BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES **GEOLOGICAL SURVEY BRANCH**

PROGRAM YEAR: 2000/2001

REPORT #:

PAP 00-32

NAME:

PETER FOX

BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM PROSPECTING REPORT FORM (continued)

B. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Requirements/Regulations 15 to 17, page 6.
- If work was performed on claims a copy of the applicable assessment report may be submitted in lieu of the supporting data (see section 16) required with this TECHNICAL REPORT.

Name Poter Fox Reference Number 00/01-P	134
LOCATION/COMMODITIES	
Project Area (as listed in Part A) Maud Lake MINFILE No. if applicable 09	3A119
Location of Project Area NTS 93A12 Lat 52°44 Long 121	O ₅₅
Description of Location and Access 50 km southeast of Quesnel accessed by Ny	
ake road and Branch 4900 to the Maud Lake road turnoff.	
Main Commodities Searched For gold	
Known Mineral Occurrences in Project Area QR gold mine	
WORK PERFORMED	
1. Conventional Prospecting (area)	
2. Geological Mapping (hectares/scale)	
2. Geological Mapping (hectares/scale) 3. Geochemical (type and no. of samples) till (soil) sampling 61 samples	
4. Geophysical (type and line km)	
5. Physical Work (type and amount)	
6. Drilling (no. holes, size, depth in m, total m)	
7. Other (specify)	
SIGNIFICANT RESULTS Commodities Au Claim Name Chiaz 1 to 14	
Location (show on map) Lat 52 44 Long 121 55 Elevation 1,200	m
Best assay/sample type Soil sample 103 ppb Au, data appended and shown o	n
attached plan	
Description of mineralization, host rocks, anomalies Float of barren diorite of Maud	Lake
tock, basaltic rocks, pyritic felsic breccias. Till sampling r	eturne
disappointing results, only one significant sample of 103 ppb go as in very low ppm range (5 to 20ppm), Cu (27 to 106 ppm). No fur work required. NaCn extractable elements show no pattern of int	rther
Compatible and the submitted with this TECTINICAL DEPORT	18-0
Supporting data must be submitted with this TECHNICAL REPORT	

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

MAUD LAKE PROJECT MAUD LAKE AREA, BRITISH COLUMBIA CARIBOO MINING DIVISION MINFILE 093A119 NTS 93A12

by

52° 44 N, 121°55'W

P. E. Fox, Ph.D., P.Eng.

Prospectors Assistance Program Reference Number 00/01-P134

January 15, 2001

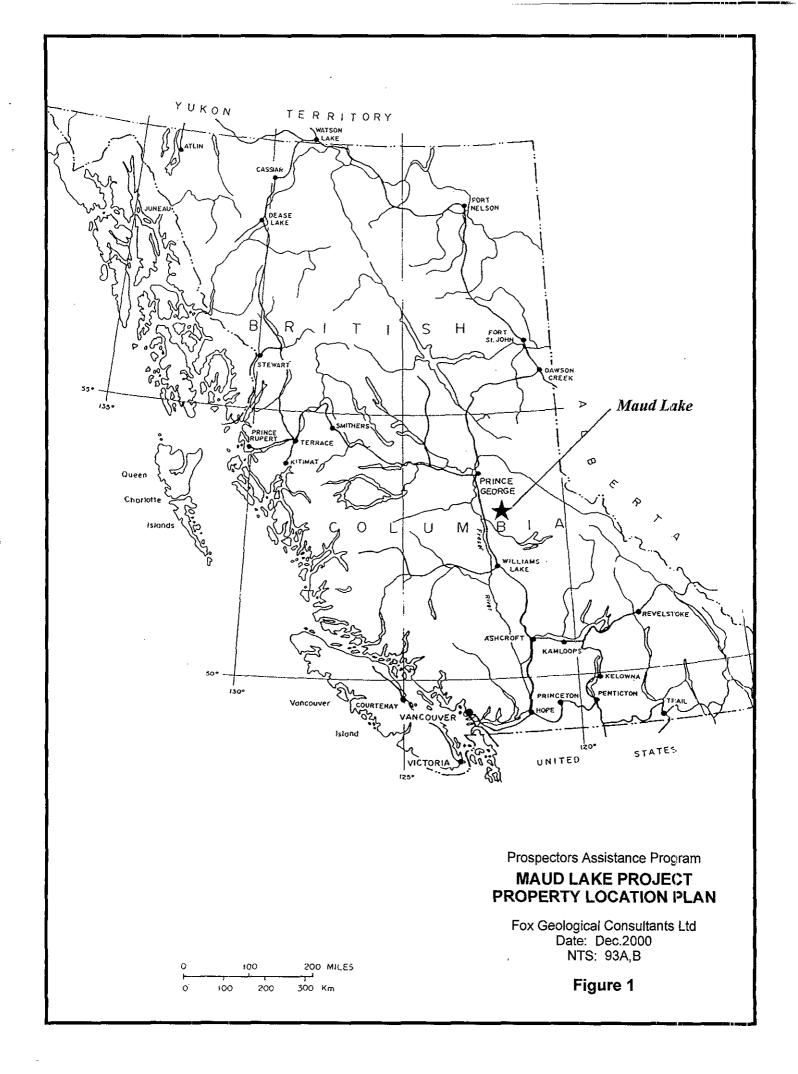
Table of Contents

	Page
Introduction	1
Location, Access & Topography	
Claim Information	
History	
Geology	
Mineralization	
Work Program	3
Results	5
Disbursements	
Conclusions	5
List of Figures	
Figure 1 – Location Plan	2
Figure 2 - Claim Map	4
Figure 3 - Sample Plan and Results	
List of Appendices	
Appendix I - Till Analyses	

Introduction

The Maud Lake property (Chiaz 1 to 14 claims) lies along the Quesnel Trough trend, a series of syenitic stocks that host, in part, the producing Mount Polley mine and QR gold deposit, a recent producer, 25 kilometres and 10 kilometres to the south. The target sought was gold of the QR type associated with the Maud Lake pluton. A till sampling program was completed over the central part of the claim block northwest of the Maud pluton. Results are provided herein.

Location, Access & Topography


The Maud Lake property is situated 50 kilometres southeast of Quesnel at Maud Lake. Access to the property is by a series of gravel-surfaced public roads from Quesnel to Sardine Flats and by the Nyland Lake access road and Branch 4900 to Maud Lake, an over-all distance of 60 kilometers. Approximately three kilometres of logging trails link the area to the Maud Lake access road.

Local terrain consists of rolling hill country typical of the interior plateau region of central British Columbia. The area, at an elevation of 1,200 metres, is situated on gently sloping ridges on the west side of Maud Lake. Vegetation consists of thin stands of mixed poplar, fir and jackpine. The area is extensively drift-covered and often swampy. Outcrop is largely confined to low summits west of Maud Lake.

Claim Information

There are fourteen claims within the Chiaz group. Claim data are give below. The applicant is the recorded owner.

Name	Record #	Units	Expiry Date
Chiaz 1	373599	1	November 26, 2000
Chiaz 2	373600	1	November 26, 2000
Chiaz 3	373601	1	November 26, 2000
Chiaz 4	373602	1	November 26, 2000
Chiaz 5	373603	1	November 26, 2000
Chiaz 6	373604	1	November 26, 2000
Chiaz 7	373605	1	November 26, 2000
Chiaz 8	373606	1	November 26, 2000
Chiaz 9	373607	1	November 26, 2000
Chiaz 10	373608	1	November 26, 2000
Chiaz 11	373609	1	November 26, 2000
Chiaz 12	373610	1	November 26, 2000
Chiaz 13	373611	1	November 26, 2000
Chiaz 14	373612	1	November 26, 2000

<u>History</u>

The Maud Lake area was first staked by Dome Exploration (Canada) Ltd. in 1974 to cover a large aeromagnetic anomaly and similar geologic terrane to the QR gold deposit some ten kilometres to the southeast. In 1981, Dome completed a program of line cutting, soil sampling, 76 kilometres of IP and magnetometer surveys, 128 kilometres of airborne EM and magnetometer surveys and drilled four holes for a total of 1,423 metres. QPX minerals acquired the property in 1988 and drilled 2,878 metres of diamond drilling in twelve holes. Kinross Gold acquired the property in 1993 and drilled several holes northeast of Maud Lake. Work this year comprised a till sampling program of 61 till samples.

