
BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

3

NY ANG IN INC.

Snow Creek Report

Omineca Mining Division British Columbia

MINISTRY OF ENERGY & MINES DEC 1 2 2000 RECEIVED SMITHERS, B.C

- Prepared By-

Michael Middleton Box 842 150 Mile House, B.C. VOK 2GO

Table of Contents:

				rage
Introduction	•		:	1
Summary				2
Location and Access				4
History				5
Geology				7
Mineralization				8
Showings	· .			9
Rock Descriptions	· .	-	· · ·	11
Appendix A:	Expenditures			
Appendix B:	Daily Reports		· · ·	
Appendix C:	Statement of (Qualifications		
Appendix D:	Assay reports			
List of Maps in Text:				
Figure	2000-1	Location Map		
Figure	2000-2	Claim Map		
Figure	2000-3	Geology Map		

Figure 2000-4

Sec. 1

Geophysical - Geochemical Compilation Map

Introduction:

This report has been prepared due to the writers acceptance for the Prospectors Assistance Program, by the Provincial Government. This report reviews the geology, mineralization and exploration potential of the Snow Creek property (NTS map 93L12E).

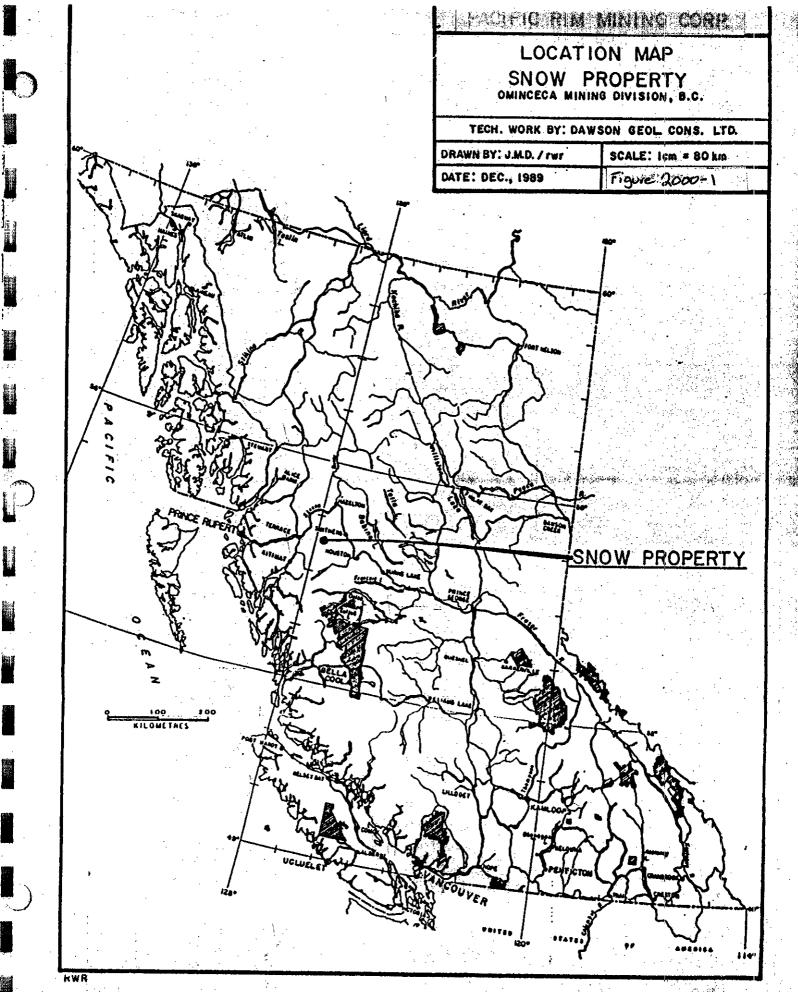
Data on geology, mineralization and the results of previous exploration are summarized in maps and text in this report.

Summary:

The Snow property consists of a twenty unit block and four two post claims. The valley contains the headwaters of Tsai Creek to the south and Snow Creek to the north. The main Creek and its tributaries have cut a number of steep gorges which was the main target for outcrop. The property is southwest of Smithers and is accessible by a short helicopter flight from existing roads.

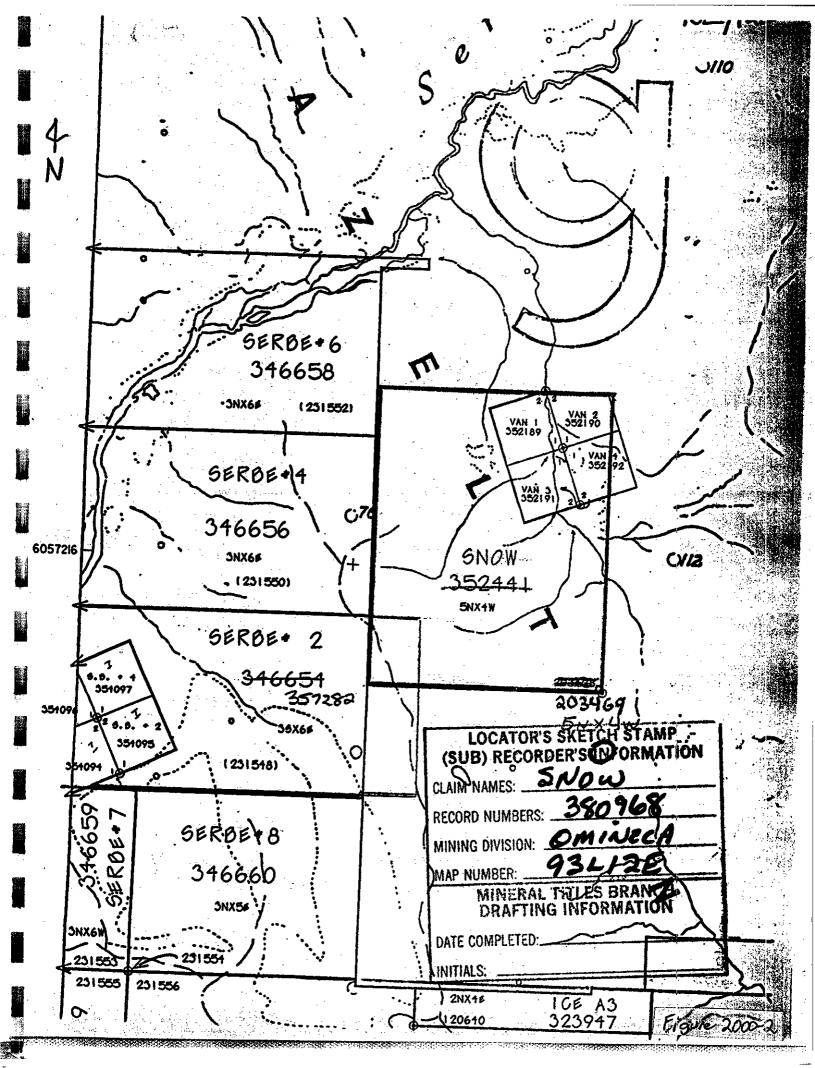
There is no record of work on the property prior to 1987. Gold - silver mineralization was discovered as a result of follow - up of anomalous gold silt geochemistry detected by a government survey. The property was optioned to Lornex Mining Corp. And a detailed exploration program consisting of geological, geochemical and geophysical surveys was completed during the 1988 field season. In 1989, Pacific Rim Mining Corp. optioned the property and a limited exploration program, designed to complement the earlier Lornex work, was carried out. The property was then option to Homestake Canada Inc. in 1991. Additional work consisting of detailed geological mapping, "fill - in" soil geochemistry, detailed VLF-EM and magnetometer surveys were carried out. Homestake then carried out a diamond drilling program. Seven holes were drilled, only the first two were made public.

The property is underlain primarily by intermediate to acid volcaniclastic rocks of the Hazelton Group. This package is intruded by an early Tertiary granitic stock. A swarm of feldspar porphyry dikes and sills which may be genetically related to the nearby stock locally intrude the older Hazelton rocks. A regional, north - trending fault cuts through the center of the property and may be the focus for subsidiary fault splays and gold - silver bearing sulphide mineralization. This mineralization is widespread within a 800 meter (and potentially larger) section along Snow Creek. Gold - silver mineralization is associated with pyrite and lesser chalcopyrite in fault and shear zones as well as more massive lenses or veins associated with some of the younger dikes. Grades are widely variable and some bonanza grade assays have been obtained from float and selected samples.


Page 2

It is difficult to trace individual zones because of extensive dike intrusions, post mineral faulting and lack of outcrop away from the creek. However, at least four promising zones of higher grade material have been identified. Samples of float may help pinpoint the location of a high grade Au, Ag and Cu vein. A trenching program is recommended for this area. Several geochemical and geophysical anomalies may indicate areas where mineralization is focused. There is an excellent chance of locating tonnages of economic grade gold - silver mineralization, and a diamond drill program is recommended to test this potential.

Location and Access.


The Snow property is located in west - central British Columbia in the Omineca mining division (NTS map 93L12E). The property is 35 km southwest of Smithers in the Hazelton Ranges. The legal corner post for the claim is at 54°39' north, 127°41' west.

Access to the property is by helicopter from Smithers. However, access roads along the Telkwa river to the southwest are presently within 12 km of the property, and decommissioned logging roads are within 8 km of the property.

. . . , in

「「「「「「」」」

Work History:

Mineral claims were originally staked by H. Van Alphen, following a 170 ppb Au stream sediment anomaly, obtained by the federal and provincial government regional geochemical survey (RGS) for the Smithers (93L) map area. In 1988 the property was optioned by Lornex Mining Corporation Ltd.

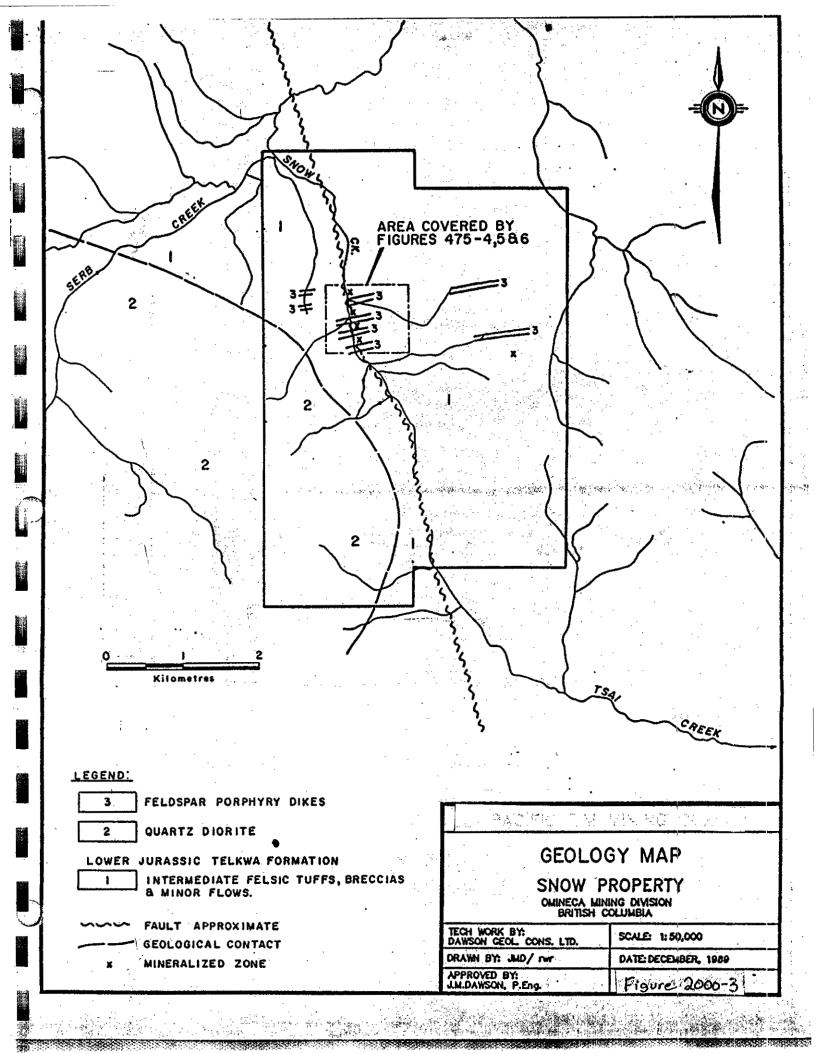
Lornex conducted an exploration program in 1988 consisting of geological mapping and rock sampling, soil geochemistry, as well as limited induced polarization and VLF-EM (///R (///R (///R (///R (///R (////R (////R (////R (////R (/////R (//////R) geophysical surveys. Lornex's work identified numerous mineralized zones. The assays and geochemical analysis returned with highs of 178.6 g/t Au, 2315.7 g/t Ag, and 6.85% Cu. Several small areas with anomalous gold, silver and copper values in soils were identified peripheral to the creek mineralization..

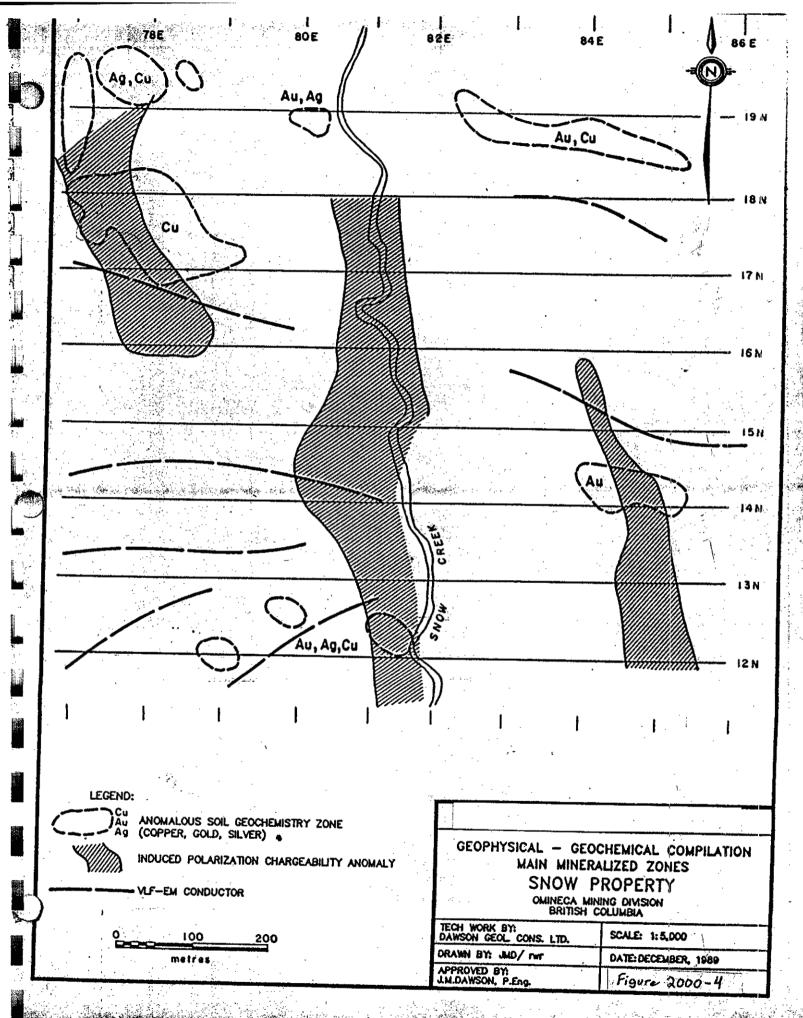
In August, 1989, the property was optioned to Pacific Rim Mining Corp. This company carried out a brief exploration program, consisting of soil and silt sampling, and induced polarization surveys in an attempt to duplicated the Lornex assay results. An attempt was made to drill one of the mineralized zones, however, the equipment was incapable of penetrating the overburden and gouge zones.

