Central America and Mexico.
- 3. I am a member of the Society of Economic Geologists, the Canadian Institute of Mining and Metallurgy, a Fellow of the Geological Association of Canada, and a registered member in good standing of the Association of Professional Engineers and Geoscientists of B.C.
- 4. The information and recommendations contained in this report are based upon a four day site visit and a review of the literature listed in the bibliography.
- 5. I consent to and authorize the use of the attached report and my name in the Company's Prospectus, Statement of Material Facts or other public documents.

DATED at Vancouver, British Columbia this 6th day of November, 2000.

Appendix I

Analytical Results

ACME ANAL (ISO	YTIC. 9002	AL I Acc	ABO	RATO	DRIE 1 Co	S LT .)	D.		852 E	. H	ASTI:	NGS	ST.	VAN		VER	BC	V6A	1R(5	PH	ONE	(604) 25:	3-31	58 F	'AX (6	04)	253-	1716	
# #						Mc	<u>Cro</u> 20	<u>ssa</u> 4 • 1	св n, Е 225 Ва	<u>đ</u> P rclay	EMI ROJ St.,	CAL ECT Vanco	AN <u>NO</u> puver	ALY NE BC V	515 Fi 65 18	le 5 Si	KII # A ubmit	U03	864 y: Ed	i McCr	Pag	e 1									
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W . ppm	\u** ppb
B 20451 B 20452 B 20453 B 20454 B 20455	<1 1 7 1 4	48 21 66 16 3	7 14 58 10 8	92 78 230 85 4	<.3 <.3 <.3 .3 1.1	47 7 48 7 3	24 17 46 15 1	1599 1745 3285 1200 98	6.55 4.39 14.20 5.27 .47	8 3 10 2 <2	<8 <8 <8 <8 9	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 2 6 4 2	149 67 20 69 2	.4 .3 2.8 .4 <.2	ব্য ব্য ব্য ব্য ব্য	4 <3 6 3 <3	172 115 61 113 4	2.09 3.89 .35 4.86 .04	. 105 . 105 . 052 . 137 . 004	18 17 39 22 2	95 18 35 16 25	1.86 1.43 .41 1.41 .02	123 105 306 92 10	.42 <.01 .04 .01 <.01	<3 3 5 4 8	4.10 2.68 2.07 1.64 .06	.35 .07 .03 .11 .01	.09 .12 .27 .10 .01	2 <2 <2 2 8	6 5 4 2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																															
$\begin{array}{cccccccccccccccccccccccccccccccccccc$																															
RE B 20465 B 20466 B 20467 B 20468 B 20469	$\begin{array}{cccccccccccccccccccccccccccccccccccc$																														
B 20470 B 20471 B 20472 B 20473 B 20473	1 <1 <1 <1 1	10 6 97 68 64	8 <3 <7 13	55 44 71 66 53	<.3 <.3 <.3 <.3 <.3	67 115 92 90 58	31 43 48 56 30	889 875 1175 1315 945	6.27 8.01 9.61 8.07 4.81	7 10 4 9 8	<8 9 16 13 <8	<2 <2 <2 <2 <2 <2	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	27 22 30 39 152	.3 .3 .4 .2 .4	ও 5 3 3 3 3 3 3	ও ও ও ও ও ও ও ও ও	141 228 176 191 128	2.37 .34 .75 1.16 1.54	.082 .062 .051 .056 .056	3 4 1 2 1	54 94 91 76 68	3.07 4.22 4.62 4.11 2.38	19 14 17 45 20	.29 .15 .32 .36 .36	15 <3 <3 6	3.92 3.90 4.15 4.59 2.67	.19 .15 .14 .09 .08	.04 .04 .01 .03 .03	<2 <2 <2 <2 <2 <2 <2 <2	3 3 <2 4 3
