BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR: 2000/2001

REPORT #:

PAP 00-29

NAME:

FRANK RENAUDAT

Rec'0 9/01

B.C. PROSPECTORS ASSISTANCE PROGRAMME

Storm Project: Frank Renaudat Reference Number: 2000/2001 P123

TECHNICAL REPORT ON THE STORM PROJECT

IN THE GREENWOOD MINING DISTRICT

NTS 82E/3

LAT. 49° 09' LONG. 119° 08'

STEVE G. ENNS, P Geo. Vancouver, British Columbia January 5, 2001

Prepared for Mr. Frank Renaudat, grantee of B.C. Prospectors Assistance Programme

p123

SUMMARY

The Storm project is located east and northeast of historic Camp McKinney in south-central British Columbia, about 10 to 13 km north of Bridesville, in the Greenwood Mining Division (NTS 82E/3). Coordinates Lat. 49° 09° N, Long. 119° 08° W lie within the project area, now consisting of 79 units in 8 claims. Road access is either from the west by the Mt. Baldy Ski Hill road starting at Oliver, or from the east by the gravel road that joins the Provincial Highway 3.

Most of the area is underlain by Carboniferous Anarchist Group rocks consisting of complexly folded meta-volcanic and meta-sedimentary rocks, with local bodies of peridotite and dunite. To the north is the large, granitic Cretaceous Okanagan Batholith and to the east, a regional east-northeast-striking normal fault system has juxtaposed Eocene felsic volcanic rocks against the Anarchist Group rocks. Prospecting targets include volcanic-hosted massive sulphide deposits (Cu, Pb, Zn, Ag, Au), vein and shear-hosted precious metal mineralization (Au, Ag), disseminated PGE (Pt, Pd), epithermal mineralization (Au, Ag), and skarn mineralization (Cu, Pb, Zn, Ag, Au).

The programme consisted of a geochemical stream survey (silt and pan-concentrate sampling) and prospecting with rudimentary geologic mapping at a scale of 1:5,000 to cover an area of 6.5 square kilometres mostly on the STORM 1 to 7 claims. Thirty-one silt, 25 pan-concentrate and 32 rock samples were collected; these were analysed by Acme Analytical Laboratories of Vancouver.

The steam geochemistry generated two significant gold anomalies as follow up targets. The first gold anomaly is in upper Stanhope Creek on the east side of STORM 9 where a silt sample contains 1,381 ppb Au and a pan-concentrate contains 19.3 ppb. The second gold anomaly is on the east side of STORM 6 and 7 where two adjacent small creeks contain 518.9 ppb, 78.4 ppb and 24.6ppb in silts in three samples. Prospecting discovered an additional follow up target in an overgrown pit on the north part of STORM 2 where pyrite, with visible sphalerite and galena occurs in contorted siliceous meta-siltstone of the Anarchist Group rocks. A grab sample from here contains 1,350 ppm Cu, 1,482 ppm Pb, and 6,400 ppm Zn.

TABLE OF CONTENTS

Location and Access1
General Geology of the Region
Known Mineral Showings and Exploration History 1
Prospecting Targets
2000 Work Programme
Results from Stream Sampling 4
Results from Prospecting and Rock Sampling
Sample Locations, Descriptions and Results APPENDIX I
Project Expenditures and Daily Report
LIST OF FIGURES
Figure 1: Location of STORM ClaimsAfter page 3
Figure 2: STORM Claims and Sample LocationBack Pocket
Figure 3: Prospecting Map on South Part of STORM ClaimsBack Pocket
Figure 4: Prospecting Map on North Part of STORM ClaimsBack Pocket

Location and Access

The Storm project is located east and northeast of historic Camp McKinney in south-central British Columbia, about 10 to 13 km north of Bridesville. It covers upper Rock Creek and upper Jolly and Stanhope Creeks, and lies within the Greenwood Mining Division (NTS 82E/3). Coordinates Lat. 49° 09° N, Long. 119° 08° W are located within the project area now consisting of 79 units in 8 claims.

The project area is accessible either from the west by the 48km all-weather Mt. Baldy Ski Hill road starting at Oliver, or from the east by a 12km gravel road that joins the Provincial Highway 3 at the "Rock Creek Canyon" bridge. Active and abandoned logging roads provide internal access in the area; B.C. Hydro and Gas transmission lines also cross the claims.

General Geology of the Region

The area is dominantly underlain by Carboniferous Anarchist Group rocks consisting of complexly folded intermediate to mafic (and minor felsic) volcanic tuff and flows, cherty marine sedimentary units, and minor crystalline limestone. Bodies of peridotite and dunite occur locally within the Anarchist Group rocks in this region. To the north is the large, granitic Okanagan Batholith of Cretaceous age. A regional east-northeast striking normal fault system occupies the upper Jolly Creek valley, and has juxtaposed mixed alkalic and calc-alkalic felsic volcanic rocks and related sedimentary members of the Eocene Penticton Group against the Anarchist Group rocks.

Known Mineral Showings and Exploration History

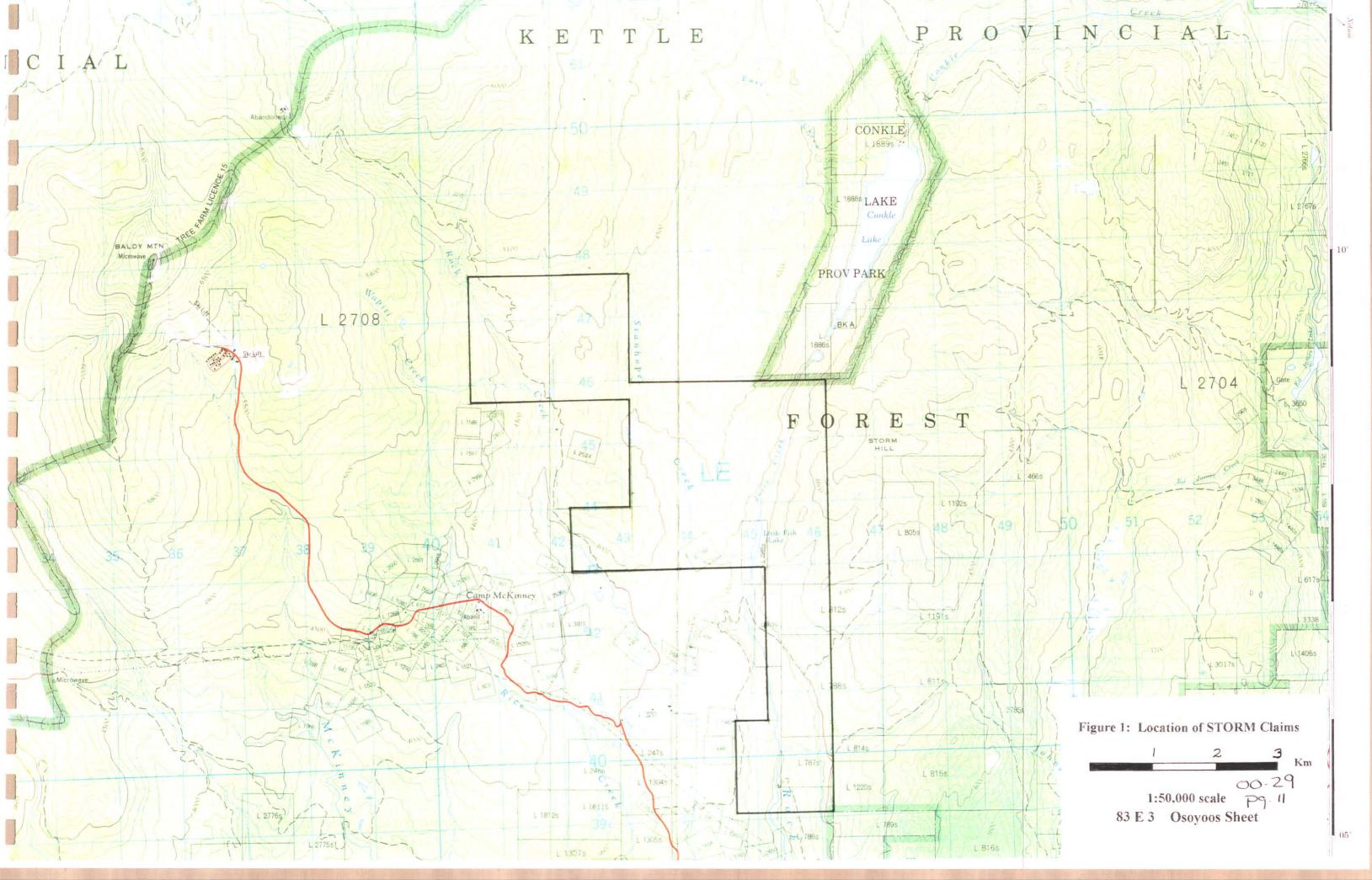
In addition to Camp McKinney immediately west, other mineral showings include #159 Jolly Creek (Cr) on the STORM 3 claim, #223 Lemon (Au), a Crown Grant straddling STORM 1 and 2 claims, #225 Stan, (Cu, Au) on the STORM 4 claim, and #226 Ho (Cu) on the STORM 3 claim; the Bridon Chrome showing (#25) lies about 8 km northwest.

One of British Columbia's earliest gold discovery was made near the mouth of Rock Creek in 1859, and continued exploration by prospectors resulted in discovery of gold at the Victoria (L218) claim in 1884, and later at nearby Camp McKinney. With mining activity at McKinney, additional Crown Grant claims Lemon (L760), Old England (L658), and Snowdon (L583) were staked between 1894 and 1897. At the Victoria, underground development included about 107m in raises and shafts, and 225m in drifting and tunnelling on two levels. In 1897, about 27 tonnes of hand-sorted ore, (mainly from the upper 38m), were shipped from the Victoria claim. The ore was reported to have an average grade of 73.7g/t Au and 178.3g/t Ag. Exploration interest in the area faded after 1903.

In 1978 the AH and CH claim blocks were staked east of McKinney and optioned to Cheshire Exploration Ltd. of Calgary. Between 1981 and 1986 exploration by various groups included limited geological mapping, soil geochemistry, VLF and magnetometer surveys, limited trenching and minor underground sampling and drilling on the old Victoria claim. This work, mainly between the old Victoria and Lemon claims identified a number of Zn soil anomalies and VLF conductors and resulted in two small drilling programmes. The first drilling in 1981 consisted of 298m of NQ core drilling in 4 holes on the Victoria and immediately to the north; the second in 1986 consisted of 62.8m of AQ core drilling in 2 holes also on the Victoria. The best drill results were 4.63g/t Au, 52.14g/t Ag over 1.16m from hole #1 in 1981, and 3.77g/t Au, 16.11g/t Ag over 1.2m from hole #1 in 1986.

Brican Resources Ltd. conducted limited exploration in the area covering the Victoria and Old England claims in 1987, and reported 9.60g/t across 1.0m at one showing, and 7.89g/t Au over 3.0m, at a second showing, 420 m southeast along strike in "... a wide zone of sheared, altered and mineralized volcanic rock parallel to quartz veins." In 1988, Minnova Inc. mapped the geology of the AH and CH claims and completed 16.5 line-km of VLF and magnetometer surveys covering the north-trending mineralized structure extending from the Victoria claim, north to the Lemon Crown Grant. They dropped their interest by 1989.

In early 1992, Lucky 7 Exploration Ltd. conducted a small drill programme on the Old England Crown Grant and drilled 98m of BQ core in short 5 holes to test a shear-hosted quartz vein. Four of the five holes were reported to have intersected gold mineralization between depths of 6.1 and 15.2m with the best results from 1.65g/t Au over 1.1m to 61.6g/t Au over 0.15m.


Prospecting Targets

Seven claims consisting of STORM 1 to 7 (59 units) were staked to cover about 22 square kilometres of less explored area east of Camp McKinney. Staking of these claims by Mr. Frank Renaudat was a direct result of the 2000 B.C. Prospectors Assistance Programme and was a necessary precaution in this region because of its inherently high level of local exploration interest. During the programme, the STORM 9 claim (20 units) was staked, for a present total of 79 units in eight claims covering 25 square kilometres. The location of the claim block is shown on an extracted topographic map from the Osoyoos 82 E / 3 sheet in Figure 1, and the claim configuration is shown on Figure 2. This region was chosen as a project area because it offered a number of prospecting targets listed here in order of importance:

- 1. Volcanic-hosted massive sulphide deposits within certain lithological members (meta-volcanic rocks) of the Anarchist Group rocks. (Cu, Pb, Zn, Ag, Au)
- 2. Precious metal mineralization related to the north extension of a north-trending vein and shear system identified on the Victoria, Old England and Lemon Crown Grants. (Au, Ag)
- 3. Disseminated PGE in the ultramafic bodies. Up to 0.1ppm Pt was reported from ultramafic rocks at a nearby prospect to the northwest (Bridon Chrome); the presence of platinum was rumoured in the late 1960s by a placer operator in upper Jolly Creek. (Pt, Pd)
- 4. Epithermal precious metal mineralization within the Eocene Penticton Group rocks in the east part of this region. (Au, Ag)
- 5. Skarn-related precious and base metal mineralization in calcareous tuff units within the Anarchist Group rocks proximal to the south contact of the granitic stock. (Cu, Pb, Zn, Ag, Au)

2000 Work Programme

Fieldwork began June 28 and was completed by August 25. During this time interval Mr. Frank Renaudat conducted the exploration activity. Together with the writer's 3 days, a total of 39 prospecting days were spent on the project. The writer visited the project area two times (June 28 to 30 and November 9 to 11) to give guidance in the field, and to review the progress.

The programme of work consisted of a geochemical stream survey (silt and panconcentrate sampling) and prospecting. Prospecting was conducted along east-west lines and along creeks. An area of 6.5 square kilometres was explored by the line prospecting and covered most of the STORM 1 to 7 claims. For location control, a combination of GPS, topofil and compass was utilised to produce a map at a scale of 1:5,000. The east-west lines are 200m apart controlled by carefully chained north-south tie lines and surveyed roads. Conventional line-cutting was not necessary due to the open bush. The rudimentary geologic mapping results and prospecting lines are shown on Figures 3 and 4 at a scale of 1:5,000.

Thirty-one silt, 25 pan-concentrate and 32 rock samples (as grab samples) were collected. They are shown on Figures 2, 3 and 4. The UTM sample locations and brief descriptions are listed in Appendix I, together with results. Acme Analytical Laboratories of Vancouver analysed the samples. Using a hot Aqua-regia digestion, silt and rock samples were analysed by ICP-emission spectroscopy for 30 elements. Au and Pt were analysed by ICP-MS with detection levels respectively of 0.2ppb and 2ppb. Each entire pan-concentrate sample (between 16 and 29 grams) was digested by hot Aqua-regia and analysed by ICP-MS for Au and Pt.

Results from Stream Sampling

The stream survey results indicate anomalous Au in three small creeks; they constitute two targets for future follow up work to determine their significance.

- 1. Upper Stanhope Creek in the northeast corner of STORM 9 shows 19.3 ppb in panconcentrate sample 4910 and 1,381.6 ppb in silt sample 4911. The potential source to this anomaly is the granite contact zone upstream. This represents the first target.
- 2. A small southwest-flowing tributary to Rock Creek in the southeast corner of STORM 7 shows 24.6 ppb Au in silt. Greenstone rocks of the Anarchist Group underlie the lower reaches of this stream.
- 3. A nearby west-flowing tributary to Rock Creek in the northeast corner of STORM 6 shows anomalous gold in 2 silt samples (4913 and 4915, respectively 78.4 ppb and 518.9 ppb). Curiously, pan-concentrate sample 4915 (a paired sample to 4912) shows little gold,

possibly because of site variability in these small streams. Anarchist Group metasedimentary rocks underlie the lower part of the stream. Rock sample 4998 is pyritic with calcite and contains minor Au (37.3 ppb) and 3,373 ppm Cu indicating presence of chalcopyrite and minor gold with the pyrite.

Although Carboniferous Anarchist Group rocks underlie the lower parts of the two small tributaries that are anomalous in gold on STORM 6 and 7, these two streams extend east into Eocene Yellow Lake Volcanic rocks. Consequently, an upstream epithermal precious metal source to these gold anomalies should not be ruled out, in what represents a second target. The strength of this target is, however, tempered by the lack of panconcentrate sample support for Au in samples 4912, 4914 and 4918.

Other gold anomalies have known sources to explain them. The strongest gold anomalies are from pan-concentrate samples that were collected by a mechanical gold pan ("Goldscrew Panner") capable of processing large sample volumes. The three highest gold samples and several other anomalous samples are all from sites below known placer gold operations and lode mineralization, including localities such as the historic Denver Bar, the Lemon, the Victoria Crown Grants and the Stan Ag-Cu showing near sample 4920.

The pan-concentrate medium proved disappointing at the Storm project. It was chosen because it should be capable of detecting the presence of Pt in the streams; the results from the survey indicate insignificant Pt levels. A comparison of paired silt and pan-concentrate gold results (from common sites) do not show a consistent correlation of enhanced Au-levels in pan-concentrate samples as might be expected. This discrepancy points to variability in either sampling techniques, or in stream site, or in both.

Results from Prospecting and Rock Sampling

The rudimentary mapping of lithology by Mr. Renaudat (Figure 3 and 4) has shown that much of the STORM 1 to 7 claims are underlain by greenstone (intermediate tuff and flow rocks) and meta-sedimentary rock belonging to the Anarchist Group. Gabbro was also identified, presumably as younger intrusions. This work also established the boundary between Anarchist Group rocks and Eocene Yellow Lake Formation has been established in the east part of the STORM 1 and 7 claims. Where encountered, presence of metallic

minerals was carefully located together with old exploration pits or trenches and placer camps from previous exploration. The resulting maps from this work will significantly speed up conventional geologic mapping during the next phase of exploration.

One significant, though modest discovery of a base metal occurrence resulted directly from the systematic prospecting. Sample 4982 was taken from an old pit (at 1,221m elevation, UTM 343,580E / 5,444,140N) in the north part of STORM 2. This sample contains 1,350 ppm Cu, 1,482 ppm Pb, and 6,400 ppm Zn. An examination of this site by the writer in November revealed that pyrite, together with visible sphalerite and galena, occurs as fine-grained disseminations and foliation bands (less than 1cm thick) in contorted siliceous meta-siltstone of the Anarchist Group rocks. The dominant cleavage at the overgrown pit is 120/34NE. Together with the presence of nearby greenstone (possibly andesite) and intermediate tuff, this mineralization indicates the possibility of volcanic-hosted massive sulphide deposition in Anarchist Group rocks. Weakly anomalous levels of gold in sample 4984 (363 ppb Au), are indicated in another nearby old pit 60m to the south, where pyrite is present with visible galena hosted in siliceous meta-siltstone with a sugary texture.

Several continuous and selected chip samples were specifically collected from the Bridon Chrome occurrence about 4 km northwest of STORM 9 to determine whether this showing could be a source of PGE anomalies in the streams. Results from 4 samples (4906 to 4909) of altered dunite indicate insignificant levels of Pt or Pd (both elements are <5ppb).

