BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2000/2001REPORT #:PAP 00-43NAME:ROBERT WEICKER

D. TECHNICAL REPORT

One technical report to be completed for each project area. •• Refer to Program Regulations 15 to 17, pages 6 and 7.

SUMMARY OF RESULTS

. This summary section must be filled out by all grantees, one for each project area

Name Robert Weicker Reference Number 00/01-278	
LOCATION/COMMODITIES	
Project Area (as listed in Part A)BIG DOGMINFILE No. if applicable	
Location of Project Area NTS 092.715E Lat 51 01 5.3 N Long 122.33 03 4/	
Description of Location and Access 0920002E	
North of Boot Gold Bridge, Shulops altratic Complex	
- moth Big Pig asta Juca ted in the northern portion it	~
tal area. Access by Lisa & Murshell Lake modes and luk tom	Rg.
Prospecting Assistants(s) - give name(s) and qualifications of assistant(s) (see Program Regulation 13, page 6)	
Michiles Weicker - experienced in the field, son, labourer	
Main Commodities Searched For	
Pt/Pd (Au, Cu)	
Known Mineral Occurrences in Project	
Area Au - Elizuboth Cu - Poison MAn (See Attached.)	
WORK PERFORMED	
1. Conventional Prospecting (area) - approx 5-10 sq. kilu meters	14-
1. Conventional Prospecting (area) - approx 5-10 sg. Kilv meters. <u>prespect logging and mining roorls, and in</u> detail House Creek and 2. Geological Mapping	9
(hectares/scale) - Reconnaissance uply. Rock Esemply	
3. Geochemical (type and no. of samples) <u>Moss Mot Coolemant</u>) 26 samples Rock samples (17)	
4. Geophysical (type and line km)	
5. Physical Work (type and amount)	
not applicitle	
6. Drilling (no. holes, size, depth in m, total m)	
not applicable	
7. Other (specify)	
-research on area & acquisition of 1980 Report.	
Dest Discovery	
Project/Claim Name Horse Creek Commodities Df Pcl	
Location (show on map) Lat. <u>5/ 02 00 N</u> Long <u>122 33 03 N</u> Elevation	
Best assay/sample type	
- 1988 Prospecting Assistance Report radiculed	
+ 2.00 ale C+2000 pob) Pt in Heavy Mineral Concerting	
Description of mineralization, host rocks, anomalies from Horse Creek	
mospecting glong Horse Creek	
and its svip upp life indice to a prodom ing he of	
na hourse and servention one quarter and	
in float and rare outcop also observed. Victory is linety	
plac anserved.	
FEEDBACK: comments and suggestions for Prospector Assistance Program	
Additional sampling is required, to determine the effectiveness	
of moss not acchemitty for Atled torcets	
I seal R	
that please	
\mathcal{U}	

D. TECHNICAL REPORT (continued) **REPORT ON RESULTS**

• Those submitting a copy of an Assessment Report or a report of similar quality that covers all the key elements listed below are not required to fill out this section.

Refer to Program Regulation 17D on page 6 for details before filling this section out (use extra pages if necessary)
Supporting data must be submitted with the following TECHNICAL REPORT or any report accepted in lieu of.

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act. Name Reference Number $00/01-P^2-75$ 1. (OCATION OF PROJECT AREA [Outline clearly on accompanying maps of appropriate scale]

the boot not of the boot of the polarity of a companying maps of appropriate sources
Fig. 1- Locotion
the 2 - Regional Geolog.
Fig 3 - Physect Aren Govley
Fig 4 - Stotch Map - House Creat Area

2. PROGRAM OBJECTIVE [Include original exploration target.]

lous oma cincent ous. wa Curr

3. PROSPECTING RESULTS [Describe areas prospected and significant outcrops/float encountered. Mineralization must be described in terms of specific minerals and how they occur. These details must be shown on accompanying map(s) of appropriate scale; prospecting traverses should be clearly marked.]

Macc Not of sodimen7 Kesul-50.00 min

BC Prospectors Assistance Program - Guidebook 2000 18

....

D. TECHNICAL REPORT (continued) **REPORT ON RESULTS** (continued) **3. PROSPECTING RESULTS** (continued) Prospecting <u>ac</u> fr he ren 50 m ha tor seale A mor 105 va hos Town RINPO im the K ۵ Thi sample Clipe Tel 00 10° a. the هر ه tre Sange ß a struce 14 ^ (+/ magnetie apoint in c u (in how hased PLUG Alarun 100 00 mon tientre arra in dicate samples protena density 0 an the C Only sulphide minera /12 ation MINOr was obsert ~0

BC Prospectors Assistance Program - Guidebook 2000 19

gano

emine

59 M

Δ

na

D. TECHNICAL REPORT (continued)

REPORT ON RESULTS (continued)

· .

4. GEOCHEMICAL RESULTS [Describe all survey types done (rock, soil, silt) and their objective. Show clearly on accompanying map(s) of appropriate scale all sample sites along with all significant values. Any anomalous areas should be indicated on maps by the use of contouring, variable symbol sizes, or some other suitable technique. Include a discussion/interpretation of results. A copy of analysis/assay certificates must be included with sample numbers from map. Details of individual rock samples taken are encouraged. Significant geochemical values obtained must be stated.]

nng init ial tollo u 50 prosper 1) 4 Noun <u>ea</u> sm -eo N obtaine 200 9a m sedimen onsea 00 0. Marc AlP 600 0 ec. nor ornce 76 Sa mo nler 401 mest IN CHAR 7.00 See Man 32 Coc las sample and in yors. 10 INEM and con value Moss 610 00 40250 evise he ira v u w 140 dispers

m

10

BC Prospectors Assistance Program - Guidebook 2000 20

D. TECHNICAL REPORT (continued)

REPORT ON RESULTS (continued)

5. GEOPHYSICAL RESULTS [Specify the objective of the survey, the method used and the work done. Discuss the results and show the data on an accompanying map of appropriate scale. Any anomalous areas must be indicated on maps by the use of contouring, or some other suitable technique.]

