BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2000/2001REPORT #:PAP 00-22NAME:LEONARD PIGGIN

Table of Contents

Covering Letter

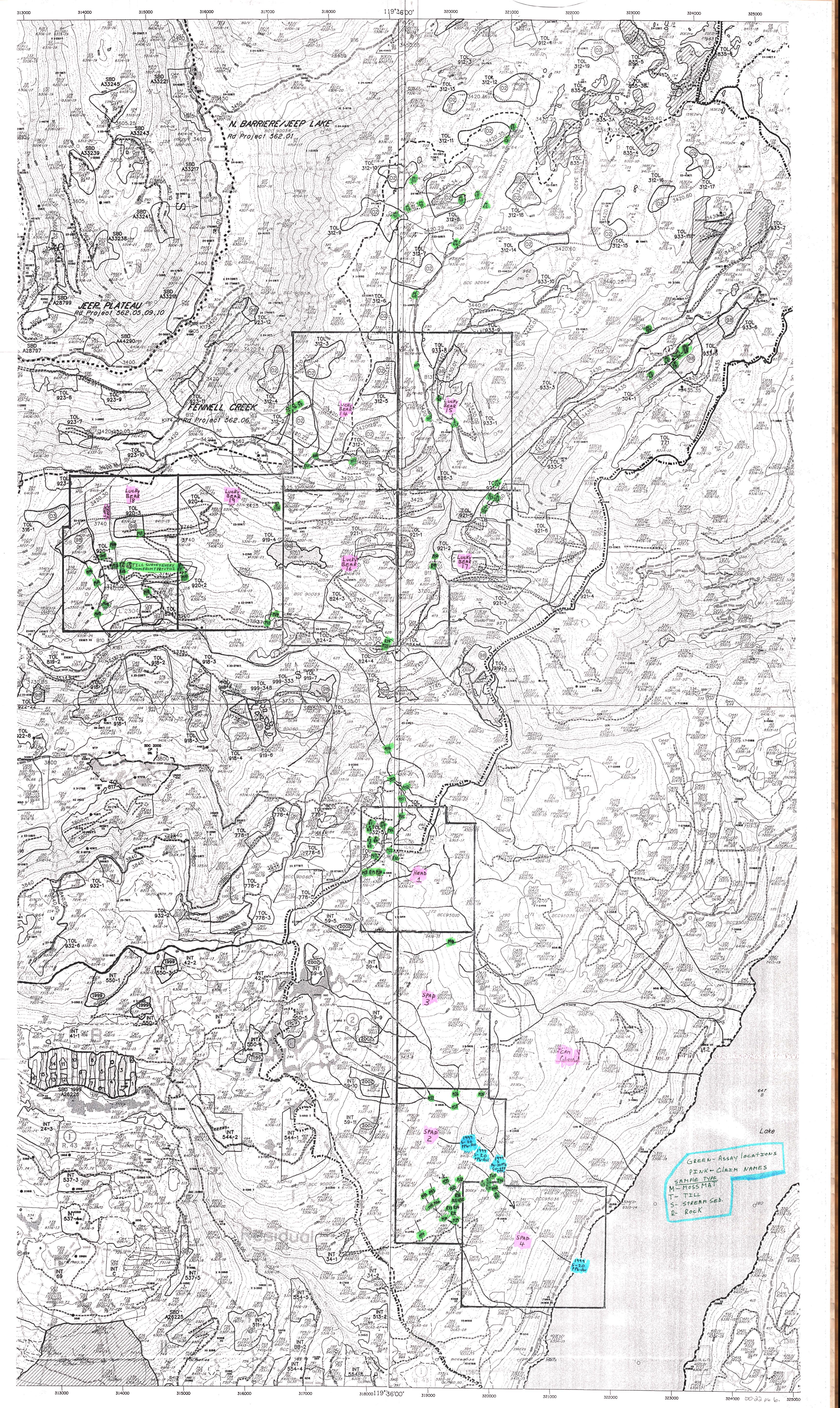
Anomalous Assays Anomalous assays all chemicals Map showing location of Anomalous Assays Map showing location of all sample locations Current Mineral Titles Map 082M04E

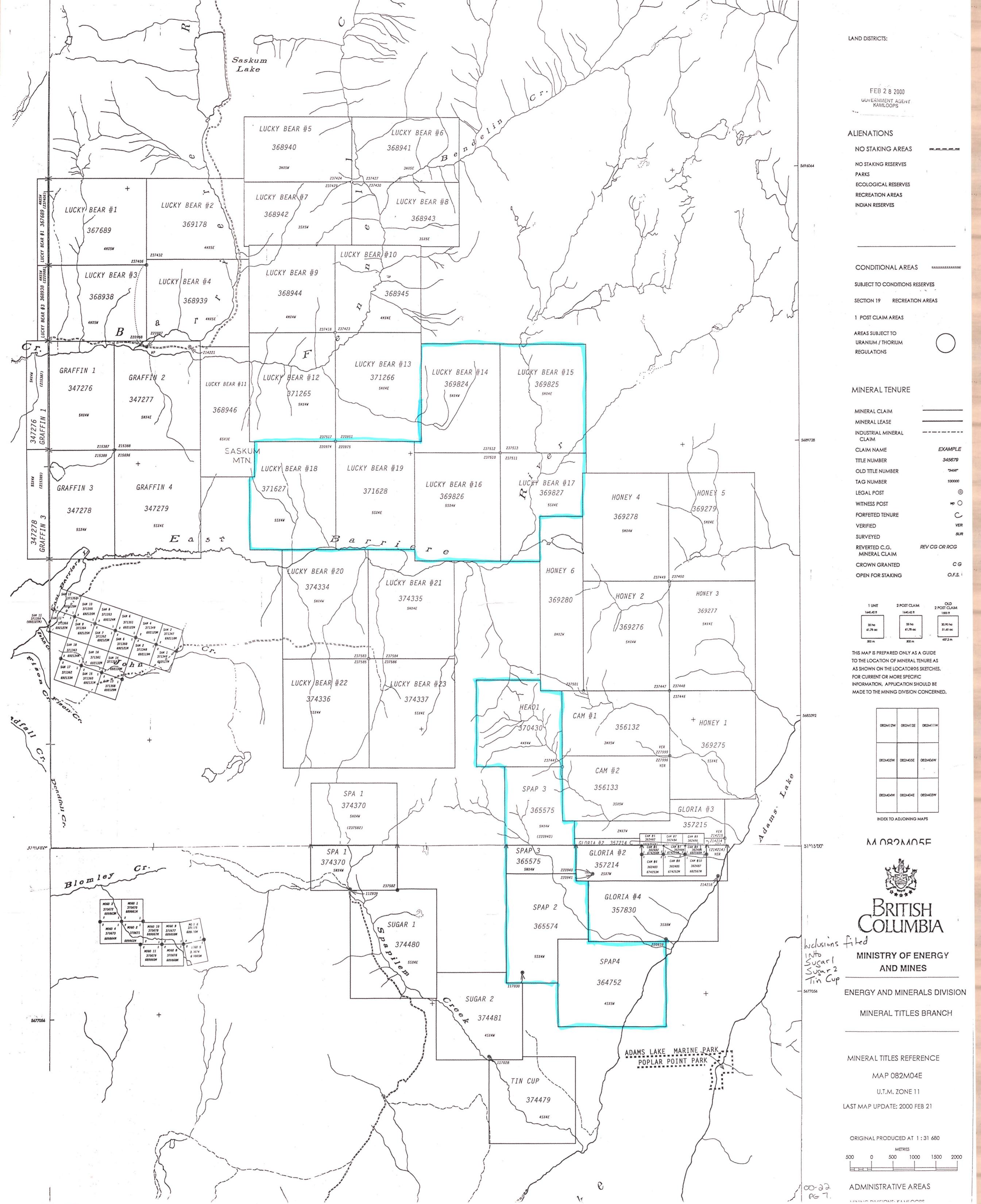
- 1. Prospecting Report Form Summary Worksheet showing prospecting days & work completed form
- 2. Expenditures
 - A. Prospecting Daily Report with mileage
 - B. See tab 3 for invoices over \$100.00
 - C. See tab 4 for a copy of all Assays and Assay invoices.
- 3. Invoices over \$100.00
- 4. Assays and Assay invoices
- 5. Area A Lucky Bear Technical Report
 - A. Claims recording form and location map & tenures as of 2000 November 12.
 - B. Training and Expierance
 - C. Project Area Map
 - D. Anomalous results for Area A
 - D. Lucky Bear Tenures as of November 12 2000
 - E. Technicol Report
 - F. Excerpt from Several New Plutonic-related Gold, Bismuth & Tungsten Occurrences by M. S. Cathro & D. V. Lefebure.
 - G. Project Area Map showing best results
- 6. Area B Head 1 & Spap Technical Report
 - A. Claims recording form and location map & tenures as of 2000 November 12.
 - B. Training and Expierance
 - C. Project Area Map
 - D. Anomalous results for Area B
 - E. Technical pepart
 - F. Cam/Gloria Minfile 082M266 and NSP 082M127.
 - G. Project Area Map showing best results
- 7. Pictures

PROSPECTORS ASSISTANCE PROGRAM: 2000/2001 P73 - LEONARD P. PIGGIN # 121423

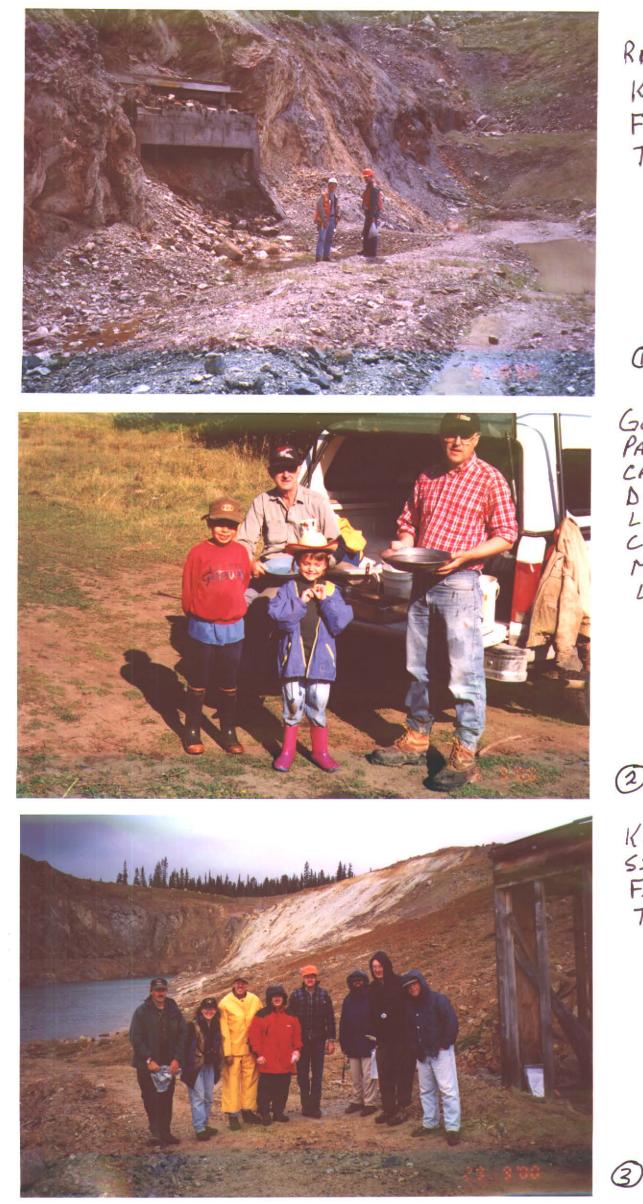
	ICP	Au	Ag	As	Ba	Bi	Ca	Co	Cu	Fe	Ga	Mn	Mo	Ni	Pb	Sb	Zn
AREA		ppb	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm						
A1	LD00M04	<5	0.2	12	90	<2	0.75	10	29	2.84	<10	ppm 1320	ppm	ppm	ppm	ppm	ppm
A1	LD00M06	<10	0.2	6	140	<2	1.08	9	35	3.17	<10	1320	2	82 31	14	<2	100
A1	LD00M12	<10	0.6	28	170	<2	1.22	10	80	3.11	<10	1080	3	53	16 14	<2 <2	96 144
A2	LD00M13	<5	0.4	16	90	<2	0.48	6	35	1.68	<10	815	1	25	10		
A3	LD00M137	<5	0.4	4	120	<2	2.12	5								<2	50
A3	LD00M50	<5	0.2	8	70	<2	0.41	10	38 13	0.96	<10	635	2	13	10	<2	42
A3	LD00R49	5	<0.2	<5	35	5	0.04	13	41	2.01	<10	1020	1	16	10	<2	64
A3	LD00T125	5	1.0	82	180	8	0.19	13	41	4.67	na <10	197 305	<1	10	2	<5	<1
A4	LD00M66	<10	<0.2	6	150	<2							<1	11	86	<2	172
A4	LD00M67	<5	<0.2	2	90	<2	0.41	38	12	2.37	20	>10000	2	5	28	2	52
A4	LD00M69	<5	<0.2	<2	130	4	0.26	22	5	1.62	10	7240	16	2	16	<2	50
A4	LD00M70	<5	<0.2	<2	90	6	0.42	30	7	1.72	10	>10000	3	6	18	2	90
A4	LD00M71	<5	0.2	<2	50	<2	0.34	14 5	7	1.39	10	7350	2	3	22	<2	44
A5										0.76	<10	730	1	3	6	<2	34
	LD00M23	<5	0.4	68	440	<2	1.53	40	40	4.89	10	>10000	4	44	14	2	124
B1	LD00M29	<5	<0.2	<2	150	2	0.55	11	25	2.32	<10	610	2	27	16	<2	58
B1	LD00M30	40	<0.2	2	170	<2	0.76	9	30	1.99	<10	540	5	28	16	<2	56
B1	LD00R35	<5	<0.2	<5	30	15	3.25	24	32	4.84	na	879	5	41	16	5	75
B1	LD00R32	<5	<.2	<5	615	20	3.2	33	36	5.18	na	588	<1	77	26	20	56
B1	LD00M37	<5	<0.2	4	120	<2	0.63	11	32	1.83	<10	510	2	27	12	2	48
B1	LD00M44	<5	<0.2	2	170	<2	0.93	8	27	1.68	<10	620	1	33	12	<2	56
B1	LD00M45	<5	<0.2	2	260	<2	1.98	6	305	1.32	<10	390	3	21	10	<2	28
B1 B1	LD00T47	5	<0.2	<5	75	<5	0.20	7	83	1.44	na	126	<1	6	4	<5	<1
	LD00T46	10	<0.2	<5	90	<5	0.21	8	66	1.66	na	145	<1	7	6	5	<1
B2	LD00M25	<5	1.8	10	1680	8	1.2	17	9	11.05	40	>10000	1	17	22	4	98
B3	LD00M119	<5	<0.2	2	210	<2	0.95	10	50	1.37	<10	2740	1		_		
B3	LD00M51	5	<0.2	<2	180	<2	0.53	8	25	1.49	<10	2620	1	7	8	8	54
B3	LD00R81	5	0.8	<5	45	<5	0.14	54	499	>10	na	188	9	10	6	<2	74
B3 [LD00R83	15	2.0	<5	70	3625	0.02	58	1205	>10	na	100	20	8	28	<5	152
B3 [LD00R84	5	<0.2	<5	550	45	1.45	22	49	4.28	na	743	<1	8	34	<5	12
								and fee	U T	1.00	IIa	143	<1	43	10	5	62

PROSPECTORS ASSISTANCE PROGRAM: 2000/2001 P73 - LEONARD P. PIGGIN # 121423 MOSS MATS ONLY, assayed by ICP method, Au by fire assay


	Moss Mat is >44 ppb	Ag AAS Moss Mat is >0.3 ppm then >90%		As INA Moss Matis >8.8 ppm then >90%		Ba INA Moss Mat is >840 ppm then >90%		Moss Mat is >1.4 ppm	>4.0 ppm	>2.0 ppm	is >23 ppm	Moss Mat is	>27 ppm	Fe INA Moss Mat is >6.59 % then >90%				La INA Moss Matis >244 ppm then >90%		Moss Mat is >972 ppm	Mo AAS Moss Mat is >3 ppm then >90%		Ni AAS Moss Mat is >23 ppm then >90%		Pb INA Moss Mat is >13 ppm then >90%		Sb INA Moss Mat is >.4 ppm then >90%				Mos >11	ss Mat is M 1.3 ppm p		Moss Mat is >43 ppm	W INA Moss Mat is >14 ppm then >90%	Mc >1	n INA loss Mat is 144 ppm en >90%
	Au	Ag	AI	As	В	Ba	Be	Bi	Ca	Cd	Co	Cr	Cu	Fe	Ga	Hg	ĸ	La	Mg	Mn	Мо	Na	Ni	Р	Pb	S	Sb	Sc	Sn	Sr	Ti	TI	U	V	W		Zn
DOOMOA	ppb	ppm	%	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	%	ppm	ppm	%	ppm	ppm	ppm	%	ppm		ppm		%	ppm	ppm	ppm	ppm		ppm
LD00M04 LD00M06	<5	0.2		12	<10	90			0.75			18	29	2.84	<10	<1	0.4	50		1320	2	0.01	82	690	14	0.07	<2	3	na	60	0.06	<10	<10	25	<10	na	100
LD00M12	<10 <10		2.21	28	<10 <10	140	0.5	<2	1.08			25	35	3.17	<10		0.52	70	0.57	1360	3	0.01	31	660	16	0.09	<2	4	na	131	0.09	<10	10	34	<10	na	96
LD00M13	<5		1.2	16	<10	90	0.5	<2	1.22			38	80	3.11 1.68	<10	_	0.53	130	0.67	1080	3	0.02	53	720		0.07	<2	4	na		0.07	<10	10	34	<10	na	144
LD00M23	<5	0.1		68	<10	440	0.5		1.53			17	35	1.08	<10		0.22	160	0.31	815	1	0.01	25		10	0.03	<2	4	na		0.05	<10	20	24		na	50
LD00M25	<5	1.8	0.8	10	20	1680	0.5	8	1.2			4	9	11.05	40	<1	0.54		0.44	>10000	4	0.01	44	2050 1270	14	0.15	2	3	na		0.05	<10	30	38	<10	na	124
LD00M29	<5	<0.2	1.37	<2	<10	150	0.5	2	0.55			25	25	2.32	<10	<1	0.15		0.53			0.02	27	830	16	0.12	4	1	na		0.01	<10	10	15	<10	na	98
LD00M30	40	<0.2	1.58	2	<10	170	0.5	<2	0.76			21	30	1.99	<10		0.16		0.42	540		0.02	28	610		0.05	<2	2	na		0.05	<10 <10	<10 <10	35 32	<10 <10	na	58
LD00M37	<5	<0.2	1.39	4	<10	120		<2	0.63		11	25	32	1.83	<10		0.16		0.47	510		0.01	27	860	12	0.05	2	2	na		0.05	<10	<10	27	<10	na	56
LD00M44	<5	<0.2	1.55	2	<10	170		<2	0.93			18	27	1.68	<10	<1	0.2	60	0.42	620	1	<0.01	33	640	12	0.06	<2	1	na		0.05	<10	<10	24	<10	na	56
LD00M45 LD00M50	<5	<0.2	1.09	2	<10	260	0.5	<2	1.98	<0.5		17	305	1.32	<10		0.21		0.36	390	3	0.01	21	1070	10	0.16	<2	2	na		0.03	<10	<10	22	<10	na	28
LD00M51	<5	< 0.2	1.1	8	<10	70	0.5	<2	0.41	< 0.5		26	13	2.81	<10		0.22		0.44	1020	1	<0.01	16	1390	10	0.16	<2	2	na	23	0.06	<10	10	36	<10	na	64
LD00M66	<10	<0.2	1.54 1.54	<2	<10 <10	180 150	0.5	<2	0.53	< 0.5		9	25	1.49	<10		0.13	10		2620	1	0.01	10	640	6	0.08	<2	1	na	47	0.04	<10	<10	24	<10	na	74
D00M67	<5	<0.2	1.04	2	<10	90	- 2	~2	0.41	<0.5 <0.5		- /	12	2.37	20		0.24	30	0.05	>10000	2	<0.01	5	1190	28	0.14	2	<1	na		0.01	10	10	15	<10	na	52
D00M69	<5	<0.2	1.84	<2	<10	130	2	2	0.20	<0.5		3	5	1.62 1.72	10		0.16	10	0.07	7240	16	0.02	2	530	16	0.06	<2	<1	na		0.02	<10	30	17	<10	na	50
LD00M70	<5	<0.2	1.22	<2	<10	90	1.5	6	0.34	<0.5		4	7	1.72	10		0.09		0.05	>10000 7350	3	0.01	6	860	18	0.12	2	<1	na		0.01	10	10	17	<10	na	90
LD00M71	<5	0.2	1.86	<2	<10	50	2.5	<2	0.19	< 0.5		5	5	0.76	<10		0.15		0.00	730		< 0.01	3	850 460	22	0.11	<2	<1	na		0.01	<10	30	16	<10	na	44
LD00M119	<5	<0.2	1.56	2	<10	210	0.5	<2	0.95	0.5		9	50	1.37	<10		0.14		0.33	2740		0.01	7	730	0	0.04	<2	<1	na		0.03	<10	60	8	<10	na	34
LD00M137	<5	0.4	1.19	4	<10	120	1	<2	2.12	0.5	5	12	38	0.96	<10		0.23	110		635		< 0.01	13	1380	10	0.16	<2	1	na		0.04	<10 <10	<10 10	21	<10	na	54
TILL SAM	PLES O	NLY, as	ssayed	by ICP	met	hod, Au	u by f	ire ass	ay																	0.10			na	202	0.02			17	<10	na	42
	Au TILL is >8 ppb then >90%	Ag TILL is >0.3 ppm then >90%	ic >3 63 04	in >22 mm	than	in > 04E mmm		is >1 ppm	is >4.65 %	Cd TILL is >0.8 ppm then >90%	is >39 ppm	is >173 ppm	s >135 ppm	is >6 43%		>	K TILL is 0.49% then	La TILL is >59 ppm then >90%	>2.7%	Mn TILL is >1373 ppm then	Mo TILL is >2 ppm then >90%	Na TILL is >0.03% I then is	Ni TILL is >130 ppm	P TILL is >0.144%	Pb TILL is >50 ppm then	- 1	Sb (INA) TILL is >91 ppm then	ppm then		then the	.19% hen		is	>102 ppm	W TILL is >2 ppm then	then is >	>179 ppm
LD00T46	10	<0.2		<5	_	90		<5			8	12	66	1.66	na	na	na		0.47	145	The second value of the se		unen >90%		>90%		>90%	>90%		_	90%			then >90%		>90% the	en >90%
LD00T47	5	<0.2		<5		75	_	<5	0.20	<1	7	10	83	1.44	na	na	na	<10		145		<0.01 <0.01	1	360 350	6	na	5	na	<20	18 (na	<10	27	<10	6	<1
LD00T125	5	1.0	2.04	82	<10	180	0.5	8	0,19	<0.5	13	14	48	4.67	<10	<1			0.33	305		0.02	11	660	4	0.33	<5	na	<20 na	15 (93 (0.06	na <10	<10	25	<10	4	<1
ROCK SA	MPLES	ONLY,	assaye	d by IC	P me	ethod, /	Au by	fire as	say				LDOOF	R127. a				ssaved	for P		h with <	5 pph	result	1		0.00	~2	3	IIa	33 (0.11		<10	33	<10	na	172
LD00R32	<5	<0.2		<5		615		20	3.2	<1	33	73	36	5.18	na		na	50	2.89	588		0.21	77		26	na	20	-	<20	244 /	0.04			104		-	
LD00R35	<5	<0.2		<5	na	30	na	15	3.25	<1	24	53	32	4.84	na	na	na	30	1.58	879		0.02	41	3110	16	na	20			341 (119 <	0.31	na	<10	134	<10		56
LD00R49	5	<0.2	_	<5		35	na	5	0.04	<1	13	175	41	2.04	na	na	na	<10	0.21	197		<0.01	10	110		na	<5		<20		0.05	na	<10 <10	42	<10 <10	23	/5
LD00R81	5	0.8	0.99	<5		45		<5	0.14	2	54	82	499	>10	na	na	na		0.38	188		0.05	8	100	28	na	<5		<20	the second se	0.06	na	<10	18	<10	<1	152
LDOOR83	15	2.0	0.06	<5		70	na	3625	0.02	2	58	84	1205	>10	na	na	na	<10	< 0.01	109		< 0.01	8	<10	34	na	<5		<20	<1 <(na	50	1	<10	<1	12
D00R84	5	<0.2	1.78	<5	na	550	na	45	1.45	<1	22	146	49	4.28	na	na	na	10	2.28	743	the second se	0.11	43	2100		na	5		<20		0.20	na	<10	119	<10	10	62
LD00R127 LD00R128	220	0.4		35	na	75	na	25	1.10	<1	15	97	87	4.12	na	na	na		0.39	403		0.03	21	380	168	na	<5	the second se	<20		0.02	na	<10	30	<10	1	32
LUUURIZO	35	<.2	1.20	10	na	155	na	<5	0.98	<1	9	76	21	2.86	na	na	na	30	0.66	508	3	0.04	10	600	46	na	<5		<20		0.09	na	<10	45	<10	12	73