Geology

The Maud Lake property covers intrusive rocks and enclosing pyritic volcanic rocks exposed on low ridges near the west side of Maud Lake. The intrusive bodies comprise two small alkalic intrusions, one of monzodiorite and monzonite and a second of gabbro and pyroxenite. Both intrude a thick succession of augite basalt, trachybasalt, felsic breccia and volcanic wackes and sediments.

Dark grey massive basaltic flows, thick layers of unstratified autobreccia and widespread accummulations of pyritic felsic breccia form rocky summits and ridges west of Maud Lake. Poorly bedded volcanic wackes and sedimentary grits outcrop farther west. The sediments strike northwesterly, dip steeply west. Calcareous sediments and carbonate-altered volcanic rocks (QR horizon) lie at the top of the basalt unit.

Mineralization

Prior drilling programs tested pyritic felsic units on low summits west of Maud Lake. Weakly mineralized calcareous sediments and basaltic rocks similar to the QR succession were identified at the south end of the property during the 1988 program. These rocks continue northerly near Maud Lake and into the area covered by the Chiaz 1 to 14 claims. Two drill holes on a strong magnetic anomaly at the southern end of the Maud stock returned pyroxenite and gabbro anomalous in both Pt and Pd.

Work Program

Two periods of work were completed during the field season, a reconnaissance and prospecting survey in August (3 days) and a later soil sampling program completed on October 19 to 22. The latter program was a reduced work program based on the initial reconnaissance which recognized the preponderance of thick glacial till covering all the target area northwest of Maud Lake. This was discussed with R. Lane of the Ministry and a smaller program approved. Consequently, 61 till samples were collected from Bhorizon soils and submitted to Acme Analytical Laboratories for ultratrace ICP (15 g)

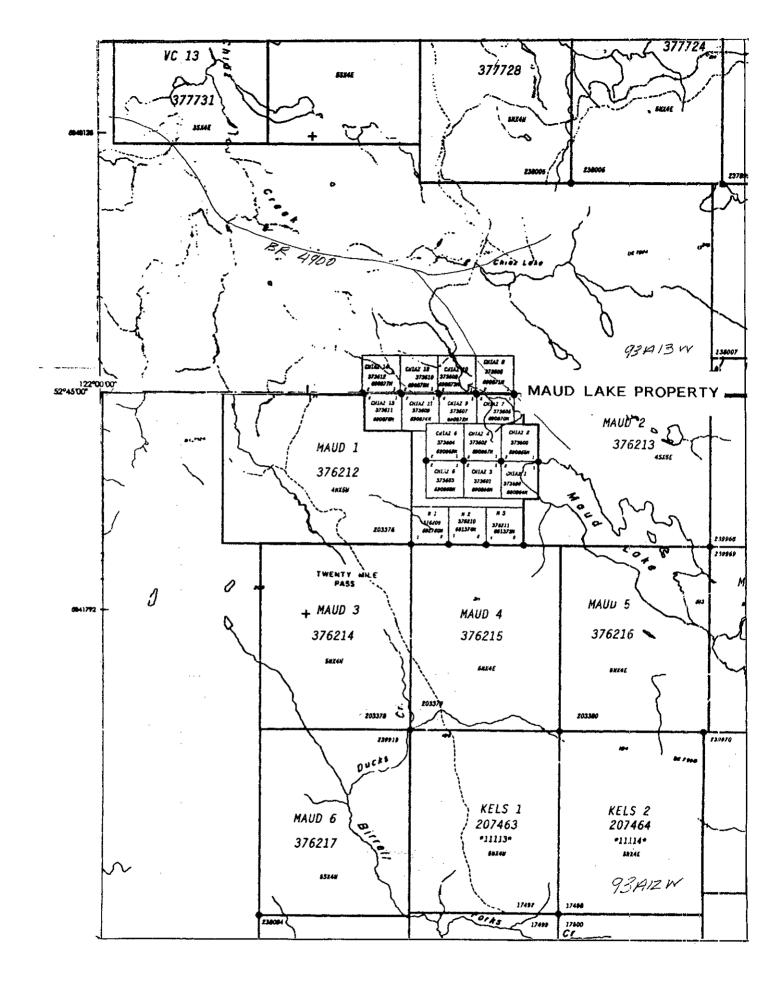


FIGURE 2 CLAIM MAP

together with 23 cyanide (partial) leach analyses. Sample locations are given in Figure 3 and full results tabulated in Appendix I and II.

Results

Results for gold are plotted in Figure 3 and sample descriptions in Appendix I. Gold content of the B-horizon tills range from 3ppb to 102 ppb with an average of 14 ppb. Samples 76659, 60, 61 are a profile sequence through the soil horizon from upper B zone (sample 76659, 60) to C (sample 76661). All returned 8 ppb gold – no element enhancement was evident in the suite of elements determined for both total and cyanide leach.

Other elements, including possible pathfinder elements (As, Sb, Cu) are at background levels for the district.