- No geophysical programs completed. 5. OTHER RESULTS [Drilling - describe objective, type and amount of drilling done. Discuss results, including any significant intersections obtained. Indicate on a map of appropriate scale the drill-hole collar location, the angle of inclination and azimuth. Drill logs correlated with assay results must be included. Physical Work - describe the type and amount of physical work done and the reasons for doing it (where not self-evident). This includes lines/grids, trails, trenches, opencuts, undergound work, reclamation, staking of claims, etc. Discuss results where pertinent.], No dailling on physical work completed Signature of Grantee etter Date on FMC + 128515 P. Gev . ESSION PROVINCE R. F. WEICKER OSCIEN

TECHNICAL SUMMARY REPORT - BIG DOG PROJECT - Ref. # 00/01-P78

Rec'a algolat

TECHNICAL SUMMARY REPORT

BIG DOG PROJECT – PGE+Au Targets NTS: 092J15E

Summary

A proposal for funding under the B.C. Prospector's Assistance Program was granted in April 2000 to complete a reconnaissance exploration program on a large ultramafic body of the Shulaps Ultramafic Complex, located north of Gold Bridge in South-Central district of B.C. Access is north from Gold Bridge via a network of logging roads. The ultramafic body is approximately 8 km wide at the north end, 16 km at the south end and about 26 km in length with Big Dog Mountain located in the northern portion. Host rocks are mostly dunite to dunitic peridotite, with orthopyroxenite, olivine orthopyroxenite and harzburgite.

The Big Dog target body hosts a wide range of prospects and mineral occurrences and with significant deposits in adjacent areas. More advance mineral occurrences in the study area include Poison Mountain and the Elizabeth mine. The Poison Mountain porphyry copper deposit with a resource of <u>280 million tonnes grading</u> <u>0.261 per cent copper</u>, <u>0.142 gram per tonne gold</u>, <u>0.007 per cent molybdenum and 0.514 grams per tonne silver</u>. Since its discovery in 1956, the property has been explored by a variety of surveys, including <u>17,269</u> metres of diamond drilling and <u>21,131</u>metres of percussion drilling, which have identified two zones. The Elizabeth-Yalakom prospect located 6.7 kilometres west of the confluence of Blue Creek and the Yalakom River in the Shulaps Range, had limited production in 1958, comprising 8 tonnes of ore yielded 156 grams of silver, 156 grams of gold, <u>24</u> kilograms of lead and 8 kilograms of zinc. Work in 1984 resulted in an indicated ore reserve of 3853 tonnes grading <u>41.1 grams per tonne gold</u>

There are significant occurrences of chromite, copper, gold, silver, and talc within the Big Dog target area. It is the podiform Alpine-type chromite occurrences that may contain significant PGE (platinum group elements) and gold values, which were the principal focus of the proposed reconnaissance exploration program. Based on current maps there were no active mineral claims in the Big Dog target area, however four Crown Grants cover the Elizabeth-Yalakom prospect. A program of prospecting and stream sediment and rock sampling was proposed to define Pt/Pd/Au anomalies that warrant staking and additional exploration programs.

While conducting extensive research it was determined that a previous prospecting program (under the FAME grant program 1987, 1988) was conducted in the project area. I was able to obtain the data from this program, which indicated <u>platinum values of 2035 ppb</u> in heavy mineral concentrates from stream sediments on Horse Creek. This discovery redirected the proposed program and a 20 unit claim (BD #1) was staked over the target area on Horse Creek. It was decided to utilize "Moss Mat" sediment samples to determine if a correlation could be established with the Heavy Mineral Concentrates from 1987-88. Moss mats comprise mossy and silt material taken near the water level, which are placed in linen bags, which may seep. The excess water is squeezed out and the samples are allowed to air dry before being shipped to the laboratory. The laboratory dries the sample, sieves to -80 mesh and analyses for Au, Pt, Pd and 32 elements by ICP. Moss mat require less preparation (and cost) compared to Heavy Mineral separations.

Access

The Big Dog target area is accessed by a network of logging roads from Lillooet and Gold Bridge. Camp sites are available on both sides of the range and accommodations can be obtained in Lillooet, Gold Bridge or at Tyaughton resort.

Prospecting Targets

Platinum group elements (PGE) and gold values related to podiform Alpine-type chromite and sulphicle mineralization. An example is the Peridotite Creek chromite prospect located on the southeast side of a very steep razor back ridge (elevation 2790 metres) northwest of the headwaters of Peridotite Creek, and is hosted within ultramafic rocks of the Shulaps Ultramafic Complex. Chromite occurs in disseminations, stringers, and massive lenses hosted by dunite, serpentite and harzburgite. The target area appears to have had little exploration attention related to PGE values although several significant gold occurrences are known and will be investigated.

Program Description

A two man crew accessed the target area from several locations to take moss mat stream sediment samples and rock samples from numerous locations. Prospecting, geological mapping and rock sampling was also conducted. No physical excavations or drilling was completed. In total 25 field man days were completed and 4 other days. One (1) 20 unit claim (BD #1) was staked to cover a previously anomalous Pt area. The cost of the program under the guidelines of the prospecting grant was \$11,128. To date \$3750 has been received.

