BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2000/2001REPORT #:PAP 00-28NAME:DAN BLOWER

D. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, pages 6 and 7.

SUMMARY OF RESULTS

• This summary section must be filled out by all grantees, one for each project area

Name DAN BLOWER

戀	BRITISH
Ministry	of Energy and Mines
Energy a	ind Minerals Division

Information on this form is confidential subject to the provisions of the *Freedom of Information Act*.

Reference Number Onlas P-121

	Reference Number 00/01 P 1 4-1
LOCATION/COMMODITIES	
Project Area (as listed in Part A) SwIFT R./TESCIN LK.	MINFILE No. if applicable
Location of Project Area NTS 104013 1104N16	Lat 132 00 W Long 59 50 N
Description of Location and Access Lochtich is APRRox II	MATELY 200 KILOMBTERS WELT OF
WATSON LK. YUKON IN THE SWIFT RIVER AREA OF I	NORTHGRN B.C. THE ALASKA HIGHWA?
PROVIDES THE ONLY SIGNIFICANT VEHICLE ACCESS R	
Prospecting Assistants(s) - give name(s) and qualifications of assistant	
KEN BLOWER - EX MINE HANAGER; EXTENSION	MINING + GEOLOGI EXPERIFUCE,
DEL LANOWT - PART TIME PROSPECTOR; SED	ERAL PEARS PROSPECTING EXPERIENCE.
Main Commodities Searched For BASE METALS + Asso	GIATED PRECIOUS METALS
Known Mineral Occurrences in Project Area Copper Associa	TRD MANERAL IN THE ARSENAN'S T
PROSPECT AREA (EAST OF SWIFTLE.) . TUPESTEN + ASSO	GATRO MINERALS IN THE LOGTUNG NINE
AREA (WEST OF LOGSAM CK.). COPPER - GOLD SHOWING (F.I	
WORK PERFORMED	,
1: Conventional Prospecting (area) 2500	
2. Geological Mapping (hectares/scale)	
3. Geochemical (type and no. of samples) Rock Samples August	160 = 50 ; SILT SAMPLES = 13
4. Geophysical (type and line km)	
5. Physical Work (type and amount) N/A	
6. Drilling (no. holes, size, depth in m, total m)	
7. Other (specify)	
Best Discovery	
Duringt/Claim Name Stater A Freise Lie Comme	addition Contant Trust Cat D

Project/Claim Name SwIFT A. [TEILIN LK.	Commodities COPPER ZINC, COLD
Location (show on map) Lat. 131 40' w	
Best assay/sample type <u>Co 5734 PPM</u>	ZN 148 PPM, AU 189 POB.

2

Description of mineralization, host rocks, anomalies <u>SULPHIOR MINERALIZATION</u> WITH BORNITE STAINING IN A COURSE GRAINED GREY + WHITE HOST ROCK. GEOLOGICALLY W.THIN THE BIG GALMON COMPLEX AND AT A CONTACT ZONE BETWEND A CARBONALEOUS SCHIST AND QUARTZITE ROCK TYPE AND A CRINKLE CHERT ROCK TYPE.

.

· · · ·

. .

FEEDBACK: comments and suggestions for Prospector Assistan	ce Program,
. T. BELIEVE . THIS ASSISTANCE PROGRAM	15. A GOOD SWE . FOR EXAMPLE THE
VERY HIGH TRANSPORTATION STRADEL COSTS	
HAVE PRECLUSED CARATINE IT OUT WIT	HOUT SUCH ASSISTANCE
· THE MODIFICATIONS TO THIS YEARS REPORT	TING FORMS AND THE RECENT SHANLE
TO A SLICHTLY REDUCED MINIMUM NURBER	OF PROSPECTING DATS (TO 25 FROM 30) INCE
BC Prospectors Assistance Program - Guidebook 2000	GOOD IMPROVMENTS. 16

· · .

. 5 .

.

۰.

REPORT ON RESULTS

- Those submitting a copy of an Assessment Report or a report of similar quality that covers all the key elements listed below are not required to fill out this section.
- Refer to Program Regulation 17D on page 6 for details before filling this section out (use extra pages if necessary)
- Supporting data must be submitted with the following TECHNICAL REPORT or any report accepted in lieu of.

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

Name DAN BLOWER Reference Number 00/01 P-121

. . . .

1. LOCATION OF PROJECT AREA [Outline clearly on accompanying maps of appropriate scale.]

THE SWIFT R. /TESLINLK. AREA IS LOCATED IN NORTHWESTERN B.C. BETWEEN 5.9° 45' AND 60° DO' N. AND 131° 10' AND 132° 35' W, KND INCLUDES PORTIONS OF HED ADD MAPSHEETS 104013 414 AND 104 N 15416. SEE ATTACKED MAP (FIGURE 1).

2. PROGRAM OBJECTIVE [Include original exploration target:]

THE OBJECTIVE WAS TO UTILIZE CONVENTIONAL PROSPECTING METHODS TO LOOK FOR ECONOMICALLY VIABLE POLYMETAILLE MINERAL DEPOSITS SUCH AS VLM TYPE DEPOSITS. THREE GENERAL ALGAS WERE INITIALLY IDENTIFIED FOR COVERAGE (ARGAS 1,2,43), HOWENER A FOURTH AREA WAS ADDED WILLE THE PROJECT WAS UNDERDAY (SERFIGURE) PLOGRAM EMPHASIS WAS PLANNED FOR 3 LOCATIONS : L THE AREA ADTACENT TO A CU-AU SHOWING EAST OF THE SMART RIVER; L THE AREA ABOVE A TUNESTED GEOCHEM ANOMOLY ON WEST LOGIAM CK; 3/ THE AREA ADTACENT TO THE NORTH OF THE ARSENAULT COPPER PROSPECT.

3. PROSPECTING RESULTS [Describe areas prospected and significant outcrops/float encountered. Mineralization must be described in terms of specific minerals and how they occur. These details must be shown on accompanying map(s) of appropriate scale; prospecting traverses should be clearly marked.]

THE PROSPECTIVE WAS CARRIED OUT DURING TWO TIME PERIODS : GARLY
TO MID JULY; AND, MID SO LATE SEPTEMBER .
MINARALIZED ROCK SPECIMENS WERE COLLECTED AT APPROPRIATE SITES
THRODGHOUT THE AREA TRAVERSED. SILT SAMPLES WERE ONLY TAKEN AT
SELECT LOCATIONS
A TOTAL OF 50 ROCK SPECIMENS AND 13 SILT SAMPLES WERE
SELECTED FOR ASSAY , THE LOCATIONS OF WHICH ARE SHOWN ON
MAPS RS FIGURES 2, 3, 4+5. THE ASSAT RESULTS ARE
CONTAINED IN FIGURES 6,7,8,9410.
SPECIFIC RESULTS SUMMARIZED BY AREA ARE AS FOLLOWS:
HREA # 1 (SMART/LOGIAN)
THE AREA WAS PROSPECTED BY RUNNING VARIOUS GROUND TRANSACT
FROM ROAD ACCESS POINTS ALONG THE SMART R. AND LOGIAN CE. ROADS.
· SIGNIFICANT CUIZN, MN, BA, AU MINERALIZATION WAS ENCOUNTERED
INA NARROW QUARTZ URIN ON A ROCK RIDGE TOTHE EAST OF THE

