BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2000/2001REPORT #:PAP 00-34NAME:JAMES DAWSON

REPORT

ON THE

HALL DRY

CANOE RIVER PROJECT

N T S 83D

BRITISH COLUMBIA

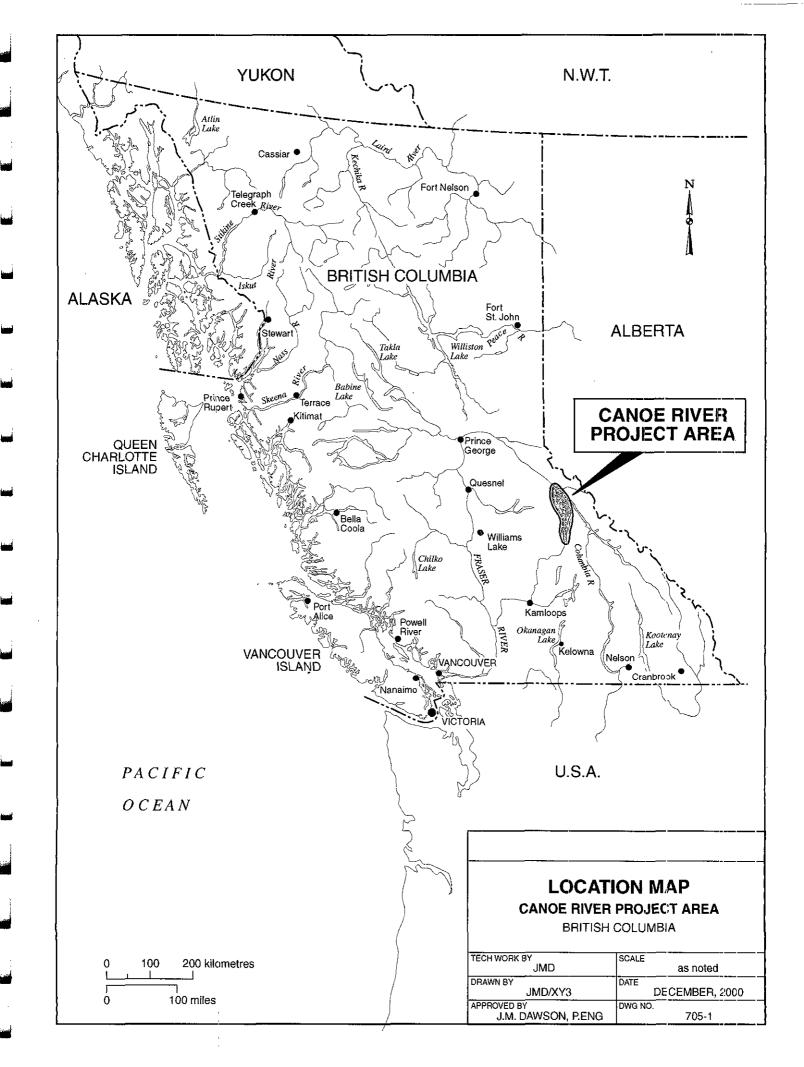
BY

JAMES M. DAWSON, P.Eng. Suite 860 – 625 Howe St. Vancouver, B.C. V6C 2T6

January 12, 2001

TABLE OF CONTENTS

Introduction.	Page No. 2
Location and Access.	2
Physiography and Vegetation	2
Exploration and Mining History.	3
Regional Geology.	3
Mineral Occurrences.	5
Geochemistry.	7
Exploration Potential.	7


Appendix A: Sample Locations

Appendix B: Geochemical Analyses

Appendix C: References

Appendix D List of maps accompanying this report

Figure 705-1 Location map Figure 705-2 Geology and Mineral Occurrences Figure 705-3 Topographic map: 1;250,000.

Introduction

This report describes the results of a prospecting program carried out over a five week period in August, September and October, 2000. The purpose of the program was to rapidly prospect a fairly large area which has not received much attention by mineral explorationists in recent years. Although the original intent was to focus on non metallic or industrial minerals, because of the prospective rocks encountered, an extensive program of silt sampling was also completed. Data from this work as well as selected rock sampling is included in appendices within this report.

Location and Access

The Canoe River Project prospecting area is located in east-central British Columbia, roughly 450 km. northeast of Vancouver. It is an irregular, elongate area located almost entirely within NTS Quadrangle 83D. The project area follows the main valley of the North Thompson, Albreda and McLennen Rivers and extends from the boundary of Wells Grey Park in the south to just north of the settlement of Tete Jaune Cache in the north (see figure 705-3).

The region is accessible via about 600 km. of paved highway from Vancouver to the town of Blue River at the south end of the project area. The town of Valemount is located about 90 km. to the north and was used as a base for the northern half of the field project. A number of good quality logging roads lead off from Highway No. 5 between Blue River and Tete Jaune Cache and provide excellent access to most of the major tributaries of the North Thompson-Albreda-McLennen river systems.

Physiography and Vegetation

The area lies within the Columbia Mountains of east-central British Columbia. The valley of the North Thompson-Albreda Rivers devides the Cariboo Mountains and the Premier Range to the west from the Monashee Mountains to the east and south (see Figure 705-2). The Rocky Mountain Trench merges with the North Thompson-Albreda valley at Valemount and marks the northeastern boundary of the area. Relief is generally steep away from the major valleys with elevations varying from 700 to more than 2500 meters. These mountain ranges are cut by a number of major creeks and numerous tributaries which generally are steep and fast-flowing. Without the excellent system of logging roads, access would be extremely difficult.

The region lies within the wet belt of eastern British Columbia and vegetation consists of mature cedar and spruce at lower elevations. This cover gives way to local stands of pine in the better drained major valleys and to alpine fir at the higher reaches.

Exploration and Mining History

The earliest recorded exploration and development in the region was concerned with the muscovite occurrences on Mica Mountain. Initial work began in 1898 and continued sporadically into the 1920's. A number of short adits were driven on the host pegmatite dikes, however, the occurrences are too small to be of serious economic interest.

In the early 1950's the discovery of the Verity carbonatite showing (U, Nb, Ta, REE) lead to prospecting for similar occurrences. Drilling and trenching was completed on this and other carbonatite showings sporadically from the mid 1950's to the late 1970's.

The only other serious development activity concerned exploration and evaluation of various industrial mineral properties (mica, feldspar and limestone) during the 1980's and early 1990's.

There has been little recent documented work by exploration companies for metallic mineral deposits in the Canoe River area. This area is one of the few remaining in British Columbia where regional silt sampling has not been completed by the British Columbia Geological Survey.

Regional Geology

The region is underlain by variably metamorphosed, clastic and lesser carbonate sedimentary rocks of the Late Proteroxoic (Hadrynian) Horsethief Creek Group, a part of the Windermere Supergroup. These rocks are in fault contact with a core complex of Early Proterozoic, high grade ortho- and paragneisses.in the northeastern corner of the project area. Near the south end of the area, the older Windermere (Horsethief Creek) metasedimentary rocks are in fault(?) contact with younger metasedimentary and metavolcanic rocks of the Late Proterozoic/Paleozoic, Eagle Bay succession. These older rock packages are intruded by two Mid-Cretaceous granitic plutons near the south end of the project area (see figure 705-3). At the northeast edge of the project area, a band of Cambrian, calcarious sediments is exposed below the Purcell Thrust.

The Horsethief Creek (Windermere) package comprises the bulk of the rocks underlying the project area. The original protolith of this sequence was comprised of granule conglomerate (grit), sandstone, siltstone, shale and argillite, pure and impure carbonates as well as basic volcanic flows and fragmentals. These rocks have now been highly deformed and metamorphosed to varying degrees from greenschist facies to sillimanitebearing, upper amphibolite facies migmatitic gneisses.

Mapping by Pell (1984) and others has recognized three main lithological units within the Horsethief Creek package (UPW) in the Canoe River area. They are from oldest to youngest: the Semipelite-Amphibolite Unit, the Main Marble Unit and the Upper Clastic

Unit. The Semipelite-Amphibolite Unit is characterized by platey micaceous slates and quartzite, muscovite and biotite schists with varying amounts of quartz, feldspar, garnet and hornblende and occasionally minor to significant amounts of staurolite, kyanite and sillamanite. Locally, minor calc-silicate horizons are present. The platy, micaceous quartzites contain many dark biotite seams. Layers and lenses of amphibolite are abundant with the layers varying from a few millimeters to 5 meters in thickness. The thickness of the Semipelite-Amphibolite Unit (SPA) is unknown but could vary from 500 to at least 1000 meters.

The Middle Marble Unit (MML) overlies the SPA succession and ranges from 20 meters to over 500 meters thick. It consists of a basal and an upper carbonate zone with an intervening clastic horizon. Each carbonate interval may be as much as 200 meters in thickness. The most common lithology is massive, thick bedded, gray-weathering marble. In addition, there are varying thicknesses of buff-weathering, sandy marble and dolomitic marble with thin interlayers of micaceous, calc-schist.

The youngest unit of the Horsethief Creek (UPW) Group exposed in the region is the Upper Clastic Unit. This unit has three major subdivisions: a basal unit of micaceous, meta-sandstone, siltstone and quartzite (layers of feldspar-mica-hornblende-garnet schist are common within the section) and a middle subdivision of alternating micaceous sandstones and slate with significant granule conglomerate or grit horizons (lenses of calcsilicates and fine grained graphitic horizons are common in the section which is capped by rusty schists and quartzites). Thin sulfide layers comprised of pyrite and pyrrhotite with lesser chalcopyrite, sphalerite and galena have been noted in meta-sandstone and meta-argillite or slate in this sub-unit. The upper subdivision is dominated by metamorphosed grit layers and is notable for the absence of large amounts of meta-argillite and carbonate or calc-silicate beds.

The Horsethief Creek package of meta-sediments in the Canoe River area is cut by the north-trending, North Thompson Normal Fault. This fault has down-dropped rocks to the west significantly. Consequently, the rocks to the east of this structure, while still relegated to the lower subdivision (Semipelite-Amphibolite Unit) are of significantly higher metamorphic grade and contain a larger proportion of lit-par-lit, granitic gneiss layers.

Pegmatite dikes and sills are found in many areas within the region, however, they are particularly abundant within 4 or 5 areas near the south end of the project area (see Figure 705-2). These areas have been referred to as pegmatite dike swarms although in some cases they may be one or more very large dikes. Most of the pegmatite bodies seen are pre- or syn-deformation. Typically they are highly deformed and faulted like the enclosing metasediments. However, in the area of Mount Ste. Anne, a large pegmatite field or one very large body appears to be post tectonic. It appears to be relatively undeformed and to have significant phases with runic or eutectic textures- a feature not noted elsewhere. For the most part, pegmatite bodies are similar in appearance consisting of large crystals of plagioclase with lesser quartz. Local large books of biotite and/or muscovite are a common feature. A number of areas were prospected carefully for exotic

minerals in pegmatite bodies, however, apart from tourmaline and garnet in the area of the summit of Mt. Ste. Anne, no significant accessory minerals were observed.

Mineral Occurrences

The original focus of this program was oriented towards industrial minerals since a number of occurrences were recorded both in pegmatitic bodies and in some of the high grade, metamorphosed sediments. Coarse muscovite and biotite crystals are present in a number of pegmatite dikes and muscovite was mined on a small scale on Mica Mountain. Here, large books of muscovite (up to 20 cm. across) are sporadically distributed through typical pegmatite dikes. A similar occurrence was noted along the Bone Creek forest service road. These showings are too small to be of economic interest.

Along the Canoe River about 13 km. southwest of Valemount, micaceous schists have been explored intermittently since the 1960's. Drilling has reportedly outlined a resource in the order of 3,000,000 tonnes grading about 60 % muscovite. In this general region there are a number of other mica occurrences related to various high grade, kyanite-staurolite-muscovite schists, however, none have been explored in any detail.

About 5 km. SE of the summit of Mica Mountain, along one of the tributaries of the McLennen River, a logging road has exposed a considerable area of decomposed mica schist. This material consists of at least 50 % mica in a fine grained sandy till. It is at least 6 meters thick in some road cuts and is exposed over at least 250 meters along a deactivated logging road.

An occurrence of feldspar within a large pegmatite dike is located about 3 km. west of the town of Blue River. Minor work, including some shallow drilling was completed to test the feldspar (plagioclase ?) for ceramic and glass applications.

At the head of Serpentine Creek, an occurrence of beryllium has been reported. According to Hora (1985), beryl crystals up to 20 mm. in diameter are found in pegmatite. No data is available on potential size or economic prospects.

A limestone occurrence is located about 2 km. north of the town of Blue River. The deposit has been explored since the early 1980's with limited production. Current reserves stand at about 1.8 million tonnes.

A number of carbonatite bodies are located within the Semipelite-amphibolite Unit of the Horsethief Creek Group on the east side of the North Thompson River (see figure 705-2). These carbonatite occurrences are frequently conformable, sill-like bodies which are usually thin but have great lateral extent (up to 4,000 meters). They consist of calcium and magnesium carbonates which usually have bands of amphibole or other accessory minerals. These carbonatites usually carry low grade values in niobium, tantalum, uranium, phosphorus (apatite) and rare earth elements. A number of these bodies have been explored by trenching and drilling. The Verity occurrence located just east of the North Thompson River at Serpentine Creek is the largest and highest grade of the carbonatites so far identified. Locally the carbonatite layer at Verity is up to 15 to 30 meters thick. A resource of 2.0 million tonnes grading 0.16 % Nb₂O₅ and 0.02 % Ta₂O₅ has been outlined.

Within the Canoe River area, currently known metallic mineral occurrences are relatively sparse, although minor pyrite can be found in many, iron stained, metasediment outcrops.

The Ingrid showing is located on the east side of the Yellowhead Highway (No. 5) about 24 km. south of Valemount. It consists of narrow zones of quartz stockwork in high grade gneisses of the Early Proterozoic Malton Gneiss Complex. Scattered copper sulfides, carbonates and free gold occur in the quartz veins and on adjacent fracture surfaces. Values up to 1.8 % Cu, 60 g/t Ag and 8.6 g/t Au are reported. Trenching and minor diamond drilling returned only low grade values.

Pell (1984) notes that within the middle subdivision of the Upper Clastic Unit of the Horsethief Creek Group "sulfides, mainly pyrite and pyrrhotite with traces of chalcopyrite, sphalerite and galena form thin layers as well as disseminations throughout both pelitic and psammitic rocks within this zone. Near the basal contact with the underlying carbonate-bearing horizon are local developments of sulfide-rich, black, graphitic pelites. Sulfide layers two cm. or more in thickness occur parallel to bedding. They contain dominently pyrite and pyrrhotite with minor amounts of chalcopyrite, sphalerite, ilmenite and rutile".

Near the upper reaches of the North Thompson River, the writer noted two fairly large outcrop areas of sulfide bearing metasediments and/or metavolcanics (see figure 705-2). At the North Thompson River location, disseminated pyrrhotite and pyrite is common over a 50 meter long section exposed in a road cut. There are local lenses of massive to sub-massive pyrrhotite up to 20 cm. thick. Grab samples from these sulfide-rich horizons returned values up to 328 PPM Cu, 246 PPM Ni and 123 PPM Co. Similar sulfide-bearing metasediments were encountered along strike(?) on the Adolph Creek forest service road (see figure 705-2). A grab sample from this material returned 377 PPM Cu, 148 PPM Zn, 250 PPM Ni and 146 PPM Co. These outcrop areas plot within the middle subdivision of the Upper Clastic Unit as defined by Pell (1984). No other sulfides besides pyrrhotite and pyrite were seen and the location of mineralized outcrops noted by Pell are presently unknown.

Along the powerline road immediately north of Dominion Creek an outcrop of dark green-gray metavolcanics contains lenses of disseminated, fine grained sulfides. A grab sample of this material returned a value of 670 PPM Cu.

Along the Gum Creek forest service road, two separate outcrops of rusty, sulfide-bearing metasediments or paragneiss returned values of 423 and 462 PPM Cu respectively (see Appendix B).

Geochemistry

Because of the prospective nature of the many carbonate horizons present in the region as well as the sulfide bearing horizons in the Upper Clastic Unit of the Horsethief Creek Group rocks, a fairly comprehensive program of silt sampling was carried out, A total of 386 silt samples were collected and analysed for Au plus a 30 element suite by ICP. Each silt sample was located by UTM co-ordinates and plotted on 1:50,000 scale field maps. Location data for all silt samples and selected rock samples are included in Appendix A.

In general, results are low, however, a total of 24 samples reported zinc values greater than 100 PPM with a maximum value of 289 PPM.Zn In addition, a total of 6 samples reported values greater than 18 PPM gold with a maximum value of 134 PPM Au. These anomalous results are widely distributed within the project area, however, there are notable clusters of anomalous zinc values within the drainages of Blue River, North Blue River, Dominion Creek and Albreda River. Two of the higher anomalous gold values are located within the Thunder River drainage.

Exploration Potential

The most significant exploration potential within the Canoe River Project Area seems to be for SEDEX type, base metal deposits within portions of the Upper Clastic Unit of the Horsethief Creek Group rocks. In addition, potential exists for replacement-type or MVT type Zn-Pb deposits within some of the many limestone-marble horizons associated with the Middle Marble Unit of the Horsethief Creek Group sequence.

The many anomalous zinc silt samples will have to be followed up. Some of these anomalies are in areas with no obvious favorable setting; at least as currently understood. The anomalous gold values will also have to be followed up. Their significance at present is completely unknown.

APPENDIX A

SAMPLE LOCATIONS

Sample Number	UTM Co-ordinates	Geographic Reference
JD-00-001	5855050N, 340550E	Tributary of West Fork of
······		McClennen River
JD-00-002	5853660N, 340850E	Tributary of West Fork of
		McClennen River
JD-00-003	5852900N, 341250E	Tributary of West Fork of McClennen River
JD-00-004	5873450N, 330350E	Shelter Creek
JD-00-005	5876820N, 322000E	Kiwa Creek
JD-00-006	5875450N, 320900E	Kiwa Creek
JD-00-007	5874990N, 321150E	Kiwa Creek
JD-00-008	5831550N, 356700E	Robina Creek
JD-00-009	5832000N, 356825E	Tributary of Robina Creek
JD-00-010	5832370N, 356800E	Tributary of Robina Creek
JD-00-011	5832250N, 357775E	Tributary of Robina Creek
JD-00-012	5832200N, 358280E	Tributary of Robina Creek
JD-00-012	5832825N, 357150E	North of Robina Creek
JD-00-015	5833125N, 356650E	North of Robina Creek
JD-00-015	5832100N, 355950E	North of Robina Creek
JD-00-016	5832850N, 355875E	North of Robina Creek
JD-00-017	5828575N, 358160E	East of Clemina Creek
JD-00-017	5826320N, 358550E	Clemina Creek
JD-00-019	5826780N, 360720E	Tributary of Clemina Creek
JD-00-020	5826680N, 361775E	Tributary of Clemina Creek
JD-00-020	5825920N, 365100E	Tributary of Clemina Creek
JD-00-021	5825550N, 365800E	Tributary of Clemina Creek
JD-00-022	5854755N, 340500E	West Ridge FSR
JD-00-R1 JD-00-R2	5847380N, 345480E	Canoe River Access Road
JD-00-023	5844790N, 337990E	Tributary of Canoe River
JD-00-025	5844300N, 337300E	Kimmel Creek
JD-00-024 JD-00-025	5843610N, 335580E	Tributary of Canoe River
JD-00-026	5843280N, 332880E	Tributary of Canoe River
JD-00-027	5866680N, 331800E	Tributary of McLennen Creel
JD-00-027	5865330N, 332525E	Tributary of McLennen Creel
JD-00-028	5864280N, 333000E	Tributary of McLennen Creel
JD-00-029 JD-00-030	5861530N, 334575E	Tributary of McLennen Creek
JD-00-030	5855450N, 340350E	Tributary of West Fork of
		McLennan River
JD-00-032	5856200N, 339350E	Tributary of West Fork of McLennan River
JD-00-033	5856575N, 339175E	Tributary of West Fork of
JD-00-034	5857000N, 338750E	McLennan River Tributary of West Fork of McLennen Biver
		McLennan River

JD-00-035	5857100N, 338220E	Tributary of West Fork of
·····		McLennan River
JD-00-036	5857300N, 337780E	Tributary of West Fork of
······································		McLennan River
JD-00-037	5857525N, 337125E	Tributary of West Fork of
		McLennan River
JD-00-038	5857275N, 336075E	Tributary of West Fork of
		McLennan River
JD-00-039	5857990N, 335950E	Tributary of West Fork of McLennan River
JD-00-040	5858450N, 335125E	Tributary of West Fork of
JD-00-040	5656450IN, 555125E	McLennan River
JD-00-041	5858700N, 334675E	Tributary of West Fork of
3D-00-041	565676614, 55467512	McLennan River
JD-00-R3	5857525N, 336925E	McLennan River FSR
JD-00-R4	5858675N, 334800E	McLennan River FSR
JD-00-R5	5858635N, 334850E	McLennan River FSR
JD-00-042	5843970N, 346400E	Tributary of Camp Creek
JD-00-043	5842430N, 346700E	Gold Creek
JD-00-044	5825350N, 360120E	Tributary of Dora Creek
JD-00-045	5825270N, 360960E	Tributary of Dora Creek
JD-00-R6	5824370N, 360840E	Dora Creek FSR
JD-00-046	5828540N, 359450E	Tributary of Albreda River
JD-00-047	5826450N, 357340E	Tributary of Albreda River
JD-00-048	5825850N, 357290E	Tributary of Albreda River
JD-00-049	5823840N, 356550E	Tributary of Albreda River
JD-00-050	5825075N, 354390E	Tributary Allen Creek
JD-00-051	5823000N, 356140E	Allen Creek
JD-00-052	5830250N, 356430E	Tributary of Albreda River
JD-00-053	5829120N, 356640E	Tributary of Albreda River
JD-00-054	5829510N, 356200E	Tributary of Albreda River
JD-00-055	5830210N, 354780E	Tributary of Albreda River
JD-00-056	5830275N, 354520E	Tributary of Albreda River
JD-00-057	5830800N, 353810E	Tributary of Albreda River
JD-00-058	5829490N, 354815E	Tributary of Albreda River
JD-00-059	5828525N, 354820E	Tributary of Albreda River
JD-00-R7	5828390N, 354920E	Albreda River FSR
JD-00-060	5828300N, 355080E	Tributary of Albreda River
JD-00-061	5828125N, 355240E	Tributary of Albreda River
JD-00-062	5828000N, 355000E	Tributary of Albreda River
JD-00-063	58280001, 555000E	Tributary of Albreda River
JD-00-064	5817550N, 357755E	Tributary of Dominion Creek
JD-00-065	5817400N, 358110E	Tributary of Dominion Creek
JD-00-066	5817400N, 358450E	Dominion Creek
JD-00-067		Tributary of Albreda River
JD-00-00/	5819640N, 357560E	Thouary of Albreda Kiver

JD-00-R8	5819630N, 357560E	Power Line Road North of Dominion Creek
JD-00-068	5814780N, 350410E	Tributary of Lempriere Creek
JD-00-069	5813640N, 350240E	Tributary of Lempriere Creek
JD-00-070	5816350N, 350130E	Lempriere Creek
JD-00-071	5817405N, 348529E	Tributary of North Thompson
JD-00-072	5817206N, 346979E	River Tributary of North Thompson River
JD-00-073	5817281N, .346491E	Tributary of North Thompson River
JD-00-074	5817492N, 345577E	Tributary of North Thompson River
JD-00-075	5817197N, 344622E	Tributary of North Thompson River
JD-00-076	5817770N, 343833E	Tributary of North Thompsor River
JD-00-077	5819271N, 341233E	Tributary of North Thompson River
JD-00-078	5819983N, 340440E	Tributary of North Thompson River
JD-00-079	5820379N, 339885E	Tributary of North Thompson River
JD-00-080	5820359N, 339318E	Tributary of North Thompson River
JD-00-081	5821003N, 337663E	Tributary of Adolph Creek
JD-00-082	5821180N, 337600E	Adolph Creek
JD-00-R9	5821591N, 337009E	Adolph Creek FSR
JD-00-R10	5823941N, 335960E	Adolph Creek FSR
JD-00-083	5825972N, 336890E	Tributary of Adolph Creek
JD-00-084	5826204N, 337129E	Tributary of Adolph Creek
JD-00-085	5826532N, 337325E	Tributary of Adolph Creek
JD-00-R11	5826230N, 337140E	Spur from Adolph Creek FSI
JD-00-086	5828828N,337620E	Tributary of Adolph Creek
JD-00-R12	5831171N, 337044E	Adolph Creek FSR
JD-00-087	5831190N, 337020E	Adolph Creek
JD-00-088	5822841N, 333620E	Tributary of North Thompson River
JD-00-089	5822500N, 333093E	Tributary of North Thompson River
JD-00-090	5823685N, 332143E	Tributary of North Thompson River
JD-00-091	5823970N, 331475E	Tributary of Pleasant Creek
JD-00-092	5824065N, 331404E	Tributary of Pleasant Creek
JD-00-093	5824702N, 330400E	Tributary of Pleasant Creek
JD-00-094	5825005N, 330008E	Tributary of Pleasant Creek
JD-00-095	5825559N, 328523E	Tributary of North Thompson River

JD-00-R13	5826026N, 328407E	North Thompson FSR
JD-00-R14	5826075N, 328400E	North Thompson FSR
JD-00-R15	5826080N, 328400E	North Thompson FSR
JD-00-096	5826528N, 328497E	Tributary of North Thompson River
JD-00-097	5826792N, 328705E	Tributary of North Thompson River
JD-00-098	5827284N, 328707E	Tributary of North Thompson River
JD-00-099	5827437N, 328617E	Tributary of North Thompson River
JD-00-100	5827746N, 328386E	Tributary of North Thompson River
JD-00-101	5828722N, 327392E	Tributary of North Thompson River
JD-00-102	5830840N, 326190E	Lebher Creek
JD-00-103	5829084N, 326763E	Tributary of Lebher Creek
JD-00-104	5829141N, 326586E	Lebher Creek
JD-00-105	5831796N, 323461E	Tributary of North Thompson River
JD-00-106	5832335N, 322768E	Tributary of North Thompson River
JD-00-107	5832940N, 321750E	Tributary of North Thompson River
JD-00-108	5833079N, 321602E	Tributary of North Thompson River
JD-00-109	5829402N, 324568E	Tributary of North Thompson River
JD-00-110	5829936N, 324062E	Tributary of North Thompson River
JD-00-111	5830872N, 323419E	Tributary of North Thompson River
JD-00-112	5816597N, 348106E	Tributary of North Thompson River
JD-00-113	5816612N, 344693E	Canvas Creek
JD-00-114	5817194N, 348145E	Tributary of North Thompson River
JD-00-115	5816445N, 349439E	Tributary of North Thompson River
JD-00-116	5816451N, 347614E	Tributary of North Thompson River
JD-00-117	5814493N, 345020E	Tributary of Canvas Creek
JD-00-R16	5816278N, 344670E	Canvas Creek FSR
JD-00-118	5814450N, 345204E	Tributary of Canvas Creek
JD-00-119	5813547N, 345012E	Tributary of Canvas Creek
JD-00-120	5813100N, 344677E	Tributary of Canvas Creek
JD-00-R17	5813100N, 344677E	Canvas Creek FSR
JD-00-121	5813225N, 345237E	Tributary of Canvas Creek

أيتوعيا

эн.