LENDAV PROSPECTING: 2000 ASSAY RESULTS TO OCTOBER 22, 2000

00-22 p6.04


LEONARD P. PIGGIN: PROSPECTING GRANT 2000/2001 P73

ASSAY RESULTS SUMMA	RIZED BY SAMPLE NUMBER	Au INA Moss Ag Mat is Mo >44 ppb is then pp	AAS oss Mat >0.3 om then 00% AS INA Moss M is >8.8 ppm the >90%	lat Moss Mat is >840 en ppm then	Moss Ca Mat is Mos >1.4 Mat ppm >4.0 then ther >90% >90	0 ppm is >2.0 >23 pp	Moss Cu INA Mos Mat is Moss Mat Mat m >104 is >27 >6.5	s is 9 %	La INA Moss Mat is >244 ppm then >90%	Mn AAS Mo AAS Moss Mat Moss Mat is >972 is >3 ppm then >90% >90%	is >23	Pb INA Moss Mat is >13 ppm then >90%	Sb INA Moss Mat is >.4 ppm then		TI INA U INA M Moss Mat Moss Mat M is >11.3 is >44.4 >4 ppm then ppm then th	at is Mat is 43 ppm >14 ppm	Zn INA Moss Mat is >144 ppm then >90% TM GRID NAD83
MOSS MATS ONL	Y 08-Dec-00	983		557 2121 2	2122 2123 2	124 2125 2126 Ca Cd Co	2127 2128 2 ²	⁷⁰ 50 2130 2131 2132 e Ga Hg K	2 2151 2134	4 2135 2136	2137 2138	2139 2140 5	>90% 51 2141 2142 S Sb Sc	2143 2144 Sn Sr Ti	2145 2146	2147 2148 V W Y	>90% TM GRID NAD83
	Sample Type Project Name Certified	Assay (30 gm) Method ppb	ppm % ppm		opm ppm	% ppm ppm	ppm ppm	% ppm ppm %	ppm %	ppm ppm	% ppm	ppm ppm	% ppm ppm	ppm ppm %		ppm ppm ppm	ppm ZONE EASTERLY NORTHERLY WAYPOINT NUMBER No. of Sat.
LD00M01 293651 Chemex LD00M04 293654 Chemex LD00M06 293656 Chemex LD00M07 293657 Chemex	Moss MatLUCKY BEARA0021897Moss MatLUCKY BEARA0021897Moss MatLUCKY BEARA0021897Moss MatLUCKY BEARA0021897	ICP <5	0.2 1.14 0.2 1.57 0.2 2.21 <0.2 0.98	8 <10 70 12 <10 90 6 <10 140 2 <10 50	<0.5 <2 0.5 <2 0.5 <2 <0.5 <2	0.57 <0.5 0.75 <0.5 1.08 <0.5 0.55 <0.5	8 15 19 10 18 29 9 25 35 4 14 11	2.16 <10 <1 0. 2.84 <10 <1 0. 3.17 <10 <1 0. 1.63 <10 <1 0.	.29 30 0. 0.4 50 0. .52 70 0. .23 40 0.	35 1040 1 47 1320 2 57 1360 3 29 420 1	0.01 47 0.01 82 0.01 31 0.01 9	610 10 690 14 660 16 590 6	0.06 <2 0.07 <2 0.09 <2 0.04 <2	2 na 44 0.0 3 na 60 0.0 4 na 131 0.0 2 na 58 0.0	05 <10 <10 06 <10 <10 09 <10 10 05 <10 <10	20 <10 n 25 <10 n 34 <10 n 22 <10 n	aa 66 11 314240 5688697 aa 100 11 aa 96 11 313907 5688731 aa 42 11
LD00M08 293658 Chemex LD00M09 293659 Chemex LD00M10 293660 Chemex		ICP <5	<pre><0.2 1.11 </pre> < 0.2 0.85 0.2 1.23	6 <10 80 4 <10 50 16 <10 80	 <0.5 <2 <0.5 <2 <0.5 <2 	0.55 <0.5 0.4 <0.5 0.43 <0.5	6 14 16 4 12 10 6 14 18	1.84 <10	.28 30 0. 0.2 30 0. .18 90 0.	35 960 1 26 520 1 27 560 1	0.01 16 0.01 10 0.01 23	540 8 550 6 370 14	0.04 <2 0.03 2 0.04 <2	2 na 52 0.0 1 na 39 0.0 3 na 42 0.0	06 <10 <10 05 <10 <10 05 <10 10	21 <10 n 21 <10 n 19 <10 n	152 11 314017 5688472 100 100 100 100 101 100 100 100 101 100 100 100
LD00M11 293661 Chemex LD00M12 293662 Chemex LD00M13 293663 Chemex	Moss MatLUCKY BEARA0021897Moss MatLUCKY BEARA0021897Moss MatLUCKY BEARA0021897Moss MatLUCKY BEARA0021897	ICP <10	<0.2	10 <10 100 28 <10 170 16 <10 90	<0.5 <2 0.5 <2 0.5 <2 0.5 <2	3.24 <0.5 1.22 0.5 0.48 <0.5	5 20 16 10 38 80 6 16 35	2.46 <10	.38 20 0. .53 130 0. .22 160 0.	37 1110 2 67 1080 3 31 815 1	0.02 15 0.02 53 0.01 25	930 4 720 14 510 10	0.17 <2	1 na 129 0.0 4 na 114 0.0 4 na 49 0.0	04 <10 <10 07 <10 10 05 <10 20	17 <10 n 34 <10 n 24 <10 n	11 314652 5689353 5 14 11 314782 5688443 6 14 11 314782 5688443 6 14 50 11 317332 5687628 4
LD00M14 293664 Chemex LD00M15 293665 Chemex LD00M16 293666 Chemex LD00M17 293667 Chemex		ICP <5	<0.2 0.86 <0.2 1.72 <0.2 2.03 <0.2 2.23	2 <10 60 <2 <10 180 2 <10 180 <2 <10 240	<0.5 <2 0.5 <2 0.5 <2 0.5 <2	0.35 <0.5 0.56 <0.5 0.53 <0.5 0.69 <0.5	4 12 6 9 10 27 9 13 31 9 14 25	1.52 <10 <1 0. 1.53 <10 <1 0. 1.87 <10 <1 0. 1.94 <10 <1 0.	.13 70 0. .13 10 0. .15 10 0. .15 20 0.	21 715 2 37 1665 1 44 1210 1 42 1185 2	0.01 5 0.01 11 <0.01 16 <0.01 20	950 6 670 6 620 8 700 10	0.01 <2 0.07 <2 0.06 <2 0.07 <2	1 na 22 0.0 1 na 46 0.0 1 na 43 0.0 2 na 52 0.0	05 <10 <10 04 <10 <10 05 <10 <10 05 <10 <10	24 <10 n 25 <10 n 32 <10 n 31 <10 n	aa 42 11 317468 5687596 4 aa 78 11 318740 5684482 #002 6 aa 70 11 318562 5684240 #003 7 aa 82 11 318279 5684004 #004 7
LD00M20 293670 Chemex	Moss Mat HEAD A0022509 Moss Mat HEAD A0022509 Moss Mat HEAD A0022509	ICP <5 ICP <5 ICP <5	<0.2 1.87 <0.2 2.19 <0.2 1.3	2 <10 260 2 <10 230 <2 <10 160	0.5 <2 0.5 <2 <0.5 <2	0.76 0.5 0.72 0.5 0.57 <0.5	11 12 20 9 16 29 7 9 15	2.07 <10 <1 0. 1.88 <10 <1 0. 1.65 <10 <1 0.	.13 20 0. .18 30 0. .22 10 0.	43 3570 3 46 690 1 26 2480 3	<0.01 17 <0.01 19 <0.01 6	740 12 630 6 870 10	0.09 <2 0.07 <2 0.11 <2	1 na 58 0.0	05 <10 <10 06 <10 <10 03 <10 <10	33 <10 n 32 <10 n 21 <10 n	a 88 11 318048 5683878 #005 a 64 11 318210 5683862 #006 a 50 11 318576 5684176 #008 8
LD00M23 293673 Chemex	Moss MatLUCKY BEARA0022499Moss MatSPAPA0022508Moss MatSPAPA0022508	ICP <5 ICP <5 ICP <5	0.4 1.83 1.8 0.8 <0.2 1.18	68 <10	0.5 <2 0.5 8 0.5 <2	1.53 <0.5 1.2 <0.5 0.6 <0.5	40 17 40 17 4 9 9 7 12 12	4.89 10 <1	.54 120 0. 0.1 40 0. .13 -20 0.	.44 >10000 4 .14 >10000 1 .36 775 1	0.01 44 <0.01 17 <0.01 11	2050 14 1270 22 610 6	0.15 2 0.12 4 0.05 <2	3 na 173 0.0 1 na 307 0.0 1 na 71 0.0	05 <10	38 <10	124 11 317696 5687593 98 11 319969 5680041 #012 7 1a 52 11 319643 5680137 #013 5
LD00M27 293677 Chemex LD00M28 293678 Chemex LD00M29 293680 Chemex LD00M30 293681 Chemex	Moss MatSPAPA0022508Moss MatSPAPA0022508Moss MatSPAPA0023002Moss MatSPAPA0023002	ICP <5	<0.2 1.28 <0.2 1.57 <0.2 1.37 <0.2 1.58	<2 <10 130 2 <10 130 2 <10 180 <2 <10 150 2 <10 170	1.5 <2 1.5 <2 0.5 2 0.5 <2	0.53 <0.5 0.64 0.5 0.55 <0.5	6 8 13 5 8 13 11 25 25 9 21 30	1.57 <10 <1 0. 1.36 <10 <1 0. 2.32 <10 <1 0. 1.99 <10 <1 0.	.09 40 0 .14 60 0. .15 30 0.	0.2 790 1 19 1255 1 53 610 2 42 540 5	<0.01 7 <0.01 7 0.02 27 0.02 28	710 6 890 12 830 16 610 16	0.08 <2 0.1 <2 0.08 <2 0.05 <2	1 na 95 0.0 1 na 119 0.0 2 na 63 0.0 2 na 80 0.0	03 <10 <10 02 <10 <10 05 <10 <10 06 <10 <10	25 <10 n 20 <10 n 35 <10 n	Ima 58 11 319142 5680118 #015 Ima 60 11 319336 5679774 #016 Ima 58 11 Ima 56 11 319495 5678028 #018
LD00M31 293682 Chemex LD00M37 293683 Chemex	Moss Mat SPAP A0023002 Moss Mat SPAP A0023002 Moss Mat SPAP A0023002 Moss Mat SPAP A0023002	ICP <5 ICP <5 ICP <5	<0.2 1.06 <0.2 1.39 <0.2 1.5	2 <10 120 4 <10 120 2 <10 150	0.5 <2 0.5 <2 0.5 <2 1 <2	0.44 <0.5 0.63 <0.5	9 20 20 11 25 32 9 22 21	1.98 <10	.12 20 0	47 510 2 44 985 2	0.01 19 0.01 27 0.01 21	820 8 860 12 940 12	0.09 <2 0.05 2 0.07 <2	1 na 51 0.0 2 na 83 0.0 1 na 83 0.0	0.5 < 10 < 10 0.5 < 10 < 10 0.5 < 10 < 10 0.5 < 10 < 10	30 <10 n 27 <10 n 20 <10 n	a 50 11 519435 5070025 #010 a 52 11 319581 5678299 #019 4 a 48 11 319653 5678329 #020 a 84 11 319648 5678736 #021 3
LD00M39 293685 Chemex LD00M40 293686 Chemex	Moss MatSPAPA0024263Moss MatSPAPA0023662Moss MatSPAPA0023662Moss MatSPAPA0023662	ICP 5 ICP <5 ICP <5	<0.2 1.37 <0.2 1.7 <0.2 1.75	2 <10 130 2 <10 120 2 <10 180 <2 <10 180	1 <2 0.5 <2 0.5 <2	0.64 <0.5 1.02 <0.5 0.9 <0.5	9 16 26 7 16 43 9 21 32	1.62 <10		36 640 <1	<0.01 20 <0.01 20 <0.01 28 0.01 32	710 16 650 14 650 10	0.06 <2 0.08 <2 0.07 <2	I II III III IIII IIIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	04 <10 <10 04 <10 <10 04 <10 <10 05 <10 <10	30 <10	Ina Ina <thina< th=""> <thina< th=""> <thina< th=""></thina<></thina<></thina<>
LD00M43 293689 Chemex LD00M44 293690 Chemex	Moss MatSPAPA0023662Moss MatSPAPA0023662Moss MatSPAPA0024263Moss MatSPAPA0024263	ICP <5 ICP <5 ICP <5 ICP <5	<0.2 1.75 <0.2 1.64 <0.2 1.55 <0.2 1.09	2 <10 170 4 <10 160 2 <10 170 2 <10 260	0.5 <2 0.5 <2 0.5 <2 0.5 <2	1.12 <0.5 0.99 <0.5 0.93 <0.5	9 18 32 7 14 39 8 18 27 6 17 305	1.66 <10 <1 0. 1.56 <10 <1 0. 1.68 <10 <1 0. 1.32 <10 <1 0.	.14 50 0. .11 70 0 0.2 60 0. .21 40 0	41 710 1 0.3 395 <1 42 620 1 36 390 3	<0.01 32 0.01 25 <0.01 33 0.01 21	820 8 690 12 640 12	0.1 <2 0.08 <2 0.06 <2 0.16 <2	1 na 135 0.0 2 na 95 0.0 1 na 117 0.0 2 na 201 0.0	04 <10 <10 03 <10 <10 05 <10 <10 03 <10 <10	23 <10 n 18 <10 n 24 <10 n	11 319193 5678355 #023 4 1a 50 11 319270 5678377 #024 4 1a 56 11 318435 5677576 5678377
LD00M48 293692 Chemex	Moss Mat SPAP A0024263 Moss Mat LUCKY BEAR A0024641	ICP <5 ICP <5 ICP <5 ICP <5	<pre><0.2 1.65 0.2 1.1 <<0.2 1.54</pre>	<2 <10 200 <2 <10 130 8 <10 70 <2 <10 400	0.5 <2	1.98 <0.5	12 32 30 10 26 13	2.46 <10 <1 0. 2.81 <10 <1 0. 1.49 <10 <1 0.	1.21 40 0. 0.27 20 0. 0.22 30 0. 113 10 0	.44 1020 1 36 2620	0.01 21 <0.01 27 <0.01 10	1070 10 910 4 1390 10 640 6	0.04 <2 0.16 <2 0.08 <2	3 na 33 0.0 2 na 23 0.0 1 na 47 0.0	08 <10 <10 06 <10 10 04 <10 <10	41 <10	Ia 28 11 Ia 50 11 319583 Ia 64 11 319241 Ia 64 11 318834 Ia 74 11
LD00M52 293695 Chemex LD00M53 293696 Chemex LD00M54 293697 Chemex	Moss Mat HEAD A0024644	ICP <5 ICP <5 ICP <5 ICP <5	0.2 1.21 <0.2 1.35 <0.2 1.29 <0.2 1.54	<10 100 <2 <10 190 <2 <10 150 <2 <10 140 <2 <10 100	<0.5 <2 <0.5 <2 <0.5 <2 <0.5 <2 <0.5 <2 <0.5 <2	0.8 0.5 0.5 <0.5 0.5 <0.5 0.52 <0.5 0.63 <0.5	0 0 10 12 7 11 7 8 19 6 9 18 6 9 8	1.6 10 <1 $0.$ 1.37 <10 <1 $0.$ 1.43 <10 <1 $0.$ 1.81 <10 <1 $0.$.10 10 0. .21 <10 0. .11 10 0. .16 10 0 .35 70 0	33 5920 5 .35 1955 1 0.4 1310 1 31 1090 1	0.01 5 <0.01 7 <0.01 9 0.01 7	900 8 610 6 720 6 840 10	0.1 <2 < 0.06 <2 0.06 <2 0.1 <2	I I <thi< th=""> <thi< th=""> <thi< th=""> <thi< th=""></thi<></thi<></thi<></thi<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24 <10	11 010004 000010 Dave 10 1a 52 11 318834 5684975 Dave 76 6 1a 60 11 318684 5685148 Dave 77 7 1a 56 11 318680 568680 Dave 79 1 1a 144 11 318468 5690361 Dave 84 5
LD00M58 293699 Chemex LD00M59 293700 Chemex	Moss Mat LUCKY BEAR A0025447 Moss Mat LUCKY BEAR A0025447	ICP <5 ICP <5 ICP <5 ICP <5	<0.2 2.66 <0.2 0.93	<2 <10 70 <2 <10 40 <2 <10 80	3 <2 0.5 <2 0.5 <2	0.63 <0.5 0.82 <0.5 0.18 <0.5 0.29 <0.5	5 13 7 2 3 2 7 3 4	1.88 <10 <1 0 0.64 <10 <1 0 1.5 <10 <1 0	0.2 80 0 0.08 10 0	0.4 545 <1 0.8 600 <1 07 4040 1	0.01 8	840 10 1580 12 320 6 550 8	0.06 <2 0.03 <2 <0 0.05 <2	1 na 63 0.0 (1 na 15 0.0 (1 na 24 04	20 10 04 20 <10 03 <10 <10 01 <10 <10	30 <10 n 8 <10 n 12 <10 -	Ia 14 11 318466 3690361 Dave 64 5 Ia 48 11 no signal no signal NIL Ia 30 11 319335 5692996 Dave 85 6 Ia 58 11 323873 5692262 61
LD00M62 293702 Chemex LD00M63 293703 Chemex LD00M64 293704 Chemex	Moss MatLUCKY BEARA0025447Moss MatLUCKY BEARA0025447Moss MatLUCKY BEARA0025447Moss MatLUCKY BEARA0025447Moss MatLUCKY BEARA0025447	ICP <5 ICP <5 ICP <5 ICP <5	<0.2 0.58 <0.2 0.73 <0.2 1.44 <0.2 0.62	<2 <10 30 2 <10 50 2 <10 50 <2 <10 130 <2 <10 30	<0.5 <2 <0.5 <2 0.5 <2 1.5 <2 <0.5 <2	0.16 <0.5 0.2 <0.5 0.38 <0.5 0.22 <0.5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.1 10 0.1 0.09 20 0 0.07 10 0.1 0.11 10 0.1 0.07 30 0	0.1 445 <1	0.01 1 0.01 3 0.01 4 0.01 2	470 4 390 6 800 20 520 4	0.05 <2 <0.05 <2 <0.05 <2 <0.08 <2 <0.08 <2 <0.02 <2 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <	na 24 0.0 <1 na 8 0.0 <1 na 19 0.0 <1 na 36 0.0 <1 na 36 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 <10 n 11 <10 n 15 <10 n 8 <10 n	42 11 323337 5691933 62 aa 26 11 323037 5691714 63 aa 132 11 Region 968169 9
LD00M66 293706 Chemex LD00M67 293707 Chemex	Moss Mat LUCKY BEAR A0026701	ICP <10	<0.2 0.02 <0.2 1.54 <0.2 1.04 <0.2 1.84	6 <10 150 2 <10 90	2 <2 1 4	0.41 <0.5 0.26 <0.5 0.42 <0.5	38 7 12 22 3 5 30 7 7	2.37 20 <1 0. 1.62 10 <1 0. 1.72 10 <1 0.	0.24 30 0. 0.16 10 0. 0.16 30 0	.05 >10000 2 .07 7240 16 .05 >10000 3	<pre></pre>		0.14 2 4 0.06 <2 4	<1 na 54 0.0 <1 na 26 0.0 <1 na 47 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	15 <10 n 17 <10 n 17 <10 n	Image: Second state State
LD00M70 293709 Chemex LD00M71 293710 Chemex	Moss Mat LUCKY BEAR A0026701 Moss Mat LUCKY BEAR A0026701 Moss Mat LUCKY BEAR A0026701	ICP <5 ICP <5 ICP <5 ICP <5	<0.2 1.04 <0.2 1.22 0.2 1.86	<2 <10 130 <2 <10 90 <2 <10 50	2 2 1.5 6 2.5 <2	0.42 <0.5 0.34 <0.5 0.19 <0.5	14 4 7 5 5 5	1.39 10 <1 0. 0.76 <10 <1 0.	0.09 10 0. 0.15 10 0.	.05 710000 33 .06 7350 2 .12 730 1	<pre><0.01 3 <0.01 3 </pre>	850 22 460 6	0.12 2 4	<1 na 39 0.0 <1 na 19 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	16 <10 n 16 <10 n 8 <10 n	Add Bit Starro Starro Starro Ina 44 11 319552 5694018 Dave 92 Ina 34 11 319041 5693344 Dave 93 Ina 24 11 319124 5693397 Dave 94
LD00M73 293712 Chemex LD00M74 293713 Chemex LD00M75 293716 Chemex	Moss MatLUCKY BEARA0026701Moss MatLUCKY BEARA0026701Moss MatLUCKY BEARA0026701Moss MatLUCKY BEARA0027129Moss MatLUCKY BEARA0027129	ICP <5 ICP <5 ICP <5 ICP <5 ICP <5	0.2 1.13 <0.2 1.35 <0.2 0.81 <0.2 0.7	<2 <10 50 <2 <10 120 <2 <10 70 4 <10 40	1 <2 1.5 2 1.5 <2 0.5 <2	0.28 <0.5 0.27 <0.5 0.46 <0.5 0.42 <0.5	4 3 5 12 1 6 8 14 8 3 16 4	0.53 <10 <1 0. 1.11 20 <1 0 0.61 <10 <1 0 2.32 <10 <1 0	0.23 <10	.08 2140 1 .06 >10000 3 .07 3680 1 .13 285 1	<0.01 2 <0.01 2 0.01 8 0.01 4	500 8 560 12 910 20 1040 14	0.06 <2 0.07 <2 0.11 <2 0.03 <2	na 27 0.0 <1 na 34 0.0 <1 na 44 0.0 1 na 20 0.0 4 na 20 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7 <10 n 13 <10 n 7 <10 n 37 <10 n 25 <10 n	Ia 24 11 319124 5693397 Dave 94 Ia 44 11 319329 5693757 Dave 95 Ia 34 11 319292 5694559 Dave 96 Ia 50 11 317615 5690761 Len 002 ? Ia 50 11 317766 5690734 76
LD00M77 293718 Chemex LD00M119 293726 Chemex	Moss Mat LUCKY BEAR A0027129	ICP <5	<0.2 1.06 <0.2 1.96 <0.2 1.56	2 <10 50 2 <10 120 2 <10 210	1.5 <2 2 <2 0.5 <2	0.42 <0.5 0.63 0.5 0.95 0.5 0.35 <0.5	4 20 6 9 36 11 10 9 50	1.52 <10 <1 1.76 <10 <1 0 1.37 <10 <1 0 1.51 <10 <1 0	0.1 60 0 0.25 60 0 0.14 30 0	0.3 1340 4 .33 2740 1	<0.01 9 0.01 22 0.01 7 0.01 7	1030 10 870 20 730 8 030 10	0.09 <2 0.11 8 0.05 8	1 na 20 0.0 1 na 62 0.0 1 na 69 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	27 <10 n 27 <10 n 21 <10 n	11 317766 3690734 76 11 318489 5690703 77 11 313271 5681881 119,120 11 320552 5689928 5
LD00M137 293679 Chemex	Moss Mat LUCKY BEAR A0030273 Moss Mat HEAD A0022509 Moss Mat LUCKY BEAR A0026701	ICP <5 ICP <5	<0.2 1.11 0.4 1.19 <0.2 0.49	4 <10 70 4 <10 120 <2 <10 20	0.5 <2 1 <2 0.5 <2	2.12 0.5 0.12 <0.5	0 7 11 5 12 38 1 4 4	1.51 <10 <1 0 0.96 <10 <1 0 0.68 <10 <1 0	30 0. 0.23 110 0. 0.04 20 0.	.17 1500 .24 635 2 .05 255 <1	0.01 3 <0.01	930 10 1380 10 340 2	0.05 0 0.16 <2 0.01 <2	I na 24 0.0 1 na 292 0.0 <1 na 8 0.0	02 <10 10 01 <10 <10	17 <10 n 8 <10 n	42 11 320552 5689928 124 na 18 11 323205 5692347 Len 001
Assay Lab Assay Lab Assay Field Sample # Sample	Sample Type Project Name Certified		ppm % ppm	ppm ppm p	ppm ppm	Ca Cd Co % ppm ppm		Ga Hg K	ppm %		% ppm		S Sb Sc % ppm ppm		ppm ppm	V W Y	Zn waypoint ppm zone EASTERLY NORTHERLY WAYPOINT NO. of Sat.
		BC GSC BC RGS 20 33 Au Ag	g INA 33 As tream Stream ed is Sed is		2000-3 Bi INA Stream Sed is >0.9		BC RGS 33 Cu Stream Sed is >44 ppm	BC RGS 33 Hg Stream Sed is >20 ppm		Op File 2000-3 BC RGS Mn AAS 33 Mo Stream Stream Sed is Sed is >771 >3 ppm	Op File 2000-3 Ni AAS Stream Sed is >12 ppm	BC RGS 33 Pb Stream Sed is >17 ppm	BC RGS 33 Sb Stream Sed is >0.5 ppm			BC RGS 33 W Stream Sed is >4 ppm	BC RGS 33 Zn Stream Sed is >91 ppm
STREAM SEDIME	Stream Sed LUCKY BEAR A0021896	Open File then th	Internet Internet 90% >90% <0.2 0.72	6 <10 60	<0.5 <2	0.27 <0.5	then >90%	1.59 <10 <1 0	0.18 20 0	ppm then then >90% >90% 1450 1	<0.01 16	then >90% 400 2	then >90% 0.02 <2	1 na 25 0.0	04 <10 <10	then >90% 17 <10 n	then >90% na 34 11
Assay Lab Assay Field Sample # Sample Lab	Sample Type Project Name Certified	Assay (30 gm) Method ppb	Ag Al As			Ca Cd Co		e Ga Hg K	La Mo		Na Ni % ppm	P Pb	S Sb Sc % ppm ppm		TI U	V W Y	Zn Waypoint ppm zone EASTERLY NORTHERLY WAYPOINT NUMBER No. of Sat.
		BC GSB Open file	Ag Al As TILL is TILL is TILL is 0.3 ppm >3.63 % >22 pr	B Ba TILL is TILL is >3 ppm >215 then ppm then	2000	Ca Cd Cd LL is TILL is TILL .65 % >0.8 ppm >39 pp	Cd Cu is TILL is TILL is TI	Fe K		Mn Mo is TILL is TILL is % >1373 >2 ppm	Na Ni TILL is TILL is >0.03% >130	P Pb	Sb (INA) (LMIC TILL is TILL i >91 ppm >91 pp	s) Sr Ti	s %	V W (LMIC) TILL is TILL is TILL is >102 >2 ppm >29 pp	s TILL is
TILL SAMPLES OI	TILL SPAP AK 2000-196	(ICP only) >90% ICP 10	then solution then solution solution then solution solutita solutita solutita soluta	then ppm then >90% >90% <5 na 90	>1 ppm then >90% > na <5	hen then then 90% >90% >90% 0.21 <1	ppm then ppm then then		n then then % >90% >90%		then ppm then >90% >90% <0.01 7	then >90% >90% 360 6	then + + + + + + + + + + + + + + + + + + +	then then >90% >90%	PI PI	pm then then >90% >90% >90% 27 <10	ppm then >90% 6 <1 11 320027 567860 #068 6
LD00T47 103331 Eco-tech LD00T60 293715 Chemex LD00T87 293719 Chemex LD00T88 293720 Chemex LD00T89 293731 Chemex	TILL LUCKY BEAR A0027131 TILL LUCKY BEAR A0027769 TILL LUCKY BEAR A0027769	ICP <5	<0.2 0.84 <0.2 1.02 <0.2 1.01 <0.2 1.44	na 75 <2 10 10 12 <10 60 6 <10 110	na <5	0.20 <1 0.08 <0.5 0.13 <0.5 0.16 <0.5	10 83 1 3 1 7 16 16 8 19 13	1.44 na na 0.74 <10 <1 0 1.86 <10 <1 0 2 <10 <1 0	0.22 10	.39 126 <1	<0.01	430 8	na <5 0.01 <2 <0.01 <2 <0.01 <2 <0.01 <2 <0.01 <2	na <20 15 0.0 <1 na 4 0.0 2 na 12 0.0 2 na 18 0.0	08 <10 <10	20 <10	4 <1 11 319972 5678522 #069 5 1a 14 11 323873 5692262 8 1a 48 11 315353 5688717 Len 87 1a 68 11 315305 5688721 Len 88 1a 42 11 315256 5688717 Len 89
LD00T89 293721 Chemex LD00T90 to 106 LD00T107 293722 Chemex LD00T108 293723 Chemex LD00T109 200724 Chemex	TILL LUCKY BEAR A0027769 TILL LUCKY BEAR A0027769	ICP <5 IOT ASSAYED ICP <5 ICP <5	<0.2 0.99 <0.2 0.64<0.2 0.62	o <10 60 8 <10 50 2 <10 20	<0.5 <2 <0.5 <2 <0.5 <2 <0.5 <2	0.16 <0.5 0.13 <0.5 0.07 <0.5	0 18 13 5 13 8 4 8 5	1.69 <10	0.15 10 0 0.09 10 0	.43 255 <1 .21 120 <1 .18 100 <1	0.01 13 <0.01 9 0.01 6	460 6 180 4	<0.01 <2 0.01 <2 <0.01 <2 <0.01 <2	3 na 13 0.0 1 na 9 0.0 1 na 7 0.0	07 <10 <10 04 <10 <10 04 <10 <10 07 <10 <10	20 <10 m 24 <10 m 15 <10 m	1a 42 11 315256 5688717 Len 89 1a 34 11 314366 5688729 Len 107 1a 22 11 314319 5688733 Len 108 1a 50 10 10 100
LD00T109 293724 Chemex LD00T110 293725 Chemex LD00T111 to 112 LD00T125 293730	TILLLUCKY BEARA0027769TILLLUCKY BEARA0027769LUCKY BEARMTILLLUCKY BEARA0030273	ICP <5	<0.2 1.07 <0.2 0.66 1.0 2.04	10 <10 60 2 <10 20 82 <10 180	0.5 <2 <0.5 <2 0.5 8	0.22 <0.5 0.11 <0.5 0.19 <0.5	8 17 18 4 9 6 13 14 48		0.31 20 0.13 10 0 0.35 30 0	0.4 735 1 .18 115 <1 .33 305 <1	<0.01 21 0.01 6 0.02 11		<0.01 <2 <0.01 <2 0.33 <2	3 na 20 0.1 1 na 8 0.1 3 na 93 0.1	01 <10 <10 04 <10 <10 11 <10 <10	25 <10 m 18 <10 m 33 <10 m	na 50 na no signal no signal Len 109 na 22 11 314230 5688753 Len 110 na 172 11 320282 5689513 Len 125
ROCK SAMPLES		Assay (30 gm)	Ag Al As		Be Bi (Ca Cd Co		e Ga Hg K	La Mg				S Sb Sc		TIU	V W Y	Zn WAYPOINT
Field Sample #SampleLabLD00R32103325Eco-techLD00R33103323Eco-techLD00R33103324Eco-tech	Rock bag 2 SPAP AK-2000-141	MethodppbICP<5ICP<5ICP<5	ppm % ppm <0.2 2.66 <0.2 0.22 <0.2 0.21	ppm ppm p <5 na 615 <5 na 40 <5 na 35	ppm ppm na 20 na <5 na <5	% ppm ppm 3.2 <1 0.57 <1 0.98 <1	ppm ppm 33 73 36 7 80 2 8 65 2	% ppm ppm % 5.18 na na 0.89 na na 1.24 na na	na 10 0 na 10 0	ppm ppm .89 588 <1 .23 122 1 .43 242 2	% ppm 0.21 77 0.03 4 0.03 1	ppm ppm 3560 26 100 4 100 4	% ppm ppm na 20 10 na <5 10 na 10 10	na <20 341 0. na <20 18 <. na <20 17 <.	ppm ppm 31 na <10 01 na <10 01 na <10	ppm ppm ppm 134 <10 2 1 <10 2 1 <10 2	21 56 black micecaous schist, Eagle Bay 3 4 altered fine grained felsic schist with PY stringers, Eagle Bay 5 6 altered fine grained felsic schist with PY stringers, Eagle Bay
LD00R35 103327 Eco-tech LD00R35 ID00R36 Eco-tech LD00R36 103326 Eco-tech LD00R49 103329 Eco-tech	Rock SPAP AK-2000-141 Rock SPAP AK-2000-141 ROCK LUCKY BEAR AK 2000-197	ICP <5	<0.2 0.63 <0.2 0.14 <0.2 0.57	<5 na 30 <5 na 35 <5 na 35	na 15 na <5 na 5	3.25 <1 0.03 <1 0.04 <1	24 53 32 2 133 4 13 175 41	4.84 na na 0.96 na na 2.04 na na	na <10 0	.58 879 5 .03 41 4 .21 197 <1	0.02 41 <.01 3 <0.01 10	3110 16 110 12 110 2	na 5 na <5 na <5	na <20 119 < na <20 2 < na <20 4 0	01 na <10 01 na <10 05 na <10	42 <10	23 75 11 319581 5678299 #019 grey fine grained felsic volcanis with difuse PY, Eagle Bay host <1 7 quartz in creek bottom, Eagle Bay host <1 <1 319137 5688018 Dave 73
LD00R55 Eco-tech LD00R55 LD00R55 D	ROCK HEAD AK-2000-255 LUCKY BEAR		<0.2 2.20	<5 na 130	na 15	0.39 <1	21 173 24	2.99 na na		.99 489 <1	0.05 41	350 16	na <5	na <20 30 0.	15 na <10	48 <10	rusty (altered) micaceous siliceous schist, Eagle Bay host 2 85 11 317439 5690301 Dave 82 black & silver flecks micecaous silicious schist, Eagle Bay
LD00R81 Eco-tech	EB with sulphides HEAD AK-2000-255 felsic ryholite	ICP 5	0.8 0.99	<5 na 45	na <5	0.14 2	54 82 499	>10 na na	na <10 0	.38 188 9	0.05 8	100 28	na <5	na <20 14 0.	06 na <10	18 <10 <	<1 152 11 0318428 5684317 Len 81 float, felsic sericite schist with black laminar lines, Eagle Bay felsic rhyolite
LD00R83	porphory HEAD AK-2000-255 eagle bay with sulfides HEAD AK-2000-255	ICP 15	<0.2 0.45 2.0 0.06	<5 na 60 <5 na 70	na <5 na 3625	0.08 <1 0.02 2	2 105 15 58 84 1205	1.22 na na >10 na na		.17 117 1 .01 109 20	0.04 3 <0.01 8	130 6 <10 34	na <5 na <5	na <20 4 0. na <20 <1 <0.	04 na <10 01 na 50	8 <10 1 <10 <	4 15 11 0318430 5684264 Len 11 porphory <1 12 11 0318191 5683941 Len 14
LD00R84 Eco-tech LD00R84 LD00R85, 116 LD00R86 I	LUCKY BEAR	NOT ASSAYED	<0.2 1.78	<5 na 550	na 45	1.45 <1	22 146 49 	4.28 na na			0.11 43	2100 10 	na 5	na <20 106 0.	20 na <10		10 62 11 0318192 5683942 84,84 float, felsic sericite schist with black laminar lines, Eagle Bay
LD00R117 293728 Chemex LD00R117	HEAD A0030274 HEAD A0030274 HEAD A0030274	ICP <5	<0.2 0.83	18 40 50 22 40 70	0.5 <2	0.56 <0.5 4.08 <0.5	9 49 17 9 18 15			2.42 315 <1 2.16 515 3	1 0.03 25 3 0.03 14		0.02 <2	1 na 26 <0. 3 na 88 <0.		14 <10 r 6 <10 r	114 11 317879 5684812 6 rusty altered fine grained schist with minor PY, Eagle Bay 6 6 na 60 11 317879 5684812 6 rusty altered fine grained schist with minor PY, Eagle Bay 6 6 rusty altered fine grained schist with minor PY, Eagle Bay 6
LD00R111 to 123 LD00R126 Eco-tech LD00R127 10335 LD00R128 103336	LUCKY BEAR AK-2000-255	ICP 220	<0.2 0.52 0.4 0.69 <.2 1.20	<5 na 60 35 na 75 10 na 155	na 10 na 25	0.64 <1 1.10 <1 0.98 <1	4 100 9 15 97 87 9 76 21	1.06 na na 4.12 na na 2.86 na na	na 20 0	0.24 384 22 0.39 403 6 0.66 508 3	2 0.03 5 5 0.03 21 3 0.04 10	350 12 380 168 600 46	na <5 na <5 na <5	na <20 99 0.	02 na <10 02 na <10 09 na <10	10 <10 30 <10 45 <10	3 26 11 319116 5689847 7 1 32 little creek quartz, Len, Dave, Camille 1 12 73 little creek next to quartz is silicified granite
LD00R128 103336 Eco-tech LD00R138 Eco-tech	ROCK LUCKY BEAR AK-2000-400 ROCK LUCKY BEAR AK-2000-255		<.2 1.20 <0.2 0.31	<5 na 40	na <5	0.98 <1 0.71 3	3 147 6	2.86 na na 0.81 na na		0.66 508 3 0.09 790 3	3 0.04 10 3 <0.01 7	600 46 650 6	na <5	na <20 82 0. na <20 12 <0.		3 <10	8 512 11 319954 5690590 Len 001 pegmetite