In late September, 1991, Homestake Canada Ltd. explored the claims. The objectives of this work were to define to nature and extent of the mineralization on the previous work. Seven AR 22.648 holes were drilled on the property, but results of only two of the drill holes were made public. The remainder of the core is currently stored in the Smithers area. The results of the two drill holes are described in the Homestake report.

Drill hole DH91SC01 failed to yield economically significant results. This hole intersected two narrow mineralized green gouge zones within the megacrystic feldspar porphyry (FSPP) unit. These zones correlated well with similar material sampled in outcrop exposed in a small, steep stream, about 50m south of the drill collar, but assays from the drill core are significantly lower than the outcrop. Whether these zones are mineralized fault gouge or sheared slivers of volcanic rock caught between two dykes is still not clear. The mineralized rock at the lower FSPP contact, which is only weakly anomalous in precious metals, likely corresponds to the targeted massive pyrite mineralization exposed in the Creek. Again, the amount of sulfides and assays are much lower in drill core than in surface sampling. No mineralization is associated with the lower FSPP units. Drill hole DH91SC02 was targeted on a high grade, massive sulphide vein (Henk's Vein- best assay collected by J. Dawson of approximately 16 g/t Au over 5.0m) and intense, but shallow, IP response. The drill hole intersected the same units as mapped on surface and indicates that the intrusive units dip much more shallowly to the southwest than estimated from surface mapping. Even the Snow Creek Fault Zone appears to have a shallow dip here. Approximately 40m of mineralized volcanic rock was encountered but assays yielded only geochemically anomalous concentrations of precious metals. The sulphide rich rocks extend to a vertical depth of 50m below surface and appear to dip to the west as suggested by the IP data.

Property Geology:


The Snow property is underlain primarily by intermediate to acid volcanoclastic rocks of the Lower Jurassic Hazelton Group. These rocks are intruded by a granitic stock of Eocene age. A swarm of felsic dikes and sills which may be related to the nearby stock, locally intrude the volcanoclastic rocks.


The volcanoclastic rocks have been assigned to the Telkwa Formation which form the base of the Hazelton Group. It consists of variegated red, maroon and grey- green tuff, breccia and flows. On the Snow property the fragmental units are most common. They usually consists of fine grained, thinly banded, grey and tan colored flows.

The Hazelton volcanics are intruded by a coarse grained, grey- white, quartz diorite stock in the southwest corner of the property. This stock has been correlated with the Eocene, Nanika Intrusions which outcrop fairly extensively in the Smithers district.

Feldspar porphyry dikes and sills intrude the Hazelton volcanics and the quartz diorite stock. These bodies are grey to buff in color and are usually porphyritic with anhedral to subhedral potash feldspar phenocrysts (approximately the composition of granodiorite). They are primarily dikes which are orientated in an easterly direction and dip steeply north and south. However, locally they may be very irregular in shape and approximate the attitude of the volcanoclastic. These dikes vary from less than a meter to more than 40 meters in thickness, but locally may appear thicker because of repetition by faulting. These dikes may be more numerous than shown on geology maps but lack of outcrop precludes an accurate estimate. Where these bodies are exposed in the main area of interest along Snow Creek they make up approximately 30 - 40% of the outcrop.

A major, north trending fault is interpreted to roughly parallel the trace of Snow Creek. This fault was not observed directly, however there are numerous small faults, shear and gouge zones of varying orientations observed in the main area of interest.

Mineralization:

¹¹ Mineralization on the property consists of sulphide fracture - fillings and sulphide rich quartz - carbonate veins proximal to feldspar porphyritic granodiorite dikes. Pyrite is the dominant sulphide with minor chalcopyrite and local sphalerite and galena. Individual mineralized veins and fractures trend northeast to southeast and exhibit steep north and south dips.

The mineralized zones are exposed along a 800 meter section in Snow Creek and are localized where the splay structures intersect the north - south trending regional fault. Individual pyritic zones are up to 27 meters wide. Due to glacial and talus cover, the mineralized zones were not traceable beyond Snow Creek. A total of 37 rock samples were collected and sent in for 32 element ICP.

Verbatim AR 18014

Showings on the Snow Property.

Discovery Showing: previously known

This showing was first found by Hank Van Alphen. A grab sample of pyritic fault gouge yielded assays of 489.09 g/ton Au and 246.8 g/ton Ag. Sample GC88-7 return assay results of 4.87 g/ton Au, 104.9 g/ton Ag and 0.6% Zn. The mineralization of this showing is small veins, and due to weathering, previous assay results could not be repeated. A chip sample of a 3 inch carbonate vein yielded 47.6 g/ton Ag and 0.17% Zn (sample MJS7).

Peninsula Showing: Previous by Known

Previous sampling of this zone yielded some high grade veining. Sample GC88-8a, from a quartz vein, yielded 4.25 g/ton Au, 65.5 g/ton Agand 0.2% Zn. Sample GC88-8b was from a pyrite vein. This sample returned assay results of 3.02 g/ton Au, 68.6 g/ton Ag, 0.2% Pb and 0.92% Zn.

Island Showing: previously known

The Island Showing has Snow Creek running along the east side and a dry creek bed on the west. Previous sampling was concentrated on the west side of the island. Samples yielded analysis of up to 69.9 g/ton Ag, 3.77 g/ton Au and 0.16% Zn (Sample 6319). 64.8 g/ton Ag, 3.84 g/ton Au and 0.26% Zn (Sample 6320). 70.6 g/ton Ag, 3.67 g/ton Au, 0.14% Zn and 0.16% Pb (sample 6322). New samples of the showing yielded assays of up to 136 g/ton Ag (sample MJS27).

Recent exploration concentrated on the east side of the island, as well as the far west bank. Three samples were obtained from a 18 meter long by 5 meters wide vein along Snow Creek. The assays returned elevated silver numbers, 139 g/ton Ag (sample MJS2). 70.6 g/ton Ag (sample MJS3). The third sample was from a 1" vein of highly weathered sulphide material. 196 g/ton Ag (sample S200).

Hand trenching was required on the west bank, but outcrop showed that mineralization continued on from the original showing. A chip sample of highly fractured volcanics yielded assay results of 49.8 g/ton Ag (sample MJS26).

Page 9

Falls Showing: New showing

Half of the falls showing is hidden by a small waterfall. A mineralized vein, 3 meter long by 1 meter high, was sampled. Sample MJS30, is a chip sample of altered tuff with 50% pyrite. This sample returned results of 33.6 g/ton Ag and 0.12% Zn. Sample MJS31 is a chip sample of a 7 inch carbonate vein with 60% pyrite. It assayed 261 g/ton Ag and 0.27% Zn.

140 - - ^{- - -}

Creek Showing:

A float sample from a large boulder in creek yielded 79.8 g/ton Ag and 0.2% Zn (sample MJS11). This showing runs 30 meters along a tributary to Snow Creek. Samples were taken at 3 meter intervals along strike. Four samples of a carbonate vein yielded and average of 49.4 g/ton Ag and 0.31% Zn (samples MJS12-15). Sample MJS16 is a chip sample of maroon tuff with malachite and azurite staining. The assays returned low numbers for Ag but the Cu was 0.35%. Sample MJS17 was from higher up the hill, this sample was of Maroon tuff as well. This sample returned values of 0.24% Cu. Previous samples from the showing averaged 49.1 g/ton Ag, 3.18 g/ton Au, 0.62% Zn and 0.14% Pb.

A small creek to the north of the creek showing has been prospected. Although no outcrop yielded any substantial assay results, a high grade piece of float returned some impressive assays. Sample MJS21 returned assay numbers of 502 g/ton Ag, 14.6 % Cu and 0.19% Zn. Pacific Rim collected a sample of float that closely resembles sample MJS21. Sample 6301 returned assays of up to 178.63 g/ton Au, 2315.7 g/ton Ag and 6.85% Cu. A trenching program is suggested to locate the origins of the aforementioned samples

At the writing of this report the MJS samples had not been sampled for gold.

Page 10

		· 1				
			*** a	· · · · · · · · · · · · · · · · · · · ·		
		and the second s		· ·		· · ·
		. ·	¢	~.		
			*/			· · · · · · · · · · · · · · · · · · ·
			-1			
			$\langle \rangle$	· · · ·		
			MJS2 MJS3		54"39"N - COOT	dinates not accurate Closer to 54°40' 127°40'
			J-MUSI		127'41' E-	Chosen to
		MJS4	}	· · ·		54°40'
		MJS5	₹			127 40'
	, -					
				• Drill Pad	Soale 1:30,000	
	· · · · ·			- Camp	Soale 1:30,000	
Snow	Creek- Rock	Sample Desci	iptions:	•	٦	· · ·
Sampl MJS1	e: ,	Pool: Tuno	Granadiarita			· .
1	Grab from o		Granodiorite. I rock with min	eralization in f	ine fractures. Rust alor	ng
\$	fractures. Tr	race malachite	on surface. 3-4	' vein.	· .	
	Ag (ppm) 5.6	As (ppm) 6	Cu (ppm) 51	Pb (ppm) 12	Zn (ppm) 84	• .
Island Show MJS2		· • • • • • •				
shru MJS2	Chip sample		Altered Volcar ers. veining up (e. Massive pyrite vein	s up to 6".
	Pyrite cubes	up to 1cm. Ma	inganese stainii	ng on surface.		
	Ag (ppm) 139	As (ppm) 32	Cu (ppm) 66	Pb (ppm) 892	Zn (ppm) 684	
	107			••• •		
MJS3	Chin sample	Rock Type: from outcrop		face, pyrite and	I chalcopyrite veins.	
<u> </u>	Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
	70.6	12	130	970	966	
MJS4			Granodiorite.			
	Granodiorite Ag (ppm)	e with serpentin As (ppm)	ne, rusty surface Cu (ppm)	e. Minor amour Pb (ppm)	nts of pyrite. Zn (ppm)	
	3.2	8	28	180	374	
MJS5		Dool: Turnet	The	1. S. A.		
1413.23	Grey Tuff w	Rock Type: vith rust on surt		s of pyrite. Mai	nganese staining on su	rface.
	10 meter vei	in, strikes north	a. Pyrite cubes u	up to 3mm.		
	Ag (ppm) 3.2	As (ppm) 14	Cu (ppm) 41	Pb (ppm) 72	Zn (ppm) 222	
		•				

調整

He and

; **1**

		. (
			- Creek	4	
				Careta	x
		×5			
	Q		-		
		MJS9	$\boldsymbol{\zeta}$. • • •	
			X Disco	very showing	· · · ·
			MJS8		E
			Nov	Creek	
	MJS6 -			and a second and a s	
		Creek	\langle	1 Dana	
			7		
MJS6					
					Zn (ppm)
	19	14	397 0	176	1995
overg	Showing	Dool Tune	Carbonata Vai	,	
vij 27	Chip sample				h trace amounts of chalcopyrite.
	Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
	47.6	354	126	654	1725
MJS8					
-	~ ^	from the disco	overy showing.	Gossanous wit	h vuggy fractures. Pyrite veining
	Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
	4	20	14	118	378
MJS9		Rock Type:	Tuff.	· · · · · ·	·
		utcrop. Maroon	n tuff with mala	chite and azuri	ite staining. Trace amount of
		As (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
	13.6	2	5130	20	158
MJS1() .	Rock Type:	Tuff.	· · ·	
	Grab from out tuff with ma	utcrop. Sample	taken 15m abo		
	-	As (nnm)	Cu (ppm)	Pb (npm)	Zn (ppm)
	20.2	2	6730	38	238
	MJS7 MJS8 	MJS6 Chip sample Ag (ppm) 19 every Shewing MJS7 Chip sample Ag (ppm) 47.6 MJS8 Chip sample in fractures. Ag (ppm) 4 MJS9 Grab from or pyrite. Ag (ppm) 13.6 MJS10 Grab from or tuff with mathroughout. Ag (ppm)	MJS6 Rock Type: Chip sample from outcrop, Ag (ppm) As (ppm) 19 14 9 0000 MJS7 Rock Type: Chip sample from the disco Ag (ppm) As (ppm) 47.6 354 MJS8 Rock Type: Chip sample from the disco in fractures. Ag (ppm) As (ppm) 4 20 MJS9 Rock Type: Grab from outcrop. Maroon pyrite. Ag (ppm) As (ppm) 13.6 2 MJS10 Rock Type: Grab from outcrop. Sample tuff with malachite and azu throughout. Ag (ppm) As (ppm)	MJS6 Rock Type: Granodiorite. Chip sample from outcrop, pyrite along dr Ag (ppm) As (ppm) Cu (ppm) 19 14 3970 MJS7 Rock Type: Carbonate Vein Chip sample from the discovery showing. Ag (ppm) As (ppm) Cu (ppm) 47.6 354 126 MJS8 Rock Type: Altered volcam Chip sample from the discovery showing. in fractures. Ag (ppm) As (ppm) Cu (ppm) 4 20 14 MJS9 Rock Type: Tuff. Grab from outcrop. Maroon tuff with mala pyrite. Ag (ppm) As (ppm) Cu (ppm) 13.6 2 5130 MJS10 Rock Type: Tuff. Grab from outcrop. Sample taken 15m abo tuff with malachite and azurite staining. P throughout. Ag (ppm) As (ppm) Cu (ppm)	MJS6 Rock Type: Granodiorite. MJS6 Rock Type: Granodiorite. Chip sample from outcrop, pyrite along dry fractures. Ag (ppm) As (ppm) Particle Creek MJS7 Creek MJS6 Rock Type: Granodiorite. Chip sample from outcrop, pyrite along dry fractures. Ag (ppm) Ag (ppm) As (ppm) Cu (ppm) Pb (ppm) Pb (ppm) MJS7 Rock Type: Carbonate Vein. Chip sample from the discovery showing. 20% pyrite with Ag (ppm) As (ppm) As (ppm) Cu (ppm) Pb (ppm) 47.6 354 126 654 MJS8 Rock Type: Altered volcanics. Chip sample from the discovery showing. Gossanous with in fractures. Ag (ppm) As (ppm) Cu (ppm) Pb (ppm) 4 20 14 118 MJS9 Rock Type: Tuff. Grab from outcrop. Marcon tuff with malachite and azuri pyrite. Ag (ppm) As (ppm) Cu (ppm) Pb (ppm) 13.6 2 5130 20 MJS10 Rock Type: Tuff. Grab from outcrop. Sample taken 15m above MJS9, but