JD-00-122	5812560N, 344867E	Tributary of Canvas Creek
JD-00-123	5812533N, 344188E	Tributary of Canvas Creek
JD-00-124	5812050N, 342378E	Tributary of Canvas Creek
JD-00-125	5811217N, 340747E	Canvas Creek
JD-00-126	5817492N, 342193E	Tributary of North Thompson River
JD-00-127	5817787N, 341602E	Tributary of North Thompson River
JD-00-128	5818275N, 340512E	Tributary of North Thompson River
JD-00-129	5817935N, 336779E	Manteau Creek
JD-00-130	5817007N, 336041E	Tributary of Manteau Creek
JD-00-R18	5817000N, 336050E	Manteau Creek FSR
JD-00-131	5815141N, 334801E	Tributary of Manteau Creek
JD-00-132	5814101N, 334024E	Tributary of Manteau Creek
JD-00-133	5813032N, 333131E	Tributary of Manteau Creek
JD-00-134	5812434N, 332241E	Tributary of Manteau Creek
JD-00-135	5812741N, 331883E	Tributary of Manteau Creek
JD-00-136	5813066N, 332028E	Tributary of Manteau Creek
JD-00-137	5792556N, 356447E	Tributary of Bone Creek
JD-00-138	5792785N, 356754E	Tributary of Bone Creek
JD-00-139	5793072N, 357684E	Tributary of Bone Creek
JD-00-140	5792573N, 358494E	Tributary of Bone Creek
JD-00-141	5791950N, 359770E	Tributary of Bone Creek
JD-00-142	5792090N, 360051E	Tributary of Bone Creek
JD-00-R19	5791950N, 359770E	Spur of Bone Creek FSR
JD-00-143	5791887N, 360284E	Tributary of Bone Creek
JD-00-144	5791303N, 361170E	Tributary of Bone Creek
JD-00-145	5791134N, 361276E	Tributary of Bone Creek
JD-00-146	5790580N, 362162E	Tributary of Bone Creek
JD-00-147	5789963N, 363228E	Tributary of Bone Creek
Л-00-148	5789465N, 363904E	Tributary of Bone Creek
JD-00-149	5788793N, 364986E	Tributary of Bone Creek
JD-00-150	5790120N, 363020E	Tributary of Bone Creek
JD-00-R20	5790392N, 362821E	Bone Creek FSR
JD-00-151	5791599N, 361855E	Tributary of Bone Creek
ЛО-00-152	5792739N, 362658E	Tributary of Bone Creek
ЛО-00-153	5793168N, 363061E	Tributary of Bone Creek
JD-00-154	5793590N, 363336E	Tributary of Bone Creek
ЛО-00-155	5794346N, 364370E	Tributary of Bone Creek
JD-00-156	5794602N, 364152E	Tributary of Bone Creek
JD-00-157	5794587N, 364644E	Tributary of Bone Creek
JD-00-158	5795168N, 365049E	Tributary of Bone Creek
JD-00-159	5795464N, 365384E	Tributary of Bone Creek
JD-00-160	5791561N, 355108E	Tributary of Bone Creek

İ

JD-00-161	5787837N, 347612E	Tributary of Thunder River
JD-00-162	5788201N, 347019E	Tributary of Thunder River
JD-00-162	5789011N, 346260E	Tributary of Thunder River
JD-00-164	5789495N, 345897E	Tributary of Thunder River
JD-00-165	5790221N, 345831E	Tributary of Thunder River
JD-00-165	5790947N, 344805E	Tributary of Thunder River
	5791843N, 343743E	Tributary of Thunder River
JD-00-167		Tributary of Thunder River
JD-00-168	5792012N, 343442E	Tributary of Thunder River
JD-00-169	5792204N, 342590E	Tributary of Thunder River
JD-00-170	5792254N, 341855E	
JD-00-171	5793178N, 340281E	Tributary of Thunder River
JD-00-172	5793619N, 340316E	Tributary of Thunder River
JD-00-173	5792784N, 342000E	Tributary of Thunder River
JD-00-174	5793588N, 341315E	Tributary of Thunder River
JD-00-175	5793241N, 342002E	Tributary of Thunder River
JD-00-176	5792977N, 343245E	Tributary of Thunder River
JD-00-177	5791246N, 344941E	Tributary of Thunder River
JD-00-178	5789363N, 345774E	Tributary of Thunder River
JD-00-179	5789108N, 345564E	Tributary of Thunder River
JD-00-180	5787655N, 347125E	Tributary of Thunder River
JD-00-R21	5787263N, 347233E	Spur of Thunder River FSR
JD-00-181	5791608N, 351160E	Tributary of Bone Creek
JD-00-182	5790938N, 350435E	Tributary of Bone Creek
JD-00-183	5789126N, 349751E	Tributary of North Thompson River
JD-00-184	5788497N, 349543E	Tributary of North Thompson River
JD-00-185	5788078N, 350323E,	Tributary of North Thompson River
JD-00-186	5790027N, 351576E	Tributary of North Thompson River
JD-00-187	5790085N, 351837E	Tributary of North Thompson River
JD-00-R22	5790100N, 351850E	Spur of Hellroar Creek FSR
JD-00-188	5788407N, 350870E	Tributary of North Thompson River
JD-00-189	5793634N, 352369E	Tributary of North Thompson River
JD-00-190	5795352N, 352384E	Tributary of North Thompson River
JD-00-R23	5796511N, 352377E	Gum Creek FSR
JD-00-191	5797581N, 352390E	Tributary of Gum Creek
JD-00-192	5798157N, 352623E	Gum Creek
JD-00-193	5801198N, 353324E	Tributary of North Thompson River
JD-00-194	5798707N, 354071E	Tributary of Gum Creek
JD-00-195	5797896N, 354950E	Tributary of Gum Creek

+

- and

la de

JD-00-196	5797831N, 355667E	Tributary of Gum Creek
JD-00-197	5796071N, 356340E	Tributary of Gum Creek
JD-00-198	5796265N, 357599E	Tributary of Gum Creek
JD-00-199	5801468N, 353225E	Tributary of North Thompson River
JD-00-200	5797907N, 353708E	Tributary of Gum Creek
JD-00-R24	5799030N, 352779E	Gum Creek FSR
JD-00-201	5795130N, 352694E	Tributary of North Thompson River
JD-00-202	5793752N, 352947E	Tributary of North Thompson River
JD-00-203	5795072N, 353102E	Tributary of North Thompson River
JD-00-204	5793643N, 353116E	Tributary of North Thompson River
JD-00-205	5792640N, 354862E	Tributary of Bone Creek
JD-00-206	5792720N, 354914E	Tributary of Bone Creek
JD-00-207	5815349N, 356751E	Tributary of Moonbeam Cree
JD-00-208	5816000N, 356900E	Tributary of Moonbeam Cree
JD-00-209	5813507N, 355141E	Tributary of North Thompson River
JD-00-210	5811953N, 354327E	Tributary of North Thompson River
JD-00-211	5810918N, 354118E	Tributary of North Thompson River
JD-00-212	5809132N, 353779E	Tributary of North Thompson River
JD-00-213	5807727N, 353222E	Tributary of North Thompson River
JD-00-214	5806567N, 352608E	Tributary of Serpentine Creek
JD-00-215	5804360N, 352425E	Tributary of North Thompson River
JD-00-216	5802921N, 352819E	Tributary of Pyramid Creek
JD-00-217	5801441N, 352633E	Tributary of North Thompson River
JD-00-218	5805319N, 352726E	Tributary of North Thompson River
JD-00-219	5805684N, 354315E	Serpentine Creek
JD-00-220	5810268N, 354087E	Tributary of North Thompson River
JD-00-221	5807730N, 354021E	Tributary of North Thompson River
JD-00-222	5806342N, 354943E	Tributary of Serpentine Creek
JD-00-223	5806030N, 356904E	Tributary of Serpentine Creek
JD-00-224	5805902N, 357202E	Tributary of Serpentine Creek
JD-00-225	5805913N, 358252E	Tributary of Serpentine Creek
JD-00-226	5805321N, 359616E	Tributary of Serpentine Creek
JD-00-227	5805106N, 360549E	Tributary of Serpentine Creek

JD-00-228	5806600N, 357164E	Tributary of Serpentine Creek
JD-00-229	5812031N, 353942E	Tributary of North Thompson River
JD-00-R25	5807468N, 355318E	Spur of Serpentine Creek FSR
JD-00-230	5808802N, 353122E	Tributary of North Thompson River
JD-00-231	5802621N, 351552E	Tributary of North Thompson River
JD-00-232	5799555N, 351605E	Tributary of North Thompson River
JD-00-233	5797870N, 351352E	Tributary of North Thompson River
JD-00-234	5792124N, 350054E	Tributary of North Thompson River
JD-00-235	5783720N, 346643E	Tributary of North Thompson River
JD-00-236	5782722N, 345679E	Tributary of North Thompson River
JD-00-237	5811603N, 353229E	Tributary of North Thompson River
JD-00-238	5810174N, 353010E	Tributary of North Thompson River
JD-00-239	5809653N, 352952E	Tributary of North Thompson River
JD-00-240	5809754N, 352226E	Tributary of North Thompson River
JD-00-241	5810814N, 352525E	Tributary of North Thompson River
JD-00-242	5812207N, 353757E	Tributary of North Thompson River
JD-00-243	5812854N, 353985E	Tributary of North Thompson River
JD-00-244	5813530N, 354207E	Tributary of North Thompson River
JD-00-R26	5812636N, 353986E	Hilton Creek Road Spur
JD-00-245	5806686N, 351431E	Tributary of Chappel Creek
JD-00-246	5808415N, 351378E	Tributary of Chappel Creek
JD-00-247	5809443N, 351534E	Tributary of Chappel Creel
ЛО-00-248	5812257N, 351696E	Tributary of Chappel Creek
JD-00-249	5808411N, 351378E	Tributary of Chappel Creek
JD-00-250	5802722N, 351283E	Tributary of North Thompson River
JD-00-251	5801907N, 351000E	Tributary of North Thompson River
JD-00-252	5800888N, 350998E	Tributary of North Thompson River
JD-00-253	5799936N, 350805E	Tributary of North Thompson River

JD-00-254	5799683N, 350757E	Tributary of North Thompson River
JD-00-255	5799125N, 350600E	Tributary of North Thompson River
JD-00-R27	5799655N, 350755E	Jackhammer FSR
JD-00-256	5801474N, 351575E	Tributary of North Thompson River
JD-00-257	5796161N, 351167E	Tributary of North Thompson River
JD-00-258	5796222N, 351176E	Tributary of North Thompson River
JD-00-R28	5796327N, 351102E	Daylon Road
JD-00-R29	5796345N, 351100E	Daylon Road
JD-00-R30	5796355N, 351100E	Daylon Road
JD-00-259	5795753N, 350590E	Tributary of North Thompson River
JD-00-260	5795700N, 350421E	Tributary of North Thompson River
JD-00-261	5795791N, 350490E	Tributary of North Thompson River
JD-00-262	5797021N, 350662E	Tributary of North Thompson River
JD-00-263	5790944N, 349418E	Tributary of North Thompson River
JD-00-264	5791673N, 349563E	Tributary of North Thompson River
JD-00-265	5792782N, 349932E	Tributary of North Thompson River
JD-00-266	5793909N, 350379E	Tributary of North Thompson River
JD-00-267	5794693N, 348775E	Tributary of Miledge Creek
JD-00-268	5794640N, 350095E	Tributary of Miledge Creek
JD-00-269	5795036N, 347878E	Tributary of Miledge Creek
JD-00-270	5796991N, 346300E	Tributary of Miledge Creek
JD-00-271	5796418N, 346331E	Tributary of Miledge Creek
JD-00-272	5796322N, 347723E	Tributary of Miledge Creek
JD-00-273	5797010N, 347439E	Tributary of Miledge Creek
JD-00-R31	5797630N, 346887E	Spur of Miledge Creek FSR
JD-00-274	5798503N, 346280E	Tributary of Miledge Creek
JD-00-275	5799303N, 346448E	Tributary of Miledge Creek
JD-00-R32	5798510N, 346285E	Spur of Miledge Creek FSR
JD-00-276	5799525N, 346493E	Tributary of Miledge Creek
JD-00-277	5799712N, 346571E	Tributary of Miledge Creek
JD-00-278	5799268N, 346882E	Tributary of Miledge Creek
JD-00-279	5800950N, 347548E	Tributary of Miledge Creek
JD-00-280	5798835N, 346116E	Tributary of Miledge Creek
JD-00-281	5798976N, 346118E	Tributary of Miledge Creek

ŧ.

JD-00-R33	5798985N, 346120E	Spur of Miledge Creek Road
JD-00-282	5799307N, 346131E	Tributary of Miledge Creek
JD-00-283	5799873N, 346210E	Tributary of Miledge Creek
JD-00-284	5800820N, 346181E	Tributary of Miledge Creek
JD-00-285	5797638N, 346821E	Tributary of Miledge Creek
JD-00-R34	5797680N, 346246E	Miledge Creek FSR
JD-00-286	5797760N, 346115E	Tributary of Miledge Creek
JD-00-287	5797795N, 344816E	Tributary of Miledge Creek
JD-00-288	5788646N, 348461E	Tributary of Thunder River
JD-00-289	5789172N, 347877E	Tributary of Thunder River
JD-00-290	5790877N, 346677E	Tributary of Thunder River
JD-00-291	5791426N, 346930E	Tributary of Thunder River
JD-00-R35	5791813N, 346692E	Mount St. Anne FSR
JD-00-292	5792651N, 345940E	Tributary of Thunder River
JD-00-293	5793005N, 344934E	Tributary of Thunder River
JD-00-294	5782126N, 345090E	Tributary of Whitewater Creek
JD-00-295	5782887N, 344118E	Tributary of Whitewater Creek
JD-00-296	5783396N, 344446E	Tributary of Whitewater Creek
JD-00-297	5784286N, 345179E	Tributary of Whitewater Creek
JD-00-298	5784236N, 344909E	Tributary of Whitewater Creel
JD-00-299	5782301N, 343083E	Tributary of Cook Creek
JD-00-300	5781895N, 342432E	Tributary of Cook Creek
JD-00-301	5776932N, 341504E	White River
JD-00-302	5776842N, 340271E	Tributary of Blue River
JD-00-303	5775487N, 338603E	Tributary of Blue River
JD-00-304	5774646N, 335565E	Tributary of Blue River
JD-00-305	5774631N, 335564E	Tributary of Blue River
JD-00-306	5777380N, 334500E	Tributary of North Blue River
JD-00-307	5778846N, 334754E	Tributary of North Blue River
JD-00-308	5780397N, 334988E	Tributary of North Blue River
JD-00-309	5782069N, 334518E	North Blue River
JD-00-310	5783040N, 334371E	Tributary of North Blue River
JD-00-311	5784214N, 334523E	Tributary of North Blue River
JD-00-312	5785777N, 333897E	Tributary of North Blue River
JD-00-313	5779041N, 333979E	Tributary of North Blue River
JD-00-314	5780307N, 333924E	Tributary of North Blue River
JD-00-315	5781624N, 333819E	Tributary of North Blue River
JD-00-316	5782491N, 333562E	Tributary of North Blue River
JD-00-317	5777055N, 333538E	Tributary of North Blue River
JD-00-318	5775456N, 333577E	Tributary of North Blue River
JD-00-319	5773246N, 333250E	Tributary of North Blue River
JD-00-320	5772631N, 332319E	Tributary of Blue River
JD-00-321	5777263N, 340127E	Tributary of Blue River
JD-00-322	5777996N, 340280E	Tributary of White River
JD-00-323	5778646N, 340098E	Tributary of White River

JD-00-324	5778354N, 339279E	Tributary of Blue River
JD-00-325	5777998N, 339306E	Tributary of Blue River
JD-00-326	5778022N, 338377E	Tributary of Blue River
JD-00-327	5777578N, 336910E	Tributary of Blue River
JD-00-328	5779143N, 346215E	Tributary of Mud Creek
JD-00-329	5780405N, 345948E	Tributary of North Thompson River
JD-00-330	5781563N, 346560E	Tributary of North Thompson River
JD-00-331	5783589N, 348276E	Tributary of North Thompson River
JD-00-332	5785219N, 348663E	Tributary of North Thompson River
JD-00-333	5779148N, 346902E	Tributary of Mud Creek
JD-00-334	5778702N, 348426E	Tributary of Mud Creek
JD-00-335	5779677N, 349906E	Tributary of Mud Creek
JD-00-336	5780548N, 350760E	Tributary of Mud Creek
JD-00-337	5780390N, 350460E	Tributary of Mud Creek
JD-00-338	5780189N, 350803E	Tributary of Mud Creek
JD-00-R36	5778450n, 349437E	Mud Creek FSR
JD-00-339	5778379N, 349449E	Tributary of Mud Creek
JD-00-341	5778972N, 353617E	Tributary of Mud Creek
JD-00-342	5779071N, 354331E	Tributary of Mud Creek
JD-00-343	5778715N, 354654E	Tributary of Mud Creek
JD-00-344	5778555N, 355478E	Tributary of Mud Creek
JD-00-345	5772629N, 337214E	Tributary of Blue River
JD-00-346	5772839N, 335624E	Tributary of Blue River
JD-00-347	5771976N, 333352E	Tributary of Blue River
JD-00-348	5771533N, 332169E	Tributary of Blue River
JD-00-349	5771006N, 330536E	Tributary of Blue River
JD-00-350	5770091N, 329154E	Tributary of Blue River
JD-00-351	5769780N, 327190E	Tributary of Blue River
JD-00-352	5769994N, 325755E	Tributary of Blue River
JD-00-353	5770529N, 325737E	Tributary of Blue River
JD-00-354	5770925N, 325733E	Tributary of Blue River
JD-00-355	5770914N, 326502E	Tributary of Blue River
JD-00-356	5771297N, 326445E	Tributary of Blue River
JD-00-357	5772430N, 326730E	Tributary of Blue River
JD-00-358	5772960N, 327487E	Tributary of Blue River
JD-00-359	5773109N, 329228E	Tributary of McRae Creek
JD-00-360	5773384N, 329722E	Tributary of McRae Creek
JD-00-361	5841919N, 348887E	Tributary of Camp Creek
JD-00-362	5842366N, 349834E	Tributary of Camp Creek
JD-00-363	5840525N, 349382E	Tributary of Camp Creek
JD-00-364	5841364N, 349222E	Tributary of Camp Creek
JD-00-365	5838950N, 349400E	Tributary of Camp Creek

	, ,	
JD-00-366	5838395N, 350626E	Tributary of Camp Creek
JD-00-367	5835912N, 352432E	Tributary of Camp Creek
JD-00-368	5822998N, 330888E	Tributary of Pleasant Creek
JD-00-369	5823147N, 331188E	Tributary of Pleasant Creek
JD-00-370	5823371N, 330960E	Tributary of Pleasant Creek
JD-00-R37	5824798N, 329933E	North Thompson FSR
JD-00-371	5826034N, 328437E	Tributary of North Thompson River
JD-00-R38	5825787N, 328398E	North Thompson FSR
JD-00-R39	5825895N, 328402E	North Thompson FSR
JD-00-372	5826348N, 328467E	Tributary of North Thompson River
JD-00-R39A	5822665N, 336445E	Adolph Creek FSR
JD-00-373	5823054N, 336251E	Tributary of Adolph Creek
JD-00-R40	5823343N, 336079E	Adolph Creek FSR
JD-00-R41	5823345N, 336080E	Adolph Creek FSR
JD-00-375	5823752N, 335909E	Tributary of Adolph Creek
JD-00-R42	5823852N, 335939E	Adolph Creek FSR
JD-00-R43	5794591N, 349953E	Miledge Creek FSR
JD-00-375	5801642N, 346957E	Tributary of Chappel Creek
JD-00-376	5802453N, 347129E	Tributary of Chappel Creek
JD-00-377	5790695N, 343585E	Tributary of Thunder River
JD-00-378	5789813N, 344872E	Tributary of Thunder River
JD-00-379	5789116N, 345553E	Tributary of Thunder River
JD-00-380	5793819N, 340095E	Tributary of Thunder River
JD-00-381	5824802N, 362993E	Tributary of Clemina Creek
JD-00-382	5825359N, 362403E	Tributary of Clemina Creek
JD-00-383	5826281N, 363386E	Tributary of Clemina Creek
JD-00-384	5825297N, 362195E	Tributary of Clemina Creek
JD-00-385	5825700N, 358786E	Tributary of Dora Creek
	······································	

is and

i di kati

APPENDIX B

GEOCHEMICAL ANALYSES

ACME ALALY ALL LALONATORIOJ LT. C. B. L. TING, JT. L. OUV. 3C ... IR. PL. (604, 233-F1.) FAR (004) 250-1716 (ISO 9002 Accredited Co.) GEOCHEMICAL ANALYSIS CERTIFICATE

Dawson Geological Cons. Ltd. File # A003877 860-625 Howe St., Vancouver BC V6C 2T6 Submitted by: James M. Dawson

SAMPLE#	Mo C ppm pp									As ppm				ר אסק	Cd ppm				Ca %		La ppm			Ba ppm			Al %	Na %		W Mqq		
JD-00-R1 JD-00-R2 JD-00-R3 JD-00-R4 JD-00-R7	5 4	8 33 58	6 14 1 8	7 • 08 • 31 •	<.3	11 37 22	1 14 3 8 3	38 511 589	4.00 .71 4.99 3.14 2.80	<2 3 <2	<8 <8 <8	<2 <2	3 4 13	3 41	<.2 <.2 <.2 <.2 <.2 .2	ব্য ব্য ব্য	<3 3 <3	2 70 17	.03 .77	.024 .019 .071 .045 .043	8 10 21	29 78 34	01. 1.91 .88	5 288 44	.01 .15 .16	ব্য ব্য ব্য	.07 3.03 1.73	.02 .16 .03	.03 1.21	3 6 <2	4 3 <2 3 5	
JD-00-R8 JD-00-R9 JD-00-R10 JD-00-R12 JD-00-R13		34 77 - 1 75 - 1	5 11 1 15	39 + 48 + 93 +	<.3 <.3 ; <.3	9 250 54	4 146 2 25 3	80 260 ⁻ 364	6.95 8.32 4.08 5.51 3.82	<2 4 2	<8 12 <8	<2 <2	5 <2 2	4 76	<.2 .7	<3 <3	3 3 3	177 49	.02 19 1.21	.028 .035 .071 .037 .030	11 4 3	32 104 58	.74 4.09 1.70	48 88 77	.09 .35 .14	<3 <3 <3	1.39 4.75 3.40	.06 .08 .21	.69 2.92 1.04	8 3 7	12 <2 3 <2 2	
JD-00-R14 JD-00-R15 RE JD-00-R15 JD-00-R16 JD-00-R17	4 32 6 32	20 28 25	8 9 9	83 × 84 × 53 ×	<.3 2 <.3 2 <.3	246 249 33	123 4 125 4 13 3	90 ⁻ 96 - 36	0.96 18.47 18.70 2.89 2.97	5 7 3	<8 <8 <8	<2 <2 <2	6 6 10	18 19 17	<.2 .7 1.1 <.2 <.2	ও ও ও	7 <3 <3	32 33 32	.27 .61	.059 .039 .040 .066 .034	5 5 11	40 39 77	1.59 .96	65 65 257	.06 .06 .16	<3 3 <3	1.56 1.61 1.29	.08 .08 .17	.20 .84 .85 .46 .43	2 <2 9	<2 3 3 2 2 2	
JD-00-R18 JD-00-R19 JD-00-R20 JD-00-R21 JD-00-R22	1 11	56 16 59	4 5 19	65 • 44 • 75 •	<.3 <.3 <.3	29 27 49	93 285 123	504 503 560	4.19 7.71 4.77 4.63 3.89	<2 <2 <2	<8 <8 <8	<2 <2 <2	4 <2 6	6 15 158		ও ও ও	<3 <3 <3	37 252 73	.08 1.80 3.37		11 2 14	60 9 103	1.03 1.05 1.14	163 22 154	.24 .25 .18	<3 5 <3	2.27 1.71 5.53	.07 .27 .26	1.13 .17 .65	2 <2 3	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	
JD-00-R23 JD-00-R24 JD-00-R25 JD-00-R26 JD-00-R27	1 46	52 50 54	7 8 11	39 • 38 • 82 •	<.3 ′ <.3	131 40 34	52 4 15 4 16 4	45 607 630	7.05 4.32 3.61 3.99 2.76	2 <2 <2	<8 <8 <8	<2 <2 <2	<2 4 4	25 27 22	<.2 <.2 <.2 <.2 <.2 <.2	ও ও ও	<3 <3 <3	234 76 51	1.97 .49 .18	.033 .055 .059 .048 .026	3 9 8	21 109 62	1.08 1.39 1.78	46 55 127	.40 .33 .13	<3 3 <3	1.46 2.06 2.30	.22 .04 .08	.21 .13 .34 1.27 .48	<2 <2 8	4 6 ~2 3 ~2	
JD-00-R28 JD-00-R29 JD-00-R30 JD-00-R31 JD-00-R32	+ -	23 7 12 ·	4 8	3 · 6 · 5 ·	<.3 <.3 <.3	12 5	1 3 2	42 278 40	3.84 1.58 .53 1.73 .75	<2 3 <2	<8 <8	<2 <2 <2	<2 3 2	1824	<.2 <.2 <.2	ও ও ও	থ থ থ	3 1 3	34.35	.002 .033 .011	1 5 3	27 4 30	.05 .06 .09	9 19 21	.01 .02 .04	<3 <3 <3	.18 .19 .30	.02 .01 .01	.72 .05 .08 .15 .04	<2 <2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
JD-00-R33 JD-00-R34 JD-00-R35 JD-00-R36 Standard C3/AU-R	5	6 9 '	3 12 4	3 • 95 • 35 •	<.3 <.3	7 39 28	3 14 9 32 3	52 206 383	1.29 1.02 5.46 3.35 3.55	2 5 <2	<8 <8 <8	<2 <2 <2	3 <2	54 187 18	.3	<3 <3 <3	ব্য ব্য ব্য	1 98 116	.67 2.75 1.77		1 7 4	27 79 26	.04 1.59 .86	13 114 40	.01 .18 .31	ব্য ব্য ব্য	.16 5.57 1.25	.01 .25 .22	.08 .06 1.08 .11 .18	8 2 <2	<2	
STANDARD G-2	1	5	3	49 -	<.3	9	55	68	2.19	2	<8	<2	4	84	<.2	-3	ব্য	40	.71	.109	8	82	.65	267	.14	3	1.12	.12	.54	<2	<2	
GROUP 11 UPPER L ASSAY R - SAMPLI <u>Samples</u>	IMITS - ECOMMEN E TYPE: beginn	AG DED ROU ning	, AU FOR CK R <u>'RE</u>	, HO ROC 150 <u>' ar</u>	G, W CK AN 60C re Re	= 11 ND CO <u>erun</u> :	00 PP DRE S AU** s_anc	PM; I Sampi GR(1 / RI	40, CO LES IF DUP 3B <u>XE' ar</u>	, CD CU - 30 <u>e Re</u>	, SB PB ZI 0.00 ject	, BI N AS GM : <u>Reru</u>	, TH > 1 SAMPI	, U & %, AG LE AN	B = > 30 ALYSI	2,00 PPM S BY	0 PP & A ICP	м; с U > -ES. /	U, PB 1000 F	, ZN, PB	NI,	MN,	AS, N	/, LA	, CR	: = 1	0,00	D PPM				
DATE RECEIVED: All results are conside	OCT 2 2 red the								LED: he cl							GNEI bili				l cos					-		ANG;	CERT	IFIED	B.C. Data	j,	A
																								<u></u>		·						

