BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2000/2001REPORT #:PAP 00-19NAME:BILL POOLE

1115C Jh F58

ENE	MINIS	STI Al	7Y VD	OF MINES
Rec'd	JAN	2	4	2001
File				
PRI	NCE G	F)R	GE. B.C.

PROSPECTOR'S ASSISTANCE PROGRAM

2000 PROSPECTING AND TECHNICAL REPORT

REFERENCE NO: 2000/2001-P58

Closing Date:

January 31, 2001

Grantee's Address:

W.E. (Bill) Poole P.O. Box 4651 Quesnel, B.C. V2J 3J8

Phone: (Res.): (Work): (250) 992-5607 (250) 992-6668

.

TABLE OF CONTENTS

OVERVIEW:

PROSPECTING SUMMARY:

PROSPECTING AREA: MURRAY/PANTAGE	1

ALTERNATE PROSPECTING AREAS:

AREA 1 – NARCOSLI	. 2
AREA 2 – QUESNEL RIVER	.2

LIST OF FIGURES

FIGURE 1:	MURRAY/PANTAGEP	ocket 1
Prospecting	g Area Map	
FIGURE 2:	NARCOSLI PROSPECTINGP	OCKET 2
Area map		
FIGURE 3:	QUESNEL RIVER PROSPECTINGP	OCKET 3
Area Map		
FIGURE: 4:	RECIEPTSP	OCKET 4

APPENDIX 'A'

AREA 1 - MURRAY/PANTAGE SAMPLE DESCRIPTIONS AND ASSAY RESULTS	3,4,5
---	-------

APPENDIX 'B'

AREA 2 – NARCOSLI SAMPLE DESCRIPTIONS AND ASSAY RESULTS 6

APPENDIX 'C'

COMPLETED BC PROSPECTORS REPORT FORM

7-13

OVERVIEW:

This year's prospecting program concentrated on re-evaluating the Murray wollastonite and gold showing plus Rio Tinto's old Pantage properties, particularly the granodiorite zone. Ongoing logging and road development in the granodioriate zone is creating tremendous access to these areas. However, I was disappointed to learn that Rio Tinto's drill core from the granodirorite zone may have been buried during recent road construction.

Work was also conducted on the alternate prospecting areas of Quesnel River and Narcosli. The work progressed relatively uninterrupted for more than 60 days. In fact all cost and work estimates of the prospecting proposal were exceeded except geochemical analysis. Claims were staked on the Narcosli project to cover an area that may host a dimensional stone prospect and on Dec. 9th, a claim was staked in the Kersley area to cover a limestone showing.

PROSPECTING SUMMARY:

PROSPECTING AREA: MURRAY/PANTAGE

The Murray/Pantage prospecting project focused on three main items. These were specifically to re-examine the wollastonite showing under the direction of George Simandl and Bob Lane. To analyze rock outcrop and old drill core from the Pantage claims for gold, and to intensify prospecting and mapping in the area using the much-improved road access.

The Wollastonite is estimated to have formed from an xenolith of limestone that was infiltrated with silicious hydrothermal fluides Siliceous sills/dykes have been found in other parts of the Murray and Jen claims and these areas are probably a good place to search for other wollastonite occurrences.

An excavator and a power auger were used on the gold showing in the 'B' zone to track a mineralized soil dispersion back to its source. Excavating downslope of the 'B' zone discovered an altered siliceous rock that had not been found before in outcrop. This rock has hairline quartz veinlets but assays showed only slightly elevated metals. Test pitting with a power auger tracked the source of the mineralized dispersion back to the vicinity of the original trench at station 1+240. Deep excavator trenching is planned for this area in the future.

On Rio Tinto's old 1960's Pantage claims, all the old drill sites, access trails and trench sites were located. The trenches were located in incised gullies and exposed the only bedrock found in this area. A huge disappointment was not being able to locate the old drill core. The drill log describes closely space mineralized sheeted quartz veins to the depth of the drill holes, but none of the drill core was assayed for gold. I followed up on numerous leads as to where that drill core was stored. The latest information is that it was located close to the old access road and was buried during reconstruction of the road. The program also included the construction of 3 km of ATV access trail. This trail provides good access through the Jen claims but also joins the Murray claims with the old Pantage property and eliminates over an hour of driving distance between these properties.

ALTERNATE PROSPECTING AREAS:

AREA 1 – NARCOSLI

The Narcosli project focused on identifying the source of a magnetic anomaly, which is described in the program proposal. I estimated that this anomaly together with its tectonic and geological setting might be the signature of a Chu Chua style of VMS deposit. This year the program also explored its association with a possible Alaskan type ultramafic-mafic complex that outcrops approximately 8 km to the north. This intrusive outcrops over an area that is at the most 500 m x 200 m. However, boulders from this intrusive are spread over an area exceeding 60^2 km. This area also has the signature of a magmatic Ti-Fe ± V oxide deposit. The magnetic anomaly which is hosted in a deformed and altered gabbroic intrusive may be cumulate layering and these rocks could be an earlier phase of the fresh appearing intrusive outcrop 8 km to the north.

This prospecting program consisted of extensive bedrock mapping with some magnetometer and self-potential surveys, rock geochemical analysis and claim staking. Four contiguous 2-post claims were staked over an area of fresh ultramafics that may be suitable for dimension stone. On examination, the outcrop in places may be too fractured for this purpose. However, the very large boulder float in this area may be suitable. Samples have been cut and polished by a local stone cutter and will be evaluated by the stone industry. Further work that may explain the magnetic phenomena will include a closely space magnetic survey to delineate the magnetic structures followed by excavating.