BC Prospectors Assistance Program - Guidebook 2000

REPORT ON RESULTS (continued)

islø

British Carbo maceous Ministry of Energy and Minerals Division PROSPECTING RESULTS (continued) SMART RIVER (SPECIMEN R 5; FIGURE 2+6) THE MINERALIZATION APPEARS TO BE IN THE CONTACT ZONE A CARBON FEROUS SCHIST AND QUARTZITE ROCK TYPE AND A CRINKLE CHERT ROCK TYPE, SOME BORNITE STAINING WAS PRESENT WITH THE MINERALIZATION . THE MINERAL OCCURED IN A VERY NARROD ZONE AND COULD NOT BE TRACED ANY DISTANCE UP OR DOWN STRIKE. · SIGNIFICANT W. MO MINERALIZATION WAS ENCOUNTERED ADJACENT TO THE SOUTH OF THE LOGTUNG YVICON - B.C. BORDER PROPERTY (SPECIMEN R 46, FIGURA 2+9) THE MINERALIZATION WAS CONTAINED IN A COURSE GRAINED BLACK + WHITE ROCK, - POSSIBLY A HORNBLENDE AND QUARTZ DIORITE . THE MINERAL IZATION COULD NOT BE TRACED SOUTH OF THE B.C. - PUNON BORDER. A SILT SANFLE TAKEN FROM WEST LOGJAM CREEK (SAMPLE S.9 FIGURES 2+9) ALSO ONLY RECORDED A SLIGHTLY ELEVATED TUNGSTED VALUE AREA #2 (SWIFT LAKE EAST) THE AREA WAS PROSPECTED PRIMARILY FROM A FLY-CAMP LOCATION IN THE VALLEY TO THE NORTH OF MT. FRANCIS. DUE TO ALACK OF USEABLE ROOD IN THE ALEA ACCESS USED WAS A HELICOPTER FROM SWANLE. THE MAIN PROSPECTINC EMPHASIS WAS ON THE ROCK OUTCROPS AND THEUS SLOPES ON THE NORTH EDGE OF MT. FRANCIS 1735ppm Qu, 192 pp.m Zn · SIGNIFICANT CU, 2N MINERALIZATION WAS LOCATED ON THE NORTHERD FACE OF MT. FRANCIS (SPECIMENS R 21 22, 25; FIGURE 3,6+7). THE MINERALIZATION BECURED TRON STAINED FINE GRAINED GREY ROCKS AND WITH CONSIDERABLE YELLOWICH SURFACE STAINING. · ANOMOLOUS GOLD MINERALIZATION WAS ALSO ENCOUNTERED ALONG A SHALL ppb CREEK IN THE VALLEY TO THE NORTH OF MT. FRANCIS (SPECIMEN RIS FIGURE 306) THE SPECIMEN WAS AN IRON STAINED LIGHT GARY ROCK WITH PYRITE EVIDENT. AREA # 3 (TESLIN LK.) This strange to all and the second states an THIS AREA WAS ONLY EXPOSED TO VERY LIMITED PROSPECTING BECAUSE OF TIME AND ACCESS CONSTRAINTS. NO ROADS FOUCH THE HEBA AND THE ACCESS WAS BY BOAT DOWN TESLIN LAKE FROM DAWSON PEAKS RESORT (PURIAN) · ONLY TWO TRANSECTS WERE UNDERTAKEN AND BROCK SPECIMENS WERE TAKAN FORASSAY (FICURE 4), WITH NO SIGNIFICANT VALUES NOTED . AREA #4 (REDEISHCK.) THIS AREA WAS PROSPECTED IN ONLY TWO SITE SPECIFIC LOCATIONS : 1/ A BEDROCK ROADCUT ALONG THE ALASKA HICHWAY (2 IRON STAINED SPREMENS COLLECTED FOR ALLAY) AND, 2/ THE ROCKFICH CR. CANSON AREA (FIGURES) THIS LATTER LOCATION WAS CHOSED BASED ON IT'S PROXIMITY DOWNSTREAM FROM A HIGHLY ANDMOLOUS AU READING SHOWN AN THE RECENTLY RELEASED GSB GEACHBHICAL RESULTS, CONTRACT STREET · PANNING OF THE CREEK GRAVEL TURNED UPAFLAKE OF GILD, BUT A SILT SAMPLE TAKEN WAS NOT ANOMOLOUS (SIN FIGURE 548). IT IS BELIEVED THAT A "NUGGET EFFECT" PROBABLY ACCOUNTIED FOR THE HIGH 65 B

GEOCHEMICAL SURVEY GOLD READING

BC Prospectors Assistance Program - Guidebook 2000

REPORT ON RESULTS (continued)

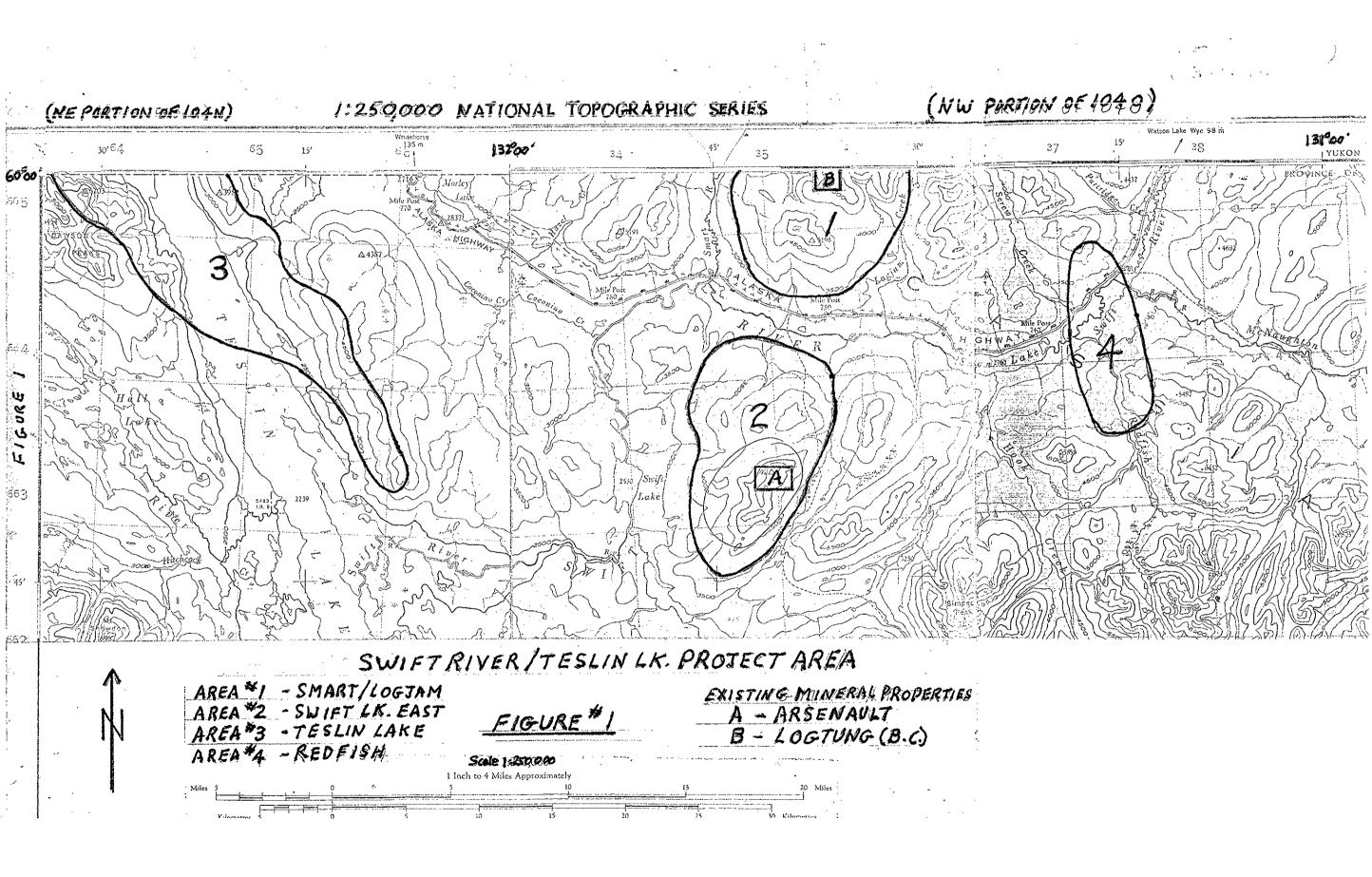
4. GEOCHEMICAL RESULTS [Describe all survey types done (rock, soil, silt) and their objective. Show clearly on accompanying map(s) of appropriate scale all sample sites along with all significant values. Any anomalous areas should be indicated on maps by the use of contouring, variable symbol sizes, or some other suitable technique. Include a discussion/interpretation of results. A copy of analysis/assay certificates must be included with sample numbers from map. Details of individual rock samples taken are encouraged. Significant geochemical values obtained must be stated.]

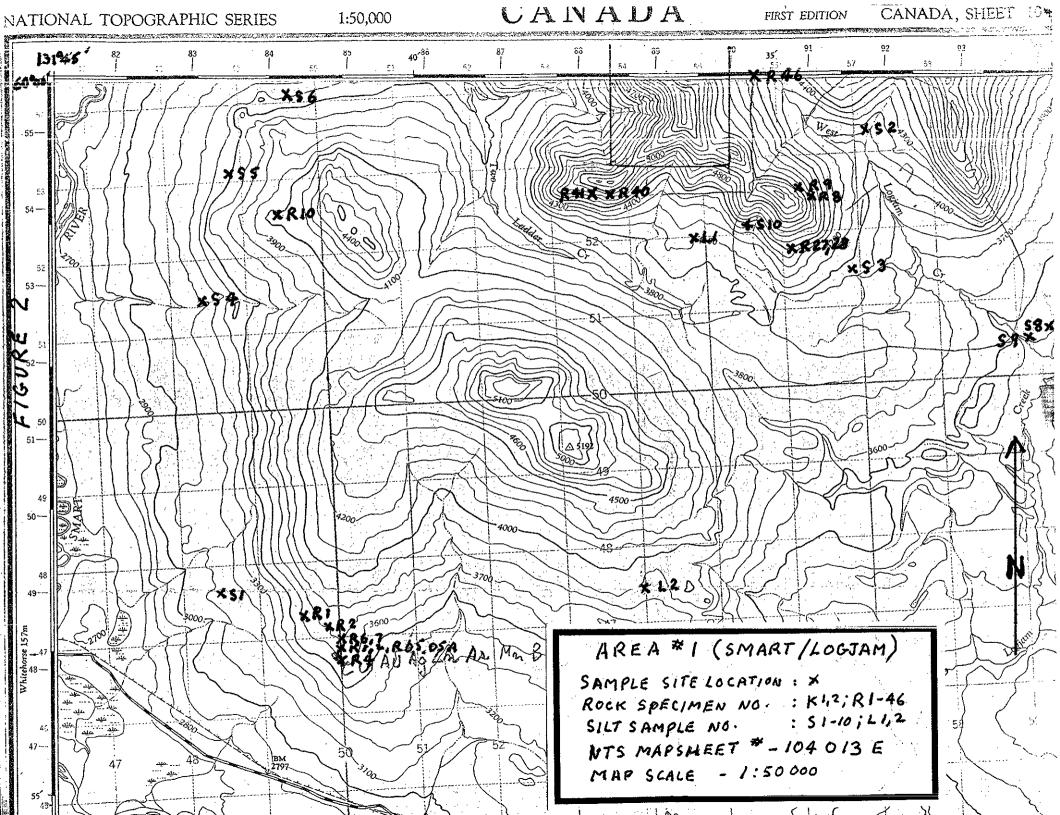
AREA *1 (SMART/LOGJAM) - SEE FIGURE 2 FOR SAMPLE LOCATIONS
ROCK SPECIMEN NOTES: (SEE FIGURES 6, 7 +9 FOR ASSAY RESULTS)
RI FINE GRAINED MEDIUM GREY BEOROCK . ELEU. 3700
R2 - COURSE GRAINED WHITE WITH BLACK MINERALIZATION, ELEV. 3700
R 4 - PARK GREY BEDROCK WITH PINK CRINKLE CHELT + QUARTZ ELEV. 3550
R 5, 5A, KI, 2 - MOTTLED GREENISH GREY + WHITE VEIN MATERIAL CONTAINING
SULPHIPES WITH COPPER STAINING EUIDENT . ELEV. 3600
R 6, 7 - COURSE GRAINED GREATSH BEDROCK NEXT TO QUARTZ VEIN. BORNITE STAID. 365
R 8, 9 - RUSTY TALUS FLOAT, MEDIUM TO DARK GART SHALE WITH FINE PTRITE . ELEU. 4900
R 10 - GREENISH-GREY COURSE GRAIDED BEDRUCK . FLUDRESSES UNDER BLACKLICHT. ELEV. 40
R. 2.7 RUSSY FINE CRAINED SLATE FLOAT WITH PYRITE. ELED: 43.50
R 28 - COARSE CRAINED ORANGE, WHITE + BLACK BEPROCK . FLEV. 4400
R 40, 41 FINE GRAINED MEDIUM GREY IRON STAINED BEDAOCK. ELEV. 4800'
R 46 - BLACK + WHITE COURSE GRAINED MINERALIZED FLOAT SPECIMEN. ELEV. 4600
SILT SAMPLE POTES : (SEE FIGURES 8 + 10 FOR ASSAT RESULTS)
SI - FROM VERY SMALL WEST FLOWING STREAM ON LOWER EDGE OF ORGANICS. EL. 3100'
S.2 - " SMALL CREEK FLOWING SOUTHINFO WEST LOGJANCE. ELED - FOOD .
53 " " SMALL FLOWING EAST INTO WEST LOCIAM CK. BL. 3. PSO"
54 " " SMALL CARER FLOWING WEST INTO THE SMART RIVER. EL. 3.200'
55 - " VERT SMALL CREEK FLOWING WEST INTO SMART RIVER EL. 3450' .
S.6 " ". VERY SMALL CREEK FLOWING NOR TH TOWARDS SMART RIVER ELEU. 3400'
58 - MAIR LOGSAM CREEK (LG. + FAST FLOWING) ABOVE WEST LOGSAM CK. JUNCTION EL.340
59 - " WEST LOGTAN CREEK JUSTABOVE JUNCTION WITH MAIN LOGTAM CR. 6460, 3400
SID - " SMALL DAY STREAM BED JUST NORTH DE 2-LADDER CK. ELEU. 4500'
LI - " VERY SMALL SOUTH FLOWING CREEK DRAINING ORGANIC SITE, ELEV. 4100'
12 - " VERY SMALL CREAK IN ORGANIC AREA + FLOWING TOWNROS 2- LADDER CK. EL.390
AREA "2 (SWIFT LAKE EAST) - SEE FIGURE 3 FOR SAMPLE LOCATIONS
ROCK SPECIMEN NOTES : (SEE FIGURES 6,7+9 FOR ASSAY RESULTS).
K3 - LIGHT GREY FINE-GRAINED BEDROCK. IRON STAINED, EL.4150.
K45-GREENISH-GREY TALUS ROCK WITH PYRITE MINERALIZATION . EL. 5200
K45-GREENISHI-GREY TALUS ROCK WITH PYRITE MINBARLIZATION. EL. 5200' K6R26-CREY + WHITE FINE CRAINED TALUS ROCK WITH PYRITES. EL. 4700' R11,12 - YELLOWISH, GREY LATERED BEDROCK WITH SULPHIDDS EL. 4300'
R11,12 - YELLOWISH - GREY LATERED BEDROCK WITH SULPHIDDS EL. 4300'
R 13 - RUSTY LIGHT GREY + BUFF COLOURED BEDROCK. FINE MINERALIZATION. 61.420
R 14 - FINE GRAINED GREY BEUROCK WITHIR . STAINING + PYRITE. EL. 4800'
R.15 T. RUSTY QUARTZ BEDROCK WITH PHRITE INCLUSIONS - EL. 4400
R. 16 - COARSE GRAINED GREYTWHITE TALUS ROCK. EL. 4450
R 21,22,23,23A - RUSTY BEOROCK WITH YELLOWY GREEN STAINING SULVILIDES SHOWING. EL.S.
R 24,25,25 A - RUSTY GREY BEOROCK + TALUS WITH TIELLOW + ORANGE STAINS. EL. 5350 BC Prospecific Passing FENDED CARA FUEDO GRATTE GREY FLOAT WITH FING MINIGRALIZATION. EL. 2800
BC Prospeciar Assistante BoganA Inide OGLATE GREY FLOAT WITH FINE MINISAALIZATION. EL. 2800

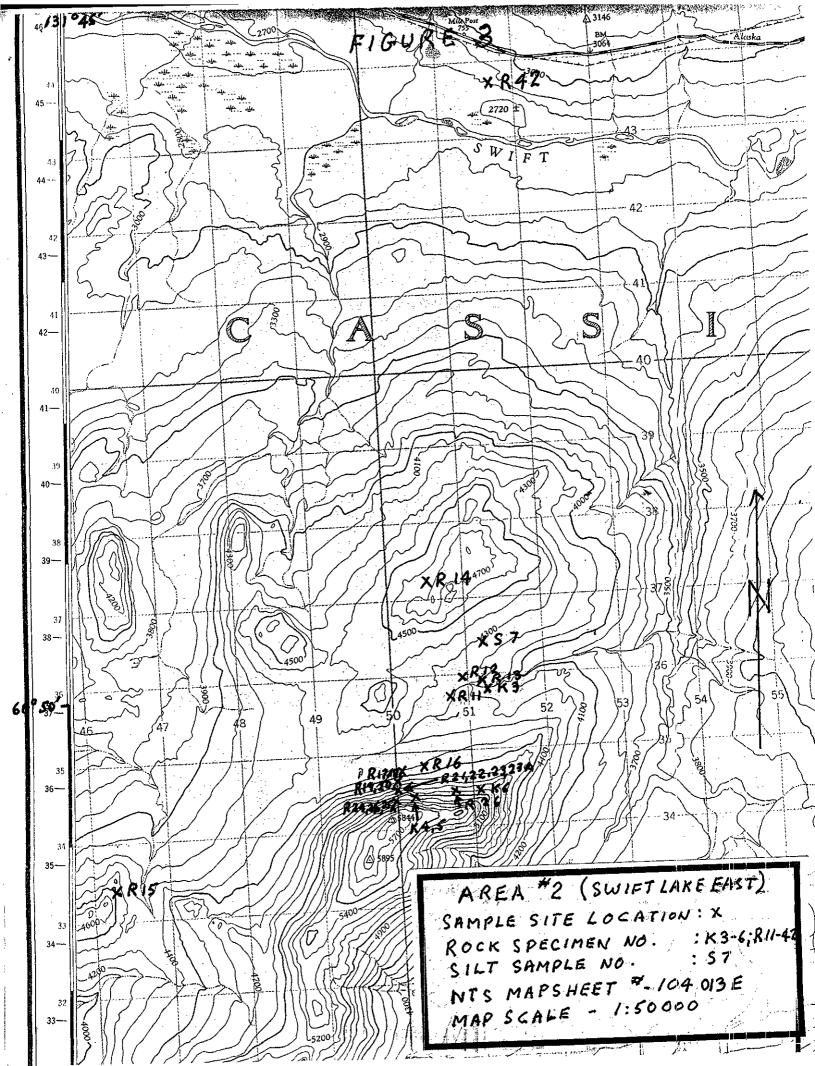
(CONTINUED ON FOLLOWING PAGE) ->

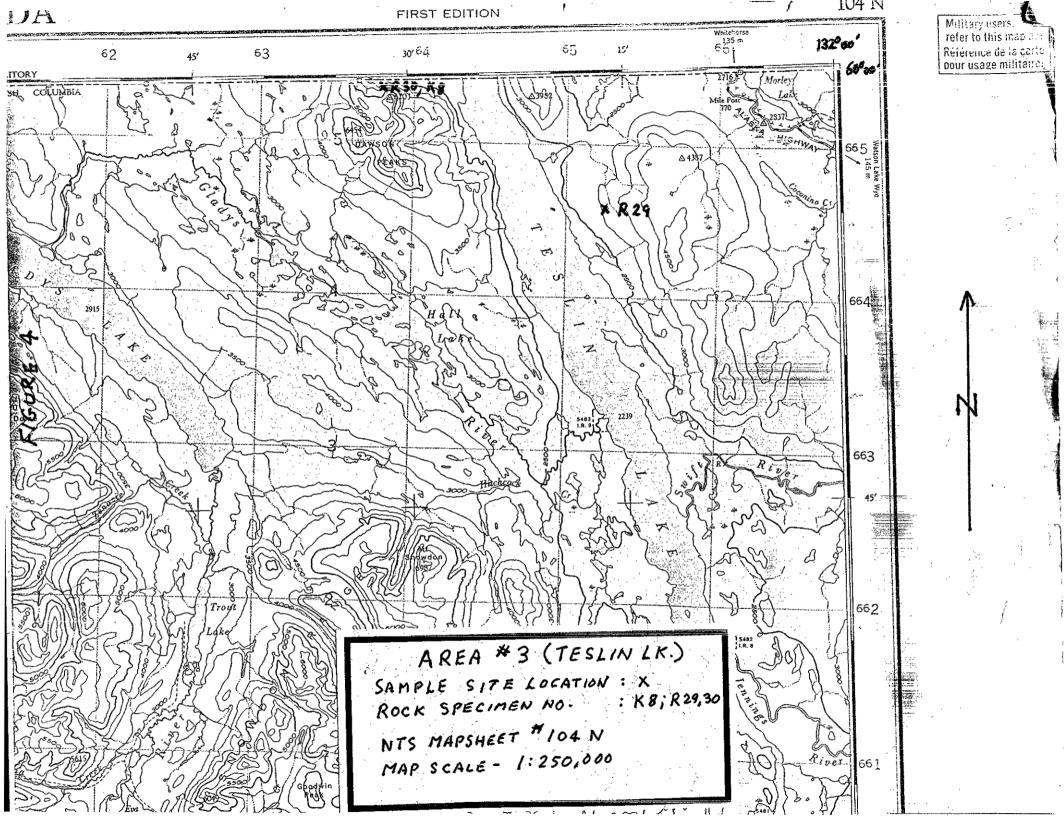
REPORT ON RESULTS (continued)

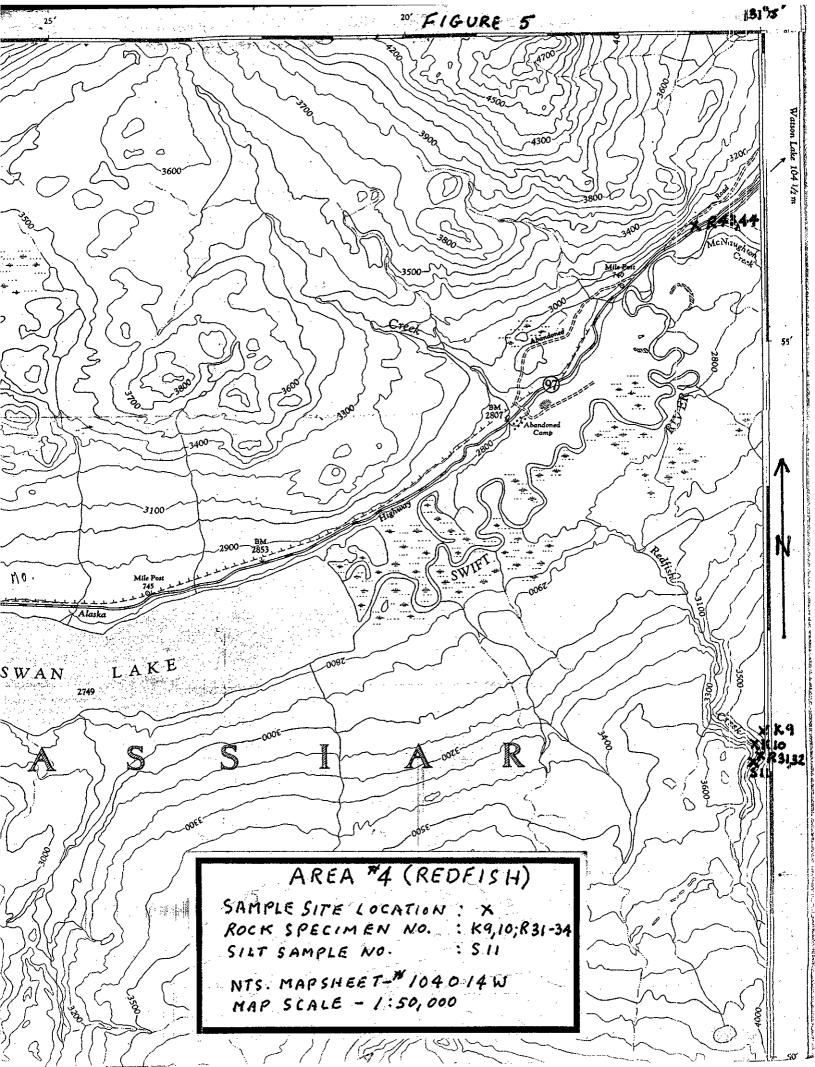
ĩ


5. GEOPHYSICAL RESULTS [Specify the objective of the survey, the method used and the work done. Discuss the results and show the data on an accompanying map of appropriate scale. Any anomalous areas must be indicated on maps by the use of contouring, or some other suitable technique.]


NO O	GEOPHYSICAL SURVEYS UNDERTHEISN
(GEOCHEMIC	AL RESULTS CONTINUED FROM PREVIOUS PACE)
SILT SA	MULE NOTES : (SEE FIGURE & FOR ASSAY RESULTS)
	FROM VERY SMALL STREAM FLOWING SOUTH THAOVEN ORGANICS . EL. 4250
AREA # 3	(TESLIN LK.) - SEE FIGURE & FOR SAMPLE LOCATIONS .
Rock	SPECIMEN NOTES: (SEE FIGURES 7+9 FOR ASSAT RESULTS)
	30 - DARK GREY IRON STAINED TALUS. EL. 5500' .
· · · · · ·	- FINE GRAINED GREENISH-GREY BEDROCK. NO UISIALE MINERALS. EL.3100
AREA #	+ (REDFISH) - SEE FIGURE S FOR SAMPLE LOCATIONS
	SPECIMEN NOTES : (SEE FIGURES 6+7 FOR ASSAS RESULTS)
<u> </u>	- QUARTZ LIKE ROCK WITH RED STRINING (BEDROCK) BL. 3700'
K10.	- DARIC UNSTRATIFIED ROCK TALUS WITH IRON STAINING. EL. 3400
	32 - GREY + WHITE COARSE GRAINED BEDROCK VEIN MATERIAL . EL. 3500'
	SPECIMEN NOTES : (SEE FIGURE & FOR ASSAY RESULTS)
S II	- FROM LARCE FAST FLOWING REDFISH CK. ELEV 3450'.
v	


5. OTHER RESULTS [Drilling - describe objective, type and amount of drilling done. Discuss results, including any significant intersections obtained. Indicate on a map of appropriate scale the drill-hole collar location, the angle of inclination and azimuth. Drill logs correlated with assay results must be included. Physical Work - describe the type and amount of physical work done and the reasons for doing it (where not self-evident). This includes lines/grids, trails, trenches, opencuts, undergound work, reclamation, staking of claims, etc. Discuss results where pertinent.]


NO DRILLING OR PHYSICAL WORK UNDERTAKEN.


	Perfection		
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
t			
•		•	
			<u>`</u>
			•
			*
	<u>`````````````````````````````````````</u>		
(an Blower		
	1 FAL	0.	20 L.
ature of Grantee	an acrus	Date lon . A	<u>. T/0/</u>
		()	

ACME ANAL			
	9007 La		

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

GEOCHEMICAL ANALYSIS CERTIFICATE

Blower, Dan File # A002470 Page 1 585 Nota Place, Victoria BC V82 2M2 Submitted by: Dan Blowe

							58	35 Nora	Ptac	:e, v	ictori	ta BC	vaz .	2112	SUDM	itted	DY:	Dan B	Lower											
SAMPLE#	Mo C ppm pp			Ag ppm	Ni ppm	Co ppm	Йn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	₩ ppm	Au* ppb
K-1 K=2 K-3 K-4 K-5	2 1 2 9 <1 3 6 5 12 9	<3 9 7	21 69 14	<.3 <.3 <.3 <.3 <.3	12 11 29 27 20	10	333 587 443	2.02 .60 2.77 2.06 3.59	6 21 <2 8 23	% % % % % % %	8888 8	17 2 11 7 8	6 3 290 16 7	.2 <.2 .4 .2 .5	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	33334		.02 9.30 2.00		35 7 39 17 18	20 13 51 15 43	.17 .01 1.33 .24 .88	450	<.01 <.01 .19 .07 .09	6 34 6	.13 .41 .21	.02 .01 .26 .03 .06	.20 .07 1.15 .04 .53	2 4 2 2 5	_8 1.6 1.7 3.7 13.3
K-6 K-9 K-10 R-1 R-2	1 7 3 2 3 2 1 4 3 1	4 <3 8 3 0 15	11 31 43	<.3 <.3 <.3 .3 <.3	29 6 28 4 8		58	2.66 1.12 2.81 4.46 .46	<2 7 18 <2 17	<8 <8 11 <8 <8	%%%%% %	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	40 2 90 21 3	<.2 <.2 .4 1.9 <.2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 3 3 3 3 3 3 3 3 3	5 11	.69 1.38	.010 .170	18 5 6 5 <1	10 17 19 15 18	.09 .02 .36 .27 .07	15 165 231 133 345	.01 .05	7 10	.44 .17 .50 .52 .06	.02 .01 .01 .01 .01	.03 .10 .16 .29 .01	<2 3 13 8	2.3 1.8 1.3 9.5 2.3
R-4 R-5 517 R-5A R-6 R-7	4 1 573 2 312 1 6 5 1	7 7	148 166 153	<.3 1.8 .7 <.3 <.3	6 19 27 12 19	-73 222 21-2 14 481	301 828 507	.50 6.03 6.14 4.40 4.87	23225	< ୫ ୫ ୫ ୫ ୫	\$ \$ \$ \$ \$ \$	<2 5 5 5 3	33 61 48 11 22	<.2 .3 .3 <.2 .4	ও ম ম ম ম ম ম ম ম ম ম ম ম ম ম ম ম ম ম ম	3 7 3 3	112 23	1.77 3.08	.210 .091	<1 13 14 15 8	9 5	2.18 2.17	224 116	<.01 .01 .01 .02 <.01	33 33 32	.08 5.66 5.76 2.60 2.22	.01 .03 .03 .03 .03	.05 .09 .12 .12 .06	3 3	<.2 189.1 42.1 12.5 1.2
R-8 R-9 R-10 RE R-10 R-11	3 11 2 6 1 24 1 25 3 3	4 <3 9 12 5 10	45 92 94	.4 <.3 1.5 1.6 .3	22 17 12 11 24	20 17 1	258	4.79 3.72 5.08 5.19 4.97	60 37 2 <2 2	\$ 8 \$ 8 \$ 8 \$ 8	8888 8888 8888 8888 8888 8888 8888 8888 8888	<2 <2 2 10	26 22 39 39 113	<.2 <.2 .5 .3 .2	000000	3 3 3 3 3 3 3 3	14 14	.63 .59 3.25 3.29 7.07	.028 .029	5 5 4 27	31 9 9	1.44 1.17 1.57 1.61 2.17	81 85 58 59 126	.34 .28 .04 .04 .23	ব ব ব	2.06 1.76 2.21 2.24 3.31	.16 .16 .01 .01 .08	1.10 .94 .04 .04 .91	3	2.0 11.0 36.8 30.8 6.8
R-12 R-13 R-14 R-15 R-16	1 19 4 5 2 2 6 21 43	7 19 1 12 4 10	38 138 38	<.3	3 4 27 28 77	<1 6 32	250	3.04 8.38 3.58 6.25 3.91	5 145 <2 46 16	ଏ ୧୫ ୧୫ ୧୫ ୧୫	88888 8888	2 5 3 2 3	12 12 129 58 8	.3 <.2 .4 <.2 <.2	3 7 8	3 7 3 3 3	<1 59	2.15	.107 .018 .027 .016 .051	7 8 6 2 7	4 17 49 19 28	.92 .39 .82 .92 .15	25 10 80 7 13	.13 .02 .08 .07 .07	<3 <3 <3	1.82 .90 5.36 1.02 .35	.04 .08 .34 .09 .02	.20 .25 .09 .03 .04	5	17.8 156.1 3.9 5.1 4.5
R-17 R-18 R-19 R-20 R-21	22 8 32 7 3 11 1 6 2 173	9 8 8 4 1 <3	12 65	<.3 .4 <.3	22 16 3 166 39	6 2 33	266 208	1.65 1.47 2.68 3.99 6.35	13 15 124 2 2	8.8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	88888 8888	9 6 18 <2 8	11 10 5 13 10	<.2 <.2 <.2 <.2	3 3 3 3 3 3 3 3 3	उ उ उ उ उ उ उ उ		.02	.099 .119 .028 .041 .105	13 11 17 1 22	32 28 42 395 82	.57 .50 1 <i>.</i> 52 2.43 .37	17 16 137 12 9	.07 .08 .06 .14 .09	<3 ' 3 ' <3 '	1.39 1.38 1.56 2.35 .52	.03 .02 .03 .04 .03	.18 .17 .68 .07 .06	2 3 2 3 6	15.7 4.7 20.5 2.7 7.6
R-22 R-23 R-23A STANDARD C3/DS2 STANDARD G-2	2 91 5 15 7 31 25 6 2	8 <3 8 16	5 1 172	.3 .9 5.4	35 9 50 36 8	3 26 11	81 48 757	17.81 2.58 13.52 3.31 1.93	12 149 179 58 2	12 <8 <8 18 <8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2 3 <2 19 6	26 3 26 66	24.5	<3 4 5 13 3	5 <3 18 24 <3	12 6 15 72 34	.10 .06 .59	.048 .024 .011 .087 .094	4 2 4 16 6	14 25 27 157 65	.47 .19 .17 .63 .60	15 21 12 143 215	.07 .01 .03 .09 .13	20	.69 .31 .43 1.83 .95	.04 .01 .02 .04 .07	.14 .16 .22 .16 .47	8 6	20.0 20.2 50.6 221.3
	UPPE Assa - Sa	R LIMI Y RECO MPLE T	TS - / MMENDI YPE: [IG, AU D FOR OCK	I, HG, ROCK AU	₩ = 1 AND C * BY A	IOO P CORE	TH 3 M PM; MO SAMPLE LEACHEI d 'RRE	, CO, S IF D, AN	CD, CU PE	SB, B 3 ZN A 5 BY I	81, TH NS > " ICP-MS	1, U 8 1%, A0 5. (10	k B ≠ G > 30	2,000	PPM;	CU,	РΒ,	ZN, NI) TO 1 , MN,	O ML, AS,	ANAL V, LA	YSED CR	BY IC = 10,	:P-ES. 000 Pi	РМ.			-	
DATE RECI	EIVED:	JUL	20 200	10 D	ATE	REPO	RT	MAIL	ED:	A	ng i	4/0	5	SIG	NED	BY.	(<u> </u>			.D. T	DYE, (LEO	NG, J	. WANG	G; CER	TIFIE	D 8.0	C. ASS	SAYERS	5

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖊 FA

··· A /							· · · ,				·						<u>_</u>				-										Ā	
ACHE ANALY	TICAL					:	·· .			Bl	owei	r, I	Dan	1	FIL	E #	A00)24'	70						•		Pa	ge 2	2	ļ	CHE ANAL	
SAMPLE#		Мо ррт	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %		U ppm	Au ppm	Th ppm	Sr ppm		sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W ppm	Au* ppb
R-24 R-25 R-25A R-26 R-27		11 3 54 17 	62 856 350 36 51	11 56 14 11 7	37 298 195 25 64	<.3 1.0 <.3 <.3 .8	13 57 94 35 19		634 1012 294	2.71 9.66 4.29 1.85 1.70	4 2 17 <2 2	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 9 15 4 5	16 5 37 11 38	1.4 1.0 <.2	8888 8888 8	37333	46 32 69 23 79	.58 .54 3.18 .52 .40	.040 .131 .063	8 17 59 18 16	164 26	.24 1.06 1.32 .23 1.20	21 21 19 30 165	.10 .07 .11 .06 .09	9 4	.39 1.53 1.80 .37 1.66	.04 .03 .04 .01 .15	.15 .56 .18 .07 .86	6 2 4 8 2	4.7 9.7 2.0 2.2 2.4
R-28 R-29 R-30 R-31 R-32		2 <1 5 4 2	4 98 13 13 51	15 5 3 ≪3	42 87 90 7 11	<.3 <.3 <.3 <.3 <.3	4 10 3 9 8	10 	96 1246 551 55 167	3.95 .86	7 6 3 2 3	<8 <8 <8 <8 <8	~~~~ ~~~~~~	31 <2 2 <2 <2	1 36 70 3 8	<.2 .5 <.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00000	2 64 82 4 3	.02	.084	45 3 9 1 2	10 15 7 27 24	.03 1.60 .21 .05 .01	10 46 136 27 35	.02 .23 .17 <.01 <.01	5	2.28 2.12 .16	.04 .03 .22 .01 <.01	.23 .05 .49 .04 .05	7 2 3 6	1.1 1.3 .6 .6 1.0
RE R-32 STANDARD	C3/DS2	3 26	48 66	<3 35	10 166	<.3 6.1	9 - 37	4	161 856	.55 3.61	3 60	10 18	<2 2	<2 21	7 33	<.2)25.1	<3 13	<3 25	2 82			2 19	21 177	.01 .63		<.01 .09	4 28	.07 1.94		.05 .18	7 16 (.8 214.6
E 7	<u>Sample</u>	type:	ROCK	. Se	mples	begi	nnins	<u>'RE'</u>	аге	Rerur	<u>is and</u>	<u>'RRE</u>	<u>' are</u>	Reje	ect R	eruns.	-															•
FIGURE 7								• •																	·							
					· .			· · ·			- - -	·			·									·			<i>.</i> •					
							• • •		- - , -																					J		
- 																															-	
							'	- 														·										
4	 -								• •																							
							:	• • • • •	-		22 1																			,	1	
ALL	results a	are co	nside	red t	he co	nfide	nti al	prop	erty	of th	e cli	ent.	Acme	assun	nes t	he lia	bilit	ies f	or ac	tual	cost	of th	e ana	lysis	only	<u>. </u>			Da	ta_	FA _	

÷7

ACME ANALYI (ISO 94				ted					GE B	OCH low	EMI (er,	NGS CAL Da	AN <u>n</u>	ALY Fil	SIS e #	CE A0	RTI 024	FIC 71	ATE			- \								
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	ctori Au	Th	Sr	Cd	Sb	Bi	٧	an Bl Ca %	ower P %	La ppm	Cr	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	V ppm
s-1	ppm <1	ррт 49	ррт 13	ppm 62	ppm <.3	ррт 19		ррт 676	% 2.24		ייי 8>		ppm. 5	ppm 17	.2	ppm <3	ppm <3	ррт 34		.064	15	ppm 12	.41		.04			.01	.11	ممر <2
S-2 S-3	1 7	33 18	13 10	98 203	<.3 <.3	30 29	12 10	685 2441	2.63 3.04	56 23	<8 <8	~ ~	4 <2	51 53	.7 6.2	ও ও	<3 3	34 44	.93	.070	14 11	31 33	.68 .46	199	.05	3			.14	32
s-4 s-5	<1. 1	19 46	9 7	77 76	<.3 <.3	21 20			2.61 2.14	- 12 5	<8 <8	<2 <2	2 3	27 27	.3 .2	৾৾৾৾৾ ব	4 <3	37 38		.063 .062	10 11	21 22		120 170	.06 .08		.75 1.12	.01 .01	.07 .13	<2 <2
S-6 S-7	<1 <1	17 7	8 4	49 47	.5 <.3	21 14		344 404	1.63 1.98	8 2	<8 <8	. <2	6 3	18 23 36	.2 .2	3 ⊲3	<3 <3	25 27	.48	.052 .061	12 12	19 20	.41 .37	91 89	.05 .06	7	.77 .70	.01 .02	.06 .05	<2 <2
S-8 RE S-8	<1 1	15 17	11 9	65 68	<.3 <.3	44 45	12	1090	2.78	30 29 70	<8 <8 <8	<2	4	36 37 31	-6 -5 -8	ও ও ও	ব্য ব্য 4	40 42 38	.52	.079 .083 .070	14 15 14	44 45 33	.88 .90 .56	109 106 131	.06 .06 .06	6	1.13 1.17 1.07		07 08 08	3 2 16
s-9 s-10	7 5	20 172	10 12	69 237	<.3 .9	27 72			2.29	30 66	<8>	_	4 <2	149	7.6	ত ত	5			.137	14	35 31	.50		.05		1.68	.02		7
S-11 STANDARD C3	<1 25	9 63	4 34	43 167	<.3 5.8	15 36	6 11	597 813	1.76 3.43	4 57	<8 17	<2 <2	2 20	28 31	<.2 23.9	<3 12	<3 24	33 78	.58	.060			.40 .59	159	.08	27	.68 1.84		.17	<2 16
STANDARD G-2	1	2	6	44	<.3	8	. 4	241	2.00	<2	<8	<2	3	/0	<.2	ও	ব	36	.05	.097	7	66	.20	216	• • • •		.93	.07	.41	
	UPPI - Si	ER EI AMPLE	MITS TYPE	- AG, : SIL	AU, T	HG, L <u>Sam</u> r	i = 10 bles b	00 PPI begin	M; MO, ning /	CO, 'RE' a	CD, S are Re //	L-HNO3 SB, BI eruns	and '	U& RRE'	8 = 2 <u>are R</u>	,000 eject	PPM; Reru	си, р <u>/ns.</u> //	»в, ZI 1	I, NI,	MN,	AS, V	', LA,	CR =	10,0)00 PP			Acc	AVEDO
DATE RECEI	UPPI - Si	ER EI AMPLE	MITS	- AG, : SIL	AU, T	HG, L <u>Sam</u> r	i = 10 bles b	00 PPI begin	M; MO, ning /	CO, 'RE' a	CD, S are Re //	SB, BI	and '	U& RRE'	B = 2	,000 eject	PPM; Reru	си, р <u>/ns.</u> //	»в, ZI 1	I, NI,	MN,	AS, V	', LA,	CR =	10,0)00 PP) B.C.	. Assi	AYERS
DATE RECEI	UPPI - Si	ER EI AMPLE	MITS TYPE	- AG, : SIL	AU, T	HG, L <u>Sam</u> r	i = 10 bles b	00 PPI begin	M; MO, ning /	CO, 'RE' a	CD, S are Re //	SB, BI eruns	and '	U& RRE'	8 = 2 <u>are R</u>	,000 eject	PPM; Reru	си, р <u>/ns.</u> //	»в, ZI 1	I, NI,	MN,	AS, V	', LA,	CR =	10,0)00 PP) B.C.	. Assi	AYERS
DATE RECEI	UPPI - Si	ER EI AMPLE	MITS TYPE	- AG, : SIL	AU, T	HG, L <u>Sam</u> r	i = 10 bles b	00 PPI begin	M; MO, ning /	CO, 'RE' a	CD, S are Re //	SB, BI eruns	and '	U& RRE'	8 = 2 <u>are R</u>	,000 eject	PPM; Reru	си, р <u>/ns.</u> //	»в, ZI 1	I, NI,	MN,	AS, V	', LA,	CR =	10,0)00 PP) B.C.	. ASSI	AYERS
DATE RECEI	UPPI - Si	ER EI AMPLE	MITS TYPE	- AG, : SIL	AU, T	HG, L <u>Sam</u> r	i = 10 bles b	00 PPI begin	M; MO, ning /	CO, 'RE' a	CD, S are Re //	SB, BI eruns	and '	U& RRE'	8 = 2 <u>are R</u>	,000 eject	PPM; Reru	си, р <u>/ns.</u> //	»в, ZI 1	I, NI,	MN,	AS, V	', LA,	CR =	10,0)00 PP) B.C.	. Ass.	AYERS
DATE RECEI	UPPI - Si	ER EI AMPLE	MITS TYPE	- AG, : SIL	AU, T	HG, L <u>Sam</u> r	i = 10 bles b	00 PPI begin	M; MO, ning /	CO, 'RE' a	CD, S are Re //	SB, BI eruns	and '	U& RRE'	8 = 2 <u>are R</u>	,000 eject	PPM; Reru	си, р <u>/ns.</u> //	»в, ZI 1	I, NI,	MN,	AS, V	', LA,	CR =	10,0)00 PP) B.C.	. ASS	AYERS
DATE RECEI	UPPI - Si	ER LI AMPLE	MITS Type 20	- AG, : SIL 2000	AU, T DA:	HG, W <u>Sam</u> r	<i>t</i> = 1(<u>bles</u> t ΣΕΡΟ	00 PPI begin	M; MO, ning /	, CO, <u>'RE'</u> ; SD: 1	Aw	SB, BI eruns	and '	U& RRE'	8 = 2 <u>are R</u>	,000 eject	PPN; Reru		рв., 21 Д	I, NI,	м н ,	AS, V 7E, C.	, LA,	CR =	10,0)00 PP) B.C.	. ASS	AYERS
DATE RECEI	UPPI - Si	ER LI AMPLE	MITS TYPE	- AG, : SIL 2000	AU, T DA!	HG, W	<i>t</i> = 1(<u>bles</u> f	00 PP	M; MO, ning '	, CO, <u>'RE'</u> ;	Aw	SB, BI eruns	and '	U& RRE'	8 = 2 <u>are R</u>	,000 eject	PPN; Reru		рв., 21 Д	I, NI,	м н ,	AS, V 7E, C.	, LA,	CR =	10,0)00 PP) B.C.	. ASSI	AYERS
DATE RECEI	UPPI	ER LI AMPLE	MITS TYPE 20	- AG, : SIL 2000	AU, T DA:	HG, W <u>Sam</u> r	<i>t</i> = 1(<u>bles</u> t EPΟ	00 PPI	M; MO, ning /	, CO, <u>'RE'</u> ;	Aw	sb, BI <u>eruns</u> q, 2	and '	U& RRE'	8 = 2 <u>are R</u>	,000 eject	PPN; Reru		ив, 21 Г.	I, NI,	м N ,	AS, V (E, C.	, LA,	CR =	10,C	000 PP	Î FIEC			
DATE RECEI	UPPI	ER LI AMPLE	MITS TYPE 20	- AG, : SIL 2000	AU, T DA:	HG, W	<i>t</i> = 1(<u>bles</u> t ΣΕΡΟ	00 PPI	M; MO, ning /	, CO, <u>'RE'</u> ; SD: 1	Aw	sb, BI <u>eruns</u> q, 2	and '	U& RRE'	8 = 2 <u>are R</u>	,000 eject	PPN; Reru		ив, 21 Г.	I, NI,	м л ,	AS, V (E, C.	, LA,	CR =	10,C)00 PP	Î FIEC			