<u> </u>						Hu	nte 860	r E - 62	xpl 5 Howe	ora St.	tio , Vanc	n G :ouvei	rou BC	P /6C 2	Fil 76	e # Submi	AÓ tted b	042 y: J	72 ames	P M. Dav	age Ison	1			2010						
AMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	8 ppm	Al %	Na %	к Х	W A ppm	hu** ppl
10-00-1 10-00-2 10-00-3 10-00-4 10-00-5	マ 1 1 マ 1	31 34 5 19 18	6 <3 3 6 5	39 22 20 46 26	<.3 <.3 <.3 <.3 <.3	18 13 8 24 19	6 4 9	122 159 159 184 115	1.56 1.37 2.02	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<8 <8 <8 <8 <8	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	12 20 4 13 9	9 10 6 27 6	<.2 <.2 <.2 .2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	3 3 <3 3 3	22 13 14 17 8	.54	.150 .249 .064 .142 .084	37 57 12 36 25	22 16 11 24 11	.64 .34 .29 .74 .39	71 40 35 62 31	.10 .06 .06 .09 .05	<3 <3	1.22	.02 .01 .01 .02 .01	.48 .26 .12 .48 .27	<2 <2 <2 <2 <2 <2	
D-00-6 D-00-7 D-00-8 D-00-9 D-00-10	<1 <1 <1 1	27 27 24 30 26	<3 5 12 9 7	55 49 50 67 64	<.3 <.3 .4 <.3	30 29 19 31 23	11 10 15	133 120 366 534 532	2.08 2.58 3.16	~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~2 ~	<8 <8 <8 16 10	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	11 10 4 5 8	4 7 24 15 15	<.2 <.2 .3 .2 <.2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ও ও ও ও ও ও ও ও ও ও ও ও ও	15 17 37 48 44	.23 1.03 .56	.063 .086 .050 .114 .096	28 29 16 12 10		.80 .81 .74 1.33 1.22	52 63 147 196 195	.08 .10 .15 .23 .23	<3 3 5	1.16 1.20 1.83 2.23 2.15	.02 .02 .02 .02 .02	.54 .59 .41 .80 .80	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<
ID-00-11 ID-00-12 ID-00-13 ID-00-14 ID-00-15	1 1 1 <1	31 36 19 29 25	14 8 3 7 5	87 81 45 75 93	.4 .3 .4 .3	30 39 21 26 21	17 10 13		3.59 2.27 3.62	2 3 2 3 2 3 2 3 2 3 2	8 11 <8 14 <8	~~~~~ ~~~~~	45543	20 16 13 18 14	.2 .3 .3 .3 .3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	55 59 30 58 47	.66 .53 .76	.127 .167 .143 .133 .127	10 11 13 11 5	62 27 45	1.66 1.49 .82 1.43 1.23	246 230 125 225 206	.25 .26 .15 .25 .25	5 5 4	2.63 2.27 1.36 2.45 2.05	.02 .02 .01 .02 .01	.83 .94 .53 .93 .78	<2 <2 <2 <2 <2 <2	
RE JD-00-6 JD-00-16 JD-00-17 JD-00-18 JD-00-19	<1 1 1 1 <1	28 40 26 9 8	4 5 7 4 3	55 112 64 32 33	<.3 <.3 <.3 <.3	30 93 26 6 7	49	387 302	3.19	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < < < <> </td <td>12 7 4 13 3</td> <td>4 18 14 16 10</td> <td><.2 .5 .3 <.2</td> <td>3 3 3 3 3 3 3 3 3 3 3 3 3 3</td> <td>ও ও ও ও ও ও ত ত</td> <td>14 40 38 25 23</td> <td>.79 .59 1.19</td> <td>.060 .267 .147 .462 .141</td> <td>31 38 12 34 12</td> <td>22 37 35 13 13</td> <td>.81 1.14 .84 .34 .31</td> <td>52 161 137 59 43</td> <td>.08 .17 .15 .09 .10</td> <td>4</td> <td></td> <td>.02 .02 .02 .03 .03</td> <td>.54 .69 .49 .30 .19</td> <td><2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <</td> <td>< < <</td>	12 7 4 13 3	4 18 14 16 10	<.2 .5 .3 <.2	3 3 3 3 3 3 3 3 3 3 3 3 3 3	ও ও ও ও ও ও ত ত	14 40 38 25 23	.79 .59 1.19	.060 .267 .147 .462 .141	31 38 12 34 12	22 37 35 13 13	.81 1.14 .84 .34 .31	52 161 137 59 43	.08 .17 .15 .09 .10	4		.02 .02 .02 .03 .03	.54 .69 .49 .30 .19	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	< < <
1D-00-20 1D-00-21 1D-00-22 1D-00-23 1D-00-24	1 7 2 <1 1	14 7 14 17 58	5 <3 7 <3 4	43 32 87 31 21	.4 <.3 <.3 <.3	7 6 13 22 20	6 4 9 10 8	479 210	2.16 1.51 2.40 1.56 1.52	< < < < < < < < < < < < < < < < < <> </td <td>< 8 8 8 8 8 8 8 8 8 8 8 8</td> <td>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</td> <td>13 4 5 28</td> <td>16 9 13 5 11</td> <td>.2 .3 .2 <.2 <.2</td> <td>ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও</td> <td>ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও</td> <td>26 22 35 14 13</td> <td>.74</td> <td>.165 .190 .051</td> <td>26 15 12 18 69</td> <td>18 12 31 15 13</td> <td>.45 .27 .60 .36 .38</td> <td>83 33 84 39 40</td> <td>.11 .08 .14 .06 .06</td> <td>4 3 5 <3 <3</td> <td>.62 1.33 .74</td> <td>.02 .03 .03 .01 .01</td> <td>.44 .16 .36 .22 .33</td> <td><2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <</td> <td></td>	< 8 8 8 8 8 8 8 8 8 8 8 8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	13 4 5 28	16 9 13 5 11	.2 .3 .2 <.2 <.2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	26 22 35 14 13	.74	.165 .190 .051	26 15 12 18 69	18 12 31 15 13	.45 .27 .60 .36 .38	83 33 84 39 40	.11 .08 .14 .06 .06	4 3 5 <3 <3	.62 1.33 .74	.02 .03 .03 .01 .01	.44 .16 .36 .22 .33	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	
JD-00-25 JD-00-26 JD-00-27 JD-00-28 JD-00-29	1 1 1 1 1 1 1 1 1 1 1 1 1 1	28 9 17 42 47	5 4 6 10	30 20 42 73 79	<.3 <.3 <.3 <.3	17 10 26 61 40	7 4 10 22 15	108 390 245	2.10 1.21 2.05 3.23 3.21	<>> <> <> <> <> <> <> <> <> <> <> <> <>	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < <> <> <> <	7 6 8 16 17	6 17 50 15	<.2 .2 <.2 .3 .3	ও ও ও ও ও ও	<3 <3 <3 3 3 3 3 3	25 13 18 26 28	.09 .42 1.00	.113 .036 .099 .127 .115	23 15 38 57 60		.68 .24 .54 1.24 1.31	94 42 74 161 102	.11 .06 .08 .16 .16	3 3 3	1.13 .69 1.34 2.17 2.06	.02 .01 .01 .05 .03	.53 .14 .25 .83 .91	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
ID-00-30 ID-00-31 ID-00-32 ID-00-33 STANDARD C3/AU-S	<1 <1 <1 <1 27				<.3 <.3 <.3 <.3 5.5	16 7 8 37 38	32	430 106 356	1.81 1.57 .87 2.31 3.43	<2 <2 <2 <2 58	<8 <8 <8 <8 21	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 3 5 9 22	15 13 11 9 30	.2	<3 <3 <3 16	<3 <3 <3 <3 21	13 11 21 21 77	.17 .32 .35	.043 .023 .113 .125 .094	18 10 16 34 18	18 9 12 22 171	.40 .27 . <u>31</u> .83 .62	60 36 30 82 152	.08 .05 .03 .12 .09	<3 <3 3		.01		<2 <2 <2 <2 16	<
STANDARD G-2	1	4	<3	42	<.3	8	4	552	2.11	<2	<8	<2	4	76	<.2	<3	<3	37	.67	.103	7	79	.62	241	.13	<3	1.00	.08	.48	<2	
DATE RECEI	UPP - S San	ER LI AMPLE	MITS TYPE begin	- AG : SO ning	AU, IL SS8 'RE'	HG, W 30 600 are R	= 10 <u>eruns</u>	0 PPI AU** and	GROUP	CO, 3B are	CD, S 30.0	B, BI O GM t Rer	, TH, SAMPL UNS.	.U& .EAN/	B ≈ 2 ALYSIS	2,000 5 BY 1	PPM; CP-ES	cu, p	0 ⁸ , Zi	LUTED N, NI,	MN,	AS, \	/, LA,	CR =	= 10,0	000 P	PM.	D 8.C	. Ass/	YERS	

				Ĺ	#** <u>`</u>	ľ	شتخممين		<u>-</u>	E	<u>-</u>	E				[I	·····	Ĩ.		Ē				E.		E	1		n Á	
ADE ANULYTICAL						н	unt	er	Exp	lor	ati	on	Gro	up	F	ILE	#	00A	427	2					P	age	2			HE ANALY	TICAL
SAMPLE#	Mo ppm	Cu ppm		Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na X	K X	W ppm	Au** ppb
JD-00-34 JD-00-35 JD-00-36 JD-00-37 JD-00-38	2 1 2 2 <1	37 23 27 49 13	8 <3 13 5 3	52 39 68 43 38	<.3 <.3 <.3 <.3 <.3	19 33 38 26 21	6 9 13 10 9	194 383 119	3.64 2.36 3.08 2.23 2.00	< < < < < < < < < < < < < < < <> </td <td><8 <8 <8 <8 <8</td> <td>< < < < < < < < < < < < < < < <><><><><</td> <td>17 12 8 13 6</td> <td>22 14 18 6 9</td> <td><.2 <.2 .2 <.2 <.2</td> <td>ও ও ও ও ও ও ও</td> <td>3 <3 <3 <3 <3 3</td> <td>25 15 21 19 14</td> <td>.22 .33 .34</td> <td>.085 .147</td> <td>47 37 27 35 22</td> <td>34 18 23 25 16</td> <td>.98 .48 .85 .80 .40</td> <td>82 58 88 73 63</td> <td>.12 .08 .11 .11 .08</td> <td><3 <3</td> <td>1.66 .99 1.35 1.24 .95</td> <td>.02 .01 .02 .03 .01</td> <td>.57 .32 .39 .60 .25</td> <td><2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <</td> <td><2 3 2 2 2</td>	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < <><><><><	17 12 8 13 6	22 14 18 6 9	<.2 <.2 .2 <.2 <.2	ও ও ও ও ও ও ও	3 <3 <3 <3 <3 3	25 15 21 19 14	.22 .33 .34	.085 .147	47 37 27 35 22	34 18 23 25 16	.98 .48 .85 .80 .40	82 58 88 73 63	.12 .08 .11 .11 .08	<3 <3	1.66 .99 1.35 1.24 .95	.02 .01 .02 .03 .01	.57 .32 .39 .60 .25	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 3 2 2 2
JD-00-39 JD-00-40 JD-00-41 JD-00-42 JD-00-43	1 1 1 1 1 1	31 28 29 12 19	8 7 5 6 3	63 47 14 36 37	<.3 <.3 <.3 <.3 <.3	48 23 10 16 22	43 12 5 10 12	148 316	3.16 3.14 1.62 1.76 1.86	< < < < < < < < < < < < < < < < < <> </td <td><8 <8 <8 <8 <8</td> <td>< < < < < < < < < < < < < < < <> <> <>><><!--</td--><td>10 8 12 7 10</td><td>10 9 5 7 6</td><td>.3 <.2 <.2 <.2 <.2</td><td>ও ও ও ও ও ও</td><td><3 <3 <3 <4 <3</td><td>28 27 8 15 15</td><td>.15 .27</td><td>.120 .058</td><td>52 38 28 25 26</td><td>34 33 7 14 16</td><td>.71 .77 .25 .34 .39</td><td>90 71 29 52 42</td><td>.12 .10 .05 .07 .07</td><td></td><td>1.75 1.61 .49 .82 .81</td><td>.01 .02 .01 .01 .01</td><td>.42 .37 .18 .18 .26</td><td><2 <2 <</td><td><2 9 32 2 3</td></td>	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < <> <> <>><> </td <td>10 8 12 7 10</td> <td>10 9 5 7 6</td> <td>.3 <.2 <.2 <.2 <.2</td> <td>ও ও ও ও ও ও</td> <td><3 <3 <3 <4 <3</td> <td>28 27 8 15 15</td> <td>.15 .27</td> <td>.120 .058</td> <td>52 38 28 25 26</td> <td>34 33 7 14 16</td> <td>.71 .77 .25 .34 .39</td> <td>90 71 29 52 42</td> <td>.12 .10 .05 .07 .07</td> <td></td> <td>1.75 1.61 .49 .82 .81</td> <td>.01 .02 .01 .01 .01</td> <td>.42 .37 .18 .18 .26</td> <td><2 <2 <</td> <td><2 9 32 2 3</td>	10 8 12 7 10	10 9 5 7 6	.3 <.2 <.2 <.2 <.2	ও ও ও ও ও ও	<3 <3 <3 <4 <3	28 27 8 15 15	.15 .27	.120 .058	52 38 28 25 26	34 33 7 14 16	.71 .77 .25 .34 .39	90 71 29 52 42	.12 .10 .05 .07 .07		1.75 1.61 .49 .82 .81	.01 .02 .01 .01 .01	.42 .37 .18 .18 .26	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 9 32 2 3
JD-00-44 JO-00-45 RE JD-00-45 JD-00-46 JD-00-47	<1 1 1 1 1 1	13 21 23 23 19	8 14 14 8 7	61 77 80 71 60	<.3 <.3 <.3 <.3 <.3	11 17 17 18 23	8 11 11 10 12	449 475	2.13 2.88 2.99 2.38 2.31	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	4 5 9 7	13 13 13 14 9	<.2 .2 <.2 <.2 <.2	<उ <उ <उ <उ <उ	८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८	32 39 40 39 21	.46 .45 .70	.108 .105 .209	14 16 16 17 22	20 25 28 31 19	.47 .70 .73 .74 .55	70 103 110 125 48	.12 .16 .17 .14 .08	<3 <3 <3	1.08 1.63 1.70 1.33 1.12	.03 .03 .03 .02 .01	.32 .48 .50 .55 .24	<2 <2 <2 <2 <2 <2 <2 <2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
JD-00-48 JD-00-49 JD-00-50 JD-00-51 JD-00-52	マ 1 マ 1 マ	21 16 24 21 14	4 5 <3 <3	37 41 46 30 41	<.3 <.3 <.3 <.3 <.3	21 22 27 18 20	8 9 9 8 10	274		~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	13 6 7 6 6	11 10 10 8 8	.2 <.2 <.2 <.2	3 3 3 3 3 3 3 3 3 3 3 3 3	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	19 22 21 14 16	.21 .17 .19	.079	42 19 26 17 18	20 26 24 14 17	.55 .64 .60 .48 .37	60 78 60 42 49	.09 .10 .08 .06 .07	<3	1.02 1.18 1.18 .78 .82	.01 .01 .02 .01 .01	.38 .32 .38 .29 .18	<2 <2 <2 <2 <2	ک یک مح
JD-00-53 JD-00-54 JD-00-55 JD-00-56 JD-00-57	1 <1 1 1 <1	15 12 15 24 23	<3 <3 4 5 7	56 40 38 32 49	<.3 <.3 <.3 <.3 <.3	20 15 25 31 41	9 6 10 8 11	326 345 154	1.89 1.36 1.89 1.95 2.06	< < < < < < < < < < < < < < < < < <> </td <td><8 <8 <8 <8 <8</td> <td><2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <</td> <td>6 5 5 11 6</td> <td>8 7 11 15 14</td> <td><.2 <.2 <.2 <.2</td> <td>ও ও ও ও ও ও ও ও</td> <td><3 <3 <3 <3 <3</td> <td>18 13 21 21 22</td> <td>.14 .20</td> <td>.062</td> <td>20 15 19 36 30</td> <td>23 14 21 34 29</td> <td>.54 .33 .47 .52 .53</td> <td>55 43 62 73 62</td> <td>.09 .07 .08 .09 .09</td> <td><3 <3 <3</td> <td>1.09 .75 1.07 .96 1.16</td> <td>.01 .01 .01 .01 .01</td> <td>.25 .16 .26 .34 .28</td> <td><2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <</td> <td><2 2 2 4 2</td>	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	6 5 5 11 6	8 7 11 15 14	<.2 <.2 <.2 <.2	ও ও ও ও ও ও ও ও	<3 <3 <3 <3 <3	18 13 21 21 22	.14 .20	.062	20 15 19 36 30	23 14 21 34 29	.54 .33 .47 .52 .53	55 43 62 73 62	.09 .07 .08 .09 .09	<3 <3 <3	1.09 .75 1.07 .96 1.16	.01 .01 .01 .01 .01	.25 .16 .26 .34 .28	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 2 2 4 2
JD-00-58 JD-00-59 JD-00-60 JD-00-61 JD-00-62	<1 1 1 1	16 23 59 72 13	6 9 7 10 6	35 54 81 71 32	<.3 <.3 <.3 <.3 <.3	18 22 64 38 16	9 14 28 24 8	708 502 455	1.83 3.38 3.75 4.02 1.80	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	5 15 10 9 5	11 14 13 22 11	.2 <.2 <.2 <.2 <.2	ও ও ও ও ও ও	<3 3 <3 <3 <3	19 25 28 26 18	.28 .29 .33	.096	20 46 30 26 19	22 28 36 35 20	.45 .62 .89 .80 .41	56 62 95 89 76	.08 .10 .11 .12 .08	<3 <3 <3	1.03 1.48 2.13 1.79 1.00	.01 .01 .03 .02 .01	.24 .23 .49 .43 .27	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
JD-00-63 JD-00-64 JD-00-65 JD-00-66 STANDARD C3/AU-S	<1 2 3 27	28 26 32 33 66	7 6 16 8 36	121 119 117 86 166	<.3 <.3 <.3 <.3 5.4	24 23 28 18 38	8 13 15 12 12	626		<2 <2 <2 <2 <2 57	<8 9 13 10 22	<2 <2 <2 <2 <2 <4	5 4 3 4 22	13 18 21 21 30	<.2 .4 .5 22.9	<3 <3 <3 <3 16	<3 <3 <3 <3 22	26 59 71 46 78	.87 1.04 .87	.178	21 10 9 17 18		.70 1.09 1.23 .81 .61	91 161 191 158 148	.13 .23 .25 .17 .09	<3 <3 <3	1.45 1.90 2.18 1.81 1.84	.02 .03 .03 .02 .04	.50 .67 .71 .53 .17	2 2 <2 <2 15	<2 <2 4 <2 47
STANDARD G-2	2	3	<3	40	<.3	8	4	514	1.98	. <2	<8	<2	4	71	<.2	<3	<3	36	.62	.098	7	73	.57	223	. 13	<3	.92	.07	.45	2	<2

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

. . .

All results are considered the confidential property of the client. Acme assumes the liebilities for actual cost of the analysis only.

Data____ FA ____

AA '					·····	بر ا	·		Darm	lor		t	(] (] mo	E	l	ILE	<u> </u>	- 7 0 0	L	······································	Ľ		L		I			l	E	A	
ACHE ANALYTICAL					-	л		.er	тур	101			GLO	up	Г	тпс	#	AUU	421	2						age	2		ACI	E AWLY	TIC
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm		Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	\$b ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	8a ppm	Ti %	B ppm	Al %	Na %	К %	W ppm	Au P
ID-00-67	<1	29	17	132	<.3	32	17	928	4.54	<2	<8	<2	2	22	.3	<3	<3	72	1.17	.331	9	57	1.43	201	.26	<3	2.08	.04	1.03	3	
ID-00-68	<1	11	4	33	<.3	11	5	319	1.35	<2	<8	<2	7	16	<.2	<3	<3	11	.28	.075	15	17	.92	123	.11	4	1.04	.01	.48	<2	
ID-00-69	<1	10	5	25	<.3	12	6	286	1.42	<2	<8	<2	11	7	<.2	<3	3	10	.67	.074	14	14	1.07	85	.09	<3	.91	.01	.39	<2	
ID-00-70	<1	17	5	33	<.3	16	6	164	1.67	<2	<8	<2	6	- 16	<.2	<3	<3	15	.34	.074	16	16	.51	42	.07	<3	.83	.02	.27	<2	
ID-00-71	<1	29	5	64	<.3	26	14	336	3.20	<2	<8	<2	3	30	.2	<3	<3	54	.45	.049	8	41	1.41	90	.15	3	1.99	.02	.69	<2	
ID-00-72	<1	29	4	43	<.3	24	13	347		<2	<8	<2	5	19	.2	<3	<3	31		.077	14		1.01	62	.09	-	1.21	.01	.49	<2	
D-00-73	<1	30	7	61	<.3	26		1084		<2	<8	<2	4	30	<.2	<3	<3	41			11		1.22	118	.11	-	1.66	.02	.59	<2	
D-00-74	2	39	8	62	<.3	28	16		3.38	<2	<8	<2	6	20	<.2	<3	<3	30			22	23	.98	92	.10		1.54	.02	.44	<2	
ID-00-75	<1	37	10	63	<.3	28	15		3.14	<2	<8	<2	6	20	<.2	<3	<3	33			12	-	1.06	93	.09	_	1.40	.02	.53	<2	
ID-00-76	<1	28	8	56	<.3	24	13	425	2.90	<2	<8	<2	4	21	<.2	<3	<3	39	.69	.074	12	29	1.19	83	.10	<5	1.42	.01	.45	<2	
D-00-77	<1	32	6	55	<.3	28	14	377	2.98	<2	<8	<2	4	21	.2	<3	<3	41	.63	.079	12	32	1.19	76	.11	<3	1.41	.02	.49	<2	
D-00-78	<1	13	4	42	<.3	17	6	510		<2	<8	<2	9	14	<.2	<3	<3	16			12	14	.83	74	.09	-	1.04	.01	.29	2	
D-00-79	<1	22	6	47	<.3	21	-	1003		<2	<8	<2	4	32	<.2	<3	<3	25		.036	11	21	.73	95	.08		1.10	.01	.33	<2	
ID-00-80	<1	35	8	60	<.3	31	15		3.23	<2	<8	<2	5	26	<.2	<3	<3	45			12		1.26	88	.13		1.69	.02	.66	<2	
RE JD-00-80	<1	38	6	63	<.3	33	16	387	3.35	<2	<8	<2	4	28	<.2	<3	<3	48	.62	.091	12	40	1.32	92	.14	<3	1.78	.02	.69	<2	
JD-00-81	<1	30	7	68	<.3	38	19	279	2.61	<2	<8	<2	11	12	<.2	<3	<3	26	.32	.084	34	25	.93	68	.12		1.37	.02	.58	<2	
JD-00-82	<1	25	7	- 47	<.3	26	13	204		<2	<8	<2	9	10	<.2	<3	<3	17	.29	.098	29	17	.60	46	.08		.91	.01	.39	<2	
JD-00-83	<1	26	6	64	<.3	28	12		2.95	<2	<8	<2	6	24	<.2	<3	<3	33		.060	13		1.00	55	.14	-	1.40	.01	.40	<2	
JD-00-84	<1	32	7	54	<.3	28	16		2.26	<2	<8	<2	17	8	<.2	<3	<3	18			35	22	.70	59	.09	_	1.13	.02	.49	<2	
10-00-85	<1	28	10	69	<.3	28	14	533	3.05	<2	<8	<2	5	30	<.2	<3	<3	27	.47	.078	14	28	.87	50	.12	<3	1.28	.01	.35	<2	
ID-00-86	<1	45	10	94	<.3	44	29	552	3.95	<2	<8	<2	10	11	<.2	<3	3	47	. 19	.090	33		1.52	146	.22	<3	2.40	.02	.91	<2	
ID-00-87	<1	47	5	54	<.3	20	9	113		<2	<8	<2	26	5	<.2	<3	3	26		.193	65	25	.91	67	.12	-	1.40	.03	.72	<2	
ID-00-88	<1	32	8	58	<.3	24	. —	1054		<2	<8	<2	5	21	<.2	<3	<3	29			16	19	.68	95	.07	-	1.19	.01	.30	<2	
ID-00-89	<1	20	<3	37	<.3	21	8	205		<2	<8	<2	8	19	<.2	<3	<3	14	.25		20	16 9	.50	29 24	.06		.76	.01	.24	<2	
D-00-90	<1	0	6	30	<.3	9	4	288	1.31	<2	<8	<2	2	16	<.2	<3	<3	9	.30	,033	9	Ŷ	.29	24	.04	<3	.54	<.01	.10	<2	
D-00-91	<1	19	5	42	<.3	21	9		2.12	<2	<8	<2	6	18	<.2	<3	<3	16		.048	15	18	.57	30	.07	<3	.87	.01	.26	<2	
D-00-92	<1	22	?	50	<.3	23	9		2.27	<2	<8	<2	6	22	<.2	<3	<3	18			16	21	.68	37	.08		1.03	.01	.31	<2	
ID-00-93	<1	21	4	55	<.3	22	12	599		<2	<8 - 0	<2	3	15	<.2	<3	<3	20			17	19	.61	49	.06	_	1.16	.01	.18	2	
ID-00-94	<1	24	6	47	<.3	25	10		2.38	<2	<8 ~9	<2	6	21	<.2	<3	<3	17			15	18	.68	34 96	.09		.99	.01	.32	<2	
ID-00-95	<1	23	12	67	<.3	28	14	710	2.46	<2	<8	<2	2	15	.3	<3	<3	19	.49	.056	26	16	.63	70	.04	د>	1.05	.01	.13	<2	
ID-00-96	<1	15	9	51	<.3	19	8	385		<2	<8	<2	6	16	<.2	<3	<3	11		.060	18	13	.41	26	.05	<3	.74		. 12	<2	
ID-00-97	<1	8	4	33	<.3	15		1236		<2	<8	<2	4	20	.2	<3	<3	7	.21	.034	16	11	.33	21	.03	<3		<.01	.06	<2	
JD-00-98	<1	10	3	27	<.3	13	4	297		<2	<8	<2	3	5	<.2	<3	<3	6			10	8	.28	11	.02	<3	.49		.04	<2	
10-00-99	<1 26	11 63	<3 36	31 170	<.3 5.4	25 38	6 11	209 766		<2 54	<8 20	<2 3	3 21	8 70	<.2 22.5	<3 17	<3 21	7 77		.037 .092	16 18	13 168	.35 .60	13 148	.02	<3 20	.64 1.83	<.01 .04	.07	<2 16	
TANDARD C3/AU-S	20	03	20	170	7.4	20	11	100		24	20	3	C 1	50		17	21		101	.072	10	100	.00	140	.07	20		.04		10	
TANDARD G-2	1	4	<3	43	<.3	8	4	538	2.07	<2	<8	<2	4	77	<.2	<3	<3	39	.64	.102	7	79	.60	238	.13	<3	.95	.08	.48	3	