B 20475 B 20476 B 20477 B 20478 B 20479	2 7 3 1 1	9 167 26 14 6	12 12 9 <3 5	35 58 47 50 48	<.3 <.3 <.3 <.3 <.3	5 18 4 2 <1	62 44 17 12 9	459 1035 775 756 653	5.30 8.72 6.17 5.64 5.44	9 16 2 3 5	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2	10 12 19 23 22	.4 .4 .2 <.2 .2	<3 4 <3 <3 <3	4 7 <3 3 3	78 105 107 98 100	.66 .50 1.11 1.28 1.28	.167 .187 .165 .171 .169	5 10 11 11 11	4 17 7 4 4	2.18 4.05 2.01 1.93 1.73	14 24 36 38 30	.28 .31 .41 .38 .36	<3 <3 7 21 48	2.20 3.89 2.03 1.95 1.80	.22 .17 .22 .24 .24	.01 .01 .07 .07 .08	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 5 <2 3 <2
B 20480 B 20481 B 20482 B 20483 STANDARD C3/AU-R	2 1 1 2 26	31 50 79 83 61	<3 7 <3 6 38	51 97 58 54 167	<.3 <.3 <.3 <.3 5.3	1 1 2 39	16 13 16 14 12	848 642 814 741 775	6.78 5.56 7.06 5.74 3.41	5 6 3 5 55	<8 <8 <8 <8 21	<2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 22	19 12 12 16 29	.3 .5 .2 <.2 22.4	<3 <3 <3 <3 17	<3 3 <3 24	117 86 109 97 75	1.01 .91 .76 .97 .56	.181 .159 .173 .179 .094	12 10 13 11 18	5 3 4 5 160	2.38 1.83 2.43 2.08 .62	31 24 34 22 152	.45 .36 .42 .35 .08	<3 21 <3 <3 22	2.32 1.72 2.39 2.02 1.82	.27 .17 .25 .24 .05	.08 .08 .06 .06 .18	<2 <2 <2 <2 16	4 2 3 <2 495
STANDARD G-2	2	2	4	45	<.3	10	4	547	2.13	<2	8	<2	5	99	.2	<3	<3	40	.72	.104	8	77	.64	282	.13	3	1.29	.19	.60	2	<2
	GRI UPI AS: - Sar	OUP 1 PER L SAY R SAMPLI	D - O IMITS ECOMM E TYP <u>begi</u>	.50 G - AG ENDED E: RO nning	M SAM I, AU, FOR DCK R1	HG, H HG, H ROCK J 50 601 are J	EACHE W = 1 And C C R <u>epur</u>	D WIT 00 PP ORE S AU**	H 3 ML M; MO, AMPLES GROUP 'RRE'	2-2-; CO, 1 IF CU 3B - are 1	2 HCL· CD, SE J PB 7 30.00	HNO3 B, BI ZN AS D GM S <u>E Reru</u>	-H2O / , TH, > 1% SAMPLI	AT 95 U& , Ag E ANA	DEG. B = 2 > 30 1 LYSIS	C FO ,000 i PPM & BY I	R ONE PPM; AU > CP-ES	HOUR CU, P 1000	, DIL B, ZN PPB	UTED , NI,	TO 10 MN, J	ML, AS, V	ANALY ', LA,	'SED E CR =	8Y ICP = 10,0	-ES. 00 PP	м.				
DATE RECI	EIVEI):	OCT 2	2000	נם נ	ATE 1	REPO	ORT I	MAILE	D: /	\mathcal{O}_{ii}	$t_{!}$	2.10	0	SIG	NED	ву.(·	 , i	D. TOY	ΎΕ. C	LEON	G, J.	WANG	; CER	TIFIEC	в.с.	ASSA	YERS	
All results a	re cor	nside	red t	he co	nfide	ntial	prop	erty	of the	clier	nt. Ac	me as	/ isumes	s the	liab	iliti	es fo	r act	ual c	ost o	f the	anal	ysis	only.				Data	<u>_</u>	A	