CLAIM	
CLAIM NAME	EXAMPLE
TITLE NUMBER	345679
OLD TITLE NUMBER	*3458*
TAG NUMBER	100000
LEGAL POST	0
WITNESS POST	wp 🔾
FORFEITED TENURE	C
VERIFIED	VER
SURVEYED	SUR
REVERTED C.G. MINERAL CLAIM	REV CG OR RCG
CROWN GRANTED	CG

Ō

C

C

RAE Gold KEG FIEld TREP

0

Gold PANNING CAMILLE B. DAVEP. LEN'S CHILDREN MAtthew LAURIE

2

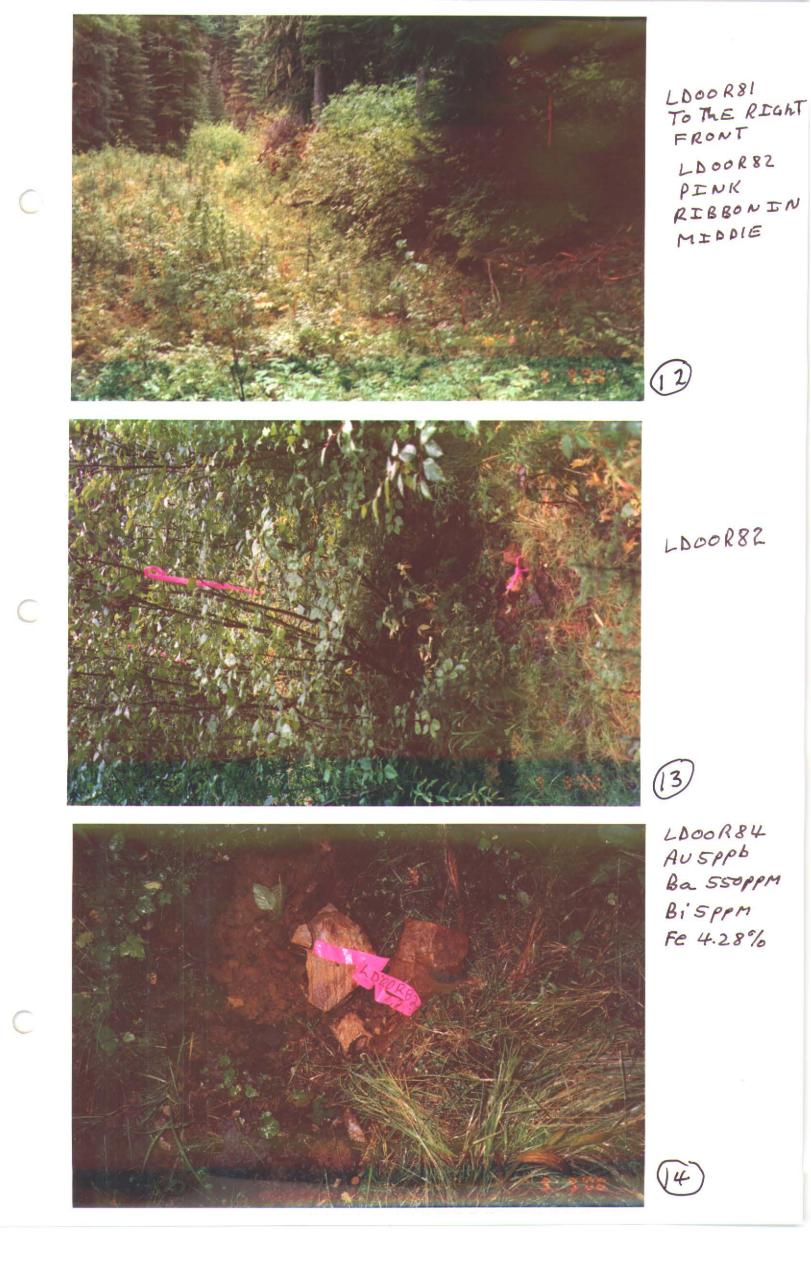
KEG SIWASH FIEld TRIP

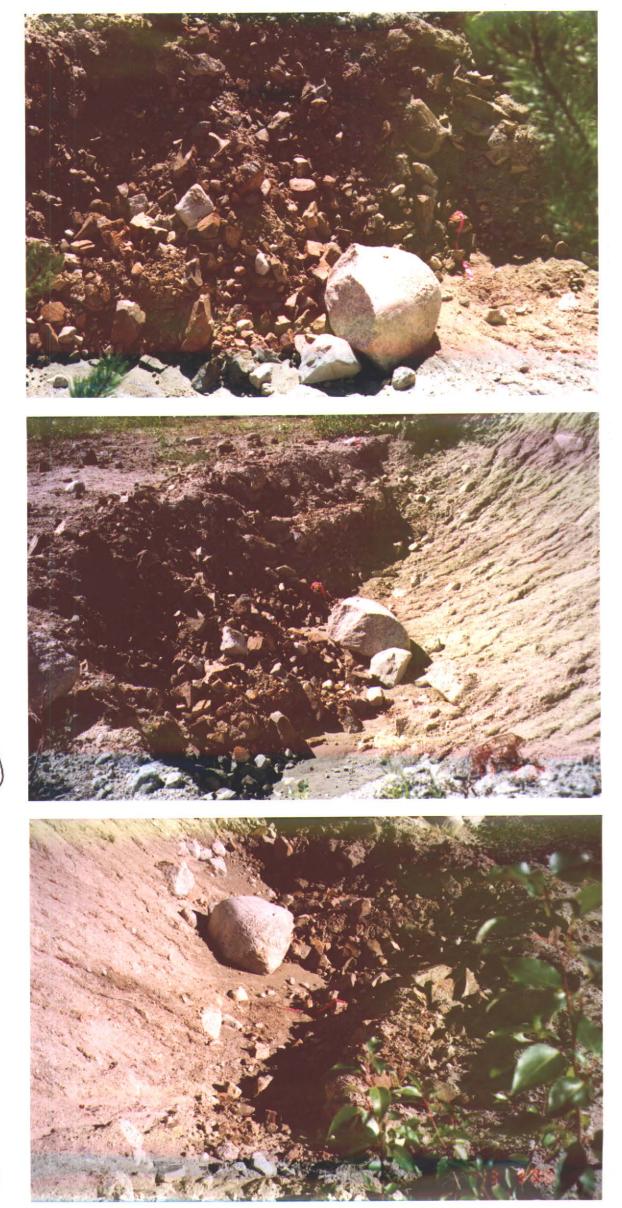
HEADI CLAIMS CUTBLOCK UPPERLEFT CORNEROF Photo ZONE B-3

6

ZONE B-3 LDOORBI AU SPPb Ag . SPP M Co SYPPM Си 499 ррм Мо 9 ррм

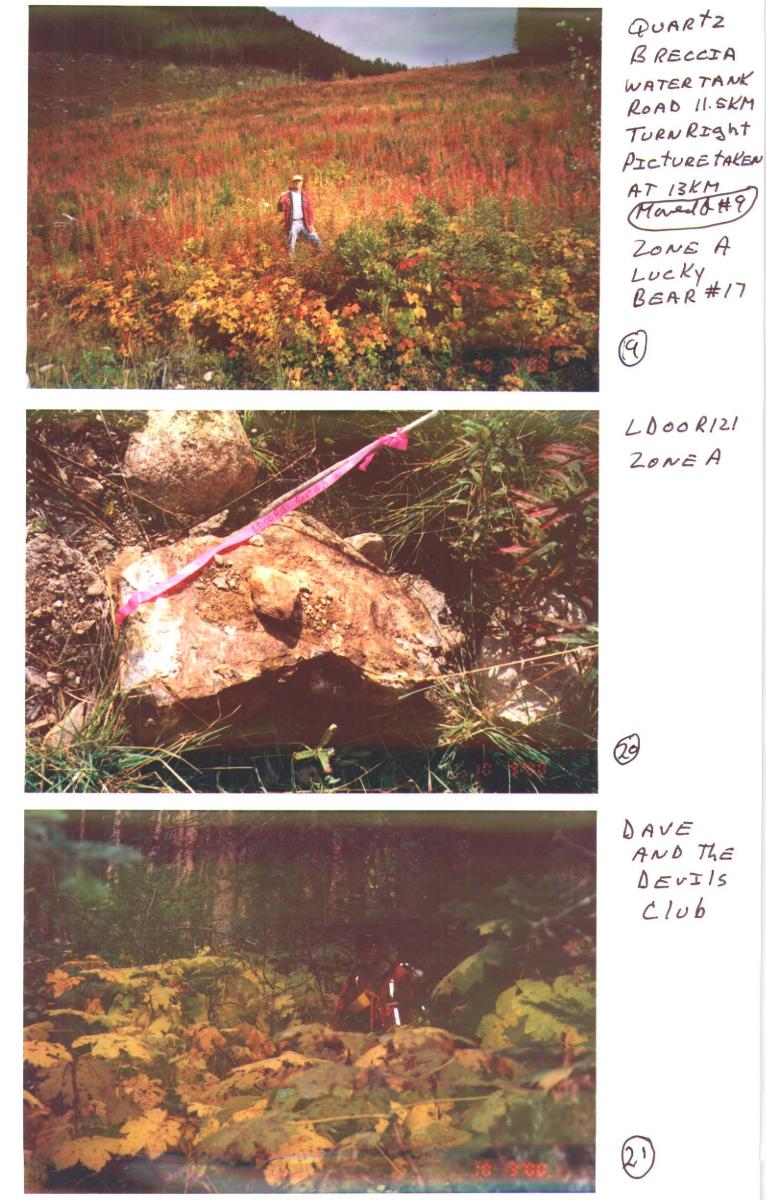
10


LDOOR82



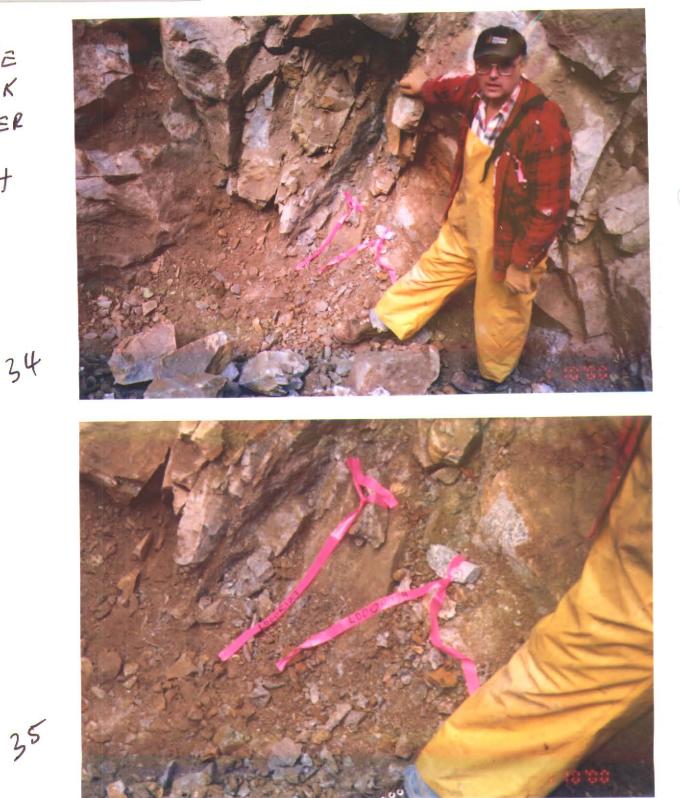
CAMPING ATEAST BARRIER LAKE FORESTRY CAMP SITE

15



LDOOR126

O



0

C

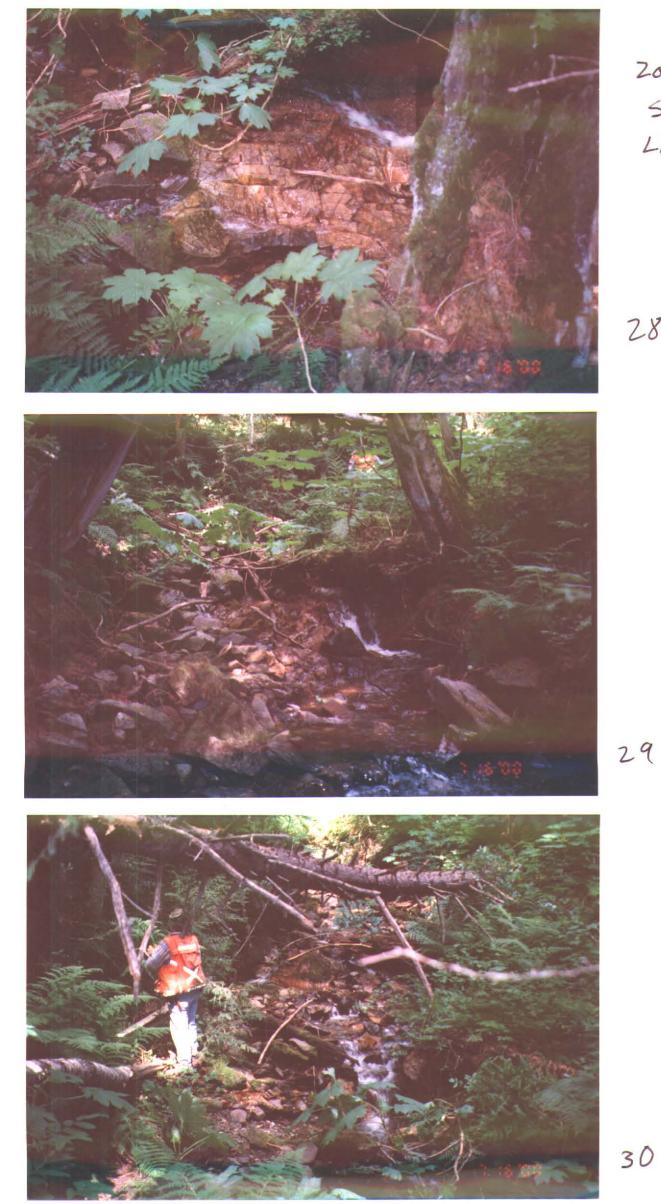
DAVE AND THE DEVIS Club

LITTE CREEK AFTER The Blast

35

20DEA-1 LUCKY BEAR #18

ZONE B-1 SPAP 2+4 CLAIMS


25

26

ZONE B-1 SPAP 2

27

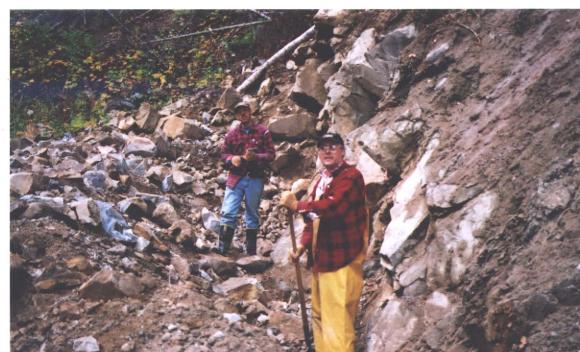
C

C

C

ZONEB-1 SPAPZ LD00 M39

28



31

LITTLE CREEK BEFORE BLAST

52

LITTLE CREEK After BLAST

6-Dec-00												(1														C	
ECO-TECH LABORATOR 10041 East Trans Canada KAMLOOPS, B.C. V2C 6T4									ICP CE	RTIFIC	CATE O	F ANA	LYSIS	AK 20	00-40	0					1 }	986 S	apphii D ops ,	ISPECT RE COU BC				
Phone: 604-573-5700 Fax : 604-573-4557 Values in ppm unless oth	erwise (eported	1																		 	Vo. of Sample Projec Shipm	sample: e type: ! t #: Lu ent #: l	LENID s receive Rock cky Bea lone Gi nitled by	ed: 2 er iven			
Et #. Tag #	Åл	AI %	As	Ba	Ri	Ca %	Cd	Co	Cr	Cu	Fe %	1 a	Mg %	Mn	Mo	Na %	Ni	Р	Pb	Sb	Sn	Şr	TI %	U	v	W	Y	Zn
1 103335 LD00R127		0.69	35	75	25		<1	15	97		4.12	20		403		0.03	21	380	168	<5	<20	99	0.02	<10	30	<10	1	32
2 103336 LD00R128		1.20	10	155	<5		<1	9	76	21	2.86	30		508	3	0.04	10	600	46	<5	<20	82	0.09	<10	45	<10	12	73
QC DATA:																												
Resplit:																												
1 103335 LD00R127	0.4	0.71	35	80	40	1.15	<1	18	107	87	4.90	30	0.40	41B	5	0.03	27	430	186	<5	<20	97	0.02	<10	30	<10	<1	10
Repeat:																												
1 103335 LD00R127	0.2	0.69	35	75	30	1.12	<1	16	100	89	4.47	30	0.39	411	5	0.03	23	410	174	<5	<20	94	0.02	<10	29	<10	<1	33
Stendard: GEO'00	1.2	1.76	50	170	<5	1.53	<1	19	56	90	3.75	10	0.92	668	<1	0.02	26	740	24	5	<20	63	0.11	<10	65	<10	13	73
																					/	\frown	иH	(\mathcal{L}	2012	0.	
. 11/400 KLS/00																					- \/F	rank/	I. Pezzy	A BORA otti, A.S Assayøi	E.T.	S LTD.		

[] 003

1.2/06/00 12

Page 1

ASSAYING GEOCHEMISTRY ANALYTICAL CHEMISTRY ENVIRONMENTAL TESTING

10041 Dallas Drive, Kamloops, B.C. V2C 614 Phone (250) 573-5700 Fax (250) 573-4557 email: ecotech@direct.ca

CERTIFICATE OF ANALYSIS AK 2000-400

LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1 6-Dec-00

ATTENTION: LEN/DAVE PIGGIN

No. of samples received: 2 Sample type: Rock **Project #: Lucky Bear Shipment #: None Given** Samples submitted by: D. Piggin

\	ET #.	Tag #	ŧ	Au (ppb)	Pd (ppb)	Pt (ppb)	Rh (ppb)
:	1	103335	LD00R127	220	<5	<5	<5
	2	103336	LD00R128	35	<5	<5	<5
	QC D/ Repea						
	1	103335	LD00R127	230	<5	<5	<5
	Stand	ard:					
	GEO'0	0		135	<5	<5	<5

ECO-VECH LABORATORIES LTD. Frank/J. Pezzotti, A/Sc.T. B.C./Certified Assayer

XLS/00

18-Jul-00

ECO-TECH LABORATORIES LTD. 10041 East Trans Canada Highway KAMLOOPS, B.C. V2C 6T4

Phone: 604-573-5700 Fax : 604-573-4557

ICP CERTIFICATE OF ANALYSIS AK 2000-141

€

LENDAV PROSPECTING 1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

(

. ,

ATTENTION: LEN/DAVE PIGGIN

No. of samples received: 5 Sample type: Rock **Project #: SPAP Shipment #: None Given** Samples submitted by: D. Piggin

Values in ppm unless otherwise reported

Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi Ca	% Cd	Co	Cr	Cu Fe %	La Mg%	Mn	Mo Na%	Ni P	Pb	Sb	Sn	Sr Ti%	ប	V	W	Y	Zn
1	103323	<5	<0.2		<5	40		.57 <1	7	80	2 0.89	10 0.23	122	1 0.03	4 100	4	<5	<20	18 < 0.01	<10	1	<10	3	4
2	103324	<5	<0.2	0.21	<5	35	<5 0.	.98 <1	8	65	2 1.24	10 0.43	242	2 0.03	1 100	4	10	<20	17 <0.01	<10	1	<10	5	6
3	103325	<5	<0.2	2.66	<5	615	20 3.	.20 <1	33	73	36 5.18	50 2.89	588	<1 0.21	77 3560	26	20	<20	341 0.31	<10	134	<10	21	56
4	103326	<5	<0.2	0.14	<5	35	<5 0.	.03 <1	2	133	4 0.96	<10 0.03	41	4 <0.01	3 110	12	<5	<20	2 <0.01	<10	2	<10	<1	7
5	103327	<5	<0.2	0.63	<5	30	15 3.	.25 <1	24	53	32 4.84	30 1.58	879	5 0.02	41 3110	16	5	<20	119 <0.01	<10	42	<10	23	75

QC DATA:

Resplit: 1 103323	<5						
<i>Repeat:</i> 1 103323 3 103325	<5 - <0.2 2.68	<5 580 25 3.22	<1 33 69 36	6 5.18 50 2.90 588	<1 0.21 77 3560 26	25 <20 342 0.30 <10	1 <u>3</u> 4 <10 21 57
<i>Standard:</i> GEO'00	115	 - /•					

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T. B.C. Cortified Assayer

df/143 XLS/00

FAX: @ 851-9419

Page 1

.

۰.

	L Aug-00		•.						((·		l	·•
10041 E	CH LABORATO ast Trans Canad OPS, B.C. 1								10	CP CEF	RTIFICATE O	F ANALYSIS	ak 200	00-196				v	1: K	ENDAV PR 986 SAPPI AMLOOPS 2E 2P1	IRE CO				
	604-573-5700 604-573-4557			ŗ																TTENTION			IGGIN		
				æ															S F	lo. of samp Cample type P roject #: S C hipment #	: Till PAP				
Values i	in ppm unless o	therwise r	eporte	d																amples sul			id Piggin		
Et #.	Tag #	Au(ppb)	Ag	AI %	As	Ba	Bi Ca %	Cd	Co	Cr	Cu Fe%	La Mg %	Mn	Mo Na%	Ni	Р	Pb	Sb	Sn	Sr Ti?	6 U	v	w	Y	Zn
1 L	D00T46-103330	10	<0.2	0.93	<5	90	<5 0.21	<1	8	12	66 1.66	<10 0.47	145	<1 <0.01	7	360	6	5	<20	18 0.0	7 <10	27	<10	6	<1

83 1.44 <10 0.39

126

<1 <0.01

6 350

4

<20

<5

15 0.06

<10

25

<10

1.

.

4 <1

QC DATA:

Repeat:

1 LD00T46-103330 5

2 LD00T47-103331

5

120

.

<0.2 0.84

<5

75

<5 0.20

<1

.

7

10

2 LD00T47-103331 5

Standard:

GEO'00

df/200 XLS/00 FAX: @ 851-9419

ECO TECH LABORATORIES LTD.

Frank J. Pezzotti, A.Sc.T. B.C. Certified Assayer

.

(ug-00											ŧ												(I	(
	H LABORATO st Trans Canad PS, B.C.											IC	CP CE	RTIFIC	ATE C	OF ANA	LYSIS	AK 2	000-1	97						1986 S	AV PRO APPHII OOPS, P1	RE COL				
Fax : 604	4-573-5700 4-573-4557 ppm unless o	otherwis	se rej	oortee	đ																		z.			No. of Sample Projec Shipm	ITION: samples type: { t #: Lu ent #: f es subr	s receive Rock c ky Be a lot Giv e	ed: 1 ar an	I GGIN id Piggin	,	
Et #.	Tag #	Au(pp	b)	Ag	AI %	As	Ba	Ē	Bi Ca %	6 C	d C	0	Cr	Cu	Fe %	La	Mg %	Mn	M	o Na%	Ni	Р	Pb	Sb	Sn	Sr	Ti %	U	v	w	Y	Zn
1 LD	00R49/103329				0.57	<5	35		5 0.04	4 <	1	13	175	41	2.04	<10	0.21	197	<	1 <0.01	10	110	2	<5	<20	4	0.05	<10	9	<10	<1	<1
QC DATA	:																															
Resplit: 1 LDI	00R49/103329		5 <	<0.2	0.58	<5	35	<	:5 0.04	4 <	1	13	180	45	2.11	<10	0.21	195	<	1 <0.01	10	110	4	<5	<20	2	0.05	<10	9	<10	<1	<1
Repeat:	00T46-103330		5																													

Standard:

GEO'00

115

df/200 XLS/00 FAX: @ 851-9419

.

.

ECO-TECH LABORATORIES LTD. Frank J. Pezzotti, A.Sc.T.

B.C. Certified Assayer

Page 1

· ·

Chemex AL S. Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave. North Vancouver

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C	ERTIFI	CATE	A0021896
SDO) - I	ENDAV PI	ROSPECTING	
Project: P.O, # :	LUCKY	BEAR	
		ed to our lab j printed on 05-	n Vancouver, BC. JUL-2000.
		PLE PREPAI	RATION
CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION
201	1	Dry, sieve to	-80 mesh
229	1	save reject ICP - AQ Dige	stion charge

The 32 element ICP package is suitable f trace metals in soil and rock sample Blements for which the nitric-aqua reg digestion is possibly incomplete are: A Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, T Tl, W. Co: LENDAV PROSPECTING

Ę

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Comments: ATTN: LEN PIGGIN

СН		B		DETECTION	UPPEF
	DDE SAMPLI		METHOD	LIMIT	LIMIT
BC.	983 1	Au ppb: Fuse 30 g sample	FA-AAS	5	10000
	2118 1 2119 1	Ag ppm: 32 element, soil & rock	ICP-AES	0.2 0.01	100.0 15.00
	2119 1 2120 1	A1 %: 32 element, soil & rock As ppm: 32 element, soil & rock	icp-aes icp-aes	2	10000
	557 1	B ppm: 32 element, rock & soil	ICP-AES	10	10000
	2121 1	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
	2122 1	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
	2123 1	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
	2124 1	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
	2125 1	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
	2126 1	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
	2127 1	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
	2128 1	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
	2150 1	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
	2130 1 2131 1	Ga ppm: 32 element, soil & rock	icp-aes icp-aes	10 1	10000 10000
	2131 1 2132 1	Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock	ICP-AES	0.01	10.00
	2151 1	La ppm: 32 element, soil & rock	ICP-AES	10	10000
	2134 1	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
	2135 1	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
	2136 1	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
	2137 1	Na %: 32 element, soil & rock	ICP-AES	0.01	10.00
	2138 1	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
	2139 1	P ppm: 32 element, soil & rock	ICP-AES	10	10000
	2140 1	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
	551 1	S %: 32 element, rock & soil	ICP-AES	0.01	5.00
	2141 1	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
	2142 1	Sc ppm: 32 elements, soil & rock	ICP-AES	1 1	10000 10000
	2143 1 2144 1	Sr ppm: 32 element, soil & rock	ICP -AES ICP -AES	0.01	10.00
	2145 1	Ti %: 32 element, soil & rock Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
	2146 1	U ppm: 32 element, soil & rock	ICP-AES	10	10000
	2147 1	V ppm: 32 element, soil & rock	ICP-AES	1	10000
	2148 1	W ppm: 32 element, soil & rock	ICP-AES	10	10000
	2149 1	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000
		••			
İ	İ				

A0021896

ALS Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

io: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN

Page Der :1-A Total Pages :1 Certificate Date: 05-JUL-2000 Invoice No. :10021896 P.O. Number : Account SDO

										CI	ERTIFI	CATE	OF A	NAL	YSIS		40021	896		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	Al %	As ppm	B ppm	Ba ppm		Bi ppm	Ca %		Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
LD00505 293655	201 202		< 0.2			< 10		< 0.5	_		< 0.5	4	10		1.59		< 1		20	0.22
														CERTIF	CATION	: (0	ce li.	7

ŧ

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1 **

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN Page Der :1-B Total Pages :1 Certificate Date: 05-JUL-2000 Invoice No. :10021896 P.O. Number : Account :SDO

										CE	RTIFI	CATE	OF A	NALY	(SIS	4	0021896	5
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P mqq	Pb ppm	5 %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W	Zn ppm	
D00805 293655	201 202	1450	1 <	0.01	16	400	2	0.02	< 2	1	25	0.04	< 10	< 10	17	< 10	34	
																	1	
					-			- <u></u>										7

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia Canada V7 12C1

British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

ío:	LENDAV PROSPECTING

ŧ.

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Comments: ATTN: LEN PIGGIN

A0021897			ANALYTICAL P	ROCEDURES	•	
	CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	UPPEP LIMIT
	983	11	Au ppb: Fuse 30 g sample	га-лля	5	10000
ncouver, BC.	2118	11	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
2000.	2119	11	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
	2120	11	As ppm: 32 element, soil & rock	ICP-AES	2	10000
	557	11	B ppm: 32 element, rock & soil	ICP-AES	10	10000
	2121	11	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
	2122	11	Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0
·····	2123	11	Bi ppm: 32 element, soil & rock	ICP-AES	2	10000
	2124	11	Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
ION	2125	11	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
	2126	11	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
	2127	11	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
	2128	11	Cu ppm: 32 element, soil & rock	ICP-AES	1	10000
RIPTION	2150	11	Fe %; 32 element, soil & rock	ICP-AES	0.01	15.00
	2130	11	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
	2131	11	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
mesh	2132	11	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
	2151	11	La ppm: 32 element, soil & rock	ICP-AES	10	10000
charge	2134	11	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
	2135	11	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
	2136	11	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
	2137	11	Na %: 32 element, soil & rock	ICP-AES	0.01	10.00
	2138	11	Ni ppm: 32 element, soil & rock	ICP-AES	1	10000
	2139	11	P ppm: 32 element, soil & rock	ICP-AES	10	10000
	2140	11	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
	551	11	S %: 32 element, rock & soil	ICP-AES	0.01	5.00
	2141	11	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
	2142	11	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
	2143	11	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
	2144	11	Ti %: 32 element, soil & rock	ICP-AES	0.01	10.00
	2145	11	Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
able for	2146	11	U ppm: 32 element, soil & rock	ICP-AES	10	10000
samples.	2147	11	V ppm: 32 element, soil & rock	ICP-AES	1	10000
ua regia	2148	11	W ppm: 32 element, soil & rock	ICP-AES	10	10000
re: Āl,	2149	11	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000
Sr, Ti,						
- •						
		1				
	4					
	i					
	1	1				

CERTIFICATE

(SDO) - LENDAV PROSPECTING

Project: LUCKY BEAR P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 06-JUL-2000.

	SAM	PLE PREPARATION
CHEMEX CODE	NUMBER	DESCRIPTION
201 202 229	11 11 11	Dry, sieve to -80 mesh save reject ICP - AQ Digestion charge
* NOTE	1.	

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W. A0021897

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 fo: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1 Page per :1-A Total Pages :1 Certificate Date: 06-JUL-2000 Invoice No. :10021897 P.O. Number : Account :SDO

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN

											CE	RTIFI	CATE	OF A	NAL	rsis	#	0021	897		<u>.</u>
SAMPLE	PRI		Au ppb FA+AA	λ g ppm	A1 %	As ppm	B	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga. ppm	Eg ppm	R %	La ppm	Mg %
LD00M01 293651 LD00M04 293654 LD00M06 293656 LD00M07 293657 LD00M08 293658	201 201 201 201 201	202 202 202		0.2 0.2 0.2 < 0.2 < 0.2 < 0.2	1.14 1.57 2.21 0.98 1.11	8 12 6 2 6	< 10 < 10 < 10 < 10 < 10 < 10	70 90 140 50 80	< 0.5 0.5 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.75 1.08 0.55	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	8 10 9 4 6	15 18 25 14 14	19 29 35 11 16	2.16 2.84 3.17 1.63 1.84	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.29 0.40 0.52 0.23 0.28	30 50 70 40 30	0.35 0.47 0.57 0.29 0.35
LD00M09 293659 LD00M10 293660 LD00M11 293661 LD00M12 293662 LD00M13 293663	201 201 201	202 202 202 202 202 202	< 5	< 0.2 0.2 < 0.2 0.6 0.4	0.85 1.23 0.98 2.39 1.20	4 16 10 28 16	< 10 < 10 < 10 < 10 < 10 < 10	50 80 100 170 90	< 0.5 < 0.5 < 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2		< 0.5 < 0.5 < 0.5 0.5 < 0.5	4 6 5 10 6	12 14 20 38 16	10 18 16 80 35	1.57 1.78 2.46 3.11 1.68	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.20 0.18 0.38 0.53 0.22	30 90 20 130 160	0.26 0.27 0.37 0.67 0.31
LD00M14 293664	201	202	< 5	< 0.2	0.86	2	< 10	60	< 0.5	< 2	0.35	< 0.5	4	12	6	1.52	< 10	< 1	0.13	70	0.21

CERTIFICATION:_

340

ALS Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: LENDAV PROSPECTING

Ł

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN

Page Jer : 1-B Total Pages : 1 Certificate Date: 06-JUL-2000 Invoice No. :10021897 P.O. Number ÷ Account SDO

							- .			CE	RTIFI	CATE	OF A	NALY	rsis	A	0021897	
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	g %	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
LD00M01 293651 LD00M04 293654 LD00M06 293656 LD00M06 293657 LD00M07 293657 LD00M08 293658	201 202 201 202 201 202 201 202 201 202 201 202	1040 1320 1360 420 960	1 2 3 1 1	0.01 0.01 0.01 0.01 0.01	47 82 31 9 16	610 690 660 590 540	10 14 16 6 8	0.06 0.07 0.09 0.04 0.04	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 3 4 2 2	44 60 131 58 52	0.05 0.06 0.09 0.05 0.06	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 10 < 10 < 10 < 10	20 25 34 22 21	< 10 < 10 < 10 < 10 < 10 < 10	66 100 96 42 152	
LD00M09 293659 LD00M10 293660 LD00M11 293661 LD00M12 293662 LD00M13 293663	201 202 201 202 201 202 201 202 201 202 201 202	520 560 1110 1080 815	1 1 2 3 1	0.01 0.01 0.02 0.02 0.01	10 23 15 53 25	550 370 930 720 510	6 14 4 14 10	0.03 0.04 0.17 0.07 0.03	2 < 2 < 2 < 2 < 2 < 2 < 2	1 3 1 4 4	39 42 129 114 49	0.05 0.05 0.04 0.07 0.05	< 10 < 10 < 10 < 10 < 10 < 10	< 10 10 < 10 10 20	21 19 17 34 24	< 10 < 10 < 10 < 10 < 10 < 10	66 64 58 144 50	
LD00M14 293664	201 202	715	2	0.01	5	950	6	0.01	< 2	1	22	0.05	< 10	< 10	24	< 10	42	
																	()	J
					_				-					CERTIFIC			- water of	P

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

C	ERTIFI	CATE	A0022499
Project: P.O. # : Samples	LUCKY	ed to our lab	in Vancouver, BC.
This re		printed on 1	
		PLE PREP	ARATION
CHEMEX	NUMBER SAMPLES		DESCRIPTION
201 202 229	1 1 1	Dry, sieve save reject ICP - AQ Dig	to -80 mesh gestion charge
* NOTE	1:		······································

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, T1, W. To: LENDAV PROSPECTING

ŧ

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Comments: ATTN: LEN PIGGIN

		ANALYTICAL P	ROCEDURES	, 	
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION	METHOD		uppei Limit
983	1	Au ppb: Fuse 30 g sample	FA-AAS	5	10000
2118	1	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
2119	1	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	1	As ppm: 32 element, soil & rock	ICP-AES	2	10000
557	1	B ppm: 32 element, rock & soil	ICP-AES	10	10000
2121	1	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122 2123	1	Be ppm: 32 element, soil & rock	ICP -AES ICP -AES	0.5	100.0
2123	1	Bi ppm: 32 element, soil & rock Ca %: 32 element, soil & rock	ICP-AES	0.01	15.00
2125	1	Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
2126	1	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2127	ī	Cr ppm: 32 element, soil & rock	ICP-AES	1	10000
2128	1	Cu ppm: 32 element, soil & rock	ICP-AES	ī	10000
2150	1	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
2130	1 1	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
2131	1	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
2132	1	X %: 32 element, soil & rock	ICP-AES	0.01	10.00
2151	1	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	1	Mg %: 32 element, soil & rock	ICP-AES	0.01	15.00
2135	1	Mn ppm: 32 element, soil & rock	ICP-AES	5 1	10000
2136 2137	1	Mo ppm: 32 element, soil & rock Na %: 32 element, soil & rock	ICP -AES ICP -AES	0.01	10.00
2138	1	Na x: 52 element, soil & rock	ICP-AES	1	10000
2139	1	P ppm: 32 element, soil & rock	ICP-AES	10	10000
2140	1	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
551	ī	S %: 32 element, rock & soil	ICP-AES	0.01	5.00
2141	1	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	1	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
2143	1	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
2144	1	Ti %: 32 element, soil & rock	ICP-AES	0.01	10.00
2145	1	T1 ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	1	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147 2148	1	V ppm: 32 element, soil & rock	ICP -aes ICP -aes	1 10	10000
2148	1	W ppm: 32 element, soil & rock Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

A0022499

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN Page No. Jer: 1-A Total Pages: 1 Certificate Date: 19-JUL-2000 Invoice No. : 10022499 P.O. Number: Account: SDO

セ

										CE	RTIF	CATE	OF A	NAL	ysis	ļ	0022	499		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
DOOM23 293673	201 202	 		1.83	6B		440	0.5	_	1.53	< 0.5	40	17	40	4.89	10	< 1	0.54	120	0.44
															ICATION			0		7

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN Page A er :1-B Total Pages :1 Certificate Date: 19-JUL-2000 Invoice No. :10022499 P.O. Number : Account :SDO

										CE	RTIF	CATE	OF A	NAL	/SIS	ļ	00224	499	
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P mqq	Pb ppm	S %	Sb ppm	SC ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W mqq	Zn ppm		
D00M23 293673	201 202	>10000	4	0.01	44	2050	14	0.15	2	3	173	0.05	< 10	30	38	< 10	124		
		:																	
																	Ż	/	
												<u> </u>				,	<u> </u>		5/

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: LENDAV PROSPECTING

ł

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : SPAP Comments: ATTN: LEN PIGGIN Page No...oer :1-A Total Pages :1 Certificate Date: 13-JUL-2000 Invoice No. :10022508 P.O. Number : Account :SDO

									CERTIFICATE OF ANALYSIS				YSIS	A0022508						
SAMPLE	PREP CODE	Ац ррр FA+AA	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Eg ppm	K %	La ppm	Mg %
LD00M25 293675 LD00M26 293676 LD00M27 293677 LD00M28 293678	201 202 201 202 201 202 201 202	< 5 < 5	1.8 < 0.2 < 0.2 < 0.2	0.80 1.18 1.28 1.57	10 < 2 < 2 2	20 < 10 < 10 < 10	1680 110 130 180	0.5 0.5 1.5 1.5	8 < 2 < 2 < 2	0.60	< 0.5 < 0.5 < 0.5 0.5	17 7 6 5	4 12 8 8	9 12 13 13	11.05 1.76 1.57 1.36	40 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.10 0.13 0.09 0.14	40 20 40 60	0.14 0.36 0.20 0.19
														CERTIF		- The	2	C		ŢŲ.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: LENDAV PROSPECTING

ſ

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : SPAP Comments: ATTN: LEN PIGGIN Page Number :1-B Total Pages :1 Certificate Date: 13-JUL-2000 Invoice No. : I0022508 P.O. Number : Account :SDO

							. <u>a. w</u>			CE	RTIF		OF A	NALY	SIS	<u> </u>	00225	508	
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	р ррш	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V PPm	W mqq	Zn ppm		
D00M25 293675 D00M26 293676 D00M26 293677 D00M28 293677 D00M28 293678	201 202 201 202 201 202 201 202 201 202	775 790	1 -	< 0.01 < 0.01 < 0.01 < 0.01 < 0.01	17 11 7 7	1270 610 710 890	22 6 6 12	0.12 0.05 0.08 0.10	4 < 2 < 2 < 2 < 2	1 1 1 1	307 71 95 119	0.01 0.04 0.03 0.02	< 10 < 10 < 10 < 10	10 < 10 < 10 < 10	15 26 25 20	< 10 < 10 < 10 < 10	98 52 58 60		
																	<u> </u>		
			<u>-</u>										.				<u>1</u>		

CERTIFICATION:_

A0022509

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 . is: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Comments: ATTN: LEN PIGGIN

CHEMEX	NUMBER	· · · · · · · · · · · · · · · · · · ·		DETECTION	UPPEI
CODE	SAMPLES	DESCRIPTION	METHOD	LIMIT	LIMI
983	7	Au ppb: Fuse 30 g sample	FA-AAS	5	10000
2118	7	Ag ppm: 32 element, soil & rock	ICP-AES	0.2	100.0
2119	7	Al %: 32 element, soil & rock	ICP-AES	0.01	15.00
2120	7	As ppm: 32 element, soil & rock	ICP-AES	2	10000
557	<u> 7</u>	B ppm: 32 element, rock & soil	ICP-AES	10	10000
2121	2	Ba ppm: 32 element, soil & rock	ICP-AES	10	10000
2122 2123		Be ppm: 32 element, soil & rock	ICP-AES	0.5	100.0 10000
2123	7	Bi ppm: 32 element, soil & rock	ICP -AES IC P-AES	0.01	15.00
2125	1 7	Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock	ICP-AES	0.5	500
2126	7	Co ppm: 32 element, soil & rock	ICP-AES	1	10000
2127	7	Cr ppm: 32 element, soil & rock	ICP-AES	ī	10000
2128	7	Cu ppm: 32 element, soil & rock	ICP-AES	ĩ	10000
2150	7	Fe %: 32 element, soil & rock	ICP-AES	0.01	15.00
2130	7	Ga ppm: 32 element, soil & rock	ICP-AES	10	10000
2131	7	Hg ppm: 32 element, soil & rock	ICP-AES	1	10000
2132	7	K %: 32 element, soil & rock	ICP-AES	0.01	10.00
2151	7	La ppm: 32 element, soil & rock	ICP-AES	10	10000
2134	2	Mg %: 32 element, soil & rock	ICP-ABS	0.01	15.00
2135	2	Mn ppm: 32 element, soil & rock	ICP-AES	5	10000
2136	2	Mo ppm: 32 element, soil & rock	ICP-AES	1	10000
2137 2138	777	Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock	ICP -AES ICP -AES	0.01	10.00 10000
2139	1 7	P ppm: 32 element, soil & rock	ICP-AES	10	10000
2140	1 7	Pb ppm: 32 element, soil & rock	ICP-AES	2	10000
551	7	S %: 32 element, rock & soil	ICP-AES	0.01	5.00
2141	1 7	Sb ppm: 32 element, soil & rock	ICP-AES	2	10000
2142	7	Sc ppm: 32 elements, soil & rock	ICP-AES	1	10000
2143	7	Sr ppm: 32 element, soil & rock	ICP-AES	1	10000
2144	7	Ti %: 32 element, soil & rock	ICP-AES	0.01	10.00
2145	7	Tl ppm: 32 element, soil & rock	ICP-AES	10	10000
2146	7	U ppm: 32 element, soil & rock	ICP-AES	10	10000
2147	7	V ppm: 32 element, soil & rock	ICP-AES	1	10000
2148	7	W ppm: 32 element, soil & rock	ICP-AES	10	10000
2149	7	Zn ppm: 32 element, soil & rock	ICP-AES	2	10000

CERTIFICATE

(SDO) - LENDAV PROSPECTING

Project: HEAD P.O. # :

Samples submitted to our lab in Vancouver, BC. This report was printed on 19-JUL-2000.

	SAMPLE PREPARATION								
CHEMEX CODE	NUMBER SAMPLES	DESCRIPTION							
201 202 229	7 7 7	Dry, sieve to -80 mesh save reject ICP - AQ Digestion charge							
* NOTE	1.	<u> </u>							

The 32 element ICP package is suitable for trace metals in soil and rock samples. Elements for which the nitric-aqua regia digestion is possibly incomplete are: Al, Ba, Be, Ca, Cr, Ga, K, La, Mg, Na, Sr, Ti, Tl, W. A0022509

Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave... North Vancouver

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : HEAD Comments: ATTN: LEN PIGGIN Page A er :1-A Total Pages :1 Certificate Date: 19-JUL-2000 Invoice No. : 10022509 P.O. Number : Account :SDO

											CE	RTIF	CATE	OF A	NAL	rsis	Ą	0022	509		
SAMPLE	PRE		Au ppb FA+AA	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cd ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
LD00M137 293679 LD00M15 293665 LD00M16 293666 LD00M17 293667 LD00M18 293668	201 201 201 201 201 201	202 202 202	5 < 5	0.4 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.19 1.72 2.03 2.23 1.87	< 2 2 < 2 2 2	< 10 < 10 < 10 < 10 < 10 < 10	120 180 180 240 260	1.0 0.5 0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2 < 2	0.53	0.5 < 0.5 < 0.5 < 0.5 < 0.5 0.5	5 9 9 9	12 10 13 14 12	38 27 31 25 20	0.96 1.53 1.87 1.94 2.07	< 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1	0.23 0.13 0.15 0.15 0.13	110 10 20 20	0.24 0.37 0.44 0.42 0.43
LD00M20 293670 LD00M22 293672	201 201			< 0.2	2.19 1.30	2 < 2	< 10 < 10	230 160	0.5 < 0.5	< 2 < 2	0.72 0.57	0.5 < 0.5	9 7	16 9	29 15	1.88 1.65	< 10 < 10	< 1 < 1	0.18 0.22	30 10	0.46
																			٨		
															CERTIF		I:		<u>)</u> 2.2.2		<u> </u>

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 .o: LENDAV PROSPECTING

ł

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : HEAD Comments: ATTN: LEN PIGGIN Page N. Jer: 1-B Total Pages: 1 Certificate Date: 19-JUL-2000 Invoice No. : 10022509 P.O. Number: Account: : SDO

SAMPLE PREP CODE Mn Mo Na Ni P ppm pm </th <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>CE</th> <th>RTIFI</th> <th>CATE</th> <th>OF A</th> <th>NALY</th> <th>/SIS</th> <th>A</th> <th>0022509</th> <th></th> <th></th>											CE	RTIFI	CATE	OF A	NALY	/SIS	A	0022509		
LD00M15 293665 201 202 1665 1 0.01 11 670 6 0.07 < 2 1 46 0.04 < 10 25 < 10 78 LD00M16 293666 201 202 1210 1 < 0.01 16 620 8 0.06 < 2 1 43 0.05 < 10 32 < 10 70 LD00M17 293667 201 202 1185 2 < 0.01 20 700 10 0.07 < 2 2 52 0.05 < 10 31 < 10 82 LD00M18 293668 201 202 3570 3 < 0.01 17 740 12 0.09 < 2 1 58 0.05 < 10 < 10 33 < 10 88 LD00M20 293670 201 202 690 1 < 0.01 19 630 6 0.07 < 2 2 51 0.06 < 10 32 < 10 64	SAMPLE																			
	D00M15 293665 D00M16 293666 D00M17 293667	201 202 201 202 201 202	1665 1210 1185	1 1 2	0.01 < 0.01 < 0.01	11 16 20	670 620 700	6 8 10	0.07 0.06 0.07	< 2 < 2 < 2	1 1 2	46 43 52	0.04 0.05 0.05	< 10 < 10 < 10	< 10 < 10 < 10	25 32 31	< 10 < 10 < 10	78 70 82	_	
						19 6														
CERTIFICATION:																		, 		7

CERTIFICATION:_

SAMPLE

.