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data '~FA

ACK ANALYTICA

Hunter Exploration Group FILE # A004272

Page 4

Ē

ACHE ANALYTICAL			_																										A(HE ANALY	TICL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au	Th ppm	Sr ppm	Cd ppm	\$b ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	ті %	B ppm	Al %	Na %	к %		Au** ppb
JD-00-100 JD-00-101 JD-00-102 JD-00-103 JD-00-103	<1 <1 <1 <1 <1	21 11 17 8 28	5 4 5 5 5	40 28 33 31 37	<.3 <.3 <.3 <.3 <.3	22 19 22 14 24	9 6 7 6 9	212 329 335 583 209	1.48	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	8 5 6 5 10	9 6 8 7 8	<.2 <.2 <.2 <.2 <.2	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ও ও ও ও ও ও ও ও	12 4 7 5 10	.09 .14 .11	.083 .036 .045 .033 .072	24 13 13 12 20	14 8 12 9 13	.52 .29 .38 .27 .54	33 13 21 21 65	.06 .02 .04 .02 .06	<3 <3 <3 <3 <3	.62	.01 <.01 <.01 <.01 .01	.27 .07 .13 .06 .31	< < < < < < < < < < < < < < < <> </td <td>~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td>	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
JD-00-105 JD-00-106 JD-00-107 JD-00-108 JD-00-109	<1 <1 <1 <1 <1	14 16 15 11 26	5 12 5 6 9	34 34 22 36 67	<.3 <.3 <.3 <.3 <.3	31 23 14 19 39	8 7 4 5 11		1.80 1.26 1.70	<2 4 2 2 2 <2 2 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	6 6 4 11	8 10 5 4 8	.2 2.> 2.> 2.> 2.>	ភ្ល ភ្ល ភ្ល ភ្ល ភ្ល		44348	.15 .08 .07	.035 .040 .030 .027 .042	18 16 10 12 26	9 12 7 10 16	.38 .39 .27 .37 .50	16 11 9 12 9	.01 .01 .01 .02 .01	ও ও ও ও ও	.74 .50 .69	<.01 <.01 <.01 <.01 <.01	.05 .04 .04 .05 .03	<2 <2 <2 <2 <2 <2 <2	18 <2 <2 <2 2
JD-00-110 JD-00-111 JD-00-112 JD-00-113 JD-00-114	<1 <1 <1 <1 <1	13 9 11 20 28	5 4 3 3 5	40 15 28 42 56	<.3 <.3 <.3 <.3 <.3	22 13 11 22 26	7 5 9 13	528 206 271 268 353	1.24 1.19 2.11	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 6 5 6 3	22 7 12 13 47	<.2 <.2 <.2 <.2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	3 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	9 6 11 16 49	.11 .24 .34	.040 .047 .053 .076 .050	18 14 15 19 8	20 9 13 16 34	.38 .17 .56 .67 1.34	16 6 80 47 95	.01 .01 .08 .07 .13	<3 <3 <3 <3 <3	.86 .35 .77 .90 1.79	.01 <.01 .01 .01 .02	.04 .01 .28 .33 .63	<2 <2 <2 <2 <2 <2 <2 <2	< < < < < < < < < < < < < < < < < <> </td
JD-00-115 RE JD-00-108 JD-00-116 JD-00-117 JD-00-118	2 <1 <1 <1 1	19 11 14 20 21	5 3 4 5 8	29 36 39 41 43	<.3 <.3 <.3 <.3 <.3	16 18 18 18 24	11 5 6 8 10		2.10	8828 8	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < < < <> </td <td>7 5 4 8 6</td> <td>17 4 10 11 16</td> <td>2. 2.> 2.> 2.> 2.></td> <td>33333 255 25</td> <td>ଏ ଏ ଏ ଏ ଏ ଏ ଏ</td> <td>19 5 14 18 17</td> <td>.07 .22 .23</td> <td>.077 .028 .051 .074 .070</td> <td>20 12 17 20 20</td> <td>16 11 14 15 15</td> <td>1.04 .37 .44 .58 .67</td> <td>102 12 70 64 45</td> <td>.09 .02 .07 .09 .07</td> <td><3 <3 <3 3 <3</td> <td>1.24 .68 .82 .89 .90</td> <td>.01 <.01 .01 .01 .01</td> <td>.36 .05 .25 .36 .33</td> <td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td>3 2 2 2 2 2 2 2</td>	7 5 4 8 6	17 4 10 11 16	2. 2.> 2.> 2.> 2.>	33333 255 25	ଏ ଏ ଏ ଏ ଏ ଏ ଏ	19 5 14 18 17	.07 .22 .23	.077 .028 .051 .074 .070	20 12 17 20 20	16 11 14 15 15	1.04 .37 .44 .58 .67	102 12 70 64 45	.09 .02 .07 .09 .07	<3 <3 <3 3 <3	1.24 .68 .82 .89 .90	.01 <.01 .01 .01 .01	.36 .05 .25 .36 .33	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 2 2 2 2 2 2 2
JD-00-119 JD-00-120 JD-00-121 JD-00-121 JD-00-122 JD-00-123	1 1 1 1 1 1 1 1 1 1 1 1 1 1	18 27 16 28 20	8 7 9 7 7	46 50 40 52 65	<.3 <.3 <.3 <.3 <.3	18 23 17 23 42	8 10 8 11 14	293 439 385 534 603	2.65	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<8 <8 <8 <8 <8	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 7 6 5	6 20 5 21 20	.2 .3 .2 .2 .3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 3 3 3 3 3 3 3 3 3 3	17 22 16 25 16	.38 .28 .39	.064 .075 .064 .066 .065	18 18 21 18 25	12 18 15 20 15	.68 .72 .91 .80 .63	63 46 80 58 34	.08 .08 .09 .09 .07	<3 <3	.93 1.03 1.20 1.19 1.19	.01 .01 .01 .01	.33 .28 .39 .31 .23	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
JD-00-124 JD-00-125 JD-00-126 JD-00-127 JD-00-128	<1 <1 <1 1 <1	30 21 25 25 18	7 7 3 <3	56 43 69 56 40	<.3 <.3 <.3 <.3 <.3	47 27 19 17 16	13 9 9 8 8	720 291 307 267 359	2.52	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<8 <8 <8 <8 <8 <8	< < < < < < < < < < < < < < <> <> <> <>	7 6 7 8 7	18 8 12 15 13	.3 <.2 .3 .3 .2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13 13 25 19 16	.15 .22 .27	.065 .049 .060 .069 .098	32 20 23 20 20	13 16 24 21 12	.50 .58 1.06 .94 .60	31 32 104 77 61	.04 .06 .14 .11 .07		.88 .91 1.51 1.24 .85	.01 .01 .02 .01 .01	. 19 . 26 . 57 . 46 . 28	< < < < < < < < < < < < < < < < < < <	3 2 2 2 2
JD-00-129 JD-00-130 JD-00-131 JD-00-132 STANDARD C3/AU-S	1 <1 <1 <1 26	21 22 21 21 62	10 8 3 7 36	52 57 48 42 167	<.3 <.3 <.3 <.3 5.5	24 58 28 43 38	9 15 10 10 11	296 541 290 289 758	2.37	2 <2 <2 <2 57	<8 <8 <8 <8 25	< < < < < < < < < < < < < < < < < < <	7 7 6 21	16 14 17 13 30	.3 <.2 .2 22.5	<3 <3 <3 <3 15	<3 3 <3 <3 22	20 18 23 16 78	.24 .27 .21	.064 .053 .067 .048 .093	17 50 20 23 18	18 16 23 17 168	.78 .55 .72 .53 .60	73 36 61 35 146	.09 .07 .08 .05 .09	<3 3 <3	1.09 1.01 1.10 .87 1.81	.01 .01 .01 .01 .04	.38 .24 .32 .22 .17	<2 <2 <2 <2 16	2 3 4 3 49
STANDARD G-2	1	3	<3	43	<.3	8	4	542	2.07	<2	<8	<2	4	76	<.2	<3	<3	39	.65	.102	7	76	.60	236	. 13	<3	.96	.08	.47	<2	2

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data A FA

E AVALYTICAL		Hur	ter	Expl

<u> </u>	<u></u>	~l			7		. 3		. =		***					T	<u></u>	l	<u></u>	È	l	-	E		E.		E.		E		E
ACHE ANNLYTICAL						H	unt	er	Exp	lor	ati	on	Gro	up	F	ILE	# .	A00	427	2					P	age	5		_	E ANALYT	ICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	N1 ррп	Со ррп	Mn ppm	Fe %	As ppm	U Mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	Р %	La ppm	Cr ppm	Mg %	8a ppm	Ti %	B ppm	Al %	Na %	К %		\u** ppb
JD-00-133 JD-00-134 JD-00-135 JD-00-136 JD-00-137	<1 <1 1 <1 <1 <1	33 32 30 20 18	6 3 3 6 <3	44 53 50 31 44	<.3 <.3 <.3 <.3 <.3	26 37 20 23 22	10 12 10 8 10	281 489 181	2.53 3.14 2.38 1.81 2.17	<2 2 2 3 2 3	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	9 6 4 8 4	19 159 15 234 14	<.2 <.2 <.2 <.2	८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८ ८	ব্য ব্য ব্য ব্য	33	3.40	.073	20 16 12 16 13	25 28 23 16 29	.90 .92 .64 .42 .59	50 67 70 26 119	.07 .11 .08 .04 .14	<3 <3 <3	1.04 1.44 1.02 .73 1.36	.01 .02 .01 .01 .02	.36 .62 .22 .16 .50	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	3 6 2 5 6
JD-00-138 JD-00-139 JD-00-140 JD-00-141 JD-00-142	<1 <1 <1 1 <1	20 10 42 26 31	<3 <3 3 7 <3	41 36 146 53 54	<.3 <.3 <.3 <.3 <.3	20 20 74 17 20	8 5 51 8 6	172 934 294		<2 <2 3 <2 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	3 3 2 3 5	21 15 30 7 7	<.2 <.2 <.2 <.2 <.2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	ও ও ও ও ও	30 20 64 40 45	.32 .86 .10	.080 .089 .345 .054 .071	15 12 13 13 19	26 21 51 37 46	.52 .49 1.39 .84 .88	126 73 397 136 181	.14 .12 .31 .21 .22	<3 <3 <3	1.39 1.05 2.77 1.92 2.34	.02 .01 .03 .02 .02	.41 .37 1.31 .75 .74	<2 <2 <2 <2 <2 <2 <2	12 7 <2 4 <2
JD-00-143 JD-00-144 JD-00-145 JD-00-146 JD-00-147	1 2 2 1 3	26 48 50 29 17	6 8 3 6 5	45 35 78 60 33	<.3 <.3 <.3 <.3 <.3	18 17 36 28 14	14 17 22 12 6	536 359	2.44 2.29 4.15 2.41 2.27	<2 2 3 2 2 3 2 2 2 2 2 2 2 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	4 2 3 5	6 17 22 22 17	.2 .3 <.2 .2 <.2	ও ও ও ও ও ও ও ও	ব্য ব্য ব্য ব্য	30 23 55 38 35	.21 .41 .41	.080 .086 .171 .098 .039	14 13 12 11 14	27 25 68 35 39	.64 .25 1.25 .74 .51	101 82 267 140 110	.14 .08 .26 .16 .15	<3 <3 <3	1.44 4.07 2.25 1.49 1.35	.02 .02 .03 .03 .02	.59 .17 1.09 .55 .33	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	4 <2 2 2 3
JD-00-148 JD-00-149 JD-00-150 RE JD-00-150 JD-00-151	1 5 4 2 <1	21 49 26 25 6	3 8 <3 <3 3 3	44 61 42 39 17	<.3 <.3 <.3 <.3 <.3	19 39 32 31 9	12 12 13 12 2	348 249 232	2.37 4.54 2.40 2.26 1.43	3 4 <2 <2 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 5 4 6	23 23 17 16 17	.2 <.2 <.2 <.2 <.2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	<3 <3 <3 <3 <3	39 72 41 40 16	.21 .27 .27	.066 .109 .065 .069 .199	11 17 15 16 16	35 105 51 47 16	.54 1.26 .67 .61 .34	129 324 127 118 73	.14 .27 .16 .15 .09	<3 6	1.41 2.48 1.45 1.36 .70	.02 .03 .02 .02 .02	.39 .79 .46 .42 .32	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13 <2 <2 <2 7
JD-00-152 JD-00-153 <i>JD-00-</i> 154 JD-00-155 JD-00-156	<1 <1 1 <1 1	25 16 25 40 42	7 <3 <3 6 5	43 44 43 50 46	<.3 <.3 <.3 <.3 <.3	26 18 40 23 21	12 7 11 10 6	227 246 241	2.48 2.13 3.18 3.20 2.76	<2 <2 <2 2 2 2 2 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	3 3 5 4	10 12 16 14 13	<.2 .2 <.2 <.2 <.3	ও ও ও ও ও ও ও ও ও	ও ও ও ও ও	33 29 42 39 38	.15 .24	.040 .048 .055 .046 .039	11 12 10 15 18	32 26 37 30 30	.69 .64 .77 .91 .83	114 140 139 174 149	.17 .17 .20 .23 .23	<3 <3 <3	1.52 1.41 1.85 1.99 1.93	.02 .02 .02 .02 .02	.55 .56 .61 .81 .72	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	6 <2 11 <2 <2
JD-00-157 JD-00-158 JD-00-159 JD-00-160 JD-00-161	<1 <1 1 1 <1	46 40 45 15 19	10 5 10 <3 8	77 24 85 31 52	<.3 <.3 <.3 <.3 <.3	43 24 51 13 40	19 7 20 5 13	155 357 152	4.39 2.05 4.69 1.73 2.71	5 2 2 2 2 2 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	5 4 3 4	20 12 13 11 45	.3 <.2 .3 <.2	ও ও ও ও ও ও ও	<3 12 <3 <3 <3	56 20 48 25 30	.40 .14 .19	.057 .151 .051 .079 .074	17 13 16 10 14	23	1.28 .50 1.12 .51 .79	270 101 217 101 69	.30 .12 .26 .12 .13	<3 5 5	3.00 1.01 2.54 1.06 1.94	.03 .03 .03 .02 .03	1.12 .50 .96 .43 .26	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10 8 3 4 <2
JD-00-162 JD-00-163 JD-00-164 JD-00-165 STANDARD C3/AU-S	<1 1 <1 1 26	18 22 25 22 62	9 8 6 33	47 58 85 48 166	<.3 <.3 <.3 <.3 5.4	26 34 42 18 37	8 12 12 7 10	445 330 326	2.14 2.75 2.90 1.80 3.29	<2 2 <2 <2 57	<8 <8 <8 <8 18	<2 <2 <2 <2 <2 <2	3 4 5 3 20	55 79 108 22 28	<.2 .2 .2 <.2 22.9	<3 <3 <3 16	<3 <3 <3 <3 22	27 37 35 23 77	.89 1.04 .37	.116 .116 .115 .072 .091	11 15 15 12 17	32 40 54 17 158	.61 .76 1.14 .60 .59	58 61 93 64 140	.11 .12 .15 .09 .08	6 <3 <3	1.59 1.87 2.25 1.08 1.80	.03 .03 .03 .02 .04	.24 .20 .48 .27 .16	<2 <2 <2 <2 17	5 134 4 3 47
STANDARD G-2	1	2	<3	44	<.3	8	4	547	2.12	<2	<8	<2	4	75	<.2	<3	<3	41	.65	.105	7	78	.61	238	.14	<3	.97	.07	.49	3	<2

Sample type: SOIL SS80 60C. Samples beginning /RE/ are Roruns and /RRE/ are Reject Reruns.

Dete FA

			771	E.		Ē.				E.		E.		[ł		Ľ	<u></u>	Ľ		L	::::::::	L		Ë.		£.]
AA AXE AVALYTICAL						Н	unt	er	Exp	lor	ati	on	Gro	up	F	ILE	#	A00	427	2					P	age	6		AC	E AVALYT	II CAL
SAMPLE#	Mo	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	ß ppm	Al %	Na %	K X		Au** ppb
JD-00-166 JD-00-167 JD-00-168 JD-00-169 JD-00-170		12 15 15 16 18	10 4 5 6	48 29 42 46 36	<.3 <.3 <.3 <.3 <.3 <.3	12 21 17 22 20	3 7 6 8 7	142 250	1.46	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < <> </td <td>34435</td> <td>14 12 22 10 20</td> <td><.2 <.2 .2 <.2 <.2</td> <td>ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও</td> <td>८३ ८३ २३ ८३ ८३ ८३</td> <td>14 19 19 16 22</td> <td>.32</td> <td>.082</td> <td>13 11 12 13 16</td> <td>14 26 24 21 23</td> <td>.42 .50 .40 .37 .51</td> <td>43 68 54 50 51</td> <td>.07 .09 .08 .07 .09</td> <td><3</td> <td>.89 .98 1.04 .98 1.14</td> <td>.01 .01 .02 .01 .02</td> <td>.22 .34 .24 .20 .26</td> <td><2 <2 <2 <2 <2 <2</td> <td>√2 41 √2 3 4</td>	34435	14 12 22 10 20	<.2 <.2 .2 <.2 <.2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	८३ ८३ २३ ८३ ८३ ८३	14 19 19 16 22	.32	.082	13 11 12 13 16	14 26 24 21 23	.42 .50 .40 .37 .51	43 68 54 50 51	.07 .09 .08 .07 .09	<3	.89 .98 1.04 .98 1.14	.01 .01 .02 .01 .02	.22 .34 .24 .20 .26	<2 <2 <2 <2 <2 <2	√2 41 √2 3 4
JD-00-171 JD-00-172 JD-00-173 JD-00-173 JD-00-174 JD-00-175	1 <1 <1 <1 <1	35 29 16 45 20	11 10 4 6 6	53 62 37 64 38	<.3 <.3 <.3 <.3 <.3	33 46 19 83 22	12 14 6 15 8		3.22	~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	8 5 6 3	47 34 20 17 14	<.2 <.2 <.2 .2 <.2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	3 3 3 3 3 3 3 3	29 41 19 36 27	.61 .45 .31 .24 .27	.074	21 20 13 21 15	29 61 21 43 28	.80 1.17 .47 .84 .54	70 120 47 115 60	.11 .18 .08 .13 .10	<3 4 <3	1.56 2.63 1.04 2.53 1.42	.04 .04 .02 .02 .02	.44 .75 .24 .39 .28	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	32222
JD-00-176 JD-00-177 JD-00-178 JD-00-179 JD-00-179 JD-00-180	ব ব ব ব ব	8 7 23 29 18	<3 7 12 12 8	12 27 67 62 41	<.3 <.3 <.3 <.3 <.3	11 7 40 45 28	3 2 12 14 9			<2 <2 <2 <2 <2 <2 <2 <2 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 3 6 8 4	8 10 107 52 48	<.2 <.2 <.2 <.2 <.2	3 3 3 3 3 3 3 3	< 3 4 3 4 3 3	10 11 36 36 21	.18 .27 .95 .56 .59	.076 .100 .082	11 12 15 22 13	11 10 53 52 30	.18 .30 1.14 .96 .64	28 28 83 70 48	.04 .05 .16 .16 .10	3	.65 .65 2.58 2.32 1.78	.01 .01 .04 .03 .03	.10 .15 .43 .34 .19	< < < < < < < < < < < < < < < < <> </td <td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td>	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
JD-00-181 JD-00-182 JD-00-183 JD-00-184 JD-00-185	ব ব ব ব ব	30 24 31 39 37	7 13 11 16 11	57 62 61 82 78	<.3 <.3 <.3 <.3 <.3	26 33 30 63 35	12 13 9 23 19	451 385 526	2.90 2.90 2.37 3.43 4.18	< < < < < < < < < < < < < < < < <	<8 <8 <8 <8 <8	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6 5 4 6 5	21 11 27 28 14	<.2 .2 .4 <.2 <.2	ও ও ও ও ও ও ও ও ও ও	ও ও ও ও ও ও ও ও ও ও	30 32 34 39 51	.46 .17 .46 .42 .16	.056 .063 .072	15 16 17 23 14	36 30 38 51 43	.82 .61 .62 .97 1.32	77 77 82 132 176	.13 .10 .12 .15 .23	<3 <3 <3	1.83 1.79 1.42 2.19 2.73	.02 .01 .02 .02 .02	.35 .21 .27 .49 .80	<2 <2 <2 <2 <2 <2	2 2 2 3 2 4
RE JD-00-176 JD-00-186 JD-00-187 JD-00-188 JD-00-188 JD-00-189	<1 <1 <1 <1 3	7 19 35 16 14	5 8 3 3	12 30 34 38 39	<.3 <.3 <.3 <.3 <.3	11 14 18 16 18	3 7 5 6 8	221 229	.93 2.21 3.92 2.48 1.98	< < < < < < < < < < < < < < < < <> </td <td><8 <8 <8 <8 <8</td> <td>~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td>4 4 4 5</td> <td>8 16 8 9 24</td> <td><.2 <.2 <.2 <.2 <.2</td> <td>ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও</td> <td>ଏ ଏ ଏ ଏ ଏ ଏ ଏ</td> <td>11 25 42 36 32</td> <td>.19 .16 .09 .12 .26</td> <td>.055 .048 .041</td> <td>11 14 13 13 18</td> <td>11 24 45 35 28</td> <td>.19 .52 1.05 .71 .44</td> <td>29 112 201 128 137</td> <td>.04 .11 .23 .16 .12</td> <td>4 <3</td> <td>.68 1.37 2.19 1.55 1.22</td> <td>.01 .01 .03 .02 .02</td> <td>.10 .38 .78 .48 .24</td> <td>~~ ~~ ~~ ~~ ~~</td> <td>2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</td>	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 4 4 5	8 16 8 9 24	<.2 <.2 <.2 <.2 <.2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	ଏ ଏ ଏ ଏ ଏ ଏ ଏ	11 25 42 36 32	.19 .16 .09 .12 .26	.055 .048 .041	11 14 13 13 18	11 24 45 35 28	.19 .52 1.05 .71 .44	29 112 201 128 137	.04 .11 .23 .16 .12	4 <3	.68 1.37 2.19 1.55 1.22	.01 .01 .03 .02 .02	.10 .38 .78 .48 .24	~~ ~~ ~~ ~~ ~~	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
JD-00-190 JD-00-191 JD-00-192 JD-00-193 JD-00-194	1 6 <1 <1	20 46 36 12 43	6 8 9 4 19	33 74 80 29 79	<.3 <.3 <.3 <.3 <.3	24 83 44 13 55	10 24 19 6 17	1178 380 230	2.10 3.87 3.68 1.85 4.55	<2 4 <2 <2 5	<8 <8 <8 <8 <8	<> <> <> <> <> <> <> <> <> <> <> <> <> <	5 6 5 6	53 74 37 20 34	<.2 <.2 <.2 <.2 <.2	ও ও ও ও উ	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	39 50 49 29 57	.36 .54 .31 .21 .17	.162 .102 .059	22 22 22 23 21	60 21	.53 1.05 1.27 .39 1.32	184 233 269 86 237	.12 .16 .26 .10 .27	<3 <3 <3	1.09 1.91 2.29 .93 3.29	.02 .02 .03 .02 .03	.31 .44 1.05 .27 .94	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 32 <2 7
JD-00-195 JD-00-196 JD-00-197 JD-00-198 STANDARD C3/AU-S	<1 <1 <1 <1 26	30 51 39 38 62	13 9 11 8 34	71 89 102 69 168	<.3 <.3 <.3 <.3 5.6	30 45 49 40 37	11 17 19 15 11	427 456 388	3.83 4.87 4.48 3.47 3.33	3 5 3 <2 56	<8 <8 <8 19	< < < < < < < < < < < < < < < < < < <	5 6 3 5 21	23 19 12 10 28	<.2 .2 .2 <.2 22.7	マ マ マ マ マ フ フ フ	3 <3 <3 <3 22	48 65 64 44 78	.13 .14 .16 .16	.074 .064 .067	18 20 12 19 17	69 70 47	1.20 1.59 1.60 1.04 .59	242 294 275 170 143	.26 .33 .34 .25 .09	<3 <3 3	2.35 3.06 3.52 2.66 1.76	.04	1.07 1.42 1.40 .91 .16	<2 <2 <2 <2 <2 15	2 <2 5 <2
STANDARD G-2	1	4	7	43	<.3	9	4	556	2.14	<2	<8	<2	4	75	<.2	<3	<3	41	.66	.107	8	79	.62	246	.14	<3	.99	.08	.49	2	<2