AREA 2 -- QUESNEL RIVER

The primary objective of the Quesnel River prospecting project was to locate a high purity medium tonnage limestone deposit. This area was chosen because of its many government and private reports that include the location and description of limestone occurrences and also its relatively good access and close proximity to Quesnel. The deposit attributes searched for were limestone that affords low cost access and pit development located outside of environmentally sensitive areas. Fox Geological and D. Bailey's Open File on the Quesnel belt provided excellent maps and information to aid in this search. Most outcrops examined are impure grey limestones that contain constituents of sand, clay and iron. There are, however, three occurrences that need further ground proofing and possibly drill testing. All three are creamy white dolomitic limestones.

Another potential area of limestone that is worthy of further exploration due to is close proximity to Quesnel is an area located in the vicinity of Kersley Creek down slope of a tuffa spring. This area contains some massive high purity limestone boulders down slope of an outcrop of a impure limestone exposed in a recent road cut. This area was staked on December 9 and will probably be drill tested in the future.

In addition to searching for an acceptable limestone deposit, some time was spent in two areas of recent road access that have the potential to host important minerals. The areas include the margin of a granitic stock located south east of Gravelle ferry and an area located both north and south of Deacon Creek. No important minerals were found in the area of the intrusive. In the Deacon Creek area both disseminated and vein pyrite was found in green volcanics exposed in a road cut.

APPENDIX 'A'

AREA 1 – MURRAY/PANTAGE SAMPLE DESCRIPTIONS AND ASSAY RESULTS

Prospecting Area Murray/Pantage:	a and Sample B1/2000	Description Rock outcrop downslope of 1+240. Oxidized felsic rock with parallel thin vienlets. Tiny sulphide specs
Murray/Pantage:	B2/2000	Float Quartz – Boulder found near road north east of 'B' zone. Sample has $\pm 2\%$ dissininated and plates of pyrite.
Murray/Pantage:	B3/2000	Float – Ditto with arsenopyrite
Murray/Pantage:	E1/2000	Quartz dike from trench. No visible sulphides.
Murray/Pantage:	E2/2000	Float? Common rock found in till down slope of E-1 trench. Disseminated sulphides (Sb) and arsenopyrite stain.
Murray/Pantage:	#1- West Zone	Rock outcrop – Antigorite? or possibly aciculas malachite $\pm 2\%$ copper oxide.
Murray/Pantage:	#2 - West Zone	Rock outcrop – probably altered ultramafics $\pm 2\%$ copper oxide.
Murray/Pantage:	#1 – Main Zone	Rock outcrop – trench site ± 400m west of SE corner; Jen claims. Granodiorite, soft, brittle, brown/yellow biotite, no visible sulphides
Murray/Pantage:	Jen T-1	Rock outcrop – Trench site in main grid. Quartz diorite with fine disseminated cholcopyrite and possibly molybdenite
Murray/Pantage:	Jen T-2	Rock outcrop – Trench site in main grid. Skarn with \pm 1% Azurite and malachite and Quartz.
Murray/Pantage:	Jen T-3	Ditto with pyrite associated with quartz. Some epidote and garnet.
Murray/Pantage:	Jen T-4	Rock outcrop – trench site in north zone located slightly east of old claim post 7-12. Quartz carbonate vein in granodiorite. No visible sulphides.

3

·· ··

Murray/Pantage:	G	Rock outcrop – trench site in North zone. Quartz vein in Quartz diorite. Disseminated sulphides in vein and host Quartz diorite. Very tiny euhedral pale orange brown Garnets.
Murray/Pantage:	Jen Rd-1	Float – Quartz carbonate (listwanite) with stock work. No visible sulphides.
Murray/Pantage:	E2/2000	Pulp – resample for Pd and Pt.

'B' ZONE 2000

..

.

RESAMPLING SELECTED 'B' ZONE SAMPLE SITES WITH POWER AUGER

	Soil from Pit
Location	Description
L1 (B) 1+220	'B' Horizon – very oxidized soils with pods of arsenopyrite. Oxidized to bottom of 'C' horizon at 120 cm. Quartz and felsic breccia? Abudant.
B1a (B) 1+260	'B' Horizon - iron enriched with Quartz frags.
B1(c) 0+000	Ditto
B1a (c) 0 + 060	'C' Horizon. Iron enriched with fragments of felsic breccia? No serpentinite in this hole
B1a 0+070	'B' Horizon oxidized soil fragments of felsic breccia? Plus serpentinite.'C' Horizon crushed quartz diorite.
B1b (c) 0+010	'C' Horizon overlaying felsic bedrock. Oxidized.
B1c (c) 0+000	Ditto

Note: Felsic breccia from sites LB1c 0+000 and 0+015 is probably in place. Rock has narrow veinlets with silver metallic mineral in veins. Rock reacts readily to HCL, however Ca was less than 2% in sample. Future trenching should b located parallel to slope in a north/south direction starting at station 1+200 southward to station 1+280.

Rock Fragments from Pit		
Location	Description	
LB1a 0+050	Altered ultramafic with very fine dissemenated sulphides	
LB1a 0+060	Ditto	
LB1c 0+000	Oxidized felsic breccia	
L1 1+220	Ditto	

. . .

.

. .

.

APPENDIX 'B'

AREA 2 – NARCOSLI SAMPLE DESCRIPTIONS AND ASSAY RESULTS

Prospecting Area Narcosli	and Sample R-1/2000	Description Float – Gabbro with $\pm 2\%$ desseminated sulphides
Narcosli	Horn 2.1/2000	Float – Layered felsic rock with narrow bands of black metalic ? mineral
Narcosli	Horn/2000	Float – common sulphide bearing float found on north side of Narcosli creek. This sample has \pm 3% desseminated sulphides.
Murray/Pantage	8523.1 km/2000	Rock outcrop – Fault breccia and gouge with Banded calcite? Vien and dessminated sulphides. Appears to be a volcanic breccia intercalated with young volcanics and argellaceous rocks.
Narcosli	Blackstone GPS #1/2000	Boulder – Very oxidized gabbroic boulder. Tentional alignment of hornblend crystals. There are some dessimated sulphides but most have oxidized to pale yellow or deep red.