Results and Recommendations

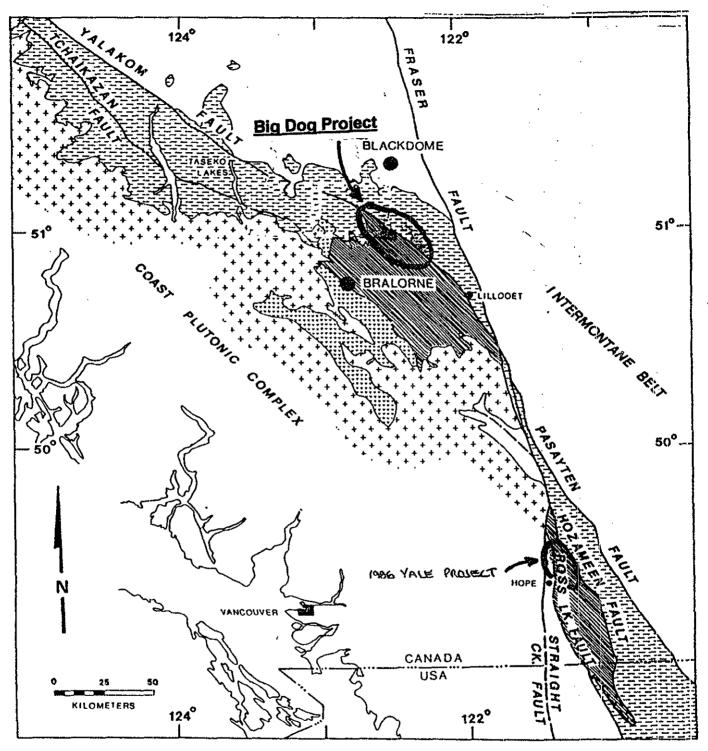
Moss mat sediment geochemical sampling of Horse Creek was completed to confirm and define anomalous platinum (2035 ppb Pt) values that were previously returned in heavy mineral concentrates of stream sediments from a 1998 Prospecting Grant program. Only low values of Au, Pt, and Pd were returned in the recent moss mat sampling program and the results are inconclusive. Additional sampling is required to determine if this geochemical method is suitable for Pt exploration. Prospecting and rock samples taken in over the Big Dog project area, and in the Horse Creek area were not encouraging. However only a very small portion of the entire Shulap ultramafic body has been prospected and the potential remains for podiform Alpine-type chromite occurrences that may contain significant PGE (platinum group). With the increased interest in PGE mineralization I intend to compile a further proposal on the Big Dog project area, to be presented to exploration companies. I feel that the cost and sample density required to test for the PGE potential is beyond the means of the current prospecting grant, but could readily be funded by a interested company.

Respectfully submitted

when the alacker

Robert Weicker (P.Geo) -- Applicant

TECHNICAL SUMMARY REPORT - BIG DOG PROJECT - Ref. # 00/01-P78

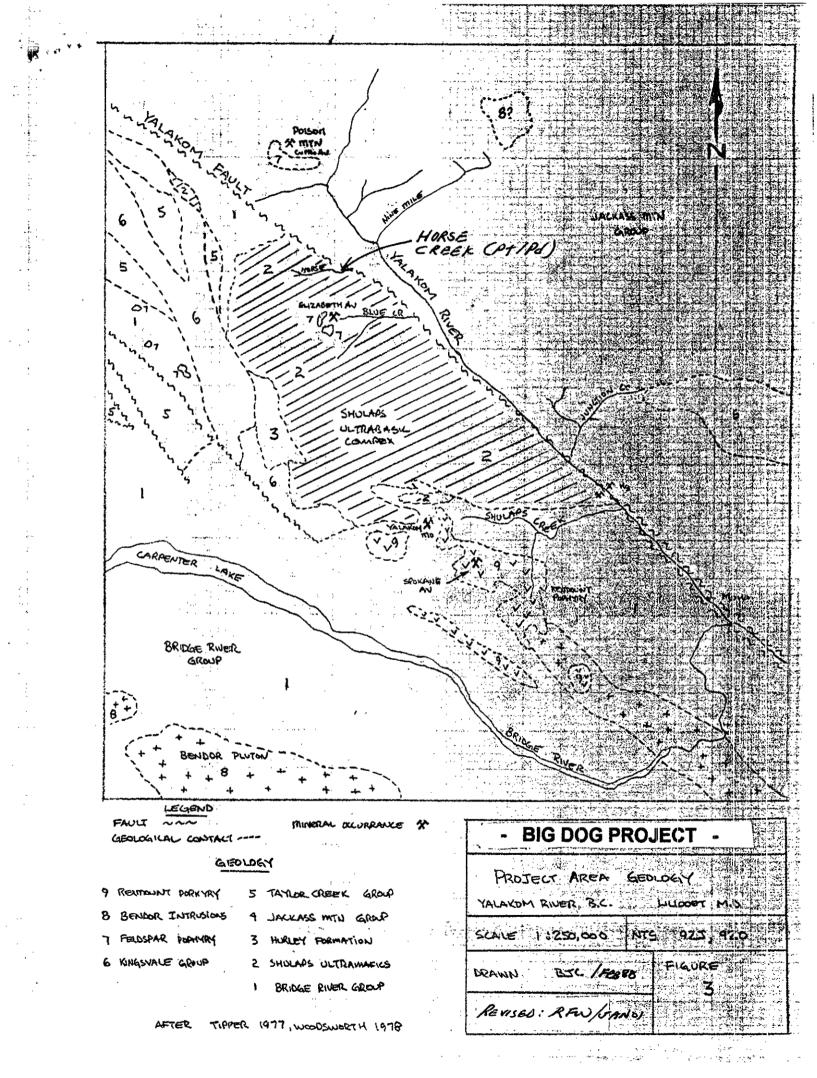

. .