Appendix I $\label{eq:Till} \mbox{Till Analyses HnO_3-HCI by ICP ES, MS}$

And

Partial NaCn Leach

	ATORIES LTD. 852 E. HAST		BC						T -		 	<u> </u>					T T		file#	4900425	56 [
PROJECT MAUD LAKE	Gp 1F15 T HCI-HNO		amples								-			1	_		1-1-		1110 13 1	1000 120	~
Number Ho Colour Mo		Ni Co Mn Fe		Th	Sr Cd		Bi V	Ca P	La	Or Mg		Ti			la K	W	Sc	TI S	Hg	Se Te	e Ga
	ppm ppm ppm ppb p 62.28 6.06 62.2 160		ppm ppm ppb 5 5.8 0.51		ppm ppm		pm ppm	% %		om %		%							opb p		
		47 18.3 605 3.		- 1.0	51.9 0.26 57.5 0.24		0.13 119	0.74 0.06			2 82.4 1 83.2								05 42		
		41 16.9 431 3.			46.1 0.31		118	0.59 0.13		72.3 0.8		0.128			.02 0.				03 61		
78603 B Orange 0.7	40.2 5.2 83 115	46 13.8 314 3.			39.8 0.27		0.11 111	0.56 0.19		69.4 0.8		0.105			.02 0.0				05 40		
		40 15.8 374 3.0			54.3 0.29		.09 122	0.61 0.17			3 71.9				01 0.				03 65		
78605 B Orange 0.86		38 13.6 369 3.5			40.2 0.28	0.45 0	.08 113	0.54 0.29		3.6 0.8		0.106	-		01 0.				04 43		
		31 15.6 792 3.			46 0.23		.08 114			66.1 1.0	3 84.4	0.127	3	1.8 0	02 0.	2 < .2			04 49		
		65 18.1 354 3.0			40.1 0.2		.38 123	0.49 0.17		0.2 0.8		0.102	2		01 0.0				04 51		
		58 16 455 3.4 68 17.9 335 3.	<u> </u>		34.3 0.43		.31 111	0.46 0.14			7 70.6	74			.01 0.0				03 49		
		61 15.6 314 3.6			38.4 0.28 39.2 0.32		.36 131	0.45 0.08		92.7 0.8					01 0.0			0.03 0.		0.2 0.2	
		47 14 464 4					.28 138	0.46 0.18		35.6 0. 32.5 0		0.095		2.01 0 1.75 0				0.03 0.		0.3 0.0	
78612 B Orange 0.65		36 11.5 349 3.6					.18 119	0.55 0.17		76.2 0.6		0.106	2	1.7 0.					03 54	0.3 0.1	
		44 12.3 275 2.5					.11 110	0.52 0.1		62.3 0.6		0.103			011 0				33 59		
		46 16.3 415 3.1				0.43 0.	.08 125	0.55 0.12	4.8	72.4 0.9		0.113			01 0.0			0.03 < .0		0.2 < .02	
		67 18.6 368 3.5		- +			.07 124	0.53 0.13		31.5 1.0	2 62.6	0.104	3	2.07 0.	01 0.0	8 0.2	3.1	0.03 0.	01 64	0.2 0.0	03 6.3
		38 14.6 460 3.2			36.7 0.33		.16 104	0.49 0.11		59.7 0.7		0.106	3		01 0.0			0.04 < .0	1 44	0.0	05 6.9
I		43 14.5 393 3.3 33 15 466 3.3			44.7 0.25 50.2 0.23		0.1 113 0.1 112	0.73 0.06		67.7 0.8		0.141	3	\rightarrow		9 < .2		0.04 0.		0.2 0.0	
		30 12.1 330 3.3			32 0.18		0.1 112	0.62 0.06		55.9 0.8		0.128				8 < .2		0.05 0.0		0.2 0.0	
1		27 13.4 485 3.0			50.4 0.13	0.45 0.		0.62 0.07		53.2 0.7 54.3 0.9		0.118				7 0.2		0.03 < .0		0.2 < .02	
		30 13.5 512 3.1			48.4 0.17	0.44 0.		0.65 0.14		6.5 0.9		0.132				6 < .2		0.04 0.0		0.2 < .02	
		26 14.1 404 3.4		1.1	37.4 0.22		.08 109	0.5 0.23			1 99.2			\rightarrow	-	8 < .2		0.03 < .0		0.3 < .02	
		53 21.4 776 4.0			94.9 0.2		0.1 143	1.08 0.14		32.7 1.3		0.164	3			9 0.2		0.09 0.0		0.4 0.0	
		28 12.5 314 2.8			34.9 0.23		.08 98	0.49 0.09		8.6 0.6		0.141	2	.77 0.	01 0.0	7 < .2	3.2	0.04 < .0	1 29	0.0	
		40 14.2 356 3.3 38 15.6 409 3			43.8 0.17		.08 118	0.66 0.15		4.7 0.8		0.133	3 2			1 0.2			1 41 (
		32 15.2 628 3.2			40 0.24 58.2 0.22		.09 124 .08 115	0.68 0.19			82.2		2 2			4 < 2			1 43		
		30 15.8 613 3.0			40.3 0.32		.08 115 .08 107	0.88 0.08 0.61 0.05		63 1.0 8.9 0.	91.7	0.161	2			3 < .2		0.05 < .0		0.4 0.0	
		24 14 518 2.9			35 0.3	0.35 0.		0.51 0.22		3.6 0.6		0.149	1			9 < .2		0.04 0.0	2 33 (0.0	
		36 13.6 321 3.2	5.5 0.3 6.4		42.6 0.15	0.38 0.		0.53 0.11			56.1								2 54 0		
78631 B Orange 0.61		48 13.8 349 3.3			39.6 0.2		0.1 111	0.52 0.12	6 6		91.8		1 2			8 < .2			3 44 (
		50 15.7 293 2.9			36.7 0.13	0.33 0.		0.49 0.16		8.2 0.7		0.127	2 2	.02 0.	0.0	6 0.4			1 31 0		
		78 22.9 370 3.5 90 22.6 395 3				0.47 0.		0.57 0.16		4.2 1.0		0.118	2 2		01 0.0	-			1 50 0		
		46 15.9 394 3.4			51.3 0.18 41.6 0.19	0.44 0.		0.62 0.05		105 1.2		0.148	2 2			7 0.2			1 33 (
		42 13.9 356 3.0			44.4 0.15	0.42 0.		0.46 0.09		7.1 0. 9.2 0.		0.12	2 2			6 < .2		0.04 < .0		0.0	
		33 13.8 424 3.1			44.4 0.18	0.43 0.		0.49 0.07		7.3 0.7		0.128	2 1			8 < .2 6 < .2		0.05 < .0 0.03 < .0		0.0	
		38 13.6 369 3.1	6.5 0.6 42		49.6 0.26	0.4 0.		0.56 0.09		4.5 0.8		0.132				B < .2		0.04 < .0		0.0	
		45 17.6 1038 3.			39.4 0.4	0.4	0.1 113	0.54 0.24	5.8 10	8.3 0.7		0.099				4 < 2		0.04 0.0		0.3 0.0	
		34 13.1 360 3.4			39.7 0.23	0.33 0.0		0.42 0.16		6.9 0.7		0.115	2 2		0.0			0.03 < .0		0.3 < .02	
78641 B Orange 0.71 3 78642 B Orange 0.53		31 13 323 3.2 29 17.9 538 3.5		111	44 0.21	0.32 0.0		0.48 0.16		6.5 0.7		0.113			0.0			0.03		0.0	
		29 17.9 538 3.5 23 15.3 641 2.9			36.8 0.19 29.1 0.19	0.41 0.0		0.51 0.12 0.38 0.1		3.7 1.0						3 < .2			1 32 0		
		36 15.1 492 3.			39.1 0.19	0.35 0.0		0.38 0.1		0.3 0.66 9.6 0.9		0.112	2 1			7 < .2			2 25 0		
		38 15.3 408 3.3			40 0.19	0.41 0.0		0.64 0.15		5.5 0.9	1		2 1			1 < 2		0.03	1 61 0	0.3 0.0	-
78646 B Orange 1.64 4	43.87 11 80.4 253	23 13.2 483 3.7			25.4 0.49	0.57 0.1		0.55 0.04		9.6 0.6			2 1			0.3			3 47 C		
		34 13.9 480 3.1			40.5 0.28			0.58 0.11		5.8 0.8			2 1			< .2			2 49 0		
		24 13.5 332 3.2			29 0.41	0.35 0.1		0.43 0.15	4.7 5	9.5 0.1	72.5	0.133	2 1						1 28 0		
		38 13.9 399 3.1			13.2 0.17	0.35 0.0					81.4		2 1			3 < .2			1 30 0		
		32 13.8 355 3.2 56 17.1 386 3.2			45.3 0.23	0.37 0.0		0.53 0.13		9.7 0.89				.87 0.0		< .2			1 29 0		
78652 C Brown 1.12		36 13.8 546 3.			9.4 0.18	0.39 0.1		0.59 0.13		99 1.13				.99 0.0		< .2			1 39 0		
		24 15.1 487 3.			40 0.16			0.52 0.11	4.4 6	8.5 1.19 49 0.72			3 2			0.2			1 43 0		
		38 17.1 453 3.5			11.6 0.08	0.42 0.0		0.52 0.2 0.52i 0.1	5.1	63! 1.07			2 2	•		3 < .2		0.04 < .0	2 25 0	0.2 0.05	
		24 16.5 395 3.8	6.3 0.3 102.8		6.9 0.16			0.51 0.21		6.9 0.92	·	0.135				0.2			1 49 0		
		36 16.2 448 3.			10.6 0.16	0.53 0.0		0.49 0.15		1.8 0.9	-	0.137	2 2		0.1				1 45 0		
		23 13.9 390 3.1				0.25 0.0		0.41 0.09		1.7 0.8			2 1			< .2			25 0		
		43 21.1 482 3.2	8.8 0.3 53		5.9 0.14			0.48 0.05		8.1 0.94		0.142	2 2	.11 0,0					1 34 0		
		34 13.1 358 3.3 39 13.9 405 3.3	6.8 0.4 7.4 7.7 0.5 8.2	: : -	7.6 0.14	0.38 0.0		0.58 0.15		8.3 0.83					0.0				1 /8 0		
		39 13.9 405 3.3 20 18.2 737 4.3				0.0 88.0		0.58 0.1			61.1		21 2						86 0		
	00	0 10,21 1011 4.3	0.7 0.0 7.9	2	106 0.1	0.39 0.0	07 183	0.86 0.1	8.3 7	6.7 1.12	94.2	∪.168	1[_2	.37 _0.0	71 0.0	1<.2	5 0	0.05	1 77 0	.2 0.07	7 7.1

PARTIAL NaCN LEACH File A004256

ACME A				TORIE	SLT	D. 852	2 E. H	IASTII	NGS S	ST. VA	NCOL	JVER	BÇ]						
		UD LAKE				N Lea								1	<u> </u>	<u> </u>	1		<u> </u>						-											
Till Sam	ples			i			T							1	† ····						i		-													
Sample	Hor	Colour	Au	Ag	ΙA	As	Ba	Bi	Ca	Co	Cr	Cu	Fe	K	La	Mg	Mn	Mo	Ni	P	Pb	Sb	Sr	Th	Ti	Ū	V	w	Zn	Se	Te	Pd	Br	CI		
Number			ppb	ppb	ppm	ppb	ppm	ppb	ppm	ppb	ppm	ppm	ppm	ppm	ppb	_	ppm	dqq	ppm	ppm	dqq	ppb	ppm	ppb		ppb	mqq	daa	ppm	-	dqq				_'	Hg
78619	В	Orange	37	106	496	315	0.6	9	12	86	0.5	0.7	295	3	21	10	1.3	25	0.2	180	28	3	0.2	16	5	15		< 10	2	0	< 1	***	ppm!	ppm	••	ppb
78620	В	Brown	3.8	38	280	213	0.6	14	75	135	0.6	1.5	129	3	126	12	3.3	33	0.2	66	30	1	0.4	52	3	12		< 10	0.7	- 0	4		0.0	3	0.4	18 8
78621	C	Brown	2.9	110	479	410	0.5	7	55	107	0.6	1.9	171	4	54	20	2.3	10	0.2	142	29	2	0.2	27	3	15	1.4	19	2.5	< 0	_ - -		0.6	$-\frac{3}{3}$	1	
78622	В	Orange	2.6	120	479	355	1.3	11	39	215	1	1.6	546	2	38	13	4	24	0.3	283	61	<1	0.3	30	8	17		< 10	1.8	0	5		0.5	3		16
78623	В	Orange	9.1	76	169	505	0.4	1	51	144	0.3	4.5	110	3	20	20	4.9	9	0.5	28	5	2	0.3	4	2	4		< 10	4	< 0	2		0.5		1.6	
78624	В	Orange	8.9	120	596	262	1	10	21	149	0.6	1.6	204	2	51	15	1.7	18	0.2	112	47	4	0.2	30	5	18	1.3	12	0.4	0	<u></u>		0.4	2	0.4	12
78625	С	Orange	23	194	453	293	0.2	4	61	79	0.4	1.4	173	4	15	8	1.1	11	0.2	130	149	1	0.2	7	3	13		< 10	0.7	0	- 1		0.5		0.9	12
78626	В	Orange	5.3	259	462	276	0.4	5	68	91	0.6	1.1	266	9	21	19	3.3	66	0.3	127	36	2	0.2	7	4	18	0.9	16	0.5	< 0	2		0.5	< 2	0.9	13
78627	В	Orange	2.4	73	137	199	0.4	2	59	73	0.3	4.4	70	2	22	14	1.4	19	0.4	19	< 1	2	0.2	5	1	4		< 10	1.8	< 0	1		0.2		0.3	<u>22</u>
78628	В	Orange	9	86	282	204	0.9	12	155	176	1	6.7	241	3	187	29	4.2	31	0.6	48	221	2	0.4	63	4	29	1	10	0.9	0	3		0.2		0.3	9
78629	В	Orange	1.5	124	473	296	2.3	13	68	475	1.2	2.1	616	3	46	25	15	25	0.5	280	78	2	0.4	30	12	18	1.2	< 10	2.7	< 0	4		0.4		0.8	13
78630	В	Orange	5.2	162	492	237	0.6	13	105	191	0.7	1.2	325	3	46	21	3.4	23	0.3	126	46	1	0.4	35	5	18		< 10	0.7	0	2		0.5		0.9	13
78631	В	Orange	2.1	155	465	242	0.8	6	20	110	0.6	2	238	2	63	14	1.4	28	0.2	62	105	4	0.2	29	4	23	1.4	35	0.6	0	10		0.7		1.5	23
78632	В	Orange	6	73	503	306	0.6	41	40	135	1	1.5	315	3	28	14	1.6	25	0.4	154	32	5	0.3	20	5	20	1.1	17	1.3	< 0	1		0.7	2	1.4	12
78633	C	Brown	18	145	387	568	0.7	47	59	280	1.4	3.2	300	4	31	13	3.7	32	0.8	145	34	1	0.3	44	4	27	1.2	22	0.7	0	9		0.6		1.2	17
78634	В	Brown	2.7	142	402	454	1.3	56	177	346	2	4.5	309	3	86	30	2.4	33	0.8	43	67	3	0.7	93	6		0.8	13	1	0	5		0.4		0.8	11
78635	В	Brown			444	426	1.2	38	128	135	1	2.2	329	2	37	24	2.7	22	0.5	124	38	3	0.4	59	5		0.9		1.4	< 0	2		0.5	< 2	1.1	16
78636	<u>B</u> [Brown	1.7	722	537	391	1.5	26	50	227	0.9	1.5	217	3	37	13	3.1	29	0.3	98	64	3	0.4	44	5	20	1.4		0.9	<u> </u>	5				1.1	11
78637	В	Brown	2.1	103	403	380	0.7	24	66	156	1.3	3.3	198	2	127	19	3.2	24	0.5	61	40	4	0.3	90	5	21	1.2		0.4	0	7				0.8	14
78638	В	Orange	4.4	175	491	242	1.8	33	77	148	1.3	7.3	289	3	325	14	2.6	30	0.7	39	82	5	0.4	84	6	63	1		0.4	0	2		0.7		1.8	
78639	В	Brown		+	481	344	3.2	29	155	247	2.2	13	553	13	148	28	13	86	2.2	206	84	5	0.7	108	8	57	1.1		2.4	0			0.8		1.4	15 19
78640	В	Brown	2.9	187	440	236	0.6	14	19	102	0.9	2.6	259	4	71.	7	1.9	45	0.2	89	31	4	0.2	47	4	31			0.7	0			0.9		2.2	20
78641	В	Brown	1.7	201	461	258	0.6	14	23	120	1.3	1.8	331	2	48	10	1.6	46	0.4	85	40	3	0.3	24	5	27	1.2		0.4	0	-	-	0.9		2.3	22

Appendix II Certificates and Method of Analyses

852 E. HASTINGS ST. VANCOUVER BC V6A 1R6

PHONE (604) 253-3158 FAX (604) 253-1716

Page 1

GEOCHEMICAL ANALYSIS CERTIFICATE

AA

Fox Geological Consultants PROJECT MAUD LAKE File # A004256

1409 - 409 Granville St., Vancouver BC V6C 1T8 Submitted by: P. Fox

SAMPLE# Cu Pb 2n Ag Ni Co Min Fe As 10 Au Th Sr Cd Sb Bi V Ca P La Cr Mg Ba Ti B Al Na K W Sc Tì S Ho Se Te GaSamole рра рра % % рра рра % рра % рра % ж % рра рра рра % ррь рра рра рра .71 62.28 6.06 62.2 160 50.9 15.3 495 3.36 5.8 .5 5.0 1.3 51.9 .26 .42 .13 119 .74 .060 7.6 78.3 .92 82.4 .148 2 1.78 .016 .11 <.2 4.6 .05 .05 .05 42 .3 .04 7.1 78600 78601 .62 53.35 4.79 64.9 82 46.9 18.3 605 3.43 6.1 .4 26.2 1.3 57.5 .24 .43 .09 124 .69 .087 5.9 81.0 1.10 83.2 .143 2 1.97 .017 .15 .2 3.8 .04 .03 61 .3 .04 7.0 78602 .65 38.11 6.56 84.7 119 40.6 16.9 431 3.48 4.5 .3 3.1 1.3 46.1 .31 .37 .13 118 .59 .128 5.5 72.3 .87 66.8 .128 2 2.08 .015 .08 .2 3.3 .03 .05 40 .2 .04 7.7 .70 40.20 5.20 83.0 116 45.5 13.8 314 3.34 5.5 .3 3.2 1.1 39.8 .27 .38 .11 111 .56 .186 4.5 69.4 .84 69.5 .105 2 1.87 .012 .09 .3 2.8 .03 .03 49 .3 .04 7.0 78603 78604 .64 48.71 5.38 83.3 157 40.4 15.8 374 3.66 6.7 .4 7.5 1.1 54.3 .29 .40 .09 122 .61 .166 5.2 67.0 .93 71.9 .120 1 2.35 .014 .11 .2 3.3 .03 .03 .65 .3 < .02 7.5 78605 .86 37.30 5.00 81.9 117 38.0 13.6 369 3.57 8.5 .3 10.1 1.3 40.2 .28 .45 .08 113 .54 .288 4.9 63.6 85 133.9 .106 2.2.18 .014 .18 .2 2.9 .03 .04 43 .3 .03 6.9 .74 44.25 5.40 52.8 91 31.4 15.6 792 3.22 7.1 .4 10.5 1.3 46.0 .23 .50 .08 114 .92 .065 5.9 66.1 1.03 84.4 .127 3 1.80 .019 .12 <.2 4.2 .05 .04 49 .4 .02 6.1 78606 78607 .71 47.89 4.14 66.3 160 64.6 18.1 354 3.67 8.9 .3 9.7 1.0 40.1 .20 .38 .38 123 .49 .174 3.8 100.2 88 73.2 102 2 2.00 .012 .09 .6 2.9 .03 .04 51 .3 24 6.8 78608 .70 38.68 4.76 130.8 164 58.1 16.0 455 3.46 7.0 .3 5.3 1.0 34.3 .43 .34 .31 111 .46 ,139 4.0 88.6 ,77 70.6 ,112 2 1.84 .011 .06 ,5 2.9 .03 .03 49 .2 ,15 7.5 78609 .90 44.29 5.09 61.2 184 68.3 17.9 335 3.77 10.2 .3 29.5 .9 38.4 .28 .36 .36 131 .45 .083 3.7 92.7 .82 95.4 .120 2 2.12 .011 .07 .6 3.0 .03 .02 39 .2 21 7.6 78610 .73 47.57 4.87 65.3 190 60.9 15.6 314 3.69 10.0 .3 11.5 1.0 39.2 .32 .40 .21 130 .46 .152 4.2 85.6 .80 72.5 .095 2 2.01 .012 .06 .4 2.7 .03 .01 57 .3 .09 6.8 78611 .84 40.84 5.30 68.6 182 46.6 14.0 464 4.11 10.5 .3 9.7 .6 40.5 .27 .37 .28 138 .51 .179 3.6 92.5 .80 96.9 .099 2 1.75 .012 .07 .5 2.8 .03 .01 55 .3 17 8.8 78612 .65 27.93 4.73 92.3 184 36.1 11.5 349 3.64 6.3 .3 10.5 .8 36.9 .29 .30 .18 119 .55 .167 3.6 76.2 ,68 94.6 ,106 2 1.70 .013 .08 .4 2.7 .02 .03 54 .2 .08 7.6 78613 .76 46.22 4.18 38.6 156 43.7 12.3 275 2.98 7.6 .3 50.5 1.1 46.6 .20 .43 .11 110 .52 .095 4.7 62.3 .69 66.5 .103 3 1.90 .009 .10 .3 2.6 .04 .03 59 .3 .04 5.4 .72 55.52 4.91 66.4 144 46.3 16.3 415 3.61 9.7 .3 10.7 1.3 44.4 .27 .43 .08 125 .55 .122 4.8 72.4 .92 83.8 .113 2 2.22 .012 .07 .2 3.2 .03 <.01 59 .2 <.02 7.0 78614 78615 .66 54.83 5.05 49.3 73 66.6 18.6 368 3.67 12.8 .4 7.9 1.2 43.2 .19 .47 .07 124 .53 .129 4.6 81.5 1.02 62.6 .104 3 2.07 .012 .08 .2 3.1 .03 .01 64 .2 .03 6.3 .71 36.31 5.14 90.5 136 38.4 14.6 450 3.25 6.9 .4 4.9 1.0 36.7 .33 .39 .16 104 .49 1.12 5.5 59.7 .73 71.3 .106 3 2.00 .012 .08 .2 2.9 .04 <.01 44 .3 .05 6.9 78616 78617 .58 49.42 5.00 81.2 99 42.7 14.5 393 3.22 7.4 .4 6.2 1.5 44.7 .25 .41 .10 113 .73 .058 6.9 67.7 .82 63.6 .141 3 1.90 .015 .09 < 2 3.6 .04 .01 .37 .2 .04 6.5 78618 .64 55.22 5.11 48.3 124 33.1 15.0 466 3.14 9.4 .4 6.3 1.6 50.2 .23 .49 .10 112 .62 .062 7.9 65.9 .88 66.2 128 2 1.77 .014 .08 < 2 3.8 .05 .01 61 .2 .07 5.7 .60 30.68 5.08 79.8 91 30.2 12.1 330 3.38 6.5 .3 4.1 1.3 32.0 .18 .37 .09 109 .47 53.2 .77 84.4 .118 2 2.10 .013 .07 .2 2.9 .03 <.01 46 .2 .03 7.3 78619 .62 38.55 4.77 55.3 44 26.6 13.4 485 3.07 6.0 .4 14.6 1.3 50.4 .13 .45 .07 118 .62 .074 6.3 54.3 .91 78.4 .152 3 1.73 .019 .15 <.2 3.3 .06 .01 31 .2 < .02 6.1 78620 .55 38.43 4.52 56.3 44 27.5 13.0 479 3.03 6.1 .3 6.2 1.3 46.7 .13 .43 .07 116 .62 .075 6.1 53.5 .89 75.1 .150 2 1.70 .020 .15 <.2 3.2 .05 .02 28 .4 .02 5.9 RE 78620 78621 .55 40.39 4.47 69.9 84 30.4 13.5 512 3.18 7.1 .3 13.7 1.4 48.4 .17 .44 .07 115 .65 .135 6.2 56.5 .94 85.1 145 21.85 .020 .16 <.2 3.5 .04 .01 36 .3 .02 6.2 .57 32.76 5.08 92.4 103 25.9 14.1 404 3.41 7.3 .3 5.2 1.1 37.4 .22 .35 .08 109 .50 .228 4.9 52.5 .91 99.2 .35 2 2.09 .020 .08 <.2 3.3 .03 <.01 46 .3 <.02 7.6 78622 .76 80.73 5.35 97.9 77 53.4 21.4 776 4.04 19.5 .4 16.3 1.5 94.9 .20 .62 .10 143 1.08 .138 7.4 82.7 1.33 151.1 .164 3 2.47 .026 .29 .2 5.6 .09 .01 56 .4 .09 8.3 78623 78624 .55 30.23 4.56 66.3 123 27.9 12.5 314 2.81 4.9 .4 36.0 1.5 34.9 .23 .35 .08 98 .49 .086 6.1 48.6 .68 82.5 .141 2 1.77 .014 .07 <.2 3.2 .04 <.01 29 .3 .03 6.2 .49 36.08 4.56 68.3 162 39.8 14.2 356 3.34 6.9 .3 10.9 1.2 43.8 .17 .40 .08 118 .66 .150 4.9 64.7 .86 67.3 133 3 2.07 .016 .10 .2 3.0 .03 .01 41 .4 .03 7.2 78625 78626 .60 36.24 5.12 84.8 227 38.2 15.6 409 3.90 7.2 .3 10.4 1.1 40.0 .24 .37 .09 124 .68 1.86 4.8 72.8 1.08 82.2 1.51 2 2.43 .024 .14 <.2 3.5 .03 .01 43 .04 9.1 .66 50.77 5.71 66.1 85 31.6 15.2 628 3.21 8.4 .5 11.1 1.4 58.2 .22 .54 .08 115 .88 .083 7.8 63.0 1.05 91.7 1.61 2 1.92 .023 .13 <.2 4.4 .05 <.01 50 .40 .02 6.8 78527 .66 48.14 5.23 87.3 79 29.8 15.8 613 3.08 5.3 .4 5.2 1.3 40.3 .32 .40 .08 107 .61 .048 7.2 58.9 .90 73.2 .149 1 1.85 .018 .09 <.2 4.0 .04 .02 27 .3 .02 6.5 78628 78629 .59 27.81 5.35 86.3 118 24.0 14.0 518 2.97 5.4 .3 3.5 1.1 35.0 .30 .35 .11 91 .51 .215 5.1 53.6 .64 116.5 .116 1 1.55 .013 .09 < 2 2.9 .03 .02 .33 .3 .02 6.8 .69 36.14 4.71 52.9 133 35.5 13.6 321 3.23 5.5 3.6 .6 .3 6.4 1.4 42.6 .15 ,38 .14 114 .53 .111 5.1 67.7 .71 56.1 .118 2 1.74 .013 .07 <.2 2.9 .03 .02 54 .3 .07 5.9 78630 .61 47.70 4.65 76.2 131 47.5 13.8 349 3.39 6.5 .4 7.4 1.5 39.6 .20 .38 .10 111 .52 .115 6.0 61.2 .91 91.8 .149 1 2.45 .014 .08 < 2 3.2 .04 .03 44 .4 .03 7.6 STAMMARD DS2 14.16 126.28 33.00 158.7 259 33.7 11.7 832 3.09 58.3 19.9 207.4 4.0 29.7 10.47 10.02 10.92 76 .55 .090 16.9 158.7 .61 151.4 .098 2 1.78 .032 .17 7.7 3.1 1.85 .02 227 2.2 1.95 6.3

GROUP 1F15 - 15.00 GM SAMPLE, 90 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR AND IS DILUTED TO 300 ML, ANALYSIS BY ICP/ES & MS.

UPPER LIMITS - AG, AU, HG, W, SE, TE, TL, GA, SN = 100 PPM; MO, CO, CD, SB, BI, TH, U, B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM.

- SAMPLE TYPE: SOIL SS80 60C Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: OCT 23 2000 DATE REPORT MAILED: NOU 6/00

Data___FA__

Fox Geological Consultants PROJECT MAUD LAKE FILE # A004256

Page 2

 SAMPLE#	Мо	Cu	Pb	Zn	Ag N	ii Co	Mn	Fe As	U	Au	Th S	r Cd	Sb	Bí	v c	a P	La	Cr	Mg	Ba Ti	i B	Aì	Na	K	₩ Sc	m	S I	Hg	Se T	e GaS	ample	
 	ppm	ppm	ppm	ppm	ppb pp	om ppm	ppm	% ppr	ррп	ppb	obu bbi	n ppm	ppm	роп р	pm	8 8	ppm	ppm	*	ppm %	ppm	8	8	% pp	m ppm	ррп	% pj	pb p	pm pp	m ppm_	gm	
70620		25 74	* 05	70.0	CD 40	C 15 7	200 0	07 44					22	0.5	01 4	۸ ،			77 (7.0.107			110									
78632 78633											1.2 36.1																				15	ì
											1.1 50.9																				15	
78634											1.1 51.3																				15	
											1.1 41.6																				15	
78636	./2	48.25	5.12	51.0	82 42.	3 13.9	356 3	.08 6.9	.4	5.1	1.8 44.4	4 .15	.42	.09 1	.03 .4	6 .093	b.b :	59.2	.80 8	37.2 .120) 2	1.99 .0	109 .	.> 80	2 2.9	.05 <	.01	41	.3 .0	3 5.6	15	
78637	.59	41.80	4.52	51.6	95 32.	7 13.8	424 3	.18 6.5	.3	3.5	1.3 44.4	4 .18	.43	.08 1	19 .4	9 .066	5.0	67.3	.72 7	0.8 .128	3 2	1.64 .0	11 .	06 <.	2 3.1	.03 <	.01 4	40	.2 .0	4 5.7	15	
78638											1.6 49.6																				15	
78639											1.0 39.																				15	
78640	.71	43.85	4.95	81.5	166 34.	0 13.1	360 3	.45 5.0	.4	10.0	1.4 39.	7 .23	.33	.07 1	.14 .4	2 .163	5.2	76.9	.78 6	9.6 .115	5 2	2.05 .0	07 .	07 .	2 3.5	.03 <	.01	78	.3 <.0	2 6.7	15	
78641											1.4 44.1																				15	
	-																-		_									-				
78642	.53	48.10	5.00	81.2	70 29.	3 17.9	538 3	.53 5	.3	22.1	1.2 36.	8 .19	.41	.08 1	.20 .5	1 .120	4.5	53.7 1.	.08 8	4.2 .148	3 1	2.23 .0	18 .	13 <.	2 3.5	.04	.01 :	32	.2 .0	2 7.4	15	
78643	.59	44.38	5.70	68.7	91 22.	7 15.3	641 2	.99 4.9	.2	1.5	.7 29.	1 .19	.35	.09 1	.01 .3	8 .101	3.9	50.3	.66 10	1.2 .112	2 2	1.53 .0	011 .	07 <.	2 2.6	.04	.02	25	.2 .0	2 6.7	15	
78644	.49	46.25	4.42	39.7	37 36.	1 15.1	492 3	.20 7.3	3 .4	16.7	1.4 69.	1 .12	.58	.06 1	.29 .7	9 .100	6.6	69.6	.98 8	8.7 .148	3 2	1.79 .0)17 .	17 <.	2 3.7	.05	.01 (61	.3 .0	3 6.0	15	
78645	.46	35.86	4.20	75.3	127 37.	6 15.3	408 3	.39 5.2	.3	10.0	1.0 40.0	.19	.41	.06 1	.19 .6	4 .147	4.5	65.5	.94 9	7.2 .133	3 2	1.98 .0)14 .	14 <.	2 3.4	.03	.02	39	.2 .0	5 6.6	15	
78646	1.64	43.87	10.98	80.4	253 22	9 13.2	483 3	.76 12.4	.4	2.7	1.0 25.	4 .49	.57	.18 1	.46 .5	5 .036	4.3	59.6	.64 8	4.2 .189	9 2	1.82 .0	08 .	10 .	3 3.0	.04	.03	47	.2 <.0	2 9.0	15	
78647	.64	46.68	5.77	74.1	162 34.	1 13.9	480 3	.13 5.9	.4	30.0	1.0 40.5	.28	.41	.10 1	.04 .5	8 .110	5.1	65.8	.81 10	7.8 .123	3 2	1.84 .0	10 .	09 <.	2 3.6	.04	.02 4	49	.2 .0	3 7.3	15	
78648	.56	27.99	5.65	122.7	181 24	4 13.5	332 3	.25 4.1	.3	24.3	1.2 29.0	.41	.35	.11 1	.00 .4	3 .153	4.7	59.5	.70 7	2.5 .133	3 2	1.88 .0	11 .	08 <.	2 3.2	.03	.01	28	.1 .0	4 7.4	15	
78649	.54	43.69	4.12	56.8	135 37.	5 13.9	399 3	.11 4.2	.3	7.6	1.0 43.3	2 .17	.35	.09 1	.13 .5	8 .076	4.4	64.5	.85 8	1.4 .133	3 2	1.79 .0)12 .	08 <.	2 3.0	.03	.01 ;	30	.2 .0	3 6.2	15	
78650	.56	40.80	5.04	68.1	94 31.	9 13.8	355 3	.22 5.2	.3	11.6	1.0 45.3	3 .23	.37	.09 1	.11 .5	3 .133	4.5	69.7	.89 8	6.8 .132	? 2	1.87 .0)12 .	09 <.	2 3.1	.03	.01 2	29	.2 .0	5 7.0	15	
RE 78650	.53	37.62	4.93	65.9	89 32.	0 13.8	342 3	.15 5.	.3	6.3	1.0 42.4	4 .20	.36	.08 1	.08 .5	0 .128	4.2	66.2 .	.86 8	0.8 .124	2	1.82 .0	11 .	09 <.	2 3.0	.03	.01 (37	.1 .0	4 6.5	15	
78651											.9 59.																				15	
											1.1 43.1																				15	
	.73	29.23	5.21	88.2	85 24.	4 15.1	487 3	.60 8.0	.3	6.0	1.1 40.0	.16	.43	.10 1	12 .5	2 .195	4.7	49.0	.72 10	6.3 .130) 2	2.05 .0	111 .	08 <.	2 3.2	.03	.02	25	.2 .0	5 8.1	15	
78654											1.2 41.																				15	
78655	.62	38.90	4.65	97.1	82 23.	5 16.5	395 3	.88 6.3	3 .3	102.8	.9 36.	.16	.41	.10 1	.26 .5	1 .208	3.3	66.9	.92 11	.1.3 .135	5 2	2.43 .0)21 .	09 .	2 3.1	.04	.01	4 9	.2 .0	3 8.7	15	
70656	70.	52.06	c 10	F.C 2	104.05	6 1C 0	440.0	co o :				,		00 1	or .			a	00.11													
											1.5 40.0																				15	
78657											1.1 25.0																				15	
78658											.8 55.5																				15	
											1.4 51.1																				15	
78660	.03 (oo.85	4.22	39.0	102 38.	o 13.9	405 3	.31 1	· .5	8.2	1.7 57.	.13	. 38	.06 1	.29 .5	o .099	6.2	/5.4	.91 6	1.1 .136	> 2	2.06 .(. ชบเ	v8 .	2 3.5	.04 <	.01 8	ŏ 6	.2 < .0	2 5.2	15	
78661	.68 16	06.91	8.49	59.8	64 29	3 18.2	737 4	.37 6	.5	7 Q	2.0 106.	3 10	39	07 1	83 R	16 10¢	8.3	76 7 1	12 0	4 2 168	1	2 17 (134	09 -	2 5 11	05	01	77	2 1	7 7 1	15	
STANDARD DS2 14																															15	ļ
 				_ ,,,,			300 0	0 01.1				, 10,10	2.70 1			V.V.	10.0 1			J. J . U 22	٠ -	00		10 1.	. 0.1	1.04		2 د		U.Z	**	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

GEOCHEMICAL ANALYSIS CERTIFICATE

Page 1

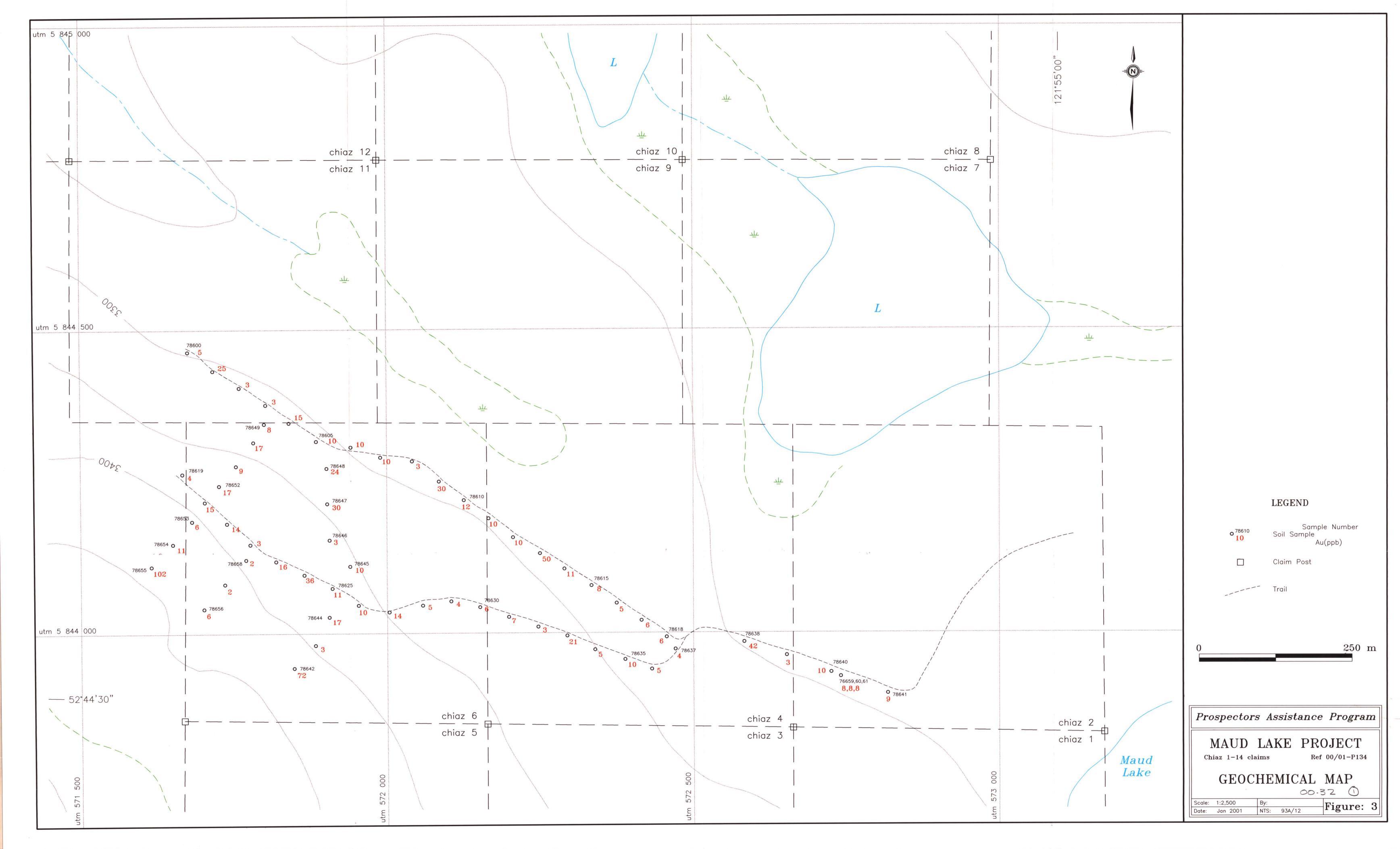
	2 Accredited Co.) GEOCHEMICAL ANALYSIS CHARLES File # A004256 Page 1	
22	Fox Geological Consultants PROJECT MAUD LAKE File # AUU4256 Fage 2 Fox Geological Consultants PROJECT MAUD LAKE File # AUU4256 Fage 2 1409 - 409 Granville St., Vancouver BC V6C 118 Submitted by: P. Fox 1409 - 409 Granville St., Vancouver BC V6C 118 Submitted by: P. Fox 1409 - 409 Granville St., Vancouver BC V6C 118 Submitted by: P. Fox 1409 - 409 Granville St., Vancouver BC V6C 118 Submitted by: P. Fox	
SAMPLE#	Au Ag Al As Ba Bi Ca Co Ci O D ppm ppm ppm ppm ppm ppm ppm ppm ppm p	
78619 78620 RE 78620	37.1 106 496 315 .59 9 12 86 .52 .70 295 3 21 10.0 1.3 23 .24 66 30 1 .37 52 3 12 1.15 <10 .81 <.1 5 <10 .3 2 .3 4 37.1 106 496 315 .59 9 12 86 .52 .70 295 3 21 10.0 3.3 33 .24 66 30 1 .37 50 3 11 1.14 <10 .81 <.1 5 <10 .3 2 .3 4 3.8 38 280 213 .62 14 75 135 .63 1.47 129 3 124 13.0 3.2 28 .24 66 39 1 .37 50 3 11 1.14 <10 .81 <.1 5 <10 .6 3 1.0 16 3.8 38 280 213 .62 14 75 135 .65 1.45 128 3 124 13.0 3.2 28 .24 66 39 1 .37 50 3 15 1.37 19 2.45 <.1 5 <10 .6 3 1.0 16 5.6 41 299 221 .70 14 81 144 .65 1.45 128 3 124 13.0 3.2 28 .24 62 29 2 .23 27 3 15 1.37 19 2.45 <.1 5 <10 .5 3 1.6 19	
78621 78622	2.9 110 479 410 .55 7 35 1.58 546 2 38 13.0 4.0 24 .27 283 5	
78623 78624 78625	9.1 76 169 505 .40 1 31 149 .62 1.61 204 2 51 15.0 1.7 18 .23 12 12 149 1.19 7 3 13 1.68 <10 .71 0 1 1.0 .5 <2 1.0 22 8.9 120 596 262 1.01 10 21 149 .62 1.61 204 2 51 15.0 1.1 11 .17 130 149 1 .19 7 3 13 1.68 <10 .71 0 1 .5 <2 1.0 22 8.9 120 596 262 1.01 10 21 149 .62 1.61 204 2 51 15.0 1.7 130 149 1 .19 7 3 13 1.68 <10 .71 0 1 .5 <2 1.0 22 2.8 194 453 293 .19 4 61 79 .38 1.36 173 4 15 8.0 1.1 11 .17 130 149 1 .19 7 3 13 1.68 <10 .71 0 1 .5 <2 1.0 22 2.8 194 453 293 .19 4 61 79 .38 1.36 173 4 15 8.0 1.1 11 .17 130 149 1 .19 7 3 13 1.68 <10 .71 0 1 .10 .2 <2 .3 6	
78625 78626 78627	5.3 259 462 276 .41 3 60 73 .30 4.41 70 2 22 14.0 1.4 19 .37 17 2 .39 63 4 29 .98 10 .93 0 3 <10 .3 <2 .7 9 2.4 73 137 199 .37 2 59 73 .30 4.41 70 2 22 14.0 1.4 19 .37 17 2 .39 63 4 29 .98 10 .93 0 3 <10 .4 <2 .8 13 13 13 14 12 14 15 15 16 16 16 16 16 16 16 16 16 16 16 16 16	
78628 78629 78630	9.0 86 282 204 .66 12 13 168 475 1.24 2.05 616 3 46 25.0 14.6 25 13 126 46 1 .39 35 5 18 1.21 10 .70 0 .70 10 .70 2 1.5 23 1.5 124 473 296 2.26 13 68 475 1.24 2.05 616 3 46 21.0 3.4 23 .31 126 46 1 .39 35 5 18 1.21 10 .70 0 .70 10 .70 2 1.5 23 1.5 124 473 296 2.26 13 105 191 .71 1.20 325 3 46 21.0 3.4 23 .31 126 46 1 .39 35 5 18 1.21 10 .70 0 .70 10 .70 2 1.5 23 1.5 124 473 296 2.26 13 105 191 .71 1.20 325 3 46 21.0 3.4 28 .20 62 105 4 .22 29 4 23 1.36 35 .63 0 10 <10 .7 2 1.5 23 1.5 124 473 296 2.26 13 105 191 .71 1.20 325 3 46 21.0 3.4 28 .20 62 105 4 .22 29 4 23 1.36 35 .63 0 10 <10 .7 2 1.5 23 1.5 23 1.5 24 27 27 27 27 27 27 27 27 27 27 27 27 27	
78631 STANDARD C60	2.1 155 465 4470 48 6 3 17 .07 1.02 18 13 4 6.0 .7 515 105	

