BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR:2000/2001REPORT #:PAP 00-49NAME:BERNIE AUGSTEN

D. TECHNICAL REPORT

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, pages 6 and 7.

SUMMARY OF RESULTS

• This summary section must be filled out by all grantees, one for each project area

						()	
Name	Bernie	Augsten			_Reference	Number 🖄	01-P110
LOCATION/CO	MMODITIES						
Project Area (as li	sted in Part A) He	2 Kman Cree	k		MINFILE	No. if applicabl	e_N/A
Location of Proje	ct Area NTS	82L/2		Lat	<u>50°0°</u>	IN Long	118° 36' W
Description of Lo Lumby, BC	cation and Access	Heckman (Access is ch ragels.	veek is Via H	locate	l approx. (reek	35 Km (forest se	east of
Prospecting Assis KEN Mure Mike Hud Main Commodition	tants(s) - give name(A1 - Profess: ock Pro rs Searched For	s) and qualification spector for 1 GOLI	is of assistant - discou Byews	nt(s) (see Pr ered H - staked	ogram Regu tie co ¢ sold	nation 13, page 6	eposit
Known Mineral C He Mos	Ccurrences in Project	t Area No	ONE	Cother	. then	placer gol	Jat
WORK PERFO	RMED						
1. Conventional F	rospecting (area)		~ 20	Km ²			
2. Geological Ma	oping (hectares/scale)					
3. Geochemical (ype and no. of samp	les) 27 pan co	incentrate	5 21 1	ock same	es Inossma	ł
4. Geophysical (t	pe and line km)	۱	NONE	·			
5. Physical Work	(type and amount)						
6. Drilling (no. ht	oles, size, depth in m	, total m)	NONE				
7. Other (specify)							
Best Discover Project/Claim Na Location (show o Best assay/sample 132 gm/ Description of mi by grg Samewhat pyr.:he bismoth	me <u>Upper</u> Big n map) Lat. type 1802 pp n t Au in pr neralization, host roc <i>illacous metas</i> dusy and vi and <i>ingre</i> g and <i>weakly</i>	Goat 50° 7.5' p.Pb, 34.1pp an concentrate exes, anomalies oliments of agy with glang, Ve anomalous	Long L Long L Mar Ag, L Hac Th leached ths are the gold	nodities _[18° 34 ' 65.1 ppm 20cm (20cm (Bi, = Bi, = Assond Veis Gam	B: AJ Elevation H: 00 pp b Av Juge Ved S centerin Gaus in	in rock. boskel s gre mingr legd, silve
FEEDBACK: com <u>program</u> <u>Keep</u> in one dop	ments and suggestio	ns for Prospector A ane but time and the utime and that c	Assistance P probabl Marcy . are goal	rogram_ / work / J / is - 1 /her H	Overall ks bes Hunk hat is	I think for some it is imp to find a youthive is	the me the t motent to an economic a good

Information on this form is confidential subject to the provisions of the *Freedom of Information Act*.

and Mu

Energy

This

BRITISH

try of Energy and Mines

s Division

أتتقا	
	SUMMARY REPORT
	ON THE
i mand	HECKMAN CREEK PROJECT
inad	VERNON MINING DIVISION
	BRITISH COLUMBIA
	Latitude: 50° 09' North Longitude: 118° 36' West
	NTS: 82L/2
	By: Bernhardt Augsten P.Geo.

•

		TABLE OF CONTENTS	
			Page
	1.0	Introduction	1
	2.0	Location, Access and Physiography	1
	3.0	Exploration History	2
	4.0	Regional and Local Geology	2.
ألهمنا	5.0	Exploration Program	3
		5.1 Methodology	3
		5.2 Results – Heavy Mineral Concentrates	4
		5.3 Results – Silt Sampling	5
		5.4 Results – Rock Sampling	6
		5.5 Results – Mossmat Sampling	7
	6.0	Conclusions and Recommendations	R
	7.0	References	9
			-

LIST OF FIGURES

Figure No.		After Page
1	Location Map	2
2	Heckman Creek Drainage	3
3	Geochemical Compilation Map (1:20,000)	(pocket)

أشيرا

لأتعاد

.

.

		LIST OF TABLES	
	Table No.		Page
ine ini	1	Significant Pan Concentrate Samples	4
	2	Rock Sample Descriptions	6
أنسعا		LIST OF APPENDICES	
	I	ANALYSES	
	п	STATEMENT OF QUALIFICATIONS	
أسعيا			

.

1.0 INTRODUCTION

This report summarizes the results of a prospecting grant located in the Heckman Creek drainage of southern British Columbia, approximately 35 kilometres east of Lumby. The premise of this prospecting grant was to investigate the source of placer gold in both Heckman Creek and its tributaries principally through the use of heavy mineral sampling. Unfortunately the grant could not be completed, however the results obtained do point to three somewhat refined target areas defined by highly anomalous gold in pan concentrate samples and in one area, also by silver, lead and bismuth with weak gold in quartz veins. Further work is anticipated to try and explain these anomalies.

2.0 LOCATION, ACCESS AND PHYSIOGRAPHY

This prospecting grant proposal is centered on the Heckman Creek drainage basin which is located in southern British Columbia on Map Sheet 82L/2E, (Fig. 1,2). The Heckman Creek drainage basin is accessed by the Heckman Creek Forest Service Road which is located approximately 35km east of Lumby, BC. Heckman Creek is a tributary of Monashee Creek which in turn flows into Cherry Creek. The project is centered at latitude 50° 09' and longitude 118° 35'.

The Heckman Creek basin is accessed via the Heckman Creek Forest Service Road which leaves Highway #6 approximately 6km east of Cherryville, across from the Gold Pan Café. There is an extensive network of logging roads and relatively recent cut blocks which facilitate access within the drainage basin. Much of the logging activity has occurred after 1990. Alternative access to the headwaters of some of the tributaries is off the Kettle River main line logging road. Four-wheel drive vehicles are recommended, although much of the area can be accessed with two-wheel drive.

The area can be considered rugged for the most part. The lower two thirds of Heckman Creek is bounded by very steep slopes as is much of Big Goat Creek and Inches Creek. In addition prominent cliffs are formed by the younger plateau basalts, most noticeably on the east side of Heckman Creek. Forest cover consists of mature stands of lodgepole pine, Douglas fir, cedar, hemlock and larch, with one or more of these species predominating depending where you are in the basin.

3.0 EXPLORATION HISTORY

The Heckman Creek drainage basin has had remarkably little exploration work according to the historical documentation available. Relatively minor amounts of placer gold were extracted near the mouth of Heckman Creek, (124grams gold). The only other significant work was done on the Pita 2 showing,(082LSE060), which was located on the north side of Inches Creek which is a tributary of Heckman. These claims are now lapsed, however a significant amount of work was carried out between 1981 and 1988, including soil geochemistry, mapping, trenching and drilling, (Christopher, 1987). The results of this work were poor with highlights of 195ppb Au in a grab sample and 2.5 g/tAg in a 15 centimetre chip sample from a trench. It appears that their work was concentrated on skarn occurrences associated with a contact between limestone and diorite. Inches Creek flows into Heckman Creek near the lower part of the Heckman Creek drainage. From Inches Creek southward there is no documented exploration work.

strongly anomalous in gold and copper at 130ppb Au and 190ppm Cu. Other samples further upstream from this point were not anomalous.

4.0 REGIONAL AND LOCAL GEOLOGY

The Heckman Creek area lies within the southern Omineca Crystalline Belt, an uplifted zone of variably metamorphosed and deformed Proterozoic to Tertiary rocks that straddle the boundary between accreted terranes and ancestral North America. The oldest rock unit in the area is the Carboniferous to Permian Thompson Assemblage comprising argillaceous sediments, volcaniclastic rocks and limestone pods, the individual members of which are interdigitated on a relatively fine scale. The Thompson Assemblage represents an accreted terrain previously mapped as "Cache Creek Group". Intruding these rocks are large masses of Mesozoic granitoid rocks collectively referred to as the 'Nelson Batholith' and smaller intrusive masses of Cenozoic age. Capping all older rocks are Tertiary basaltic volcanics of the Kamloops Group, (Jones, 1959; Okulitch, 1979).

5.0 EXPLORATION PROGRAM

This prospecting proposal was focused on the collection of heavy mineral samples from streams contributing to the Heckman Creek drainage basin in the search for gold. Limited historical work, particularly on Heckman Creek and Big Goat Creek suggested that this sampling method was valid and indeed superior to the collection of silt size stream sediments. In conjunction with heavy mineral sampling, some silt sampling, limited moss mat sampling and prospecting was carried out.

5.1 **METHODOLOGY** Heavy mineral sampling was conducted on any creek that appeared to carry water, even minor amounts. Many of these amounted to little more than ditches, yet when examining their drainage influence they may reflect a relatively large geological area. When doing heavy mineral sampling we found that one of the most important things to do was to try and get as deep as possible into the stream bed to collect the sample. We would collect approximately one half to three quarters of a five gallon pail of mixed sediment from as deep as possible in the stream bed. This would be screened first through a 3/4" mesh and then once again through a 1/4" mesh into a large gold pan. This material would then be panned down to approximately a tablespoon of heavy mineral concentrate. The mineralogy would be examined and any visible gold grains described. The sample would then be transferred into a plastic sample bag. Sample sites are all flagged with the relevant sample number and a GPS coordinate would be taken for the site. The entire heavy mineral concentrate was fire assayed for gold and the weight of the sample was given and the total amount of gold. There is a certain amount of subjectivity to comparing these gold values due to the variability in sample size. For plotting purposes and general comparisons the values were normalized to grams per tonne. This method seems to work, where there is no gold it is quite obvious and the exceptionally high samples stand out. Pan concentrate samples were prefixed with 'H00', silt samples with 'SS00', rock samples with 'R00', and mossmat samples with 'M00'. All samples and significant results are plotted on Fig. 3 (in pocket).

5.2 RESULTS – HEAVY MINERAL CONCENTRATES A total of 27 pan concentrate samples were collected. Of these 48% had no gold whatsoever, 30% were deemed strongly anomalous and 15% were highly anomalous. The most significant samples are listed below. All analyses are available in Appendix I.

Table 1 Significant Pan Concentrate Samples

i di se

Sample #	UTM COOR	DINATES*		AU	SAMPLE	AU
	NORTHING	EASTING	SAMPLE COMMENTS	WEIGHT (gm)	WEIGHT (gm)	gm/t
HOO4	5553946	384374	At least two pieces of visible gold, lots of magnetite, some red garnet	0,301	6,26	48
HOO5	5553990	387951	One piece of coarse visible gold and at least one piece of fine visible gold, lots of magnetite, some red garnet	0,615	4.67	132
H0024	5559090	386652	One piece of coarse gold (500-700µ), no magnetite, appreciable garnet	0.105	8.65	89
H0027	5554267	383854	One piece of coarse gold, two pieces of fine gold, minor magnetite and garnet.	0.168	2.63	62.7

Note: GPS coordinates taken with a handheld GARMIN 12 receiver, set for NAD 83.

H004 was taken within Heckman Creek at the bridge at the 10.3 km point towards the headwaters of the creek. Interestingly, from this point upwards no significant values were obtained within either Heckman Creek or tributaries flowing into it. However, sample number H0027 is taken from a creek that on the maps is shown entering Heckman Creek below the point at which H004 was taken. In the field it looks like at some point this creek may in fact have entered Heckman at a point upstream from where H004 was taken and as such may be the source of the gold at H004. The drainage from which H0027 was collected has not yet been prospected but is considered a primary future

target. H005 was taken from a small tributary to Big Goat Creek flowing into Big Goat from the east. This was the best sample taken in the entire program. This small creek splits further upstream and both branches were sampled with only the one branch containing visible gold, H007 with a normalized value of 12 gm/t. This creek was prospected with no obvious source of the gold seen. This remains a high priority prospecting target. H0024 was taken from a small creek flowing into Heckman from the west. This had a relatively large piece of coarse gold in it. The corresponding silt sample (SS008) was also anomalous in gold at 215.4 ppb Au. This creek was prospected and found to actually dry up or disappear part way up the slope to the west. No source of this gold was found. In summary the heavy mineral sampling has resulted in three focused prospecting targets which have been partially prospected but require more work.

5.3 **RESULTS – SILT SAMPLING** Originally silt sampling wasn't part of the planned program but when it was decided to analyze the entire pan concentrate by fire assay it was felt that some silts would be in order to establish whether there was any trace element geochemistry that may correlate with gold in pan concentrates. In addition it was felt that silt sampling may detect any base metal anomalies. A total of ten silt samples were taken. By and large the silt sample data was uneventful. With few exceptions gold and trace elements were at background levels. However, sample numbers **SS006** and **SS008** were strongly anomalous in gold at 602.0ppb and 215.4ppb respectively. These correspond to anomalous gold in pan concentrates, (See H0024 and H0022). Sample number SS008 was also somewhat anomalous in copper at 110ppm.

5.4 **RESULTS – ROCK SAMPLING** A total of 21 rock samples were

collected during general prospecting and heavy mineral sampling. Most of these samples were float boulders.

TABLE 2 ROCK SAMPLE DESCRIPTIONS

had

1000

450

SAMPLE NUMBER	SAMPLE TYPE*	DESCRIPTION
R001	F	White quartz vein material with $<1\%$ fracture-controlled sphalerite and trace fracture-controlled chalcopyrite
R002	F	Small piece of angular, limonitic rock. On fresh surface rock is an aphanitic light grey to pinkish grey colour containing 5-7% disseminated silver-grey metallic mineral, possible arsenopyrite
R003	0	Large piece (50cm x 20cm) of strongly oxidized, limonitized quartz vein and quartz vein breccia with small amounts of unoxidized pyrite (<0.5%). 25% limonite/iron oxide.
R004	0	Similar to R003 but less oxidized; small amounts (<0.3%) of silver-grey metallic mineral, possible galena.
R005	F	Rusty weathering qtz sericite pyrite schist. Monderately to strongly foliated with 5-10% pyrite segregated along foliation planes
R006	0	15-20 cm. Wide quartz vein hosted in a biotite diorite. Contains 1-10% fracture-controlled pyrite plus strong limonite-coated fractures.
R007	F	15cm x 15cm angular quartz vein float; contains 2% fracture-controlled pyrite and trace fracture-controlled medium grey metallic tabular mineral, (possible arsenopyrite?)
R008	F	Same location as R007; 35cm x 15cm x 15cm piece of crackle-brecciated to brecciated white quartz vein material with strong fracture-controlled limonite. Trace pyrite on fractures and in quartz fragments.
R009	0	Subcrop rubble of a medium grained monzonite to granodiorite cut by a set of parallel quartz +/- pyrite (now mostly limonite) veinlets up to 1cm wide. Veinlets display vuggy to coxcomb texture in places. In more intensely altered pieces, feldspars partially altered to clay.
R0010	F	Large piece (45cm x 55cm x 25cm) of angular quartz vein float with well- developed limonite on fractures; <1% fracture-controlled pyrite and minor drusy/vuggy cavities.

	R0011	F	Large piece (20cm x 15cm x 15cm) of quartz vein, somewhat rounded, with well-developed limonite on fractures, notable was one set of parallel fractures 0.5 to 1cm apart; Also contains 1-2% coarse fracture-controlled pyrite.
	R0012	0	4 metre continuous chip sample across highly contorted grey carbonaceous phyllite with bedding parallel quartz carbonate lenses.
	R0013	0	Poorly exposed quartz vein on high side of road. Material is white quartz with argillaceous partings. No visible sulphides.
ini i	R0014	F	Coarse grained quartz vein with moderate limonitic fractures; 1-2% fracture- controlled pyrite with trace fracture-controlled sphalerite. Hosted by grey siliceous metasediments.
	R0015	F	Quartz/feldspar granite pegmatite vein? No visible sulphides.
	R0016	F	Quartz/feldspar pegmatite
internal distance in the second s	R0017	F	Quartz/feldspar pegmatite with moderate to strong hematite staining
	R0018	F	Pegmatitic quartz vein with coarse pyrite hosted by garnet bearing granite.
	R0019	F	Strongly limonite-stained, sucrosic-textured quartz vein with weak 'layering'; Also medium grey-coloured 'frothy' oxidized layers; No visible sulphides.
	R0020	F	Quartz/feldspar/muscovite +/- garnet pegmatite. No visible sulphicles
· ··· ·	R0021	F	Light grey, fine-grained quartz vein with 10% limonite on fractures and in vugs; No visible sulphides.

• F – float sample, O – outcrop sample

5.5 **RESULTS – MOSS MAT SAMPLING** One mossmat sample was taken (M001) in conjunction with pan concentrate sample H0011. This sample was perhaps weakly anomalous in gold at 11.6ppb. The reason for taking a mossmat at this site was that the creek had large amounts of sericite schist float in it and no silt to collect. We were looking for potential base metal anomalies.

6.0 CONCLUSIONS AND RECOMMENDATIONS

While this prospecting grant was not completed, the work that was done resulted in some interesting heavy mineral gold anomalies that require further follow-up. See also Fig. 3.

ANOMALY A: This anomaly is represented by pan concentrate samples H005 and H007 which were strongly anomalous in gold. The discovery of nearby quartz veins with strongly anomalous silver lead and bismuth (Samples R003,4) suggest the presence of a mineralizing hydrothermal system. Further prospecting is warranted with the addition of reconnaissance contour soil sampling to discover the source of the gold in the streams.

ANOMALY B: This anomaly is represented by pan concentrate sample H0027 which was strongly anomalous in gold with good coarse gold from a very small almost dry stream bed. This creek has never been prospected and the upper reaches of this creek lie close to the contact with the Nelson type intrusions and sedimentary rocks of the Thompson Assemblage including limestones. This environment would be prospective for skarn type gold deposits. In addition this is the southern most tributary of Heckman Creek that carries gold as evidenced from our sampling.

ANOMALY C: This anomaly is represented by pan concentrate sample H0024 and SS008 both of which were strongly anomalous in gold. This creek was prospected upslope until it dried up and disappeared with no indication of mineralization, however the gold was there. The geology in this area is poorly understood. Perhaps reconnaissance contour soil sampling across this drainage may be effective along with further prospecting.

i initia i

provide state

أكر أ

2016

7.0 REFERENCES

Christopher, P. A., 1987:	Geological, Geochemical and Geophysical Report on the PITA claims, (PITA 1-8, 10-16, 20-29). Assessment Report #15,878.
Nelles, D.M., 1986:	Geochemical Report on the Aim Property. Assessment Report #15461
Jones, A.G., 1959:	Vernon map-area, British Columbia; Geol. Surv. Can., Memoir 296
Jones, H.M., 1988:	A Report on the Pita 2 and 5 Claims, Part of Pita II Group, Heckman – Monashee Pass Creeks, Vernon Area. Assessment Report #18,071.
Okulitch, A.V., 1979:	Geology and Mineral Deposits of the Thompson-Shuswap- Okanagan Region. Parts of 82 and 92. Map 1:250,000. GSC Open File 637.
Read, P. B. 1979:	Geology and Mineral Deposits, Eastern Part of Vernon East- Half, British Columbia, GSC Open File 658.

APPENDIX I

1......

in

innti

× -

ić:

. .

.

i think

ANALYTICAL RESULTS

ACME AN ACME (IS ACME (IS	ALYT O 90	ICA 02	L L Acc	ABO red	RAI ite	OR:	20.)) <u>A</u>	D. ugs	ter R.R.	85: ,	2 E GE0 <u>Be1</u> s-10	. H OCH	AST (EM) . <u>e</u> .10,	INGS ICA PRO Nelso	ST LA JEC Dn BC	. VA NAL <u>F B</u> V1L	NCC YSI AH(5P6	00VE) CS (C) 0 1 Sub	R BC ERT Finitte	V CIF le d by:	6A ICA # Ber	1R6 ATE AOC nie A)24 wgst	PH 96 en	IONE	£ (60·	4)25	3-3	158	F)	•X ((504)	253	-17 A	16 A
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	V	Ca	P	La	Сг	Mg	Ba	Ti	B	Al	Na	K	W	Hg	Sc	Tl	s	Ga	Au*
	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	%	ppm	ppm	ppm	ppm	ppm	ppm	ppm	ppm	mqq	%	%	ppm	ррт	%	ppm	%	ppm	%	%	%	ppm	ppm	ppm	ppm	% p	xpm	ppb
SS001	.5	16	6	67	<.1	20	7	465	2.56	2	3	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4	85	.3	<.5	1.0	72	.64	.120	16	23	.66	99	.070	<1	1.14	.015	.11	3	<1	3.7	<1	.02	7	2.8
SS002	.4	24	8	75	.1	53	10	769	2.57	2	6		2	100	.2	<.5	<,5	87	1.00	.085	25	46	1.25	98	.043	1	1.68	.012	.11	1	<1	6.0	<1	.03	9	6.0
SS003	.2	14	6	56	<.1	12	4	379	1.96	1	5		3	87	.3	<.5	<.5	54	.64	.095	20	14	.46	84	.046	<1	1.31	.013	.08	1	<1	3.7	<1	.03	7	3.9
SS004	.3	17	5	56	<.1	25	8	489	2.24	2	2		3	90	.2	<.5	.6	58	.58	.119	16	27	.76	83	.072	<1	1.11	.015	.11	<1	<1	3.7	<1	.01	7	1.8
SS005	1.0	22	7	73	<.1	22	9	595	2.64	2	3		4	108	.3	<.5	4.3	81	.78	.145	18	23	.71	123	.080	<1	1.25	.019	.12	5	<1	4.2	<1	.02	8	3.1
SSOO6 SSOO7 SSOO8 RE SSOO8 STANDARD DS2	.5 .3 .8 .8 14.4	31 30 110 113 126	8 6 7 8 32	77 56 60 66 159	.2 .1 .2 .3 .2	23 56 14 16 38	11 13 8 9 11	604 492 433 468 818	2.79 2.52 2.06 2.27 2.98	5 5 15 16 61	2 1 1 27	<2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <	1 <1 <1 5	90 60 43 45 31	.2 .3 .7 .7 12.0	<.5 <.5 1.0 .7 11.0	.7 <.5 <.5 <.5 11.0	84 71 44 50 78	.73 .72 1.29 1.34 .55	.100 .085 .051 .053 .093	15 11 4 4 17	28 44 18 20 165	.92 1.23 .82 .92 .61	164 84 68 72 152	.105 .085 .056 .068 .100	<1 <1 2 1 4	1.53 1.44 1.10 1.22 1.66	.019 .019 .007 .008 .032	.15 .09 .05 .05 .17	1 <1 <1 <1 8	<1 <1 <1 <1 <1	6.1 5.3 3.5 3.9 4.7	<1 <1 <1 <1 2	.03 .01 .05 .05 .03	9 6 8 7 7 2 9 2	02.0 14.7 5.1 15.4 28.7

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HNO3-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY OPTIMA ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. - SAMPLE TYPE: SILT AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (10 gm) <u>Samples beginning RE' are Reruns and 'RRE' are Reject Reruns.</u>

All results are considered the confidential property of the client. Acre assumes the lightlities for actual cost of the analysis only

		G <u>Augsten, Be</u> R.R. #3,	EOCHEMICAL ANA rnhardt <u>PROJEC</u> s-16, C-10, Nelson BC V	LYSIS CERTIFJ <u>"T BAH001</u> Fi] V1L 5P6 Submitted b	ICATE Le # A002032 y: B. Augsten	ት
SAMPLE#	Mo Cu Pb Zn Ag ppm ppm ppm ppm	Ni Co Mn Fe As U ppnsppnippni %ppnippni	Au Th Sr Cd Sb Bi ppm ppm ppm ppm ppm ppm	V Ca P La C ppm % % ppm pr	Cr Mg Ba Ti B Al om % ppm % ppm %	Na K W Hg Sc TL S Ga Au* % % ppm ppm ppm ppm % ppm ppb
M001	.8 71 14 107 .2	8 7 432 1.72 11 <1	<2 <1 72 .6 .6 <.5	29 13.54 .067 4 1	11 .52 63 .028 2 .87 .0	07 .07 <1 <1 2.7 <1<.01 3 11.6
ATE RECI	GROUP 1DX - 0.50 G UPPER LIMITS - AG, - SAMPLE TYPE: MOS SIVED: JUN 27 200	M SAMPLE LEACHED WITH 3 M AU, HG, W = 100 PPM; MO, S MAT AU* BY ACID LEA O DATE REPORT MAII	ED: July 7/0	95 DEG. C FOR ONE HOL & B = 2,000 PPM; CU, F . (10 gm)	UR, DILUTED TO 10 ML, ANAL PB, ZN, NI, MN, AS, V, LA,	YSED BY OPTIMA ICP-ES. CR = 10,000 PPM. DNG, J. WANG; CERTIFIED B.C. ASSAYERS
					`	
					·	

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 (ISO 9002 Accredited Co.) ASSAY CERTIFICATE Augsten, Bernhardt PROJECT BAH001 File # A002030 R.R. #3, S-16, C+10, Neison BC V1L 5P6 Submitted by: 8, Augsten SAMPLE# Au** Sample mg gm ₹.001 4.87 H001 H002 .001 6.53 9.45 H003 .001 6.26 H004 .301 H005 .615 4.67 .001 H006 7.95 .123 10.27 H007 H008 7.35 .001 12.54 5.39 H009 H010 ł.001 ₹.001 H011 10.43 STANDARD AU-1 .102 14.60

GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM TOTAL SAMPLE, ANALYSIS BY ICP-ES. - SAMPLE TYPE: PAN CONC.

Data A En Sure

All results are considered the confidential property of the client. Acme assumes the liabilities for actual cost of the analysis only

	ANAL ESO	YTI 900:	CAL 2 Ac	LABC Crec	ORAT(lite	ORI d C	es 0.)	LTI	».	1	352 G	B. EO	ha Chi	sti Smi	NGS CAL	ST. Al	VAN NALY	ICOI SI	UVE S (R BC	' V FIF	6A IC2	1R6 ATE		PH	IONE	3(60	4)25	3-3	158	FA	<u>x (6</u>	504	253	-17 A	16 A
TT								Auc	ste	n, R.R.	<u>B</u> € #3,	erni s-1	hai 6, 0	<u>dt</u> -10	PR Nets	OJI on B	<u>SCT</u> C V1L	<u>BA</u> 596	H0(Si	<u>)1</u> Jomit	Fi ted t	le v:B	# 2	AO C ister	203	1									T	Τ
SAMPLE#	Mo	Cu maa	Pb	Zn	Ag	Ni	Co noo	Mn	Fe %	As	U	Au	Th	Sr Sr	Cd	Sb	Bi	V DDM	Ca %	P %	La	Cr Cr	Mg %	Ba	Ti %	8 2000	Al %	Na %	K X	W	Hg	SC DD	Tl	S %	Ga	Au*
							<u></u>	<u> </u>		PP				<u> </u>			F.P.M									P P				PPm	ppin	<u> </u>	P.P			PP~
R001	3.3	1284	4447	5010	42.7	- 3	1	- 98	1.41	- 9	<1	<2	1	11	21.1	25.3	1.7	- 4	.02	.014	1	15	. 19	25	-027	- 6	-20	.004	.07	5	4	.4	<1	.91	1	89.4
R002	8.	82	28	131	.3	- 3	20	486	5.36	<1	<1	<2	3	35	-2	<.5	.5	46	.83	.077	- 4	- 4	1.85	89	.266	- 3	2.35	.048	.07	<1	<1 :	3.2	<1	1.62	5	<.2
R003	5.7	230	1802	79	34.1	3	1	51	2.31	7	<1	<2	1	- 4	1.1	<.5	65.1	11	.01	.004	1	29	.04	6	.003	2	.08	.010	.03	7	<1	.3	<1	.17	<1	71.0
R004	2.3	52	1489	35	21.4	3	1	32	1.83	7	<1	<2	<1	3	.3	<.5	34.4	4	.01	.002	<1	21	.01	13	-002	3	.03	.009	.07	6	<1	<.1	<1	.39	<1	41.5
R005	2.5	58	44	26	3.8	4	6	105	2.48	44	<1	<2	2	4	<.2	2.7	1.1	12	.02	.034	3	8	.03	104	.162	1	.38	.015	.23	<1	<1	2.6	<1	.50	<1	25.6
R006	2.4	122	12	14	.8	9	6	101	2.84	16	<1	<2	1	<1	<.2	<.5	1.2	8	.02	.006	1	18	.09	11	.003	5	.30	.004	.03	6	<1	.3	<1	1.03	<1	11.7
RE R006	12.4	122	11	15	-8	10	7	102	3.01	17	<1	<2	2	1	< 2	< 5	1.2	8	.02	.006	٦.	21	- 09	11	-002	- 3	-30	.004	- 63	6	<1	- 3	<1	1 07	<1	10.5

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY OPTIMA ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MG, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (10 gm) <u>Samples beginning/RE' are Reruns and 'RRE' are Reject Reruns.</u>

DATE RECEIVED: JUN 27 2000 DATE REPORT MAILED: July 1/00 SIGNED BY.....D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

ACME	ANAI	YTI	CAL	LAB	ORAT	OR:	LES	LT	D.		852	? Е.	H	AST	INGS	ST	. VANC	លប	VER	вс	V6	A 1	R6		PHO	NE (604) 25:	3 - 3	158	FA	X (6	04)	253	-17	1.6
	(ISO	900	2 A	ccre	dite	ed (20.)				arc	Cu	ГM	TCAT	21	TAT.VO	та	a d	רידיסיי	P.T.	~~~														
												GEC	,cn	ETA.	TOUT	. FJ	NHUI O	,T9	CC.	1077	.с <u>т</u>	CRI	- 14													
								A	uqsi	ten	<u>, </u>	Ber	ni	e	PROJ	EC	<u>r bah</u>	00	1	Fil	e	# P	100	249	95									1	í 🗰	7
	1								F	R.	#3,	S-16	, C	10,	Nelso	n BC	V1L 5P6		Submi	tted	by:	Bern	ie Al	igste	en											
SAMPLE#	Mo	Cu	Pb	Zn	Ag	Nî	Co	Mn	Fe	As	U	Au	Th	Sr	Cd	Sb	Bi	v	Ca	P	La	Cr	Mg	Ba	Ti	В	Al	Na	K	W	Hg	Sc	τι	S	Ga	Au*
	ppm	ррп	ppm	ppm	ppm	ppm	ppm	ррп	%	ppm	ppm	ppm	opm_	ppm	ppm	ppm	ppm	opm	%	%	ppm	ppm	2	ррп	%	ppm	%	%	%	ppm	ppm	ppm	ppm	% <u>;</u>	pm	ppb
R007	8.4	110	673	4653	12.5	4	<1	532	.67	4	<1	<2	1	34	103.2	<.5	890.1	1	1.05	<.001	<1	45	.01	16	.001	8	.03	.006	.01	252	1	.6	<1	.44	<1 7	72.0
R008	376.3	23	1133	218	25.0	4	<1	103	.93	3	Ż	<2	1	1	2.3	3.3	1803.2	4	.02	.003	<1	52	.01	5	<.001	2	.04	.004	.01	23	1	.2	<1	.07	<1 8	30.6
R009	7.9	7	36	56	.8	2	<1	44	1.37	1	1	<2	4	15	.8	<.5	23.9	9	.09	.049	8	15	.05	47	.001	3	.38	.039	.25	6	<1	.9	<1	.17	4 1	15.6
R0010	8.5	16	85	136	.8	4	2	41	1.00	8	<1	<2	<1	1	1.0	1.5	12.9	1	.01	.001	<1	28	<.01	7	<.001	- 3	.02	-003	.01	9	<1	<.1	<1	.30	2	6.7
R0011	6.2	14	21	52	.3	3	3	36	.90	4	<1	<2	<1	1	.3	.5	4.4	<1	.01<	<.001	<1	31	<.01	2	<.001	<1	.02	.005	<.01	9	<1	<.1	<1	.33	2 8	31.7
P0012	1 0	55	15	177	7	7/		407	7 12	12	-1	~	-1	597	1 2	1 0	15	18	g /0	070	7	16	1 77	175	~ 001	-1	12	024	17	1	-1	70	~1	00	0	
RE R0012	1.9	54	14	137	.7	75	ő	404	3.13	12	<1	$\sqrt{2}$	<1	586	1.3	2.1	1.0	18	8.52	.071	3	17	1.78	175	<_001	<1	.42	.025	.13	1	<1	7.0	<1	.09	8	8.7

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY OPTIMA ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (10 gm) <u>Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.</u>

n--- d/-.

DATE RECEIVED: JUL 21 2000 DATE REPORT MAILED: Hug 5/00

All results are considered the confidential property of the client. Arme assumes the liabilities for actual cost of the analysis only

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716 (ISO 9002 Accredited Co.) ASSAY CERTIFICATE Augsten, Bernie PROJECT BAH001 File # A002494 R.R. #3, S+16, C-10, Nelson BC V1L 5P6 Submitted by: Bernie Augsten SAMPLE# Au** Sample mg gm $2.69 \\ 6.25$ H0012 ₹.001 H0013 .013 H0014 7.00 ₹.001 H0015 .011 4.46 H0016 ₹.001 6.43 H0017 ₹.001 4.414.18 2.65 6.77 H0018 ₹.001 .017 H0019 H0020 .019 H0021 .004 3.77 H0022 H0023 .004 $2.03 \\ 3.15$.040 .105 H0024 1.18 STANDARD AU-1 29.20 .103 GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM TOTAL SAMPLE, ANALYSIS BY ICP-ES. JUL 21 2000 DATE REPORT MAILED: July 36/10 SIGNED BY......D. TOYE, C.LEONG, J. WANG; CERTIFIED B.C. ASSAYERS - SAMPLE TYPE: PAN CONC.

the alignst dome economic the lightlitics for estual All need to ano considered the

DATE RECEIVED:

					Aud	ster	1, E	Bern	le P	ROJI	ECT I	BAHO	01 I	7ile	# A	0035	33				8. SO				88 883
						R.R.	#3, 9	s-16,	C-10, 1	Nelson	BC V1L	5P6	Submit	ted by:	Berni	e Augst	en								Ŀ
SAMPLE#	Mo Cu ppm ppm	Pb Zi ppm ppi	n Ag n ppm	Ni Co ppm ppm	n ppm	Fe / % pş	As U om ppm	JAU nppmi	Th Sr ppm ppm	• Cd	Sb Bi ppnrppnr	V ppm	Ca P % %	La ppm p	Cr Mg om %	Ba 1 ppm	iiB %ppnn	AL %	Na %	K % pp	H W mpp	lg Sc mippm	τι ppm	S Ga % ppm	Au* ppb
SS009 SS0010 RE SS0010	1.1 32 1.3 67 1.2 63	9 6 8 97 7 8	.1 .3 .3	33 13 33 13 32 12	683 597 585	2.88 2.84 2.70	3 2 2 2 4 2	2 <2 2 <2 2 <2 2 <2	4 120 4 50 4 49) <.2) .3) .2	.5 1.4 .9 .7 .5 <.5	88 . 76 1. 75 .	93 .164 02 .078 99 .079	19 15 15	25 .94 29 .85 29 .85	126 .10 132 .09 127 .09)5 <1)3 <1)4 <1	1.39 1.80 1.73	.027 .014 .014	. 15 .31 .31 <	4 < 1 < 1 <	1 4.6 1 5.6 1 5.6	<pre><1 .0 </pre>	01 6 04 7 04 7	1.1 7.9 5.7
	GROUP UPPER	1DX - 0 LIMITS	50 GM AG,	SAMPLE AU, HG,	E LEAC	HED WIT	TH 3 M M; MO,	IL 2-2 , co, (-2 HCL- CD, SB,	HNO3-H BI, 1	H20 AT 9 TH, U &	95 DEG. B = 2,	C FOR	ONE HO	UR, DII PB, ZN,	.UTED TO , NI, M) 10 MI I, AS,	L, ANA V, LA	LYSED , CR =	BY OP = 10,0	TIMA 00 P	ICP-E	s.		
	- SAMP Sample	LE TYPE s begin	SILT	SS80 (RE1_are	60C e Reru	AU* E ns and	BY ACI	ID LEA / are	CHED, A Reject	Reruns	E BY ICH <u>s.</u>	P-MS. (10 gm)		£										
DATE RECE	IVED:	SEP 14	2000	DAT	E RE	PORT	MAT	LED:	Du	ŧ 2	100	SIG	INED E	<u>ж.</u> С	-h	7.D	. TOYE	. C.LE	ONG.	J. WAN	(G: 0	CERTIF	IED B.	C. ASS	AYER
		021 1-	2000						00	v -	/ • •							, 0.22	.onu,		, .			o. 700/	

ACME ANA (ISO	LYTI 900	CAI	, L/	BOI ed:	RATO	ORI 1 C	es 0.)	LTD	•		852 G	E. EO	HA: CHE	STI MI	NGS CAI	ST , A	. V NAL	ANC YS	OUVE IS	R B CER	C TII	V6A FIC	1R ATI	6 E	F	PHON	VE (6	04):	253-	315	58 1	ZAY	(604) 25	53-17 A	16 A
TT								<u>Au</u>	gst R	en .R.	, E #3, S	<u>Bern</u> 8-16,	<u>nie</u> C-1	<u>P</u> 0, N	<u>ROJ</u> elso	T <u>EC</u> n BC	TE V1L	<u>8AH</u> 5P6	001 Sul	F mitt	'ile ed by	Э # /: Ве	A(ernie)03 Aug	582 sten										T	T
SAMPLE#	Mo ppm	Cu ppn	Pb ppm	Zn ppm	Ag ppm	i N ppm	Co ppm	Mn ppm	Fe %	As ppm	U ppm	Au ppm	Th ppm ;	Sr opm	Cd ppm	Sb ppm	Bi ppm	V ppm	Ca %	P %	La ppm	Cr ppm	Mg %	Ba ppm	Ti %	B ppm	Al %	Na %	K %	W ppm (Hg ppm 1	Sc opm	Tl ppm	S % F	Ga Au* opm ppb	
R0013 R0014 R0015 R0016 R0017	6.4 1.0 3.5 .5 2.9	6 63 3 4 2	22 2 4 10 6	286 7 8 4 5	1.1 .2 <.1 <.1 <.1	8 16 4 3 3	<1 4 <1 <1 <1	78 138 104 74 31	.48 1.07 .30 .22 .27	491 2 3 1 1	<1 <1 3 4 2	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	1 1 3 4 2	15 86 4 7 5	17.0 .3 .3 <.2 .2	<.5 .7 <.5 <.5 <.5	3.5 <.5 1.7 <.5 3.3	2 9 <1 <1 <1	.13 2.16 .09 .08 .02	.004 .049 .049 .015 .013	<1 2 2 5 1	24 18 13 11 11	.01 .13 .02 .01 .01	21< 89 10 20< 6	.001 .018 .002 .001 .001	<1 2 1 2 2	.03 2.90 .23 .18 .15	.010 .056 .030 .045 .040	.02 .02 .11 .15 .12	3 3 1 4 1	<1 <1 <1 <1 <1	.3 2.0 .3 .2 <.1	<1 . <1 . <1<. <1<. <1<.	01 33 01 01 01	<1 3.2 10 1.2 1 1.7 1 .5 <1 2.3	
R0018 R0019 R0020 R0021 RE R0021	1.0 11.1 .4 5.3 5.2	9 5 1 13 13	7 3 5 12 12	8 7 4 67 64	.3 .1 <.1 .2	4 2 13 13	<1 <1 <1 8 8	67 41 47 478 478	.56 1.08 .24 1.90 1.90	1 8 <1 4 4	7 <1 18 1 1	~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	4 1 5 3 3	9 5 3 18 18	.2 .3 <.2 .8 .8	<.5 .7 <.5 <.5 <.5	.8 .6 .6 <.5 <.5	2 4 <1 35 35	.06 .01 .04 .57 .58	.016 .009 .011 .080 .081	4 2 3 13 13	11 21 11 14 14	.02 .01 .01 .08 .08	11 37 7 31 32	.001 .001 .001 .001 .001	<1 2 3 3	.18 .10 .16 .35 .35	.053 .009 .056 .003 .002	.07 .09 .05 .04 .04	5 2 4 1	<1 <1 <1 <1 <1	.2 .8 .2 5.4 5.5	<1 .1 <1 .1 <1<.1 <1<.1 <1 .1	01 07 01 07 08	1 1.5 <1 6.7 1 1.3 1 .8 1 .9	

GROUP 1DX - 0.50 GM SAMPLE LEACHED WITH 3 ML 2-2-2 HCL-HN03-H2O AT 95 DEG. C FOR ONE HOUR, DILUTED TO 10 ML, ANALYSED BY OPTIMA ICP-ES. UPPER LIMITS - AG, AU, HG, W = 100 PPM; MO, CO, CD, SB, BI, TH, U & B = 2,000 PPM; CU, PB, ZN, NI, MN, AS, V, LA, CR = 10,000 PPM. ASSAY RECOMMENDED FOR ROCK AND CORE SAMPLES IF CU PB ZN AS > 1%, AG > 30 PPM & AU > 1000 PPB - SAMPLE TYPE: ROCK R150 60C AU* BY ACID LEACHED, ANALYZE BY ICP-MS. (10 gm) Samples beginning 'RE' are Reruns and 'RRE' are Reject Reruns.

DATE RECEIVED: SEP 14 2000 DATE REPORT MAILED

not No.

(ISO 9002 Accredited Co.)

ACME ANALYTICAL LABORATORIES LTD. 852 E. HASTINGS ST. VANCOUVER BC V6A 1R6 PHONE (604) 253-3158 FAX (604) 253-1716

ASSAY CERTIFICATE

L

Augsten, Bernie PROJECT BAH001 File # A003581 R.R. #3, S-16, C-10, Nelson BC V1L 5P6 Submitted by: Bernie Augsten

SAMPLE#	D11 **	* Sample
	mg	a aw
H0025 < H0026 H0027	.001 .005 .168	1 1.71 5 8.65 8 2.68

GROUP 6 - PRECIOUS METALS BY FIRE ASSAY FROM TOTAL SAMPLE, ANALYSIS BY ICP-ES.

- SAMPLE TYPE: PAN CONC.

DATE RECEIVED: SEP 14 2000 DATE REPORT MAILED: Sept 25/00 SIGNED BY. C. LEONG, J. WANG; CERTIFIED B.C. ASSAYERS

APPENDIX II

أكلك

أنفيه

i terri

1000

STATEMENT OF QUALIFICATIONS

TDa	when it F.K. Assertant of the Oits of Malson Dritich Ochumbia handre contifi
I, Bel	mnardt E.K. Augsten of the City of Nelson, British Columbia, hereby certify
1.	I am a graduate of Carleton University with a B.Sc. Hons. in Geology (19
2.	I am presently self-employed as a Consulting Geologist
3.	I have practised as a geologist for the last 13 years in Ontario, Quebec, Ma
	British Columbia, Arizona and Mexico
4.	I conducted and supervised the exploration work on this project.
5.	I have worked on several other projects in southern British Columbia over
	eleven years
6.	I am a registered Professional Geoscientist, registered in the Province of I

Bernhardt Augsten P.Geo. /

أناكأ

. اینین

÷.

in the

فتتنا

i and

1410

i i i i i