31	-Ju	1-00
----	-----	------

ECO- 10041 KAMI V2C 6	TECH LAB I Dallas Driv LOOPS, B.C ST4	ORATORIE Ve C.	S LTI).							ICP CE	RTIFI	CATE C	PF ANA	ALYSIS	AK 20)00-15	8A						BILL F Box 46 QUES V2J 3J	POOLE 529 NEL, BO 18	c				
Phone Fax Value	e: 250-573-5 : 250-573-4 es in ppm u	5700 1557 nless othe	rwise	reporte	ed																			ATTEN No. of Sampl Projec Shipm Sampl	NTION: sample e type: i et #: 20 ent #: I es subn	BILL F s receiv Rock 200 Vone Gi nitted by	200LE ed: 5 i ven r: B. Pr	oole		
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
<u> </u>	2000 - B1	5	<0.2	0.31	<5	90	<5	1.84	<1	9	118	28	2.51	<10	0.52	593	25	0.03	10	370	<2	<5	<20	79	<0.01	<10	49	<10	11	31
2	2000 - B2	10	-	· -	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
3	2000 - B3	-	<0.2	< 0.01	195	10	<5	1.57	<1	7	186	39	0.80	<10	0.83	337	8	<0.01	20	20	<2	20	<20	48	<0.01	<10	<1	<10	<1	16
4	2000 - E1	10		-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
	2000 - E2	210	5.0	0.09	1225	15	<5	>10	<1	67	302	21	4.01	<10	9.15	2482	<1	<0.01	1162	<10	<2	365	<20	297	<0.01	<10	13	<10	<1	14
Respl 1	<i>it:</i> 2000 - B1	5	-	. -	-	-	-	-	-	-	-	~	-	-	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-
Repea 3	it: 2000 - B3	5	<0.2	<0.01	205	<5	<5	1.65	<1	8	201	40	0.85	<10	0.87	362	9	<0.01	26	<10	<2	25	<20	44	<0.01	<10	1	<10	<1	17
<i>Stand</i> GEO'0	a rd: 10	-	1.0	1.93	65	160	15	1.71	<1	20	66	89	3.79	<10	0.97	705	<1	0.02	28	770	28	20	<20	73	0.13	<10	83	<10	10	76

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

df/158,170 XLS/00 .

.

€

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ANALYSIS AK 2000-158

BILL POOLE Box 4629 QUESNEL, BC V2J 3J8 19-Oct-00

ATTENTION: BILL POOLE

No. of samples received: 5 Sample type: Rock **Project #: 2000** Shipment #: None Given Samples submitted by: B. Poole

ET #.	Tag #	 	 Pd (ppb)	Pt (ppb)	
5	2000 - E2	 . <u></u>	 <5	<5	

QC DATA:

Repeat: 5 2000 - E2

<5

<5

ECO-TECH LARIOKATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/00

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ANALYSIS AK 2000-007

BILL POOLE P.O. BOX 4629 QUESNEL, BC V2J 3J8 12-Apr-00

ATTENTION: Bill Poole

No. of samples received: 4 Sample type: Rock **Project #: None Given Shipment #: None Given** Samples submitted by: Bill Poole

		Au	Pd	Pt	
E	Г #. Тад #	(ppb)	(ppb)	(ppb)	
	1 #1 - West Zone	30	<5	<5	
:	2 #2 - West Zone	20	<5	<5	
;	3 #3 - West Zone	125	<5	<5	

QC DATA:

Repeat:			
R-1 #1 - West Zone	30	<5	<5
Standard:			
GEO'00	145	_	-

ECO-TECH LABORATORIES LTD.

ECO-TECH/LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/00

ECO-TECH LABORATOR 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4	RES LTD.							ICP CE	RTIFI	CATE C	OF ANALYS	S AK 2	000-00	7						BILL F P.O. B QUESI V2J 3J	200LE OX 462 NEL, B	29 C				
Phone: 250-573-5700 Fax : 250-573-4557 Values in ppm unless otl	nerwise repor	ted																		ATTEN No. of Sample Projec Shipm Sample	NTION: sample type: t#: No ent#: es subn	Bill Po s receive Rock one Give None G nitted by	ole ed: 4 en iven v: Bill F	Poole		
																								00.0		
Et #. Tag #	Ag Al '	% A	s Ba	a E	Bi Ca %_	Cd	Co	Cr	Cu	Fe %	La Mg	/a Mn	Мо	Na %	Ni	Ρ	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
4 #1 - Main Zone	<0.2 1.0	46	0 50) <	5 0.49	<1	9	51	153	2.55	<10 0.3	3 168	3	0.06	17	770	<2	<5	<20	23	0.09	<10	100	<10	<1	21
QC DATA:																										
Repeat: 4 #1 - Main Zone	<0.2 1.0	360) 50) <	5 0.49	<1	9	51	153	2.53	<10 0.3	2 168	2	0.06	16	770	2	<5	<20	20	<u>0</u> .09	-<10	99	_ - <10	2	21
<i>Standard:</i> GEO'00	0.6 1.7	3 55	5 145	i <	5 1.80	<1	18	51	83	3.89	<10 0.8	4 641	<1	0.02	25	660	22	5	<20	51	0.09	<10	67	<10	7	71
															1											

.

.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

.

14-mpi-00

÷

_

.