GROUP 1TIL - 2.5GM SAMPLE LEACHED WITH 20ML 0.3%NaCN THEN ROLLED FOR 1 HOUR FOLLOWED BY ANALYSIS BY ICP/MS. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns. - SAMPLE TYPE: SOIL SS80 60C

DATE RECEIVED: OCT 23 2000 DATE REPORT MAILED: NOV 6/N

D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

Fox Geological Consultants PROJECT MAUD LAKE FILE # A004256


Page 2

				_==												<u> </u>																	ALA	NE ANALYTICAL
SAMPLE#	Au	Ag	j Al	As	Ba	Βi	Ca	Co	Cr	Cu	Fe	Κ	La	Mg	Mn	Мо	Ní	Р	Pb	Sb	Sr	Th	Τî	u	v	W	Zn	Se	Te	Pd	Br	cl	ī	Hg
Į.	ppb	ppb	mqq c	ppb	ppm	dqq	ppm	daa	ppm	ppm	maa	maa	ppp	ppm	ppm	ppb	ppm					ppb		nnh		- :-		-						-
								.					Pirm		1-1-1-1		- FP	- PF	PPD	PPD	Ppin	ppp		PPD	PPIII	hhr.	- PMIII	ppiii	ppp 1	obn I	PPIII	ppm p	ban k	Jhn adr
78632	6.0	73	503	306	.55	41	40	135	.96	1,49	315	3	28	14.0	1.6	25	40	154	32	5	.27	20	5	20	1.07	17	1 7/	_ 1	4	-10	_	2.4	,	43
78633	18.3	145	387	568	.70	47	59	280		3.17								145			34		_					- L		<10	-5	2 1		
78634	2.7	142	402							4.48					2.4		.84										.66	Đ		<10	٠6	2 1		1.
78635	1			426			128			2.16					2.7								6		.81		1.02	0	_		-4	=	.8	7.7
78636	1		537		1.48		50														.38		>	24	-		1.43	<.1	2 •	<10	٠5	<2 1	.1	16
10030	1.1	12.2		371	1.40	20	50	221	.90	1.50	211	3	21	13.0	5.1	29	.28	98	64	3	.39	44	5	20	1.36	11	.94	0	5 •	<10	٠6	<2 1	. 1	11
78637	21	107	403	380	.65	2/	,,	457	4 25	7 72	400	_		40.0																				
78638										3.32					3.2				40		.32	, -	5	21	1.20	28	.37	0	7 •	<10	.4	<2	.8	14
	1		491		1.84					7.32					2.6						.40	84	6	63	1.01	13	.43	0	2 -	<10	.7	2 1	.8	15
78639			481		3.24	29	155			12.52			148	28.0	13.2	86	2.20	206	84	5	.70	108	8	57	1.05 -	<10	2.36	а	2 4	:10	.8	4 1	4	10
78640	2.9	187	440	236	.56	14	19	102	.93	2.56	259	4	71	7.0	1.9	45	.21	89	31		. 15	47			1.15		.65	ň	_	10	.9	3 2		
78641	1.7	201	461	258	.60	14	23	120	1.25	1.79	331			10.0		46	.37	85	40		. 25	24	5	27	1 23	10	.36	•		:10	.9	3 2		
	Ì								-			_							70	•			•	۲,	لنظوا	10	.50	Ų	, ,	10	٠, ٦	3 2		44
STANDARD C60	112.1	352	101	1139	.48	6	3	17	.07	1.02	18	13	4	6.0	-9	515	.05	3	Я	73	44	8	2	34	.16	800	.49	0	13 <	-10	2	17 -	4	20
															<u> </u>						•				. 10	300	•47		13 1	· 10	٠ <u>۷</u>	13 <	. !	29

Sample type: SOIL SS80 60C.

Data___FA__