Sample type: SOIL SSB0 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

Data____FA

	.		., <i>,</i> =	E		Ĩ			*******				<u>*****</u> ***				Ē	-	Ê		E	·····	L	····	Ē			• ~	È.		
ACHE ANALYTICAL						н	unt	er	Exp	lor	ati	on	Gro	up	F	ILE	#	A00	427	2	_				P	age	7			XE ANALY	TICAL
SAMPLE#	Mo pprit	Cu ppnt	Pb pprit	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm	nJ ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	₩ ppm	Au** ppb
JD-00-199 JD-00-200 JD-00-201 JD-00-202 JD-00-203	<1 <1 5 4 3	21 42 75 15 14	9 17 8 6 8	40 93 82 69 31	<.3 <.3 <.3 <.3 <.3	22 49 77 17 9	9 13 26 9 4	271 354 489 461 183	3.92 4.08 2.27	<2 2 3 <2 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	3 4 3 2 3	20 35 93 43 27	.2 .4 .3 .2 <.2	ব্য ব্য ব্য ব্য ব্য	ও ও ও ও ও	35 51 74 36 34	.21 .59 .34	.057 .061 .084 .042 .056	15 14 10 11 12	34 52 260 35 29	.65 1.25 1.64 .57 .42	136 247 266 135 86	.15 .27 .25 .15 .12	<3 <3 <3	1.74 2.88 2.78 1.56 1.14	.02 .02 .02 .02 .02	.50 1.00 .53 .39 .22	<2 <2 <2 <2 <2 <2	3 3 2 3 2 3 2 2
JD-00-204 JD-00-205 JD-00-206 JD-00-207 JD-00-208	2 10 2 9 13	11 32 33 11 11	8 8 6 8 4	31 42 66 60 68	<.3 <.3 <.3 <.3 <.3	13 29 61 13 14	6 9 64 12 13	231 238 981 806 2187	2.74 3.50 2.81	<2 <2 3 <2 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	3 2 3 2 3 2 3	19 42 22 13 20	<.2 <.2 .4 .3 .4	<3 <3 3 <3 3	ও ও ও ও ও ও	29 34 51 33 36	.26 .20 .43	.043 .049 .059 .098 .173	14 12 12 11 14	27 37 65 25 26	.42 .76 .96 .54 .57	119 198 258 83 128	.12 .16 .25 .12 .11	<3 <3 <3	1.12 1.85 2.77 1.26 1.33	.01 .02 .02 .01 .02	.30 .58 .75 .28 .31	<2 <2 <2 2 2	3 2 22 22 22 22
JD-00-209 JD-00-210 JD-00-211 JD-00-212 JD-00-213	1 <1 <1 <1 <1	12 14 18 12 41	8 5 7 4 14	31 33 37 39 101	<.3 <.3 <.3 <.3 <.3	17 20 23 19 44	6 7 9 8 23	227 240 284 289 1722	1.80 2.31 1.83	<2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	<8 <8 <8 <8 <8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 3 4 2 4	12 19 60 16 218	.2 .2 .2 <.2 .4	ও ও ও ও ও ও ও ও ও	ଏ ଏ ଏ ଏ ଏ	19 22 34 22 52	.29 .79 .34	.079 .084 .301 .090 .197	13 13 19 13 64	21 22 31 21 38	.40 .48 .69 .43 1.28	50 69 91 45 277	.07 .09 .11 .08 .11	<3 <3 <3	.96 1.16 1.26 1.07 1.70	.01 .01 .02 .01 .01	.17 .22 .38 .16 .31	<2 <2 <2 <2 <2 <2	<2 4 <2 3 3
JD-00-214 JD-00-215 RE JD-00-214 JD-00-216 JD-00-217	<1 <1 <1 <1 <1	26 64 27 61 32	3 15 <3 6 7	22 126 22 90 79	<.3 <.3 <.3 .5 <.3	20 66 19 66 38	7 26 7 54 22	153 494 161 562 648	5.00 1.83 2.79	~2 3 ~2 ~2 ~2 ~2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2	3 6 3 2 3	25 17 24 15 27	<.2 .2 <.2 .2 .5	<3 4 <3 3 4	ও ও ও ও ও ও	23 58 23 34 45	.17 .65 .17	.275 .068 .274 .079 .074	11 17 12 10 15	24 61 27 32 45	.52 1.50 .53 .64 .93	117 257 117 98 202	.12 .27 .12 .15 .20	<3 <3 <3	1.01 3.61 1.02 2.11 2.54	.02 .03 .02 .02 .02	.52 1.05 .52 .38 .72	<> <> <> <> <> <> <> <> <> <> <> <> <> <	3 3 <2 <2 <2 <2
JD-00-218 JD-00-219 JD-00-220 JD-00-221 JD-00-222	<1 1 <1 <1	21 44 39 27 47	6 11 8 9 4	40 92 165 53 86	<.3 <.3 <.3 <.3 <.3	24 71 104 37 75	13 53 77 15 26	334 867 845 605 493	3.84 2.82 2.97	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<8 <8 <8 <8 <8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4 2 3 2 3	9 35 27 126 36	<.2 .5 .3 .4 .4	<3 3 3 <3 3	ও ও ও ও ও	31 65 40 47 83	.50 .44 1.25	.053 .147 .146 .346 .097	13 10 21 29 11	37 53	.74 1.17 .92 1.09 1.62	134 257 118 168 263	.16 .23 .16 .15 .29	<3 <3 <3	1.67 4.44 1.98 1.76 3.28	.02 .02 .02 .02 .02	.64 .64 .59 .47 1.13	<2 <2 ~2 ~2 ~2 ~2 ~2	3 2 3 <2
JD-00-223 JD-00-224 JD-00-225 JD-00-226 JD-00-227	<1 <1 <1 <1 1	28 36 31 15 50	7 8 3 10	63 58 66 55 58	<.3 <.3 <.3 <.3 <.3	39 43 48 18 50	14 15 18 8 17	411 324 465 557 242	3.23 3.56 2.20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<8 <8 <8 <8 <8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4 4 3 <2 5	95 31 30 35 33	.4 .4 .2 .3	3 <3 4 3 3	ও ও ও ও ও	60 51 62 34 61	.44 .35 .40	.350 .150 .112 .084 .268	25 16 11 12 16	57 70 25	1.22 1.15 1.37 .52 1.32	226 216 305 136 286	.21 .24 .30 .14 .25	<3 <3 3	2.23 2.34 2.72 1.45 2.34	.02 .03 .02 .02 .03	.80 .87 1.05 .33 1.17	< < < < < < < < < < < < < < < < < < <> </td <td><2 <2 4 6 4</td>	<2 <2 4 6 4
JD-00-228 JD-00-229 JD-00-230 JD-00-231 STANDARD C3/AU-S	<1 <1 <1 <1 25	27 11 25 20 62	12 <3 5 8 32	57 28 36 61 163	<.3 <.3 <.3 <.3 5.1	40 11 18 24 37	15 5 9 9 11	663 237 229 182 761	1.25 1.91 2.25	2 <2 <2 59	<8 <8 <8 <8 22	<2 <2 <2 <2 3	5 6 7 8 20	182 18 13 120 28	.3 <.2 <.2 .2 23.1	<3 <3 <3 18	<3 <3 <3 22	11 21	.31 2.28	.533 .068 .087 .060 .096	48 16 19 18 17	60 14 19 23 158	1.23 .65 .42 .79 .59	210 81 56 29 145	.16 .08 .09 .09 .08	3 <3 <3	2.27 .78 .90 1.31 1.81	.02 .01 .01 .01 .04	.59 .34 .22 .32 .16	<2 <2 <2 <2 17	5 3 <2 2 48
STANDARD G-2	1	3	<3	40	<.3	8	3	524	2.03	<2	<8	<2	4	68	<.2	<3	<3	37	.61	.103	6	73	.59	227	.13	3	.95	.07	.46	2	<2

Sample type: SOIL SSB0 600. Samples beginning (RE/ are Reruns and (RRE/ are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 👉 FA

	L		.	Ľ.				Ĩ	. همند ۱	È.					Ê		Í.		E		E		E.		E	1			ī .		
ADE ANULYTICU.						H	unt	er	Exp	lor	ati	on	Gro	up	F	ILE	#	00A	427	2					P	age	8			NE AWALYT	ICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V mqq	Ca %	P %	La ppm	Cr ppm	Mg %	8a ppm	Ti %	B ppm	Al %	Na X	к %		u** ppb
JD-00-232 JD-00-233 JD-00-234 JD-00-235 JD-00-236	<1 <1 1 <1 <1	40 22 17 33 17	9 3 18 10	80 29 37 76 51	.3 <.3 <.3 <.3 <.3	27 17 13 46 28	14 9 8 15 9	253 481 330	3.29 2.01 1.66 3.58 2.06	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<8 <8 <8 8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	5 6 3 6 3	43 100 16 45 22	<.2 <.2 <.2 <.2 <.2	<3 <3 <3 <3 <3	ও ও ও ও ও ও ও ও ও		.42 .72	.132	15 14 11 13 12	19 19	1.31 .56 .35 1.00 .49	103 52 47 109 78	.14 .09 .08 .20 .10	<3 <3	.87 .89 .95 2.44 1.38	.02 .02 .01 .03 .02	.64 .38 .17 .56 .28	2 2	2 3 <2 2 4
JD-00-237 JD-00-238 JD-00-239 JD-00-240 JD-00-241	<1 1 <1 <1 <1	24 51 37 21 24	13 9 6 <3 10	39 95 47 37 92	<.3 <.3 <.3 <.3 <.3	13 30 15 19 18	7 29 12 7 9	374 367 155	1.90 3.39 2.46 1.58 2.27	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	7 13 4 5 12	16 8 10 6 13	<.2 <.2 <.2 <.2 <.2	ও ও ও ও ও	<3 <3 <3 <3 3 3	17 28 22 25 17	.18 .40 .21	.078 .056 .140 .052 .092	14 46 16 21 43	37 10 15	2.25 1.29 .28 .36 1.80	184 106 68 54 238	.13 .17 .08 .10 .14	<3 2 <3 2 <3 4 <3 1		.03 .03 .02 .01 .02	.70 .83 .21 .21 .75	<2 <2 <2 <2 <2 <2 <2 <2 <2	3 <2 29 <2 2
JD-00-242 JD-00-243 JD-00-244 JD-00-245 RE JD-00-247	<1 <1 <1 <1 <1 <1	8 25 37 29 10	3 9 12 11 <3	25 68 53 104 21	<.3 <.3 <.3 <.3 <.3	8 16 33 35 8		326		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	6 3 4 15 7	13 39 17 15 2	<.2 <.2 <.2 <.2 <.2 <.2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	<3 <3 <3 <3 <3	7 51 37 20 11	.49 .37 .18	.069 .051 .072 .038 .025	15 8 13 39 8	41	.55 1.57 1.15 .59 .21	68 117 66 73 45	.07 .14 .13 .12 .07	4 <3 2 <3 1 <3 1 <3	.66	.01 .03 .02 .01 .01	.30 .62 .59 .50 .17	<2 <2 <2 <2 <2 <2 <2	2 <2 <2 <2 <2 <2
JD-00-246 JD-00-247 JD-00-248 JD-00-249 JD-00-250	<1 <1 <1 <1 <1 <1	12 10 8 7 6	6 3 9 3 3	37 22 25 29 23	<.3 <.3 <.3 <.3 <.3	12 8 8 7	4 3 3 4	74 117 141	1.63 1.07 1.37 1.51 1.51	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	2 4 <2 <2 2	12 3 5 7 4	<.2 <.2 <.2 <.2 <.2 <.2	ব্য ব্য ব্য ব্য ব্য	ও ও ও ও ও ও ও ও	18 12 15 14 12	.06 .05	.041 .029 .046 .037 .031	17 8 12 11 8	15 10 13 10 9	.27 .22 .37 .18 .20	85 44 49 63 37	.07 .07 .07 .05 .06	<3 1 <3 <3 1 <3 <3	.60	.01 .01 .01 .01	.19 .17 .17 .12 .13	< < < < < < < < < < < < < < < < <> <> <>	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
JD-00-250A JD-00-251 JD-00-252 JD-00-253 JD-00-254	<1 <1 <1 <1 <1 <1	18 17 25 32 27	11 5 10 13 14	49 42 63 51 57	.4 <.3 <.3 <.3	22 17 25 21 26	9 8 12 10 9	694 876 431	2.46 2.24 3.15 2.65 2.15	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	8 6 5 5	131 35 41 34 10	<.2 <.2 <.2 <.2	<3 <3 <3 <3 <3	८२ ८२ ८२ ८२ ८२ ८२ ८२ ८२	13 21 37 38 24	.45 .61 .59	.075 .079 .083 .087 .053	21 15 18 16 18	17 21 33 27 20	.67 1.06	28 49 99 79 67	.07 .09 .15 .10 .09	<3 (<3 (<3 (.01 .01 .01 .02 .01	.21 .36 .52 .45 .32	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 <2 2 3
JD-00-255 JD-00-256 JD-00-257 JD-00-258 JD-00-258 JD-00-259	<1 <1 <1 <1 <1	17 17 30 17 24	9 8 16 11 18	80 54 79 43 105	<.3 <.3 <.3 <.3 <.3	21 17 37 23 30	12 7 15 10 12	769 277	2.79 2.07 3.59 2.48 3.27	<2 <2 <2 3 2 2	<8 <8 <8 <8 <8	<> < < < < < < < < < < < < < < <> <> <>	8 5 9 6	19 45 104 152 35	<.2 .2 <.2 <.2 <.2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	<3 <3 <3 3 3		.46 1.09 5.01		17 18 22 12 16	18 30 29	2.29 .53 .89 .67 1.12	201 39 56 38 48	.17 .08 .14 .11 .14	<3 <3	2.84 .92 1.86 1.26 1.88	.03 .01 .02 .02 .02	.79 .27 .29 .22 .35	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 <2 3 2 2 2
JD-00-260 JD-00-261 JD-00-262 JD-00-263 STANDARD C3/AU-S	<1 <1 <1 <1 26	16 13 49 30 63	9 6 11 14 38	37 31 66 54 165	<.3 <.3 <.3 <.3 5.3	20 15 38 33 37	7 6 18 10 11	219 432 294	3.84 1.96 4.15 2.74 3.38	<2 <2 <2 2 57	<8 <8 <8 <8 21	<2 <2 <2 <2 <2 <2	5 4 5 5 21	35 15 45 16 28	<.2 <.2 <.2 <.2 23.3	<3 <3 <3 15	<3 <3 <3 <3 22	21 17 78 29 76	.17 .94	.051	15 11 11 15 16	22 17 55 35 164	.52 .46 1.34 .65 .60	35 30 109 73 145	.09 .07 .16 .11 .08	<3 1 <3 <3 1 <3 1 20 1	.93 1.93 1.61	.02 .01 .02 .01 .04	.24 .17 .49 .29 .16	<2 <2 <2 <2 16	4 3 <2 3 48
STANDARD G-2	1	1	6	43	<.3	8	4	547	2.11	<2	<8	<2	4	71	<.2	<3	<3	38	.63	.107	6	79	.61	245	.13	<3	.95	.07	.49	<2	<2

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🖡 FA

ΔΔ
ACHE ANALYTICA

Hunter Exploration Group FILE # A004272 Pb Zn Ag Ni Co Mn Fe As U Au Th Sr Cd Sb Bi Cu V Ca P La Cr Mg 8a Ti

SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U mqq	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	8a ppm	†i %	B ppm	Al %	Na %	K %		Au** ppb
JD-00-264 JD-00-265 JD-00-266 JD-00-267 JD-00-268	ব ব ব ব ব	7 13 42 34 29	5 7 11 8 11	19 32 77 45 52	<.3 <.3 <.3 <.3 <.3	6 13 53 20 57	2 6 18 8 28	144 297 593 322 303	1.75	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<8 <8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2 4 7 4 6	9 13 52 12 15	<.2 <.2 .3 <.2 <.2	<3 <3 <3 <3 <3 <3	<3 <3 <3 <3 <3	9 17 29 23 16	.25 .74	.028 .065 .066 .055 .064	10 15 34 19 17	9 16 29 24 19	.17 .32 1.06 .45 .42	29 61 122 72 42	.06 .08 .13 .11 .07	<3	.50 .91 2.39 1.08 1.22	.01 .01 .02 .01 .01	.09 .16 .48 .29 .21	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2	<2 <2 <2 <2 <2 <2 <2
JD-00-269 JD-00-270 JD-00-271 JD-00-272 JD-00-273	<1 <1 <1 <1 <1 <1	18 11 21 34 12	3 <3 10 6	41 25 36 29 29	<.3 <.3 <.3 <.3 <.3	15 7 11 41 21	7 4 4 14 6	375 1040 155 127 274	1.31 4.10 2.90	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<8 <8 <8 <8 <8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 4 4 15 4	12 7 10 43 31	.2 <.2 <.2 <.2 <.2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	20 13 37 18 13		.060 .045 .026 .113 .041	12 12 14 40 13	16 9 18 29 17	.46 .21 .42 .66 .44	64 46 71 24 34	.09 .06 .16 .09 .07	3 4	1.01 .56 1.25 1.25 .92	.02 .01 .01 .01 .01	.30 .17 .38 .22 .17	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3 ~2 ~2 ~2 ~2 ~2
JD-00-274 JD-00-275 JD-00-276 JD-00-277 JD-00-278	<1 <1 <1 <1 <1	13 14 13 10 28	11 9 5 8	27 28 46 27 39	<.3 <.3 <.3 <.3 <.3	21 23 27 18 42	6 7 7 13	212 239 493 314 186	1.94 1.84	3 2 2 2 2 2 2 2	<8 <8 <8 <8 <8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	6 5 3 10	36 25 37 18 16	<.2 <.2 <.2 <.2 <.2	<3 <3 <3 <3 <3 <3	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	12 12 15 10 18	.44		18 19 21 13 29	19 18 18 11 27	.37 .37 .34 .27 .62	33 31 42 27 46	.06 .06 .05 .04 .08	<3	.85 .95 1.05 .65 1.30	.01 .01 .01 .01 .01	.12 .14 .14 .10 .31	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
JD-00-279 JD-00-280 JD-00-281 JD-00-282 JD-00-283	<1 <1 <1 <1 <1	14 12 22 16 15	9 6 5 6	40 28 34 32 44	<.3 <.3 <.3 <.3 <.3	14 19 34 24 26	6 6 9 7 7	371 258 188 222 194	1.64 2.09 1.77	<2 2 2 2 8	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 3 7 4 4	13 107 39 53 50	.3 .2 .2 .2 .2 .2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	19 12 21 13 10	1.59 .63 .79	.043 .070 .108 .063 .157	12 10 22 14 11	15 19 31 23 18	.44 .36 .62 .50 .33	46 51 63 47 30	.06 .05 .09 .06 .04	<3 <3 <3 3 <3	.90 .85 1.24 .98 .82	.01 .01 .01 .01	.17 .14 .30 .18 .14	~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	< < < < < < < < < < < < < < < < < <
JD-00-284 JD-00-285 RE JD-00-285 JD-00-286 JD-00-287	<1 <1 <1 <1	16 16 19 13 32	6 6 9 15	31 41 41 27 77	<.3 <.3 <.3 <.3 .3	25 24 24 20 52	8 7 8 6 15	275 2 277 2	.82	<2 <2 <2 5 7	<8 <8 <8 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6 5 6 5 10	118 40 42 86 69	.2 <.2 <.2 <.2 <.2	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	ও ও ও ও ও ও ও ও ও ও	14 13 12 11 32	.58 .62 1.23	.058	13 16 18 15 27	30 17 16 18 55	.59 .60 .59 .35 1.07	64 38 38 32 79	.08 .06 .06 .05 .14	<3 <3 <3	1.15 1.03 1.02 .86 2.43	.02 .01 .01 .01 .01	.36 .23 .23 .12 .34	< < < < < < < < < < < < < <> <> <> <><><><> </td <td>3 2 2 2 2 2 2 2 2 2 2 2</td>	3 2 2 2 2 2 2 2 2 2 2 2
JD-00-288 JD-00-289 JD-00-290 JD-00-291 JD-00-291 JD-00-292	<1 <1 <1 <1 <1	20 24 34 8 10	12 6 10 <3 16	59 38 68 21 46	<.3 <.3 <.3 <.3 <.3	30 33 42 6 12	10 8 10 4 3		.79	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<8 <8 <8 <8 21	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	6 3 6 2 3	25 49 53 6 13	.3 .2 .5 <.2 <.2	<3 <3 <3 <3 <3	3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	30 18 37 14 12	3.72	.048 .101 .053 .027 .096	17 13 21 7 11	35 33 31 10 20	.68 .54 .98 .20 .77	104 53 90 32 46	.12 .09 .14 .06 .08	<3 <3 4	1.74 1.21 2.19 .64 1.20	.02 .02 .02 .01 .01	.32 .35 .51 .09 .32	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	23223
JD-00-293 JD-00-294 JD-00-295 JD-00-296 STANDARD C3/AU-S	<1 <1 <1 <1 26	2 6 8 11 65	3 <3 <3 <3 37	11 25 23 41 171	<.3 <.3 <.3 <.3 5.3	2 12 13 24 38	1 3 5 6 11			<2 <2 <2 <2 57	16 <8 <8 <8 20	< < < < < < < < < < < < < < < < < < < <	<2 4 3 21	7 10 10 17 31	.2 <.2 <.2 .3 23.6	<3 <3 <3 <3 17	<3 <3 <3 23	5 12 14 19 75	.15 .14 .19	.044	7 15 13 12 18	4 12 14 25 170	.09 .21 .26 .38 .61	22 32 48 81 149	.02 .05 .06 .09 .09		.30 .62 .73 1.18 1.85	.01 .01 .01 .01 .04	.06 .12 .18 .26 .17	<2 <2 <2 <2 15	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
STANDARD G-2	_1	3	6	43	<.3	9	4	548 2	2.10	<2	<8	<2	4	77	<.2	<3	<3	36	.67	.105	7	82	.61	241	.14	3	.99	.08	.48	2	2

Sample type: SOIL SS80 60C. Samples beginning /RE/ are Reruns and /RRE/ are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data 🔨 FA

E

ACHE ANALYTICA

Page 9

ΛΛ
ACHE ANALYTICAL

Hunter Exploration Group FILE # A004272

ADIE ANALYTICAL																													AC	HE ANALY	
SAMPLE#	Mo pprin	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	8 ppm	Al %	Na %	K X		Au** ppb
JD-00-297 JD-00-298 JD-00-299 JD-00-300 JD-00-301	\[\frac{1}{2} \] \[\frac{1}{2}	11 15 10 14 13	4 <3 6 7	47 44 52 50	<.3 <.3 <.3 <.3 <.3	22 30 18 21 22	8 9 7 9 8	211 259 262 286 248	2.20 1.52 2.17	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<8 <8 <8 <8 <8	< < < < < < < < < < < < < < <> </td <td>3 4 6 5</td> <td>15 18 21 20 64</td> <td><.2 <.2 <.2 <.2 <.2</td> <td>33333 55555</td> <td>२ २ २ २ २ २ २ २ २ २</td> <td>31 25 19 24 23</td> <td>.28 .29 .24</td> <td>.039 .070 .077 .054 .087</td> <td>12 15 20 17 16</td> <td>35 33 18 28 25</td> <td>.60 .57 .31 .49 .52</td> <td>86 91 46 87 67</td> <td>.13 .12 .07 .09 .09</td> <td><3 <3 <3</td> <td>1.66 1.44 .91 1.36 1.42</td> <td>.01 .02 .01 .02 .04</td> <td>.31 .34 .17 .36 .24</td> <td><2 <2 <</td> <td>3 3 2 2 2 2 2</td>	3 4 6 5	15 18 21 20 64	<.2 <.2 <.2 <.2 <.2	33333 55555	२ २ २ २ २ २ २ २ २ २	31 25 19 24 23	.28 .29 .24	.039 .070 .077 .054 .087	12 15 20 17 16	35 33 18 28 25	.60 .57 .31 .49 .52	86 91 46 87 67	.13 .12 .07 .09 .09	<3 <3 <3	1.66 1.44 .91 1.36 1.42	.01 .02 .01 .02 .04	.31 .34 .17 .36 .24	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 3 2 2 2 2 2
JD-00-302 JD-00-303 JD-00-304 JD-00-305 JD-00-306	<1 <1 <1 <1 <1	12 53 15 25 14	11 8 13 17 14	80 78 57 129 97	<.3 <.3 .4 <.3	20 76 24 58 36	8 18 9 21 14	423 315 610 713 684	2.97 2.12 3.04	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<8 8 <8 <8 <8	< < < < < < < < < < < < < < < < < <> </td <td>3 3 3 2 4</td> <td>28 57 38 43 24</td> <td>.3 .2 .3 .4</td> <td>ও ও ও ও ও ও ও ও</td> <td><3 <3 <3 <3 <3</td> <td>25 57 27 38 31</td> <td>1.08</td> <td>.078 .162 .056 .049 .048</td> <td>17 11 18 23 15</td> <td>23 85 24 40 31</td> <td>.49 1.04 .40 .60 .49</td> <td>85 166 83 114 77</td> <td>.07 .13 .07 .11 .08</td> <td><3 4 <3</td> <td>1.57 1.96 1.60 2.33 1.83</td> <td>.02 .03 .01 .02 .01</td> <td>.19 .33 .17 .32 .21</td> <td><2 <2 <2 <2 <2 <2</td> <td>3 3 2 2 2</td>	3 3 3 2 4	28 57 38 43 24	.3 .2 .3 .4	ও ও ও ও ও ও ও ও	<3 <3 <3 <3 <3	25 57 27 38 31	1.08	.078 .162 .056 .049 .048	17 11 18 23 15	23 85 24 40 31	.49 1.04 .40 .60 .49	85 166 83 114 77	.07 .13 .07 .11 .08	<3 4 <3	1.57 1.96 1.60 2.33 1.83	.02 .03 .01 .02 .01	.19 .33 .17 .32 .21	<2 <2 <2 <2 <2 <2	3 3 2 2 2
JD-00-307 JD-00-308 JD-00-309 JD-00-310 RE JD-00-311	<1 <1 1 <1 <1	25 24 27 11 22	10 10 7 4 7	85 88 77 50 87	<.3 .3 <.3 <.3 <.3	29 72 35 18 29	10 29 11 7 10	708 315 374 447 302	1.70 2.33 1.67	\$ \$ \$ \$ \$ \$	18 14 20 <8 <8	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 4 3 2 4	54 95 75 40 16	.3 <.2 <.2 .2	3 3 3 3 3 3 3 3 3	<3 <3 <3 <3 <3		1.25 1.03 .46		23 17 14 15 14	34 48 39 28 29	.62 .55 .54 .42 .53	125 62 99 91 120	.12 .10 .14 .09 .13	3 <3 <3	2.08 1.75 1.89 1.44 1.51	.03 .02 .03 .02 .01	.31 .14 .31 .15 .30	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 <2 2 3 3
JD-00-311 JD-00-312 JD-00-313 JD-00-314 JD-00-316	<1 <1 <1 <1 2	20 13 15 19 13	8 7 10 12 10	90 51 63 64 51	<.3 <.3 <.3 <.3 <.3	30 16 20 24 19	11 10 8 10 7	317 360 353 396 318	.73 .93 2.22	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	4 2 2 6 5	17 19 26 45 39	.2 .2 .3 .2 .2 .3	ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও ও	<3 <3 <3 <3	40 23 26 36 18	.20 .31 .47	.069 .041 .047 .058 .054	15 13 15 19 17	31 21 25 33 22	.55 .32 .45 .60 .37	125 63 86 136 54	.13 .09 .10 .13 .09	<3 <3 <3	1.58 1.37 1.48 2.08 1.40	.01 .01 .01 .02 .01	.32 .20 .22 .26 .12	<2 <2 <2 <2 <2 <2	3 3 2 3 2 3 2
JD-00-317 JD-00-318 JD-00-319 JD-00-319A JD-00-320	<1 <1 2 <1 <1	14 28 10 16 14	9 27 10 14 16	57 289 54 150 61	.3 <.3 <.3 .3 .3	20 177 18 33 32	8 19 8 9 7	298 612 550 966 383	5.54 1.77 2.26	<2 < 2 < 3 < 3 < 3 < 3 < 3 < 3 < 3 < 3 <	<8 16 <8 12 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 4 3 3	14 29 45 43 39	<.2 .5 .2 .3	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	<3 <3 <3 <3 <3	22 39 21 25 28	.39 .47 .66	.040 .059 .068 .074 .065	10 17 15 17 19	25 45 19 30 27	.49 .83 .28 .44 .43	56 58 56 101 108	.10 .08 .08 .08 .08	<3 <3 <3	1.23 2.20 1.50 1.74 1.81	.02 .01 .02 .01 .01	.27 .26 .10 .22 .18	<2 <2 <2 <2 <2 <2 <2	<2 4 2 2 4
JD-00-321 JD-00-322 JD-00-323 JD-00-324 JD-00-325	1 ~1 ~1 ~1	14 13 12 18 13	8 13 15 21 13	70 82 72 176 65	<.3 .3 <.3 <.3 <.3	19 18 22 28 21	7 7 8 10 8	373 320 413 429 450	.98 .94 2.59	< 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<8 <8 <8 <8 <8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	2 4 2 3 2	25 30 32 29 26	.2 .2 .5 .3	ও ও ও ও ও ও ও ও	৩ ৩ ৩ ৩ ৩ ৩	23 21 24 28 24	.57 .38 .75	.066 .065 .064 .068 .061	13 17 16 20 17	22 25 23 35 20	.46 .56 .39 .89 .45	77 86 96 89 82	.07 .08 .06 .10 .06	3 <3 <3	1.44 1.40 1.50 1.79 1.44	.02 .02 .01 .02 .02	.17 .27 .18 .27 .16	~2 ~2 ~2 ~2 ~2 ~2 ~2	<2 3 2 2 4
JD-00-326 JD-00-327 JD-00-328 JD-00-329 STANDARD C3/AU-S	<1 1 1 27	16 18 15 36 60	13 18 9 16 36	58 70 39 85 170	<.3 .3 <.3 .3 5.3	30 26 19 45 37	10 10 8 19 11	270 2 405 3 352 2 931 4 755 3	.23	<2 <2 <2 3 57	<8 <8 <8 <8 22	<2 <2 <2 <2 <2 <2 <2 <2 <2 <3	6 3 4 7 20	13 11 13 9 29	<.2 <.2 <.2 .3 22.8	<3 <3 <3 <3 15	<3 <3 <3 <2 22	33 47 45 48 77	.13 .20 .14	.082 .044 .053 .052 .093	15 14 15 17 17	48 43 25 52 162	.82 .63 .51 1.28 .59	70 102 117 131 146	.11 .13 .12 .16 .09	4 <3 4	1.56 2.35 1.47 2.50 1.81	.02 .02 .02 .01 .04	.30 .27 .35 .49 .16	<2 <2 <2 <2 16	<2 3 2 5 46
STANDARD G-2	1	2	<3	42	<.3	7	3	523 2	2.02	<2	<8	<2	3	71	<.2	<3	<3	37	.61	.103	7	74	.58	226	.13	<3	.91	.07	.47	2	<2

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data_<u>v.</u>~FA

AA LL

Hunter Exploration Group FILE # A004272

Page 11

Ĩ.