26-May-00

ECO-TECH LABORATORIES LTD. ICP CERTIFICATE OF ANALYSIS AK 2000-61 **Bill Poole** 10041 Dallas Drive PO Box 4629 KAMLCOPS, B.C. QUESNEL, BC V2C 6T4 V2J 3J8 Phone: 250-573-5700 ATTENTION: Bill Poole Fax : 250-573-4557 No. of samples received: 5 Sample type: Rock Project #: None Given Shipment #: None Given Values in ppm unless otherwise reported Samples submitted by: Bill Poole Co Сг Cu Fe % La Mg % Mo Na % Y Et #. Tag # Ag Al% Ba Bi Ca % Cd Mn Ni Ρ Pb Sb Sn Sr Ti% U V W Zn As JEN T-1 2.28 2.38 30 <0.2 <5 45 <5 1.60 <1 15 42 549 <10 1.97 340 54 0.07 21 720 10 <20 26 0.08 <10 112 <10 4 31 1 2 JEN T-2 1.0 1.43 <5 70 <5 2.52 <1 11 37 3570 1.71 <10 0.85 246 5 < 0.01 31 840 6 10 <20 11 0.05 <10 35 <10 7 57 3 JEN T-3 1.24 <5 45 <5 2.97 6 42 967 1.32 <10 1.04 272 2 < 0.01 17 770 6 15 35 6 <0.2 <1 <20 .7 0.05 <10 10 21 JEN T-4 0.16 <5 3 82 127 0.36 0.05 4 <0.2 25 <5 0.08 <1 <10 69 14 0.01 50 <5 <20 6 6 9 - 4 4 4 < 0.01 <10 <10 5 JEN T-5 <0.2 0.93 <5 115 <5 0.59 <1 9 59 366 1.79 <10 0.45 181 <1 0.07 15 590 5 <20 21 0.08 <10 72 5 21 4 <10 4.8 M 1.7 M 21 - L.S. ···· · · · QC DATA: Resplit: <0.2 2.26 1.57 16 38 474 2.38 <10 2.01 337 107 0.07 26 35 20 0.08 <10 112 <10 31 1 <5 40 <5 <1 740 12 <20 5 · · · · · · · · · · · · · · · · The first state of the second state of the sec and a second ECO-TECHIABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. df/62 XLS/00 ٤. B.C. Certified Assayer Page 1

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY **ENVIRONMENTAL TESTING**

10041 E. Trans Canada Hwy., R.R. #2, Kamloops, B.C. V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecctech@direct.ca

CERTIFICATE OF ANALYSIS AK 2000-61

Bill Poole 30-May-00 PO Box 4629 QUESNEL, BC V2J 3J8

ATTENTION: Bill Poole

No. of samples received: 6 Sample type: Rock Project #: None Given Shipment #: None Given Samples submitted by: Bill Poole

All results in ppb unless otherwise indicated

ET #.	Tag #	Ag	As	Bi	Cd	Cu	Hg	Мо	Pb	Sb	Se	Zn
6	JEN RD-1	<0.1	5	<0.1	<0.1	20	<50	<1	2	<0.2	<0.2	17

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

XLS/00

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone: 250-573-5700 Fax : 250-573-4557 ICP CERTIFICATE OF ANALYSIS AK 2000-238

BILL POOLE P.O. BOX 4629 QUESNEL, BC

.....

V2J 3J8

ATTENTION: Bill Poole

the same fillens is a single set of the set

No. of samples received: 9

Sample type: Soil

Project #: 'B' Zone 2000

Shipment #:: None Given

Samples submitted by: Bill Poole

-

Values in ppm unless otherwise reported

<u> </u>	t #.	Tag #	Au(ppb)	Ag	AI %	As	Ва	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	P	Pb	Sb S	n S	<u> </u>	U	V	W	Y	Zn
_	1	B 00 L1(B) 1+220	120	1.7	0.77	1650	115	<5	0.22	6	24	14	1233	8.23	<10	0.27	545	84 < 0.01	30	100	24	<5 <2	0 26	0.0	5 <10	42	<10	3	446
:	2	B-00 1+260 (C)	300	0.2	1.38	450	160	<5	0.29	2	20	31	287	6.24	10	0.69	481	1 <0.01	42	690	6	<5 <2	0 23	0.1	5 <10	87	<10	18	219
:	3	B 00 B1(C) 0+000	10	0.1	1.55	15	255	5	0.36	<1	18	33	45	5.08	20	0.73	521	<1 0.01	50	590	<2	<5 <2	0 50	0.1	5 <10	87	<10	19	64
	4	B-00 B1a(C) 0+060	20	<0.1	1.37	60	240	10	2.37	1	47	189	61	5.35	10	2.63	863	<1 0.02	569	760	<2	<5 <2	0 99	0.1	<10	72	<10	10	74
	5	B-00 B1a(B) 0+070	115	0.2	1.79	240	115	10	0.28	<1	30	123	110	5.98	10	1.39	511	<1 0.01	264	490	6	<5 <2	0 29	0.12	2 <10	80	<10	3	113
	3	B-00 B1b(C) 0+010	20	0.1	1.38	<5	210	10	0.31	<1	16	33	49	4.47	10	0.56	431	1 0.01	46	620	<2	<5 <2	0 43	0.1	5 <10	81	<10	14	86
-	7	B 00 B1c(C) 0+000	5	<0.1	1.48	<5	230	<5	0.30	1	21	17	20	5.35	10	0.62	599	39 <0.01	24	460	<2	<5 <2	0 45	0.14	<10	92	<10	17	85
8	3	B 00 B1c 0+020	5	<0.1	0.95	10	150	5	3.04	<1	23	11	. 62	5.32	10	0.84	1043	42 <0.01	25	660	<2	<5 <2	0 63	0.0	> <10	72	<10	17	86
ę	9	B-00 B-3(B) 0+070	25	0.1	2.31	25	215	10	0.42	1	33	180	93	6.00	10	1.93	552	<1 0.01	346	500	<2	<5 <2	0 37	0.14	<10	94	<10	13	71
QC Rej 1 4 Sta	DA peat 	IA: t: B 00 L1(B) 1+220 B-00 B1a(C) 0+060 rd :	20	1.7 -	0.85	1600 -	115 -	<5	0.22	5	24	13 -	1257 -	8.14 -	<10 -	0.31 -	546 -	83 <0.01	31	80	22	<5 <2) 26	0.00) <10 -	43	<10 -	2	429 -
GE df/2 XLS Fax:	38a 3/00 250-	-992-7029	125	1.3	1.83	50	160	<5	1.52	<1	18	49	97	4.45	<10	0.92	673	<1 0.02	16	670		<5 <2	ECO Fran B.C.	0.12	LABO Zzotti, A d Assa	78 RAJO	<10	8 5C. .TD.	73
														Page 1				`					\sim		\sim				

31-Aug-00

.