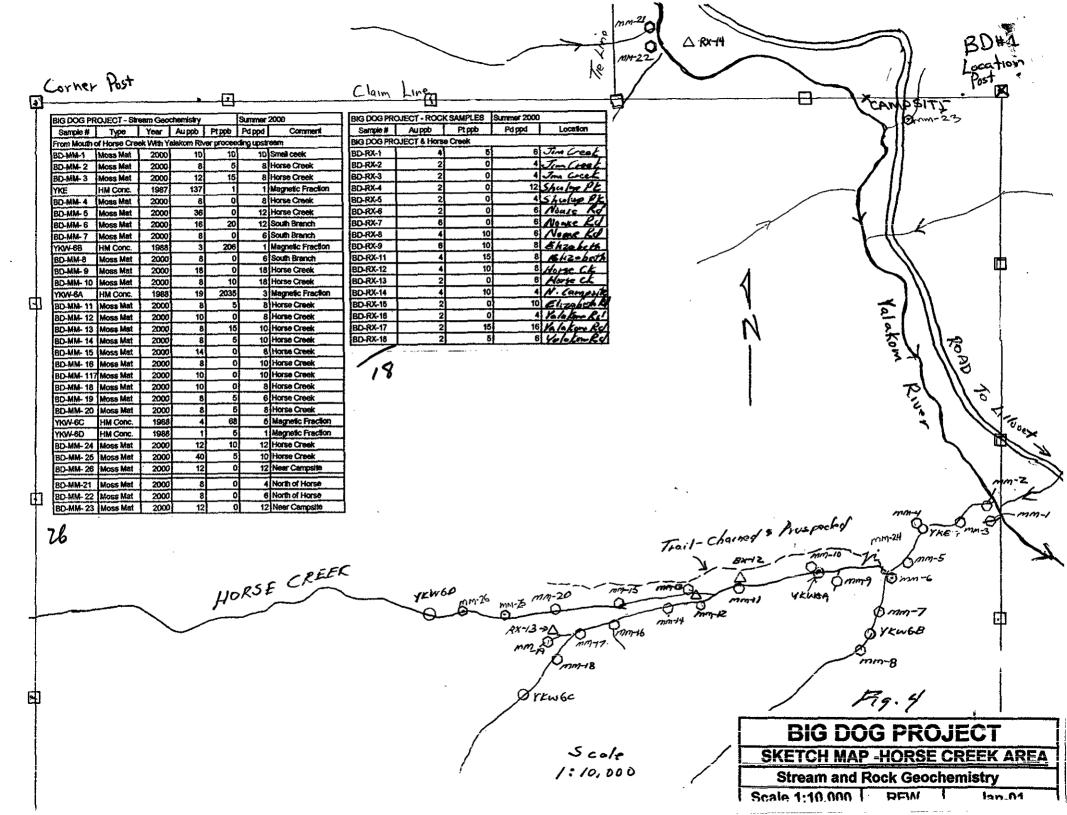
、 ،

٩,

Sample #	Туре	Year	Au ppb	Pt ppb	Pd ppd	Comment
From Mouth of						stream
BD-MM-1	Moss Mat	2000	10			Small ceek
BD-MM- 2	Moss Mat	2000	8	5	8	Horse Creek
BD-MM- 3	Moss Mat	2000	12	15	8	Horse Creek
YKE	HM Conc.	1987	137	1	1	Magnetic Fraction
BD-MM- 4	Moss Mat	2000	8	0	8	Horse Creek
BD-MM- 5	Moss Mat	2000	36	0	12	Horse Creek
BD-MM- 6	Moss Mat	2000	16	20	12	South Branch
BD-MM- 7	Moss Mat	2000	8	0	6	South Branch
YKW-6B	HM Conc.	1988	3	206	1	Magnetic Fraction
BD-MM-8	Moss Mat	2000	8	0	6	South Branch
BD-MM- 9	Moss Mat	2000	18	0	18	Horse Creek
BD-MM- 10	Moss Mat	2000		10	18	Horse Creek
YKW-6A	HM Conc.	1988	19	2035	3	Magnetic Fraction
BD-MM- 11	Moss Mat	2000	8	5	8	Horse Creek
BD-MM-12	Moss Mat	2000	10	0	8	Horse Creek
BD-MM- 13	Moss Mat	2000	8	15	10	Horse Creek
BD-MM-14	Moss Mat	2000	8	5	10	Horse Creek
BD-MM- 15	Moss Mat	2000	14	0	8	Horse Creek
BD-MM- 16	Moss Mat	2000	8	0	10	Horse Creek
BD-MM-117	Moss Mat	2000	10	0	10	Horse Creek
BD-MM- 18	Moss Mat	2000	10	0	8	Horse Creek
BD-MM- 19	Moss Mat	2000	8	5	6	Horse Creek
BD-MM- 20	Moss Mat	2000	8	5	8	Horse Creek
YKW-6C	HM Conc.	1938	4	68	5	Magnetic Fraction
YKW-6D	HM Conc.	1938	1	5	1	Magnetic Fraction
BD-MM- 24	Moss Mat	2000	12	10	12	Horse Creek
BD-MM- 25	Moss Mat	2000	40	5	10	Horse Creek
BD-MM- 26	Moss Mat	2000	12	0	12	Near Campsite
BD-MM-21	Moss Mat	2000	8	0	4	North of Horse
BD-MM- 22	Moss Mat	2000	8	0	6	North of Horse
BD-MM-23	Moss Mat	2000	12	0	12	Near Campsite

Sample #	Au ppb	Pt ppb	Pd ppd
BIG DOG PROJ	ECT & Horse	Creek	
BD-RX-1	4	5]
BD-RX-2	2	0	
BD-RX-3	2	0	
BD-RX-4	2	0	1
BD-RX-5	2	0	
BD-RX-6	2	0	
BD-RX-7	6	0	
BD-RX-8	4	10	·····
BD-RX-9	6	10	
BD-RX-11	4	15	
BD-RX-12	4	10	
BD-RX-13	2	0	
BD-RX-14	4	10	
BD-RX-15	2	0	1
BD-RX-16	2	0	
BD-RX-17	2	15	1
BD-RX-18	2	5	1


1



Tyaughton-Methow Belt

- Triassic-Lower Jurassic Cadwallader and Tyaughton Groups
- Triassic and older Bridge River and Hozameen Groups, including Shulaps ultramatic complex

BIG DOG PROJEC	T
REGIONAL GEOLDG	Y
S.W. BRITISH COWHBI	A
Scale 1:2,000,000	FIGURE
DRAWN BIC DEER GLOVER	2.
DATE FEBRUARY 20/1480	

ALS Chemex

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: KLEINEBAR RESOURCES LTD.