-

McCrossan, Ed PROJECT NONE FILE # A003864

Page 2

44
ACHE ANALYTICA

Data + FA

SAMPLE#	Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppnt	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na X	K %	W . ppm	Au** ppb
B 20484 B 20485 B 20486 B 20487 B 20488	<1 <1 1 1 <1	97 60 156 29 6	4 7 10 5 <3	45 60 47 50 58	<.3 .6 .6 .3 <.3	81 105 96 99 36	65 78 52 75 27	1011 1785 927 1142 917	10.21 11.06 7.34 8.65 12.63	15 20 11 10 12	<8 <8 <8 <8 12	<2 <2 <2 <2 <2 <2	2 3 2 2 3	18 13 10 13 23	.5 .4 .4 .2 <.2	ব্য ব্য ব্য ব্য ব্য	3 3 3 3 3 3	198 236 204 173 177	.51 .54 .86 .66 1.98	.048 .050 .056 .053 .042	3 3 2 2 3	82 4 85 6 87 4 83 4 12	4.44 6.46 4.38 4.59 1.92	34 68 41 31 27	.44 .42 .50 .36 .07	उ उ उ र	8.21 6.71 2.71 8.22 1.47	.04 .02 .04 .04 .02	.03 .04 .03 .03 .11	3 3 2 2	<2 5 <2 <2 <2 <2
B 20489 B 20490 B 20491 B 20492 B 20493	<1 <1 3 1 <1	10 3 2 6 48	3 5 8 <3 3	11 16 12 9 27	.3 .4 .3 .3 <.3	10 12 7 14 6	5 9 12 10 7	188 426 180 210 682	3.22 4.37 2.94 3.73 3.83	2 4 3 5 ~2	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < < < <> </td <td>5 5 3 4 3</td> <td>9 19 5 3 10</td> <td><.2 <.2 <.2 <.2 <.2 <.2</td> <td>ও ও ও ও ও ও</td> <td>ଏ ଏ ଏ ଏ ଏ ଏ ଏ</td> <td>53 87 28 50 47</td> <td>.44 .59 .20 .15 .34</td> <td>.091 .139 .062 .093 .210</td> <td>13 10 5 11 13</td> <td>11 18 19 17 8</td> <td>.75 .85 .85 1.18 .71</td> <td>6 13 5 6 15</td> <td>.14 .09 .07 .01 .02</td> <td><3 4 <3 <3 4</td> <td>.62 .81 .72 .07</td> <td>.08 .07 .07 .07 .05</td> <td>.01 .05 .01 .01 .03</td> <td>~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td>2 <2 <2 3 <2</td>	5 5 3 4 3	9 19 5 3 10	<.2 <.2 <.2 <.2 <.2 <.2	ও ও ও ও ও ও	ଏ ଏ ଏ ଏ ଏ ଏ ଏ	53 87 28 50 47	.44 .59 .20 .15 .34	.091 .139 .062 .093 .210	13 10 5 11 13	11 18 19 17 8	.75 .85 .85 1.18 .71	6 13 5 6 15	.14 .09 .07 .01 .02	<3 4 <3 <3 4	.62 .81 .72 .07	.08 .07 .07 .07 .05	.01 .05 .01 .01 .03	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 <2 <2 3 <2
B 20494 B 20495 RE B 20495 B 20496 B 20497	<1 <1 <1 <1 1	2 1 1 2	<3 3 3 3 3	11 9 10 8 6	<.3 <.3 <.3 .4 <.3	1 2 2 3	6 22 22 19 2	273 112 114 109 169	3.95 4.71 4.78 4.72 2.60	7 148 146 229 4	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 2 3 2 3	16 3 3 21	<.2 <.2 <.2 <.2 <.2 <.2	ও 3 3 3 3 3 3 3	ব ব ব ব ব ব ব ব ব	2 1 <1 1 56	1.10 .34 .34 .34 .67	.197 .205 .206 .203 .135	15 11 12 11 10	5 5 5 5 10	.37 .57 .58 .57 .50	8 9 10 8 4	<.01 .02 .02 .03 .13	3 3 3 3 3 3	.30 .68 .69 .66 .44	.08 .08 .08 .09 .09	.02 .01 .01 .01 .02	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 2 <2 2 2