ECO-TECH LABORATORIES LTD. 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4

Phone 250-573-5700 Fax : 250-573-4557

Values in ppm unless otherwise reported

.

BILL POOLE P.O. BOX 4629 QUESNEL, BC V2J 3J8

5

ATTENTION: Bill Poole

No. of samples received: 4 Sample type: Rock Project #: 'B' Zone 2000 Shipment #: None Given Samples submitted by: Bill Poole 2

Et #	. Tag #	Au(ppb)	Ag	<u>Al %</u>	As	Ba	BIC	a %	Cd	Co	Cr	_Cu	Fe %	La	Mg %	Mn	Mo Na%	Ni	Р	РЪ	Sb	Sn	Sr TI%	U	v	۱۸/	v	7,
1 2 3	B/00 LB1a 0+050 B/00 LB1a 0+060 B/00 LB1c 0+000	<5 10 25	<0.1 <0.2 <0.1	0.03 0.18 0.30	<5 1665 5	50 85 60	<5 1 5 <5 2	1.66 >10 2.87	<1 <1 <1	89 70 6	161 274 110	110 134 20	5.72 8.43 2.99	<10 <10 <10	5.60 6.02 0.54	364 1482 634	2 <0.01 9 <0.01 15 0.01	1709 1117 6	<10 <10 390	<2 4 52	<5 <5 5	<20 <20 <20	54 <0.01 140 <0.01 56 <0.01	<10 <10	4	<10 <10	<1 <1	22 22 137
	B/00 L1 1+220	5	0.1	0.06	460	15	<5 (0.05	<1	5	175	88	1.45	<10	0.01	88	81 <0.01	<1	<10	<2	~ 5	<20	5 <0.01	<10	2	<10 <10	5 <1	2. 80

Resplit:																											
1 B/00 LB1a 0+050	<5	0.20	0.02	<5	50	<5	1.64	<1	87	167	110	5.56	<10	5.17	358	2 <0.01	1677	<10	<2	<5	<20	46 <0.01	<10	4	<10	<1	22
Repeat																											
1 B/00 LB1a 0+050	10	<0.1	0.03	<5	45	<5	1.62	<1	86	160	102	5.57	<10	5.19	355	3 <0.01	1672	<10	<2	<5	<20	44 <0.01	<10	4	<10	<1	22
Standard:																											
GEO'00	115	1.3	1.83	50	160	<5	1.52	<1	18	49	97	4.45	<10	0.92	673	<1 0.02	18	670	16	<5	<20	62 0 12	<10	78	<10	8	73

df/238a XLS/00 Fax: 250-992-7029

EQO.TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Gertified Assayer

ŧ

Page 1

€

Q 003

ECO-TECU KAM.

© 2505734557

APPENDIX 'B'

AREA 2 – NARCOSLI SAMPLE DESCRIPTIONS AND ASSAY RESULTS

Prospecting Area	and Sample	Description
Narcosli	R-1/2000	Float – Gabbro with $\pm 2\%$ desseminated sulphides
Narcosli	Horn 2.1/2000	Float – Layered felsic rock with narrow bands of black metalic ? mineral
Narcosli	Horn/2000	Float – common sulphide bearing float found on north side of Narcosli creek. This sample has \pm 3% desseminated sulphides.
Murray/Pantage	8523.1 km/2000	Rock outcrop – Fault breccia and gouge with Banded calcite? Vien and dessminated sulphides. Appears to be a volcanic breccia intercalated with young volcanics and argellaceous rocks.
Narcosli	Blackstone GPS #1/2000	Boulder – Very oxidized gabbroic boulder. Tentional alignment of hornblend crystals. There are some dessimated sulphides but most have oxidized to pale yellow or deep red.

. 6

eri

Π.)

LABORATORIES LTD.

6-Nov-00

10041 Dallas Drive, Kamloops, B.C V2C 6T4 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ANALYSIS AK 2000-341

BILL POOLE P.O. BOX 4629 QUESNEL, BC V2J 3J8

ATTENTION: BILL POOLE

No. of samples received: 1 Sample type: Rock Project #: None Given Shipment #: None Given Samples submitted by: Bill Poole

1	Black stone	GPS #1	<u>an an a</u>	(ppb) (ppb)) (ppb)	
FT #	t Tan #			Au Po	d Pt	
		and the second		· · · · · · · · · · · · · · · · · · ·		

115

<5

QC DATĂ:

					•• ••	
1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1		et president i de la companya de la	· · · · · ·
	· · · · · · · · · · · · · · · · · · ·		and the second second		See Survey 1	
Resplit:		and the second		ns égi ji		
1 Blac	k stone G.P.	S. #1			10	<5
			and the state of the second second			