**

3000 WALTON AVE. COQUITLAM, BC V3B 6V6

Page Number :1-A Total Pages :1 Certificate Date: 24-OCT-2030 Invoice No. :10031455 P.O. Number : Account SKM

-)

Project : Comments: ATTN: ROBERT WEICKER

											CERTIFICATE OF ANALYSIS							40031	455		
SAMPLE		ep De	Au ppb ICP	Pt ppb ICP	Pđ ppb ICP	Ag ppm	A1 %	As ppm	B DDm	Ba ppm	Be ppm	Bi ppm	Ca %	Cq ppm	Co Eqq	Cr ppm	Cu	Fe %	Ga ppm	Hg	K %
BD-MM-1 BD-MM-2	201	202	10	10	10	< 0.2	0.91	6	< 10	40	< 0.5	2	0.39	< 0.5	67	633	18	4.75	< 10	< 1	0.05
BD-MM-3	201		8 12	5 15	8 8	< 0.2	0.91	4	< 10	40	< 0.5	< 2	0.41	< 0.5	61	634	17	4.61	< 10	< 1	0.04
BD-MM-4	201			< 5	8	< 0.2 < 0.2	1.03 0.99	2	< 10 < 10	50 50	< 0.5	< 2	0.45	< 0.5	64	619	18	4.06	< 10	< 1	0.04
BD-MM-5	201	202	36	< 5	12	< 0.2	0.97	4	< 10	40	< 0.5 < 0.5	< 2 < 2	0.43 0.42	< 0.5 < 0.5	66 59	646 610	19 18	4.89 4.50	< 10 < 10	< 1 < 1	0.03
BD-MM-6 BD-MM-7		202	16		12	< 0.2	0.97	6	< 10	70	< 0.5	2	1.11	< 0.5	24	595	18	2.33	< 10	< 1	0.04
BD-MM-8	201	202	8	< 5	6	< 0.2	1.05	6	< 10	60	< 0.5	< 2	0.77	< 0.5	32	639	12	2.71	< 10	< 1	0.04
BD-MM-9	201			< 5 < 5	6	< 0.2	0.85	4	< 10	50	< 0.5	< 2	0.62	< 0.5	28	553	11	2.38	< 10	< 1	0.04
BD-MM-10	201	202	18	10	18 8	< 0.2 0.2	0.44 1.00	26	10 < 10	100 40	< 0.5 < 0.5	< 2	1.71 0.44	< 0.5 < 0.5	10 62	522 638	40 19	0.93 4.66	< 10 < 10	< 1 < 1	0.08
BD-MM-11	201		8	5	8	< 0.2	0.98	2	< 10	50	< 0.5	< 2	0.42	< 0.5	59	608	18	4.36	< 10	< 1	0.04
BD-MM-12 BD-MM-13	201	202	10	< 5	8	< 0.2	0.89	8	< 10	40	< 0.5	2	0.39	< 0.5	68	617	15	4.41	< 10	< 1	0.04
BD-MM-13 BD-MM-14	201	202 202	88	15 5	10	< 0.2	1.18	2	< 10	60	< 0.5	2		< 0.5	59	661	21	4.92	< 10	< 1	0.03
BD-MM-15	201	202	14	< 5	10 8	< 0.2 0.2	0.83 0.86	6 6	< 10 < 10	30 30	< 0.5 < 0.5	< 2 < 2	0.33 0.36	< 0.5 < 0.5	71 70	647 665	14 17	4.57 5.09	< 10 < 10	< 1 < 1	0.03
BD-MM-16	201	202	8	< 5	10	< 0.2	0.89	6	< 10	30	< 0.5	2	0.36	< 0.5	70	642	16	4.77	< 10	< 1	0.04
BD-MM-17 BD-MM-18		202	10	< 5	10	< 0.2	0.79	8	< 10	30	< 0.5	< 2	0.34	< 0.5	74	636	13	4.22	< 10	< 1	0.03
BD-MM-19	201	202	10 8	< 5 5	8 6	< 0.2	0.91	6	< 10	30	< 0.5	2	0.37	< 0.5	64	632	16	4.65	< 10	< 1	0.04
BD-MM-20		202	8	5	8	< 0.2 < 0.2	0.86 1.20	2	< 10 < 10	70 60	< 0.5 < 0.5	< 2 < 2	0.61 0.49	< 0.5 < 0.5	35 59	523 637	17 22	3.11 4.29	< 10 < 10	< 1 < 1	0.03
BD-MM-21		202	8	< 5	4	< 0.2	2.58	6	< 10	100	< 0.5	4	1.20	< 0.5	11	39	28	3.30	< 10	< 1	0.08
BD-MM-22 BD-MM-23		202	8	< 5	6	< 0.2	2.26	6	< 10	70	< 0.5	2	1.03	< 0.5	12	36	30	2.73	< 10	<1	0.11
BD-MM-24		202 202	12 12	< 5 10	12	< 0.2	1.70	4	< 10	50	< 0.5	< 2		< 0.5	8	31	24	2.37	< 10	< 1	0.07
BD-MM-25		202	40	5	12 8	< 0.2 < 0.2	1.91 0.94	4	< 10 < 10	90 40	< 0.5 < 0.5	< 2 6	0.60 0.43	< 0.5 < 0.5	16 63	238 633	19 20	2.22 5.33	< 10 < 10	< 1 < 1	0.09
BD-MM-26	201	202	10	10	8	< 0.2	1.05	6	< 10	50	< 0.5	2	0.45	< 0.5	67	667	20	4.79	< 10	< 1	0.03
																		~		1	
																				ç	

CERTIFICATION:

Chemex ALS

Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assayers

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: KLEINEBAR RESOURCES LTD.