APPENDIX I

SAMPLE LOCATIONS, DESCRIPTIONS AND RESULTS

SILT SAMPLE RESULTS

	7	}			Мо	Cu	Рb	Zn	Ag	Au	Ni	Co	Mn	Fe	As	U
Sample	Zone	Easting	Northing	Remarks	ppm	ppm	ppm	ppm	ppm	ppip	ppm	ppm	ppm	%	mqq	ppm
				Acme file # A9002413												
4902	11Ü	338,450	5,449,680	2m at upper Rock Ck, below Bridon Chrome	1	25	5	33	< .3	4.6	90	13	436	2.94	3	< 8
4903	11U	338,650	4,950,360	upper Rock Creek, 1.5m	2	10		63	< .3	0.9	18	6	702	2.57	4	9
4911	110	343,180	5,447,420	Storm 9, Stanhope Ck. 2m	2	8	12	125	0.5	1,381.6	8	3	385	3.57	2	10
4913	110	346,100	5,440,270	Storm 6	< 1	18	6	33	< .3	78.4	13	5	308	1.64	3	< 8
4915	110	345,260	5,440,270	Storm 6	< 1	13		65	< .3	518.9	23	7	476	4.60	6	< 8
4917	11U	345,320	5,440,800	Storm 7, 1m	< 1	9		44	< .3	0.7	15	5	299	3.87	2	< 8
4919	11U	345,260	5,440,760	Storm 7, 0.5m	< 1	20	1		< .3	2.0	20	6	254	4.27	< 2	< 8
4921	110	345,620	5,441,200	Storm 7, 3m	< 1	8	L	44	< .3	1.1	10	3	223	3.00	2	< 8
4923	11U	345,840	5,441,400	Storm 7, 1.5m	< 1	14	9		< .3	24.6	19	6	302	3.55	Ll	<8
4925	11U	343,770	5,444,700	Storm 4, Stanhope Ck., 2.5m	1	9	,		< .3	0.7	29	9	412	3.70		< 8
4927	11U	344,780	5,442,730	Mo 1, dry	< 1	19			< .3	0.6			335	3.43	1	< 8
4929	11U	344,750	5,442,520	Mo 1, Rock Ck. above Jolly Ck., 4m	<1	10		1	< .3	34.3			328	8.61	27	23
4931	11U	344,730	5,442,780	Mo 3, Jolly Ck, 4m	1	15			< .3	3.6			377	3.82	4	< 8
4933	11U	344,800	5,443,280	Storm 1, Stanhope Ck. 3m	1	21			< .3	1.3		10	420	4.54	∔	< 8
4935	110	345,277	5,444,468	Storm 9, Jolly Ck	< 1	17	1		< .3	1.5		1	303	1.82		< 8
4937	11U	344,950	5,430,000	Mo 3, 0.5m	< 1	9			< .3	9.5	10		211	3.77	< 2	
4939	11U	342,060	5,447,000	Storm 9, 1m	< 1	19			< .3	0.5		6	185	1.37	2	< 8
RE 4939		1			1	19		L	< .3		17	6	185	1.41		
4941	110	342,200	5,447,000	Storm 9, 1m	1	31			< .3		37			1.82	. L	9
4943	11U	340,600	5,448,000	Storm 9, 4m	1					0.3			200	3.16	1—1	
4945	110	340,580	5,447,580	West of Storm 9 on Rock Creek, 4m	1	1		-	< .3	< .2	 	1		1.90	+	
4947	110	340,140	5,448,540	Wapiti road, and Rock Creek, 4m	1	L	1		1	0.2				2.98	L .	
4949	11U	339,646	5,449,459	N. of Rock Ck, below Bridon Chrome, 1m	1	8					<u> </u>	1	280	8.30		
4951	11U	341,348	5,446,200	Storm 9, Wapita Ck., 3m	1	16		1	< .3				479	3.23	1	
4953	11U	340,932	5,447,163	Storm 9, Rock Ck. 5m	< 1	7			< .3					6.02		
4955	110	341,864	5,446,048	Storm 9	< 1	6	1		L					1.07		
4957	110		5,444,233	below Bev claim on Rock Ck. 7m	<1	Ι -			< .3					1.85	1	
4959	110		5,444,350	below Bev claim on Rock Ck, 1m	< 1	22	1		1					2.48		
4961	110		5,446,000	Storm 6, Rock Ck. 5m	<1	4		<u> </u>	< .3			·		9.67		l
4963	11U	.1	5,443,600	Stanhope Ck	< 1	1		L			 -	I —		2.38	1	
4965	11U		5,446,000	1m	2	1			L			1		2.22	1 .	
4967	11U	343,250	5,446,000	1m	< 1	•		Τ			<u> </u>	J		1.06	1	
STD C3					26	1					36	L		3.47		
STD G-2					1 1	3	3 4	38	< .3		7	4	509	1.99	< 2	< 8
SD DS2			i		<u> </u>	<u> </u>	ــــــــــــــــــــــــــــــــــــ	<u> </u>	<u> </u>	190.0	<u> </u>	l	<u> </u>			<u> </u>

SILT SAMPLE RESULTS

	Th	Sr	Cd	Sb	Bi	_ V	Ca	Р	La	Cr	Mg	Ba	Ti	В	Al	Na	K	W
Sample	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm
Acme# A90024																		
4902	7	88	0.2	< 3	< 3	57	0.50	0.12	28	78	0.79	115	0.07	7	1.20	0.02	0.09	< 2
4903	4	224	0.4	< 3	< 3	45	0.73	0.19	52	25	0.44	166	0.07	5	1.31	0.02	0.09	< 2
4911	19	166	0.3	< 3	< 3	63	0.47	0.10	49	19	0.25	112	0.06	10	1.44	0.02	0.09	< 2
4913	4	193	< .2	< 3	< 3	29	0.65	0.12	40	19	0.46	92	0.05	7	0.92	0.02	0.06	< 2
4915	8	220	0.2	< 3	< 3	117	0.89	0.26	71	92	0.38	87	0.10	9	0.74	0.05	0.07	< 2
4917	16	150	< .2	< 3	< 3	93	0.64	0.21	60	59	0,29	68	0.10	8	0.62	0.03	0.06	< 2
4919	18	77	< .2	< 3	< 3	95	0.62	0.11	37	56	0.30	45	0.07	7	0.48	0.02	0.04	< 2
4921	11	142	< .2	< 3	< 3	70	0.54	0.16	44	42	0.24	64	0.08	6	0.57	0.02	0.05	< 2
4923	9	270	< .2	< 3	3	93	0.90	0.24	72	76	0.45	107	0.13	7	1.01	0.05	0.09	< 2
4925	10	62	< .2	< 3	< 3	73	0.49	0.12	40	56	0.84	90	0.09	8	1.24	0.01	0.12	< 2
4927	12	396	< .2	< 3	< 3	88	1.23	0.28	100	57	0.43	116	0.13	9	1.32	0.21	0.10	< 2
4929	132	96	<.2	< 3	7	212	0.71	0.24	81	174	0.25	50	0.08	< 3	0.37	0.01	0.03	8
4931	12	71	0.2	< 3	3	77	0.53	0.13	35	64	0.63	64	0.07	7	0.94	0.02	0.09	< 2
4933	15	60	0.2	< 3	< 3	93	0.51	0.13	37	75	0.64	70	0.07	4	0.90	0.01	0.12	< 2
4935	9	468	< .2	< 3	3	44	1.20	0.38	92	29	0.49	136	0.12	7	1.39	0.14	0.09	< 2
4937	9	164	0.2	< 3	< 3	97	0.65	0.19	51	56	0.27	71	0.09	6	0.57	0.05	0.05	< 2
4939	7	45	0.2	< 3	< 3	24	0.24	0.03	15	25	0.45	66	0.08	7	1.01	0.02	0.05	3
RE 4939	5	44	0.2	< 3	< 3	25	0.26	0.04	18	24	0.43	62	0.08	7	1.00	0.02	0.05	4
4941	12	53	0.2	< 3	< 3	29	0.37	0.04	31	23	0.36	135	0.08	7	1.60	0.02	0.10	2
4943	15	84	< .2	< 3	< 3	71	0.45	0.15	42	37	0.22	51	0.06	9	0.52	0.01	0.04	< 2
4945	7	95	< .2	< 3	< 3	37	0.45	0.14	32	32	0.39	83	0.05	7	0.62	0.01	0.06	< 2
4947	26	107	0.2	< 3	< 3	63	0.53	0.18	41	55	0.38	69	0.06	8	0.57	0.01	0.05	< 2
4949	28	102	0.2	< 3	4	223	0.64	0.23	56	112	0.21	48	0.07	5	0.40	0.01	0.05	< 2
4951	15	61	8.0	3	3	67	0.55	0,13	27	79	0.95	105	0.10	4	1.25	0.01	0.12	< 2
4963	99	95	< .2	< 3	<3	147	0.58	0.19	55	90	0.29	50	0.07	< 3	0.44	0.01	0.05	< 2
4955	19	53	< .2	< 3	< 3	21	0.36	0.13	34	26	0.23	43	0.05	3	0.47	0.01	0.03	< 2
4957	9	71	0.2	< 3	< 3	36	0.43	0.13	32	30	0.38	64	0.06	4	0.61	0.01	0.05	< 2
4959	11	38	0.6	< 3	< 3	45	0.39	0.06	28	84	0.54	83	0.07	7	1.05	0.01	0.11	3
4961	61	142	< .2	< 3	5	250	1.15	0.23	75	174	0.37	63	0.11	< 3	0.58	0.02	0.06	< 2
4963	19	49	< .2	< 3	< 3	45	0.43	0.10	35	37	0.44	67	0.07	5	0.87	0.01	0.06	2
4965	15	87	0.2	< 3	< 3	37	0.43	0.09	47	19	0.31	125	0.07	4	1.67	0.01	0.07	2
4967	6	38	< .2	< 3	< 3	20	0.26	0,09	25	15	0.15	33	0.04	7	0.36	0.01	0.05	< 2
STANDARD C3	20	29	25	20	23	74	0.59	0.09	17	152	0.64	151	0.09	28	1.81	0.04	0.16	19
STANDARD G-2	4	71	< .2	< 3	< 3	34	0.63	0.09	6	64	0.60	223	0.13	10	0.96	0.08	0.47	2
																		$\vdash \vdash \vdash$
·																		

PAN CONCENTRATE RESULTS

		T			Ag	Au	Pt	Pd	Sample Wt.
Sample	Zone	Easting	Northing	Remarks	ppm	ppb	ppb	gm/mt	gm
				Acme file # A9002416					
4904	11 Ú	345,300	5,438,000	Rock Ck. Denver Bar "Goldscrew" panner sample (50kg)	<.3	10,730	< .01	< .01	29.2
4905	11U	344,150	5,443,300	Lemon CG, Stanhope Ck. "Goldscrew" panner sample	< .3	27,160	< .01	< .01	29.2
RE 4905					< .3	30,750	< .01	< .01	29.2
				Acme file # A9002415					
4910	110	343,180	5,447,420	Storm 9, Stanhope Ck. 2m		19.3	<2		33.38
4912	11U	345,280	5,440,270	Storm 6, below old placer.		1.2	<2		38.46
4914	11 U	345,320	5,440,800	Storm 6, 1m		0.8	< 2		35.86
4916	11U	345,260	5,440,760	Storm 7, 0.5m		2.2	< 2		37.53
4918	11U	345,620	5,441,200	Storm 7, 3m		0.4	<2		27.55
4920	11U	343,770	5,444,700	Storm 4, Stanhope Ck. 3.5m "Goldscrew" panner sample		4,598	< 2		20.45
4922	11U	344,780	5,442,730	MO 1, dry ck.		0.8	<2		45.24
4924	11U	344,750	5,442,520	MO 1, Rock Ck. 4m, below Victoria, Old England CG		667.3	2		34.69
4926	11U	344,730	5,442,780	Mo 3, 4m		5.6	<2		16.57
4928	11U	344,800	5,443,280	Storm 1, Stanhope Ck. 3m		140.1	<2		19.25
4930	11U	345,277	5,444,468	Storm 3, Jolly Ck.		1	< 2		39.48
4932	11U	344,950	5,430,000	Mo 3, 0.5m		1.3	< 2		31.06
4934	11 U	342,060	5,447,000	Storm 9, 1m		0.8	< 2		49.91
4936	110	342,200	5,447,000	Storm 9, 1m		0.4	<2		40.59
4938	11U	340,600	5,448,000	Storm 9, 4m		0.8	< 2		35.79
4940	11U	340,580	5,447,580	West of Storm 9 on Rock Creek, 4m		1	< 2		34.63
4942	11U	340,140	5,448,540	Wapiti road, and Rock Creek, 4m		1.5	<2		24.49
4944	11U	341,348	5,446,200	Storm 9, 1m		3.2	<2		42.54
4946	110	341,646	5,444,233	below Bev claim on Rock Creek, 7m		0.9	< 2		38.84
4948	11U	345,184	5,433,237	Storm 6, Rock Ck., 5m prob. historic "Denver Bar".		30.6	<2		49.08
4950	110	344,100	5,443,600	Lemon crown grant on Standhope Creek		0.2	< 2		26.93
4952	11U	343,300	5,446,000	Storm 4, 1m		0.3	<2		44.75
4954	110	343,250	5,446,000	Storm 4, 1m		<.2	< 2		41.82
STD DS2						208.6	< 2		30.00

ROCK SAMPLE RESULTS

					Au	МО	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U
				Remarks	ppb	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm
mple	Zone	Easting	Northing	Acme file # A9002414									440	0.40	< 2	< 8
				Bridon occ: 40cm chip incl. bix diss. and mag/chromite seams	5	1	6	322	<u>·</u>	< .3	406			0.49	< 2	
06	11U	338,096	5,450,182	Bridon occ.: 40cm chip incl. bix diss. and mag/chromite seams	2	1	2	6	3		247	4		0.44		
07	11U	338,056	5,450,212	Bridon occ.: 50cm chip frici. bix diss. and mag-chromite seam	2	2	2	3	21					2.59	2	
08	11U	338,056	5,450,212	Bridon occ.: select sample of blk. 5mm mag/chromite seam	3		2	< 3	4		1,473			3.12	< 2	
109	11U	338,056	5,450,212	Bridon occ.: alt'd dunite with 2 to 3% diss. mag/chromite	2	2	2	< 3	4	< .3	1,448	67	433	3.06	< 2	< 8
E 4909				Acme file # A9003381		 								\		ļ.,
					0.4	4	84	6	45	< .3	78		1	4.08	< 2	
36R	11U	342,200	5,447,000	Upper Rock Ck trib. on Storm 9, site pan con. 4936	0.8	< 1	13	4	2	< .3	1,110	48		4.22		
973	11U	345,080	5,439,190	on Rock Creek,gossum,sugary qtz., Storm 6	1.0		22	3	43	< .3	40	7		2.17	+	
974	11U	345,190	5,439,190	oxide,color dark black,cherty, Storm 6	0.			7	33	< .3	41	8		1.97		
975	11U	345,060	5,439,420	color light grey,cherty,fine pyrite,breccia,Storm 6	3.		54	44	100	0.3	(10		3.31	—	
976	11U	344,960	5,439,610	old trench ,color light grey,high mag,flzz,Storm 6	1.			40	1	7 1.0	1	3 1		1.62	·	-1
977	11U	344,690	5,439,980	old trench oxide,sugary qtz.,pyrite,Storm 6	30.				6	0 < 3	19	2 50	1,27	6.3	13	—
978	11U	345,930	5,440,580	pyrite,fizz,oxide,color dark grey and green,Storm 6	2.					6 < 3	2	7 22	51	9 3.2	·	2 <
978	11U	345,230	5,440,600	pyrite,fizz,color dark grey and green,Storm 7	11.					7 < 3	3 1	6 .	5 29	0 2.7	1 7	7 <
	11U	345,250	5,441,420	sugary qtz.,pyrite,oxide,Storm 7			2 173		1			2 16	3 50	5 5.1	4 < 2	2 <
980	110	343,170	5,444,180	nyrite fizz oxide Storm 5	10.		8 1,350	1			5	5 4	8 10	6 9.6	β 1:	3 <
981	110	343,580	5,444,140	old trench,chalco-pyrite,pyrite,galena,hard rock,Storm 2			4 21	1		4 0.		·	7 26	4 4.7	6 <	2 <
982	110	343,580	5,444,070	old pit, oxide fine pyrite, chalco-pyrite, Storm 2	3		2 3		1	1	-	6 <	1 6	8 2.1	7 15	0 <
1983	110	343,580	5,443,380	old trench, sugary qtz. Galena, big cube pyrite, Storm 2	363				1	4 0.		5 1	8 63	0 4.2	6	3 <
1984	110	343,370	5,443,600	old trench,pyrite,fizz,oxide, Storm2	11		3 16	`		2 < .		2 1	1 44	1 3.1	5 <	2 <
1985		344,800	5,444,800	color dark calcite fizz, Storm3				`		2 0.		1 4	7 3	31 3.7	5 <	2 <
4986	110	344,950	5,445,120	oxide zone 150 metres long x 40 metres wide, Storm 3			1 23			4 0				3 4.8		2 <
4987	110	344,950	5,445,120	high mag.,very oxide,pyrrhotite,color black,Storm 3		.2 <		·		25 0.		,		35 4.8		2 <
4988	110	344,950	5,445,120			.2 <				5 <		1	8 2,1			20 <
RE 4988		044.070	5,443,500	old trench ,qtz,fine pyrite,mariposite, Storm 1		.4			4	66 <	-			57 6.		4 .
4989	11U	344,870	5,444,230	massive pyrite ,color green, high mag.,Storm 1			' "							41 3.		2
4990	11U	345,200	5,444,210	color green,calcite,pyrite,oxide, Storm1		.0	· 1	5 <	-1 _	49 < 34 <				09 8.		2
4991	110	345,160	5,444,200	high mag.,calcite,fizz,heavy, Storm 1).3			·			4		37 5.		3
4992	110	345,130	5,444,420	old trench, sugary qtz.fine pyrite, oxide , Storm 3	7		61 24		5		.0			89 8.		10
4993	110	344,740		oxide,pyrite,color dark ,Storm 1		3,9	10 3					10	1	15 3.		< 2
4994	110	344,750	5,444,190	adit,pyrite,qtz,color dark ,Storm 1		1.6						17		12 0	,	9
4995	11U	345,050	5,444,120	burn pyrite,calcite,fizz, Storm 1		0.3	2						- 1	46 4		2
4996	11U	345,000	5,443,940	oxide,pyrite,weak mag., color black ,Storm 1		1.9	- I				.3			34 7		7
4997	110	344,640	5,443,800	pyrite,fizz,some high mag.Storm 6	3	7.3	< 1 3,7	-						368 5		2
4998	110	345,770	5,440,260	color black,pyrite,fizz, Storm 6	—	0.9	< 1	·	3					- 1		56
4999	110	345,320	5,440,270	COIOI DIBON, PYTRE, 1122, CTOTTE C	19	0.9	27				5.5	- -		762 3		< 2
STD C3/DS2						_	1	3 4	3	46 <	.3[8	4	545 2	.111	- 4

ROCK SAMPLE RESULTS

		Th	Sr	Cd	Sb	В	V	Ca	Р	La	Cr	Mg	Ba	TI_	В	Ai	Na	K	w	Pt	Pd
Sample	Remarks	ppm	ppm	ppm	ppm	ppm	ppm	%	%	ppm	ppm	%	ppm	%	ppm	%	%	%	ppm	ppb	ppb
	Acme# A9002414																				
4906	Bridon occ: 40cm chip incl. blk dlss. and mag/chromite seams	< 2	1	0.2	< 3	3	5	0.01	0.00	< 1	2846	2.71	7	< .01	3	1.06	< .01	< .01	3	4	3
4907	Bridon occ.: 50cm chip incl. blk diss. and mag/chromite seams	< 2	1	< .2	< 3	< 3	6	0.01	0.00	< 1	2444	2.56	8	0.01	< 3	1.02	< .01	< .01	2	3	
4908	Bridon occ.; select sample of blk. 5mm mag/chromite seam	< 2	1	< .2	9	< 3	1	0.17	0.00	< 1	779	19.97	2	< .01	12	0.19	< .01	< .01	3	1	< 1
4909	Briden occ.: alt'd dunite with 2 to 3% diss, mag/chromite	< 2	5	< .2	< 3	< 3	8	0.73	0.00	< 1	820	17.13	2	< .01	5	0.24	< .01	< .01	< 2	< 1	< 1
RE 4909		< 2	5	< .2	< 3	< 3	9	0.71	0.00	< 1	825	16.65	2	< .01	7	0.24	< .01	< .01	< 2	< 1	< 1
	Acme file # A9003381						,														
4936R	· · · · · · · · · · · · · · · · · · ·	< 2	152	0.2	< 3	< 3	110	1.34	0.14	16	53	2.22		0.22	< 3	2.10	0.17	0.57	2		
4973	on Rock Creek,gossan,sugary qtz., Storm 6	< 2	299	0.4	< 3	< 3	10	2.94	0.01	< 1	517	11.86	296	< .01	4	0.15	0.01	< .01	< 2		
4974	oxide,color dark black,cherty, Storm 6	< 2	18	< .2	<3	< 3	22	0.12	0.04		36	1.29	50	0.01	4	1.29	0.01	0.11	3		
4975	color light grey,cherty,fine pyrite,breccla,Storm 6	< 2	9	< .2	< 3	< 3	30	0.09	0.04	4	60	0.99	52	0.01	3	1.10	0.03	0.05			
4976	old trench ,color light grey,high mag,fizz,Storm 6	40	316	< .2	3	3	84	1.32	0.22		8	0.66	527	0.34	8	4.10	2.22	0.54	_		
4977	old trench oxide, sugary qtz., pyrite, Storm 6	< 2	48	< ,2	< 3	< 3	3	0.03	0,06	1	1	0.01	37	< .01	4	0.12	0.02	0.07	3		
4978	pyrite,fizz,oxide,color dark grey and green,Storm 6	< 2	280		< 3	< 3	155	6.01	0.05		.,	4.24	41	0.13	< 3	2.50	0.05	0.06	_		
4979	pyrite,fizz,color dark grey and green,Storm 7	< 2	32	0.2	< 3	< 3	98	1.97	0.05		55	1.63	14	0.19		1.43	0.15	0.04	-		
4980	sugary qtz.,pyrite,oxide,Storm 7	< 2	8	< .2	< 3	< 3	10	0.18	0.01	L	23	0.49	20	< .01	< 3	0.57	0.01	0.11	4		
4981	pyrite,fizz,oxide,Storm 5	< 2	40	0.4	< 3	< 3	7	1.78	0.49	1.	I	1.14	311	0.15		1,94	0.13	0.89			
4982	old trench,chalco-pyrite,pyrite,galena,hard rock,St.2	< 2	19	85.3	< 3	< 3	53	3.29	1.62	1	42	0.09	32	< .01	< 3	0.21	0.01	0.06	1		<u> </u>
4983	old pit, oxide,fine pyrite,chalco-pyrite,Storm 2	< 2	4	0.5	< 3	< 3	184	0.62	0.21	3	I	0.89		0.03		0.91	0.04	0.03	4		
4984	old trench, sugary qtz. Galena, big cube pyrite, St. 2	< 2	3	2.3	< 3	31	4	0.01	0.01	<1	25	0.01	8	< .01	< 3	0.06	0.01	0.07			
4985	old trench,pyrite,fizz,oxide, Storm2	< 2	17	0.3	< 3	< 3	97	0.93	0.07	1	43	1.61	313	0.12	L	2.17	0.15	0.36			
4986	color dark calcite,fizz, Storm3	2	29	< .2	< 3	< 3	163	0.74	0.09					0.21	< 3	1.67	0.08	1.06			<u> </u>
4987	oxide zone 150 metres long x 40 metres wide, Storm 3	< 2	11	0.2	< 3	< 3	365	1.66	0.00				1	0.18	5	1.54		0,08			ļ
4988	high mag., very oxide, pyrrhotite, color black, Storm 3	< 2	13	0.2	< 3	< 3	612	1.52	0.00		9	0.91	12	0.14	1	1.44		0.07	1		
RE 4988		< 2	13	0,3	< 3	< 3	608	1.53	0,00		9	0.92		0.14		1.45		0.07			
4989	old trench ,qtz,fine pyrite,mariposite, Storm 1	< 2	309	0.4	< 3	3 < 3	7	12.52	0.00		377	6.34	1	< .01	< 3	0.23		< .01	1		
4990	massive pyrite ,color green, high mag.,Storm 1	< 2	23	0.2	< 3	< 3	53	1.24	0.48		24		37	0.11	-	0.98		0.16	_		ļ
4991	color green,calcite,pyrite,oxide, Storm1	< 2	55	0.2	< 3	3 < 3	86	1.35	0.09					0.10		1.62		0.19			
4992	high mag.,calcite,fizz,heavy, Storm 1	< 2	17	0.4	4	4 < 3	212	0.72	0.21				1	0.42		4.16		2.70	l		-
4993	old trench, sugary qtz.fine pyrite, oxide , Storm 3	< 2	1	< .2	< 3	3 < 3	19	0.02	0.00	1	22		3	0.01		0.08		0.01			-
4994	oxide,pyrite,color dark ,Storm 1	< 2	16	0.6	< 3	3 < 3	1	0.29	L	i	20			0.28	J	2.30		0.09			-
4995	adit,pyrite,qtz,color dark ,Storm 1	7	11	< .2	< 3	3 < 3	21	0.11	0.03				1	0.08	1	0.91		0,18			₩
4996	burn pyrite,calcite,fizz, Storm 1	< 2	474	0.2	< 3	3 < 3	6	0 11 10		1	2	0.0	26	0.01		0.12		0.02			
4997	oxide,pyrite,weak mag., color black ,Storm 1	< 2	17	0.2	< 3	3 < 3	6	1.10			1			0.09	1	1.47		0.07		1	
4998	pyrite,fizz,some high mag.Storm 6	4	52	0.6	3	3 < 3	158						1	0.06	1	3.55		0.17			ļ
4999	color black,pyrite,fizz, Storm 6	< 2	58	0.4	3	3 < 3	144	2.62						0.05		3.26		0.04			
STD C3/DS2		20	28	23.0	16	3 22	75							0.09		1.71	0.04	0.15			
STD G-2		3	81	< .2	< 3	3 < 3	40	0.67	0.10	7	72	0.61	251	0.13	< 3	1.03	0.11	0.48	3 < 2		

2 nd Copy -

	•	-
A CHE ANALYZE CALCONNOL	TATOPTE	A (31)
Water to the composition of the same of		
44		725
	1977	77 T
		13-61

BOCHEMICAL ANALYSIS CERTIFICATES

(i)			L-X-(3 50)	20, 64	4.92 15	Sec. 27.	£ 45332	116000	288 . 5	12 PH 12 PM
×	3 59.	20	W 4 W	78. E	THE STATE OF	7.7	7 4 P 4 F	(XX)-48	100	110
Š.	26.75		1.26	239	120 54	-22.5	(3.0 m)	5123 22	A-1823 H	12.2
50.3	£***	***	S-18.	753 AN	22.7	44.75	~£3. 21	100	3 7 7 7	18 M
:	7.77	3513	27712	. 62	12.4	* 7 7 8 9	7. Kg 6.	****	1.2	
۲,	* ? ·		7: X	200	78 4	2 4 4 × 35	182 43	A	7 2 5	
и.		· •		A 350	52. 15		0.4	1 1 2 1 3	21.50	auchon s.
	0 t. 20		33.00	A 73	£ 20.13	150 25	V 60	1. 1	***	
77.		7(1)	Sec. 17.		×	263.01	37. 38	1 × ×	72.2	翻译
٠.	* * * * * *	* *	* * * * * * * * * * * * * * * * * * * *	35	76 :	13.74	- E 4	- A 2	4.5	
· • •					T 200 1		5354 . 5	1 1 7 1		- S

Carrie and the same	فتنفيص		\$ 6.8 32	$\alpha m c$		7.55	1:048	18/25	\$7.558	<u> </u>	1 3	36.3		113	3.33	1	100	100		23 .	32.63	وَالْفِي فَعَالَا			124	1771	د فالمُحْمَدُ المُحْمَدُ المُحْمَدُ المُحْمَدُ المُحْمَدُ المُحْمَدُ المُحْمَدُ المُحْمَدُ المُحْمَدُ المُحْمَدُ			10075		37
SAMPCEN	Ко		Pb ppm	Zn ppo) ppm		Ça ppm	Kni ppor		As ppm		Ppni Act			ista Cq	bbs ≥		Spor A	Ca X	<u>የ</u>	(a ppm	bbw Ct		Ppm Ppm	Tí X	ppo 8	Ai X	Na X	X X	DOW Fi	Aur ^a ppb	-
4936 Rochs. 4976 4975 4976	41 21 3 3	84 13 22 17 54	6 4 3 7 44	45 2 43 33 100				596 1190 240 249 705	4.22 2.17 1.97	₹ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	& & & & & &	AAAAA	\$ \$ \$	152 299 18 9 316	.2 4.2 4.2 4.2 4.2	00000	3000	110 10 22 30 84	1,34 2,94 12 ,09 1,32	.141 .006 .040 .036 .223	<1 7 8		2,22 11.86 1.29 .99	296< 50	.01 .01 .01	4 1 3 1 8 4	.15 .29	.01 .03	.57 .01 .11 .05	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.0 1.7 3.5	
4977 4978 4979 4980 4981	7 <1 1 11 2	46 155 71 19 173	40 7 <3 5 4	17 60 26 27 91	1.0 <.3 <.3 <.3 <.3	6 192 27 16 2	1 50 22 5 16	37 1278 519 290 505	3.25 2.71	27 13 2 7	& & & & & &	ሴ ሴ ሴ ሴ ሴ ሴ	<2	48 280 32 8 40	<.2 .7 .2 <.2 .4	ପ୍ର ପ୍ର ପ୍ର ପ୍ର	33333	3 155 98 10 7	.03 6.01 1.97 .18 1.78	.061 .053 .050 .010 .467	10 5 1 7 15	24 1404 55 23 5	.01 4.24 1.63 .49 1.14	41 14 20<	. 13 . 19 . 01	<3.2 <3.1	.43 .57	.02 .05 .15 .01	.07 .06 .04 .11	<2 4	1.9 30.5 2,9 11.1 10.2	
4982 4983 4984 4985 4986	8 6 2 3 2	1350 213 31 164 11	1482 11 670 5	6400 64 305 64 72	3.8 .4 18.4 .4 <.3	55 49 6 25 42	46 7 <1 18 11		4.76 2.17 4.26		&&& &&	A8868	~ A A A A A	19 4 3 17 29	85.3 .5 2.3 .3 <.2	99999	द इ इ इ इ इ		3.29 .62 .01 .93 .74	1.624 .210 .007 .067 .085	4 3 <1 1 5	42 84 25 43 75	.09 .89 01 1.61 1.22		.03 .01 .12	4		.04	.06 .03 .07 .36	7 7 3	34.9 3.9 63.0 11.8	
4987 4988 RE 4988 4989 4990	1 <1 <1 2	2331 200 196 21 30	3 4 10	22 24 25 5 66	.3 ,4 ,4 ,4 ,3 ,3 ,3	11 12 12 848 34	48	331 283 285 2109 357	4.86 4.86 2.72	<2 20 4	& & & & & &	\$\$\$\$\$\$	\$ \$.2 .3 .4 .2	00000 0000	ব্য	612 608 7	1.66 1.52 1.53 12.52 1.24	.003 .002 .002 .003 .475	र र र र र र र 8	8 9 9 377 24	.95 .91 .92 6.34 .61	15 . 12 . 12 . 5<.	14 14 01		.44 .45 .23 •	.17 .17 :.01 <	.08 .07 .07 .01	₹ ₹ ₹ ₹ ₹ ₹	5.2 <.2 <.2 4.8 4.8	
4991 4992 4993 4994 4995	1 51 10 3	15 33 243 391 36		49 134 8 55 24	<.3 <.3 1.0 .7 <.3	11 23 4 12 10	13 43 2 28 1	741 609 37 489 415	8.58 5.19 8.45	2 3 10 2	A & & & A	8 8 8 8 8 8	2000	55 17 1 16 11	.2 .4 <.2 .6 <.2	ও ১ ১ ১ ১ ১	3	86 212 19 172 21	1.35 .72 .02 .29	.089 .210 .004 .068 .033	2 3 <1 1 38	16 2 22 20 10	1.25 4.03 .01 1.52 .17	54Z . 3 .	.42 .01 .25	\$ 1 \$ 4 \$ 2 \$ 3	. 16 .08 .30	.09 2 .01 .09		2 13 2 2	1.8 -3 9.4 8.9 1.6	
4996 4997 4998 4999 SIARDARD C3/0S2	2 2 <1 <1 27	9 218 3775 37 64	3 <3 11 <3 36	11 34 106 27 165	<.3 <.3 2.1 <.3 575	17 5 36 35 36	36 29 25 11	412 446 834 868 762	4,57 7,67 5.05	9 2 7 2 56	8 8 8 8 X	~ ABBB	<2 <2 4 <2 20	474 17 52 56 28	.2 .6 .4 23.0	3 3 16		6	34,49 1,10 2,19 2,62 ,55	.078 .111 .520, .012 .086	1 <1 22 <1 17	2 8 27 46 159	.01 .38 2.33 2.75 .59	14.	.09 .06 .05	3 1 3 3 3 3 3 3 2 3	.47 .55 .26	.19 .05 .05		<2	.3 1.9 17.3 .9	
STANDARD G-2	1	3	<3	46	<.3	8	4	545	2.11	2	<8	·<2	3	81	<.2	<3	ব	40	.67	.076	7	72	.61	251 .	.13	Q 1	.03	.11	.48	< 2	,	

528

GROUP 10 - 0.50 CM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HR03-H20 AT 95 DEG. C FOR CAE HOUR, DILUTED TO 10 ML, AMALYSED BY ICP-ES.

UPPER LIMITS - AG, AU, NG, W = 100 PPM; NO, CO, CD, SE, BI, TH, U & R = 2,000 PPM; CU, PB, ZN, NI, NN, AS, V, LA, CR = 10,000 PPM.

ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB

- SAMPLE TYPE: ROCK R150 60C AU* BY ACID LEACHED, AMALYZE BY ICP-MS. (10 gm)

Samples beginning 'RE' are Returns and 'RRE' are Reject Returns.

DATE RECEIVED: SEP 5 2000 DATE REPORT MAILED:

PHOME 1004 (2007) 25

GEOCHEMICAL ANALYSIS CERTIFICATE

Renaudat, Frank File # A002415

船

	SAMPLE#	Au* ppb	Pt ppb	Sample gm	
panned concentrate.	4910 4912 4914 4916 4918	19.3 1.2 .8 2.2 .4	<2 <2 <2 <2 <2	33.38 38.46 35.86 37.53 27.55	
	4920 4922 4924 4926 4928	4598.1 667.3 5.6 140.1	<2 <2 <2 <2 <2	20.45 45.24 34.69 16.57 19.25	
•	4930 4932 4934 4936 4938	1.0 1.3 .8 .4 .8	<2 <2 <2 <2 <2	39.48 31.06 49.91 40.59 35.79	
	4940 4942 4944 4946 4948	1.0 1.5 3.2 .9 30.6	<2 <2 <2 <2 <2	34.63 24.49 42.54 38.84 49.08	. ·
	4950 4952 4954 STANDARD DS2	.2 .3 <.2 208.6	<2 <2 <2 <2	26.93 44.75 41.82 30.00	

AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (TOTAL SAMPLE) PT ANALYSIS BY ICP/MS.
- SAMPLE TYPE: PAN CONC.

DATE RECEIVED: JUL 18 2000 DATE REPORT MAILED:

m: July 31/vo

Gold data standardize to sample with (309).

REVISED COPY

3 A

ACMA ANALYTICAL LABORATORIES LTD. 852 8. HASTINGS ST. VANCOUVER BC. V6A 1R6 PHONE (604) 253-3158 PAX (604) 253 1716

Renaudat, Frank File # A002413 P.O. Box 1923, Oliver BC 904 1TO Submitted by: Frank Renaudat