ALS Chemex

Analytical Chemists ' Geochemists ' Registered Assayers

North Vancouver 212 Brooksbank Ave. British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Page Number : 1-A Total Pages :1 Certificate Date: 18-JUL-00 Invoice No. :10023002 P.O. Number SDO Account

Project : SPAP Comments: ATTN: LEN PIGGIN

A0023002 **CERTIFICATE OF ANALYSIS** PREP В Bi Cđ Co Cu Fe Ħq K Мg Au ppb λg Al As Ba Be Ca Cr Ga La 3 CODE FA+AA 2 <u>nqq</u> ę. ppm ppa bbw å PPm ŝ ppm DD bbø ppm bbw ppm. p**pa** ppm LDOOM29 293660 201 202 < 5 < 0.2 < 100.5 2 0.55 (0.5 11 25 25 2.32 < 10 < 1 0.15 30 0.53 1.37 < 2 150 < 10 0.76 < 0.5 1.99 < 100.42 LDOOM30 293681 201 202 40 € 0.2 170 < 2 9 21 30 < 1 0.16 40 1.58 2 0.5 < 10 LDOOM31 293682 201 202 0.44 < 0.5 20 1.98 < 10 < 10.1220 0.40 1 5 1 0.2 1.06 120 0.5 1. 2 9 20 2 × 10 0.63 0.5 < 10 0.47 EDOOM37 293683 201 202 1 5 1 0.2 0.5 1 2 25 32 1.03 Ł 0.16 40 1.39 120 11 4 < 10 201 202 < 10 < 2 0.44 LIOOM38 293684 1 5 C 0.2 1.50 150 1.0 0.60 4 0.5 9 22 21 2.12 < 1 0.13 30 2

Analytical Chemists ' Genchemists ' Registered Assayers

212 Brocksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1 Page Number : 1-B Total Pages : 1 Certificate Date: 18-JUL-00 Invoice No. : 10023002 P.O. Number : Account : SDO

Project : SPAP Comments: ATTN: LEN PIGGIN

CERTIFICATE OF ANALYSIS A0023002

SAMPLE	PR CO		Mn naga	oK nagq	Ya %	ni ppn	ध्वत्त् र	Pb ppm	S %	SD ppm	Sc ppm	Sr ppm	Ti ę	Tl p pm	U PPm	V PPm	W	Zn ppm	
EDOON29 293680 EDOON30 293681 EDOON31 293682 EDOON37 293683 EDOON38 293684	201 201 201	202 202 202 202 202 202	610 540 490 510 985	2 5 2 2 2	0.02 0.02 0.01 0.01 0.01	27 26 19 27 21	830 610 820 860 940	16 16 8 12 12	0.08 0.05 0.09 0.05 0.07	<pre></pre>	2 2 1 2 1	63 80 51 63 82	0.05 0.06 0.05 0.05 0.04	< 10 < 10 < 10 < 10 < 10 < 10	<pre>< 10 < 10</pre>	35 32 30 27 30	(10 (10 (10 (10 (10	58 56 52 48 84	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 . LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : SPAP Comments: ATTN: LEN PIGGIN Page Ner: 1-A Total Pages: 1 Certificate Date: 27-JUL-2000 Invoice No. : 10023662 P.O. Number: Account: SDO

										CE	RTIF	CATE	OF A	NAL	YSIS	4	0023	662		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K	La ppm	Mg %
LD00M40 293686 LD00M41 293687 LD00M42 293688 LD00M43 293689	201 202 201 202 201 202 201 202	< 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2	1.70 1.75 1.75 1.64	2 2 2 4	< 10 < 10 < 10 < 10	180 180 170 160	0.5 0.5 0.5	< 2 < 2 < 2 < 2 < 2	0.90	< 0.5 < 0.5 < 0.5 < 0.5	7 9 9 7	16 21 18 14	43 32 32 39	1.66 1.91 1.66 1.56	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.12 0.16 0.14 0.11	70 40 50 70	0.33 0.45 0.41 0.30
																	\cap		1	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

io: LENDAV PROSPECTING

ł

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : SPAP Comments: ATTN: LEN PIGGIN

SDO Account

										CE	RTIFI	CATE	OF A	NALY	ISIS	A	0023662	
SAMPLE	PREP	Мл ррд	Мо ррш	Na %	Ni ppm	p mqq	dq mqq	S %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	M Tedd	Zn ppm	
LD00M40 293686 LD00M41 293687 LD00M42 293688 LD00M43 293689	201 202 201 202 201 202 201 202 201 202	450 550 710 395	< 1	< 0.01 0.01 < 0.01 0.01	28 32 32 25	650 650 820 690	14 10 8 12	0.08 0.07 0.10 0.08	< 2 < 2 < 2 < 2 < 2	2 2 1 2	98 109 135 95	0.04 0.05 0.04 0.03	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	20 26 23 18	< 10 < 10 < 10 < 10	50 50 50 50	
																	<u>,</u>	0

CERTIFICATION:_

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 Io: LENDAV PROSPECTING
 Io:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO:
 IO

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : SPAP Comments: ATTN: LEN PIGGIN Page Let : 1-A Total Pages : 1 Certificate Date: 03-AUG-2000 Invoice No. : 10024263 P.O. Number : Account : SDO

											CE	RTIFI	CATE	OF A	NAL	/SIS	4	0024	263		
SAMPLE	PRE		Au ppb FA+AA	Ag ppm	A1 %	As ppn	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	R %	La ppm	Mg %
D00M39 293685 D00M44 293690 D00M45 293691 D00M48 293692	201 201 201 201	222 222	< 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.37 1.55 1.09 1.65	2 2 2 < 2 < 2	< 10 < 10 < 10 < 10	120 170 260 130	1.0 0.5 0.5 0.5	< 2 < 2 < 2 < 2	0.93 1.98	< 0.5 < 0.5 < 0.5 < 0.5	9 8 6 12	16 18 17 32	26 27 305 30	1.62 1.68 1.32 2.46	< 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1	0.11 0.20 0.21 0.27	40 60 40 20	0.36 0.42 0.36 0.82
			•															N		_	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 io: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : SPAP Comments: ATTN: LEN PIGGIN Page Left : 1-B Total Pages : 1 Certificate Date: 03-AUG-2000 Invoice No. : 10024263 P.O. Number : Account : SDO

SAMPLE PEEP CODE Mn Mo Na Mi P PD S Sb Sc St T1 T1 U V N Zn DOOMS 20365 LDOOMS 20162 LDOOMS 20162 LDOOMS 20165 LDOOMS 20162 LDOOMS 2017 LDOOMS										CE	RTIFI	CATE	OF A	NALY	SIS	4	00242	63		
LD00M34 293690 201 222 620 1 < 0.01 33 640 12 0.06 < 2 1 117 0.05 < 10 < 10 24 < 10 56 LD00M44 293690 201 222 390 3 0.01 21 1070 10 0.16 < 2 2 201 0.03 < 10 < 10 22 < 10 28	SAMPLE																			
	LD00M44 293690 LD00M45 293691	201 222 201 222	620 390	1 3	< 0.01 0.01	33 21	640 1070	12 10	0.06	< 2 < 2	1 2	117 201	0.05	< 10 < 10	< 10 < 10	24 22	< 10 < 10	56 28		
CERTIFICATION: De Calle																		2		111

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 fo: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN Page per :1-A Total Pages :1 Certificate Date: 07-AUG-2000 Invoice No. :10024641 P.O. Number : Account :SDO

	_										CE	RTIFI	CATE	OF A	NAL	YSIS	4	0024	641		
SAMPLE	PRE		Au ppb 78+22	Ag ppm	A1 %	As ppm	B	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Сц ррш	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
LD00M50/293693	201	202	< 5	0.2	1.10	8	< 10	70	0.5	< 2	0.41	< 0.5	10	26	13	2.81	< 10	< 1	0.22	30	0.44
		ļ																			
										_								7	and the second s		
					_									(CERTIFI		:Ka		(Â	Ľ

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN Page ber :1-B Total Pages :1 Certificate Date: 07-AUG-2000 Invoice No. :10024641 P.O. Number : Account :SDO

										CE	RTIF	CATE	OF A	NALY	SIS	4	00246	41	
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S %	Sb ppa	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W	Zn ppm		
000850/293693	201 202	1020	1	< 0.01	16	1390	10	0.16	< 2	2	23	0.06	< 10	10	36	< 10	64		
																	~		
-																<u> </u>	/	$\langle \cdot \rangle$	-
														CERTIFI	CATION	12	<u>`</u>	all	Ł

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 North Vancouver To: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : HEAD Comments: ATTN: LEN PIGGIN

Page ber :1-A Total Pages :1 Certificate Date: 08-AUG-2000 Invoice No. :10024644 P.O. Number : Account SDO

										CE	RTIF	CATE	OF A	NAL	YSIS	4	0024	644		
SAMPLE	PREP CODE	Ац ррђ ГА+АА	Ag ppm	А1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррш	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
LD00M51/293694 LD00M52/293695 LD00M53/293696 LD00M54/293697	201 202 201 202 201 202 201 202 201 202	< 5 < 5	< 0.2 0.2 < 0.2 < 0.2	1.54 1.21 1.35 1.29	< 2 < 2 < 2 < 2 < 2	< 10 < 10 < 10 < 10	150	0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2	0.80 0.50	< 0.5 0.5 < 0.5 < 0.5	8 12 7 6	9 7 8 9	25 11 19 18	1.49 1.60 1.37 1.43	< 10 10 < 10 < 10	< 1 < 1 < 1 < 1	0.13 0.21 0.11 0.16	10 < 10 10 10	0.36 0.33 0.35 0.40
													. <u> </u>			Â	2			

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 To: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : HEAD Comments: ATTN: LEN PIGGIN Page ber :1-B Total Pages :1 Certificate Date: 08-AUG-2000 Invoice No. :10024644 P.O. Number : Account :SDO

	_									CE	RTIFI	CATE	OF A	NALY	rsis	4	002464	4
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	5 %	Sb ppm	Sc ppm	Sr ppm	Ti %	T1 ppm	U ppm	V ppm	W ppm	Zn ppm	
LD00M51/293694 LD00M52/293695 LD00M53/293696 LD00M53/293697	201 202 201 202 201 202 201 202 201 202	5920 1955	1 5 1 1	0.01 0.01 < 0.01 < 0.01	10 5 7 9	640 900 610 720	6 8 6 6	0.08 0.10 0.06 0.06	~ ~ ~ ~ ~ ~	1 < 1 1 1	47 109 45 45	0.04 0.04 0.04 0.05	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	24 24 22 24	< 10 < 10 < 10 < 10 < 10	74 52 60 56	
																Δ	7	<u></u>
L	•	<u>•</u>									-			CERTIFI	CATION	ha		all

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 10: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN Page Namber :1-A Total Pages :1 Certificate Date: 18-AUG-2000 Invoice No. :10025447 P.O. Number : Account :SDO

CERTIFICATE OF ANALYSIS A0025447 PREP Au ppb λg **X**1 λs B Ba Be Bİ Ca Cđ Co Cr Cu 7e Ga Eg K La Mg SAMPLE ۶, CODE Fλ+λλ ppm * ppm pp≞ ppm ppm × ppm ppm ppm ppm * ppm **DD** * **DDD** ppr LD00M57 293698 201 202 < 5 < 0.2 100 1.81 0.35 70 0.31 1.54 < 2 < 10 1.5 < 2 0.63 < 0.5 6 9 B < 10 < 1 LD00M58 293699 201 202 < 5 < 0.2 2.66 70 3.0 0.82 < 0.5 13 1.88 < 10 < 1 0.20 80 0.40 < 2 < 10 < 2 5 7 LD00M59 293700 201 202 < 5 < 0.2 0.93 < 2 < 10 40 0.5 < 2 0.18 < 0.5 2 3 2 0.64 < 10 < 1 0.08 10 0.08 LD00M61 293701 201 202 < 5 < 0.2 0.91 < 10 80 0.5 0.29 < 0.5 7 1.50 < 10 < 1 0.10 10 0.07 < 2 < 2 3 4 LD00M62 293702 201 202 < 5 < 0.2 0.58 < 2 < 10 30 < 0.5 < 2 0.16 < 0.5 1 3 1 0.82 < 10 < 1 0.09 20 0.10 LD00M63 293703 201 202 3 0.07 < 5 < 0.2 0.73 2 < 10 50 0.5 < 2 0.20 < 0.5 4 3 1.11 < 10 < 1 10 0.07 LD00M64 293704 201 202 0.09 < 5 < 0.2 1.44 < 2 < 10 130 1.5 < 2 0.38 < 0.5 14 3 4 1.28 < 10 1 0.11 10 LD00M65 293705 201 202 < 5 < 0.2 0.07 30 0.08 0.62 < 2 < 10 30 < 0.5 < 2 0.22 < 0.5 1 3 1 0.68 < 10 < 1

CERTIFICATION

11

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 io: LENDAV PROSPECTING

1986 SAPPHI**RE COURT** KAMLOOPS, BC V2E 2P1

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN

CERTIFICATION:

Page per :1-B Total Pages :1 Certificate Date: 18-AUG-2000 Invoice No. :10025447 P.O. Number : Account :SDO

										CE	RTIFI	CATE	OF A	NALY	'SIS	A	002544	47	
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	P ppm	Pb ppm	S *	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U ppm	V ppm	N ppm	Zn ppm		
LD00M57 293698 LD00M58 293699 LD00M59 293700 LD00M51 293701 LD00M61 293702	201 202 201 202 201 202 201 202 201 202 201 202	1090 545 600 4040 445	1 < 1 < 1 1 < 1	0.01 0.01 0.01 0.01 0.01	7 8 1 3 1	840 1580 320 550 470	10 12 6 8	0.10 0.06 0.03 0.05 0.01	< 2 < 2 < 2 < 2 < 2 < 2 < 2	1 < 1 < 1 < 1	58 63 15 24 8	0.07 0.04 0.03 0.01 0.02	20 20 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	27 30 8 12 8	< 10 < 10 < 10 < 10 < 10 < 10	144 48 30 58 42		
LD00M63 293703 LD00M64 293704 LD00M65 293705	201 202 201 202 201 202	1905 8080 390	< 1 1 < 1	0.01 0.01 0.01	3 4 2	390 800 520	6 20 4	0.05 0.08 0.02	< 2 < 2 < 2	< 1 < 1 < 1	19 36 14	0.02 0.02 0.02	< 10 < 10 10	< 10 < 10 < 10	11 15 8	< 10 < 10 < 10	26 132 20		
																	()_		

Analytical Chemists " Geochemists " Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 :... LENDAV PROSPECTING

Ţ

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN Page NS. _er :1-A Total Pages :1 Certificate Date: 31-AUG-2000 Invoice No. :10026701 P.O. Number : Account :SDO

										CE	RTIFI	CATE	OF A	NAL	YSIS	Ą	0026	701		
SAMPLE	PREP CODE	Au ppb FA+AA	Ag ppm	A1 *	λs ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe X	Ga ppm	Eg ppm	K %	La ppm	Жg %
LD00M66 293706 LD00M67 293707 LD00M69 293708 LD00M70 293709 LD00M71 293710	201 202 201 202 201 202 201 202 201 202 201 202	< 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.54 1.04 1.84 1.22 1.86	6 2 < 2 < 2 < 2	< 10 < 10 < 10 < 10 < 10 < 10	150 90 130 90 50	2.0 1.0 2.0 1.5 2.5	< 2 4 2 6 < 2	0.26 0.42 0.34	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	38 22 30 14 5	7 3 7 4 5	12 5 7 7 5	2.37 1.62 1.72 1.39 0.76	20 10 10 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.24 0.16 0.16 0.09 0.15	30 10 30 10 10	0.05 0.07 0.05 0.06 0.12
LD00M72 293711 LD00M73 293712 LD00M74 293713 LD00M139 293714	201 202 201 202 201 202 201 202 201 202	< 5	0.2 < 0.2 < 0.2 < 0.2	1.13 1.35 0.81 0.49	< 2 < 2 < 2 < 2 < 2	< 10 < 10 < 10 < 10 < 10	50 120 70 20	1.0 1.5 1.5 0.5	< 2 2 < 2 < 2	0.27 0.46	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5	4 12 8 1	3 1 14 4	5 6 8 4	0.53 1.11 0.61 0.68	< 10 20 < 10 < 10	< 1 < 1 < 1 < 1	0.23 0.10 0.24 0.04	< 10 < 10 10 20	0.08 0.06 0.07 0.05
		-																		
		-																		
		1																		
																Λ	7		~	

CERTIFICATION MA

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 . LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN Page N. ar :1-8 Total Pages :1 Certificate Date: 31-AUG-2000 Invoice No. :10026701 P.O. Number : Account :SDO

A0026701 **CERTIFICATE OF ANALYSIS** ۷ ¥ Zn т1 Π Sr Тİ Sp Sc PREP Mn Mo Na Ni P Pb 8 * ppm ppm ppm pp⊒ ppm × ppm ppm ppm CODE * ppn ppm ppm SAMPLE ppm ppm 52 54 0.01 10 10 15 < 10 2 < 1 201 202 >10000 2 < 0.01 5 1190 28 0.14 LD00M66 293706 17 < 10 50 < 2 < 1 26 0.02 < 10 30 0.06 7240 16 0.02 2 530 16 LD00M67 293707 201 202 17 90 < 10 2 47 0.01 10 10 0.12 < 1 LD00M69 293708 201 202 >10000 3 0.01 6 860 18 44 16 39 0.01 < 10 30 < 10 0.11 < 2 < 1 7350 2 < 0.01 3 850 22 LD00M70 293709 201 202 < 10 34 8 19 0.03 < 10 60 1 < 0.01 3 460 6 0.04 < 2 < 1 LD00M71 293710 201 202 730 7 < 10 24 500 8 0.06 < 2 < 1 27 0.01 < 10 30 1 < 0.01 2 LD00M72 293711 201 202 2140 13 < 10 44 34 0.02 < 10 30 2 560 12 0.07 < 2 < 1 >10000 3 < 0.01 201 202 LD00M73 293712 34 < 10 20 7 < 10 < 1 44 0.01 201 202 910 20 0.11 < 2 3680 1 0.01 8 LD00M74 293713 8 < 10 18 < 1 8 0.01 < 10 < 10 < 1 0.01 2 201 202 255 1 340 0.01 < 2 LD00M139 293714

CERTIFICATION:

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN

Page Jer :1-A Total Pages :1 Certificate Date: 06-SEP-2000 Invoice No. 1 P.O. Number 1 :10027129 SDO Account

										CE	RTIFI	CATE	OF A	NAL	YSIS	ļ	0027	129		
SAMPLE	PREP CODE	Ац ррб ГА+АА	Ag ppm	A1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррв	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
LD00M75 293716 LD00M76 293717 LD00M77 293718	201 202 201 202 201 202	< 5	< 0.2 < 0.2 < 0.2	0.70 1.06 1.96	4 2 2	< 10 < 10	40 50 120	0.5 1.5 2.0	< 2 < 2 < 2 < 2	0.42	< 0.5 < 0.5 0.5	3 4 9	16 20 36	4 6 11	2.32 1.52 1.76	< 10 < 10 < 10	< 1 < 1 < 1	0.08 0.10 0.25	60 60 60	0.13 0.15 0.30
																1	7			ŤĮ,

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

'o: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN

Page er :1-B Total Pages :1 Certificate Date: 06-SEP-2000 Invoice No. 1 P.O. Number :10027129 SDO Account

										CE	RTIFI	CATE	OF A	NALY	rsis	4	00271	29
SAMPLE	PREP CODE	Mn ppn	Mo ppm	Na %	Ni ppm	P mqq	Pb ppm	S %	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	U mqq	V ppm	W	Zn ppm	
D00M75 293716 D00M76 293717 D00M77 293718	201 202 201 202 201 202	285 675 1340	1 .	0.01 < 0.01 0.01	4 9 22	1040 1030 870	14 10 20	0.03 0.05 0.09	< 2 < 2 < 2	1 1 1	20 28 62	0.04 0.04 0.06	< 10 10 10	10 10 10	37 25 27	< 10 < 10 < 10	50 50 110	
		l																
																	7	<u> </u>

r

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

J: LENDAV PROSPECTING

í

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN

Page Nul. Jr : 1-A Total Pages :1 Certificate Date: 30-AUG-2000 Invoice No. : 10027131 P.O. Number : Account : SDO

CERTIFICATE OF ANALYSIS A0027131									
Ba Be Bi Ca Cd Co Cr Cu Fe Ga Eg K ppm ppm ppm % ppm ppm ppm % ppm ppm %			в ррв	As ppm	λ1 %	Ag ppm	Au ppb FA+AA		PR SAMPLE CO
	 		10	< 2		< 0.2		202	
CERTIFICATION:									

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

: LENDAV PROSPECTING

٠

ł

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN

Page Nu : 1-B Total Pages :1 Certificate Date: 30-AUG-2000 Invoice No. : 10027131 P.O. Number SDO Account

										CE	RTIFI	CATE	OFA	NALY	'SIS	A	0027131		
SAMPLE	PREP CODE	Mn ppm	Мо рра	Na %	Ni ppm	P P	Pp ppm	g %	Sb ppm	Sc ppm	Sr ppm	Ti ¥	T1 ppm	D D	¥ ppm	W ppm	Zn ppm		
LD00T60 293715	201 202	100	< 1 <	0.01	1	480	2	0.01	< 2	< 1	4	0.01	< 10	< 10	7	< 10	14		
																		1-	

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 ः LENDAV PROSPECTING

ŧ

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN Page N Jr : 1-A Total Pages : 1 Certificate Date: 08-SEP-2000 Invoice No. : 10027769 P.O. Number : Account : SDO

						·					CE	RTIFI	CATE	OF A	NAL	rsis	A	0027	769		
Sample	PREI CODI		Ац ррр Уд+дд	Ag ppm	A1 %	As ppm	B	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Co ppm	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
LD00T87 293719 LD00T88 293720 LD00T89 293721 LD00T107 293722 LD00T108 293723	201 201 201 201 201 201	202 202 202	< 5 < 5 < 5	< 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2 < 0.2	1.01 1.44 0.99 0.64 0.62	12 6 8 8 2	< 10 < 10 < 10 < 10 < 10 < 10	50	0.5 0.5 < 0.5 < 0.5 < 0.5	< 2 < 2 < 2 < 2 < 2 < 2 < 2	0.16 0.16 0.13	< 0.5 < 0.5 < 0.5 < 0.5 < 0.5 < 0.5	7 8 8 5 4	16 19 18 13 8	16 13 13 8 5	1.86 2.00 1.86 1.69 0.93	< 10 < 10 < 10 < 10 < 10 < 10	< 1 < 1 < 1 < 1 < 1 < 1	0.22 0.22 0.25 0.15 0.09	10 10 10 10	0.32 0.40 0.43 0.21 0.18
LD00T109 293724 LD00T110 293725	201 :			< 0.2 < 0.2	1.07	10 2	< 10 < 10	60 20	0.5 < 0.5	< 2 < 2	0.22 0.11	< 0.5 < 0.5	8 4	17 9	18 6	2.16 1.15	< 10 < 10	< 1 < 1	0.31 0.13	20 10	0.40 0.18
																		7	\leftarrow	~	

CERTIFICATION: the and

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 o: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN Page Ner: 1-B Total Pages :1 Certificate Date: 08-SEP-2000 Invoice No. : I0027769 P.O. Number : Account :SDO

											CE	RTIFI	CATE	OF A	NALY	'SIS	A	0027769	
SAMPLE	PREP CODE	1	Mn ppn	Мо ррп	Na %	Ni ppm	9 ppm	Pb nqq	s %	Sb	Sc ppm	Sr ppm	Ti %	T1 ppm	n T	V mqq	₩ ppm	Zn ppm	
D00T87 293719 D00T88 293720 D00T89 293721 D00T107 293722 D00T108 293723	201 20 201 20 201 20 201 20 201 20	02 02 02	165 245 255 120 100	1 < < 1 < 1 <	0.01 0.01 0.01 0.01 0.01	14 20 13 9 6	330 430 280 460 180	8 < 8 < 6	0.01 0.01 0.01 0.01 0.01	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	2 2 3 1 1	12 18 13 9 7	0.06 0.08 0.07 0.04 0.04	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	25 29 28 24 15	< 10 < 10 < 10 < 10 < 10 < 10	48 68 42 34 22	
D00T109 293724 D00T110 293725	201 20 201 20		735 115		0.01 0.01	21 6	560 400		0.01	< 2 < 2	3	20 8	0.07	< 10 < 10	< 10 < 10	25 18	< 10 < 10	50 22	
							-										Â	7	
															CENTIFI	CATION	In		=14

ALS Chemex

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 io: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN Page Der :1-A Total Pages :1 Certificate Date: 06-OCT-2000 Invoice No. :10030273 P.O. Number : Account :SDO

·										CI	RTIFI	CATE	OF A	NAL	YSIS	4	0030	273		
SAMPLE	PREP CODE	Ац ррр ГА+АА	Ag ppm	л1 %	As pom	B B	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррж	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
LDOOM124 293727 LDOOT125 293730	201 202 201 202	< 5 5	< 0.2	1.11 2.04	< 2 82	< 10 < 10	70 180	0.5	< 2 8	0.35 0.19	< 0.5 < 0.5	6 13	7 14	11 48	1.51 4.67	< 10 < 10	< 1 < 1	0.11 0.35	30 30	0.17

CERTIFICATION:

بالأمل المساوين أأراك أسربها الأعمر

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : LUCKY BEAR Comments: ATTN: LEN PIGGIN

Page per :1-B Total Pages :1 Certificate Date: 06-OCT-2000 Invoice No. :10030273 P.O. Number : Account :SDO

					_					CE	RTIFI	CATE	OF A	NALY	'SIS	4	0030273	
SAMPLE	PREP CODE	Mn ppn	Mo mgg	Na %	Ni ppm	рош Р	bpæ bp	S %	Sp Sp	Sc ppm	Sr ppm	Ti %	T1 ppm	ndd D	D D D D D D D D D D D D D D D D D D D	W mqq	Zn ppm	
LDOOM124 293727 LDOOT125 293730	201 202 201 202	1500 305	< 1 < 1	0.01 0.02	3 11	930 660	10 86	0.05 0.33	8 < 2	< 1 3	24 93	0.04	< 10 < 10	10 < 10	19 33	< 10 < 10	48 172	
														CERTIFIC		. (J. S. M. S.	

С

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218 fo: LENDAV PROSPECTING

ŧ

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : HEAD Comments: ATTN: LEN PIGGIN Page per :1-A Total Pages :1 Certificate Date: 09-OCT-2000 Invoice No. :10030274 P.O. Number : Account :SDO

		274	0030	A	'SIS	NAL	OF A	CATE	RTIFIC	CE	<u> </u>										_	
Mg %	La ppm	K %	Hg ppm	Ga. ppm	Fe %	Cu ppa	Cr ppm	Co Eqq	Cđ ppm	Ca %	Bi ppm	Be ppm	Ba ppm	B ppm	As ppm	A1 %	Ag ppm	Au ppb FA+AA	EP DE	PRI COI	SAMPLE	S
0.42 2.16	10 10	0.18 0.28	< 1 < 1	< 10 < 10	4.42 2.98		49 18	9	< 0.5	0.56 4.08	< 2	0.5	50 70	40 40	18 22	0.83 0.44	< 0.2			}	117 293728 118 293729	
Ú	<u></u>			A	CATION	•EDTIFI																

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

fo: LENDAV PROSPECTING

(

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : HEAD Comments: ATTN: LEN PIGGIN

Page per :1-B Total Pages :1 Certificate Date: 09-OCT-2000 Invoice No. :10030274 P.O. Number : Account :SDO

										CE	RTIFIC	CATE	OF A	NALY	(SIS		0030	274
SAMPLE	PREP CODE	Mn ppm	Mo ppm	Na %	Ni ppm	p pm	Pb ppm	S %	Sb pp n	Sc ppm	Sr ppm	Ti %	T1 ppm	U mqq	V ppm	W	Zn ppm	
LDOOR117 293728 LDOOR118 293729	205 226 205 226	315 515	< 1 3	0.03 0.03	25 14	910 280	14 12	0.02 0.02	< 2	1 3	26 < 88 <	0.01 0.01	< 10 < 10	< 10 < 10	14 6	< 10 < 10	114 60	
																	-	
							····									4	/	£

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : HEAD Comments: ATTN: LEN PIGGIN

Page per :1-A Total Pages :1 Certificate Date: 06-0CT-2000 Invoice No. :10030275 P.O. Number : SDO Account

										CE	RTIFI	CATE	OF A	NAL	rsis	A	0030	275		
SAMPLE	PREP CODE	Ац ррђ FA+AA	Ag ppm	л1 %	As ppm	B ppm	Ba ppm	Be ppm	Bi ppm	Ca %	Cđ ppm	Со ррш	Cr ppm	Cu ppm	Fe %	Ga ppm	Hg ppm	K %	La ppm	Mg %
LDOOM119 293726	201 202	< 5	< 0.2	1.56	2	< 10	210	0.5	< 2	0.95	0.5	10	9	50	1.37	< 10	< 1	0.14	30	0.33
1																				
																				/
																	Au	تر شر، ب ^ر مقدر م	م م آخرت ا	ig

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: LENDAV PROSPECTING

1986 SAPPHIRE COURT KAMLOOPS, BC V2E 2P1

Project : HEAD Comments: ATTN: LEN PIGGIN

Page per :1-B Total Pages :1 Certificate Date: 06-OCT-2000 Invoice No. :10030275 P.O. Number : Account :SDO

SAMPLE PREP CODE Mn No Na Ní P Pb s Sb Sc Sr Tí Tí Tí U V M Zn LDOOM119 293726 201 202 2740 1 0.01 7 730 8 0.11 8 1 69 0.04 < 10 21 < 10 54	75	00302	A	SIS	NALY	OF A	CATE	RTIFI	CE		 			
LDOOMI19 293726 201 202 2740 1 0.01 7 730 B 0.11 B 1 69 0.04 < 10 < 10 21 < 10 54							Ti %							SAMPLE
		54									 	 	 	
	19													

D. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, pages 6 and 7.

SUMMARY OF RESULTS

This summary section must be filled out by all grantees, one for each project area

Name LEONARD PIGGIN

LOCATION/COMMODITIES

Project Area (as listed in Part A) LUCKY BEAR SEES. MINFILE No. if applicable Location of Project Area NTS 11.0314000E 539000 N Lat 51.19'58" N Long 19.40'11 Description of Location and Access Leave Barrier travel Easterly on B Road. Turn left onto North Barrier Road. Turn ris rightat 6.2 KM Then travel 4KM & LCP. SEE 5. A.

Prospecting Assistants(s) - give name(s) and qualifications of assistant(s) (see Program Regulation 13, page 6) DAVID PIGGIN SEE S.B.

Main Commodities Searched For AU, Ag, Cu, Ni, Pb, ZN

Known Mineral Occurrences in Project Area None. Area new

WORK PERFORMED 1. Conventional Prospecting (area) 700 ha. 2. Geological Mapping (hectares/scale) NIL 80 3. Geochemical (type and no. of samples) 4. Geophysical (type and line km) Hand soil pit 27 /MX IM X.SM 5. Physical Work (type and amount) 6. Drilling (no. holes, size, depth in m, total m) NIL 7. Other (specify) Black light 2 Man Days- 10KM **Best Discovery** Project/Claim Name AREA"A" LUCKY BEAR Commodities Aq, As, Cu, Fe, Mo, Ni, Phy ZN Location (show on map) Lat. Long Elevation Best assay/sample type Moss Max LD00M04, LD00M06, LD00M12, LD00T12 SEE S.D. at the contact between i Description of mineralization, host rocks, anomalies Locale LK | KG| Late Devorian arthorneiss //m es sille as well no l ay Assan ale K FEEDBACK: comments and suggestions for Prospector Assistance Program 7 crease to 20% 5/K.

ould be e

tailw

le exper

Reference Number 2000/2001 P 13

Information on this form is

confidential subject to the provisions of the Freedom of

Information Act.

Na

D. TECHNICAL REPORT (continued)

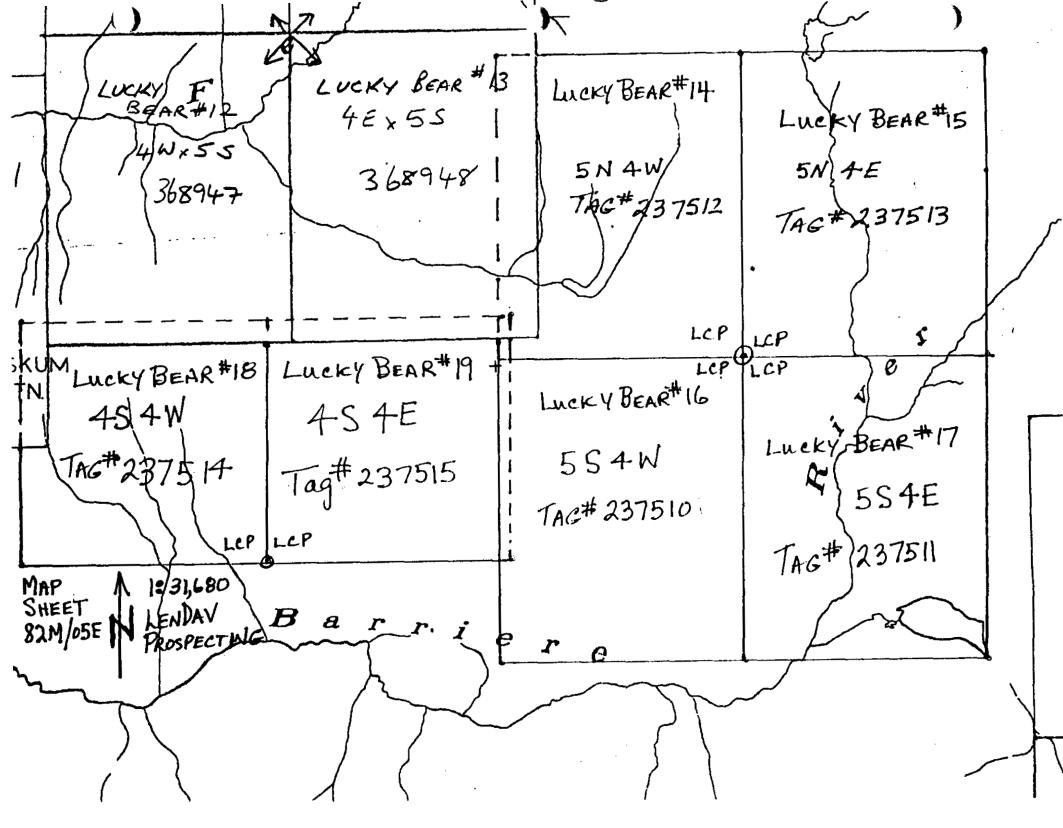
REPORT ON RESULTS

- Those submitting a copy of an Assessment Report or a report of similar quality that covers all the key elements . listed below are not required to fill out this section.
- Refer to Program Regulation 17D on page 6 for details before filling this section out (use extra pages if necessary)
- Supporting data must be submitted with the following TECHNICAL REPORT or any report accepted in lieu • of.

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

Name LEONARD PIGGIN Reference Number 2000/2001 P73

SEE 5.8.


1. LOCATION OF PROJECT AREA [Outline clearly on accompanying maps of appropriate scale.]

2. PROGRAM OBJECTIVE [Include original exploration target.] Bear Clams I project area was The hucker swould be taken of as many drains assible and also a till survey between I Rock Show no + Fla -00. nr M larea wou o an lou males turned u piacper

3. PROSPECTING RESULTS [Describe areas prospected and significant outcrops/float encountered. Mineralization must be described in terms of specific minerals and how they occur. These details must be shown on accompanying map(s) of appropriate scale; prospecting traverses should be clearly marked.]

5.E 5.0, 5.F SEE

4NX4¥ 48X4E 237423 237418 0,23742 237426 F LUCILY BEAR #13 LUCKY BEAR #14 LUCKY BEAR #13 5~××55 LUCKY BEAK SNx4W 5NY SW [371266 1EAR #11 LUCKY BEAR #12 368948 769824 371265 <u>368947</u> 946 55X4E 55X4W LCP LCP ١E ASK #19 LUCKY LUCKY -BEAR #18 MTK 4 N x 4 E 4Nx4W LUCKY BEAR #16 Luc ઽ૯૧૪ૢૢૢૢૢૢૢૢૢૢૢૢૢ 369829-LUCKY BEAR #19 LUCKY BEAR#18 55x4W 55\XAW 55×4E TAG# 220 274 369826 TAG# 220975 ROCK CLIFF **B**;a e e Constant of LENDAN PROSPERTING-THIL66 BAMOSE 1986 SAPPHIRE COURT 1:31680 ħ SEPTEMBER 14,1999 KAMLOOPS, BC V2E2/P1 (250)85)-0071 DOP LCP-CPS 11.0315×64E LUCATOR! LEONARD (PIGGIN 0 568961N. # 121428 4 Satellites

Mineral Titles Search by Claim Name

The mineral tenure information at this site was last updated on the morning of November 12, 2000.

Tenures with Claim Name = Lucky Bear:

There were 32 results.

Tenure Number	Claim Name	Ow Num		Map Number	Work Recorded To	Status	Mining Division	Units	Tag Number
<u> </u>]			20010108	Good			
						Good			·
	· · · · · · · · · · · · · · · · · · ·		10070	0.0	<u> </u>	20010426	p		
	[Good	 '	. 	
						-			
				li.	[20010450][
][]				н. Л. — "Э	
						Good			
						20010827			
						1999001-		1	5
		.1 <u></u>				Good			
							· _ · _ · _ · _ · _ · _ · _ · _ · _ · _		
369824	LUCKY BEAR #14	141166	100%	082M05E	20010614	Good Standing 20010614	8 Kamloops	20	237512
369825	LUCKY BEAR #15	141166	100%	082M05E	20010614	Good Standing 20010614	8 Kamloops	20	237513
369826	LUCKY BEAR #16	141166	100%	082M05E	20010614	20010614	8 Kamloops	20	237510
369827	LUCKY BEAR #17	141166	100%	082M05E	20010614	Good Standing 20010614	8 Kamloops	20	237511
		<u>}</u>					· · · · · · · · · · · · · · · · · · ·		
371627	LUCKY BEAR #18	141166	100%	082M05E	20020614	Good Standing 20020614	8 Kamloops	20	220974

http://www.em.gov.bc.ca/cgi-shl/dbml.exe?template=/tn/PubTen&what=sclaim

							Abandoned			
371628	LUCKY	BEAR #19	141166	100%	082M05E	20020614	Good Standing 20020614	8 Kamloops	20	22097
69178	LUCKY	BEAR #2	141797	100%	082M05E	20010523	Good Standing 20010523	8 Kamioops	21	1432
374, 4	LUCKY	BEAR #20	141797	100%	082M05E	20010210	Abandoned 20000331	8 Kamloops	20	23758
376295	UCKY	BEAR #20	141797	100%	082M05E	20010423	Good Standing 20010423	8 Kaml sos	20	23759
374335	LUXY	BEAR #21	141797	100%	082M05E	20010210	Abandoned 20000331	8 samloops	20	23758
376296	LUCKY	EAR #21	141797	100%	082M05E	20010425	Good Standing 20010	8 Kamloops	20	23759
374336	LUCKY	BEA #22	141797	100%	082M05E	20010210	Abar coned 29,00331	8 Kamloops	20	23758
3 <u>76297</u>	LUCKY	BEAR #2.	14179 <u>7</u>	100%	082M05E	20010426	Good Standing 20010426	8 Kamloops	20	23759
374337	LUCKY	BEAR #23	14, 97	100%	082M05E	2001/210	Abandoned 20000331	8 Kamloops	20	23758
376298	LUCKY	BEAR #23	141797	00%	082M05E	20010429	Good Standing 20010429	8 Kamloops	20	23759
377035	LUCKY	BEAR #24	141797	100%	0821 USE	20010510	Good Standing 20010510	8 Kamloops	20	23743
368938	LUCKY	BEAR #3	141797	100%	082M TE	20010502	Good Standing 20010502	8 Kamloops	20	22098
368939	LUCKY	BEAR #4	14179	100%	082M05E	26 10503	Good Standing 20010503	8 Kamloops	20	22098
368940	LUCKY	BEAR #5	141797	100%	082M05E	20010504	Good Standing 0010504	8 Kamloops	15	23742
368941	LUCKY	BFAB#6	141797	100%	082M05E	20010505	Stanling 200103-5	8 Kamloops	15	23742
368942	LUCKY	BEAR #7			082M05E	20010506	20010506	⁸ Kamloops	15	23742
36894	LUCKY	BEAR #8	•:			20010508	20010508	8 Karloops	15	23743
368944	LUCKY	BEAR #9	141797	100%	082M05E	20010425	Good Standing 20010425	8 Kamloops	16	23741

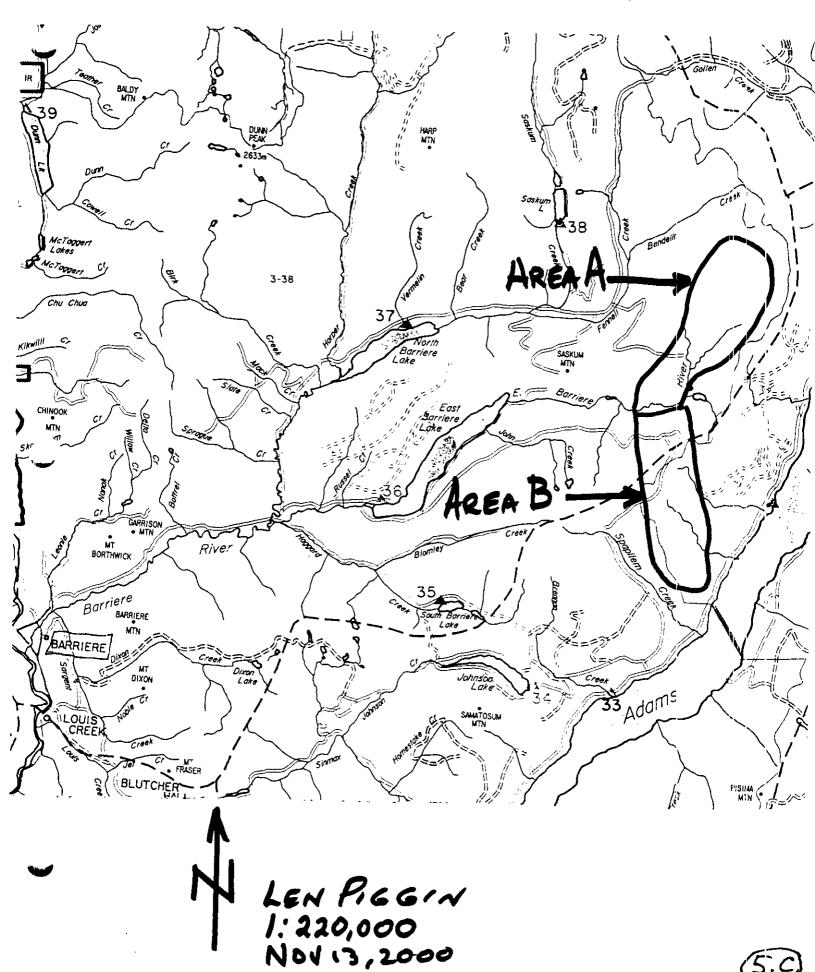
Your use of this site is subject to this disclaimer.

To download this information to a comma delimited text file click here.

1.12020-0-

. _____/ ---

Prospectors Training and Experience


Leonard P. Piggin, Free Miner # 121423

- Director of the Kamloops Exploration Group (KEG) 1999/2000, member of BCYC of Mines
- Three years experience as prospector, started in 1998, Prospectors Assistance Grant 2000/2001 #P73,
- Twenty years experience fishing and hunting in the Kamloops area
- Diploma in Business Administration from U. C. C. (2 year program)
- Completed Canadian Securities Course 1982, and currently working on Certified Financial Planners Courses, currently working on the Certified Risk Managers Course (University of Toronto).
- Marketed the Cam/Gloria Claims for Camille Berube to Teck Corporation (MINFILE # 082M-266)
- Assisted David J. Piggin in the completion of his Prospectors Grant 98/99 P94.
- Prospecting Course UCC Fall 1997 put on by the Kamloops Exploration Group
- KEG Workshop April 1998 in Kamloops, including the field trip to Tranquille River. Attended KEG Workshop June 2000 Samatosum Mtn and September 2000 at Siwash Property (Fairfield Minerals)
- Till Sampling Workshop September 25, 1998 sponsored by KEG and G.S. Branch
- Geophysics Workshop November 24, 1998 Dr. Jennifer Levett, Placer Dome; KEG workshop
- Attended the January 1999 and January 2000 Exploration Roundup in Vancouver BCYCM. Had a prospectors booth for the Cam/Gloria Claims, NORTH Claims, LUCKY BEAR Claims, SPAP/HEAD Claims and boldly marketed the property to all attendees. Attended technical sessions.
- Attended the KEG Workshop in April 1998, 1999, 2000. Attended the Intrusive Gold Deposit Workshop 1999.
- Level II Industrial First Aid Ticket

David J. Piggin, Free Miner # 140689

- Member of the Kamloops Exploration Group and the BCYC of Mines.
- 27 years experience in field work as Forest Technician and Registered Professional Forester, with extensive field knowledge of the Kamloops mining area
- 27 years experience implementing and administering field surveys to a scientific standard
- Three years experience as prospector starting in 1998
- Successfully completed Prospectors Grant 98/99 P94, and worked with Len on Grant 2000/2001 #P73
- Marketed the Cam/Gloria Claims for Camille Berube to Teck Corporation (MINFILE 082M0-266)
- Prospecting Course UCC Fall 1997 put on by the Kamloops Exploration Group
- Attended KEG Workshop April 1998, April 1999, April 2000 in Kamloops
- Till Sampling Workshop September 25, 1998 sponsored by KEG and Geological Survey Branch
- Geophysics Workshop November 24, 1998 Dr. Jennifer Levett, Placer Dome; KEG workshop
- Attended the January 1999 and January 2000 Exploration Roundup in Vancouver. Had a prospector's booth for the Cam/Gloria Claims, NORTH Claims, LUCKY BEAR Claims, SPAP/HEAD Claims and boldly marketed the property to all attendees. Attended technical sessions.
- Attended the Tranquille field trip, Afton Mines field trip, and the Intrusive Gold Deposit Workshop. Total training 3 days. Attended the KEG workshops at Samatosum Mtn (June 2000), and Siwash/Big Kid September 2000.
- Advanced Courses in Forest Surveying, Forest Hydrology, Forest Soils, Forest Roads and Transportation, Forest Mensuration, Photogrammetry, Biometry and Statistics, Calculus, Linear Algebra, Physics. These courses are related to prospecting and exploration.
- Certified Fire Boss B on Wildfires
- Occupational First Aid Level #1 (WCB) with Transportation Endorsement

OVERVIEW MAP- PROSPECTORS ASSISTANCE GRANT#2000/2001 P73

	ICP	Au	Ag	As	Ba	Bi	Ca	Co	Cu	Fe	Ga	Mn	Mo	Ni	Pb	Sb	Zn
		ppb	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
1	LD00M04	<5	0.2	12	90	<2	0.75	10	29	2.84	<10	1320	2	82	14	<2	100
I	LD00M06	<10	0.2	6	140	<2	1.08	9	35	3.17	<10	1360	3	31	16	<2	96
1	LD00M12	<10	0.6	28	170	<2	1.22	10	80	3.11	<10	1080	3	53	14	<2	144
1	LD00R127	220	0.4	35	75	25	1.10	15	87	4.12	na	403	5	21	168	<5	32
1	LD00R128	35	<.2	10	155	<5	0.98	9	21	2.86	na	508	3	10	46	<5	73
1	LD00M13	<5	0.4	16	90	<2	0.48	6	35	1.68	<10	815	1	25	10	<2	50
	LD00M137	<5	0.4	4	120	<2	2.12	5	38	0.96	<10	635	2	13	10	<2	42
1	LD00M50	<5	0.2	8	70	<2	0.41	10	13	2.81	<10	1020	1	16	10	<2	64
1	LD00R49	- 5	<0.2	<5	35	5	0.04	13	41	2.04	na	197	<1	10	2	<5	<1
1	LD00T125	5	1.0	82	180	8	0.19	13	48	4.67	<10	305	<1	11	86	<2	172
I	LD00M66	<10	<0.2	6	150	<2	0.41	38	12	2.37	20	>10000	2	5	28	2	52
	LD00M67	<5	<0.2	2	90	4	0.26	22	5	1.62	10	7240	16	2	16	<2	50
I	LD00M69	<5	<0.2	<2	130	2	0.42	30	7	1.72	10	>10000	3	6	18	2	90
1	LD00M70	<5	<0.2	<2	90	6	0.34	14	7	1.39	10	7350	2	3	22	<2	44
1	LD00M71	<5	0.2	<2	50	<2	0.19	5	5	0.76	<10	730	1	3	6	<2	34
ſ	LD00M23	<5	0.4	68	440	<2	1.53	40	40	4.89	10	>10000	4	44	14	2	124

P

3. Technical Report **AREA A**

Area A is comprised of the Lucky Bear Claims (#14-#19) and an additional unstaked area to the North and East. We took 34 Moss Mat samples, 11 Rock samples, 27 Till samples and 1 Stream Sediment sample from this area.

Five anomalous zones were found in Area A one zone (A-4) is not currently staked. Areas A-1, A-2, and A-5 are located on the contact between the Baldy Batholith (granodiorite) and the Eagle Bay Assemblage (EBG schist). Areas A-3 and

A-4 are located within the Baldy Batholith.

<u>Zone-A-1</u> contains our Little Creek & Flat Rock Showing. We conducted one blast using explosives and found three quartz veins 3 inches in width. Two rock samples LD00R127 and LD00R128 were taken. Sample 127 was in the quartz vein (with Po) and sample 128 was in the host granodiorite (with Po). Sample 127 assayed Au 220 ppb, As 35 ppm, Bi 25 ppm, Fe 4.12 %, Mo 5 ppm, Pb 168ppm. Sample 128 assayed Au – 35 ppb. Both sample 127 and 128 were assayed for Pt, Pd, and Rh with negative results.

Moss Mat Anomalous results found are for Ag .6 ppm, As 6 to 28 ppm, Cu 29 to 80 ppm, Fe 3.11% & 3.17%, Mo 3 ppm, Ni 31 to 82 ppm, Pb 14 & 16 ppm Zn 96 to 144 ppm.

A till survey was completed (50 metre spacing) between the Little Creek and the Flat Rock Showing (samples #LD00T87 to LD00T112). Sample numbers LD00T87-LD00T89 and LD00T107-LD00T110 we assayed with no anomalous numbers. The till collected was generally sandy. In general terms, sandy soils are not as reliable as finer grained basal till soils therefore, a number of samples were not assayed.

We would like to do additional sampling and trenching in this area in 2001.

Zone A-2 one Moss Mat with anomalous Cu of 35 ppm.

Zone A-3 Two Moss Mats, one Rock and One Till sample showed anomalous results for Au, Ag, As, Ba, Bi, Ca, Cu, Pb and Zn. The rocks in this area are Diorite and Granodiorite with large Phenocrysts.

The best results were from till sample LD00T125 which returned the following values: Au -5ppb, Ag -1.0 ppm, As - 82 ppm, Ba -180 ppm, Bi - 8 ppm, Pb - 86 ppm, Zn - 172 ppm. The Ag, As, Bi, Pb, and Zn values are significant because there above the 90 percentile scores based on the Regional Till Survey results. Hand trenching and sampling has been scheduled for summer 2001.

Zone A-4 six Moss Mats showed anomalous results. Sample LD00M66 contained Ga 20 ppm. A number of samples returned anomalous results fro Co 14 to 38 ppm, Bi 2 to 6 ppm, Mo 3 to 16 ppm, Sb 2 ppm, Pb 16 to 28 ppm. The rocks in this area are Diorite and Granodiorite with large Phenocrysts. We black lighted the area between 7.5 km and 16 km (sample locations LD00M62 and LD00T60). Specks of blue sheelite and yellow (unknown). The sheelite was not of the same quantity found at the water tank showing by Camille Berube.

Zone A-5 one Moss Mat turned up As 68 ppm, Ba 440 ppm, Co 40 ppm, Cu 40 ppm, Fe 4.89%, Mn >10000 ppm, Mo 4 ppm, Ni 44 ppm, Pb 14 ppm, Sb 2 ppm and Zn 124 ppm.

The Lucky Bear Claims were featured in a publication by M. S. Cathro & D. V. Lefebure titled "Several New Plutonic-related Gold, Bismuth and Tungsten Occurrences in Southern British Columbia".

Several New Plutonic-related Gold, Bismuth and Tungsten Occurrences in Southern British Columbia

By M.S. Cathro and D.V. Lefebure

INTRODUCTION

Exploration interest in plutonic-related gold deposits in the Cordillera was initially sparked in the 1990s by the discovery and development of the Fort Knox bulk tonnage gold mine located near Fairbanks, Alaska. It has been rejuvenated by the discovery of the high-grade Liese Zone gold deposit (Smith et al., 1999) on the Pogo property in east-central Alaska, with a published resource of 8.89 million tonnes grading 17.83 g/t Au (Teck Corporation Annual Report, 1999). These deposits are part of the "Tintina Gold Belt" and are associated with mid-Cretaceous granitoid rocks of the Tombstone Plutonic Suite. They have a metal assemblage of gold-bismuth-tungsten-arsenic-tellurium-(molybdenum-antimony) and are considered to be plutonic- or intrusion-related deposits, as described in recent review papers by McCoy et al. (1997), Poulson et al. (1997), Thompson et al. (1999), and Baker et al. (submitted).

Recent prospecting in the Omineca Belt in southern British Columbia has identified several new plutonic-related gold, bismuth and tungsten occurrences which exhibit similarities to the well studied deposits in Alaska and the Yukon. The potential for plutonic-related gold-quartz veins in B.C. has been discussed by Lefebure and Cathro (1999) and Logan *et al.* (2000) and a compilation map of exploration indicators for these types of deposits was prepared by Lefebure *et al.* (1999).

The showings described here are at an early stage of exploration, with only limited surface mapping, trenching or drilling completed. This paper provides short descriptions, based on brief field visits, of the local geology and exploration history of the showings, along with multi-element geochemical data from grab or chip samples collected by the authors or compiled from other sources. More detailed studies of specific occurrences have been started and the initial results are reported by Logan (this volume), Logan and Mann (2000a) and Logan and Mann (2000b). The results of orientation geochemical surveys conducted near several of the showings are reported by Lett and Jackaman (this volume).

REGIONAL GEOLOGY

The Omineca Belt is a belt of metamorphic, plutonic and sedimentary rocks which separates Proterozoic and Paleozoic sedimentary rocks of the North American miogeocline from Paleozoic and Mesozoic accreted terranes to the west (Monger *et al.*, 1982). The belt includes portions of allochthonous terranes and the North American Terrane but is mainly comprised of paraautochthonous terranes such as the Kootenay, Barkerville, Nisling, and Yukon-Tanana Terranes (Monger and Berg, 1984). It has a complex metamorphic, structural and intrusive history which records pre-Paleozoic rifting and deformation, Paleozoic rifting, Devono-Mississippian island arc magmatism, Early-Middle Jurassic to Eocene compression and obduction related to accretion of the Intermontane Superterrane, and Eocene uplift and extension (Monger *et al.*, 1982, Parrish *et al.*, 1988, Parrish, 1995).

The Omineca Belt in southern British Columbia is comprised of Proterozoic metasedimentary rocks of the Windermere and Purcell Supergroups and Proterozoic and Paleozoic metasedimentary rocks of the Kootenay Terrane. The Omineca Belt here also includes several metamorphic core complexes, such as the Shuswap, Monashee, Okanagan and Valhalla complexes.

Eocene extension in southern British Columbia resulted in exhumation of high-grade metamorphic rocks in domal culminations, such as the Shuswap metamorphic complex, which are bounded by low- to moderate-angle, outward-dipping faults including the Okanagan, Adams-North Thompson and Columbia River-Slocan fault systems (Figure 1, Parrish et al., 1988; Johnson, 1994). The Shuswap metamorphic complex has been traditionally understood to include those rocks in the sillimanite zone of regional metamorphism (upper amphibolite facies) as shown on Figure I (Okulitch, 1984). Brown and Carr (1990), however, proposed that the term Shuswap complex be used to refer to rocks that lie in the footwall of Eocene extensional faults, which include the Okanagan Valley and Adams-North Thompson faults shown on Figure 1. Johnson (1994) proposed that mylonitized leucogranites of the Pukeashun suite represent the left-stepping "Shuswap Lake transfer zone" which connect the Okanagan- and Adams-North Thompson fault systems.

Granitoid intrusive rocks in the southern Omineca Belt are very common and are mainly Devono-Mississippian, Early Jurassic, Middle Jurassic, middle Cretaceous and Eocene in age. The Middle Jurassic granitoids range in composition from quartz diorite to tonalite to granite, and are thought to have formed as part of a magmatic arc complex formed during accretion and subduction of allochthonous oceanic terranes (Brandon and Smith, 1994). Mid-Cretaceous intrusions (ca. 100 Ma) are mainly metaluminous to weakly peraluminous hornblende-biotite granites and strongly peraluminous two-mica granites which probably formed by melting of basement gneisses and metapelites in response to crustal thickening (Brandon and Smith, 1994). Trace element plots are indicative of within-plate tectonic settings for inboard intrusions, and volcanic-arc settings for some of the others, such as the Baldy batholith (Logan, this volume).

BALDY BATHOLITH AREA OCCURRENCES

Numerous mid-Cretaceous granitic plutons of the Bayonne suite intrude the Omineca Belt in southern B.C. One of the larger of these is the east-trending Baldy batholith (Figure 1), a multiphase, mid- to Late Cretaceous granitic batholith which intrudes oceanic rocks of the Fennell Formation (Slide Mountain Terrane) and Neoproterozoic to Paleozoic metasedimentary and metavolcanic rocks of the Eagle Bay Assemblage (Schiarizza and Preto, 1987), part of the Kootenay Terrane. Radiometric age dating of the batholith has given a range of 99 +/- 5 Ma to 106 +/- 5 Ma by K-Ar methods, and 115.9 +/-4.6 Ma by U-Pb methods (summarized by Logan, this volume). Mapping by Logan and Mann (2000a) identified two compositionally similar, but texturally distinct granite phases in the western 2/3 of the batholith, a potassium-feldspar megacrystic hornblende-biotite granite to granodiorite and an equigranular biotite monzogranite. The eastern third of the batholith is predominantly a leucocratic biotite-muscovite granite. Biotite-muscovite pegmatite and aplite dikes cut all the phases (Logan this volume).

South of the main Baldy batholith, between East Barriere and Adams Lake, is an irregular body comprised of hornblende porphyry monzodiorite, biotite-hornblende-epidote quartz monzonite, biotite granite and quartz monzodiorite. It has irregular contacts and intrudes Devono-Mississippian orthogneiss, micaceous quartzite, grit, mica schist, gneissic units containing sillimanite, staurolite, biotite and hornblende assemblages, calc-silicate gneisses and rusty-weathering migmatites (Schiarizza and Preto, 1987; Logan and Mann, 2000a). The southeastern-most apophysis, named the Honeymoon Bay stock (Logan and Mann, 2000a), is comprised mainly of biotite quartz monzodiorite with sparse potassium feldspar megacrysts. Petrographic work by Logan (this volume) suggests that the Honeymoon stock formed at high pressure (>8 kbars) under fairly oxidizing conditions, based on the mineral assemblage epidote, quartz, plagioclase, potassium feldspar, hornblende, biotite, sphene and magnetite.

Cam-Gloria (Honeymoon)

The Cam-Gloria gold prospect (MINFILE 82M 266) is located three kilometres west of Adams Lake (Figure

1). The property was staked by prospector Camille Berubé in spring, 1997 following his discovery of a large auriferous quartz vein on a logging road (Cathro, 1998; Lett et. al, 1998). He was following up a British Columbia government till geochemical release by Bobrowsky et. al (1997) which showed two sample sites with 215 and 43 ppb gold values, located approximately 300 metres northeast and 1200 metres east of Cam-Gloria, respectively. Berubé optioned the property to Teck Corporation in early 1999. During the summer, Teck staff completed surface mapping, geophysics and excavator trenching. They also drilled 7 holes totaling 835.9 metres in the fall.

The main quartz vein is up to 7.3 metres in width, but locally pinches out or is missing. It occurs within a 35 to 40 metre wide zone of alteration, quartz veining, quartz breccia and minor fault gouge. This zone strikes for 700 metres northeasterly (025 to 045 degrees) and dips steeply northwest (45 to 70 degrees). Drilling has shown that two to three additional large quartz veins (>1 metre wide) also occur within the zone. Subparallel (possibly sheeted) quartz veinlets up to 10 centimetres wide have been encountered over a width of 20 metres in the footwall of the main vein in one drillhole. A second, parallel alteration zone with a narrow quartz vein has been discovered by trenching in one location about 100 metres northwest of the main zone (Randy Farmer, personal communication, 1999). Weak to moderate, pervasive sericite and clay alteration has affected feldspar and mafic minerals in the host quartz monzodiorite. In addition, some veins have narrow (2-5 cm) biotite and k-span selvages.

The veins typically contain 1 to 5 percent, coarse-grained sulphides, comprising mainly pyrite and pyrrhotite with traces of galena, chalcopyrite, sphalerite and arsenopyrite (Photo 1). Pegmatitic cuartz and plagioclase crystals were noted in the main ven in one of the deeper drill hole intersections. Pale green fluorite is present locally in veins in the footwall of the main vein, as

Photo 1 Drill core from Hole CG 99-01, Main vein, Cam-Gloria prospect. The grey and white banded material at 44.8 metres is brecciated quartz and fine grained sulphides at the upper (hangingwall) contact. Coarse-grained white quartz is below and sericitized quartz monzodiorite is above.

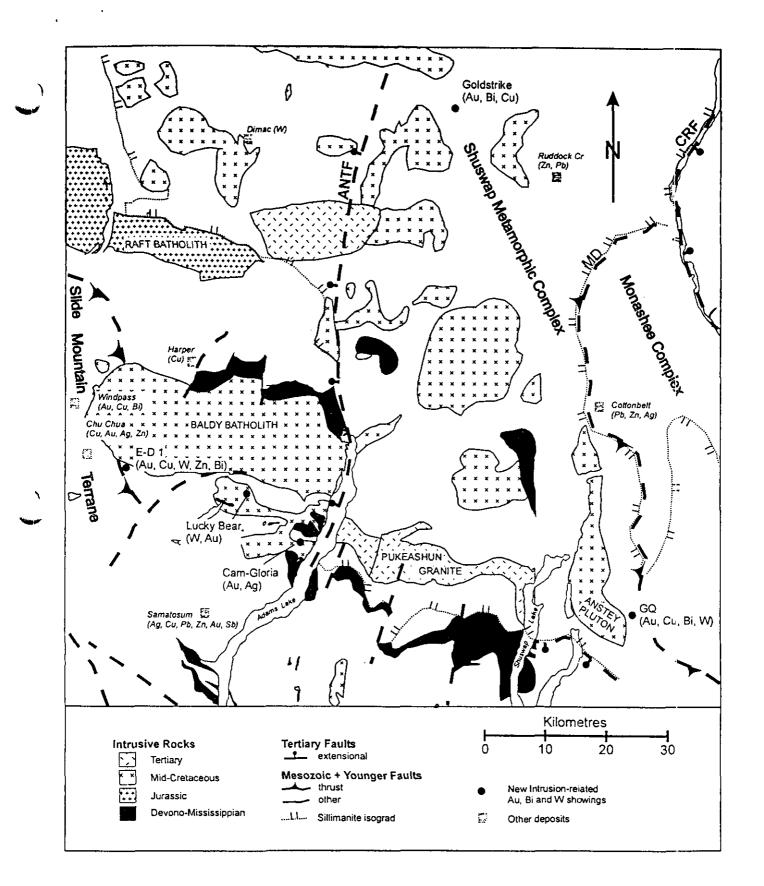


Figure 1. Generalized geology of the Shuswap metamorphic complex and adjacent areas (modified after Wheeler and McFeely, 1991) showing locations of new intrusion-related gold prospects and granitoid intrusions. Adams-North Thompson fault (ANTF), Monashee decollement and Columbia River fault are after Parrish *et al.* (1988) and Johnson (1994). Sillimanite isograd is after Read *et al.* (1991).

٩,

TABLE 1 SELECTED GEOCHEMICAL ANALYSES OF GOLD, BISMUTH AND TUNGSTEN PROSPECTS IN SOUTH CENTRAL BRITISH COLUMBIA

Property	Showing	Sample #	Au	_	<u>As</u>	81	<u>Co</u>	<u>Cu</u>	Mo	NI	Pb	Sb	Se	Te	w	Zn	Comments
Cam-Gioria	Main vein	97RL33	1112	8.6	27.4	55	3	113	11.6	5	420	3.7	<0.3	3.5	n/a	27.1	Grab by R. Lett, GSB; Au by INA; qu
	Main vein	CAM-1	3746	61.4	87	56	<2	17	<2	≼2	191	<s< td=""><td>n/a</td><td>n/a</td><td>8</td><td>18</td><td>with po, py Grab by T. Höy, GSB; Au by INA; qt</td></s<>	n/a	n/a	8	18	with po, py Grab by T. Höy, GSB; Au by INA; qt
	Main vein	C98-093	10	1.2	31	123	76	794	33	36	60	1.8	0.5	4.1	86	20	with po, py Grab; qlz with po, py
																	arest der market bi
Lucky Bear	Water Tank	C99-052	<5	0.2	<5	205	14	30	24	23	18	10	n/a	1.2	4368	1515	Grab; float; gamet-bt-trem;tz skam with 1% scheelite
	Little Creek		20	<0.2		5	7	18	2	7	6	<5	n/a	8.0	<1	237	Chip; 0-2 m; sheeted qtz vr.s in gd; trace po and scheelite
	Little Creek	C99-060	20	<0.2	<5	<5	6	22	3	6	6	<5	r/a	1.3	8	95	Chip; 2-4 m; sheeted qtz vr s in gd; trace po and scheelite
	Little Creek	C99-061	15	<0.2	10	15	8	23	3	9	6	10	r/a	1.8	<1	95	Chip: 4-6 m; sheeted qtz vr s in gd; trace po and scheelite
	Little Creek	C99-062	370	<0.2	<5	35	8	22	3	7	8	<5	rva	2.5	8	87	Chip; 6-8 m; sheeted qtz vr s in gd; trace po and scheelite
	Little Creek	C99-063	5	<0.2	5	10	9	25	3	9	8	<5	n/a	1.2	<1	129	Chip; 8-10.25 m; sheeted q z vns in gd; trace po and scheetite
	Fiat Rock	C99-064	10	<0.2	<5	25	1	46	4	3	<2	<5	n/a	0.3	1480	46	Grab; dump; qtz vn with 1-3% po ar trace scheelite
E-D 1	Gossan 1	C98-092	3300	6	4	262	63	1146	26	24	<2	1.8	15	3.1	1487	1320	Grab of limonitic po-cpy manto
	Gossan 1	ED-1	3697	8.7	<5	377	74	1348	2	42	14	5	n/a	n/a	54	55	Grab of limonitic po-cpy manto by T Höy; Au by INA
	Gossan 1	M1F	2340	7	<5	260	48	1105	19	17	<2	<5	r/a	n/a	280*	1537	Grab of limonitic po-cpy manto by F C. Wells
Goldstrike	#1 (Bizar)	99607	6000	2.2	<2	300	79	4660	5	60	2	<2	r√a	rva	<10*	24	DDH 99-02, 59.2-59.4 m; 20 cm qtz vn with 2-3% po, 1% cpy, 2% plag,
	#1 (Bizar)	C98-096	11690	2.2	36	769	318	1939	30	292	<2	2	4.8	1.5	62	24	1% green sericite and trace pink Grab; 5 cm qtz-po-py-cpy vn
	#t (Bizar)	C98-097	56800	5.4	6	5271	151	3423	13	140	<2	0.6	11.6	11.8	18	16	Grab; 20 cm wide qtz-po-py-cpy vn, concordant with foliation
	#1 (Bizar)	C99-098	570	<0.2	6	70	6	169	2	8	4	0,4	04	0.3	<2	8	Grab; micaceous quartzite with trac FeOx on sheeted fractures
	#2	LBR-99-06	110	<0 2	>10000	<2	44	23	10	20	22	24	n/a	n/a	<10*	<2	Grab by L. Lindinger, 25 cm qtz-asp
	#3 (Road)	LBR-99-32	1710	0.6	466	79	28	361	8	54	<2	2	r/a	n/a	<10 *	37	Grab by L. Lindinger; float; bt schist with trace-2% qtz, po and cpy
GQ	sw	WP 023R	1580	1,3	Э	225	61.1	305	2.4	36.8	n/a	0.1	rva	11.2	33.6	72	Grab by W, Gruenwald, 10 cm quar
	sw	C99-047	5	<0.2	<5	20	18	44	<1	25	16	<5	n/a	1.7	<20	42	po-py-cpy vein Grab; po-bearing qtz-bt schist
	sw	C99-048	1730	1.6	<5	235	50	389	7	24	40	<5	n/a	5.7	<20	45	Grab; 10 cm qtz-po-py-cpy vn
	SE	WP 025R	115	1.85	<1	11 2	126	992	2.8	43.4	n/a	Q.1	n/a	1.35	288	106	Grab by W. Gruenwald; qtz-calc-
	\$E	WP 029R	6	<0.2	<1	<2	36	390	3	26	n/a	n/a	n/a	<0 5	1210	90	silicate-po vivilens adjacent () Grab by W. Gruenwald; calc silicat
	SE	C99-045	15	84	5	10	13	47	2	22	34	30	r/a	0.3	<20	35	po vollens adjacent to pegmittite Grab; po-bearing qtz-bt schiltt
	SE	C99-058	15	<0.2	<5	<5	16	57	17	33	<2	<5	nia	1.2	37	340	Grab; 10 cm qtz-po layer at contac
	NE	WP 032R	1250	2.1	1	91 2	47.4	510	3.4	33.8	n/a	0.2	n/a	7.25	251	126	between pegmatite and gneiss Grab by W. Gruenwald, 30 cm po- gtz vein/tens
	NE	C99-046	1150	4.2	<5	45	73	734	14	45	12	<5	n/a	6.2	70	40	Grab; 30 cm po-py-qtz vein/lims

٠

located some 100 to 200 metres east of the Cam-Gloria discovery outcrop. Limited sampling suggests that the latter are apparently gold-poor, although they do contain locally anomalous Bi (to 1380 ppm), Cu (1198 ppm) and W (48 ppm). In addition, float boulders of garnet-pyroxene skarn with traces of pyrrhotite and weakly anomalous Cu and W values have been found on the road about 750 metres northeast of the Main vein.

Surface grab samples of the main vein have returned gold values varying between trace amounts up to 26.66 g/t (Table 1, Camille Berubé, personal communication, 1997). The vein is also moderately anomalous in Ag, Bi, Cu, and Pb and weakly anomalous in As, Mo, Sb, Te, and W. The gold content is highly erratic, but higher values appear to be associated with galena, fine-grained, bluish-grey sulphides, and local, discordant gouge or brecciated zones. The assay results of the drilling program have not been released by Teck Corporation.

Lucky Bear

)

))

Prospecting by Camille Berubé and Dave and Len Piggin has located several new small W-Bi-Zn, W and W-Au showings on the Lucky Bear claim group (Figure 1) near East and North Barriere Lakes. The showings occur about seven kilometres northwest of Teck's Cam-Gloria showing, and are within, or adjacent, to the mid-Cretaceous Baldy batholith.

The "Little Creek" W-Au showing (Figure 1, UTM 11 0314393E 5688542N) is hosted by sericite- and biotite-altered granodiorite. Steeply dipping, north-trending, sheeted quartz veinlets range up to 10 centimetres in width in a 10 metre-wide blasted roadcut exposure (Photo 2). The veinlets contain minor sericite and pyrrhotite. Ultraviolet lamping has identified scheelite grains up to 1.5 centimetres long which occur in scattered patches in the veins, and selected samples collected by the owners have returned up to 6.15 % W (D. and L. Piggin, written communication, 1999). One chip sample by the senior author contained 370 ppb Au over 2 metres;

Photo 2. Sheeted quartz-scricite-pyrrhotite-scheelite veinlets in mid-Cretaceous granodiorite, "Little Creek" showing, Lucky Bear claims.

Geological Fieldwork 1999, Paper 2000-1

(Table 1).

1

I

ţ

C

i

F (

k

g

pi

se

si;

(S

The

rock

by re

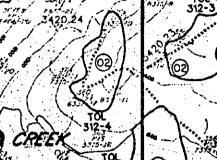
Approximately 500 metres to the east at the "Flat Rock" W showing is an irregular, half-metre-wide quartz vein with 1-3% pyrrhotite and traces of chalcopyrite and scheelite. The vein is hosted by quartz-feldspar-biotite gneiss, part of the Devonian Orthogneiss (Schiarizza and Preto, 1987). A grab sample of the vein taken by the author ran 1480 ppm W and selected samples taken by the owners ran up to 0.39% W, 80 ppb Au, and 135 ppm Bi (L. and D. Piggin, written communication, 1999).

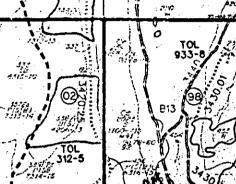
Scheelite-bearing pegmatite and garnet-tremolite-biotite-quartz skarn boulders ranging from 30 centimetres to 1 metre in diameter are found 2 kilometres to the northeast of the Little Creek showing in the "Water Tank' area (UTM 11 0314806E 5690793N). A grab sample of one of the skarn float boulders returned 0.437 % W, 205 ppm Bi and 1515 ppm Zn (Table 1). Although this mineralization has not yet been found in out 46.4

(((
No.	Description
1	KEG Field trip - Rae Gold
2	Gold Panning field trip with Camille Berube, Dave and Len's Children
3	KEG field trip - Siwash (Len third from left)
4-6	Zone B-3 - Head 1 Claims - Bug Flats and Blueberry Lane
7-8	Zone B-3 - Head 1 Claims - Access road to .1 Km from Bug Flats location for samples LD00R116 to LD00R118
9	Zone A - East of Lucky Bear #15 - Quartz Breccia sample location LD00R138
10-14	Zone B-3 - Head 1 Claims - Blueberry Lane just before cut block shown in pictures #4-6
10	Zone B-3 - VMS Rock - Sample LD00R81 Au-5 ppb, Ag .8 ppm, Co 54 ppm, Cu 499 ppm, Mo 9 ppm.
11	Zone B-3 - This picture shows how we mark our sample locations VMS Rock - Sample LD00R82
12	Zone B-3 - Sample location LD00R81 in the foreground right side, LD00R82 ribbon in the middle of picture
13	Closeup of sample location LD00R82
14	Closeup of sample location LD00R84. Au 5 ppb, Ba 550 ppm, Bi 5 ppm, Fe 4.28%.
15	One of our two over night camping trips. We stayed at East Barrier Lake Forestry Campground
16-18	Zone A - Lucky Bear #14 - sample location LD00R126
19	Zone A - Lucky Bear #17 Claim - Samples LD00R121 - LD00R125 taken just below this old cut block
20	Zone A - Lucky Bear #17 Claims - sample location LD00R121
21	Zone A - Lucky Bear #17 Claims - sample location LD00M124 - Dave among the Devils Club
22	Zone A - East of Lucky Bear #15 - Sample location LD00T60 taken from bank right side of photo and sample
	LD00M62 taken in creek to the right of the culvert post
23	Zone A - East of Lucky Bear #15 - Red Soil sample location LD00T60
24	Zone A - East of Lucky Bear #15 - Typical soil color
25	Zone A-1 Lucky Bear #18 - Typical till survey pit LD00T87 to LD00T112 as suggest by Mike Cathro
26	Zone B-1 - Spap #2&4 - Len holding samples from Adams Lake West Road 41.3Km
27-30	Zone B-1 - Spap #2 - Typical vegetation encountered.
28	Zone B-1 - Spap #2 - Sample LD00M39 was taken from Quartz vein 209M up the creek
	Creek flows over top of Quartz Vein
31	Zone A-1 - Lucky Bear #18 - Little Creek before the blast

(((
Picture	
No.	Description
32	Zone A-1 - Lucky Bear #18 - Little Creek checking the explosives
33	Zone A-1 - Lucky Bear #18 - Little Creek after the blast
34	Zone A-1 - Lucky Bear #18 - Little Creek after the blast. Dave showing location of samples LD00R127, LD00R128

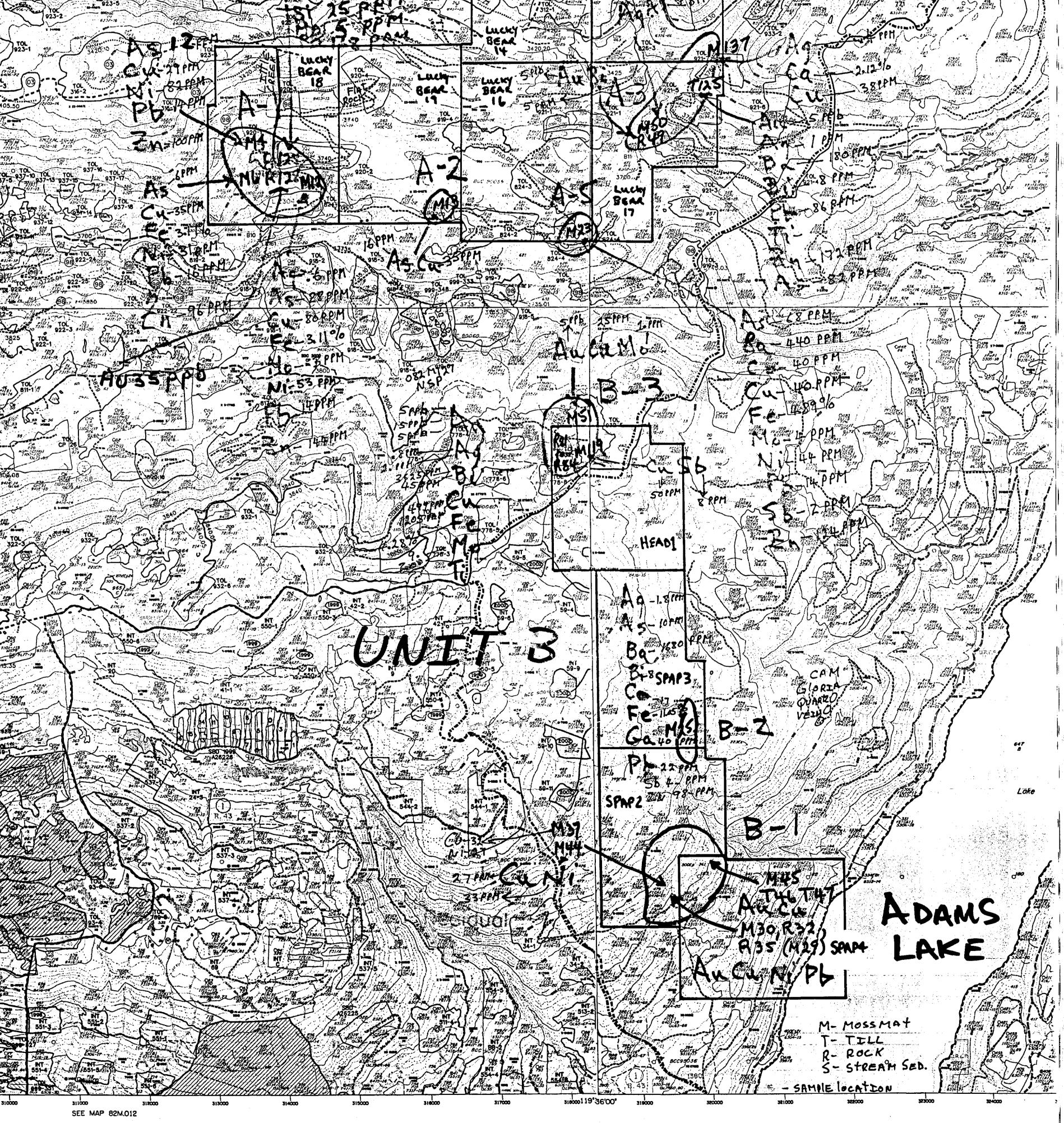
35 Zone A-1 - Lucky Bear #18 - Little Creek after the blast. Close up of sample locations LD00R127,LD00R129.

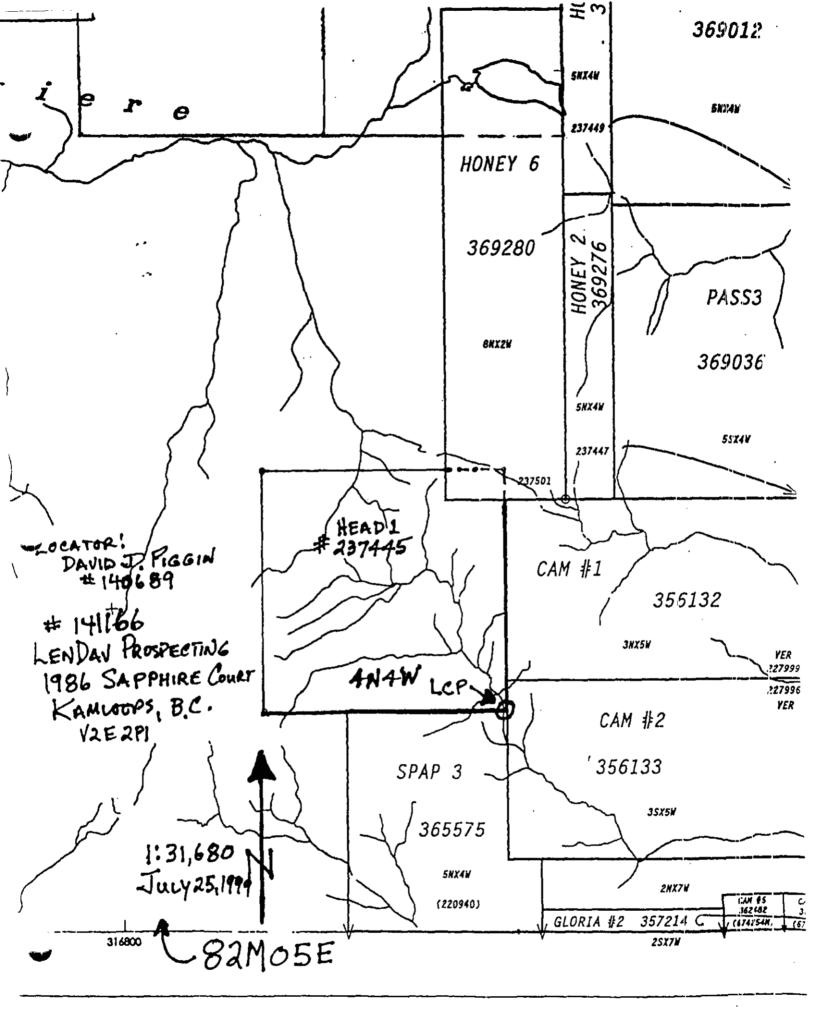

82M.032


119"36'00"

ROPORT SECONS

JEEP. PLATEAU





SEE MAP 82M.042

60-22 p= 118

11.03

The mineral tenure information at this site was last updated on the morning of November 12, 2000.

Tenures with Claim Name = Head1:

There was 1 result.

Tenure	Claim	Owner	Map	Work		Mining	Units Tag
Number	Name	Number	Number	Recorded To		Division	Number
370430	HEAD	141166 100%	082M05E	20010725	Good Standing 20010725	8 Kamloops	16 237445

Your use of this site is subject to this disclaimer.

To download this information to a comma delimited text file click here.

Shortcuts: [Main Menu] [Free Miner] [Tenure Number] [Owner] [Locator] [Map] [Claim Name] [Tag Number] [Lot]

Last date page updated November 12, 1999.

•Top •Copyright •Disclaimer •Privacy

http://www.em.gov.bc.ca/cgi-shl/dbml.exe?template=/tn/PubTen&what=sclaim

Feedback

The mineral tenure information at this site was last updated on the morning of November 12, 2000.

Tenures with Claim Name = Spap:

There were 3 results.

Tenure Number	Claim Name	Owner Number	Map Number	Work Recorded To	Status	Mining Division	Units	Tag Number
365574	SPAP 2	141166 100%	082M04E	20010725	Good Standing 20010725	8 Kamloops	20	220941
<u>365575</u>	SPAP 3	141166 100%	082M04E	20010725	Good Standing 20010725	8 Kamloops	20	2:20940
364752	SPAP4	141166 100%	082M04E	20010725	Good Standing 20010725	8 Kamloops	20	22:0939

Your use of this site is subject to this disclaimer.

To download this information to a comma delimited text file click here.

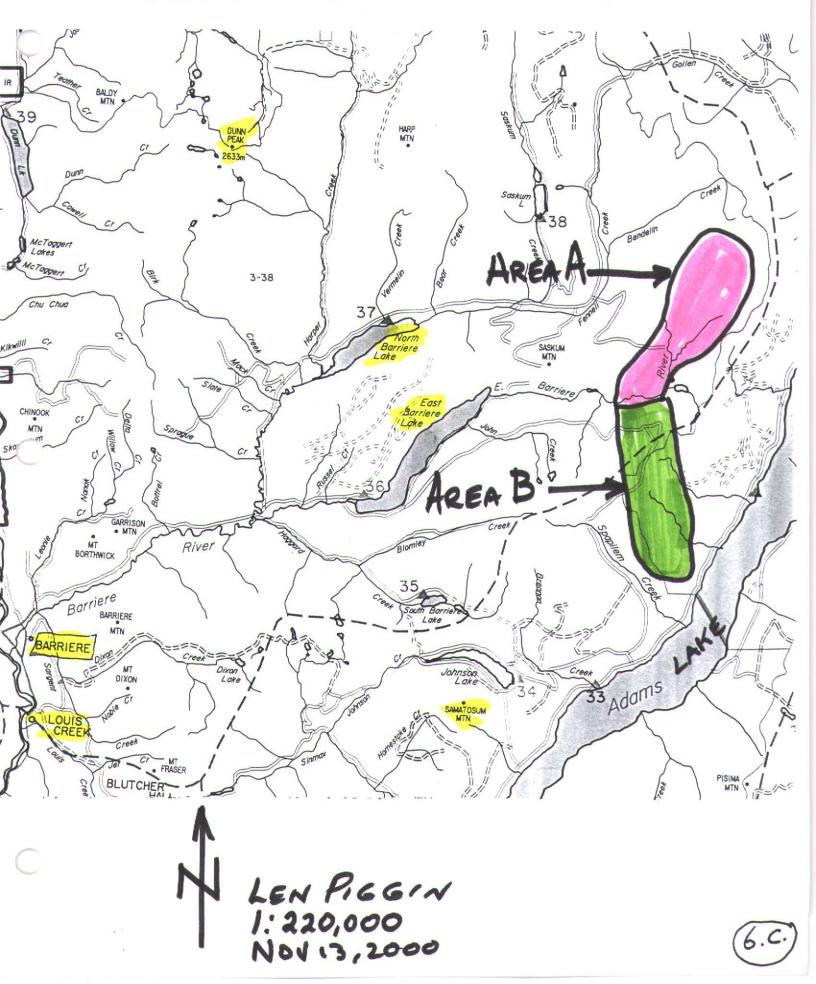
Shortcuts: [Main Menu] [Free Miner] [Tenure Number] [Owner] [Locator] [Map] [Claim Name] [Tag Number] [Lot]

Last date page updated November 12, 1999.

•Top •Copyright •Disclaimer •Privacy

•Feedback

Prospectors Training and Experience


Leonard P. Piggin, Free Miner # 121423

- Director of the Kamloops Exploration Group (KEG) 1999/2000, member of BCYC of Mines
- Three years experience as prospector, started in 1998, Prospectors Assistance Grant 2000/2001 #P73,
- Twenty years experience fishing and hunting in the Kamloops area
- Diploma in Business Administration from U. C. C. (2 year program)
- Completed Canadian Securities Course 1982, and currently working on Certified Financial Planners Courses, currently working on the Certified Risk Managers Course (University of Toronto).
- Marketed the Cam/Gloria Claims for Camille Berube to Teck Corporation (MINFILE # 082M-266)
- Assisted David J. Piggin in the completion of his Prospectors Grant 98/99 P94.
- Prospecting Course UCC Fall 1997 put on by the Kamloops Exploration Group
- KEG Workshop April 1998 in Kamloops, including the field trip to Tranquille River. Attended KEG Workshop June 2000 Samatosum Mtn and September 2000 at Siwash Property (Fairfield Minerals)
- Till Sampling Workshop September 25, 1998 sponsored by KEG and G.S. Branch
- Geophysics Workshop November 24, 1998 Dr. Jennifer Levett, Placer Dome; KEG workshop
- Attended the January 1999 and January 2000 Exploration Roundup in Vancouver BCYCM. Had a prospectors booth for the Cam/Gloria Claims, NORTH Claims, LUCKY BEAR Claims, SPAP/HEAD Claims and boldly marketed the property to all attendees. Attended technical sessions.
- Attended the KEG Workshop in April 1998, 1999, 2000. Attended the Intrusive Gold Deposit Workshop 1999.
- Level II Industrial First Aid Ticket

David J. Piggin, Free Miner # 140689

- Member of the Kamloops Exploration Group and the BCYC of Mines.
- 27 years experience in field work as Forest Technician and Registered Professional Forester, with extensive field knowledge of the Kamloops mining area
- 27 years experience implementing and administering field surveys to a scientific standard
- Three years experience as prospector starting in 1998
- Successfully completed Prospectors Grant 98/99 P94, and worked with Len on Grant 2000/2001 #P73
- Marketed the Cam/Gloria Claims for Camille Berube to Teck Corporation (MINFILE 082M0-266)
- Prospecting Course UCC Fall 1997 put on by the Kamloops Exploration Group
- Attended KEG Workshop April 1998, April 1999, April 2000 in Kamloops
- Till Sampling Workshop September 25, 1998 sponsored by KEG and Geological Survey Branch
- Geophysics Workshop November 24, 1998 Dr. Jennifer Levett, Placer Dome; KEG workshop
- Attended the January 1999 and January 2000 Exploration Roundup in Vancouver. Had a prospector's booth for the Cam/Gloria Claims, NORTH Claims, LUCKY BEAR Claims, SPAP/HEAD Claims and boldly marketed the property to all attendees. Attended technical sessions.
- Attended the Tranquille field trip, Afton Mines field trip, and the Intrusive Gold Deposit Workshop. Total training 3 days. Attended the KEG workshops at Samatosum Mtn (June 2000), and Siwash/Big Kid September 2000.
- Advanced Courses in Forest Surveying, Forest Hydrology, Forest Soils, Forest Roads and Transportation, Forest Mensuration, Photogrammetry, Biometry and Statistics, Calculus, Linear Algebra, Physics. These courses are related to prospecting and exploration.
- Certified Fire Boss B on Wildfires
- Occupational First Aid Level #1 (WCB) with Transportation Endorsement

OVERVIEW MAP- PROSPECTORS ASSISTANCE GRANT#2000/2001 P73

PROSPECTORS ASSISTANCE PROGRAM: 2000/2001 P/3 - LEONARD P. PIGGIN # 121423																	
	ICP	Au	Ag	As	Ba	Bi	Ca	Co	Cu	Fe	Ga	Mn	Mo	Ni	Pb	Sb	Zn
AREA		ppb	ppm	ppm	ppm	ppm	%	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm
B1	LD00M29	<5	<0.2	<2	150	2	0.55	11	25	2.32	<10	610	2	27	16	<2	58
B1	LD00M30	40	<0.2	2	170	<2	0.76	9	30	1.99	<10	540	5	28	16	<2	56
B1	LD00R35	<5	<0.2	<5	30	15	3.25	24	32	4.84	na	879	5	41	16	5	75
B1	LD00R32	<5	<.2	<5	615	20	3.2	33	36	5.18	na	588	<1	77	26	20	56
B1	LD00M37	<5	<0.2	4	120	<2	0.63	11	32	1.83	<10	510	2	27	12	2	48
B1	LD00M44	<5	<0.2	2	170	<2	0.93	8	27	1.68	<10	620	1	33	12	<2	56
B1	LD00M45	<5	<0.2	2	260	<2	1.98	6	305	1.32	<10	390	3	21	10	<2	28
B1	LD00T47	5	<0.2	<5	75	<5	0.20	7	83	1.44	na	126	<1	6	4	<5	<1
B1	LD00T46	10	<0.2	<5	90	<5	0.21	8	66	1.66	na	145	<1	7	6	5	<1
B2	LD00M25	<5	1.8	10	1680	8	1.2	17	9	11.05	40	>10000	1	17	22	4	98
B 3	LD00M119	<5	<0.2	2	210	<2	0.95	10	50	1.37	<10	2740	1	7	8	8	54
B 3	LD00M51	5	<0.2	<2	180	<2	0.53	8	25	1.49	<10	2620	1	10	6	<2	74
B3	LD00R81	5	0.8	<5	45	<5	0.14	54	499	>10	na	188	9	8	28	<5	152
B 3	LD00R83	15	2.0	<5	70	3625	0.02	58	1205	>10	na	109	20	8	34	<5	12
B 3	LD00R84	5	<0.2	<5	550	45	1.45	22	49	4.28	na	743	<1	43	10	5	62

PROSPECTORS ASSISTANCE PROGRAM: 2000/2001 P73 - LEONARD P. PIGGIN # 121423

6.0

3. Technical Report **AREA B**

Area B covers the SPAP and Head Claims. This area is located at the contact of the mid-Cretaceous Baldy Batholith, the Devonian Orthogneiss, and the Eagle Bay Assemblage (EBG). Near these contacts the Cam-Gloria showing (MINFILE 82M-266) was recently discovered. The SPAP and HEAD claims cover the west and south boundary of the Cam-Gloria Claim group. The Cam-Gloria was mentioned in the publication by James Logan, David Lefebure, Michael Cathro titled "Plutonic-Related Gold-Quartz Veins and their potential in British Columbia".

Three anomalous areas were found in Area B Head 1 & Spap. We took 29 Moss Mat samples, 14 Rock samples, 2 Till samples and no Stream Sediment samples.

Zone-B 1 is on strike with the Cam-Gloria. This as an area of interest as anomalous Cu results were found by us in 1999 in this zone. We would like to carry out trenching in this area in 2001.

Zone B-2 turned up one anomalous moss mat sample #LD00M25 Ag 1.8 ppm, As 10 ppm, Ba 1380ppm, Bi 8 ppm, Co 17 ppm, Fe 11.05%, **Ga 40 ppm**, Pb 22 ppm, Sb 4 ppm and Zn 98 ppm. The unusual mineral in this assay is the Gallium.

Zone B-3 was found late in our prospecting season. We found several VMS rocks that Teck Corp. assayed for us on Blueberry Lane as follows:

LD00R81: Au – 5 ppb, Ag 0.8 ppm, Cu 499 ppm, Mo 9 ppm. LD00R83: Au – 15 ppb, Ag 2.0 ppm, Bi 3625 ppm, Cu 1205 ppm, Mo 20ppm.

In addition to this just down slope from 81 and 83, LD00M119 assayed had anomolous Cu at 50 ppm. These results make this an interesting prospect, and trenching and sampling will be done in this area in 2001.

Capsule Geology and Bibliography Report

<u>082M 127 NSP</u>

Commodities: CU Latitude/Longitude: 51 17 20 N 119 37 14 W Mining Division: Kamloops NTS: 082M05E UTM: 11 5685213 N 317275 E STATUS: Showing

The area is underlain by probable Lower Cambrian to Hadrynian age Spapilem Creek-Deadfall Creek Succession (unit SDQ Map 56). The rocks consist of quartzite, micaceous quartzite, grit and phyllite, with lesser staurolite-garnet-mica schist, calc- silicate schist and amphibolite. These rocks are cut by Late Devonian orthogneiss (unit Dgn). To the north the rocks are cut by post-tectonic granitic rocks of the Mid-Cretaceous Baldy Batholith. Chalcopyrite occurs as disseminations and in thin quartz stringers parallel to the foliation in quartz-biotite gneiss.

EMPR GEM 1972-89; 1973-115,116 GSC OF 637 EMPR MAP 56 GSC MAP 48-1963

> This Database Last Updated: August 1997. For more information on MINFILE To obtain MINFILE/PC or dataset (no charge) British Columbia Geological Survey Branch B.C. Ministry of Energy and Mines

Ministry of Energy and Mines MINFILE Capsule Geology and Bibliography

MINFILE Home page Main Search <u>Menu</u> Back to Search Results ARIS Home page

Capsule Geology and Bibliography

Previous Hit

Ne EVILLE

082M 266

Name	CAM-GLORIA	Mining Division	Kamloops
Status	Showing	NTS	082M04E NAD 27
Latitude Longitude	51 <u>15 00</u> N 119 32 56 W	UTM	11 5680495 322115
Commodities	Gold Silver Lead Copper Bismuth	Deposit Types	105 : Polymetallic veins Ag-Pb-Zn±Au. 102 : Intrusion-related Au pyrrhotite veins.
Tectonic Belt	Omineca	Terranes	Kootenay.

Capsule Geology	Follow up on anomalous samples from the 1997 Geological Survey Branch's till geochemistry survey release, led to the Cam-Gloria discovery, by Camille Berube in 1998. A large, rusty, auriferous quartz vein contains pyrite, galena and chalcopyrite. The vein, which is up to 10 metres wide and 200 metres in length, is hosted by Cretaceous monzonite of the Baldy Batholith near its contact with gneissic metasediments of the Eagle Bay Assemblage.
	Grab samples taken by BC geologists assayed up to 3.754 grams per tonne gold and 64 grams per tonne silver. Samples collected by C. Berube assayed up to 27.4 grams per tonne gold (Exploration in BC 1997, page 40). The vein also contains anomalous values of bismuth (to 120 ppm), copper (to 794 ppm), lead (to 534 ppm), molybdenum (to 33 ppm), tellurium (to 4.1 ppm) and tungsten (to 86 ppm), and weakly anomalous arsenic (to 35 ppm) (Mike Cathro, personal communication, 1998). Trenching, drilling (7 holes, 836 metres), mapping, prospecting and VLF geophysics were conducted in 1999 by Teck Corporation.
	Quartz veins and alterations were traced over a strike length of 700 metres and a width of 40 metres.

Bibliography	EM EXPL *1997, p. 40 EM FIELDWORK *1999, pp. 209-210 EM INF CIRC 2000-1, pp. 14, 19 EM OF 1997-9
	EMPR OF 1999-3

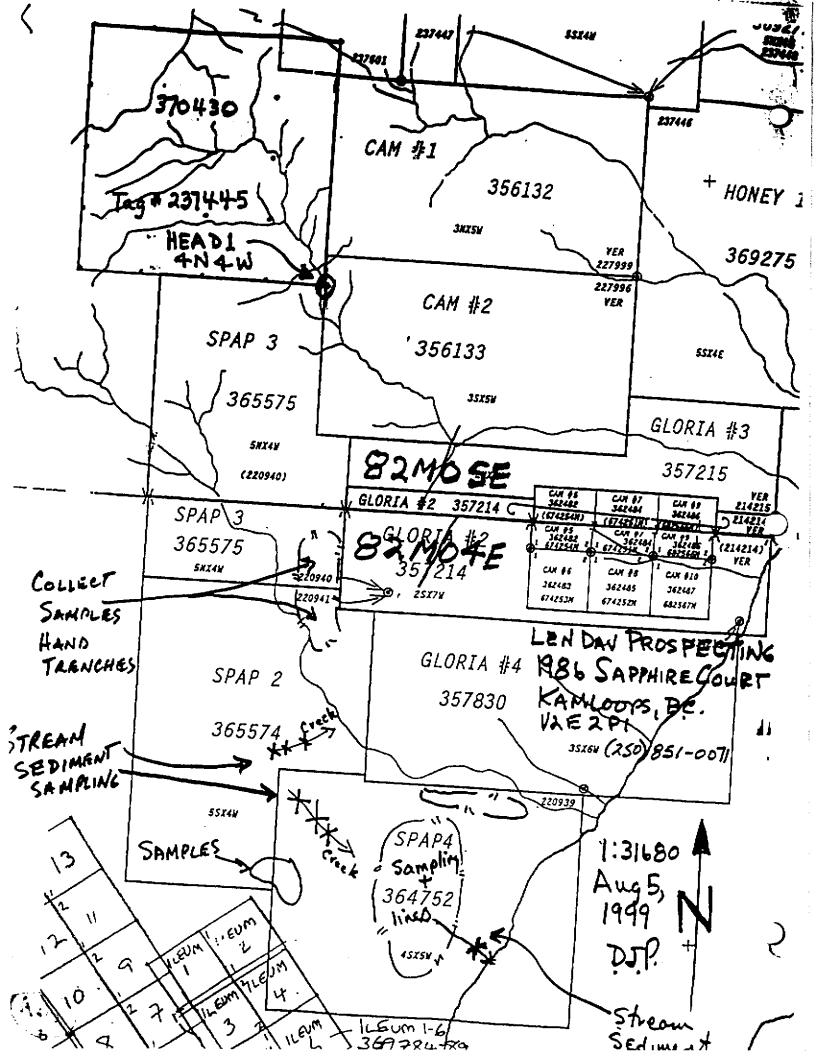
Database last posted: October 31, 2000

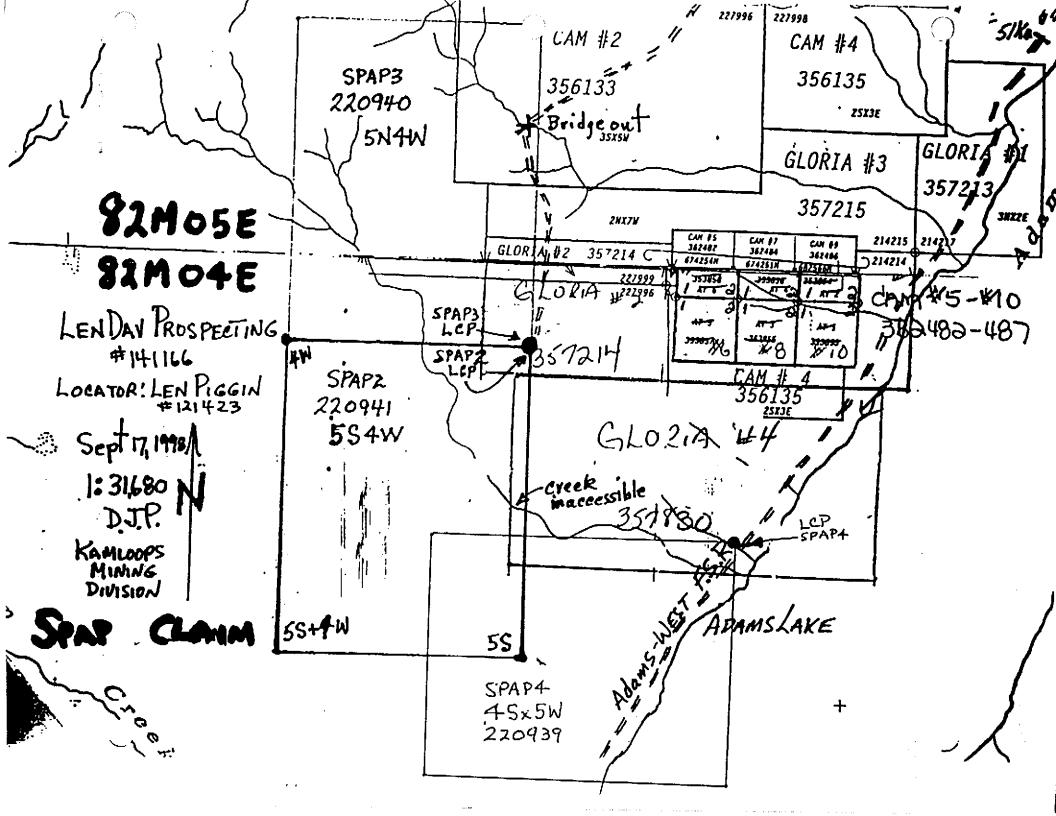
Go to: Main Search Menu. MINFILE Name/No. Search; Commodity/Status/NTS Search; Deposit Type Search; Tectonic Belt/Terrane/Latitude/Longitude Search

MINFILE Home page

http://www.ei.gov.bc.ca/cgi-shl/dbml.../search&mode=capbib&minfilno=082M%20%2026 2000/11/

Capsule Geology and Bibliography Report


<u>082M 127 NSP</u>


Commodities: CU Latitude/Longitude: 51 17 20 N 119 37 14 W Mining Division: Kamloops NTS: 082M05E UTM: 11 5685213 N 317275 E STATUS: Showing

The area is underlain by probable Lower Cambrian to Hadrynian age Spapilem Creek-Deadfall Creek Succession (unit SDQ Map 56). The rocks consist of quartzite, micaceous quartzite, grit and phyllite, with lesser staurolite-garnet-mica schist, calc- silicate schist and amphibolite. These rocks are cut by Late Devonian orthogneiss (unit Dgn). To the north the rocks are cut by post-tectonic granitic rocks of the Mid-Cretaceous Baldy Batholith. Chalcopyrite occurs as disseminations and in thin quartz stringers parallel to the foliation in quartz-biotite gneiss.

EMPR GEM 1972-89; 1973-115,116 GSC OF 637 EMPR MAP 56 GSC MAP 48-1963

> This Database Last Updated: August 1997. For more information on MINFILE To obtain MINFILE/PC or dataset (no charge) British Columbia Geological Survey Branch B.C. Ministry of Energy and Mines


D. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, pages 6 and 7.

SUMMARY OF RESULTS

LOCATION/COMMODITIES

· This summary section must be filled out by all grantees, one for each project area

Energy and Minarals Division

Information on this form is confidential subject to the provisions of the Freedom of Information Act.

Reference Number 2000/2001 P73 MINFILE No. if applicable

Project Area (as listed in Part A) <u>HERD I, SPAP</u> Location of Project Area NTS <u>[1.03]9949E 5378550N</u> Lat <u>51.13'54"N</u> Long <u>119.34'44</u> Description of Location and Access <u>hearing house Creek travelling</u> <u>Casterlyo</u> <u>Che Agote Bay Ford turn left of Lynam Bay Pool claim</u> <u>Start of 46.9 M1 and Heart of 51.2 KM on the Adams Weither</u> Prospecting Assistants(s) - give name(s) and qualifications of assistant(s) (see Program Regulation 13, page 6) First DRVID PIGGIN SEE TAB 6.8.

Main Commodities Searched For AU, Ag, CU, Mo, Ni, Ph, ZN

Known Mineral Occurrences in Project Area <u>CAM/G/ORIA</u> SEE TAB 6.F. 082M 266

WORK	PERFORMED	

WORK FERFORMED	100		
1. Conventional Prospecting (area)	650		
2. Geological Mapping (hectares/scale)	NIL		
3. Geochemical (type and no. of samples)	50		<u></u>
4. Geophysical (type and line km)	NIL		
5. Physical Work (type and amount) $3 \leq 3$	ollpits 1	2MXIMXIM	
6. Drilling (no. holes, size, depth in m, total r	n) / NIL		
7. Other (specify)			

Best Discovery Project/Claim Name AREA "B" HEAD1, SPAP Commodities Au, Aa, As, Ba, Bi, Ca, Co, Fe, Elevation Lea. N. Pb, Sb, ZN Location (show on map) Lat. Long Best assay/sample type SAMPLE LDOOM25, LDOOM30, LDOOR83, LDOOR81 SEE TAB 6.D. Telatzbo conta Description of mineralization, host rocks, anomalies 👗 olly Both 0-TKGT+24e. and queess

FEEDBACK: comments and suggestions for Prospector Assistance Program

D. TECHNICAL REPORT (continued)

REPORT ON RESULTS

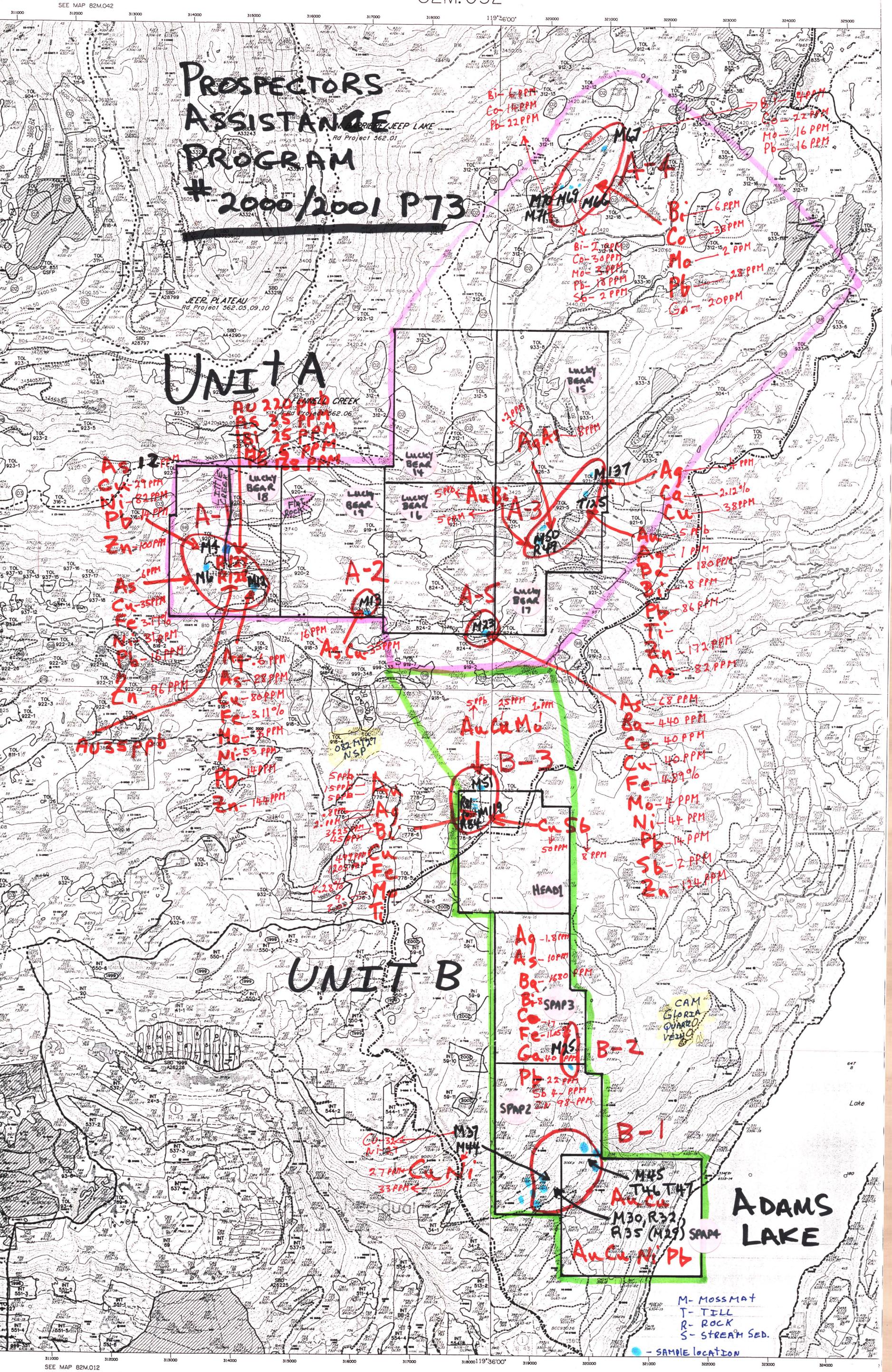
<

- Those submitting a copy of an Assessment Report or a report of similar quality that covers all the key elements listed below are not required to fill out this section.
- Refer to Program Regulation 17D on page 6 for details before filling this section out (use extra pages if necessary)
- Supporting data must be submitted with the following TECHNICAL REPORT or any report accepted in lieu of.

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

Name LEONARD PIGGIN Reference Number 2000/2001 P73

1. LOCATION OF PROJECT AREA [Outline clearly on accompanying maps of appropriate scale.] SEETAB 6.C.


2. PROGRAM OBJECTIVE [Include original exploration target.]

This was not included in our origins area but was added after we met with Cathro on August 16, 2000

3. PROSPECTING RESULTS [Describe areas prospected and significant outcrops/float encountered. Mineralization must be described in terms of specific minerals and how they occur. These details must be shown on accompanying map(s) of appropriate scale; prospecting traverses should be clearly marked.]

SEE TAB 6.D, 6.E, 6.F.

82M.032

00-22 ()