**

3000 WALTON AVE. COQUITLAM, BC V3B 6V6

Page Number :1-B Total Pages :1 Certificate Date: 24-OCT-2000 Invoice No. :10031455 P.O. Number : Account :SKM

Project : Comments: ATTN: ROBERT WEICKER

BD-MM-1 201 202 BD-MM-2 201 202	La ppm	Mg	Mn							· · · · · · · · · · · · · · · · · · ·								
BD-MN-2 201 202		%	ppm	Mo ppm	Na %	Ni ppm	P mqq	Pb ppm	S %	SD ppm	Sc ppm	Sr ppm	ti %	T1 mgg	bbir Q	A Add	M M	Zn ppm
		13.35	570	< 1	0.01	1285	360	< 2	0.03	< 2	7	34	0.04	< 10	< 10	40	< 10	44
BD-MM-3 201 202		13.10 12.65	535 560	< 1 < 1	0.01 0.01	1225 1215	260	< 2	0.02	2	7	31	0.04	< 10	< 10	41	< 10	40
BD-MM-4 201 202		12.65	595	< 1	0.01	1215	290 270	< 2 < 2	0.03	2 2	777	34 33	0.05	< 10	< 10	41	< 10	40
BD-MM-5 201 202		11.85	560	< 1	0.01	1120	270	< 2	0.02	2	ź	33	0.05	< 10 < 10	< 10 < 10	43 44	< 10 < 10	40 40
BD-MM-6 201 202	< 10	5.08	375	1	0.03	486	620	< 2	0.10	2	3	93	0.06	< 10	< 10	37	< 10	32
BD-MM-7 201 202 BD-MM-8 201 202	< 10	6.96	465	1	0.02	591	500	< 2	0.07	4	4	69	0.07	< 10	< 10	47	< 10	38
BD-MM-8 201 202 BD-MM-9 201 202	< 10 < 10	6.04 1.76	395 285	< 1	0.02	526 593	410	< 2	0.06	< 2	4	53	0.06	< 10	< 10	39	< 10	34
BD-MM-10 201 202		12.40	565	< 1	0.01	1195	850 310	< 2 < 2	0.13 0.03	2 2	< 1 7	73 32	0.01 0.05	< 10 < 10	< 10 < 10	13 45	< 10 < 10	18 40
BD-MM-11 201 202		11.90	565	1	0.01	1115	290	< 2	0.02	< 2	7	31	0.05	< 10	< 10	44	< 10	38
BD-MM-12 201 202 BD-MM-13 201 202		13.05	610	< 1	0.01	1255	240	< 2	0.02	2	7	42	0.04	< 10	< 10	39	< 10	36
BD-MM-14 201 202	< 10 1 < 10 1	13.90	610 595	< 1 < 1	0.01 0.01	1080 1315	350	< 2	0.02	< 2	8	28	0.07	< 10	< 10	56	< 10	46
3D-MM-15 201 202		13.10	615	< 1	0.01	1270	190 220	< 2 < 2	0.02	< 2	777	36 38	0.03 0.04	< 10 < 10	< 10 < 10	37 43	< 10 < 10	32 38
D-MM-16 201 202		13.00	670	< 1	0.01	1300	220	< 2	0.02	2	7	38	0.04	< 10	< 10	40	< 10	38
3D-MM-17 201 202		14.90	685	< 1	0.01	1430	200	< 2	0.02	2	7	30	0.02	< 10	< 10	33	< 10	32
BD-MM-18 201 202 BD-MM-19 201 202		12.70 7.56	595 400	< 1	0.01	1205	240	< 2	0.02	< 2	7	45	0.04	< 10	< 10	42	< 10	38
D-MM-20 201 202		12.10	610	< 1 < 1	0.02	680 1130	350 350	< 2 < 2	0.0 <u>4</u> 0.03	22	5 8	52 27	0.06 0.06	< 10 < 10	< 10 < 10	40 47	< 10 < 10	40 48
BD-MM-21 201 202		1.12	515	1	0.05	38	750	6	0.03	2	8	196	0.17	< 10	< 10	92	< 10	70
BD-MM-22 201 202 BD-MM-23 201 202		0.94	490	1	0.03	41	470	2	0.03	2	8	204	0.12	< 10	< 10	67	< 10	56
BD-MM-24 201 202		0.76 2.08	290 685	1 1	0.04	26 430	570 540	4	0.05	4	5	134	0.15	< 10	< 10	73	< 10	52
BD-MM-25 201 202		1.25	550	< 1	0.01	1090	270	< 2	0.04 0.03	2 4	5 7	35 30	0.05 0.06	< 10 < 10	< 10 < 10	25 52	< 10 < 10	44 40
D-MM-26 201 202	< 10 1	13.05	625	1	0.01	1245	280	< 2	0.02	2	7	32	0.05	< 10	< 10	45	< 10	40
																\cap		ň

CERTIFICATION:

5 - 2

Col

111

ALS Chemex

Aurora Laboratory Services Ltd. Analytical Chemists * Geochemists * Registered Assayers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: KLEINEBAR RESOURCES LTD.