ļ

·`1

•

				MJS12 MJS13 MJS14	- · ·	
				MJS15		
			-			
		- A Contraction of the second se		· . ·		
			Κ.	-		
			λ			
		· · · ·	SNOW			E
			2			
rek S	howing					
MJSI	howing 1		Massive Sulp			
	Large angu Ag (ppm)	llar float. Mass As (ppm)	ive pyrite and c Cu (ppm)	halcopyrite. Pb (ppm)	Zn (ppm)	
	79.8	198	310	684	1980	
MJS12	2 - MJS15	Rock Type:	Carbonate veir	1.	· ·	
	Grab sample	es from outcrop	o. Samples coll	ected at 3m into	ervals along creek t	
					ulnhide minerale. E	redomi
	30cm, carbo				posed 30 meters alo	
MJS12	30cm, carbo pyrite with o	chalcopyrite, a	nd trace sphaler	rite. Vein is exp		
MJS12	30cm, carbo pyrite with o 15 inch veir	chalcopyrite, a Rock Type: a of quartz and	nd trace sphaler Carbonate veir pyrite in creek	ite. Vein is exp 1. bed.	bosed 30 meters alo	
MJS12	30cm, carbo pyrite with o	chalcopyrite, an Rock Type:	nd trace sphaler Carbonate veir	tite. Vein is exp	bosed 30 meters alo Zn (ppm)	
	30cm, carbo pyrite with o 15 inch veir Ag (ppm) 30	chalcopyrite, an Rock Type: n of quartz and As (ppm) 94	nd trace sphalen Carbonate vein pyrite in creek Cu (ppm) 93	rite. Vein is exp n. bed. Pb (ppm) 712	bosed 30 meters alo	
MJS12 MJS13	30cm, carbo pyrite with o 15 inch veir Ag (ppm) 30	chalcopyrite, an Rock Type: n of quartz and As (ppm) 94 Rock Type:	nd trace sphalen Carbonate vein pyrite in creek Cu (ppm) 93 Carbonate vein	rite. Vein is exp 1. bed. Pb (ppm) 712	Zn (ppm) 3050	
	30cm, carbo pyrite with o 15 inch veir Ag (ppm) 30	chalcopyrite, an Rock Type: n of quartz and As (ppm) 94 Rock Type:	nd trace sphalen Carbonate vein pyrite in creek Cu (ppm) 93	rite. Vein is exp 1. bed. Pb (ppm) 712	Zn (ppm) 3050	
	30cm, carbo pyrite with o 15 inch veir Ag (ppm) 30 30% sulphic	chalcopyrite, an Rock Type: n of quartz and As (ppm) 94 Rock Type: le minerals. Ru	nd trace sphalen Carbonate vein pyrite in creek Cu (ppm) 93 Carbonate vein isty surface. Pyr	rite. Vein is exp n. bed. Pb (ppm) 712 n. rite and chalcoj	Zn (ppm) 3050	
	30cm, carbo pyrite with o 15 inch veir Ag (ppm) 30 30% sulphic Ag (ppm) 205	chalcopyrite, an Rock Type: n of quartz and As (ppm) 94 Rock Type: le minerals. Ru As (ppm) 238 Rock Type:	nd trace sphalen Carbonate vein pyrite in creek Cu (ppm) 93 Carbonate vein Isty surface. Pyr Cu (ppm) 6540 Carbonate Vei	ite. Vein is exp bed. Pb (ppm) 712 rite and chalcop Pb (ppm) 312 n.	Zn (ppm) 3050 pyrite. Zn (ppm)	
MJS13	30cm, carbo pyrite with o 15 inch veir Ag (ppm) 30 30% sulphic Ag (ppm) 205	chalcopyrite, an Rock Type: n of quartz and As (ppm) 94 Rock Type: le minerals. Ru As (ppm) 238 Rock Type: de minerals. Py	nd trace sphalen Carbonate vein pyrite in creek Cu (ppm) 93 Carbonate vein isty surface. Pyr Cu (ppm) 6540 Carbonate Vein rite and chalco	n. Pb (ppm) 712 n. rite and chalcop Pb (ppm) 312 n. pyrite.	Zn (ppm) 3050 pyrite. Zn (ppm) 890	
MJS13	30cm, carbo pyrite with o 15 inch veir Ag (ppm) 30 30% sulphic Ag (ppm) 205	chalcopyrite, an Rock Type: n of quartz and As (ppm) 94 Rock Type: le minerals. Ru As (ppm) 238 Rock Type:	nd trace sphalen Carbonate vein pyrite in creek Cu (ppm) 93 Carbonate vein Isty surface. Pyr Cu (ppm) 6540 Carbonate Vei	ite. Vein is exp bed. Pb (ppm) 712 rite and chalcop Pb (ppm) 312 n.	Zn (ppm) 3050 pyrite. Zn (ppm)	
MJS13 MJS14	30cm, carbo pyrite with o 15 inch veir Ag (ppm) 30 30% sulphic Ag (ppm) 205 45% Sulphic Ag (ppm) 13.8	chalcopyrite, an Rock Type: n of quartz and As (ppm) 94 Rock Type: le minerals. Ru As (ppm) 238 Rock Type: de minerals. Py As (ppm) 12	nd trace sphalen Carbonate vein pyrite in creek Cu (ppm) 93 Carbonate vein sty surface. Pyr Cu (ppm) 6540 Carbonate Vein rite and chalco Cu (ppm)	n. pb (ppm) 712 n. rite and chalcop Pb (ppm) 312 n. pyrite. Pb (ppm) 4450	Zn (ppm) 3050 oyrite. Zn (ppm) 890 Zn (ppm)	
MJS13	30cm, carbo pyrite with o 15 inch veir Ag (ppm) 30 30% sulphic Ag (ppm) 205 45% Sulphic Ag (ppm) 13.8	chalcopyrite, an Rock Type: n of quartz and As (ppm) 94 Rock Type: le minerals. Ru As (ppm) 238 Rock Type: de minerals. Py As (ppm) 12 Rock Type:	nd trace sphalen Carbonate vein pyrite in creek Cu (ppm) 93 Carbonate vein sty surface. Pyr Cu (ppm) 6540 Carbonate Vein rite and chalco Cu (ppm) 119	n. pb (ppm) 712 n. rite and chalcop Pb (ppm) 312 n. pyrite. Pb (ppm) 4450 n.	Zn (ppm) 3050 oyrite. Zn (ppm) 890 Zn (ppm)	

I

١

Page 13

			~			
		and the second				
		· ·	•	~		MJS18
				MUS17		MJS19
-				•		
		•	8	1 x		
		· .	$\langle \rangle$		ş	C
					.*	
		· · ·			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
			© PER	and a second and a second and a second		<u>_</u>
	•			. And the second		
	1 morne	and the second sec	١	·		
NIS16	showing	Rock Type:	Tuff			
10010	, Chip sample			roximately a tv	vo ton boulder	in creek bed. Th
	• •	ler was covered		-		
	Ag (ppm)	As (ppm) 2	Cu (ppm) 3490	Pb (ppm)	Zn (ppm) 256	
	x	<u> </u>	5490	100	230	
MIST	7	2 Rock Type:			230	
MJS17		Rock Type: e from outcrop.	Tuff.	¹		creek. Maroon
MJS17	Chip sample tuff with ma	e from outcrop. lachite and azu	Tuff. 15m up creek : irite staining.	from MJS16, o	n south side of	creek. Maroon
MJS17	Chip sample tuff with ma Ag (ppm)	e from outcrop.	Tuff. 15m up creek rite staining. Cu (ppm)	from MJS16, o Pb (ppm)	n south side of Zn (ppm)	creek. Maroon
MJS17	Chip sample tuff with ma	e from outcrop. lachite and azu	Tuff. 15m up creek : irite staining.	from MJS16, o	n south side of	creek. Maroon
MJS17	Chip sample tuff with ma Ag (ppm) 0.4	e from outcrop. lachite and azu	Tuff. 15m up creek : irite staining. Cu (ppm) 2420	from MJS16, o Pb (ppm)	n south side of Zn (ppm)	creek. Maroon
-	Chip sample tuff with ma Ag (ppm) 0.4 Chip sample	e from outcrop. llachite and azu As (ppm) 2 Rock Type: e from outcrop,	Tuff. 15m up creek : rite staining. Cu (ppm) 2420 Tuff. dark colored tu	from MJS16, o Pb (ppm) 22 uff with small a	n south side of Zn (ppm) 126	°creek. Maroon lachite on surfac
-	Chip sample tuff with ma Ag (ppm) 0.4 Chip sample and along di	e from outcrop. llachite and azu As (ppm) 2 Rock Type: e from outcrop, ry fractures. 1%	Tuff. 15m up creek : rite staining. Cu (ppm) 2420 Tuff. dark colored to pyrite, 1% ca	from MJS16, o Pb (ppm) 22 uff with small a rbonate.	n south side of Zn (ppm) 126 mounts of mal	. •
-	Chip sample tuff with ma Ag (ppm) 0.4 Chip sample and along du Ag (ppm)	e from outcrop. llachite and azu As (ppm) 2 Rock Type: e from outcrop, ry fractures. 1% As (ppm)	Tuff. 15m up creek : rite staining. Cu (ppm) 2420 Tuff. dark colored to pyrite, 1% ca Cu (ppm)	from MJS16, o Pb (ppm) 22 uff with small a rbonate. Pb (ppm)	n south side of Zn (ppm) 126	. •
-	Chip sample tuff with ma Ag (ppm) 0.4 Chip sample and along di	e from outcrop. llachite and azu As (ppm) 2 Rock Type: e from outcrop, ry fractures. 1%	Tuff. 15m up creek : rite staining. Cu (ppm) 2420 Tuff. dark colored to pyrite, 1% ca	from MJS16, o Pb (ppm) 22 uff with small a rbonate.	n south side of Zn (ppm) 126 mounts of mai Zn (ppm)	. •
-	Chip sample tuff with ma Ag (ppm) 0.4 Chip sample and along di Ag (ppm) 1.8	e from outcrop. llachite and azu As (ppm) 2 Rock Type: e from outcrop, ry fractures. 1% As (ppm) 2 Rock Type: Rock Type:	Tuff. 15m up creek i irite staining. Cu (ppm) 2420 Tuff. dark colored to 5 pyrite, 1% ca Cu (ppm) 3960 Altered Volcar	from MJS16, o Pb (ppm) 22 uff with small a rbonate. Pb (ppm) 12 nics.	n south side of Zn (ppm) 126 umounts of mai Zn (ppm) 94	lachite on surfac
MJS18	Chip sample tuff with ma Ag (ppm) 0.4 Chip sample and along di Ag (ppm) 1.8 Grab sample	e from outcrop. llachite and azu As (ppm) 2 Rock Type: e from outcrop, ry fractures. 1% As (ppm) 2 Rock Type: e from outcrop.	Tuff. 15m up creek : rite staining. Cu (ppm) 2420 Tuff. dark colored tu pyrite, 1% ca Cu (ppm) 3960 Altered Volcar 2m along strik	from MJS16, o Pb (ppm) 22 uff with small a rbonate. Pb (ppm) 12 nics. re, 1m along dij	n south side of Zn (ppm) 126 amounts of mal Zn (ppm) 94 o. Rusty volcar	. •
MJS18	Chip sample tuff with ma Ag (ppm) 0.4 Chip sample and along du Ag (ppm) 1.8 Grab sample veining and	e from outcrop. llachite and azu As (ppm) 2 Rock Type: e from outcrop, ry fractures. 1% As (ppm) 2 Rock Type: e from outcrop. pyrite dissemin	Tuff. 15m up creek i irite staining. Cu (ppm) 2420 Tuff. dark colored tu 5 pyrite, 1% ca Cu (ppm) 3960 Altered Volcar 2m along strik nated throughou	from MJS16, o Pb (ppm) 22 uff with small a rbonate. Pb (ppm) 12 nics. re, 1m along dij ut. Pyrite cubes	n south side of Zn (ppm) 126 amounts of mal Zn (ppm) 94 o. Rusty volcar up to 3mm.	lachite on surfac
MJS18	Chip sample tuff with ma Ag (ppm) 0.4 Chip sample and along di Ag (ppm) 1.8 Grab sample veining and Ag (ppm)	e from outcrop. lachite and azu As (ppm) 2 Rock Type: e from outcrop, ry fractures. 1% As (ppm) 2 Rock Type: e from outcrop. pyrite dissemin As (ppm)	Tuff. 15m up creek : rite staining. Cu (ppm) 2420 Tuff. dark colored tu 5 pyrite, 1% ca Cu (ppm) 3960 Altered Volcar 2m along strik hated throughou Cu (ppm)	from MJS16, o Pb (ppm) 22 uff with small a rbonate. Pb (ppm) 12 nics. re, 1m along dij ut. Pyrite cubes Pb (ppm)	n south side of Zn (ppm) 126 umounts of mal Zn (ppm) 94 o. Rusty volcar up to 3mm. Zn (ppm)	lachite on surfac
MJS18	Chip sample tuff with ma Ag (ppm) 0.4 Chip sample and along du Ag (ppm) 1.8 Grab sample veining and	e from outcrop. llachite and azu As (ppm) 2 Rock Type: e from outcrop, ry fractures. 1% As (ppm) 2 Rock Type: e from outcrop. pyrite dissemin	Tuff. 15m up creek i irite staining. Cu (ppm) 2420 Tuff. dark colored tu 5 pyrite, 1% ca Cu (ppm) 3960 Altered Volcar 2m along strik nated throughou	from MJS16, o Pb (ppm) 22 uff with small a rbonate. Pb (ppm) 12 nics. re, 1m along dij ut. Pyrite cubes	n south side of Zn (ppm) 126 amounts of mal Zn (ppm) 94 o. Rusty volcar up to 3mm.	lachite on surfac
MJS18	Chip sample tuff with ma Ag (ppm) 0.4 Chip sample and along di Ag (ppm) 1.8 Grab sample veining and Ag (ppm) 18.6	e from outcrop. llachite and azu As (ppm) 2 Rock Type: e from outcrop, ry fractures. 1% As (ppm) 2 Rock Type: e from outcrop. pyrite dissemin As (ppm) 30 Rock Type:	Tuff. 15m up creek : rite staining. Cu (ppm) 2420 Tuff. dark colored tu 6 pyrite, 1% ca Cu (ppm) 3960 Altered Volcar 2m along strik hated throughou Cu (ppm) 3840 Porphyritic Int	from MJS16, o Pb (ppm) 22 uff with small a rbonate. Pb (ppm) 12 nics. te, 1m along dij ut. Pyrite cubes Pb (ppm) 102 rusion.	n south side of Zn (ppm) 126 imounts of mal Zn (ppm) 94 o. Rusty volcar up to 3mm. Zn (ppm) 172	lachite on surfac
MJS18	Chip sample tuff with ma Ag (ppm) 0.4 Chip sample and along di Ag (ppm) 1.8 Grab sample veining and Ag (ppm) 18.6 Chip sample	e from outcrop. lachite and azu As (ppm) 2 Rock Type: e from outcrop, ry fractures. 1% As (ppm) 2 Rock Type: e from outcrop. pyrite dissemin As (ppm) 30 Rock Type: e from outcrop.	Tuff. 15m up creek : irite staining. Cu (ppm) 2420 Tuff. dark colored to b pyrite, 1% ca Cu (ppm) 3960 Altered Volcar 2m along strik hated throughou Cu (ppm) 3840 Porphyritic Int Grey, medium	from MJS16, o Pb (ppm) 22 uff with small a rbonate. Pb (ppm) 12 nics. re, 1m along dip ut. Pyrite cubes Pb (ppm) 102 rusion. n- grained, porp	n south side of Zn (ppm) 126 amounts of mal Zn (ppm) 94 o. Rusty volcar up to 3mm. Zn (ppm) 172	lachite on surfac
MJS18	Chip sample tuff with ma Ag (ppm) 0.4 Chip sample and along di Ag (ppm) 1.8 Grab sample veining and Ag (ppm) 18.6 Chip sample	e from outcrop. llachite and azu As (ppm) 2 Rock Type: e from outcrop, ry fractures. 1% As (ppm) 2 Rock Type: e from outcrop. pyrite dissemin As (ppm) 30 Rock Type:	Tuff. 15m up creek : irite staining. Cu (ppm) 2420 Tuff. dark colored to b pyrite, 1% ca Cu (ppm) 3960 Altered Volcar 2m along strik hated throughou Cu (ppm) 3840 Porphyritic Int Grey, medium	from MJS16, o Pb (ppm) 22 uff with small a rbonate. Pb (ppm) 12 nics. re, 1m along dip ut. Pyrite cubes Pb (ppm) 102 rusion. n- grained, porp	n south side of Zn (ppm) 126 amounts of mal Zn (ppm) 94 o. Rusty volcar up to 3mm. Zn (ppm) 172	lachite on surfac

Page 14

		1				
	· · ·		*****			
		and and a second	MJS2	1		

			*/			na i
	,					
	مستسر					
-		64 (02)Es		· ·		
•*		MJS25	-0			
			(2			G
) <u>2</u>			
				······		
	MJS22		® REAL	Lawrence and and a		
	MJS23 MJS24			1 hours		han a start of the
		م من ا م ه	Ì		\mathbf{X}	
MJS21	NorthoFC	Rock Type: 1	Massive sulphi	de.		
	Grab from fl	oat. Large angu	ılar float. Mass	ive pyrite, chal	copyrite, and trac	e bornite.
				ust. Pyrite cube	-	-
	Ag (ppm) 502	As (ppm) 334	Cu (ppm) 14600	Pb (ppm) 1160	Zn (ppm) 1900	
		· .				
MJS22		~ .	Granitic Porphy	yry. surface. Disser	ninoted purite	
	Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
	1.2	2	226	10	28	
MJS23		Rock Type: 1		Chin prime to f		Toomon most
	K-Feldspar v for Snow cla		Rusty surface.	Chip sample fi	com outcrop at 4V	v comer post
	Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
MICO	1.6	2 Rook Tymes I	252	12	24	· · ·
MJS24		Rock Type: I with 15% pyrite		e. Chip sample	from cliff, due we	est from camp.
	-	side of valley.	·	· ·	,,	· · · · · · · · · · · · · · · · · · ·
	Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
to lead	1.2	2	197	14	44	
Island MJS2:	5	Rock Type:	Tuff.	· ·		
	Chip sample veins.	from bank on	west side from	the Island Sho	wing. Numerous	thin pyrite
	Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
	5.2	8	187	40	196	