Standard: GEO'00

XLS/00

ECO-TECH LABORATORIES LTD

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

<5

<5

30-Oct-00

	ECO-TECH LABORATORIES 10041 Dallas Drive KAMLOOPS, B.C. V2C 6T4	LTD.							1	CP CE	RTIFIC	ATE O	F ANA	LYSIS	AK 20	00-341						7	BILL F P.O. B QUES V2J 3.	POOLE OX 4629 NEL, BC	9				
	Phone: 250-573-5700 Fax : 250-573-4557																						ATTEI No. of Sampl Projec Shipm	NTION: samples e type: F at #: No nent #: F	BILL I receiv Rock one Giv None G	POOLE red: 1 ren Niven			
	Values in ppm unless otherw	vise rep	orted																		-		Sampl	es-subm	litted by	/:Bill I	-00le		
s	/ Et #. Tag #	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Mo	Na %	Ni	P	Pb	Sb	Sn	Sr	Ti %	ປ	<u>v</u>	W	Y	Zn
	1 Blackstone G.P.S. #1	<0.2	2.93	<5	40	<5	1.50	<1	20	27	181	4.93	<10	1.22	350	<1	0.14	1	700	8	<5	<20	155	0.09	<10	177	<10	<1	31
	QC DATA:																												
	Resplit: 1 Blackstone G.P.S. #1	<0.2	3.03	<5	30	<5	1.60	<1	21	27	184	5.01	<10	1.28	364	1	0.15	3	750	10	<5	<20	159	0.10	<10	185	<10	<1	31
	<i>Repeat:</i> 1 Blackstone G.P.S. #1	<0.2	2.93	<5	35	<5	1.52	<1	21	27	179	4.92	<10	1.23	352	1	0.14	1	730	12	<5	<20	151	0.09	<10	178	~10	<1	33
	<i>Standard:</i> GEO'00	0.8	1.66	55	155	<5	1.57	<1	19	55	93	3.32	<10	0.94	683	<1	0.02	26	730	20	15	<20	60	0.05	<10	64	<10	10	74
)	df/318 XLS/00 Fax: 250-992-7029						、														-		ECO-1 Frank. B.C. C	ECH L J. Pezzo ertified	SORA Stil, A.S Assaye) S [°] LTD.		

·····

.

. ..

ECO 1004 KAM V2C	-TECH LABORATO 1 Dallas Drive LOOPS, B.C. 6T4	RIES LT).								ICP CE	RTIFIC	CATE C	OF AN/	ALYSIS	AK 20	00-31	2						BILL F P.O. B QUES V2J 3J	POOLE IOX 46 NEL, E	5 29 3 C				
Phon Fax	e: 250-573-5700 : 250-573-4557																							ATTEN	NTION	BILI	L POO	LE		
Jalu	es in ppm unless o	therwise	report	ed																				Sample Projec Shipm Sample	e type: t #: N ent #: es sub	Rock one G None mitted	iven Giver by: B	1 Poole		
Et#	. Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi	Ca %	Cd	Co	Cr	Cu	Fe %	La	Mg %	Mn	Мо	Na %	Ni	Р	Pb	Sb	Sn	Sr	Ti %	ີ້ປ	V	W	Y	Zn
1	NARC- R-1/2000	5	<0.2	1.05	<5	45	<5	1.10	<1	34	47	384	1.71	<10	0.51	150	<1	0.08	61	760	6	<5	<20	98	0.05	<10	37	<10	3	10
2	HORN 2.1/2000	5	<0.2	0.92	<5	95	<5	0.07	<1	5	167	77	1.56	<10	0.56	141	4	0.01	12	120	10	<5	<20	16	0.06	<10	112	<10	4	49
3	HORN /2000	· 10	<0.2	2.13	<5	30	<5	2.11	<1	39	27	304	3.93	<10	0.53	252	<1	0.14	14	1090	8	<5	<20	201	0.07	<10	36	<10	<1	24
4	8523.1 Km/2000	5	<0.2	0.29	<5	110	<5	>10	<1	10	26	166	3.78	<10	0.31	1816	4	0.02	5	500	<2	<5	<20	97 -	<0.01	<10	22	<10	28	39
QCD																														
Resp 1	<i>lit:</i> NARC- R-1/2000	5	-	-	-	-	-		-	-	-	-	-	-	-	-	-	-	-	-	-		-		·	-			-	-
Repe		F	-0.0			45		4.47		~ .														 		- "	· · · · ·			
I	MARG- R-1/2000	5	<0.2	1.04	<5	45	<5	1.17	<1	34	47	373	1.72	<10	0.50	149	<1	0.08	61	780	6	5	<20	97	0.05	<10	36	<10	3	10
Stand GEO'(fard: 00	115	1.0	1.52	50	155	<5	1.48	<1	18	52	90	3.31	<10	0.86	650	<1	0.02	26	710	22	10	<20	54	0.08	<10	67	<10	9	70

ECO-TECHLABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

) df/315 XLS/00 Fax: 250-992-7029

D. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, pages 6 and 7.

SUMMARY OF RESULTS

• This summary section must be filled out by all grantees, one for each project area

Information on this form is confidential subject to the provisions of the *Freedom* of *Information Act*.

Name W. E. (Bill) Poole_____

_Reference Number <u>2000/2001 - P58</u>

LOCATION/COMMODITIES

 Project Area (as listed in Part A)
 Murray/Pantage
 MINFILE No. if applicable

 Location of Project Area NTS
 93G 3W
 Lat
 53° 15'N
 Long
 123° 26'W

 Description of Location and Access ± 95 km north west of Quesnel via Blackwater and 1100 road and Blackwater Spruce
 (8700) road.
 100 road
 100 road

Prospecting Assistants(s) - give name(s) and qualifications of assistant(s) (see Program Regulation 13, page 6)

Main Commodities Searched For Base metals, P.G. E's, Gold, Wollastonite

Known Mineral Occurrences in Project Area <u>Rio Tinto had conducted work in the area in the 1960's and were exploring</u> for Porphyry Copper.