3000 WALTON AVE. COQUITLAM, BC V3B 6V6

Comments: ATTN: ROBERT WEICKER

С	ERTIFI	CATE	A0031454			ANALYTICAL P	ROCEDURES	5 1 of 2	
SKM) - H roject: .O. # :	LEINEBAI	R RESOURCES I	.TD.	CHEMEX	NUMBER SAMPLES	DESCRIPTION	METHOD	DETECTION LIMIT	upper Limit
		ed to our lab printed on 2	in Vancouver, BC. 4-OCT-2000.	975 976 977 2118 2119 2120 557	19 19 19 19 19 19 19	Au ppb: FA ICP package Pt ppb: FA ICP package Pd ppb: FA ICP package Ag ppm: 32 element, soil & rock Al %: 32 element, soil & rock As ppm: 32 element, soil & rock B ppm: 32 element, rock & soil	FA-ICP FA-ICP FA-ICP ICP-AES ICP-AES ICP-AES ICP-AES	2 5 0.2 0.01 2 10	10000 10000 100.0 15.00 10000 10000
	SAM	PLE PREP	ARATION	2121 2122 2123	19 19 19	Ba ppm: 32 element, soil & rock Be ppm: 32 element, soil & rock Bi ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES	10 0.5 2	10000 100.0 10000
HEMEX	NUMBER SAMPLES		DESCRIPTION	2124 2125 2126 2127 2128	19 19 19 19 19	Ca %: 32 element, soil & rock Cd ppm: 32 element, soil & rock Co ppm: 32 element, soil & rock Cr ppm: 32 element, soil & rock Cu ppm: 32 element, soil & rock	ICP -AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	0.01 0.5 1 1	15.00 500 10000 10000 10000
205 226 3202 229	19 19 19 19 19	0-3 Kg crush Rock - save	y to approx 150 mesh a and split entire reject gestion charge	2150 2130 2131 2132 2151 2151 2134	19 19 19 19 19 19	Fe %: 32 element, soil & rock Ga ppm: 32 element, soil & rock Hg ppm: 32 element, soil & rock K %: 32 element, soil & rock La ppm: 32 element, soil & rock Mg %: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	0.01 10 1 0.01 10 0.01	15.00 10000 10000 10.00 10000
				2135 2136 2137 2138 2139	19 19 19 19 19 19	Mn ppm: 32 element, soil & rock Mn ppm: 32 element, soil & rock Mo ppm: 32 element, soil & rock Na %: 32 element, soil & rock Ni ppm: 32 element, soil & rock P ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	0.01 5 1 0.01 1 10	15.00 10000 10.00 10.00 10000 10000
NOTE	1:			2140 551 2141 2142	19 19 19 19	Pb ppm: 32 element, soil & rock S %: 32 element, rock & soil Sb ppm: 32 element, soil & rock Sc ppm: 32 elements, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES	2 0.01 2 1	10000 5.00 10000 10000
ace n ements	netals : s for wi	in soil and hich the nit:	s suitable for rock samples. ric-aqua regia lete are: Al,	2143 2144 2145 2146 2147	19 19 19 19 19	Sr ppm: 32 element, soil & rock Ti %: 32 element, soil & rock Tl ppm: 32 element, soil & rock U ppm: 32 element, soil & rock V ppm: 32 element, soil & rock	ICP-AES ICP-AES ICP-AES ICP-AES ICP-AES	1 0.01 10 10 1	10000 10.00 10000 10000 10000
igestic	on is pos	ssibly incomp							

A0031454

.

• **

۰,

Analytical Chemists * Geochemists * Registered Assavers 212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: KLEINEBAR RESOURCES LTD.

3000 WALTON AVE. COQUITLAM, BC V3B 6V6

Comments: ATTN: ROBERT WEICKER

С	ERTIF	CATE	A0031454			ANA	LYTICAL F	ROCEDURES	5 2 of 2	
SKM)-H Project: P.O.#:	LEINEBA	R RESOURCES L'	ΓD.	CHEMEX	NUMBER	DESC	RIPTION	METHOD	DETECTION	UPPER LIMIT
amples	submitt port was	ed to our lab printed on 24	in Vancouver, BC. 1-OCT-2000.	2149	19	Zn ppm: 32 element,	soil & rock	ICP-AES	2	10000
	SAM	PLE PREPA	RATION							
CHEMEX CODE	NUMBER SAMPLES		DESCRIPTION							
205 226 3202 229	19 19 19 19	0-3 Kg crush Rock - save	to approx 150 mesh and split entire reject estion charge							
race m lements igestic	netals : s for wi on is pos	ICP package is in soil and hich the nitr ssibly incompl Ga, K, La, Mg	rock samples. ic-aqua regia ete are: Al,							
										Ŷ

A0031454

3 ^{P.}

S Chemex Aurora Laboratory Services Ltd.

Analytical Chemists * Geochemists * Registered Assavers

North Vancouver 212 Brooksbank Ave., British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

To: KLEINEBAR RESOURCES	
-------------------------	--

3000 WALTON AVE. COQUITLAM, BC

V3B 6V6

Project :

Comments: ATTN: ROBERT WEICKER

Total Pages :1 Certificate Date: 24-OCT-2000 Invoice No. :10031454 P.O. Number Account :SKM

Page Number :1-A

CERTIFICATE OF ANALYSIS A0031454 Bi Cđ Cr Cu Fe Ga Ħg ĸ PREP λ1 λs B Ba Be Ca Co Au ppb Pt ppb Pd ppb λg % 2 SAMPLE CODE ICP ICP ۶, DDM % pp⊒ ppm ppm ppm ppm ppm ICP ppm ppm ppm ppm ppm 205 226 0.24 50 10 < 0.5 < 2 0.04 < 0.5 79 614 5 3.33 < 10 < 1 < 0.01 BD-RX-1 < 0.2 < 2 5 6 < 10 < 10 < 0.5 2 4.13 < 0.5 29 191 101 3.69 < 10 < 1 0.04 205 226 2 0.2 3.18 < 2 BD-RX-2 < 5 4 < 0.2 < 10 < 10 16 108 71 3.09 < 10 < 1 0.03 205 226 2 1.62 2 < 0.5 < 2 0.43 < 0.5 BD-RX-3 < 5 4 < 0.5 2 72 1060 14 3.41 < 10 < 1 < 0.01 BD-RX-4 205 226 2 < 5 12 0.2 0.40 < 2 40 10 0.06 < 0,5 137 96 < 5 < 10 20 < 0.5 < 2 0.77 < 0.5 16 2.74 < 10 < 1 0.01 BD-RX-5 205 226 2 4 < 0.2 2.14 < 2 0.11 BD-RX-6 205 226 2 < 5 6 < 0.2 1.07 8 < 10 40 < 0.5 < 2 0.19 < 0.5 8 76 47 2.03 < 10 < 1 205 226 28 84 3.65 < 1 0.21 BD-RX-7 6 < 5 6 < 0.2 1.98 8 < 10 410 < 0.5 2 0.51 < 0.5 5 < 10 0.12 77 94 BD-RX-8 205 226 4 10 6 < 0.2 0.94 14 < 10 240 < 0.5 < 2 0.38 < 0.5 10 2.31 < 10 < 1 62 205 226 6 10 0.18 18 < 10 10 < 0.5 < 2 0.91 < 0.5 420 15 3.28 < 10 < 1 0.01 BD-RX-9 8 < 0.2 90 287 BD-RX-11 205 226 4 15 < 0.2 0.13 < 2 < 10 < 10 < 0.5 < 2 0.08 < 0.5 9 4.36 < 10 < 1 < 0.01 8 11 BD-RX-12 205 226 4 10 8 < 0.2 0.18 < 2 30 < 10 < 0.5 2 0.10 < 0.5 83 407 3.86 < 10 < 1 < 0.01 52 BD-RX-13 205 226 2 40 < 0.5 0.35 < 0.5 6 90 1.58 < 10 < 1 0.07 2 < 5 6 < 0.2 0.91 < 10 < 2 34 0.05 205 30 0.69 17 43 3.90 < 10 < 1 BD-RX-14 226 4 10 4 < 0.2 0.64 8 < 10 0.5 2 < 0.5 578 16 0.02 205 226 40 < 0.5 2.73 < 0.5 90 5.66 < 10 < 1 BD-RX-15 2 < 5 10 < 0.2 0.55 2 10 6 1.30 11 35 29 3.87 0.18 BD-RX-16 205 226 2 2.95 6 < 10 30 < 0.5 2 < 0.5 10 < 1 < 5 4 < 0.2 < 0.5 88 440 10 4.16 < 10 BD-RX-17 205 226 2 15 16 < 0.2 0.18 < 2 40 10 2 0.10 < 0.5 < 1 < 0.01 BD-RX-18 205 226 200 < 0.5 2.88 < 0.5 17 22 30 4.03 10 < 1 0.09 2 5 6 < 0.2 4.13 2 10 2 KH-1 1 0.06 205 226 0.07 240 100 < 0.5 < 2 0.03 < 0.5 6 121 8 2.41 < 10 4 < 5 6 0.2 < 10 205 226 7 1580 < 10 KH-2 242 < 5 6 1.16 2 < 10 70 < 0.5 30 6.91 2.0 40 1.10 < 1 0.14 6.2