	· · ·	L.			
		~~~	\		
	M.	€ 1530 √ (§)			· · ·
	Falls Showin	p.			
		MJS26	)		
		MJS27	Island Sh	owing	
		MJS28	SNOW		E
		e e	<u>o</u> /~~~		
			$\langle $	- mark	
MJS2	6	Rock Type:	Altered Volcan	nics.	·
	Chip sample		Sample taken t	from bank, wes	t of Island Showing. Highly
	Ag (ppm) 49.8	As (ppm) 22	Cu (ppm) 181	Pb (ppm) 430	Zn (ppm) 1020
MJS2	Chip sample	• •		ed along strike.	40% sulphide. Thin pyritic veins
	Ag (ppm) 136	As (ppm) 8	Cu (ppm) 179	Pb (ppm) 1020	Zn (ppm) 4370
MJS2		••	Altered Volcar		instal munite
	Ag (ppm)	As (ppm)	Cu (ppm)	surface. Dissen Pb (ppm)	Zn (ppm)
	14	. 12	344	374	2360
MJS2		Rock Type:		autonan Tarra	then 10/ monite and chales monite
		sible on surfac		outcrop. Less	than 1% pyrite and chalcopyrite.
	Ag (ppm) 4.6	As (ppm) 2	Cu (ppm) 7090	Pb (ppm) 10	Zn (ppm) 158
MJS3		Rock Type:			
					vein of altered tuff. Pyrite e. 50% pyrite, 10% quartz.
	Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)
	33.6	60	208	370	1210

Stransvir,

·'[ -1

					· .
	$\sim$		-		-
		<b>)</b>	• •		
	®	for and the second			
MJ\$31		harris			
· · · · · · · · · · · · · · · · · · ·	Falls (		:		
	show	N	· .		
and the second s	-now	/		,	
		۰. ۱	:		
	7	\$			
	· (	<		E	
	. ]	2			
		SNOW		·	
	· · · · · · · · · · · · · · · · · · ·	CP C	<b>-</b> '		
	MJS32-	シ	- And a second second		
	MJS33	MJS35	- And the second second	~	
	MJS34	$\mathbf{V}$			
MJS31		Carbonate Vei			
		Showing. 60%	b pyrite with cu	bes up to 1cm. 7" ve	in, 3 meters
long, dippi	-	<b>.</b>		<b>—</b> ( )	
Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
261	164	318	712	2700	
MJS32	Rock Type:				
		8 meter vein d	ipping east into	o creek. Green tuff v	vith 1cm
pyrite veins	· · · · · · · · · · · · · · · · · · ·				
Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
3.8	2	1680	8	76	
MJS33	Rock Type:		· · · ·		
Grab from	-	-		n up to 2cm wide.	
Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
9.4	14	1440	12	56	
MJS34	Rock Type:		· ·		
	f with dissemina			- •	
Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
4	8	63	62	210	
MJS35	Rock Type:		:		
Chip samp	le of gossanous				
Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
5	8	518	130	606	
MJS36	Rock Type:				
Chip samp				sseminated pyrite.	-
Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	·
14	8	16	50	158	
MJS37	Rock Type:				
Pale grey to	uff. Highly fract	ured with very	little pyrite.		
Ag (ppm)	As (ppm)	Cu (ppm)	Pb (ppm)	Zn (ppm)	
6	8	64	50	130	

8

Page 17

	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Au(ppb)	Fe%	As	Sr	Cd	Sb	Bí	V	Ca%	P%_	La	Cr	Mg%	Ba	в	Al%	K%	W
Quartz vein	5.1	111	436.7	2700	36.6	2	31	3390	2598	13.2	220	34	30	2	4	4	1.63	0.008	2	3	0.16	16	3	0.26	0.04	3.3
Fault Gouge	8	46.5	205	4450	56,6	4	27,5	1085	2778	13.2	163	4	42	2	3.5	27.5	0.07	0.025	3.5	2.5	0.64	25	4.6	1.1	0.31	5
Ryolite	2.25	309	190	695	10.6	1.3	3.3	2492	318	1.95	28	37	15	7	7	2.25	0.009	0.002	24	5	0.04	32	28	25	0.125	5.5
Tuff	2.7	837.3	453	936	28.6	3.1	19	5189	1157	8,3	20	90	8	2	7	19.4	3.48	0.004	5.7	3.9	0.78	15.4	3	1.2	0.09	1.1
Altered Volcanics	13.7	11702	468	1977	507	5.8	20	11534	30591	9.4	73	194	21.5	2.5	9.3	63	7.25	0.303	7.5	5.8	1.21	22.8	4	1.4	0.08	15.8
Carbonate Vein	5.9	572	1151	4262	38.4	2	37	14297	3131	13	109	15	3	2.4	3.4	3.8	7.93	0.003	2	3.9	0.28	8.5	4.6	0.2	0.04	4.9
Breccia	2.3	1187	26	410	10.1	3.2	8.3	1506	519	5.3	12	15	3	2.4	3.7	30.3	0.6	0.06	7.9	5.1	0.53	28.9	3.6	1.1	0,1	1
Pyrite Vein	2	64	1645	7878	53.6	4	41	3020	3020	18.3	43	57	68	2	2	3_	2.25	0.005	2	1	0.06	8.	6	0.2	0.06	1
Porphyritic Intrusion	2	566	30	166	1.4	3	7	1031	6	2.16	2	97	_1	2	2	21	2.18	0.068	21	6	0.66	62	7	1.2	0.19	11_
Granodiorite	1	17	94	310	2.1	1	8	628	49	3.3	7	193	3	3	2	29	1.5	0.056	13	3	0.52	66	2	1.75	0.15	1
																						· ·			<u> </u>	<u> </u>
Average for 50 samples	3.82	868.9	317.28		23.8				3973																	
																					<u> </u>				<u> </u>	

In the attempt to understand the relationship between the mineralization and the certain rock types I was to discover on Snow Creek, I correlated all known data into the table above. I hoped that by doing so I would be able to narrow down rocks that needed prospecting. This was just an aid to the prospecting. However, some of the numbers were elevated due to one or two samples that assayed as bonanza grade. -MJM.

#### Michael Middleton Statement of Qualifications

1990- Completed the Smithers Exploration's Bush Sills Course.

1992-Laborer at a high grading operation for Al Raven.

1994- Field assistant for CJL Enterprises Ltd.

1995- Full time field assistant for CJL Ent.

Soil and rock sampler, claim staker.

1996- Full time field assistant for CJL Ent.

Soil and rock sampler, claim staker, line cutter, and prospector.

1997-2000- Prospector and field assistant for CJL Ent.

2000- Completed Geography 202, at College of New Caledonia.

2000- Completed Smithers Exploration Group's Advanced Prospecting Course.

#### **References**

- Carter, N.C., 1981. Porphyry Copper and Molybdenium Deposits of West-Central British Columbia; BCMEMPR Bull. 64.
- Cope, G.R., 1988. Geology, Geochemistry and Geophysics of the Snow Option; BCMEMPR Assessment Report # 18014.
- Tipper, H.W., 1976. Geology of the Smithers Map Area, British Columbia; Geological Survey of Canada, Open File 351.
- Tipper, H.W. and Richards, T.A., 1976. Jurassic Stratigraphy and History of North-Central British Columbia. Geological Survey of Canada Bull. 270.

## Analytical Results

and the second

Con Line

## Appendix D

Page Number : 1-A LS Chemex To: MIDDLETON. MIKE Total Pages Certificate Date: 06-NOV-2000 BOX 662 Aurora Laboratory Services Ltd. :10032736 Invoice No. SMITHERS, BC Analytical Chemists * Geochemists * Registered Assayers P.O. Number VoJ 2No SLR Account North Vancouver 212 Brooksbank Ave., British Columbia, Canada V7J 2C1 SNOW Project : Comments: ATTN: MIKE MIDDLETON PHONE: 604-984-0221 FAX: 604-984-0218 **CERTIFICATE OF ANALYSIS** A0032736 Mg Mn K La Fe Ga Eg Cu Cđ Co Cr Bi Ca Ba Be λ1 λs В PREP λđ * ppm % DDM * ppm DDM ppm ppm * ppm ppm ppm * ppm ррд ppm ppm CODE DDE SAMPLE 760 0.19 < 10 0.67 < 1 51 4.52 < 10 0.5 11 44 0.15 90 < 0.5 < 2 ٠ 1.09 . 6 < 10 1195 205 226 5.6 0.41 MJS 1 0.14 < 10 < 1 66 >15.00 < 10 103 86 50 0.63 5.0 32 < 10 < 10 0.5 205 226 >100.0 0.70 1575 0.34 MJS 2 0.12 < 10 130 14.60 < 10 < 1 65 68 32 1.95 9.0 < 10 10 0.5 12 205 226 70.6 0.67 4200 < 10 0.89 MJS 3 10 < 1 0.10 35 28 5.32 < 2 2.52 2.0 2 < 0.5 1.37 8 < 10 20 1340 205 226 3.2 0.85 MJS 4 < 10 < 1 0.07 < 10 5.34 61 41 10 30 < 0.5 < 2 0.50 0.5 < 10 205 226 14 3.2 1.28 MJS 5 2650 < 10 1.69 0.07 3970 6.91 10 < 1 17.0 26 83 30 < 2 1.02 < 0.5 14 < 10 205 226 19.0 2.16 0.19 2900 0.04 < 10 MJS 6 < 1 126 11.30 < 10 17.0 21 68 2.40 < 10 < 10 < 0.5 10 205 226 47.6 0.33 354 1200 1.25 MJS 7 0.20 < 10 5.62 < 10 < 1 45 14 2.0 10 0.14 < 10 30 < 0.5 < 2 20 205 226 4.0 1.75 0.31 2130 < 10 MJS 8 0.10 62 5130 2.82 < 10 < 1 0.5 6 1.54 2 < 10 40 0.5 < 2 13.6 0.81 1570 205 226 0.34 0.12 < 10 MJS 9 4 71 6730 2.83 < 10 < 1 0.94 1.0 < 2 2 < 10 40 0.5 205 226 20.2 0.84 MJS 10 5660 0.18 310 >15.00 10 < 1 0.05 < 10 86 52 24.5 0.5 24 5.57 198 < 10 < 10 205 226 79.8 0.23 0.35 >10000 < 1 0.04 < 10 MJS 11 93 >15.00 40 38 38 8 11.55 30.5 < 10 0.5 94 < 10 0.19 205 226 30.0 < 10 0.11 4080 MJS 12 < 10 < 1 0.04 8.84 6540 2.70 10.0 25 49 < 0.5 12 < 10 238 < 10 205 226 >100.0 0.13 < 10 0.28 >10000 MJS 13 0.03 119 3.37 30 < 1 12.70 98.0 12 10 < 10 10 < 0.5 12 205 226 13.8 0.19 12 0.03 355 < 1 0.04 < 10 MJS 14 43 200 12.80 < 10 5.0 63 < 0.5 12 0.22 90 < 10 < 10 48.8 0.07 205 226 MJS 15 1455 < 10 0.18 0.07 < 10 < 1 3 34 3490 1.28 2.5 1.01 20 < 0.5 < 2 0.45 < 2 < 10 1185 205 226 1.0 2.04 0.07 < 10 MJS 16 3.08 2420 < 10 < 1 2.0 15 39 2.08 30 0.5 < 2 2 < 10 205 226 1.87 0.49 805 0.4 < 10 MJS 17 0.08 3960 3.08 < 10 < 1 0.44 4.0 5 26 2 < 10 40 < 0.5 < 2 0.71 895 205 226 1.8 0.48 0.07 < 10 MJS 18 35 3840 4.10 < 10 < 1 5 < 2 0.18 0.5 30 < 10 20 < 0.5 0.86 255 18.6 0.37 205 226 0.09 < 10 MJS 19 1.67 < 10 < 1 < 0.5 4 31 250 < 2 0.51 60 < 0.5 2 < 10 0.2 0.92 205 226 МЈЗ 20 170 0.04 < 1 0.01 < 10 >10000 >15.00 < 10 20.5 26 53 1.5 6 0.10 334 < 10 >100.0 < 10 205 226 0.06 < 10 0.27 175 MJS 21 0.19 < 10 < 1 226 1.69 < 2 0.49 < 0.5 3 99 190 < 0.5 2 < 10 0.45 MJS 22 205 226 1.2 0.35 < 10 0.61 120 < 10 < 1 252 2.24 74 0.27 < 0.5 5 72 < 0.5 < 10 180 < 2 205 226 1.6 0.76 0.89 255 MJS 23 0.15 < 10 < 1 197 4.79 < 10 6 44 0.5 32 0.23 < 0.5 < 10 40 205 226 1.2 1.00 < 2 0.98 1440 0.03 < 10 MJS 24 10 < 1 5.19 10 52 187 < 0.5 < 10 < 0.5 < 2 0.17 < 10 5.2 1.39 B 205 226 MJS 25 0.70 3130 < 10 0.06 181 14.00 < 10 < 1 54 79 0.75 9.0 0.5 18 22 < 10 10 49.8 205 226 1.01 0.60 >10000 0.06 < 10 MJS 26 179 12.85 40 < 1 41.0 40 47 11.35 < 10 < 10 0.5 30 8 >100.0 0.47 0.51 205 226 4630 MJS 27 < 10 < 1 0.12 < 10 6.40 344 23.5 26 40 < 10 < 0.5 < 2 4.13 10 12 14.0 1.08 1100 205 226 0.10 < 10 1.03 MJS 28 < 10 < 1 7090 2.99 43 < 2 0.47 < 0.5 8 60 < 0.5 < 2 < 10 4.6 1,32 1600 205 226 0.19 < 10 0.40 MJS 29 < 1 59 208 12.15 < 10 74 1.45 11.5 < 2 60 < 10 20 0.5 33.6 0.75 205 226 MJS 30 2090 0.08 < 10 < 1 0.12 10 100 53 318 >15.00 2.09 29.5 < 10 0.5 4 >100.0 0.10 164 < 10 1120 205 226 0.81 < 10 MJS 31 < 10 < 1 0.24 23 30 1680 4.40 2.55 0.5 < 0.5 < 2 2 < 10 80 1.07 1315 205 226 3.8 0.51 0.09 < 10 MJS 32 < 10 < 1 424 66 1440 9.75 < 2 3.72 1.5 10 0.5 14 < 10 205 226 9.4 0.61 0.51 2130 < 10 MJS 33 4.72 < 10 < 1 0.09 1.0 10 39 63 30 < 0.5 < 2 2.87 < 10 0.81 8 2080 205 226 4.0 < 10 0.77 MJS 34 5.20 < 10 < 1 0.07 518 1.69 5.0 12 30 < 0.5 < 2 < 10 10 8 205 226 5.0 1.20 MJS 35 475 0.07 < 10 0.03 1.97 < 1 62 < 10 16 6 0.22 1.0 4 30 < 0.5 8 < 10 205 226 14.0 0.17 0.69 695 < 1 0.29 < 10 NJS 36 63 64 5.15 < 10 < 0.5 17 0.11 0.5 14 60 205 226 1.28 8 < 10 6.0 MJS 37  $\cdot \lambda$ 

- alta

CERTIFICATION:

alie



ALS Chemex Aurora Laboratory Services Ltd. S

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

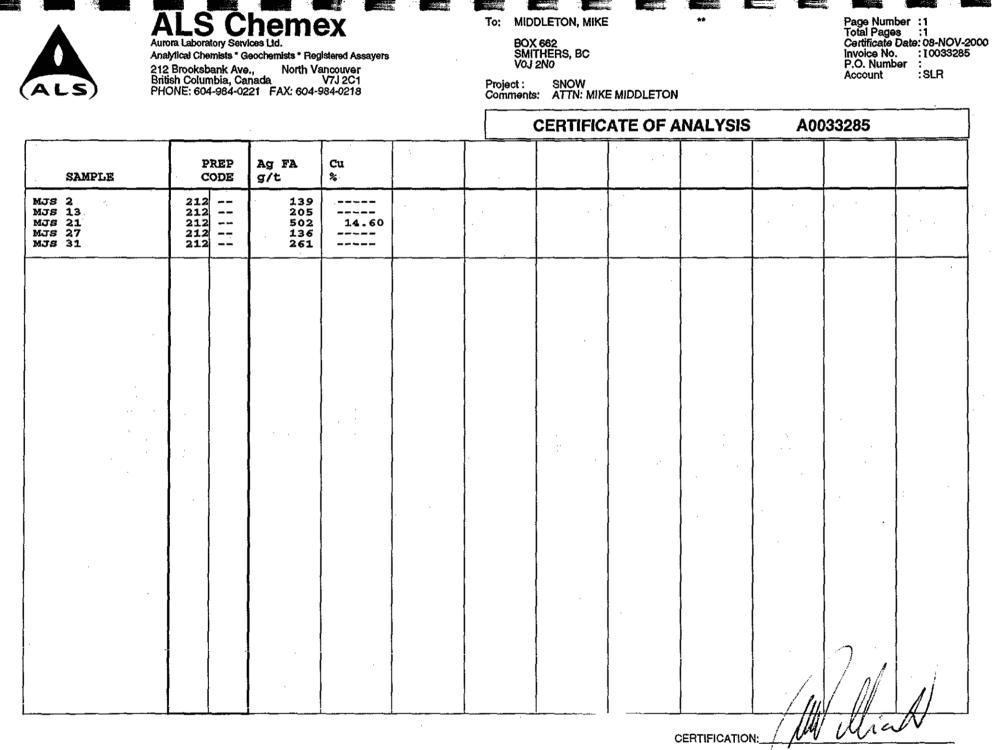
154 STROK To: MIDDLETON, MIKE

BOX 662 SMITHERS, BC VOJ 2N0

Page Number :1-B Total Pages :1 Certificate Date: 06-NOV-2000 Invoice No. :10032736 Invoice No. P.O. Number : SLR Account

di di di

- 16 16 10


Project : SNOW Comments: ATTN: MIKE MIDDLETON

#### A0032736 **CERTIFICATE OF ANALYSIS**

SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	ppm g	Pb ppm	S %	Sb ppm	Sc ppm	Sr T ppm ⁹		U PPm	V mqq	M mqq	Zn ppm	· · ·
MJS 1 MJS 2 MJS 3 MJS 4 MJS 5	205 226 205 226 205 226 205 226 205 226 205 226	2 19 27 5 4	0.05 0.03 0.04 0.06 0.07	5 8 5 6	630 490 1000 1140 1090	12 892 970 180 72	1.48 >5.00 >5.00 2.93 2.56	< 2 < 2 < 2 < 2 < 2 < 2	4 2 3 7 9	$\begin{array}{cccc} 12 & 0.01 \\ 26 < 0.01 \\ 48 < 0.01 \\ 74 < 0.01 \\ 19 & 0.01 \end{array}$	< 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	14 16 16 37 62	< 10 < 10 < 10 < 10 < 10	84 684 966 374 222	
MJS 6 MJS 7 MJS 8 MJS 9 MJS 10	205 226 205 226 205 226 205 226 205 226 205 226	4 24 26 5 2	0.05 0.04 0.03 0.07 0.06	28 3 2 6 5	720 440 620 500 520	176 654 118 20 38	3.83 >5.00 2.35 1.70 1.00	< 2 < 2 < 2 < 2 < 2 < 2 < 2	10 1 4 4 4	27 0.0 71 < 0.0 8 < 0.0 79 < 0.0 35 < 0.0	< 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	60 8 19 17 20	< 10 < 10 < 10 < 10 < 10	1995 1725 378 158 238	
MJS 11 MJS 12 MJS 13 MJS 14 MJS 15	205 226 205 226 205 226 205 226 205 226 205 226	21 15 6	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01	4 < 1 1 < 1 3	270 180 130 100 160	684 712 312 4450 194	>5.00 >5.00 >5.00 3.91 >5.00	< 2 2 2 < 2 < 2 < 2	< 1 < 1 < 1 < 1 < 1	$159 < 0.03 \\ 299 < 0.03 \\ 54 < 0.03 \\ 336 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 10 < 0.03 \\ 1$	< 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	10 8 4 5 2	< 10 < 10 < 10 < 10 < 10 < 10	1980 3050 890 8750 488	
MJS 16 MJS 17 MJS 18 MJS 19 MJS 20	205 226 205 226 205 226 205 226 205 226 205 226	1 < 1 < 1 4 < 1	0.04 0.02 0.03 0.03 0.03	2 18 2 2 1	290 290 670 480 510	100 22 12 102 12	0.46 0.08 0.34 2.30 0.06	< 2 < 2 < 2 < 2 < 2 < 2 < 2	2 8 4 4 2	24 < 0.0 28 0.1 8 0.0 7 < 0.0 39 0.0	<pre>4 &lt; 10 </pre>	< 10 < 10 < 10 < 10 < 10 < 10	6 80 29 33 27	< 10 < 10 < 10 < 10 < 10 < 10	256 126 94 172 66	
MJS 21 MJS 22 MJS 23 MJS 24 MJS 25	205 226 205 226 205 226 205 226 205 226 205 226	21 45 115 4 1	< 0.01 0.03 0.06 0.03 0.07	8 1 1 2 4	290 560 830 1110 860	1160 10 12 14 40	>5.00 0.60 0.90 2.97 1.76	6 < 2 < 2 < 2 < 2 < 2 < 2	< 1 1 3 4 8	9 < 0.0 76 0.0 27 0.1 9 0.0 7 0.0	5 < 10 4 < 10 2 < 10	10 < 10 < 10 < 10 < 10 < 10	4 20 52 47 50	< 10 250 < 10 < 10 < 10	1900 28 24 44 196	
MJS 26 MJS 27 MJS 28 MJS 29 MJS 30	205 226 205 226 205 226 205 226 205 226 205 226	17 19 10 < 1 18	0.04 < 0.01 0.03 0.08 0.03	4 1 3 9	640 380 1000 720 800	430 1020 374 10 370	0.70	< 2 2 < 2 < 2 < 2 < 2 < 2	4 3 6 8 4	$\begin{array}{r} 26 < 0.0\\ 405 < 0.0\\ 104 < 0.0\\ 18 & 0.0\\ 31 & 0.0 \end{array}$	L < 10 L < 10 L < 10	< 10 < 10 < 10 < 10 < 10 < 10	28 11 18 22 42	< 10 < 10 < 10 < 10 < 10 < 10	1020 4370 2360 158 1210	
MJS 31 MJS 32 MJS 33 MJS 34 MJS 34 MJS 35	205 226 205 226 205 226 205 226 205 226 205 226	10 1 < 1 1 1	0.01 0.06 0.03 0.05 0.07	8 9 6 3 7	300 1400 520 880 890	712 8 12 62 130	>5.00 0.92 >5.00 3.38 3.39	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 9 4 6 9	$58 < 0.0 \\ 43 & 0.0 \\ 74 & 0.0 \\ 80 & 0.0 \\ 46 < 0.0 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100 \\ 100$	9 < 10 1 < 10 1 < 10	< 10 < 10 < 10 < 10 < 10	9 72 36 33 82	10 < 10 < 10 < 10 < 10	2700 76 56 210 606	
MJS 36 MJS 37	205 226 205 226	7 1	0.07 0.04	1.5	50 470	50 50	1.72 2.51	< 2 < 2	< 1 9	9 < 0.0 8 0.0		< 10 < 10	< 1 102	< 10 < 10	158 130	() $-$

CERTIFICATION:

· Law



OVERLIMITS from A0032736

											CE	RTIFI	CATE OF	ANALYSIS	A0032743	
SAMPLE		rep Ode	b b	ppm Pb	Sp Sp	Sc ppm	Sr ppm	Tİ X	T1 ppm	D D	A A A	ррщ. Ж	Zn ppa	·		
EM 00 EM 20 EM 201 EM 202 EM 203	23 23 23	5 234 5 234 5 234 5 234 5 234 5 234	400 600 1000 900 800	40 25 45 20 15	< 10 < 10 < 10 < 10 < 10 10	< 5 5 5 5 5 5	20 30 35 50 45	0.04 0.11 0.16 0.17 0.15	< 20 < 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	20 60 120 120 120	< 20 < 20 < 20 < 20 < 20 < 20	130 110 255 120 100			
EM 204 EM 301 EM 302 EM 303 EM 303	23 23 23 23 23 23	5 234 5 234 5 234 5 234 5 234 5 234	900 800 800 800 800	20 65 30 25 35	10 < 10 < 10 < 10 < 10 < 10	55555	50 35 35 30 30	0.14 0.07 0.11 0.10 0.10	< 20 20 < 20 < 20 < 20 < 20	< 20 < 20 < 20 < 20 < 20 < 20	100 60 100 100 80	< 20 < 20 < 20 < 20 < 20 < 20	105 255 165 165 170	<u></u>		
HM 401 HM 402	23 23	5 234 5 234	800 700	50 30	< 10 10	5 5	90 35	0.14 0.10	< 20 < 20	< 20 < 20	60 40	< 20 < 20	220 210			
							· · ·	 •		• .					· · ·	
												<i></i>				



.S Chemex A Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

⇒<u>+++</u>(* 5#1 To: MIDDLETON, MIKE

Gilision -

BOX 662 SMITHERS, BC Voj 2N0

Page Number :1-A Total Pages :1 Certificate Date: 06-NOV-2000 Invoice No. :10032743 P.O. Number : Account SLR

Project : SNOW Comments: ATTN: MIKE MIDDLETON

------

1000000

<u>-</u>	r	-	1							_[	CE	RTIF	CATE	EOF A	NAL	YSIS		A0032	743		
SAMPLE	•	ep De	Aç ppr			Ba ppm	Be ppm	Bí ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Hg ppm	K.	Mg %	Mn ppm	Mo ppm	Na %	Ni ppm
4 00 4 20 4 201 4 202 4 202 4 203	235 235 235 235	234 234 234	< 1   1   1   1   1	1.47	< 10 < 10 < 10 10 10	220 160 100 140 140	< 5 < 5 < 5 < 5 < 5 < 5 < 5	< 10 < 10 < 10 < 10 < 10 < 10	0.32 0.39 0.69 0.72 0.68	< 5 5 5 5 5 5 5 5 5	5 10 20 15 15	60 60 60 50 50	15 15 70 35 20	2.22 2.99 6.22 5.27 5.27	< 10 < 10 < 10 < 10 < 10 < 10	0.40 0.43 0.31 0.32 0.24	0.33 0.77 1.11 1.01 0.86	520 870 1010 810 670	<pre></pre>	0.11 0.18 0.12 0.16 0.12	10 15 20 20
303	235 235 235 235 235 235	234 234 234 234	2 1 < 1 < 1	1.85 2.14 1.70	10 20 < 10 < 10 < 10	160 120 200 160 200	<pre>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</pre>	< 10 < 10 < 10 < 10 < 10 < 10	0.65 0.52 0.50 0.49 0.52	< 5 < 5 < 5 < 5 < 5 < 5	10 15 10 15 15	50 40 50 50 50	10 320 80 70 145	4.32 4.57 5.01 4.63 4.21	< 10 < 10 < 10 < 10 < 10 < 10	0.32 0.31 0.48 0.32 0.49	0.89 1.26 1.03 0.99 1.23	770 1260 860 930 910	<pre></pre>	0.12 0.18 0.10 0.17 0.11 0.16	15 20 20 15 25
401 402	235 235	234 234	1 < 1		10 < 10	120 160	< 5 < 5	< 10 < 10	1.19 0.36	< 5 < 5	15 5	30 40	440 15	3.94 3.62	< 10 < 10	0.37 0.31	1.04	1280 1070	< 5	0.11	10 5
																	×				
							2														:
					•															·	
	ļ																				
																		$\cap$			

CERTIFICATION:___



1.0 F

#### aile: AL Chen nex -2

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

. Hife

1000 1994 To: MIDDLETON, MIKE

BOX 662 SMITHERS, BC VoJ 2N0

Г

Project : SNOW Comments: ATN: MIKE MIDDLETON

Page Number :1 Total Pages :1 Certificate Date: 08-NOV-2000 Invoice No. :10033414 P.O. Number : SLR Account

a list

CERTIFICATION:

			 CERTIFIC	ATE OF ANALYSIS	A0033414
SAMPLE	PREP CODE	Ag FA g/t			
S 200	212	196			

OVERLIMITS from A0032740

ALS)	An 21 Br	rora Laborato alytical Chem 2 Brooksbar itish Columb IONE: 604-9	ists * Geocl nk Ave., ia, Canad	Ltd, hemists * F North a	Registered Vancous V7J 2	Assayers ver C1			To: Proje Com	BOX 662 SMITHE VOJ 2NO	RS, BC		ETON	**	j			Page Nu Total Pag Certificat Invoice N P.O. Nur Account	ges :1 e Date:0 lo. :1 nber :	
										CE	RTIFIC	CATE	OF A		(SIS		40032	2740		
SAMPLE	PREP CODE	Âg ppm	A1 %	As ppm	B	Ba ppm	.Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %	Mn ppm
L14+25N 84+10E L14+25N 84+20E L14+25N 84+30E L14+25N 84+30E L14+25N 84+40E L14+25N 84+50E	201 20 201 20 201 20 201 20 201 20 201 20	2 3.0 2 3.2 2 1.6	3.93 3.13 2.50 1.96 1.83	14 20 14 6 < 2	< 10 < 10 < 10 < 10 < 10 < 10	60 110 120 80 60	0.5 1.0 1.0 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.04 0.07 0.09 0.07 0.05	< 0.5 0.5 1.5 0.5 < 0.5	5 21 14 4 3	19 18 15 15	32 59 55 20 15	6.39 5.31 4.15 5.77 4.59	10 < 10 10 10 10	< 1 < 1 < 1 < 1 < 1	0.06 0.09 0.07 0.05 0.03	< 10 10 10 < 10 < 10	0.34 0.55 0.40 0.16 0.17	280 3130 1520 245 105
L14+25N 84+60E L14+25N 84+70E L14+25N 84+70E L14+25N 84+80E L14+25N 84+90E L14+25N 85+00E	201 20 201 20 201 20 201 20 201 20 201 20	2 0.6 2 2.0 2 1.0	2.04 1.15 1.86 3.95 2.31	< 2 2 6 18 18	< 10 < 10 < 10 < 10 < 10	110 120 60 90 70	0.5 < 0.5 < 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.06 0.06 0.05 0.05	0.5 < 0.5 0.5 1.5 1.5	3 5 3 8 9	7 10 9 21 11	25 30 19 40 37	3.61 2.45 2.50 8.66 7.65	10 < 10 10 10 20	< 1 < 1 < 1 < 1 < 1 < 1	0.05 0.07 0.07 0.06 0.08	< 10 < 10 < 10 < 10 < 10 < 10	0.27 0.17 0.18 0.59 0.29	320 2780 360 565 855
s 200 s 201 s 202 s 203 s 204	201 20 201 20 201 20 201 20 201 20 201 20	2 2.0 2 1.6 2 0.2	0.22 2.01 1.82 1.31 2.27	50 8 8 14 10	< 10 < 10 < 10 < 10 < 10 < 10	10 90 170 230 130	1.5 0.5 < 0.5 < 0.5 0.5	40 < 2 4 2 < 2	0.03 0.34 0.48 0.47 0.95	45.0 1.0 1.0 1.5 2.5	129 12 13 10 14	< 1 17 19 18 27	147 3 57 76 49 97	>15.00 4.12 4.06 2.87 4.39	40 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.07 0.08 0.12 0.20 0.12	< 10 < 10 < 10 10 < 10	0.18 0.87 0.89 0.70 1.05	290 1045 1020 1495 1630
S 205 S 206 S 207 S 208 S 301	201 20 201 20 201 20 201 20 201 20 201 20	2 0.2 2 < 0.2 2 0.4	1.62 1.85 4.22 1.78 1.88	8 6 < 2 10 24	< 10 < 10 < 10 < 10 < 10 < 10	120 80 150 170 140	< 0.5 0.5 0.5 < 0.5 0.5	< 2 < 2 2 < 2 < 2 < 2	0.44 0.15 2.15 0.22 0.59	< 0.5 < 0.5 < 0.5 < 0.5 3.5	11 8 11 10 15	18 9 8 17 18	49 49 28 23 465	3.57 3.79 3.08 3.66 5.03	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.11 0.11 0.13 0.12 0.12	< 10 10 < 10 < 10 10	0.74 0.70 0.65 0.54 0.98	1210 695 5330 2250 2260
\$ 302 \$ 303 \$ 304 \$ 305 \$ 306	201 20 201 20 201 20 201 20 201 20 201 20	2 1.4 2 < 0.2 2 1.6	1.59 2.83 2.38 1.73 1.65	2 10 28 8 8	< 10 < 10 < 10 < 10 < 10 < 10	150 110 90 120 180	0.5 < 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.37 0.15 0.22 0.24 0.36	< 0.5 < 0.5 < 0.5 0.5 0.5	7 7 35 13 11	7 18 11 21 19	25 91 599 62 78	3.01 4.57 6.54 4.24 3.48	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.08 0.06 0.10 0.09 0.16	10 < 10 10 10 10	0.52 0.51 0.92 0.78 0.82	735 565 3870 1115 1120
S 307 S 401 S 402A S 402B S 403	201 20 201 20 201 20 201 20 201 20 201 20	2 29.6 2 0.2 2 0.8	1.81 2.91 0.40 1.21 1.34	8 42 < 2 2 6	< 10 < 10 < 10 < 10 < 10 < 10	210 60 30 120 160	0.5 1.0 < 0.5 < 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.44 0.66 0.04 0.16 0.65	1.0 3.0 < 0.5 0.5 2.0	12 36 < 1 5 7	24 4 6 9 11	99 1485 5 14 40	3.81 7.85 0.89 1.46 2.54	< 10 20 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.11 0.10 0.02 0.05 0.08	10 < 10 < 10 < 10 < 10 10	0.94 2.25 0.03 0.17 0.42	1750 5370 70 1025 1735
R\$ 00 R\$ 10 R\$ 20 R\$ 30 R\$ 40	201 20 201 20 201 20 201 20 201 20 201 20	2 1.0 2 1.2 2 7.8	1.30 0.62 1.76 2.58 1.70	8 16 8 12 20	< 10 < 10 < 10 < 10 < 10 < 10	240 50 150 1050 220	0.5 < 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.21 0.07 0.37 0.16 0.56	< 0.5 < 0.5 < 0.5 0.5 1.5	9 3 12 20 21	15 7 18 11 21	28 9 53 117 198	2.74 1.86 3.62 4.19 4.71	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.10 0.06 0.06 0.11 0.13	20 30 < 10 10 < 10	0.63 0.04 0.66 0.61 0.90	1185 320 1320 1180 2360

2.00

14

< 10

110

0.5

< 2

3.0

16

0.31

2.6

201 202

RS 50

CERTIFICATION:

< 10

1.13

1965

10

0.12

< 1

,

11

65

4.27

्रम् स्टब्स् इत्यासः अन्त्र



,

Page Number :1-B Total Pages :1 Certificate Date: 07-NOV-2000 Invoice No. :10032740 P.O. Number : Account :SLR

A0032740

·····																-			
SAMPLE	PREP CODE	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	D D D	V ppm	W ppm	Zn ppm			
L14+25N 84+10E L14+25N 84+20E L14+25N 84+30E L14+25N 84+40E L14+25N 84+40E	201 202 201 202 201 202 201 202 201 202 201 202	4 4 3 4 2	0.01 0.01 0.01 0.01 0.01	8 11 9 6 6	740 1040 980 620 360	50 66 46 30 20	0.05 0.07 0.05 0.04 0.03	< 2 < 2 < 2 < 2 < 2 < 2 < 2	4 2 1 3 1	7 12 14 9 9	0.05 0.03 0.05 0.08 0.03	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	96 84 71 122 77	< 10 < 10 < 10 < 10 < 10 < 10	92 210 154 58 46		-	•
L14+25N 84+60E L14+25N 84+70E L14+25N 84+80E L14+25N 84+80E L14+25N 84+90E L14+25N 85+00E	201 202 201 202 201 202 201 202 201 202 201 202 201 202	12223	0.01 0.01 0.01 0.01 0.01	4 4 5 11 6	1230 500 1290 1280 1500	14 14 12 40 44	0.05 0.03 0.04 0.06 1.07	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	< 1 1 < 1 6 2	11 16 12 7 7	0.01 0.04 0.02 0.05 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	48 48 44 110 83	< 10 < 10 < 10 < 10 < 10 < 10	68 68 158 128 126			
s 200 s 201 s 202 s 203 s 204	201 202 201 202 201 202 201 202 201 202 201 202	11 5 8 4 5	< 0.01 0.02 0.02 0.03 0.02	9 13 14 15 20	550 940 1050 860 1230	2960 66 40 48 38	>5.00 0.11 0.12 0.02 0.13	< 2 < 2 < 2 < 2 < 2 2	1 5 5 5 6	15 40 58 28 102	< 0.01 0.07 0.08 0.07 0.13	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	9 78 84 55 92	< 10 < 10 < 10 < 10 < 10 < 10	3460 190 200 162 298			
S 205 S 206 S 207 S 208 S 301	201 202 201 202 201 202 201 202 201 202 201 202	6 5 2 1 3	0.02 0.01 0.01 0.01 0.02	13 9 7 11 14	1150 1010 1670 720 1030	26 22 22 34 110	0.03 0.01 0.03 0.02 0.05	< 2 < 2 < 2 < 2 < 2 < 2 < 2	5 5 2 7	46 16 246 24 53	0.08 0.03 0.03 0.03 0.06	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	78 55 58 74 82	< 10 < 10 < 10 < 10 < 10	122 144 90 106 260			
S 302 S 303 S 304 S 305 S 306	201 202 201 202 201 202 201 202 201 202 201 202	< 1 2 1 1	0.01 0.01 0.01 0.01 0.01	6 10 9 14 15	1320 1110 1970 820 1220	34 40 56 42 56	0.03 0.02 0.03 0.03 0.03	< 2 < 2 < 2 < 2 < 2 < 2	1 4 7 3 5	25 18 18 24	0.01 0.07 0.08 0.05 0.04	10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10	49 82 58 86 69	< 10 < 10 < 10 < 10 < 10	110 118 192 178 222			· · · ·
S 307 S 401 S 402A S 402B S 403	201 202 201 202 201 202 201 202 201 202 201 202	1 3 < 1 3 2	0.01 0.01 0.01 0.01 0.01	17 12 1 4 6	890 890 170 560 1000	64 398 6 32 26	0.03 0.17 0.01 0.03 0.04	< 2 < 2 < 2 < 2 < 2 < 2	6 16 < 1 1 3	31 20 7 30 62	0.04 0.05 0.03 0.02 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	75 208 25 32 44	< 10 < 10 < 10 < 10 < 10 < 10	238 638 24 110 284			
RS 00 RS 10 RS 20 RS 30 RS 40	201 202 201 202 201 202 201 202 201 202 201 202	1 3 5 2 4	0.01 0.01 0.01 0.01 0.01	10 4 10 9 16	220 340 760 440 770	38 64 30 82 136	0.03 0.03 0.02 0.03 0.06	< 2 < 2 < 2 < 2 < 2 < 2 < 2	4 1 4 5 6	17 5 31 10 35	0.03 0.01 0.04 0.01 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	48 8 73 79 73	< 10 < 10 < 10 < 10 < 10 < 10	170 82 156 220 276			<u> </u>
RS 50	201 202	1	< 0.01	17	1020	122	0.02	< 2	7	11	0.01	< 10	< 10	35	< 10	310	()	1	

CERTIFICATION:

a the art we are a the transmission of the transmi

MINISTRY OF ENERGY & MINES

DEC 12 2000

RECEIVED SMITHERS, B.C.

a fall state AF and set

5. . . A

# Mineral Hill Report

## Omineca Mining Division British Columbia

- Prepared By-

Michael Middleton Box 842 150 Mile House, B.C. VOK 2G0

1411/1

# Table of Contents

		Page
Introduction		1
Location and Access	e te <u>r</u> e e	l
Claim Map	- -	3
Regional Geological Setting		5
Property Geology and Mineralization		6
Summary of Previous Work		8
Recent Exploration		11
Statement of Qualifications		12
Expenditures		14
References		15
Previous Assay Results	· ·	16

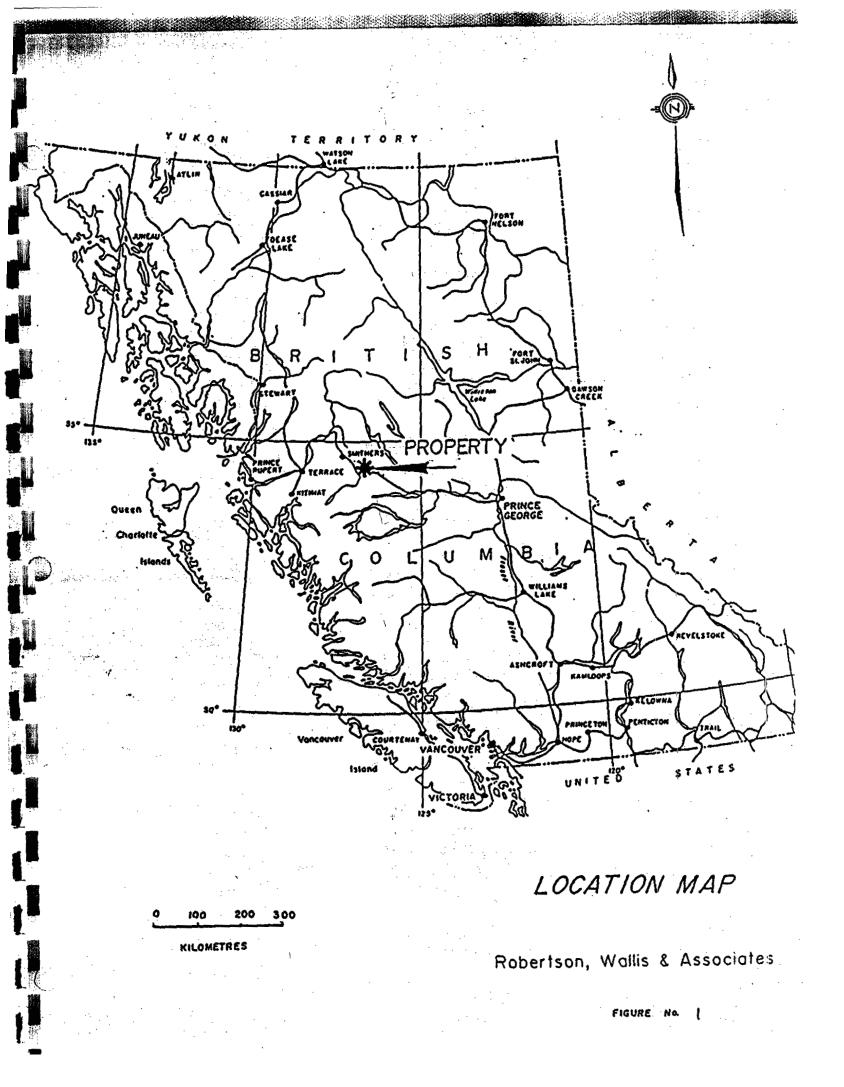
.

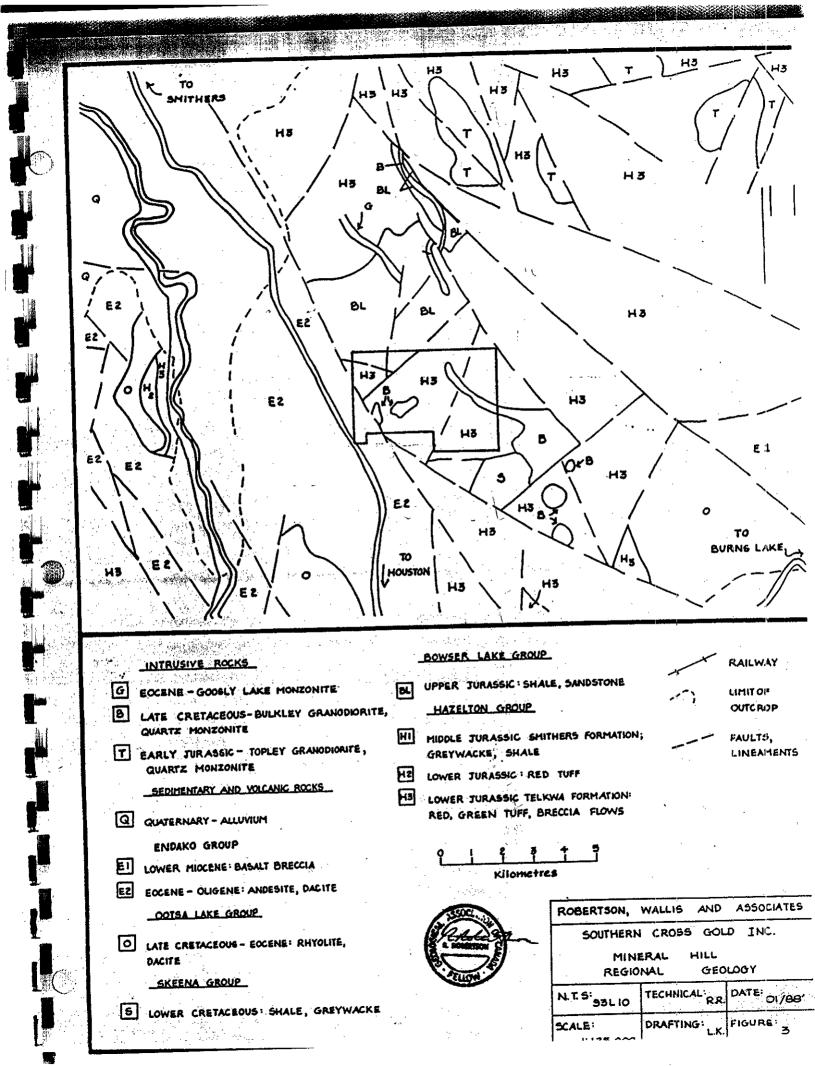
AL STREET, ST.

149

## List of Figures

Figure 1:	Location Map	· · · .	2
Figure 2:	Access and Claims		4
Figure 3:	Regional Geology	· .	7
Figure 4:	Showings Locations		10


#### **Introduction**


The Mineral Hill property is located close to Highway 16 between Houston and Smithers in the Omineca Mining Division. The property consists of four 2-post mineral claims and has a long history of exploration beginning prior to 1914. Exploration in the 1960's and 1970's was directed at porphyry- style molybdenum and copper mineralization. More recently, the principal exploration has shifted to vein or breccia- hosted precious metal mineralization.

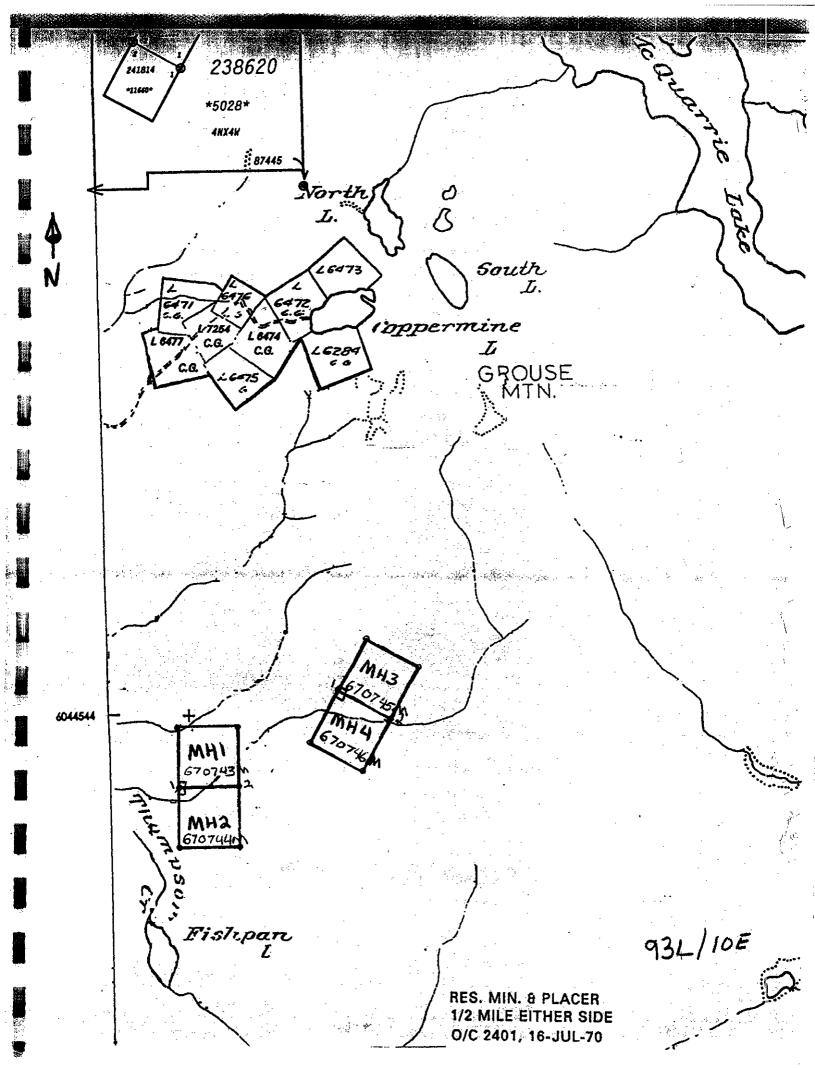
During 2000, exploration was focused on locating previously sample tetrahedrite veins and prospecting numerous old trenches.

#### Location and Access

Mineral Hill is located approximately 14 km north of Houston in north- central British Columbia, and 1 km east of Highway 16 between Houston and Smithers. Geographic coordinates are 54°31' North and 126°44' West. Access to the claims is via Highway 16. From Highway 16, a gravel road leads through private property to the Mineral Hill claims via the north end of Fishpan Lake. Within the property, a network of roads and trails extends to all zones explored over the past 30 years.






## <u>Claims</u>

Currently there are only four- two posts claims on Mineral Hill, all four are owned by Mike Middleton. Two claims are covering the Quartz Breccia Zone. The remaining claims cover the diamond drill holes in the northeast of Mineral Hill.

<u>Claim Name</u>	<u>Units</u>	<u>Record Number</u>
MH 1	1	470743
MH 2	1	470744
MH 3	· · · 1	470745
MH 4	1	470746

Page 3

1



#### **Regional Geological Setting**

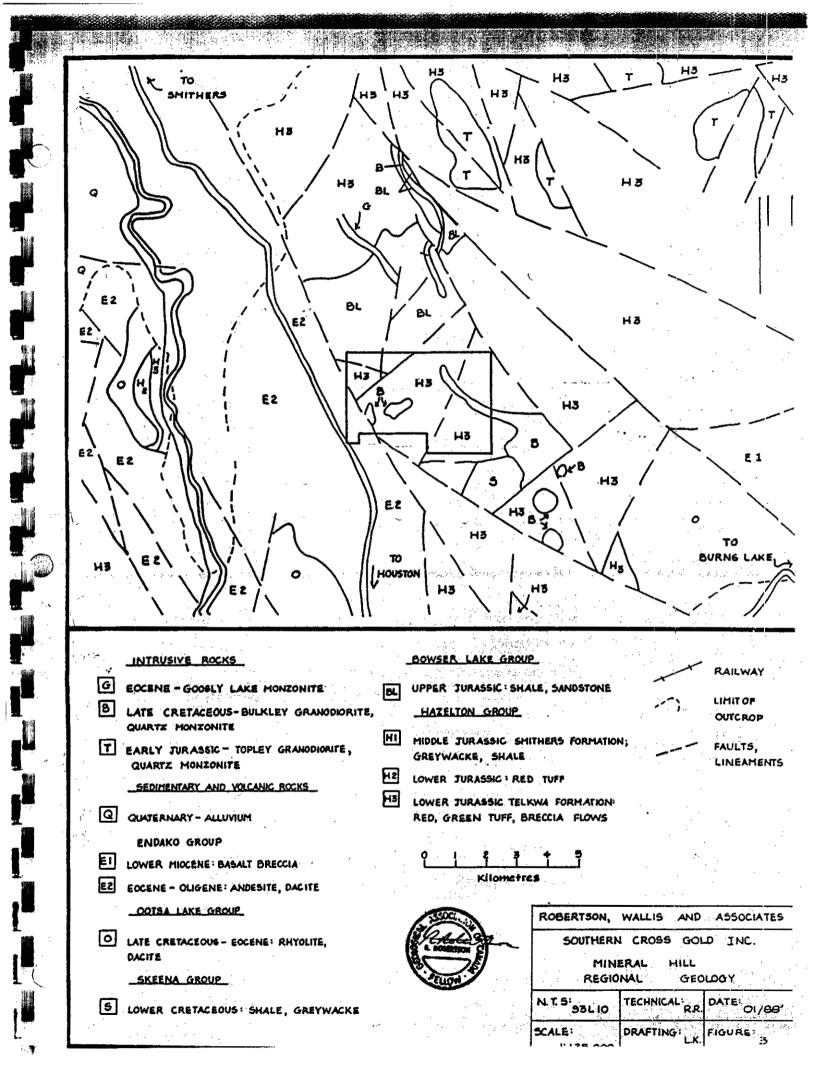
The property is situated within the Hazelton Trough of the Inter montane tectonic belt, an area underlain principally by Mesozoic volcanic and sedimentary rocks intruded by a variety of granitic rocks ranging in age from early Jurassic to Tertiary (figure 3).

In the Smithers- Houston area, northwest trending lower Jurassic Hazelton Group subaerial to subaqueous red and green pyroclastic and flow rocks with intercalated sediments are predominant. These are intruded by coeval Topley granitic rocks and by numerous granitic and lesser gabbroic stocks, dykes and plugs of late Cretaceous (Bulkley intrusives) and Tertiary age.

Structure of the region is dominated by northwest- striking fault structures along which vertical movement has been most prevalent.

A variety of mineral deposit types have been recognized in the general area, most common of which are polymetallic vein and replacement deposits (Cu, Pb, Zn, Ag, Mo, Au) developed in the Hazelton Group layered rocks commonly adjacent to younger granitic intrusions. The region is also well known for porphyry copper and molybdenum deposits of several styles and ages (Carter, 1981). Not as well defined are volcanogenic massive sulphide deposits, of which only a few have been recognized to date. Copper- zinc mineralization on Grouse Mountain 5 km north of Mineral Hill has massive sulphide affinities although crosscutting relationships are evident.

Silver- copper mineralization at the Equity Silver Mine, located 40 km southeast of Houston, consists of disseminated vein and breccia filling sulphide and sulfosalt mineralization, sub- concordant with host- rock stratigraphy contained in a well- developed alteration zone, possibly related to hydrothermal fluid circulation at a high level in a porphyry system. Mineralization has characteristics of both massive sulphide and replacement types of mineral deposits. Production commenced in the Southern Tail deposit in 1980 and totaled 4.3 million tons grading 135 g/ton Ag, 0.45% Cu and 1.3 g/ton Au by December 1982. Production from the Main Zone orebody began in late 1983 with ore reserves of 21.6 million tons grading 109 g/ton Ag, 0.35% Cu and 0.85 g/ton Au (Cyr, Pease and Schroeter, 1984). In 1989 the Equity Silver mine shut down and reclamation of the mine site began.


#### **Property Geology and Mineralization**

the Mineral Hill property is largely underlain by a northwest striking sequence of volcanic rocks of the Telkwa Formation with lesser volumes of sedimentary rocks probably belonging to the Upper Jurassic Bowser Lake Group. In the areas drilled in 1987 these rocks are strongly hornfelsed by a variety of intrusive rocks of late Cretaceous age.

Volcanic rocks are predominantly andesitic flows and pyroclastics with lesser amounts of rhyolite and basalt. Sedimentary units include argillite, quartzite and greywacke with some limey varieties occurring locally. Gill and Myers (1984) reported a resistant trachytic flow unit with large feldspar laths capping low ridges on the upper plateau of Mineral Hill. This unit resembles Tertiary Goosly Lake volcanics elsewhere in the district.

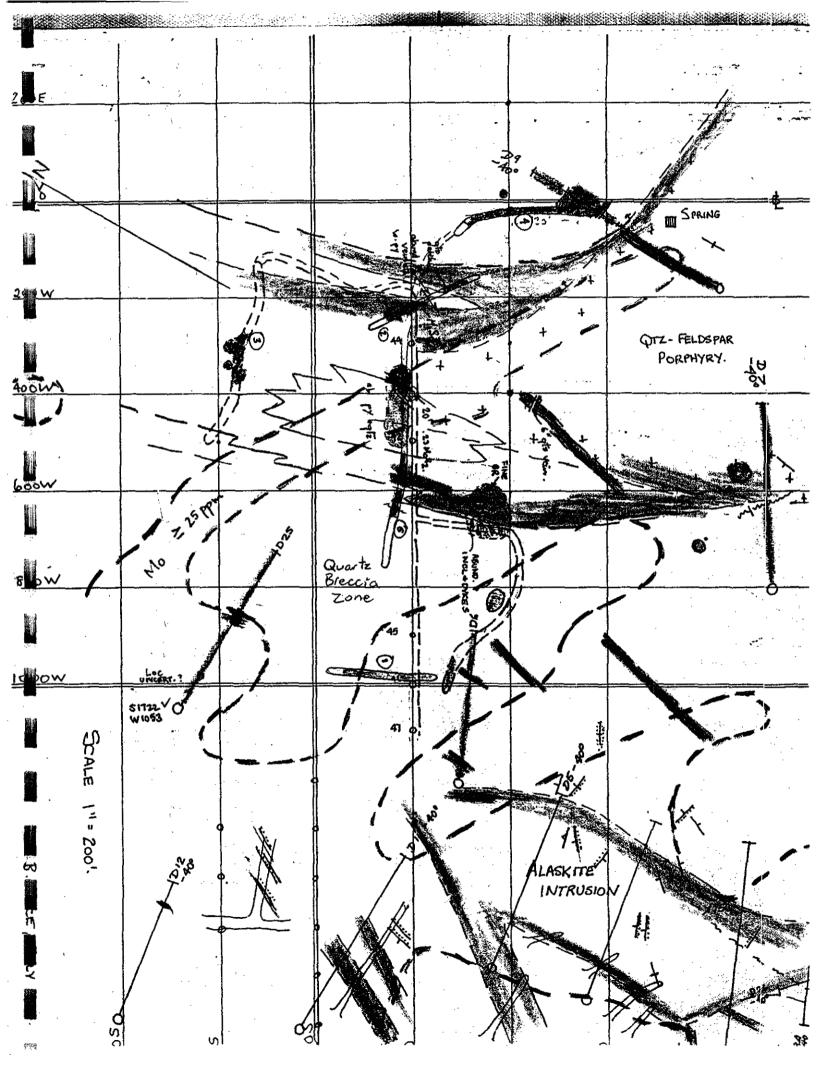
Bodies of porphyritic quartz- monzonite and alaskite are the principal intrusive rocks occurring in the western part of the property. Further to the east on mineral Hill are outcrops of medium grained diorite. Dykes of aplite and monzonite are present around the quartz- monzonite stock. These intrusions have produced a large area of hornfelsing (perhaps 2000 by 2500 meters) in the surrounding volcanic and sedimentary units. Hard fine- grained biotite hornfelds is the most common in the South Alaskite Zone and green chlorite hornfelds is more common in the North Quartz Breccia Zone. Hornfelsing hardened the rocks surrounding the intrusions and made them brittle and hence more susceptible to the development of fracture and breccia zones.

Typical mineralization consists of pyrite, pyrrhotite, molybdenite and chalcopyrite with quartz, calcite, minor siderite of feldspar in fractured intrusive rocks or zones of quartz breccia in hornfelds. Silver- bearing tetrahedrite with galena, sphalerite and chalcopyrite occurs within both the Alaskite and Quartz Breccia zones.



#### Summary of Previous Exploration

Initial work on the Mineral Hill property was carried out in 1914 or earlier when a 5 meter shaft was sunk on a narrow quartz vein containing silver, copper, lead and minor gold values. A number of other showings were explored in the 1920's by trenching, short adits and shallow shafts.


During the 1960's and 1970's. Considerable exploration was carried out for large tonnage molybdenum- copper mineralization. In 1966 Cominco and Molymine Exploration Ltd. Completed a large program of geological, geophysical and geochemical surveys, trenching and 15 diamond drill holes (2225 meters). In 1967, Molymine completed 102 percussion drill holes (2882 meters) and 13 diamond drill holes (1308 meters)(Sharp, 1968). In 1976, Granby Mining Corporation optioned the property and drilled 12 percussion holes (683 meters) in the Granby zone, east of the north Quartz Breccia zone. Granby completed seven percussion holes in 1978 (James, 1979) in the east edge of the quartz monzonite (575 meters) and three widely spaced diamond drill holes (902 meters) in the area of percussion drilling, in the Alaskite Zone and in the Breccia Zone. Samples of a 30 cm thick quartz vein was discovered in a old adit. This vein is hosted in altered, fine grained rhyolite and dacite very close to the volcanic- diorite contact. Galena, tetrahedrite, pyrite and sphalerite occur as fine grained masses within the quartz vein. Three samples were analysed and averaged 651 g/ton silver, 0.06% copper and 2.6% lead. Control of Granby Mining passed to Noranda in 1979; they carried out programs of prospecting, geochemical and geophysical surveys in 1981, 1983 and 1984 (Gills and Myers, 1984).

In summary, molybdenite grades of 0.10% MoS2 are associated with closely spaced quartz veining and fractures in the Alaskite Zone. Some larger quartz veins peripheral to this zone carrying silver- lead- zinc values were tested by early workings and some of the more recent exploration. Molybdenite mineralization in the eastern part of the quartz monzonite generally grades less than 0.05% MoS2. Low molybdenite values were also found in Granby's drill testing of a hornfelds zone in the northeast part of the of the Mineral Hill claim. The Quartz Breccia zone has approximate surface dimensions of 240 by 450 meters (Sharp, 1968) with grades of 0.05% MoS2 indicated by extensive trenching and drilling.

Molymine's drilling in 1966- 1967 indicated that a quartz vein system with sometimes significant silver values was present in the Quartz Breccia Zone. Diamond drill hole D- 16 intersected a narrow vein grading 135.8 g/ton silver. Hole D- 14 was the only hole completely analyzed for silver; values ranged from 0.06 to 3.7 oz/ton. Hole D- 20 included a 50 foot interval grading 1.2 oz/ton silver. Hole D- 16 is located approximately 300 meters southeast of hole D- 14, D- 20.

During 1985 the Mineral Hill property was optioned by Dafrey Resources who cleaned out and sampled some of the old trenches in the Quartz Breccia Zone and material from dumps at old workings on silver- bearing quartz veins elsewhere on the property. One sample by N.C. Carter, P.Eng. Contained 659 oz/ton silver and 0.29 oz/ton gold in a narrow tetrahedrite vein exposed in a trench in the southeast portion of the Quartz Breccia zone. Dafrey drilled 12 percussion holes in the Quartz Breccia and Alaskite Zones. At the same time, Lacana Mining Corporation compiled much of the earlier data on the property and assayed samples from the 1985 drilling, pulps from Molymine's and Granby's percussion drilling and core from the top 200 meters of Granby's G78-1 drill hole in the Quartz Breccia Zone. These analyses indicated an area of silver mineralization within the Quartz Breccia Zone grading around 2 oz/ton silver, with dimensions of 10 by 30 by 250 meters; however, results from hole G78-1, drilled in the center of this block, showed no significant silver values. Further sampling from a 10 in. Sphalerite vein yielded 947.9 oz/ton Ag, 0.413 oz/ton Au and 18.5% Cu.

In 1987, southern Cross Gold Inc. completed eight diamond drill holes on the Mineral Hill claim totaling 521.8 meters. These holes intersected quartz veining of up to two feet of 6.91 oz/ton silver.



## **Recent Exploration**

Recent exploration concentrated on prospecting existing trenches around the Quartz Breccia and Alaskite Zones. Seven trenches were targeted and hand trenching was required to expose old trenches and locate quartz and tetrahedrite veins. Many small veins were observed and sampled, but due to lack of funds samples were not assayed. A creek traverse along a namely creek that cuts through the property yielded very little outcrop.

## **Daily Report**

Day 1-	-Located showings on north side of property and staked MH 1 and MH 2
	claims on the Quartz Breccia Zone.
Day 2-	-Prospected trench were sample MH-6 (22,600 ppm Ag) was taken from a
	10 inch tetrahedrite vein.
Day 3-	-Prospected around diamond drill hole DFY 85-1, a 6.1 meter sample
· .	from this hole assayed 4493 g/ton Ag. Two old trenches were dug around
•	this hole and many small quartz veins were still visible.
Day 4-	-Creek traverse on unnamed creek that cuts through the quartz Breccia
	Zone and diamond drill holes to the northeast.
Day 5-	-Prospected area around DDH in the northeast and staked mineral claims
	MH 3 and MH 4.
Day 6-	-Prospected old trenches along roads. Small quartz veins were abundant,
	samples were taken
Day 7-	-Prospected the East Cu, Ag Zone.
Day 8-	- Prospected old workings in center of property.
Day 9-	- Located the trenches in the northeast end of property. Samples resembled racks from the Quartz Breccia Zone

#### Michael Middleton

## **Statement of Qualifications**

1990- Completed the Smithers Exploration's Bush Sills Course.

1992- Laborer at a high grading operation for Al Raven.

1994- Field assistant for CJL Enterprises Ltd.

1995- Full time field assistant for CJL Ent.

Soil and rock sampler, claim staker.

1996- Full time field assistant for CJL Ent.

Soil and rock sampler, claim staker, line cutter, and prospector.

1997-2000- Prospector and field assistant for CJL Ent.

2000- Completed Geography 202, at College of New Caledonia.

2000- Completed Smithers Exploration Group's Advanced Prospecting Course.

#### **Chris Warren**

## **Statement of Qualifications**

1990- Completed the Smithers Exploration Group's Bush Skills course.

Worked at Duckling Creek as a Geological Assistant.

1

1222

- 1991- Assisted in the instruction of the Smithers Exploration group's Bush Skills course. Worked as a line cutter
- 1992- Assisted in the instruction of the Smithers Exploration groups Bush Skills Course. Misc. claim staking jobs/ field assistant.
- 1993- Worked at a placer operation as a loader operator and did misc. claim staking jobs.
- 1994- Worked in mason Creek area doing placer testing, running magnometer/ computer work/ claim staking/ prospectors assistant.

1995- present- worked full time for CJL Enterprises Ltd.- claim staker/ line cutter/ camp construction/ prospector.

Page 13

ą

#### **References**

Robertson., 1987

Carter, N.C., 1981

Carter, N.C., 1985

property.

: Assessment report #206. Diamond drilling report, Mineral Hill

: Porphyry Copper and Molybdenum Deposits, West- central British Columbia. B.C. Ministry of Energy, Mines and Petroleum Resources Bulletin 64, 150pp.

: Geological Report on the Mineral Hill Property, Unpublished report for Dafrey Resources Inc.

Cyr, J.B., Pease, R.B., Schroeter, T.G., 1984

Gill, G., Myers, D., 1984

James, D.H., 1978

Sellmer, H.W., 1966

Sharp, W.M., 1968

Tipper, H.W., Richards, T.A., 1976 : Geology and Mineralization at equity Silver Mines. Econoomic Geology, Volume 79, pp. 947-968.

: Geology, Geochemistry and VLF- EM Survey Report; Mineral Hill. B.C.D.M. Assessment Report 12180.

: Drilling Report, Mineral Hill, for Granby Mining Corporation. B.C.D.M. Assessment Report 7177.

: Property Examination Report of the Mineral Hill Project. Private Report for Molymine Exploration Ltd.

: Summary Geological Report - Mineral Hill Project. Private Report for Molymine Explorations Ltd.

: Geology, Smithers Map Area. Geological Survey of Canada Open File 351.

### **Previous Assay Results**

PHONE: (604) 980-5	<b>B14 O</b> R (604)988-4524	1 · · · ·		•		TELEX: 04-352828
·		CERTIF	ICATI	E OF A	5 <u>SA</u> Y	,
PROJECT: ATTENTION:	CJL ENTERPRI	ISES			FILE: DATE: TYPE:	AUGUST 20/85. ROCK ASSAY
<u>He hereby</u> BAMPLE NUMBER	<u>certify</u> the AG G/TONNE	AG OZ/TON	AU AU G/TONNE	AU AU OZ/TON	CU CU	nples submitted.
M-A-4	32500.0	947.90	14.15	0.413	18.500	1997 - Maria Maria Maria Maria Maria Maria Manageria Maria Maria Maria Maria Maria Maria Maria Maria Maria Mari
				Massive	tetra	From Trench
	-	· · ·		· · · · · · · · · · · · · · · · · · ·		<i>Jeu</i>
			558 U1571 Tis Tysyna gladar denus Tinga arg			
	e Na deservationes		•			
					· · ·	
		. ¹ -				
	•				- •	
· · .			× · · ·		•	<b>`</b> .
			nan 3 d â bi û û û <b>î</b> n _{e de} ye ye ye ye ye ye de bi a û û ye <del>d</del> e de <b>de de de d</b>		**************************************	**************************************
		. •	·			
			بعد من			

: 3

Certified by 54

MIN-EN LABORATORIES LTD.

MIN-EN Laboratories Ltd. Specialists in Hineral Environments

705 WEST 15th STREET NORTH VANCOUVER, B.C. CANADA V7H 1T2

HONE: (604) 980-5814 OR (604) 988-4524

TELEX: 04-352828

## CERTIFICATE OF ASSAY

COMPANY: DAFREY RESOURCES LTD. PROJECT: MINERAL HILL ATTENTION: MR. L. SPENCE FILE: 5-596R DATE: SEPT.12/85. TYPE: PULP ASSAY

He hereby certify that the following are assay results for samples submitted.

SAMPLE	AG	AG	UA [.]	AU	
NUMBER	G/TONNE	OZ/TON	6/TONNE	OZ/TON	-
)FY85-1-40-50	24.2	0.71			
DFY85-1-50-60	98.5	2.87	2.62	0.076	
pFY85-1-70-80	536.0	15.63	:		- 70 01. 4.8
DFY85-1-80-90	450.0	13.12	. 4		5 10 0 7:0
DFY85-1-100-110	54.2	1.58	. 93	0.027	
DFY85-1-110-120	9.2	0.27			
	· · · · · · · · · · · · · · · · · · ·	·. ·			

MIN-EN LABORATORIES LTD.

Certified by

MI	N-EN Laboratories Ltd	•
	Specialists in Hineral Environments	•
	705 WEST 15th STREET NORTH VANCOUVER, B.C. CAMADA V7N 172	

:

#### 1E1 (604) 980-5814 DR (604) 988-4524

TELEX: 04-352828

# CERTIFICATE OF ASSAY

MPANY: NICK CARTER DJECT: MINERAL HILL TENTION: N.C.CARTER FILE: 5-588 DATE: SEPT.6/85. TYPE: ROCK ASSAY

hereby certify that the following are assay results for samples submitted.

MPLE MBER	AG G/TONNE	AG OZ/TON	AU G/TONNE	AU OZ/TON		. معد بعد	•	,
	22600.0 760.0 112.0	659.15) 22.17 3.27	9.95 .22 .24	0.290 0.006 0.007	- 3 . V. 1.5 . u 2 Ve	Sallin - A	lole 16	hee
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		۰.		
						yo "	would	
					· · · · · · · · · · · · · · · · · · ·	·		
				· · · · ·				
				ala da ta				
			Cer	tified b		URIEB LI		