WORK PERFORMED

- 1. Conventional Prospecting (area) 20,000 ha
- 2. Geological Mapping (hectares/scale) $\pm 20,000$ ha
- 3. Geochemical (type and no. of samples) Soil, Rock
- 4. Geophysical (type and line km) Magnetomiter Self Potential

5. Physical Work (type and amount) Excavator Trenching, Post Auger, Mechanical Trail Construction

6. Drilling (no. holes, size, depth in m, total m)

7. Other (specify)_____

Best Discovery

Project/Claim Name Jen, List, Murray Commodities Cu, Au, Wollastonite

Location (show on map) Lat.<u>53° 14' 14"</u> Long <u>123° 24' 49"</u> Elevation <u>900-1250m</u>

Best assay/sample type: <u>Rock – Tag# Jen – T- 2, Ag 1.0 ppm; Cu 3570 ppm; Rock – Tag # 2000 – E2, Au 210ppb, Ag</u> 5.0 ppm, As 1225 ppm Ca >10% Mg 9.15 ppm Ni 1162 Sb 365 ppm; Soil <1(B) 1 + 220, Au 120 ppb, Ag 1.7 ppm, As 1650 ppm, Cu 1233 ppm, Mo 84ppm, Zn 446ppm.

Description of mineralization, host rocks, anomalies: Wollastonite is probably an xnolith within the chilled margin of a granodirite/quartz diorite intrusive. Copper found on the Jen claims are possibly intrusive hosted. Copper found south of the Jen claims are hosted in shears between ultramaofic and sediments. Gold on the list claims appears to be a vein deposit hosted in ultra mafic rocks along the chilled margin of a quartz diorite.

FEEDBACK: comments and suggestions for Prospector Assistance Program: <u>Increase maximum individual grant to \$20.</u> 000. An earlier start up would be benificial, or credit individuals with time spent prior to official start up.

11

D. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, pages 6 and 7.

SUMMARY OF RESULTS

• This summary section must be filled out by all grantees, one for each project area

				Information Act.	ar yesting task store
Name <u>W. E. (Bill) Poole</u>			Reference	Number	
LOCATION/COMMODITIES	N			· · · · · ·	
Project Area (as listed in Part A)	Narcosii		MINFILE NO		
Location of Project Area NTS 122° 46'W	<u>93 B7 W</u>	Lat	<u>52° 26'N</u>	Long	
Description of Location and Access	Logging road acc	ess ± 90 km west sout	<u>hwest of Quesn</u>	el	
Prospecting Assistants(s) - give nan	ne(s) and qualification	tions of assistant(s) (s	ee Program Regu	lation 13, page 6)	
<u> </u>					
Main Commodities Searched For	Base	metalsand PGE's			
				<u></u>	•• <i>-</i>
Known Mineral Occurrences in Pro	ject Area <u>None S</u>	pecified.			ra a 'a H
		<u></u>			~
<u> </u>	······································	<u> </u>	······		
WORK PERFORMED					
1. Conventional Prospecting (area)	25,000 ha				
2. Geological Mapping (hectares/sca	ale) <u>22,500 ha</u>	·			
3. Geochemical (type and no. of san	nples) <u>Rock</u>	<u></u>			
4. Geophysical (type and line km)	Magnetomiter – Se	elf Potential			
5. Physical Work (type and amount))				
6. Drilling (no. holes, size, depth in	m, total m)				
7. Other (specify)	· · · · · · · · · · · · · · · · · · ·				
		······································	······		
Best Discoverv					
Project/Claim Name <u>Narcosli – 1</u> dementionstone	Narc/Blackstone	Commodities <u>Narc</u>	<u>– None identifi</u>	ed, blackstone-	
Location (show on map) Lat $56^{\circ}25$	' 25"	Long 122 ⁰ 47' 3	8" Elev	ation 10 <u>0</u> 0-12 <u>00</u>	

Best assay/sample type_Gabbro - Cu 384 PPM

Description of mineralization, host rocks, anomalies <u>Narc - unidentified magnetic anomoly - geology has</u> potential to host VMS or Magmatic PGE. Blackstone – Fresh Mafic- Ultamitfic outcrop may be suitable for demensin stone and may have PGE potential

FEEDBACK: comments and suggestions for Prospector Assistance Program <u>Increase maximum individual</u> <u>grant to \$20,000. An earlier start-up would be benificial if program approval in legislature could be</u> <u>advanced or credit individuals with time spent prior to official start up</u>

Information on this form is

confidential subject to the provisions of the Freedom of

D. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, pages 6 and 7.

SUMMARY OF RESULTS

• This summary section must be filled out by all grantees, one for each project area

Information on this form is confidential subject to the provisions of the *Freedom of Information Act.*

Name <u>W. E. (Bill) Poole</u> 2000/2001 – P58			Reference 1	Number
LOCATION/COMMODITIES				
Project Area (as listed in Part A)	Quesnel River	1	MINFILE No. i	if applicable
Location of Project Area NTS 122 ⁰ 17'W	93B 16 E/W	Lat _	<u>52° 56'N</u>	Long
Description of Location and Access Encmpasses Green Mountain and a	Access from south of Barl rea between Quesnel River	erville highwa and Swift Rive	y and east of hi r.	ighway 97.
Prospecting Assistants(s) - give nar	ne(s) and qualifications of a	ssistant(s) (see	Program Regula	tion 13, page 6)
Main Commodities Searched For	Limestone pl	us base metal a	nd gold	
			·····	
Known Mineral Occurrences in Pro	iect Area Numerous repoi	ts of base meta	is and onld	
Known Mineral Occurrences in Pro	ject Area <u>Numerous repo</u>	ts of base meta	is and gold.	,,, ,, ,,,, .
Known Mineral Occurrences in Pro	ject Area <u>Numerous repo</u>	ts of base meta	is and gold.	
Known Mineral Occurrences in Pro WORK PERFORMED 1. Conventional Prospecting (area)	ject Area <u>Numerous report</u>	ts of base meta	is and gold.	
Known Mineral Occurrences in Pro WORK PERFORMED 1. Conventional Prospecting (area) 2. Geological Mapping (hectares/sc	ject Area <u>Numerous report</u>	ts of base meta	is and gold.	
Known Mineral Occurrences in Pro WORK PERFORMED 1. Conventional Prospecting (area) 2. Geological Mapping (hectares/sc 3. Geochemical (type and no. of sar	ject Area <u>Numerous repor</u> <u>5,000 ha</u> ale) <u>5,000 ha</u> nples) None	ts of base meta		
Known Mineral Occurrences in Pro WORK PERFORMED 1. Conventional Prospecting (area) 2. Geological Mapping (hectares/sc 3. Geochemical (type and no. of sar 4. Geophysical (type and line km)	ject Area <u>Numerous repor</u> <u>5,000 ha</u> ale) <u>5,000 ha</u> nples) <u>None</u> N/A	ts of base meta		
Known Mineral Occurrences in Pro WORK PERFORMED 1. Conventional Prospecting (area) 2. Geological Mapping (hectares/sc 3. Geochemical (type and no. of sar 4. Geophysical (type and line km) 5. Physical Work (type and amount	ject Area <u>Numerous repon</u> <u>5,000 ha</u> ale) <u>5,000 ha</u> nples) <u>None</u> <u>N/A</u>) N/A			
Known Mineral Occurrences in Pro WORK PERFORMED 1. Conventional Prospecting (area) 2. Geological Mapping (hectares/sc 3. Geochemical (type and no. of sar 4. Geophysical (type and line km) 5. Physical Work (type and amount 6. Drilling (no. holes, size, depth in	ject Area <u>Numerous repor</u> <u>5,000 ha</u> ale) <u>5,000 ha</u> nples) <u>None</u> <u>N/A</u>) <u>N/A</u> m, total m) N/A			
Known Mineral Occurrences in Pro WORK PERFORMED 1. Conventional Prospecting (area) 2. Geological Mapping (hectares/sc 3. Geochemical (type and no. of sar 4. Geophysical (type and line km) 5. Physical Work (type and amount 6. Drilling (no. holes, size, depth in 7. Other (specify)	ject Area <u>Numerous repor</u> <u>5,000 ha</u> ale) <u>5,000 ha</u> nples) <u>None</u> <u>N/A</u>) <u>N/A</u> m, total m) <u>N/A</u>			
Known Mineral Occurrences in Pro WORK PERFORMED 1. Conventional Prospecting (area) 2. Geological Mapping (hectares/sc 3. Geochemical (type and no. of sar 4. Geophysical (type and line km) 5. Physical Work (type and amount 6. Drilling (no. holes, size, depth in 7. Other (specify) Best Discovery Project/Claim Name Sparkle - L	ject Area <u>Numerous repor</u> <u>5,000 ha</u> ale) <u>5,000 ha</u> nples) <u>None</u> <u>N/A</u>) <u>N/A</u> m, total m) <u>N/A</u> imestone Co	ts of base meta	ffa - Limestone	e

Quesnel River. Limestone float with high CaCo 3 found near Tuffa spring on Green Mountain. Impure limestone outcrops in recent road cut up slope of float. Claims have been staked to protect the Tuffa Srping and over the outcrop.

FEEDBACK: comments and suggestions for Prospector Assistance Program Increase maximum individual grant to \$20,000. An earlier start-up would be beneficial if program approval in legislature could be advanced or credit individuals with time spent prior to official start up.

	FIGURE JRRAY/PA PROSPECT	1 NTAGE							
ASS	ISTANCE P	ROGRAM							
PROI	PROPOSED PROSPECTING AREA MAP								
SCALE:	1:50,000	NAD 8							
REGION	CARIBOO								
GENERAL	GENERAL LOCATION: BLACKWATER RIVER								
MINING	REF.MAP: 93G 3W								
B.C.G.S	5.: MAP 93G 023,024								
PHOTOS:									
	LATITUDE	LONGITUDE							
GEOGRAPHIC	53°14′14″	123°24′49″							
U.Т.M. 10	EAST: 472392	NORTH: 5898755							
Proposed Pr Road (WF d	rospecting Area								
коаа (WF d									
Trail									
Bridge									
Claim Boundary									
Claim Bound UTM Co-ordi	Jary Inates taken from §								
UTM Co-ord	ations X SAMPLES E1/2000 E2/2000								
Claim Bound UTM Co-ord Sample Loc	ations X SAMPLES E1/2000 E2/2000								
Claim Bound UTM Co-ord Sample Loc COMMENTS: DATE DRAM	Mary Inates taken from Inates taken from Inates taken from Inates taken from Inates Environmental SAMPLES Environmental Environmental Envita	TE REVISED:							
Claim Bound UTM Co-ord Sample Loc COMMENTS: DATE DRAM MISTN. F	Mary inates taken from ations x SAMPLES E1/2000 E2/2000 E2/2000 MN: APRIL 14/2000 DA ILE NO.: m-j-ap1.d STEVE BROWN	TE REVISED:							

FIGURE 2 AREA 1 NARCOSLI PROSPECTING ASSISTANCE PROGRAM PROPOSED PROSPECTING AREA MAP

SCALE: 1:50,000

NAD 83

REGION: CARIBOO

GENERAL LOC.: NARCOSLI CREEK

MINING REF.MAP: 93B 07 E/W

B.C.G.S.: MAP 93B 046,047

PHOTOS:

		LATITUDE	LONGITUDE
GEOGRAF	PHIC	52°26′35″	122°47′38″
U.T.M.	10	EAST: 513999	NORTH: 5810352

APPLICANT BILL POOLE BOX.4651 QUESNEL,B.C. V2J 3J8 ph.250-992-6668 fax.250-992-7029 e-mail cfc@quesnelbc.com

LEGEND

Proposed Prospecting Area

Road (WF data) ===== Trail

Bridge

Claim Boundary

UTM Co-ordinates taken from 🚭

COMMENTS:

Sample Locations

DATE DRAWN: APRIL 17/2000 DATE REVISED:

MISTN, FILE NO,: fig2area1.dgn

DRAWN BY:STEVE BROWN

00-19 Pg. 30

Cariboo Forest Consultants Ltd. Post Office Box 4629 Quesnel, B.C. V2J 3J8