••

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

_

÷ .

Data K FA ____

. .

 \geq

×.						Co.			(ALYSI				E										
									585 NG					File 8z 2M2				3lower										
	SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm			Mn F pm S	e As % ppm				Sr Cd opm ppm	Sb ppm	Bi ppm p	V Ca pm %		La ppm	Cr ppm		Ba opm	Tî % I			la K % %		
	K-8 R-40 R-41 R-42 R-43	6 3 12 3 5	11 65 139 38 99	<3 4 5 <3 6	55 21 69	<.3 <.3 .4 <.3 <.3	43 23	27 2 11 1 16 6	51 1.2 95 3.0 14 1.9 70 3.5 37 3.0	0 107 9 13 9 3	<8 <8 <8	~~~~~	4 · 2	2 <.2 67 <.2 61 .2 33 <.2 46 .4	3 3 3 3 3 3 3 3 3 3	⊲ ⊲	85 -85 66 -91 51 -70	.014 .127 .148 .074 .141	1 7 17 6 13	310 '	1.99 .31 2 1.79 1	244 . 154 .	.22 .10	<3 1.0 <3 2.1	6.1 5.1)1 .04 6 1.40 7 .15)5 .34)1 .27	2 5 2	
	R-44 R-45 R-46 RE R-46 STANDARD C3	7 2 145 144 27		6 4 9 11 37	87 71 70	<.3 .5 .3	10 34 33	20. 9 9 7 8 6	51 4.3 77 5.7 02 2.5 92 2.4 07 3.5	62 13 73	<8 <8 <8	« \ \ \ \ \	<2 3 2	49 <.2 21 .4 63 .7 63 .6 32 23.7	<3	<3 1 8 6	18 .64 66 2.79 82 1.72 83 1.70 79 <i>.</i> 59	.077 .076		21 53 52		118 .	. 17 . 18 . 18	3 .0 <3 4.0 45 .9 42 .8 21 1.8	70.1 88.1	05 .10 15 .10 15 .09	<2 381 381	
		UP	PER L	IMITS	- AG	, AU,	HG, W	= 100	PPM; I	мо, со	, CD,	SB, BI,	, ТН,	17 95 DEC U & B =	2,000	PPM; C	J, PB,	ZN, NI							,		<u></u>	
							ROCK AN							, AG > 31 <u>uns and -</u>												`		
	DATE REC	BIVE	D:	NOV 8.	° 200 0	DA	TE R	EPOR	t Maj	LED:	No	v 22	/w	SI	GNED	ву.(····]·	.D. TC	OYE, C	LEONG	i, J.	WANG;	CERTI	FIED A	B.C. A	SSAYER	۶s
					• .										-													
								••																				
																				•								
					1	,															,							
	. <i>.</i>																											
																												•
																						、						
																						•						
				÷								•																
								·													·	•						
				,																·		•			·			
																						•						
						•										·						•					1	

	SAMPLE#	Mo ppm 3	Cu ppm 35		125		Ni ppm 40		1078	2.41		17	<2	2	ppm p	Cd Si pm ppr	n ppm 5 <3	54	1.17	% .127		121			.04		Al %			7
	L-2 RE L-2 Standard C3	2 2 27	41 41 70		65 170	<.3 <.3 5.6		8 12		2.18 3.56		<8 8 	<2 <2 3	2 3 23	47 46 32 23	.2 < .3 < .7 1!	s <3 26	36 79	.86 .59	.075 .074 .099		182	.46 .63	162	.06 .09	<3 21	1.10 1.10 1.86	.01	.10	<2 <2 16
		UP	PER L	LIMITS	6 - AG	ilt ss	HG, 1 80 60	1 = 1 C	00 PP <u>Samp</u>	M; MO, les be	, CO, ginn	CD, 9 ing 41	SB, BI <u>RE′ar</u>	, TH e Re	,U&E runs ar	DEG. C = 2,00 d 'RRE	0 PPM are	; CU, Reject	PB, Z t Rona T	ZN, NI Uns.	, MN,	AS,	V, LA	, CR	= 10,0	000 P	PM.			
	DATE REC	BIVB	D:	NOV 8	8 2000) D2	ATE 1	REPC	RT 1	MAIL	ED :	ſγo	V 22	2/0	\sim	SIGNE	d by	·. ···		/	р. т	OYE, (C.LEO	NG, J	. WANG	i; CE	RTIFI	ED B.C	C. AS	SAYE
xr /0																														
していた																														
Ľ.																														
								•																						
																													•	
										:																				