ACKE ANALYTICAL																			_			_							AC	NE ANALY	TICAL
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ní ppm	Co ppm	Mn ppm	Fe %	As ppm	U Imqq	Au ppm	th ppm	Sr ppm	Cd ppm	sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	8a ppm	Tj %	8 ppm	Al %	Na %	К %	W. ppm	Au** ppb
JD-00-330 JD-00-331 JD-00-332 JD-00-333 JD-00-333	<1 <1 1 1 <1	17 21 30 16 26	5 7 13 6 5	34 36 123 34 56	<.3 <.3 <.3 <.3 <.3	16 19 61 18 46	15 25 7	322 628 470 238 367	2.89 3.39 2.25	<2 <2 <2 <2 <2 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	4 4 3 7 6	7 11 12 11 29	<.2 <.2 .3 <.2 <.2	ব্য ব্য ব্য ব্য ব্য	<3 <3 <3 <3 <3	25 37 40 49 44	.16 .18 .18	.054 .053 .066 .061 .063	10 13 15 17 18	21 28 37 29 54	.64 .59 .69 .54 .79	70 105 119 120 152	.10 .13 .15 .13 .13	5 - 6 2 <3 -	1.30 1.49 2.52 1.24 1.86	.01 .02 .02 .02 .02	.30 .39 .44 .42 .47	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 4 6 <2 4
JD-00-335 JD-00-336 JD-00-337 JD-00-338 JD-00-339	2 <1 2 1 1	21 13 31 15 37	5 <3 6 3 9	69 34 45 33 61	<.3 <.3 <.3 <.3 <.3	49 28 44 20 33	26 7 20 10 18	358 190 321 424 282	1.84 3.57 2.28	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2	6 4 9 5	25 18 22 22 23	.3 <.2 <.2 <.2 <.2	<3 <3 <3 <3 <3	ও ও ও ও ও	33 27 44 28 51	.17 .12	.068 .049 .065 .077 .056	20 15 22 18 13	38 30 44 28 57	.63 .57 .84 .48 .96	139 127 264 103 130	.15 .14 .21 .11 .21	<3 ⁻ <3 ⁻ 3 ⁻	1.53 1.20 1.93 1.12 2.10	.02 .02 .02 .02 .03	.44 .40 .57 .27 .52	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	4 3 2 5 2
JD-00-340 JD-00-341 JD-00-342 JD-00-343 JD-00-344	<1 1 2 1 1	20 23 46 26 18	7 8 13 5 3	43 53 82 47 39	<.3 <.3 <.3 <.3 <.3	20 34 66 40 18	6 10 37 16 7	197 268 932 291 270	2.48 4.77 2.37	<2 <2 <2 <2 <2 <2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2	6 4 5 3 4	14 48 31 26 19	<.2 <.2 <.2 <.2 <.2	ও ও ও ও ও ও	<3 <3 <3 <3 <3	36 42 65 38 37	.37 .25 .27	.055 .137 .113 .091 .145	17 29 18 17 14	54 60 76 40 35	.62 .91 1.44 .64 .58	121 339 373 149 156	.16 .22 .31 .17 .16	7 ⁻ 5 2 <3 -	1.47 1.51 2.81 1.52 1.41	.02 .04 .03 .02 .02	.43 .56 1.03 .45 .43	<2 <2 <2 <2 <2 <2	~2 4 ~2 ~4 ~2 ~4
JD-00-345 JD-00-346 JD-00-347 JD-00-348 JD-00-349	<1 <1 <1 <1 <1	10 14 31 9 10	9 14 18 6 9	63 86 111 32 43	<.3 <.3 <.3 <.3 <.3	9 21 37 16 23	14 5	451 489 472 146 161	2.22 3.19 1.45	< 2 <	<8 8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	6 4 7 6 4	56 36 28 16 43	<.2 .2 .3 <.2 <.2	ব ব ব ব ব ব ব	ও ও ও ও ও	26 34 26 20 21	.38 .42 .21	.104 .069 .066 .062 .049	28 16 20 16 14	12 28 27 18 25	.35 .49 .52 .34 .39	52 65 88 98 88	.04 .07 .06 .07 .10	<3 <3 <3	1.11 1.39 1.18 .83 1.21	.02 .02 .01 .01 .02	.08 .13 .31 .19 .21	<2 <2 <2 <2 <2 <2	22345
JD-00-350 JD-00-351 JD-00-352 JD-00-353 JD-00-353 JD-00-354	1 <1 <1 <1 <1	63 15 33 37 7	16 15 17 16 7	147 64 116 119 25	<.3 <.3 <.3 <.3 <.3	63 43 70 78 11	19 12 20 18 6	401 3 366 3 318 3 316 3 200 3	2.23 2.80 3.69	<2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2	5 2 4 5	67 75 46 52 15	.7 .2 .3 .2 .2 <.2	<3 <3 <3 <3 <3	ব ব ব ব ব ব	69 33 33 58 19	.60 .51	.228 .072 .054 .038 .035	31 14 24 32 14	52 35 40 84 13	.94 .55 .66 1.09 .25	267 144 128 156 58	.14 .11 .12 .16 .06	<3 /	2.29 2.16 3.07 3.19 .86	.02 .04 .02 .04 .01	.44 .28 .25 .27 .07	<2 <2 <2 <2 <2 <2	34242
JD-00-355 RE JD-00-339 JD-00-356 JD-00-357 JD-00-358	<1 <1 <1 <1 <1 <1 <1	12 38 10 5 14	12 7 10 6 15	135 62 35 22 47	<.3 <.3 <.3 <.3 <.3	15 32 16 10 18	14 18 7 3 6	678 2 288 2 173 2 115 2 153 2	3.64 2.03 1.14	<2 <2 <2 <2 <2 2	<8 <8 <8 <8 <8	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<2 5 5 4 3	67 24 32 12 14	.3 .2 <.2 <.2 .2	ও ও ও ও ও	ও ও ও ও ও	22 51 24 18 34	.26 .24 .14	.064 .058 .038 .040 .041	21 13 15 10 14	15 56 20 14 26	.23 .95 .33 .25 .40	105 134 82 48 57	.06 .21 .07 .06 .10	4 2 <3 <3	1.90 2.13 1.46 .93 2.03	.02 .03 .02 .01 .01	.07 .52 .10 .08 .09	2 22 22 22 22	5 2 3 2 3
JD-00-359 JD-00-360 JD-00-361 JD-00-362 STANDARD C3/AU-S	1 <1 <1 <1 25	35 9 20 7 60	23 12 3 6 36	81 52 73 23 170	<.3 <.3 <.3 <.3 5.3	32 18 19 7 37	14 7 11 5 11	394 4 435 7 421 2 235 1 763 3	1.51 2.57 1.38	<2 <2 <2 <2 55	<8 <8 <8 <8 20	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	3 2 3 4 21	18 12 18 11 29	<.2 .3 <.2 <.2 22.7	<3 <3 <3 <3 15	<3 3 <3 <3 22	55 19 34 17 75	.21 .82 .59	.053 .062 .258 .201 .094	13 12 10 13 18	38 20 32 12 162	.46 .33 .77 .30 .60	105 49 172 50 145	.13 .05 .14 .07 .09	<3 <3 <3	2.75 .98 1.33 .57 1.79	.01 .01 .02 .02 .04	.23 .12 .53 .21 .17	<2 <2 <2 <2 17	<2 <2 3 <2 48
STANDARD G-2	1	3	4	41	<.3	8	4	547 2	2.11	<2	<8	<2	5	76	۲.>	<3	<3	40	.66	.104	8	80	.61	235	.13	<3	.98	- 08	.49	3	3

Sample type: SOIL SS80 600. Samples beginning /RE/ are Reruns and /RRF/ are Reject Reruns.

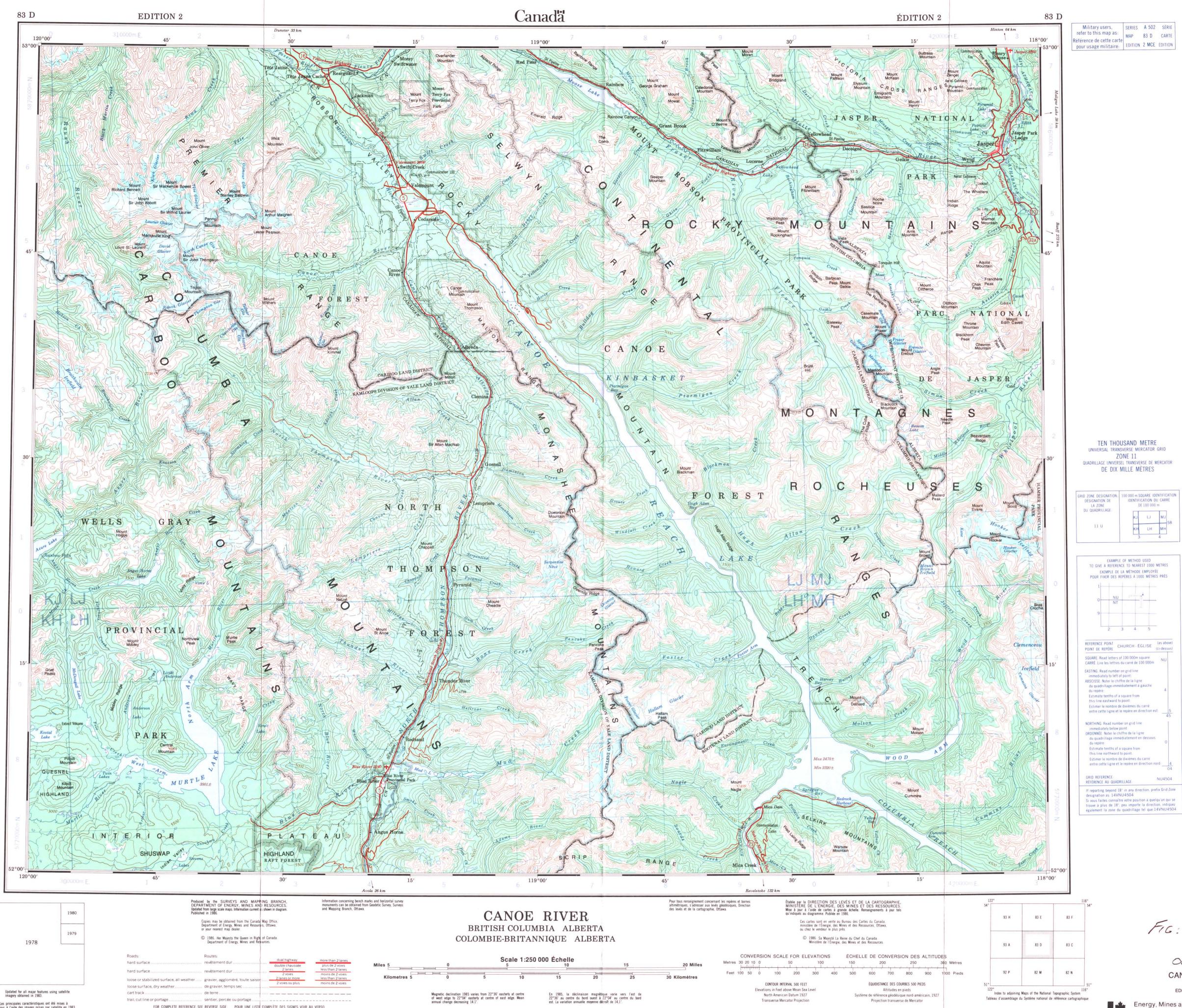
All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only.

Data___ FA

AA

Hunter Exploration Group FILE # A004272

Page 12


ACHE ANALYTICAL																													AC	HE ANALYI	lical .
SAMPLE#	Mo ppm	Cu ppm	Pb ppm	Zn ppm	Ag ppm	Ni ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm	Sr ppm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	8 ppm	Al %	Na %	K %		Au** ppb
JD-00-363 JD-00-364 JD-00-365 JD-00-365 JD-00-366 JD-00-367	2 1 1 1 1 1	20 7 23 24 39	<3 <3 <3 4 <3	50 16 65 74 21	<.3 <.3 <.3 <.3 <.3	20 6 24 28 55	11 3 12 13 11	335 165 437 419 184	2.37 1.19 2.74 2.70 1.86	<2 <2 <2 <2 <2 <2 <2 <2 <2	<8 <8 <8 <8 <8	8 8 8 8 8 8 8 8 8 8	2 4 3 5 2	18 9 16 18 30	.2 <.2 .2 <.2 <.2	<3 <3 <3 3 3 3	<3 <3 <3 <3 <3 <3	32 12 34 40 34	.38 .73 .92	.200 .132 .197 .243 .204	10 11 12 11 8	34 8 36 39 73	.86 .25 .92 1.02 .60	144 55 150 164 57	.13 .06 .14 .15 .09	10 3	1.40 .51 1.50 1.50 .73	.02 .01 .02 .02 .01	.47 .20 .60 .66 .30	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<2 <2 <2 2 2 2
JD-00-368 JD-00-369 JD-00-370 JD-00-370A JD-00-371	1 1 2 4 3	11 13 16 20 96	4 7 6 14	42 39 45 155 87	<.3 <.3 <.3 <.3 <.3	14 12 14 21 46	12	790 1771 699 1853 489	1.69 1.81 1.82 2.63 5.30	<2 <2 <2 2 5	<8 <8 <8 <8 <8	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 5 7 11	6 5 7 11 9	.2 .5 .4 .3 .7	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	10 8 11 13 34	.30 .29 .19	.049 .057 .072 .045 .062	12 12 16 18 38	13 11 11 14 33	.83 .78 .54 .63 .99	68 96 64 66 63	.05 .06 .04 .05 .07	<3 <3 <3	1.16 .94 .98 1.04 3.08	.01 .01 .01 .01 .01	.26 .39 .23 .23 .36	< 2 < 2 < 3 < 2 2 < 3 < 2 2 < 3 < 2 2 < 2 < 3 < 2 < 2 < 3 < 2 < 2 < 3 < 2 < 2	<2 3 2 2 2 2 2
JD-00-372 JD-00-373 JD-00-374 JD-00-374A JD-00-375	<1 3 1 2 <1	25 21 15 35 19	4 10 <3 6 4	48 39 48 53 41	<.3 <.3 <.3 <.3	28 27 17 30 22	13 6 9 15 8	3497	2.57 16.88 2.16 3.19 2.30	<2 18 <2 2 <2	<8 19 <8 <8 <8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	56545	12 62 12 14 18	.2 1.5 <.2 .2	3 3 3 3 3 3 3 3	<3 3 <3 <3 <3	20 17 19 58 21	.64 .29 .45	.058 .043 .068 .076 .054	15 30 17 9 14	19 14 18 41 20	.56 .47 .80 1.39 .63	47 92 86 125 44	.04 .05 .08 .13 .07	<3	.92 .66 1.19 1.72 1.10	.01 .01 .01 .02 .01	.17 .27 .40 .64 .25	<2 <2 <2 <2 <2 <2 <2	3 2 3 2 2 2 2
RE JD-00-370 JD-00-376 JD-00-377 JD-00-378 JD-00-379	2 1 1 <1 <1	16 19 22 18 30	8 4 3 15	46 32 50 37 77	<.3 <.3 <.3 .3 .4	13 16 35 27 57	12 8 11 9 16	702 233 317 238 744	1.82 1.91 2.70 2.21 4.56	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	<8 <8 26 <8 9	~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	3 7 5 7	6 18 62 71 93	.5 <.2 <.2 .2	ও ও ও ও ও ও ও	3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	11 17 31 30 40	.41 .78 .92	.065 .098 .086 .133 .093	14 17 19 16 20	11 15 43 33 53	.56 .55 .78 .54 1.00	65 37 71 59 73	.05 .06 .13 .11 .14	6	.99 .79 1.85 1.66 2.66	.01 .01 .03 .04 .03	.23 .23 .36 .28 .39	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	2 4 <2 2 2
JD-00-380 JD-00-381 JD-00-382 JD-00-383 JD-00-384	<1 5 2 1 2	18 19 14 15 24	6 8 <3 4 10	32 110 36 57 57	<.3 <.3 <.3 <.3 <.3	35 15 7 15 16	9 9 5 8 8	158 555 308 408 339	2.35 2.87 2.25 2.62 3.28	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	<8 <8 <8 <8 <8	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	6 4 16 4 3	16 18 18 11 8	.2 .3 <.2 .2 <.2	<3 <3 <3 <3 <3	<। <br <br </td <td>26 44 25 36 43</td> <td>.71 1.31 .55</td> <td>.057 .190 .551 .140 .070</td> <td>20 17 29 15 15</td> <td>36 34 16 27 31</td> <td>.64 .62 .45 .64 .63</td> <td>63 178 90 90 67</td> <td>.11 .14 .10 .14 .15</td> <td>8 <3 <3</td> <td>1.62 1.38 .74 1.28 1.80</td> <td>.02 .03 .02 .04 .02</td> <td>.36 .43 .46 .42 .31</td> <td>~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~</td> <td><2 2 5 3</td>	26 44 25 36 43	.71 1.31 .55	.057 .190 .551 .140 .070	20 17 29 15 15	36 34 16 27 31	.64 .62 .45 .64 .63	63 178 90 90 67	.11 .14 .10 .14 .15	8 <3 <3	1.62 1.38 .74 1.28 1.80	.02 .03 .02 .04 .02	.36 .43 .46 .42 .31	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<2 2 5 3
JD-00-385 STANDARD C3/AU-S STANDARD G-2	2 29 2	10 66 3	4 37 <3	47 167 40	<.3 5.4 <.3	8 39 8	6 11 4	350 790 551	1.88 3.46 2.10	<2 60 <2	<8 19 <8	<2 2 <2	3 22 4	12 31 75	.2 23.6 <.2	<3 16 <3	<3 22 <3	27 76 37	.59	.160 .096 .106	14 19 7	17 177 79	.40 .62 .61	54 153 238	.11 .08 .13	3 20 <3	.89 1.81 .94	.03 .04 .08	.25 .17 .48	<2 16 3	2 50 3

Sample type: SOIL SS80 60C. Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

APPENDIX C

REFERENCES

Poulton, T.P. and Simony, P.S.(1980):	Stratigraphy, sedimentology and regional correlation of the Horsethief Creek Group (Hadrynian, Late Precambrian) in the northern Purcell and Selkirk Mountains, British Columbia; Can. Jour. Earth Sci., Vol. 17, pp. 1708-1724.
Brown, R.L. et al (1978):	Stratigraphy, facies changes and correlations in the Northern Selkirk Mountains, southern Canadian Cordillera; Can. Jour. Earth Sci., Vol. 15, pp. 1129- 1140.
Murphy, D.C. (1990):	Geology of Canoe River map Area (83D), B.CAlberta; G.S.C. Open File 2324.
Campbell, R.B. (1967):	Geology-Canoe river, British Columbia; G.S.C. Map 15-1967. lo.
Pell, J. (1984):	Stratigraphy, structure and metamorphism of Hadrynian strata in the southeastern Cariboo Mountains, British Columbia; Unpublished Ph. D. thesis, University of Calgary.
McDonough, M.R. and Murphy, D.C. (1994):	Geology and structure cross sections, Valemount, British Columbia; G.S.C. Map 1843A.
British Columbia Department of Mines and Energy:	MINFILE; Quadrangle 83 D.

Les principales caractéristiques ont été mises à jour à l'aide des images prises par satellite en 1983.

FOR COMPLETE REFERENCE SEE REVERSE SIDE POUR UNE LISTE COMPLÈTE DES SIGNES, VOIR AU VERSO

Military use refer to this ma

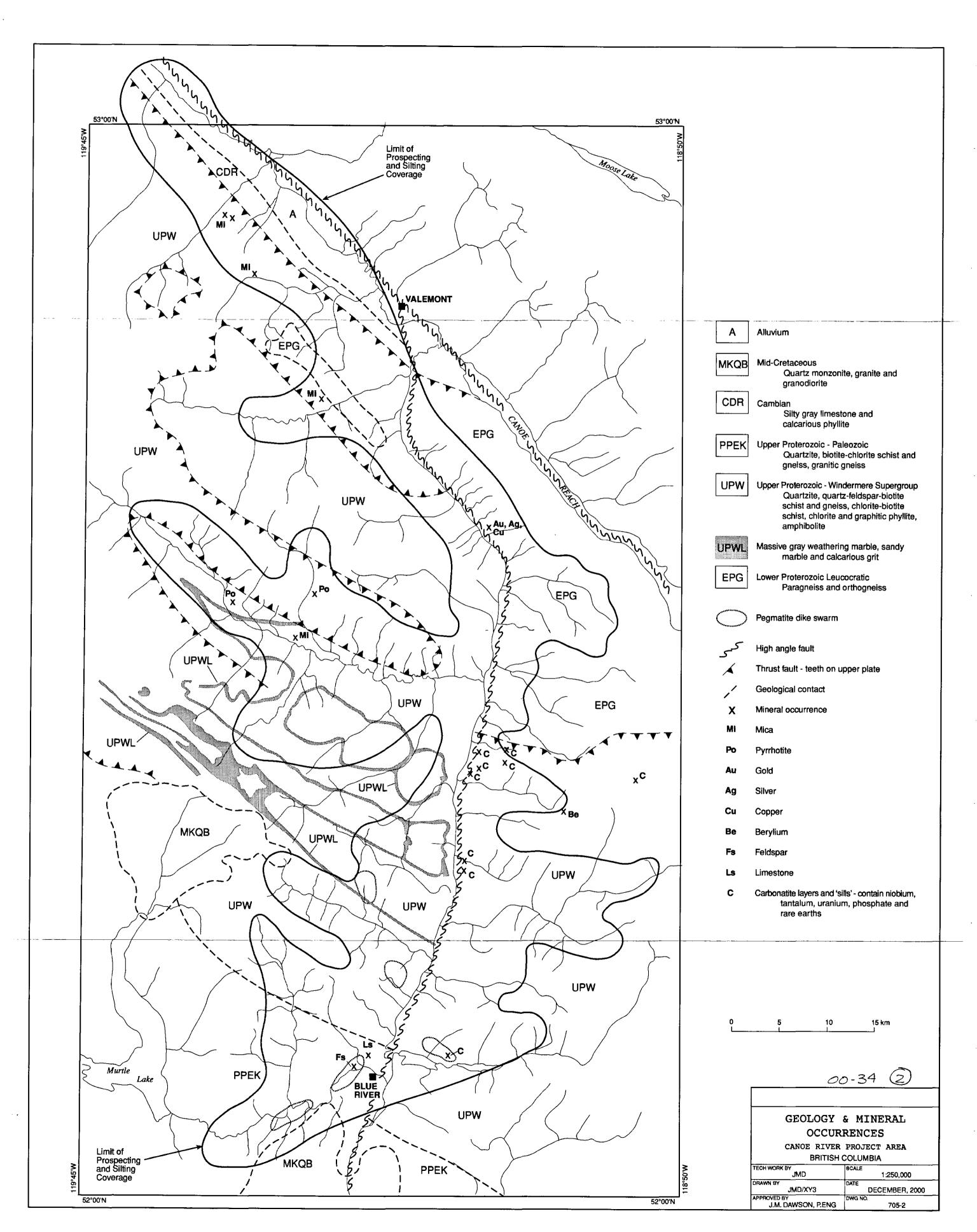
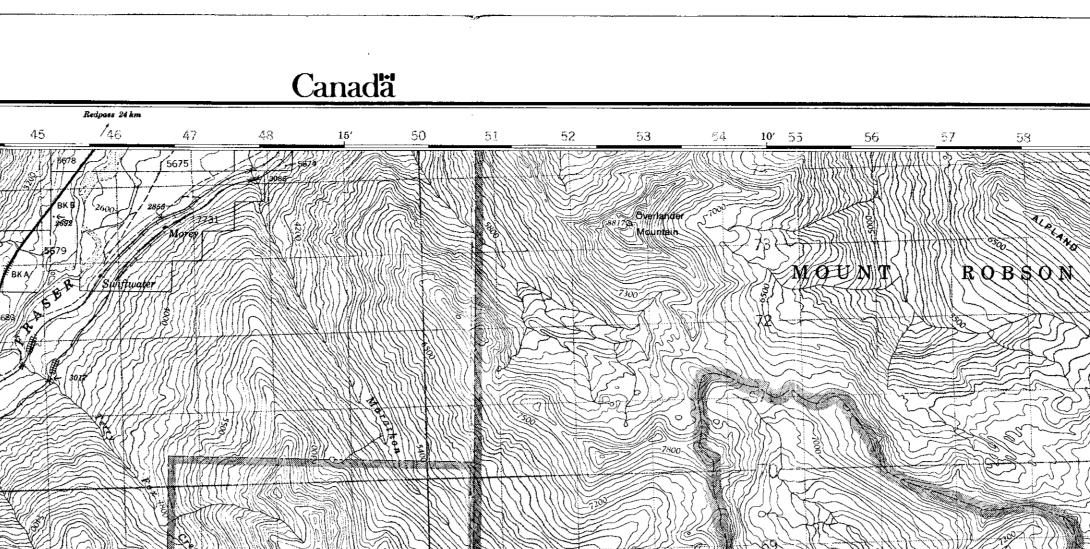

DÉSIGNATION D	E	IDENTIFIC.		
U QUADRILLAG	iE::	КJ	LJ	MJ
11 U		KH	LH	58 MH
		3		4
TO GIVE A F	PLE DE LA I	TO NEARES	ST 1000 EMPLOYÉ	E
POINT DE REPÉ SQUARE: Read I CARRÉ: Lire les EASTING: Read I immediately ABSCISSE: Note du quadrillaj du repère Estimate teni this line east Estimer le no entre cette li	etters of 10 lettres du c number on g to left of poi r le chiffre o ge immédiat ths of a squ tward to poi imbre de dix	arré de 10 rid line int: de la ligne rement à ga are from nt: ièmes du c	uare 0 000m auche arré	NU 4
NORTHING: Rea immediately ORDONNÉE Not du quadrilla du repère Estimate ten this line nort Estimer le no entre cette li	d number oi below point er le chiffre ge immédia iths of a squ thward to po ombre de dix	n grid line de la ligni tement en are from sint: sièmes du c	e dessous carré	0
GRID REFEREN RÉFÉRENCE AU		AGE		NU4504
If reporting be designation as Si vous faites trouve à plus également la	connaître vo de 18°, peu	504 tre positio importe l	in à quel a direct	qu'un qui se ion, indique

FIG: 705-3 00.34 () CANOE RIVER 83 D EDITION 2 ÉDITION


Energy, Mines and Énergie, Mines et Resources Canada Ressources Canada

*

sers,	SERIES	A 502	SÉRIE
nap as:	MAP	83 D	CARTE
ette carte iilitaire:	EDITION	2 MCE	ÉDITION

MOUNT TERRY FO

PROVINCLAL PARK

X

5706

7

Terry Eo

CONTINENTAL

Microwave HOO

14 1 1 1 1 1 1 1

5064

7130

Cinera

BRA

BKO

SELWNN

JAOCKY MOUNTAINS) MONTAGNES ROCHEUSES) CA N E) Q

RANGSE

Mmiin McKird

3694 BKA BK-B E N 7397

7401 E 7 MALTON RANGE MONASHEE MOUNTATNS) 15' 49 -50 53 10' 54 55

VALEMOUNT CARIBOO LAND DISTRICT BRITISH COLUMBIA COLOMBIE-BRITANNIQUE Scale 1:50 000 Échelle Miles 1 0 1 2 3 Milles Metres 1000 0 1000 2000 3000 4000 Mètres

μ.

Information concerning bench marks and horizontal survey monuments can be obtained from Geodetic Survey, Surveys and Mapping Branch, Ottawa. CONVERSION SCALE FOR ELEVATIONS CONTOUR INTERVAL 100 FEET Elevations in Feet above Mean Sea Level North American Datum 1927 Transverse Mercator Projection

*

Pour tous refiseignement concernant les repères et bornes altimétriques, s'adresser aux levés géodésiques, Direction des levés et de la cartographie, Ottawa. ÉCHELLE DE CONVERSION DES ALTITUDES ÉQUIDISTANCE DES COURBES 100 PIEDS Altitudes en pieds

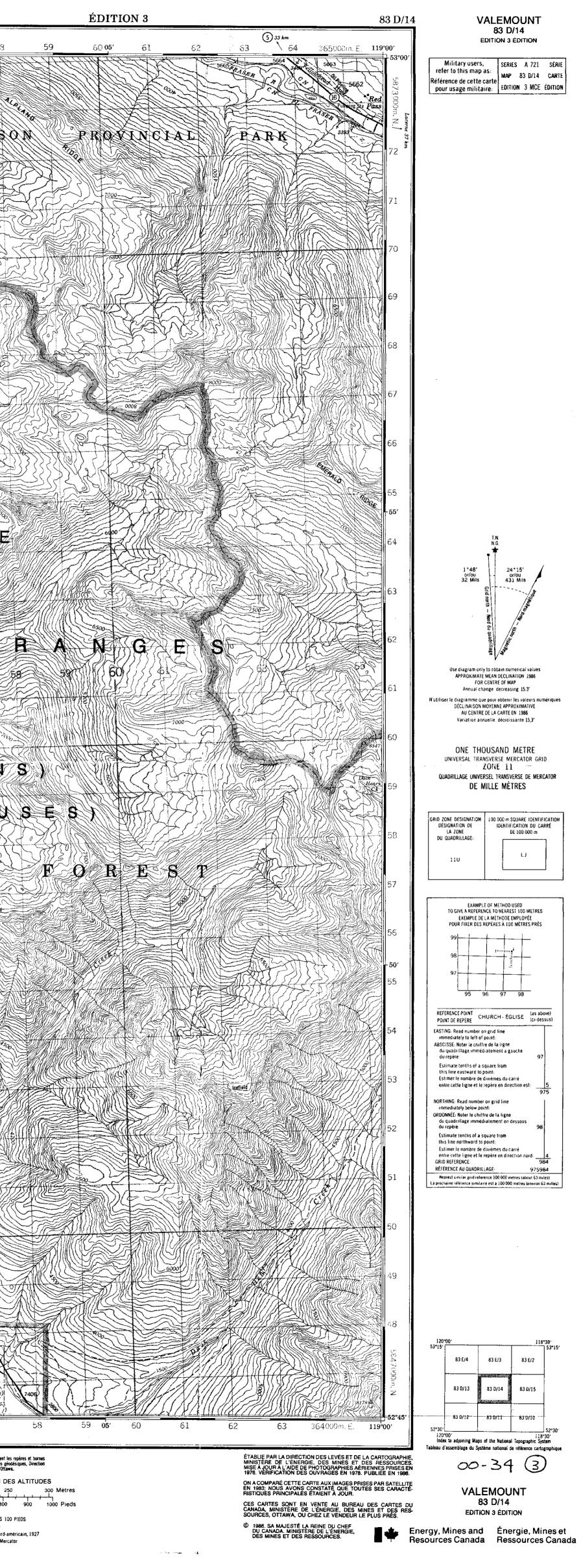
Système de référence géodésique nord-américain, 1927

Projection transverse de Mercator

57

58

٠


. ...

F.E. F


- 46

47 |

Albreda 16 km

975984

L 1410 2

-24

Max 2475±

Min 2320=

- 70

Clemina

60

156

pot pt

355

T

A De

COL

SP/ 383

YAHRO #382

JD-00-200

363 000m. E.

Établie par la DIRECTION DES LEVÉS ET DE LA CARTOGRAPHIE, MINISTÈRE DE L'ÉNERGIE, DES MINES ET DES RESSOURCES. Mise à jour à l'aide de photographies aériennes prises en 1976. Vérification des ouvrages en 1978. Publiée en 1980.

Ces cartes sont en vente au Bureau des Cartes du Canada, ministère de l'Énergie, des Mines et des Ressources, Ottawa, ou chez le vendeur le plus près.

© 1980. Sa Majesté La Reine du Chef du Canada. Ministère de l'Énergie, des Mines et des Ressources.

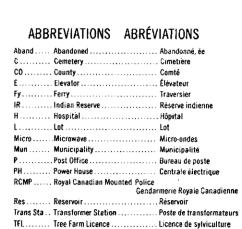
.

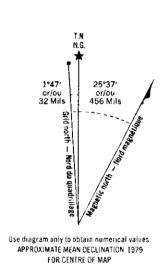
119°00'

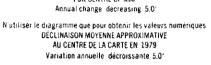
62

61

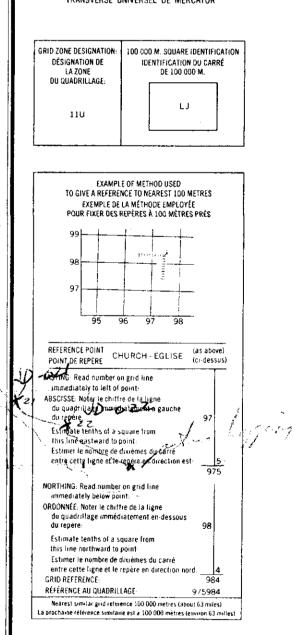
62

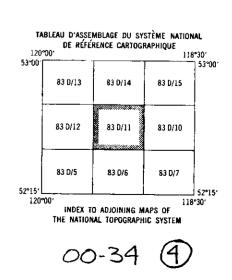

83 D/11

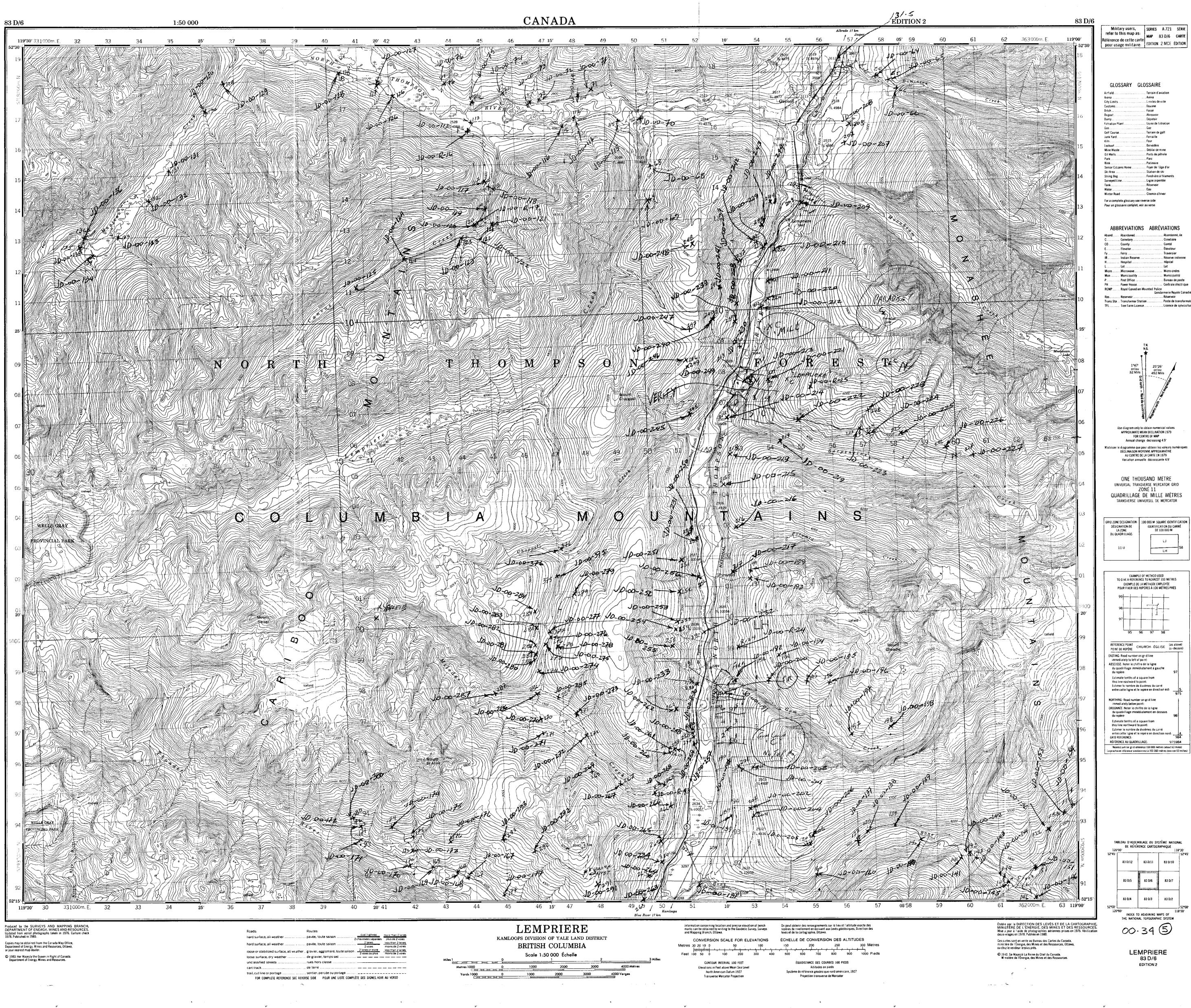

L 7421


63 364000m F 119°00'

Military users, refer to this map as: Référence de cette carte pour usage militaire: EDIFION 2 MCE ÉDITION


GLOSSARY GLOSSAIRE . Terrain d'aviation Airfield . City Limits . . Customs Limites de ville ...Douane Ditch . . Fossé Dugout Abreuvoir Dump Filtration Plant . Dépotoir ... Usine de filtration Gas Golf Course . . Terrain de golf Junk Yard .. . Ferraille Kiln ... Lookout ... Beivedère Mine Waste.... Oil Wells... Park... Rink. Senior Citizens Home... .. Déblai de mine . Puits de pétrolePatinoire ... Foyer de l'âge d'or Ski Area Ski Area String Bog Surveyed Line Tank ...Station de ski . Fondrière à filaments ... Ligne arpentée Réservoir Water Winter Road Chemin d'hive For a complete glossary see reverse side Pour un glossaire complet, voir au verso




ONE THOUSAND METRE UNIVERSAL TRANSVERSE MERCATOR GRID ZONE 11 QUADRILLAGE DE MILLE MÈTRES TRANSVERSE UNIVERSEL DE MERCATOR

CANOE MOUNTAIN 83 D/11 EDITION 2

.

 \mathbf{i}

1°47′ 25°2€ or/ou 32 Mils Use diagram only to obtain numerical values APPROXIMATE MEAN DECLINATION 1979 FOR CENTRE OF MAP Annual change decreasing 4.9' Vutiliser le diagramme que pour obtenir les valeurs numériques DÉCLINAISON MOYENNE APPROXIMATIVE AU CENTRE DE LA CARTE EN 1979 Variation annuelle décroissante 4.9 ONE THOUSAND METRE universal transverse mercator grid ZONE 11 QUADRILLAGE DE MILLE MÈTRES transverse universel de mercator GRID ZONE DESIGNATION: DÉSIGNATION DE LA ZONE DU QUADRILLAGE: DU QUADRILLAGE: LJ LH

Limites de ville

.. Terrain de golf ... Ferraille

... Belvédère ... Déblai de minePuits de pétrole

. Patinoire . Foyer de l'âge d'or ... Station de ski ... Fondrière à tilament . Ligne arpente

Réservoi

. Chemin d'hiw

Abandonné,

. Cimetière

Traversier

Micro-onde

Municipalité

. . Réservoir

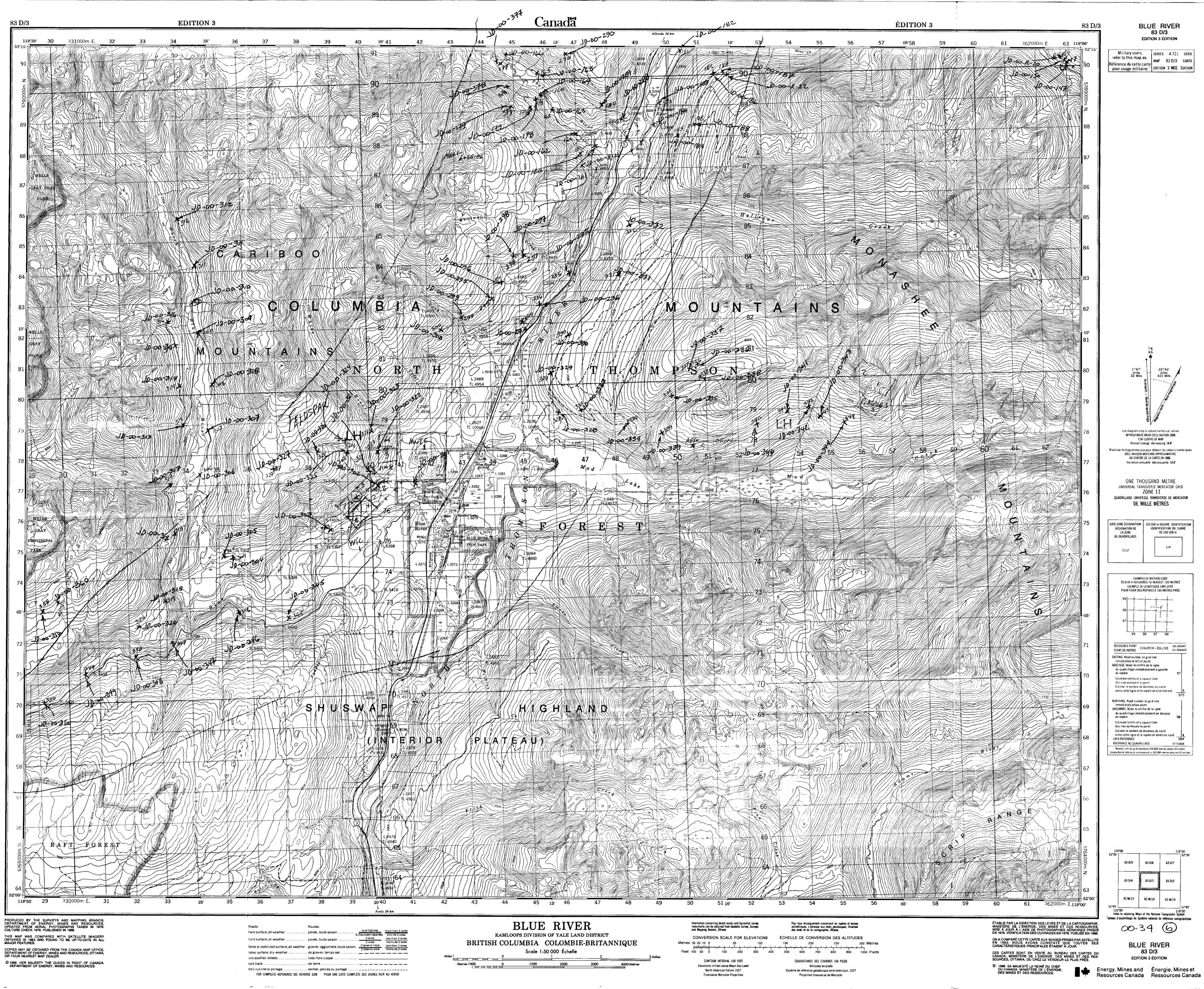
Bureau de post

. Poste de transformateu ... Licence de sylvicultur

. Réserve indienne

. Douane fossé Abreuvoir Dépotoir ... Usine de filtration

	EXAMPI VE A REFERE EXEMPLE DE R FIXER DES	LA MÉTHO	AREST 1 DDE EMPL	OD METRES	
99				+-	
98				-	
97		<u> </u>	1	 _	
	95	96 9	7 9	8	
REFERENC POINT DE I	C	HURCH	ÉGLIS		bove) essus)
immediat ABSCISSE: J	ead number (tely to left of Noter le chift illage immé 9:	f point: fre de la li	gne	ne 9	7
this line Estimer l	tenths of a eastward to e nombre de te ligne et le	point: dixièmes	du carré	n est:	5
immedia: ORDONNÉE:	Read numbe tely below po Noter le chr illage immé tr	oint: ffre de la l	ligne		
	tenths of a northward to		มกา		
	e nombre de te ligne et le RENCE			in nord:	984
	e au quadri	LLAGE:		975	
Nearest si	milar grid refe				

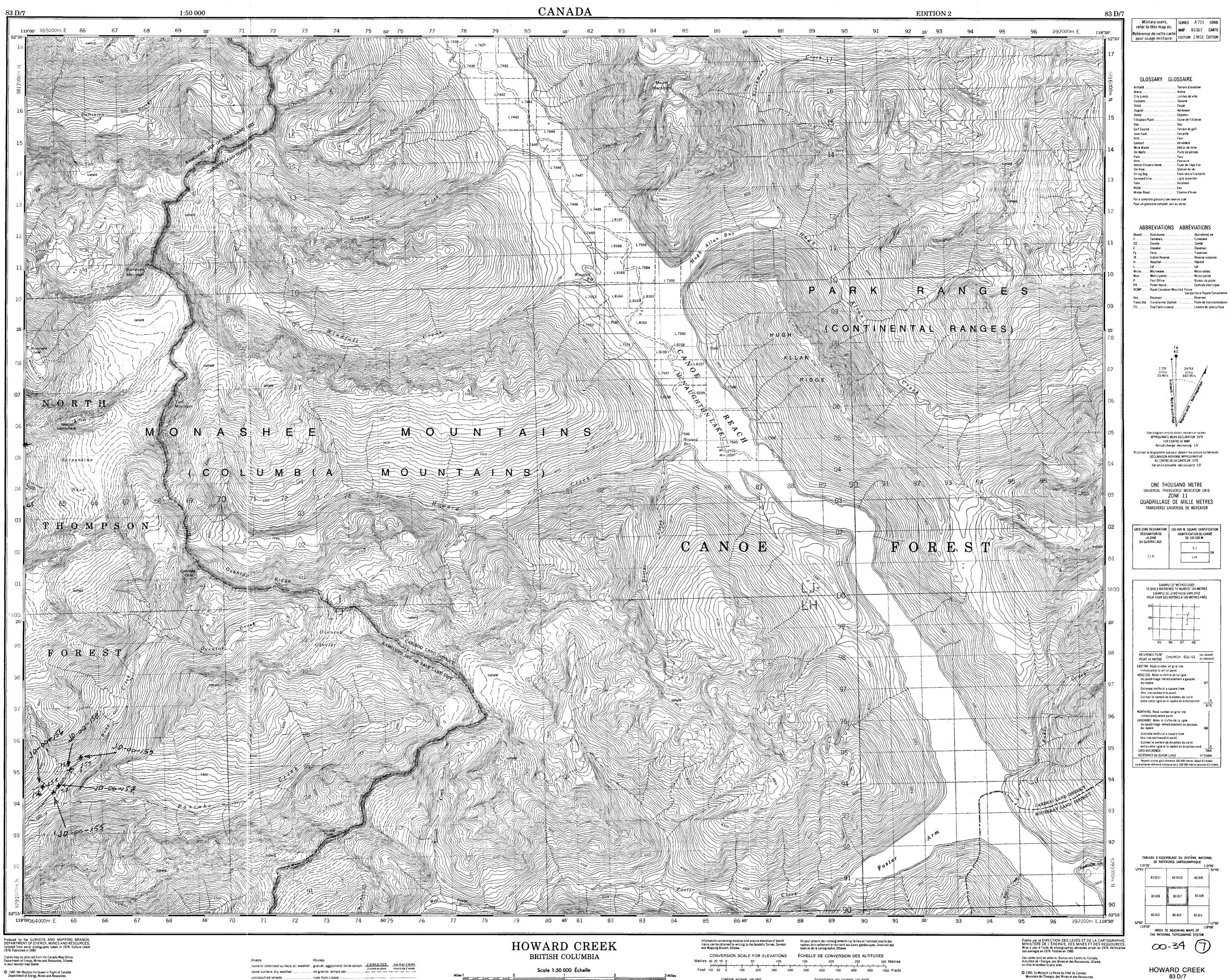

83 D/11

83 D/3

83 D/10

83 6/7

118°30′


e. 19¹²⁻ 1.10

N.___

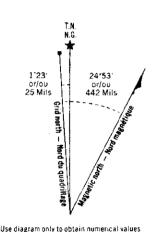
٣

-. . .

Copies may be obtained from the Cariada Map Office, Department of Energy, Mines and Resources, Ottawa, or your nearest map dealer. © 1980. Her Majesty the Queen in Right of Canada. Department of Energy, Mines and Resources.

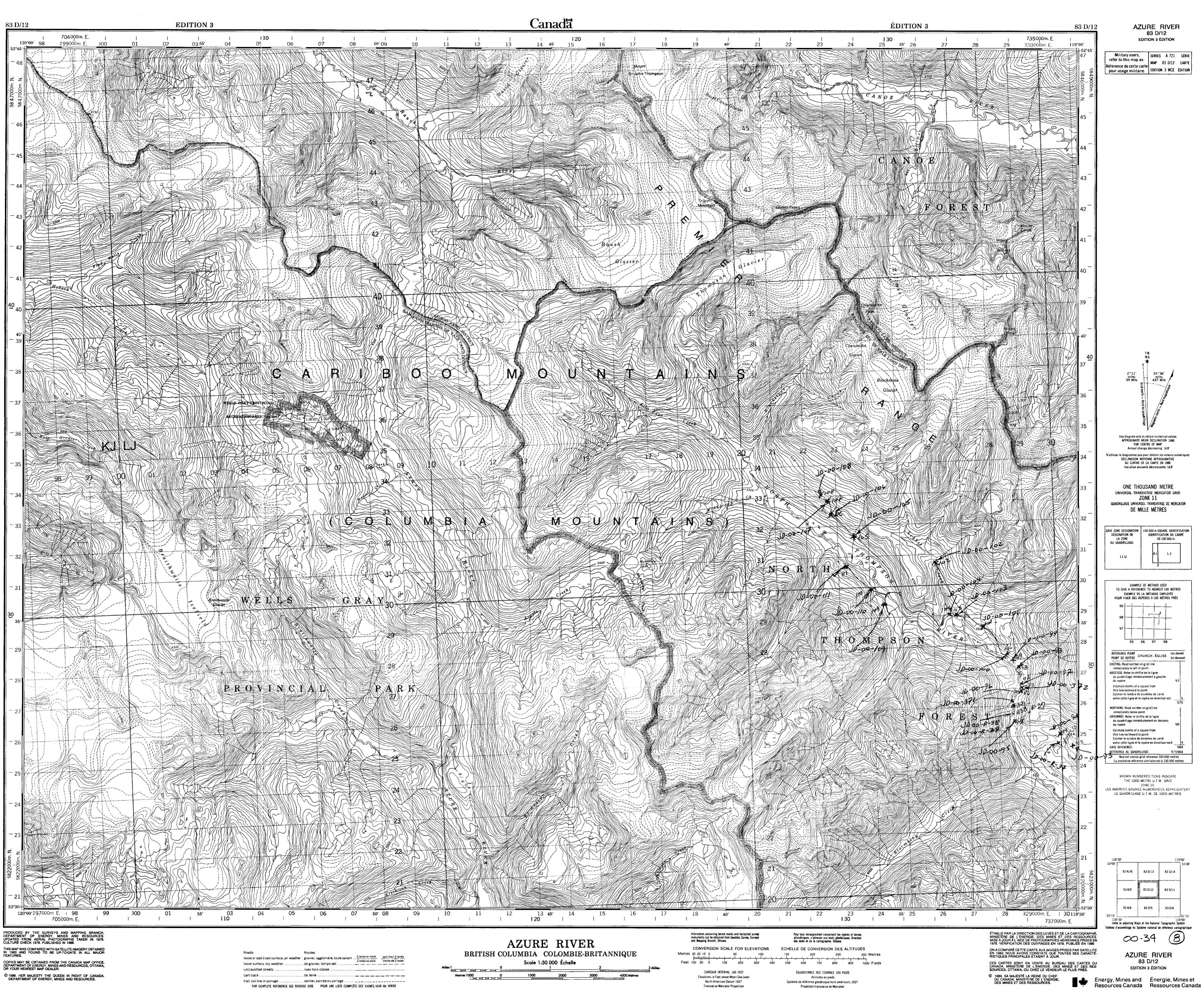
loose surface, dry weather de gravier, temps seccart track de terre trail, cut line or portage sentier, percée ou portage FOR COMPLETE REFERENCE SEE REVERSE SIDE POUR UNE LISTE COMPLETE DES SIGNES, VOIR AU VERSO

.


Miles 1 0 2 3 Milles _____ Metres 1000 0 1000 2000 3000 4000 Mètres Yards 1000 0 1000 2000 3000 4000 Verges

CONTOUR INTERVAL 100 FEET Elevations in Feet above Mean Sea Level North American Datum 1927 Transverse Mercator Projection

500 600 700 800 900 1000 Pieds ÉQUIDISTANCE DES COURBES 100 PIEDS Altitudes en pieds Système de référence géodésique nord-américain, 1927 Projection transverse de Mercator



Airfield	Terrain d'aviation
Агела	Aréna
City Limits	Limites de ville
Customs	Douane
Ditch	Fossé
Dugout	Abreuvoir
Dump	Dépotoir
Filtration Plant	Usine de filtration
Gas	
Golf Course	Terrain de golf
Junk Yard	
Kiłn	
Lookout	Belvédère
Mine Waste	Déblai de mine
Oil Wells	Puits de pétrole
Park	Parç
Rink	Patinoire
Senior Citizens Home	Foyer de l'âge d'or
Ski Area	Station de ski
String Bog	Fondrière à filament
Surveyed Line	Ligne arpentée
Tank	Réservoir
Water	
Winter Road	Chemin d'hiver

83 D/7 EDITION 2

*

-

: 1-1 T

!

~

Military users, refer to this map as: Rétérence de cette carte pour usage militaire: SERIES A 721 SÉRIE MAP 83 D/12 CARTE EDITION 3 MCE ÉDITION

2°11' or/ou 39 Mils

24°36' or/ou 437 Mils

Use diagram only to obtain numerical values APPROXIMATE MEAN DECLINATION 1986 FOR CENTRE OF MAP Annual change decreasing 14.9'

DÉCLINAISON MOYENNE APPROXIMATIVE AU CENTRE DE LA CARTE EN 1986 Variation annuelle décroissante 14,9'

110

LJ

pungung**i**

93 A/16

93 A/9

۴

83 D/13

83 D/12

93 A/8 83 D/5

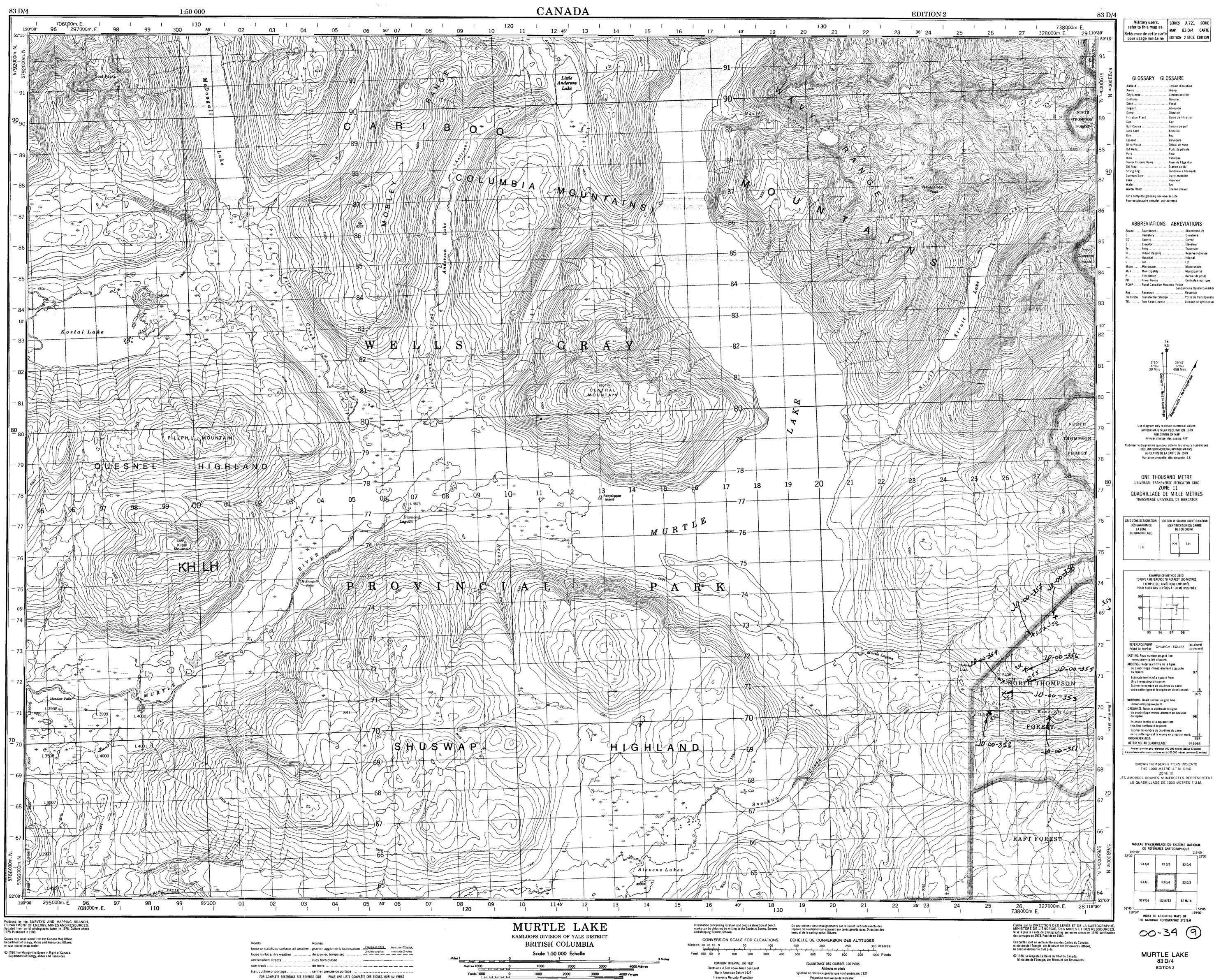
00.34

AZURE RIVER

83 D/12

EDITION 3 ÉDITION

٠

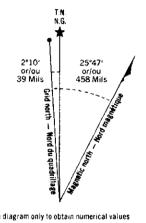

83 0/14

83 Đ/11

83 D/6

8

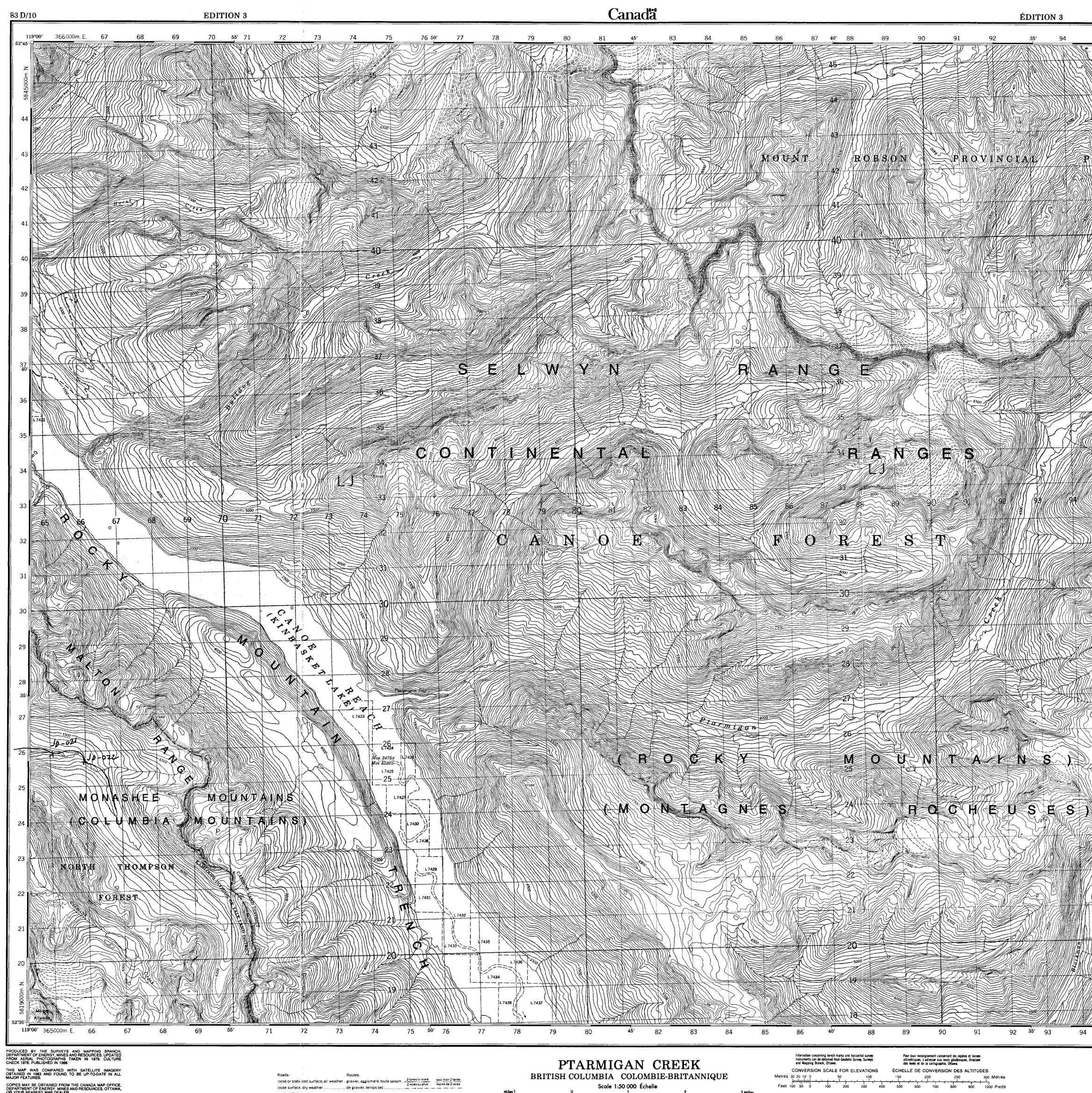
95 96 97 98


Projection transverse de Mercator

.

trail, cut line or portage sentier, percée ou portage FOR COMPLETE REFERENCE SEE REVERSE SIDE POUR UNE LISTE COMPLÈTE DES SIGNES, VOIR AU VERSO

GLUSSARY	GLOSSAIRE
Airfield	
Arena	Aréna
City Limits	Limites de ville
Customs	Douane
Ditch	Fossé
Dugout	Abreuvoir
Dump	Dépotoir
Filtration Plant	Usine de filtration
Gas	Gaz
Golf Course	
Junk Yard	Ferraille
Kiln	Four
Lookout	Belvédère
Mine Waste	
Oil Wells	Puits de pétrole
Park	Parc
Rink	
Senior Citizens Home	Foyer de l'âge d'or
Ski Area	Station de ski
String Bog	Fondrière à filament
Surveyed Line	Ligne arpentée
Tank	Réservoir
Water	£au
Winter Road	Chernin d'hiver
For a complete glossary	see reverse side
Pour un glossaire compl	


ABBREVIATIONS	ABRÉVIATIONS
Aband Abandoned	Abandonné, ée
C Cemetery	Cimetière
CO County	Comté
E Elevator	Élévateur
Fy	Traversier
IR Indian Reserve	
H Hospital	
L Lot	Lot
MicroMicrowave	Micro-ondes
Mun Municipality	Municipalité
P Post Office	
PH Power House	Centrale électrique
RCMP Royal Canadian Mou	nted Police
	Gendarmerie Royale Canadienne
Res Reservoir	Réservoir
Trans Sta Transformer Station	
TFL Tree Farm Licence	Licence de sylviculture

•

1. **. .**

COPIES MAY BE OBTAINED FROM THE CANADA MAP OFFICE, DEPARTMENT OF ENERGY, MINES AND RESOURCES, OTTAWA, OR YOUR NEAREST MAP DEALER. © 1996. HER MAJESTY THE QUEEN IN RIGHT OF CANADA. DEPARTMENT OF ENERGY, MINES AND RESOURCES.

*

Miles 1 0 1
 Metres 1000
 0
 1000
 2000
 3000
 4000 Mètres

CONTOUR INTERVAL 100 FEET Elevations in Feet above Mean Sea Level North American Datum 1927 Transverse Mercator Projection

ÉQUIDISTANCE DES COURBES 100 PIEDS Altitudes en pieds Système de référence géodésique nord-américain, 1927 Projection transverse de Mercator

-

95

PARK

MOUNT PROVINCIAL PARK

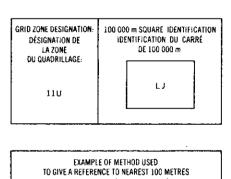
94

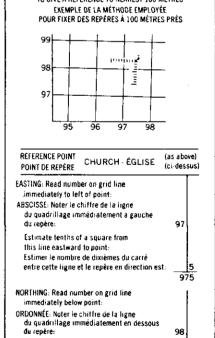
·· .

52°30 118°30′ 397000m. E. 95 96 ÉTABLIE PAR LA DIRECTION DES LEVÉS ET DE LA CARTOGRAPHIE MINISTÈRE DE L'ÉNÈRGIE, DES MINES ET DES RESSOURCES MISE À JOUR À L'AIDE DE PHOTOGRAPHIES AÉRIENNES PRISES E 1976. VÉRIFICATION DES OUVRAGES EN 1978. PUBLIÉE EN 1986. ON A COMPARÉ CETTE CARTE AUX IMAGES PRISES PAR SATELLITE EN 1983; NOUS AVONS CONSTATÉ QUE TOUTES SES CARACTÉRISTIQUES PRINCIPALES ÉTAIENT À JOUIR. CES CARTES SONT EN VENTE AU BUREAU DES CARTES DU CANADA, MINISTÈRE DE L'ÉNERGIE. DES MINES ET DES RES-SOURCES, OTTAWA, OU CHEZ LE VENDEUR LE PLUS PRÈS.

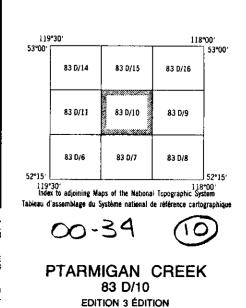
٠

Isbe. Sa Majesté la Reine du Chef du Canada. Ministère de l'énergie, des mines et des ressources.

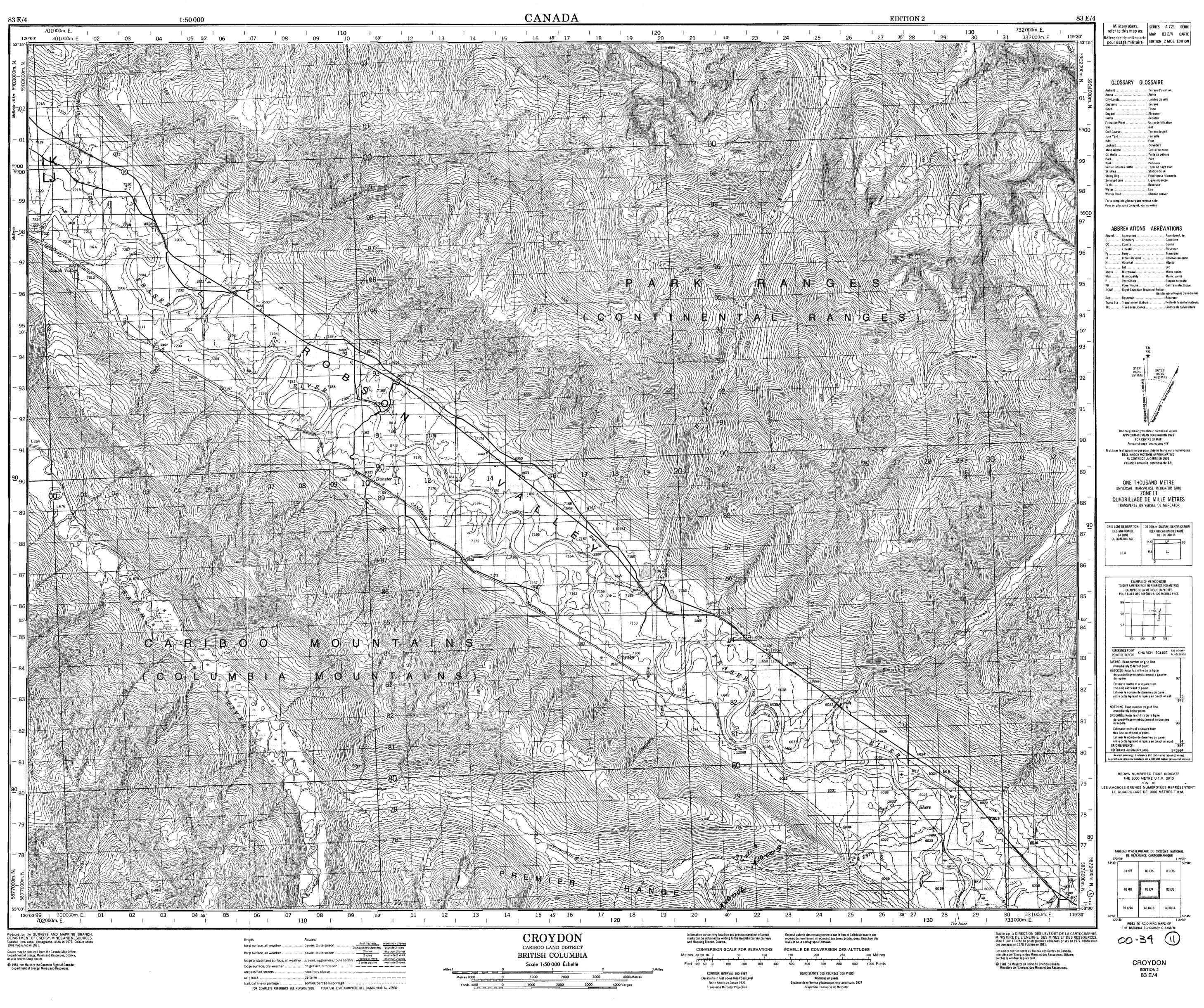



Military users,	SERIES A 721 SÉRIE
refer to this map as:	MAP 83 D/10 CARTE
éférence de cette carte pour usage militaire:	EDITION 3 MCE ÉDITION

1°23' or/ou 25 Mils


Use diagram only to obtain numerical values APPROXIMATE MEAN DECLINATION 1986 FOR CENTRE OF MAP Annual change decreasing 15.1' N'utiliser le diagramme que pour obtenur les valeurs numériques DÉCLINAISON MOYENNE APPROXIMATIV AU CENTRE DE LA CARTE EN 1986 Variation annuelle décroissante 15,1'

ONE THOUSAND METRE UNIVERSAL TRANSVERSE MERCATOR GRID ZONE 11 QUADRILLAGE UNIVERSEL TRANSVERSE DE MERCATOR de mille mètres



Estimate tenths of a square from this line northward to point: Estimer le nombre de dixièmes du carré entre cette ligne et le repère en direction nord: GRID REFERENCE: RÉFÉRENCE AU QUADRILLAGE: 975984 Nearest similar grid reference 100.000 metres (about 63 miles) a prochaine référence similaire est à 100.000 mètres (environ 63 mil

Energy, Mines and Énergie, Mines et Resources Canada Ressources Canada

- -- -

TABLEAU D'ASSEMBLAGE DU SYSTÈME NATIONAL DE RÉFÉRENCE CARTOGRAPHIQUE 93 H/8 83 E/5 83 E/6 93 H/1 83 E/4 83 E/3 93 A/16 83 D/13 83 D/14 I. INDEX TO ADJOINING MAPS OF THE NATIONAL TOPOGRAPHIC SYSTEM 00-34

THE 1000 METRE U.T.M. GRID

975984

... Terrain d'aviation Limites de ville Douane

Fossé

Abreuvoir

Dépotair . Usine de filtration

Terrain de golf . . Ferraille . . Four Belvédère Déblai de mine Puits de pétrole ParcPatinoire Foyer de l'âge d'orStation de skiFondrière à filaments

Ligne arpentée Réservoir

. Chemin d'hive

Cemetery . Elevato

. Ferry ...

. Indian Reserve

....Microwave .

2°12′ or/ou 39 Mils

DÉCLINAISON MOYENNE APPROXIMATIVE AU CENTRE DE LA CARTE EN 1979 Variation annuelle décroissante 4.9'

ONE THOUSAND METRE

110

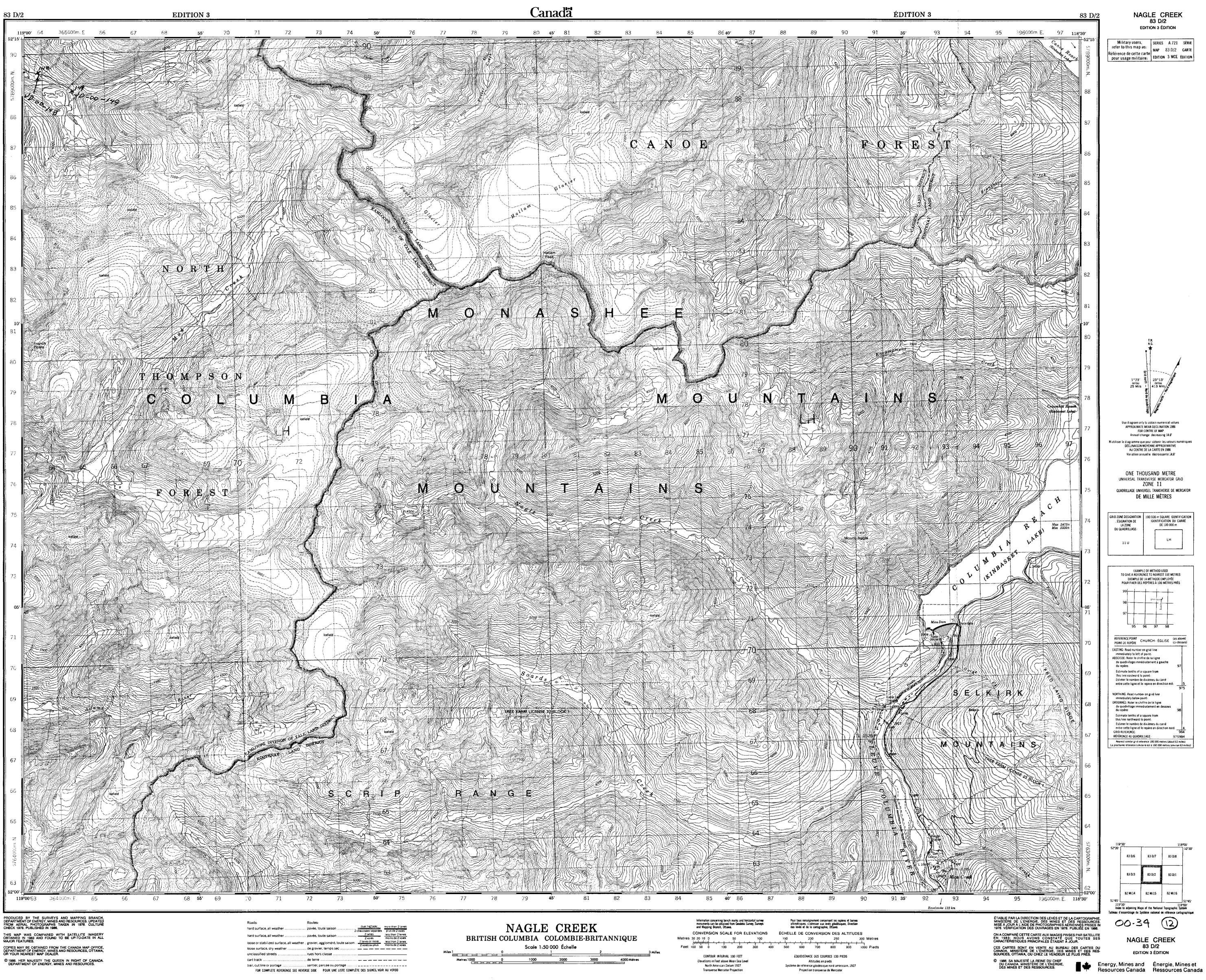
LK____ LĴ

95 96 97 98

26°33' or/ou 472 Mils

... Abandonné, ée ... Cimetière ... Comté

. Réserve indien

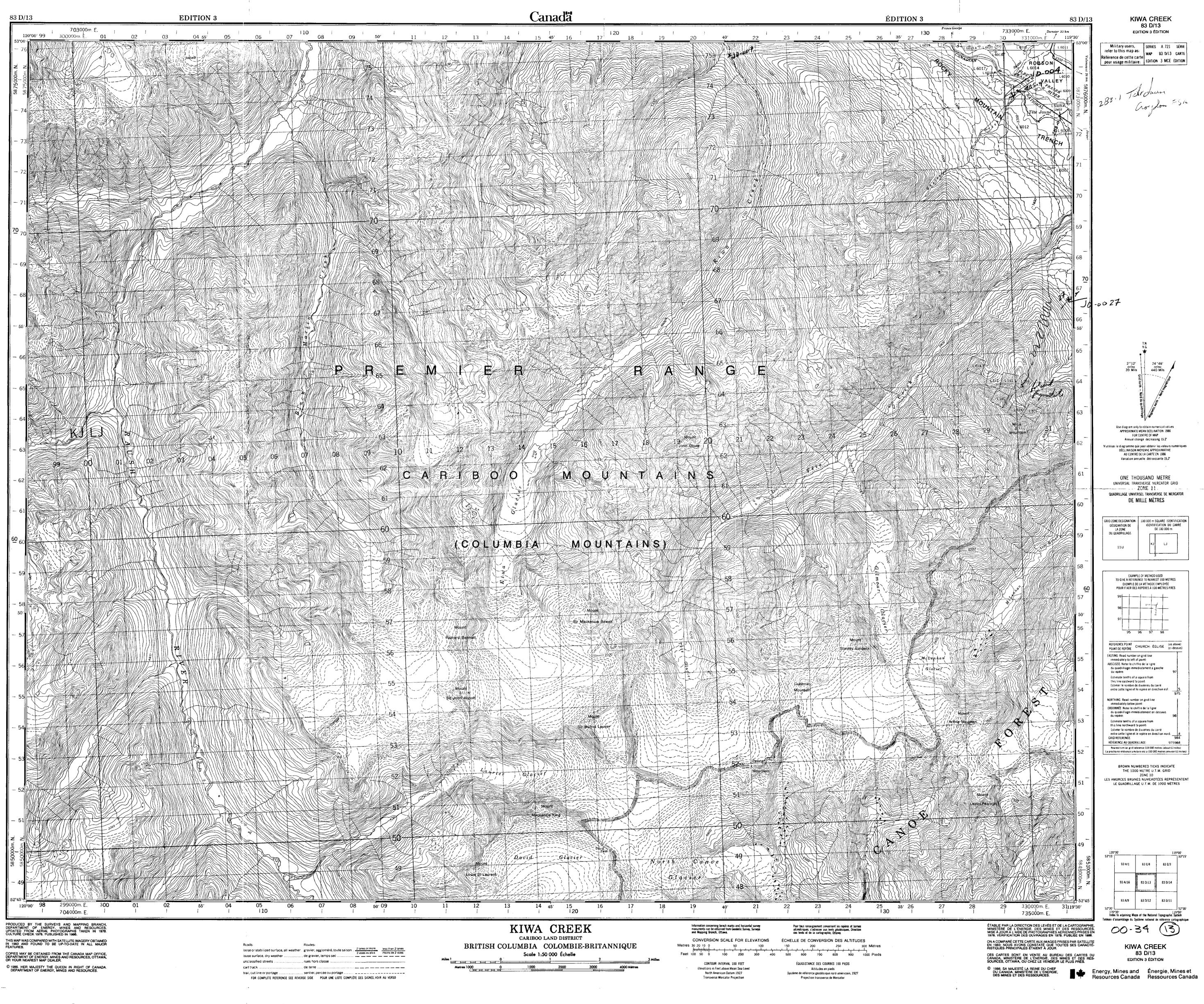

Micro-onde: Municipalité

Réservoir

... Licence de sylviculture

Élévateur Traversier

CROYDON EDITION 2 83 E/4



*

٠

1. A substant substantia

·

.