SAMPLE#	Мо	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Şr	Cd	Sb	Bi	٧	Ca	P	La	Cr	₩g	Ва	Ti	В	AL	Na	K	¥	
Stock	ppm	bbm	ppm	bba	ppn	bbus	bbu	bbw	<u> </u>	ppm	bbu	ppm	ppm	bbu	ppm	ppm	blow	ppm	×	X	ppm	ppm	%_	ppm	X	bbu	_ %	7.	X	ppm	
4902 Sad	,	25	5	33	<.3	90	13	436	2 0/	3			~ ~	88	<u> </u>		<3	57	50	.118	28	78	.79	115	.07	7	.20	.02	.09	<2	
4903	,	10	12	63	<.3	18	6	702		4	<8 9	<2		224	.2 .4	- ও -ও	⋖3	45			52	25	.44	166	.07		1.31	.02	.09	₹2	
4911	2	8,	12		.5	8	3	385		2	10	(2)	19	166	.3	<3	<3	63		.102	49	19	.25	112	.06		.44	.02	.09	<2	
4913	<1	18	6	33	<.3	13	5	308		3.	<8	\2.	4	193	<.2	उ	₹3	29		.118	40	19	.46	92	.05	7	.92	.02	.06	<2	
4915	<1	13	11	65	<.3	23	7	476		6	. ≺8	-₹2	8	220	.2	उ	उ	117		.257	71	92	.38	87	.10	9	.74	.05	.07	<2	
			• • •	UJ			•	7,0	7.00	·	~~	~~	•	220		•	`	111	.07	.2.71	* 1	72	-30	O,	. 10			.03	.01	\ <u>c</u>	•
4917	<1	9	9	44	<.3	15	5	299	3.87	2	<8	<2	16	150	<.2	⋖3	ব	93	.64	.205	60	59	.29	68	.10	8	.62	.03	.06	<2	
4919	<1	20	3	28	<.3	20	6	254		<2	<8	<2	18	77	<.2	₹	उ	95	,62	.105	37	56	.30	45	.07	7	.48	.02	.04	<2	
4921	<1	8	4	44	<.3	10	3	223		2	<8	<2	. 11	142	<.2	उ	उ	70		.163	44	42	.24	64	.08	6	.57	.02	.05	<2	
4923	<1	14	9	64	<.3	19	6	302		2	<8	<2	. 9	270	<.2	3	3	93			72	76	.45	107	.13	_	.01	.05	.09	<2	
4925	1	9	3	55	<.3	29	9	412		2	<8	<2	10	62	<.2	3	<3	73		.122	40	56	.84	90	.09		1.24	.01	.12	<2	
																-	_			v					• • • • • • • • • • • • • • • • • • • •	•		•••		-	
4927	<1	19	19	60	<.3	15	6	335	3.43	4	<8	<2	12	396	<.2	<3	<3	88	1.23	.280	100	57	.43	116	.13	9 '	1.32	.21	.10	<2	
4929	<1	10	18	43	<.3	59	16	328	B.61	27	23	<2	132	96	<.2	<3	7	212	.71	.242	81	174-4	.25	50	.08	<3	.37	.01	.03	8	
4931	1	15	Ò	52	<.3	28	8	377	3.82	4	<8	<2	12	71	.2	<3	3	77	.53	.133	35	64	.63	64	.07	7	.94	.02	.09	<2	
4933	1	21	10	54	<.3	31	10	420	4.54	4	<8	<2	15	60	.2	: 3	<3	93	51ر	. 132	37	75_	.64	70	.07	4	.90	.01	. 12	<2	
4935*	<1	17	10	49	<.3	15	6	303	1.82	4	<8	<2	9	468	·<.2	<3	3	44	1.20	.380	92	29	.49	136	.12	7 '	1.39	. 14	-09	<2	
				÷																											÷
4937	<1	9	6	36	<.3	10	4	211		<2	<8	<2	9	164	.2	<3	<3	97		.188	51	56	.27	71	.09	6	.57	.05	.05	<2	
4939	<1	19	11	167	<.3	17	6	185		2	<8	<2	7	45	.2	<3	<3	24 .			15 .	25	.45	66	.08		į. 01	.02	.05	3	i
RE 4939	1	19	10	164	<.3	17	6	185		2	<8	<2	5	44	.2	<3	<3	25		.035	18	24	.43	62	.08		.00	.02	.05	4.	
4941	1	31	12	102	<.3	37	6	339		<2	9	<2	12	53	.2	<3	<3	29			31	23	.36	135	.08		1.60	.02	.10	2	٠ .
4943	1	6	4	26	<.3	13	4	200	3.16	<2	<8	<2	15	84	<.2	<3	<3	71	.45	,149	42	37	.22	51	.66	9	.52	.01	.04	<2	
1015		_	_				-			_	_	_	_		_	-	_									_				_	
4945 ***	1	9	. 5	31	٧.3	33	5	242		<2	<8	<2	- <u>-</u> /-	95	<.2	<3	્યુ	37		.137	32	32	.39	83	.05	7	.62	.01	.06	<2	
4947		(6.	29	<.3	35	-	251		<2	<8	<2	26	107	.2	<3	<3	63		.175	41	55	.38	69	-06	8	.57	.01	.05	<2	
4949	1	8	5	39	<.3	27	8	280		<2	<8	<2	28	102	-2	<3	4	223		.225	56	1124		48	.07	5	.40	.01	.05	. <2	
4951 4957		16	6	47	<.3	51	11	479		2	<8	<2	15	61	.8	3	3	67			27	- 79	-95	105	.10	4		.01	.42	<2	
4953	<1	7	6	44	<.3	30	6	270	D.UZ	<2	15	<2	99	95	<.2	<3	<3	147	.58	. 194	55	90	.29	50	.07	<3	.44	.01	.05	<2	
4955	'<1	6	. 4	59	<.3	12	3	90	1.07	<2	<8	<2	19	53	<.2	-7	ব্য	21	.38	.125	7/	26	.23	43	,05	3	.47	.01	.03	<2	
4957	41	. 8	6	43	≺,3	22	5	217		₹2	<8	<2	9	71	.2	ও ও	उ	36		.133	34 32	30	.38	64	06	4	.61	.01	.05	<2	
4959	<1	22	8	125	.3	77	8	286		2	√8	<2	11	38	.6	₹3	ं देउ	36 45		.064	28 28	84	.54	83	07	,	1.05	.01	.11	3	· i
4961	1	15	12	71	<.3	38	10	434		6	11	<2	61	142	<.2	ও	5			.229	75	.174		63	11	उं	.58	.02	.06	<2	
4963	3	8	5	38	<.3	17	5	408		2	<8	⟨2	19	49	<.2	<3	<3	45	.43	.099	35	37	.44	67	.07	5	.87	01	.06	2	
4703	`'		•	٠		• •	•	400		C.	~	~~	.,	47	٠.د	~3	- J	72	.73	.077	رد	J	. 444	O,		,	.01	.01	.00	-	i
4965	2	14	12	83	<.3	15	4	416	2.22	2	<8	<2	15	87	.2	<3	<3	37	.43	.088	47	19	.31	125	.07	4	1.67	.01	.07	2	ļ
4967	<1	6	3	19	<.3	7	2		1.06	<2	<8	<2	6	38	٠ <u>.</u> 2	<3	<3	20			25	15	. 15	33	.04	7	.36	.01	.05	<2	i
STANDARD C3	26	63	40	165	5.7	36	11	778		62	21	2	20		24.8	20	23	_{0.} 74		.087	17	152	.64	151	.09	28 1		.04	.16	19	
STANDARD G-Z	1 1	3	4	38	<.3	7	4	509		<2	<8	<2	4	71	≺.2	<3	ব	34		.094	6	64	.60	223	13	10	.96	.08	.47	2	-
- initiating of the	<u> </u>												-7	• •					.~-	. 777			.~~		• • • •		.,,				

GROUP 10 - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H20 AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SILT Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

JUL 18 2000 DATE REPORT MAILED:

SIGNED BY. Arthur. D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

5 R

GEOCHEMICAL ANALYSIS CERTIFICATE

Renaudat, Frank File # A002413R P.O. Box 1923, Oliver BC VO4 1TO Submitted by: Frank Renaudat

SAMPLE#	Au* ppb			
4902 4903 4911 4913 4915	4.6 .9 1381.6 78.4 518.9			
4917 4919 4921 4923 4925	2.7 2.1 24.6 .7		r	
4927 4929 4931 4933 4935	34.3 3.6 1.3 1.5			
4937 4939 4941 4943 4945	9.5 .55 .32		. •	
4947 4949 RE 4955 4951 4953	.2 .4 .4 .7	: :	9	
4955 4957 4959 4961 4963	<.2 .6 8.8 .5			
4965 4967 STANDARD DS2	<.2 <.2 190.0			

AU* BY ACID LEACHED, ANALYSIS BY ICP/MS. (10 gm)

- SAMPLE TYPE: SILT PULP

Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: JAN 3 2001 DATE REPORT MAILED: Jan 05/0 (

ACA ICA BOR LES (ISO 9002 Accredited Co.)

852 ... HAST AS SA VANCTUVER DU VOA LKO

GEOCHEMICAL ANALYSIS CERTIFICATE

Renaudat, Frank File # A002414 P.O. Box 1923, Oliver BC VO4 1TO Submitted by: Frank Renaudat

Eve-	Rucks.																							Mg %	8a ppm				Na %		 	
J. br<5611	4906 4907: 4908 4909 RE 4909	2	2 2	6 3 3	3 21 4	<.3 <.3 <.3	247 1522 1473	4 77 68	98 664 445	.44 2.59 3.12	\S \S	8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$3 \$3	1 1 5	<.2 <.2 <.2	उ १	ও ও	6 1 8	.01 .17 .73	.002 .003 .004	<1 <1 <1	2444 779 820	2.56 19.97 17.13	8 2< 2<	.01 .01 .01	3 ° 12 5	1.02< -19< -24<	<.01<.0 <.01<.0 <.01<.0 <.01<.0	11 2 11 3 11 <2	<1 <1 <1	3 1 ਰ ਰ

GROUP 1D - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR. DILUTED TO 10 ML, ANALYSED BY ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, S8, BI, TH, U & 8 = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB AU** PT** PD** GROUP 38 BY FIRE ASSAY & AMALYSIS BY ULTRA/ICP. (30 gm) - SAMPLE TYPE: ROCK Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

EATE RECEIVED: JUL 18 2000 DATE REPORT MAILED: Hug 3/00 11<00.....px<2121 31<00 ttut t....ppx>12!2!11ttu8xx|2ttltu0tupt= ? 000000

SIGNED BY! .D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Bridon Showing

ASSAY CERTIFICATE

Renaudat, Frank File # A002416 P.O. Box 1923, Oliver BC VD4 1TO Submitted by: Frank Renaudat

"Special Samples	SAMPLE#	Ag** gm/mt	Au** gm/mt	Pt** gm/mt	Pd** gm/mt	26	
of concentrate sed.	\$ 4904 4905 RE 4905	<.3 <.3 <.3	10.73 27.16 30.75	<.01 <.01 <.01	<.01 <.01 <.01		••

GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM 1 A.T. SAMPLE, ANALYSIS BY ICP-ES.

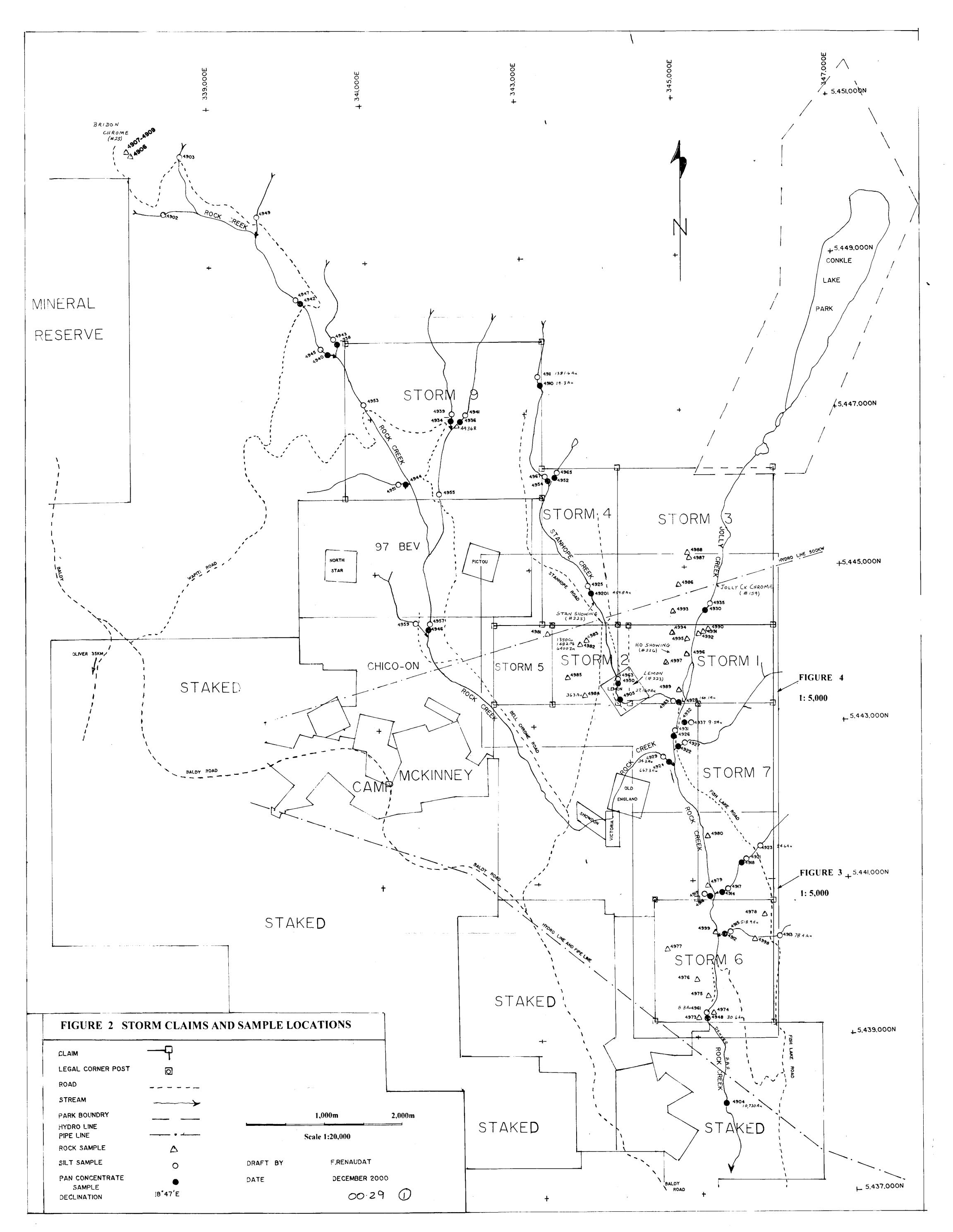
- SAMPLE TYPE: PAN CONC.

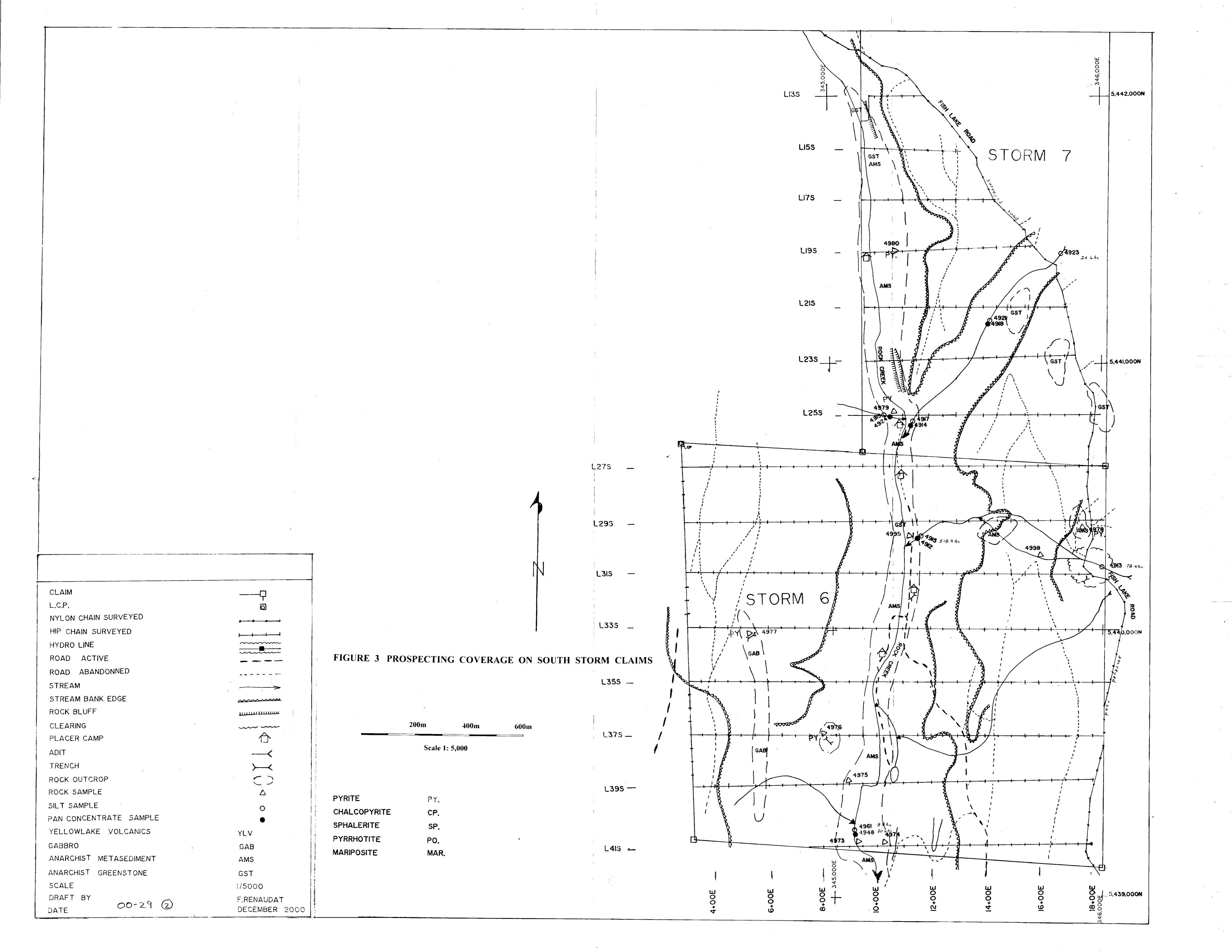
Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

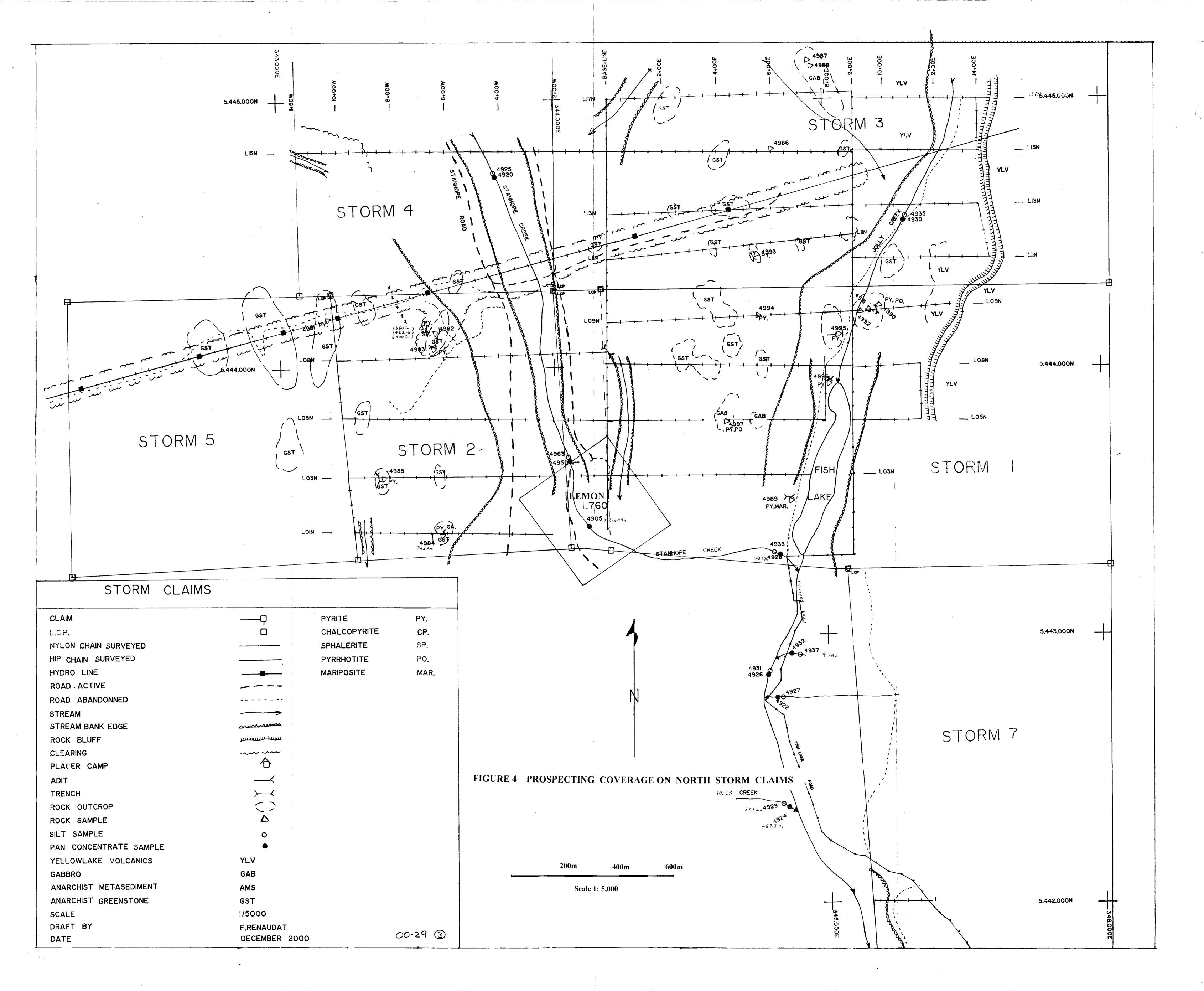
JUL 18 2000

.D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ASSAY CERTIFICATE


Renaudat, Frank File # A001803 P.D. Box 1923, Oliver BC VD4 110 Submitted by: Frank Renaudat


	SAMPLE#	Au** gm/mt	Pt** gm/mt	Pd** gm/mt	
frist sample.	FRANH-1	11	.01	.01	


Old England . (?).

AU** PT** & PD** BY FIRE ASSAY FROM 1 A.T. SAMPLE. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK

SIGNED BY J. ... D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