B 20498 B 20499 B 20500 B 20557 B 20558	<1 <1 <1 1 <1	2 1 2 11 13	4 <3 <3 <3 6	22 7 8 20 21	.3 .6 <.3 .4 <.3	6 10 3 1 3	9 8 1 3 22	423 694 134 442 486	4.22 4.71 .85 5.68 6.27	34 218 2 19 5	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < < < <> <> </td <td>3 2 3 3 <2</td> <td>5 40 21 9 8</td> <td><.2 <.2 <.2 <.2 <.2</td> <td>ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও</td> <td>3 3 3 3 3 3 3 3 3 3 3</td> <td>61 204 5 59 65</td> <td>.30 6.01 .94 .95 .69</td> <td>.154 .101 .009 .176 .216</td> <td>13 4 8 7 9</td> <td>8 16 15 4 4</td> <td>1.30 1.88 .44 1.08 1.71</td> <td>13 14 3 10 12</td> <td>.01 .16 .01 .28 .23</td> <td><3 / 4901 2 17 24 <3 /</td> <td>2.27 .24 .98 1.40</td> <td>.07 .04 .08 .09 .08</td> <td>.03 .05 .01 .04 .01</td> <td><2 <2 7 <2 <2</td> <td><2 <2 2 <2 <2 <2</td>	3 2 3 3 <2	5 40 21 9 8	<.2 <.2 <.2 <.2 <.2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	3 3 3 3 3 3 3 3 3 3 3	61 204 5 59 65	.30 6.01 .94 .95 .69	.154 .101 .009 .176 .216	13 4 8 7 9	8 16 15 4 4	1.30 1.88 .44 1.08 1.71	13 14 3 10 12	.01 .16 .01 .28 .23	<3 / 4901 2 17 24 <3 /	2.27 .24 .98 1.40	.07 .04 .08 .09 .08	.03 .05 .01 .04 .01	<2 <2 7 <2 <2	<2 <2 2 <2 <2 <2
B 20559 B 20560 B 20561 B 20562 B 20563	<1 2 18 <1	1 3 2 2 1	6 9 3 3 3	19 20 4 10 47	.4 .4 <.3 <.3 .3	<1 1 2 3 5	16 17 2 19 8	344 324 19 166 471	6.59 8.17 1.96 2.28 4.51	7 <2 4 8 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 3 3 <2 3	11 9 2 2 6	<.2 <.2 <.2 <.2 <.2	3 ব ব ব ব ব ব ব	<3 4 <3 <3 3	16 12 7 5 36	.96 .62 .01 .01 .18	.202 .216 .027 .022 .087	11 17 16 4 14	5 / 1 / 14 8 12	1.12 1.30 .01 .01 .02	8 5 4 11 14	.01 .01 <.01 <.01 .03	ব্য ব্য ব্য ব্য ব্য	.45 .40 .15 .24 .26	.06 .06 .07 .06 .07	.02 .01 .03 .04 .01	2 2 4 3	<2 2 2 4 4
B 20564 B 20565 B 20566 B 20567 B 20568	19 3 1 2 2	26 2 16 3 3	6 <3 18 3 4	19 32 151 23 45	<.3 <.3 .3 <.3 <.3	4 3 2 3	3 <1 <1 <1	57 107 191 103 421	1.17 1.64 1.68 1.47 2.77	6 5 8 3 14	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 5 2 9 4	6 4 2 2 2	<.2 <.2 .3 <.2 <.2	⊲ ⊲ ₃ ⊲ ⊲	3 3 3 5 3 5 3	14 8 3 15 5	.07 .03 .02 .01 .01	.045 .008 .002 .007 .002	2 24 20 100 35	10 17 17 22 13	.02 .05 .01 .01 .01	10 36 29 25 145	<.01 <.01 .01 .01 <.01	5 ব্য ব্য ব্য ব্য	.48 .25 .15 .18 .28	<.01 .03 .07 .05 .06	.12 .23 .04 .11 .15	<2 2 7 3 4	<2 <2 8 <2 2
B 20569 B 20570 B 20571 B 20572 B 20573	5 <1 4 2 5	2 6 3 3 2	<3 3 6 4 5	2 8 12 12 18	<.3 <.3 <.3 <.3 <.3	1 2 1 3 1	<1 1 6 <1	19 34 111 119 120	.81 1.70 2.40 1.44 2.65	3 4 3 ~2 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	<2 4 <2 5 2	1 1 2 1	<.2 <.2 <.2 <.2 <.2	ও ও ও ও ও	<3 3 3 3 3 3	3 6 1 8 5	<.01 <.01 .01 .10< <.01	.001 .001 .001 .001 .001	8 26 13 41 16	12 15 13 25 8	<.01 .01 .04 .01 .01	8 7 6 5 6	<.01 <.01 <.01 .01 <.01	ও ও ও ও ও	.12 .15 .17 .13 .19	.09 .08 .08 .09 .07	.01 .04 .02 .02 .02	2 2 3 4 3	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
STANDARD C3/AU-R Standard G-2	26 1	65 3	41 6	166 41	5.7 <.3	41 9	12 4	804 555	3.56 2.12	59 <2	28 <8	2 <2	22 6	28 73	24.1 <.2	15 <3	25 <3	73 35	.59 .67	.097 .107	18 8	169 76	-64 -63	148 225	.09 .13	25 <3	.83 .96	.04 .08	.17 .49	16 2	481 <2

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

McCrossan, Ed PROJECT NONE FILE # A003864

ACME ANALYTICAL

SAMPLE	#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	ų	Au	Th	Sr	Cd	Sb	Bi	۷	Ca	P	La	Cr	Mg	Ba	τi	В	AL	Na	ĸ	¥	Au**
		ppm	76	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	/6	70	ppm	ppm	/•	ppm	74	ppin	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	^	/	hhin	ppu							
B 2057	4	7	2	3	13	.7	2	1	72	2.29	4	<8	<2	3	1	<.2	<3	3	4	<.01	.001	19	10	<.01	6	<.01	14	.16	.09	.02	3	3
B 2057	5	2	2	<3	3	<.3	2	2	15	1.11	<2	<8	<2	<2	1	<.2	<3	<3	<1	<.01<	.001	3	11	<.01	5	<.01	6	.12	.09	.02	3	2
B 2057	6	6	4	<3	26	.3	3	2	184	3.70	5	<8	<2	2	2	<.2	<3	<3	2	.02	.001	17	15	.09	7	<.01	16	. 19	.07	.02	4	2
B 2057	7	6	4	3	29	.7	3	2	206	3.88	5	<8	<2	2	2	<.2	<3	<3	3	.02	.001	16	20	.11	6	<.01	14	.20	.07	.02	4	<2
B 2057	8	2	25	4	29	<.3	6	16	1003	5.27	4	<8	<2	2	18	<.2	<3	<3	57	1.20	.160	11	28	1.00	27	.23	13	1.94	.17	-08	<2	<2
B 2057	9	3	5	5	45	.4	4	20	1393	6.24	10	<8	<2	<2	43	<.2	<3	<3	24	5.55	. 159	14	6	1.07	18	<.01	9	.53	.03	.17	<2	<2
B 2058	0	4	3	<3	2	.3	2	1	1373	1.71	3	<8	<2	2	31	<.2	<3	<3	<1	4,31	.014	10	12	. 14	10	<.01	9	.26	.04	. 15	<2	<2
B 2058	1	4	12	<3	4	.3	1	<1	242	2.59	8	<8	<2	2	5	<.2	<3	<3	<1	.73	.017	12	14	.16	11	.01	15	1.17	.16	.24	<2	2
B 2058	2	4	3	5	16	<.3	2	5	516	5.15	4	<8	<2	<2	5	<.2	<3	<3	10	.66	.116	15	9	.39	12	.02	11	1.47	.12	.21	<2	<2
B 2058	3	4	3	<3	10	<.3	2	3	535	4.05	4	<8	<2	<2	11	<.2	<3	<3	4	,76	.113	14	8	.56	10	<.01	10	.46	.03	. 15	2	<2
B 2058	4	<1	249	<3	52	<.3	9	30	1666	6.06	4	<8	<2	2	11	.3	<3	<3	164	2,56	.061	10	7	.90	20	.02	9	1.93	.05	.08	<2	<2
B 2058	5	<1	47	<3	125	<.3	55	31	2021	7.06	2	13	<2	<2	22	.3	<3	<3	132	8.67	.071	7	89	. 14	31	.01	7	1.34	.02	. 13	2	3
B 2058	6	3	21	<3	48	<.3	4	4	564	2.28	<2	<8	<2	3	11	<.2	<3	<3	13	.47	.012	18	13	.27	21	<.01	7	.82	.10	.04	<2	<2
B 2058	7	4	149	3	267	<.3	48	38	3443	7.19	14	<8	<2	<2	20	.9	<3	<3	177	4.83	.104	16	86	.08	41	.04	8	1.36	.02	. 18	<2	5
B 2058	8	4	10	<3	40	.3	3	2	412	3.87	3	<8	<2	2	1	<.2	<3	<3	23	.04	.020	27	9	.04	9	<.01	9	.93	.01	.12	<2	3
RE B 2	0588	4	11	<3	40	.3	3	2	407	3.82	3	<8	<2	2	1	<.2	<3	<3	23	.04	.020	27	8	.04	9	<.01	9	.93	.01	. 12	<2	4
B 2058	9	2	11	<3	9	<.3	4	2	185	.73	<2	<8	<2	<2	8	<.2	<3	<3	17	1.54	.041	6	22	.11	3	.10	4	.25	.09	.01	3	3
B 2059	0	2	<1	<3	54	<.3	9	23	980	9.19	5	<8	<2	<2	10	.3	<3	<3	230	.78	.094	7	9	2.81	12	.09	6	4.18	.10	.08	2	3
B 2059	1	1	99	5	171	<.3	29	40	2374	6.87	11	<8	<2	<2	6	1.4	3	<3	138	. 18	.068	8	25	. 18	62	.01	6	1.27	.05	.09	4	3
B 2059	2	<1	45	5	63	<.3	27	31	1774	6.90	5	<8	<2	<2	14	.4	<3	<3	225	1.10	.088	6	34	2.69	48	.26	10	3.08	.10	.05	<2	3
STANDA	RD C3/AU-R	27	67	36	169	5.4	40	12	793	3.47	60	23	<2	23	29	23.8	20	24	74	.57	.095	19	175	.62	154	.08	29	1.87	.04	.17	17	482
STANDA	RD G-2	2	4	5	44	<.3	9	5	535	2.06	<2	<8	<2	5	84	<.2	<3	<3	34	,66	.104	7	- 77	.62	255	.13	9	1.06	.12	.53	2	2

STANDARD G-2

Sample type: ROCK R150 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Appendix II

Rock Sample Descriptions

20470	intermediate volcanic
20471	intermediate volcanic
20472	intermediate volcanic
20473	3 meter chip sample; intermediate volcanic
20474	intermediate volcanic, sheared, altered
20475	intermediate volcanic; sheared, fractured
20476	intermediate volcanic; sheared, fractured
20477	intermediate volcanic
20478	intermediate volcanic
20479	intermediate volcanic
20480	intermediate volcanic
20481	felsic volcanic
20482	felsic volcanic
20483	felsic volcanic
20484	intermediate volcanic; pyritized
20485	intermediate volcanic; pyritized, sheared
20486	1 meter chip sample; intermediate volcanic
20487	intermediate volcanic; pyritized
20488	intermediate volcanic, pyritized
20489	quartz monzonite – diorite
20490	quartz monzonite – diorite
20491	quartz monzonite – diorite
20492	quartz monzonite – diorite
20493	quartz monzonite – diorite
20494	intermediate volcanic; silicified
20495	intermediate volcanic; silicified
20496	intermediate volcanic; silicified
20497	quartz monzonite-diorite
20498	quartz monzonite-diorite
20499	intermediate volcanic
20500	intermediate volcanic; silcified
20557	intermediate volcanic; silcified
20558	intermediate volcanic
20559	intermediate volcanic
25600	intermediate volcanic
20561	intermediate volcanic breccia
20562	intermediate volcanic breccia
20563	intermediate volcanic breccia
20564	intermediate volcanic
20565	intermediate volcanic
20566	volcanic agglomerate
20567	intermediate volcanic; sheared

20568	felsic volcanic	
20569	felsic volcanic	
20570	felsic volcanic	
20571	intermediate volcanic	
20572	intermediate volcanic	_
20573	intermediate volcanic	
20574	intermediate volcanic	