CERTIFICATION:_

L 2

XCCC

06

ALS Chemex Aurora Laboratory Services Ltd.

212 Brooksbank Ave., North Vancouver British Columbia, Canada V7J 2C1 PHONE: 604-984-0221 FAX: 604-984-0218

Analytical Chemists * Geochemists * Registered Assayers

To: KLEINEBAR RESOURCES LTD.

Page Number : 1-B Total Pages : 1 Certificate Date: 24-OCT-2900 Invoice No. : 10031454 P.O. Number :

3000 WALTON AVE. COQUITLAM, BC V3B 6V6

Project : Comments: ATTN: ROBERT WEICKER

SKM Account

										CE	RTIFI	CATE	OF A	NAL	rsis	A	0031	454	·····	
SAMPLE	PREP CODE	La ppm	Mg %	Mn ppm	Мо ррш	Na %	Ni ppm	ppm g	Ppm Ppm	5 %	Sb ppm	Sc ppm	Sr ppm	Tİ %	T1 ppm	n Tada	ppm V	N N	Zn ppm	
BD-RX-1 BD-RX-2 BD-RX-3 BD-RX-4 BD-RX-5	205 226 205 226 205 226 205 226 205 226 205 226	< 10 < 10 < 10 < 10 < 10 < 10	>15.00 3.49 1.67 14.85 2.09	480 655 450 500 380	1 2	0.01 0.03 0.06 0.01 0.03	1610 106 88 1480 44	10 140 950 20 270	< 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2	0.05 0.01 0.25 0.01 0.04	< 2 2 4 < 2 4	6 15 3 12 2	47 9	0.01 0.04 0.26 0.01 0.20	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	16 88 36 31 35	< 10 < 10 < 10 < 10 < 10 < 10	<u>16</u> 40 36 28 36	
BD-RX-6 BD-RX-7 BD-RX-8 BD-RX-9 BD-RX-11	205 226 205 226 205 226 205 226 205 226 205 226 205 226		1.02 0.75 0.42 14.35 >15.00	320 635 1710 675 645		0.01 0.04 0.03 0.01 0.01	105 38 43 1270 1900	180 670 350 < 10 30	< 2 6 8 < 2 < 2	0.15 0.05 0.36 0.05 0.01	< 2 4 < 2 < 2 < 2 < 2	4 9 3 6 4		0.01 0.20 0.06 0.01 0.01	< 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	17 30 26 10 8	< 10 < 10 < 10 < 10 < 10 < 10	26 104 76 12 22	
BD-RX-12 BD-RX-13 BD-RX-14 BD-RX-15 BD-RX-16	205 226 205 226 205 226 205 226 205 226 205 226	< 10 < 10	>15.00 1.30 0.15 10.30 1.37	580 285 645 1065 555	< 1 2 < 1 < 1 1	0.01 0.01 0.02 0.01 0.04	1725 46 28 1890 16	10 190 360 20 600	2 < 2 · < 2 ·	<pre>< 0.01 0.03 < 0.01 < 0.01 < 0.01 < 0.01 < 0.01</pre>	2 < 2 < 2 2 6	4 15 13 11	14 37 <	0.01 0.07 0.01 0.01 0.27	< 10 < 10 < 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10 < 10 < 10	11 24 110 35 111	< 10 < 10 < 10 < 10 < 10 < 10	18 40 70 16 70	
BD-RX-17 BD-RX-18 KH-1 KH-2	205 226 205 226 205 226 205 226	< 10 < 10 < 10 10	>15.00 1.85 0.14 0.42	645 755 20 445	< 1 2 < 1 11	0.01 0.05 0.02 0.07	1885 15 36 17	60 610 110 420		< 0.01 < 0.01 0.72 0.43	< 2 10 32 2	4 14 < 1 3	606	: 0.01 0.21 : 0.01 0.06	< 10 < 10 < 10 < 10	< 10 < 10 < 10 < 10	13 117 11 28	< 10 < 10 < 10 < 10	24 74 < 2 336	
							-						·				<u> </u>	1	*	····

CERTIFICATION:

2

itic: