BRITISH COLUMBIA PROSPECTORS ASSISTANCE PROGRAM MINISTRY OF ENERGY AND MINES GEOLOGICAL SURVEY BRANCH

PROGRAM YEAR: 2000/2001

REPORT #: PAP 00-50

NAME:

RICHARD LODMELL

Biogeochemistry - Humus & Vegetation

INAA

Ash Package

Base Metal

Veg'n

Ash Package

Digestion

Ash Package

ICP-MS

Vegetation

INAA

Humus

INAA

	Code 2A	Code 2B	Code 2C	Aqua Regia-ICP Code 2C1	ICP-MS Code 2D	Au+Pt+Pd Code 2E
lu	1 ppb	0.1 ppb	5 ppb			2 ppb
g	2	0.2	2	0.2	0.02	0.02
iu i				1	0.01	0.01
10	0.5	0.05	2		0.001	0.001
<u>li</u>	10	2	50	1	0.01	0.01
b				1	0.01	0.01
ไท โป	20	2	50	1	0.01	0.01
	1	0.01	0.5		0.02	0.02
\s		0.01	*(2)		5	5
3 3a	100	5	50		0.1	0.1
ba Be	100	<u> </u>			0.001	0.001
se Si				<u> </u>	0.001	0.001
ar Br	1	0.01	1		1	0.01
Ca	0.5%	0.01%	0.2%		0.01%	0.01%
d	0.570	0.0170			0.005	0.005
20	1	0.1			0.000	0.001
ж Х	1	0.3	T T		0.1	0.1
ls i	0.5	0.05	0.5		0.001	0.001
ie i	0.05%	0.005%	0.05%		0.001%	0.001%
ia	10.00 /0	0.00070			0.001	0.001
ie		·			0.001	0.001
łf	0.5	0.05	0.5		0.001	0.001
 1g	0.5	0.05	1	· [·		1
.9			+		0.02	<u> </u>
n	1		+		0.01 ppb	0.01 ppb
r	5 ppb	0.1 ppb	2 ppb	1		
(0.01%	0.05%		0.001%	0.001%
J			1		0.5	0.5
Mg					0.001%	0.001%
win ·	1				0.01	0.01
Va	100	1	10		0.01%	0.01%
ND .	1 ····	ļ		1	0.001	0.001
>			+	1		<u> </u>
2d			1	- <u>{</u>	······	3 ppb.
<u>–</u> ਅ			1			2 ppb
Rb	20	1	5		0.001	0.001
le le					1 ppt	1 ppt
łu						0.1 ppb
Sb	0.1	0.005	0.1		0.001	0.001
Sc	0.1	0.01	0.1	1 1	0.1	0.1
Se	2	0.1	2		0.1	0.1
Si		1	1		0.2	0.2
Sn			1		1	1
Sr	100	10	300		0.001	0.001
a	0.5	0.05	0.5		0.001	0.001
íe –			1	<u> </u>	0.001	0.001
n ,					1	1
ri					0.001	0.001
Th	0.5	0.1	0.1		0.001	0.001
3	0.1	0.01	0.1	1	0.001	0.001
1			1		0.1	0.1
N	1	0.05	1	1	0.1	0.1
1			1		0.001	0.001 -
Zr					0.001	0.001
a	0.1	0.01	0.1		0.001	0.001
Ce	1	0.1	3		0.005	0.005
Pr					0.001	0.001
Nd	3	0.3	5		0.001	0.001
Sm	0.1	0.001	0.1		0.001	0.001
Eu	0.2	0.05	0.01		0.001	0.001
Gd			T		0.001	0.001
ն	0.2	0.1	0.5		0.001	0.001
Эу					0.001	0.001
Ho					0.001	0.001
Er			1	1	0.001	0.001
ſm]	0.001	0.001
Yb	0.1	0.005	0.05		0.001	0.001
Lu	0.1	0.001	0.05		0.001	0.001
	<u></u>					\sim
Price	\$13.00	\$16.00	\$14.00	\$ 8.00	\$20.00	\$26.00
*B add-on			\$10.00		11	1.
					{	1.00 ×
					× 1	· •

Code 2A · Humus Code 2B - Vegetation

INAA provides a very cost effective, rapid means of analyzing humus or vegetation to very low detection limits for gold and many other elements useful for geochemical exploration. The organic material is dried below 60°C, macenated and a 5 g aliquot is compressed into a briquette and analyzed using Code 2A or Code 28 depending on whether the material is purely organic (Code 2B) or contains mineral matter (Code 2A). These briquettes are irradiated and their gamma ray spectra aremeasured and quantified. The advantages of this technique are simplicity (less chance of human error and contamination, as ning is costly and the results in loss of gold) and INAA is the technique with ultimate sensitivity for gold and other trace elements. Frices listed for Codes 2A and 2B are for standard 15g briquettes. For a 30g briquetie, add \$2.00. Selected elements may be available at lower cost.

Ash-ICP-MS Some geologists prefer ashing

samples at low temperature (480°C) and determining metals on the ash. This may be advantageous, particularly if base metals are also required for your gold project or for base metal exploration. Note when samples are ashed, there may be volatile loss of certain elements (Au, As, Br, Hg,

Cd, etc). Results are reported on an ash weight basis. Code 2D uses a proprietary acid digestion on the ash followed by ICP-MS and extends the list of elements which are available. Not al elements may be total. This package can be quite useful for diamond exploration. Price for Code 2C1 for single element is \$5.00 with each additional element costing \$2.00.

Code 2E

This package is similar to Code 2D but requires a different digestion of the plant ash to obtain Au, Ft and Pd to low levels. This method has been shown by Dr. Colin Durin (Consultant) to be very effective for PGE exploration.

PAGE 12

Elements are all

in PPM except

where noted.

vegetation in

ACTLABS only ashes

dedicated vegetation

avoid contamination.

ashing furnaces to

Code 2C - Vegetation Ash-INAA Code 2C1 - Vegetation Ash-ICP-OES **Code 2D - Vegetation**

Actiabs Pkg 2E Job #: 21042 Report#: 20729 Client: R. Lodmiell Trace Element Values Are in Parts Per Million unless otherwise indicated. Negative Values Equal Not Detected at That Lower Limit. Values = 999999 are greater than working range of instrument.

Ļ

Values = 999999 are greater than w			De	-	N=0/	M-0/	A10/	c .	1404	0-01	6 .			•			•		-	_	-	
Sample ID:	Sample Wt.(g)	Li	Be	B	Na%	Mg%	AI%	Si	K%	Ca%	Sc	Ti	V V	Cr	Mn	Fe%	Co	Ni	Cu	Zn	Ga	Ge
GMBIO-L14+00W-6	0.5	5.6	0.122	241	0.19	1.47	0.830	1,330	9999999	14.7	7.1	186	16.6	5.7	1,260	1.32	12.7	51.1	579	457	2.54	0.081
GMBIO-L14+00W-8	0.5	9.5	0.278	100	0.24	2.71	1.10	461	0.976	10.4	14.0	276	28.8	14.6	1,200	2.23	25.8	115	1,140	219	4.73	0.096
GMBIO-L14+00W-S	0.5	6.3	0.360	70	0.17	2.07	1,19	536	1.28	6.54	12.1	329	31.4	10.6	1,070	2,71	23.7	93.9	662	217	5.01	0.090
GMBIO-300S+280W	0.406	4.0	0.188	252	0.21	1.97	1.06	920	3.33	11.2	7.7	322	21.5	6.4	1,990	1.76	15.8	67.5	728	775	3.54	0.113
GMBIO-300S+300W	0.228	7.2	0.153	1,030	0.23	5.09	2.52	1,750	9999999	22.4	8.3	524	25.5	10.1	2,430	1.87	23.0	87.5	1,120	1,850	4.11	0.369
GMBIO-300S+320W UT STAT	0.193	11.3	0.434	756	0.27	4.52	3.17	1,340	9999999	15.2	16.8	1,010	48.1	22.7	2,920	3.90	36.7	163	1,640	1,690	8.60	0.350
GMBIO-300S+320W AZ 120	0.235	43.2	0.115	1,290	0.63	5.34	2.60	1,240	9999999	22.3	5.4	416	18.5	7.4	2,280	1.23	15.8	56.6	828	2,040	3.40	0.296
GMBIO-800S+20W AZ 160	0.5	5.9	0.182	330	0.32	2.40	0.768	700	999999	11.7	6.8	323	18.4	6.7	992	1.64	15.0	62.6	642	940	2.86	0.141
GMBIO-800S+20W AZ 162	0.5	5.5	0.263	285	0,59	2.29	1.70	5,020	9999999	10.5	15.1	635	25.7	8.2	992	1.82	17.2	74.5	606	621	5.03	0.413
GMB10-00N+900SB LAZ 70	0.5	5.8	0.208	189	0.22	1.57	0.995	596	999999	11.0	8.0	385	21.7	7.7	990	1.95	15.8	67.1	627	519	3.81	0.148
GMBIO-00N+900SB LAZ 102	0.5	6.6	0.228	172	0.18	2.03	1.11	709	999999	14.6	8.6	284	42.5	21.2	1,310	2.33	17.9	68.0	1,050	661	4.05	0.111
GMBIO-1000S+20E	0.5	2.5	0.048	426	0.09	2.48	0.603	686	999999	25.1	2.6	130	14.4	7.9	1,360	0.661	5.84	23.0	419	563	1.17	0.098
GM8IO-500S+380W	0.400	8.1	0.171	434	1.14	1.77	1.23	2,020	999999	16.5	6.5	298	36.1	15.5	853	1.67	12.0	46.3	850	453	2.64	0.098
GM8IO-500S+400W	0.433	7.0	0.187	316	0.99	1.36	1.34	1,850	999999	16.2	7.8	334	42.0	16.2	695	2.06	13.3	46.8	826	380	3.41	0.107
GMBIO-600S+380W	0.5	6.5	0.223	347	0.70	1.93	1.24	1,940	999999	13.9	7.4	297	40.4	17.1	947	2.14	14.9	60.4	888	513	3.51	0.098
GMBIO-600S+400W	0.5	5.2	0.207	175	0.32	1.53	1.02	1,010	2.92	17.5	7.5	339	44.0	17.6	765	2.35	14.9	53.9	859	396	3.55	0.109
GMBIO-700S+380W AZ 290	0.163	15.9	0.342	1,150	0.83	3.21	2.44	2,470	9.58	27.6	13.6	926	86.2	39.9	1,880	3.85	25.5	109	1.810	1,120	6.59	0.222
GMBIO-700S+380W BY STAT	0.5	5.5	0.224	98	0.07	1.79	1.28	328	2.25	10.4	8.4	504	49.5	23.6	3,030	2.76	16.8	66.3	910	364	4.53	0.078
GMBIO-800S+380W ONLINE	0.285	4.5	0.232	308	0.14	2.32	2.05	1,070	3.18	8.32	8.4	594	49.5	18.9	2,490	2.38	17.5	63.1	978	676	4.38	0.126
GMBIO-800S+380W BY STAT	0.5	4.7	0.393	80	0.12	2.39	1.75	894	2.96	3.93	9.0	504	56.9	10.7	928	2.86	17.9	46.0	175	155	5.33	0.075
GMBIO-900S+380W ONLINE	0.5	4.5	0.196	158	0.15	3.20	1.14	1,060	3.11	14.6	6.8	295	38.1	19.7	4,940	1.82	14.5	60.2	843	695	3.56	0.081
GMBIO-900S+380W AZ 145	0.5	4.5	0.131	285	0.22	1.90	1.36	1,460	9999999	15.4	5.9	304	31.9	11.6	1,990	1.45	10.7	36.9	636	402	2.79	0.094
GMBIO-1000S+400	0.5	4.4	0.135	293	0.22	1.60	1.03	1,410	2.86	22.7	6.5	318	35.3	17.5	2,070	1.41	12.1	59.4	521	1,060	2.86	0.073
GMBIO-1000S+380	0.379	4.5	0.112	298	0.22	1.48	0.713	1,460	2.59	24.8	5.5	332	33.3	16.0	1,170	1.20	9,95	40.8	455	850	2.65	0.056
GMBIO-1100S+380	0.228	10.3	0.233	925	0.48	3.32	2,11	3,560	8.91	44.6	10.1	640	57.7	33.6	3,560	1.97	16.4	75.8	867	1,590	4.77	0.205
GMBIO-1200S+340	0.5	5.9	0.229	352	0.23	1.59	2.09	1,540	999999	5.96	9.4	503	54.3	20.9	2,050	2.28	12.7	39.6	399	628	5.22	0.092
GMBIO-1200S+360	0.252	5.4	0.204	694	0.26	2.87	2.25	2,070	999999	9.99	7.1	521	46.2	17.8	3,190	1.69	16.3	59.1	636	845	3.79	0.115
GMBIO-1300S+240 ONLINE	0.244	14.9	0.640	989	0.41	4.32	5.07	2,320	999999	11.4	19.7	1,460	129	72.5	5,150	5.22	40.1	155	1,890	857	11.4	0.317
GMBIO-1300S+240W AZ 145	0.5	6.2	0.270	270	0.20	1.91	1.73	1,340	999999	9.93	9.1	554	55.8	26.7	4,820	2.35	16.3	65.6	641	400	5.26	0.133
GMBIO-1400S+260	0.5	6.2	0.359	139	0.21	1.39	1.57	1,170	2.86	8.26	11.3	634	65.2	20.9	1,250	2.87	17.5	60.9	363	411	5.70	0.107
GM8IO-1400S+280	0.5	4.6	0.180	216	0.21	1.32	0.972	1,030	3.33	17.9	6.8	403	40.8	11.7	1,640	1.57	10.9	35.9	253	507	3.24	0.081
GMBIO-1400S+280r	0.273	5.1	0.187	275	0.21	1.25	0.934	1,410	3.18	17.8	6.8	430	40.7	10.5	1,470	1.53	10.2	34.3	283	623	3.18	0.077
GMBIO-1500S+320W AZ 300	0.5	3.5	0.153	213	0.16	1.30	0.699	1,610	4.87	19.8	5.7	273	29.4	11.6	1,450	1.18	9.01	36.5	349	574	2.36	0.090
GMBIO-1500S+320W AZ 20	0.5	3,9	0.185	164	0.13	2.28	1.23	1,260	9999999	13.5	6.9	407	44.0	18.2	2,000	1.69	12.1	45.8	467	728	3.39	0.096
GMBIO-1500S+300	0.5	2.9	0.102	309	0.24	0.841	0.724	2,080	3.15	24.9	5.3	277	29.2	11.9	874	1.05	7.63	28.1	308	504	1.97	0.062

Certified By:

Daws Offima

D. D'Anna, Dipl. T. ICPMS Technical Manager, Activation Laboratories Ltd. This report shall not be reproduced except in full without the written approval of the laboratory. Unless olderwise instructed, samples will be disposed of 90 days from the date of this report.

Date: 23 NN 2000

C

Actiabs Pkg 2E Job #: 21042 Trace Element Values Are in Parts Per Million unless other Values = 999999 are greater than working range of instrum

Values = 999999 are greater than work	king range of instrum																						
	Sample Wt.(g)	As	Se	Rb	Sr	Y	Zr	Nb	Мо	Pd ppb	Ag	Cd	in ppb	Sn	Sb	Те	Cs	Ba	La	Ce	Pr	Nd	Sm
GMBIO-L14+00W-6	0.5	42.2	42.5	9,69	613	6.18	2.59	0.227	10.5	39	0.26	7.68	26.4	-1	0.923	0.279	0.420	204	5.52	11.3	1.54	6.53	1.49
GMBIO-L14+00W-8	0.5	21.9	33.4	10.9	493	11.5	2.36	0.253	14.8	56	0.35	3.33	47.4	-1	0.991	0.270	0.482	212	7.01	14.2	1.98	8.96	2.28
GMBIO-L14+00W-S	0.5	14.4	16.3	11.1	320	13.3	5.97	0.461	8.59	78	0.25	3.67	38.3	-1	1.06	0.143	0.774	174	11.3	21.8	3.27	14.1	3.19
GMBIO-300S+280W	0.406	39.5	27.7	10.6	801	6.89	3.26	0.270	15.1	40	0.38	11.3	42,9	-1	1.52	0.373	0.562	125	6.55	13.7	1.83	7.64	1.66
GMBIO-300S+300W	0.228	79.8	124	23.8	3,330	5.77	5.66	0.484	40.4	80	2.34	12.9	44.2	-2	2.06	2.02	0.959	597	6.35	14.9	1.72	6.93	1.45
GMBIO-300S+320W UT STAT	0.193	71.5	80.4	26.2	2,750	11.5	12.0	0.901	33.9	176	1.55	15.8	74.1	-3	3.63	1.69	1.60	763	10.9	24.2	3.01	12.4	2.78
GMBIO-300S+320W AZ 120	0.235	75.9	89.1	58.2	2,920	3.52	4.07	0.400	46.6	84	1.64	20.4	26.5	6	1.37	1.37	2.04	444	3.94	10.2	1.02	4.12	0.881
GMBIO-800S+20W AZ 160	0.5	30.6	26.8	15.0	1,080	7.68	3.44	0.315	17.9	49	0.28	17.4	32.5	-1	1.18	0.378	0.622	147	7.43	15.2	2.06	8.79	1.95
GMBIO-800S+20W AZ 162	0.5	39.3	26.0	20.6	835	9.47	7.55	0.803	14.3	78	0.33	9.76	43.9	-1	1.53	0.355	0.906	54.6	7.85	21.0	2.26	9.62	2.19
GMBIO-00N+900SB LAZ 70	0.5	29.1	27.9	12.8	1,070	7.52	4.03	0.369	12.5	46	0.32	7.35	41.7	-1	1.37	0.428	0.769	144	7.51	15.1	2.06	8.51	1.86
GMBIO-00N+900SB LAZ 102	0.5	32.9	44.9	11.4	1,650	7.62	1.47	0.236	16.3	38	0.34	6.97	46.2	-1	1.85	0.641	0.717	171	8.09	16.4	2.19	8.95	1.97
GMBIO-1000S+20E	0.5	49.2	78.2	9.77	1,420	1.59	1.00	0.162	11.9	17	11.9	11.7	11.1	-1	0.605	0.572	0.290	191	1.79	4.07	0.464	1.80	0.374
GMBIO-500S+380W	0.400	50.0	47.0	15.0	836	5.28	1.27	0.210	14.9	29	0.26	5.31	26.2	2	3.22	0.348	0.792	220	5.43	11.4	1.47	6.13	1.36
GMBIO-500S+400W	0.433	59.0	48.7	15.8	692	6.53	1.23	0.208	16.2	25	0.26	4.85	29,4	-1	1.61	0.316	1.07	229	7.05	14.6	1.91	7.80	1.70
GMBIO-600S+380W	0.5	43.7	41.5	12.5	827	6.29	0.966	0.238	13.8	23	0.26	6.90	35.1	-1	1.48	0.369	0.847	131	6.98	14.4	1.87	7.70	1.69
GMBIO-600S+400W	0.5	31.5	49.9	10.9	787	7.92	1.72	0.263	13.5	42	0.25	5.82	35.8	-1	1.51	0.352	0,750	188	8.53	17.1	2.32	9.68	2.10
GMBIO-700S+380W AZ 290	0.163	100	126	23.0	3,430	10.7	7.08	0.857	43.4	96	0.62	22.7	70.0	-3	4.54	1.86	1.38	884	11.3	25.7	3.02	12.2	2.64
GMBIO-700S+380W BY STAT	0.5	25.8	23.1	10.2	768	5.59	1.81	0.401	17.1	37	0.50	3.93	44.0	1	1.52	0.271	0.984	135	6.17	13.1	1.75	7.09	1.49
GMBIO-800S+380W ONLINE	0.285	36.9	18.7	11.9	1,220	5.78	2.19	0.481	17.6	32	1.35	8.57	42.9	-2	1.78	0.378	0.891	290	5.92	13.0	1.64	6.61	1.39
GMBIO-800S+380W BY STAT	0.5	14.3	9.2	11.9	551	8.05	2.52	0.236	1.99	36	0.34	1.33	20,9	-1	0.404	0.190	1.04	340	7.38	15.4	2.03	8.53	1.94
GMBIO-900S+380W ONLINE	0.5	34.2	36.1	10.8	969	4.62	0.914	0.188	15.4	25	3.05	6.28	31.2	-1	1.15	0.343	0.913	80.3	5.01	10.8	1.39	5.64	1.20
GMBIO-900S+380W AZ 145	0.5	45.4	32.7	15.1	828	3.19	0.711	0.249	11.5	23	0.68	4.83	23.7	-1	1.75	0.304	1.10	141	3.91	8.28	1.03	4.07	0.847
GMBIO-1000S+400	0.5	38.4	59.0	14.9	944	3.94	1.14	0.190	9.30	26	0.21	6.75	28,0	-1	1.80	0.281	1.24	145	4.52	9.21	1.18	4.69	0.990
GMBIO-1000S+380	0.379	36.3	61.9	12.0	1,170	3.89	1.90	0.212	11.1	25	0.17	9.53	20,9	-1	0.875	0.394	0.911	169	4.13	8.64	1.05	4.27	0.917
GMBIO-1100S+380	0.228	106	180	27.0	2,010	5.71	4.25	0.499	16.5	83	0.33	14.1	43.2	-2	3.57	1.03	1.84		6.88	15.8	1.77	6.89	1.47
GMBIO-1200S+340	0.5	25.8	12.9	22.5	1,060	5.23	1.40	0.255	10.7	30	0.87	3.44	26.8	-1	0.760	0.336	1.54	93.7	5.36	11.8	1.48	6.08	1.33
GMBIO-1200S+360	0.252	113	26.0	22.9	1,760	5.29	1.31	0.265	22.7	27	2.42	7.13	31.7	-2	1.68	0.541	2.27	137	5.15	11.7	1.42	5.60	1.22
GMBIO-1300S+240 ONLINE	0.244	79.4	61.3	58.3	2,770	12.0	5.72	0.486	46.3	81	1.38	18.1	120	3	3.97	1.43	3.24	799	14.3	30.4	3.84	15.3	3.23
GMBIO-1300S+240W AZ 145	0.5	55.6	26.0	18.5	910	6.30	1.30	0.306	13.8	31	3.17	4.28	47.5	1	2.26	0.380	1.64	87.9	7.19	15.4	1.99	7.99	1.68
GMBIO-1400S+260	0.5	22.0	17.8	14.7	393	11.0	1.36	0.173	8.88	29	0.16	2.92	34.8	-1	2.11	0.147	1.51		11.2	23.6	3.05	12.5	2.71
GMBIO-1400S+280	0.5	34.7	39.6	12.9	528	6.38	0.933	0.176	6.96	29	0.14	5.21	22.8	-1	2.69	0.180	1.12		6.56	14.0	1.77	7.35	1.59
GMBIO-1400S+280r	0.273	35.4	46.9	14.0	541	6.00	2.57	0.169	6.92	43	0.16	5.83	22.5	-2	2.70	0.160	1.04		5.69	12.8	1.52	6.17	1.36
GMBIO-1500S+320W AZ 300	0.5	35.3	55.7	11.3	569	3.87	0.813	0.161	6.38	14	0.43	7.34	34.5	-1	1.42	0.469	0.772		4.29	9.08	1.11	4.48	0.951
GMBIO-1500S+320W AZ 20	0.5	30.6	33.4	13.7	930	3.71	0.965	0.216	11.8	26	0.47	5.16	32.8	-1	1.65	0.349	0.997		4.09	9.20	1.15	4.64	0.941
GMBIO-1500S+300	0.5	44.1	69.2	10.2	611	3.26	1.25	0.178	6.94	30	0.20	6.31	16.2	-1	0.982	0.324	0.583	222	3.60	7.63	0.910	3.66	0.801

€

Actiabs Pkg 2E Job #: 21042 Trace Element Values Are in Parts Per Million unless other Values = 999999 are greater than working range of instrum

Sample ID:	Sample Wt.(g)	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	Hf	Та	w	Re ppb	Pt ppb	Au ppb	TI	Pb	Bi	Th	31
GMBIO-L14+00W-6	0.5	0.430	1.48	0.230	1,21	0.236	0.677	0.089	0.544	0.082	0.076	0.003	0.4	57.7	4	82	0.154	51.5	0.11	0.527	0.272
GMBIO-L14+00W-8	0.5	0.745	2.30	0.392	2.26	0.444	1.30	0.182	1.10	0.166	0.088	0.004	0.4	115	ė	187	0.182	25.3	0.10	0.625	0.513
GMBIO-L14+00W-S	0.5	0.954	3.14	0.493	2.77	0.542	1.54	0.204	1.24	0.188	0.184	0.004	0.4	21.9	ž	51	0.273	34.3	0.12	0.975	0.487
GMBIO-300S+280W	0.406	0.458	1.60	0.246	1.38	0.257	0.726	0.101	0.595	0.087	0.102	0.004	0.6	33.2	ġ	24	0.163	91.8	0.18	0.412	0.436
GMBIO-300S+300W	0.228	0.459	1.40	0.216	1.15	0.217	0.625	0.084	0.536	0.081	0.142	0.005	0.9	86.9	14	46	1.18	62.0	0.41	0.715	2.25
GMBIO-300S+320W UT STAT	0.193	0.843	2.68	0.420	2.30	0.430	1.24	0.175	1.04	0.160	0.336	0.006	1.5	81.0	28	280	1.27	97.4	0.48	0.990	0.886
GMBIO-300S+320W AZ 120	0.235	0.282	0.866	0.129	0.718	0.131	0.364	0.050	0.304	0.046	0.101	0.005	0.9	61.6	6	24	1.10	51.1	0.23	0.663	0.411
GM8IO-800S+20W AZ 160	0.5	0.520	1.91	0.285	1.57	0.299	0.849	0.111	0.663	0.097	0.101	0.004	0.5	109	6	6	0.179	108	0.14	0.652	0.419
GMBIO-800S+20W AZ 162	0.5	0.652	2.18	0.340	1,87	0.353	1.03	0.140	0.825	0.126	0.217	0.021	0.6	75.9	35	5	0.071	104	0.17	0.687	0.541
GMBIO-00N+900SB LAZ 70	0.5	0.527	1.85	0.279	1,51	0.286	0.811	0.106	0.648	0.099	0.115	0.006	0.6	52.6	4	3	0.109	112	0.21	0.654	0.416
GMBIO-00N+900SB LAZ 102	0.5	0.534	1.88	0.281	1.53	0.287	0.817	0,109	0.647	0.099	0.038	0.005	0.4	29.6	4	33	0.396	128	1.11	0.566	0.545
GMBIO-1000S+20E	0.5	0.117	0.386	0.058	0.301	0.055	0.159	0.022	0.125	0.020	0.027	0.002	0.3	15.2	3	11	0.397	18.9	0.88	0.219	0.161
GMBIO-500S+380W	0.400	0.368	1.33	0.197	1.06	0.198	0.571	0.074	0.451	0.067	0.042	0.004	0.6	111	9	22	0.619	291	1.12	0.768	0.387
GMBIO-500S+400W	0.433	0.482	1.65	0.243	1.28	0.246	0.690	0.090	0.551	0.083	0.044	0.005	0.7	75.3	6	40	0.538	93.3	1.06	0.622	0.379
GMBIO-600S+380W	0.5	0.456	1.60	0.242	1.30	0.241	0.680	0.088	0.549	0.082	0.036	0.006	0.6	58.5	8	31	0.354	91.6	0.88	0.701	0.387
GMBIO-600S+400W	0.5	0.568	2.06	0.308	1.62	0.304	0.870	0.116	0.682	0.101	0.051	0.005	0.5	26.3	21	50	0.338	97.5	0.72	0.603	0.375
GMBIO-700S+380W AZ 290	0.163	0.801	2.64	0.382	2.08	0.385	1.11	0.146	0.910	0.141	0.182	0.009	1.4	85.8	14	50	2.03	170	6.56	1.30	3.42
GMBIO-700S+380W BY STAT	0.5	0.408	1.40	0.208	1.11	0.216	0.645	0.086	0.549	0.081	0.052	0.003	0.6	27.3	12	100	0.382	73.4	0.48	0.604	0.464
GMBIO-800S+380W ONLINE	0.285	0.410	1.38	0.202	1.12	0.214	0.627	0.087	0.530	0.080	0.054	0.003	0.7	39.8	7	42	0.838	65.8	0.66	0.655	0.462
GMBIO-800S+380W BY STAT	0.5	0.585	1.97	0.299	1.63	0.320	0.945	0.125	0.798	0.118	0.048	0.005	0.3	3.90	-2	8	0.241	5.41	0.42	1.19	0.886
GMBIO-900S+380W ONLINE	0.5	0.329	1.17	0.172	0.905	0.173	0.510	0.066	0.413	0.061	0.026	0.003	0.5	22.0	5	34	0.559	78.4	0.48	0.470	0.365
GMBIO-900S+380W AZ 145	0.5	0.239	0.835	0.124	0.638	0.120	0.346	0.045	0.277	0.042	0.023	0.004	0.5	27.2	6	33	0,191	34.3	0.28	0.426	0.282
GMBIO-1000S+400	0.5	0.273	0.998	0.142	0.750	0.139	0.397	0.053	0.320	0.050	0.032	0.004	0.5	20.2	6	22	0.390	61.9	0.66	0.468	0.321
GMBIO-1000S+380	0.379	0.268	0.926	0.139	0.720	0.138	0.389	0.053	0.321	0.048	0.057	0.004	0.6	33.0	5	23	0.062	36.7	0.71	0.468	0.286
GMBIO-1100S+380	0.228	0.492	1.46	0.204	1.09	0.207	0.574	0.077	0.479	0.080	0.101	0.009	1.0	55.8	7	38	0.196	91.3	4.27	0.976	0.637
GMBIO-1200S+340	0.5	0.386	1.33	0.196	1.06	0.196	0.569	0.075	0.468	0.067	0.042	0.006	0.4	18.6	3	8	0.705	26.5	0.52	0.689	0.327
GMBIO-1200S+360	0.252	0.345	1.22	0.181	0.992	0.183	0.538	0.071	0.436	0.070	0.038	0.006	0.8	39.4	.6	17	0.371	47.8	1.05	0.651	0.381
GMBIO-1300S+240 ONLINE	0.244	0.984	3.12	0.448	2.37	0.445	1.32	0.175	1.14	0.170	0.145	0.012	1.4	72.4	15	149	3.96	112	5.81	1.75	1.77
GMBIO-1300S+240W AZ 145	0.5	0.464	1.64	0.238	1.26	0.242	0.679	0.090	0.561	0.083	0.038	0.005	0.5	24.7	2	26	0.723	67.3	0.70	0.771	0.529
GMBIO-1400S+260	0.5	0.767	2.74	0.409	2.16	0.412	1.20	0.154	0.964	0.140	0.045	D.007	0.4	14.5	5	16	0.864	57.4	0.43	0.804	0.474
GMBIO-1400S+280	0.5	0.456	1.63	0.241	1.27	0.243	0.689	0.089	0.553	0.083	0.033	0.004	0.3	15.6	4	12	0.595	41.9	0.29	0.555	0.324
GMBIO-1400S+280r	0.273	0.410	1.40	0.209	1.12	0.214	0.613	0.078	0.491	0.077	0.061	0.003	0.5	16.1	-4	12	0.666	38.4	0.71	0.526	0.292
GMBIO-1500S+320W AZ 300	0.5	0.257	0.976	0.138	0.735	0.140 0.136	0.395	0.050	0.316 0.361	0.048	0.023	0.004	0.4	15.8	3	48	0.378	79.5	0.57	0.395	0.340
GMBIO-1500S+320W AZ 20 GMBIO-1500S+300	0.5 0.5	0.259 0.241	0.907 0.840	0.131 0.120	0.706 0.643	0.136	0.418 0.343	0.055 0.046	0.361	0.055 0.042	0.029 0.038	0.006 0.004	0.4 0.4	17,9 31,8	2	36	0.753	55.5	0.46	0.474	0.401
GIMPIO-10003+300	0.5	0.241	0.040	0.320	0.045	0.122	0.345	0.040	0.200	0.042	0.030	0.004	0.4	31.0	3	16	0.114	37.8	0.45	0.402	0.247

D. TECHNICAL	REPORT
--------------	--------

- One technical report to be completed for each project area.
- Refer to Program Regulations 15 to 17, pages 6 and 7.

SUMMARY OF RESULTS

• This summary section must be filled out by all grantees, one for each project area

tees, one for each project area Reference Number

LOCATION/COMMODITIES	

Name RICHARD LODMELL

Project Area (as listed in Part A) <u> </u>	AMLOOPS MININ	& DIVISION	MINFILE No. if	applicable
Location of Project Area NTS	92I/9W	La	t 50° 37.5	Long 120° 28'
Description of Location and Access	12 Km SW FROI	n KAMLOOPS	AND 2KM SOUTH	OF SUGAR LOAF HILL
ACCRESS IS VIA HWY 5 A				
RANCHING/LOCKING ROADS AND				
Prospecting Assistants(s) - give nam LARRY LUTJEN - MALAS	PINA COLLEGE	MINERAL EX		
	E OF 1983 CI	ELETIFICATE		····
Main Commodities Searched For				
C	OPPER, GULD 1	AND BASIE	METALS	
Known Mineral Occurrences in Proj	ect Area		· · · · · · · · · · · · · · · · · · ·	
Č	SPPER GOLD	AND BASE	matals	

5

WORK PERFORMED

1. Conventional Prospecting (area)	200	HRCTARES	
2. Geological Mapping (hectares/scale)		· · · · · · · · · · · · · · · · · · ·	

- 3. Geochemical (type and no. of samples) SCIL, 379 SAMPLES AND BIOGEOCHEM 188 SAMPLES
- 4. Geophysical (type and line km) MAGNETOMETER SURVEY OF 16 LINE KM
- 5. Physical Work (type and amount) 1.5Km BASE LINE AND 16 Km of GRID LINE 6. Drilling (no. holes, size, depth in m, total m)
- 7. Other (specify)_____

Best Discovery

Project/Claim Name	GM	CLAIMS	_ Commodities				
Location (show on map)	Lat	50 37.5	Long 120°	28′	Elevation	2800) FT
Best assay/sample type 1 TO 176 PPB, Co	<u> Sio Creocn</u> PPIZR TO	IEMICIL SAMP	NECKEL TO 16;	70 280 PPM ANI	D MOLY TO	<u>Аггаріи</u> - 46:6	<u>т</u> грм
Description of mineralizat			ANOMALRS	NW TO	SE		
I3 PALLADIUM INDICATING UN						11212112	VALUES
	<u></u> .			<u> </u>			

FEEDBACK: comments and suggestions for Prospector Assistance Program_____

Information on this form is

Ministry of lEnergy and Mines Energy and Minerals Division

D. TECHNICAL REPORT (continued)

REPORT ON RESULTS

- Those submitting a copy of an Assessment Report or a report of similar quality that covers all the key elements listed below are not required to fill out this section.
- Refer to Program Regulation 17D on page 6 for details before filling this section out (use extra pages if necessary)
- Supporting data must be submitted with the following TECHNICAL REPORT or any report accepted in lieu of.

Information on this form is confidential for one year from the date of receipt subject to the provisions of the Freedom of Information Act.

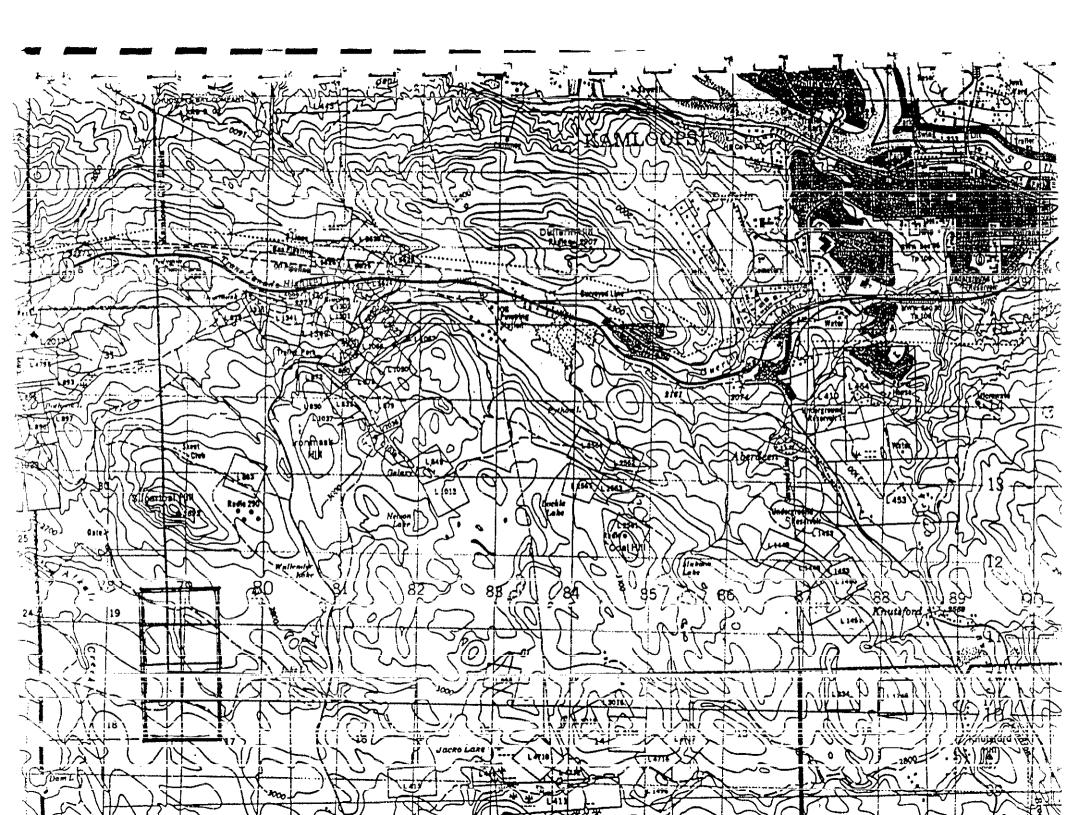
Name RICHARD	LODMELL	Reference Number	
--------------	---------	------------------	--

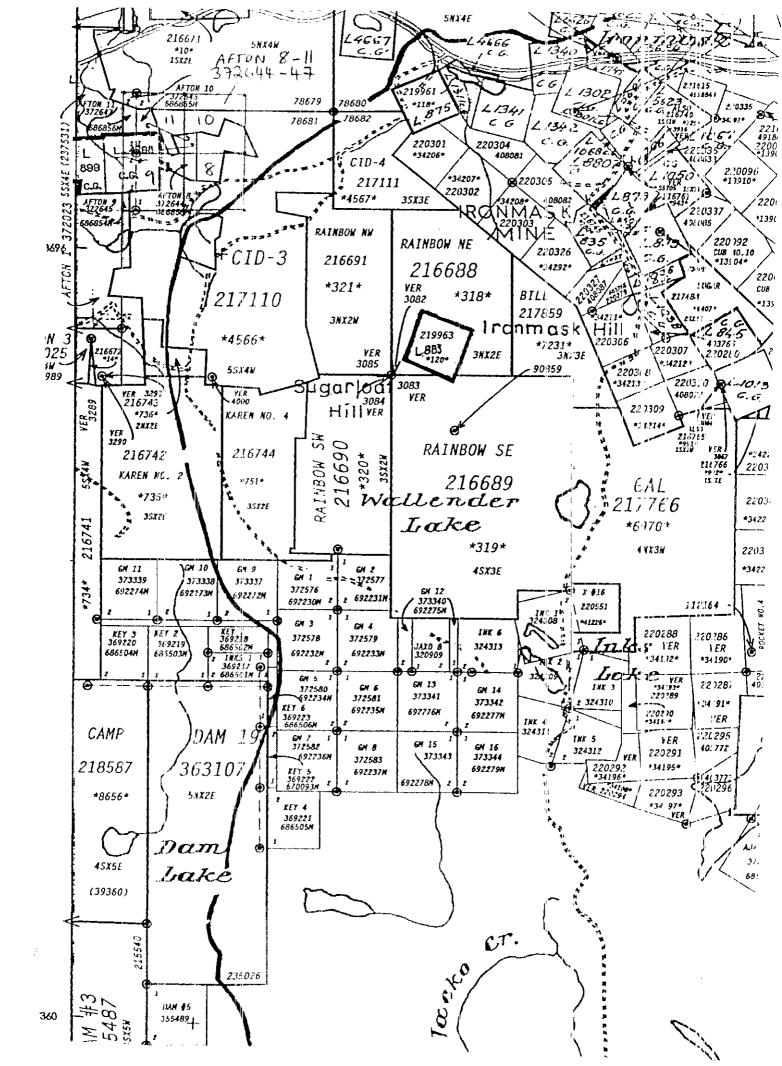
1. LOCATION OF PROJECT AREA [Outline clearly on accompanying maps of appropriate scale.]

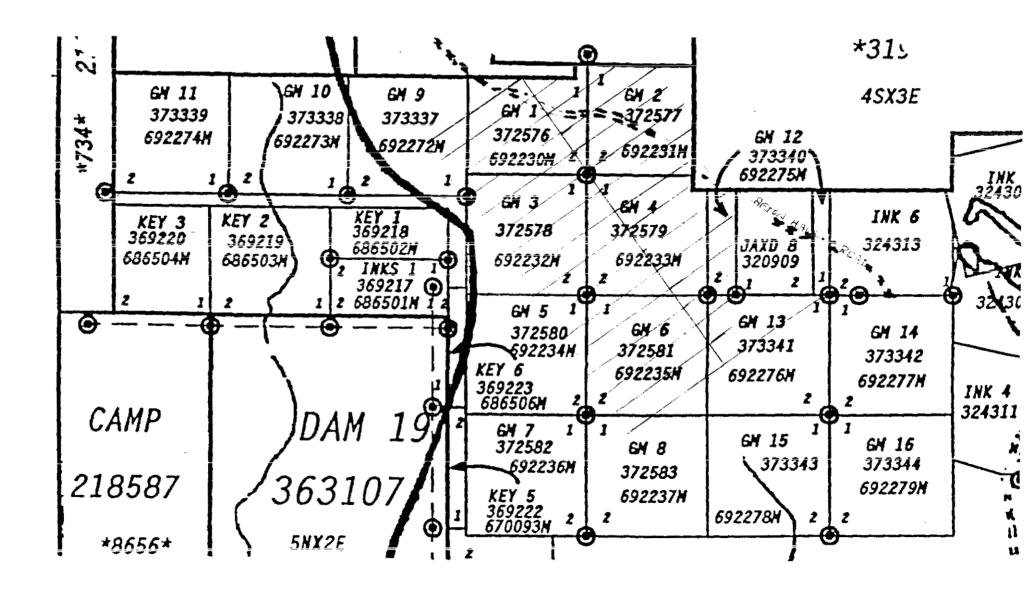
	THE	GM	CLAIM	5	ARA	LOCATT	is 12	Km	Scutt-	WAST	FROM KAM	LOPS_
											921/9W	
·		_	Seá	π	POGRAPH	LIEAL.	MAP	50.0	00 10	1 SCA	L.I.T.	· /

2. PROGRAM OBJECTIVE [Include original exploration target.]

	THIZ	PROGR	Am o	BJECTIV	<u>r H</u>	is_B	TEN T	<u>o izx</u>	PAND	THA.	ANOMA	llous_	PONDA	ecsA
	BARK													
<u>_</u> <u>B</u> Y	TREK C	ORP-	Acru	ATION	LARS	AND	<u>1746 (</u>	3.5.0	eu	ir T	ra R	AINBOW	<u> 5</u> 20	CLAIM
•	EXTEN	,						-						


SER CLAIMS MAP AND GRID LOCATION MAP


3. PROSPECTING RESULTS [Describe areas prospected and significant outcrops/float encountered. Mineralization must be described in terms of specific minerals and how they occur. These details must be shown on accompanying map(s) of appropriate scale; prospecting traverses should be clearly marked.]


THE AREA OF THE GM CIAIMS IS COLERED WITH ABOUT 30 TO
40 METRES OF OVERBURDEN THE ONLY OUT CROP IN THE AREA IS
OF A THEF ROCK THAT COMPOSES A SMALL HILL. THE TOP OF
THE HILL IS LOCATED AT 9005 + 500W. THIS IS MARKED ON
THE MAGNETOMETRIC SURVEY MAP.

THE THRUST OF THE PROSATCTING WAS BY SOIL GROCHEM, PONDARISA PINE BARK BIOGROCHEM AND MAGNETOMETTOR SURVEYS.

BC Prospectors Assistance Program - Gvidebook 2000

D. TECHNICAL REPORT (continued)

REPORT ON RESULTS (continued)

4. GEOCHEMICAL RESULTS [Describe all survey types done (rock, soil, silt) and their objective. Show clearly (accompanying map(s) of appropriate scale all sample sites along with all significant values. Any anomalous areas shou be indicated on maps by the use of contouring, variable symbol sizes, or some other suitable technique. Include discussion/interpretation of results. A copy of analysis/assay certificates must be included with sample numbers fro map. Details of individual rock samples taken are encouraged. Significant geochemical values obtained must be stated.]

· · · · · · · · · · · · · · · · · · ·
SOIL GEOCHEMICAL SAMPLES WERE TAKEN EVERY 40 METERS STIRTING
FROM THE 20 EAST AND 20 WEST STATIONS TO THE 500 EAST AND WEST
STATIONS, (SEE MAGNETOMETER SURVEY MAP) EXCEPT FOR LINE ODS TO THE WEST
AND THE WEST ENDS OF LINES 1465 2005 7005 8005 11003, 12005, 1305 14005
AS SHOWN ON THIE GRID LOCATION MAP.
THE OBJECT OF THIS SURVAY IS TO DELINEATTE A COPPER PHORPHERY
INTRUSIVE, THESE SAMPLES WILL BE ANALYZED AT A LATER DATE
NOTE: THE BAGS OF THE SAMPLIES TAKEN FROM THE AREA OF THE AFTON
HAVE READ WHERE THE TOPSOIL HAS BEEN DISTURBED ARE MOREED WITH AN C
FUR C HORIZON AND THE RESULTS OF ANALYSIS WILL BE CONSIDERED ACCEDING

BIOGROCHEMICAL SAMPLAS WARE TAKEN ALONG GRID LINKS, CONSTRUCTED 55" AZ TO INTERCEPT A SOUTH FAST TRENDING AT A OF MINERALIZATION ERam AFTO MINE, FROM THE OUTER BARK OF THE PONDAROSA PING TREAS. THE SAMPLING PROLAD LOUTE A PONDARDSA NEAR A GRIDLING, TAKE AN AZMUTH OF ITS PLATION FROM WAS TO HIPCHAIN ITS DISTANCE. (SEE BIDGEOCHEMICAL SAMPLA SITES). T A GRIDLING STATION AND SAMPLAS WARE TAKEN BY A PAINT SCRAPER INTO KRAFT SOIL BAGS.

WHEN THE MAGNETOMETER RESULTS WERE CONTOURED TWO LOW READING AND A HI SAMPLES FOR ANALYSIS WERE THEN CHOSEN READING AREA WERR RAUGALAD . FROM T ONRS TAKEN WITHIN OR NEAR THRSE AREAS. TWO SAMPLES WERE CHUSEN TO THE IN DR COLIN DUNN'S SURVEY OF 1994 FROM HIS LI400 + 6+00 AND L14+00 - 8+50 STATION AS WELL AS A SAMPLE TAKEN ON LINE WEST OF THE HALL ROAD 1.14.00- SW. (SEE THAT REST OF THE SAMPLES WILL BE ANALYZED AT (RANT APPLICATION) A LATER DAT AFTRIZ RECEIVED THE RESULTS OF THE ANALYSIS I CONTACTED DR. COLIN DUNN FOR ADVICE ON INTERPORTATION OF THE RESULTS : THE HIGH NUMBERS FOR POTASSIUM AND AS THRY ARE MINERALS NEEDEDFOR THE TRAKS TO LIVE. ZINC (AN BA DISCOUNTED VALUES FOR PALADIUM AND GOLD START AT 40 PPB. THE SURVEY PRODUCE ANGMALOUS ANG, WALIES 12 GOLD ANCMALIRS. PALADIMMI VALURS COINCIDING WITH 13 PALADIUM AND. NICKAL VALUES & INDICATE UNDERLYING MAFIC ROCK. THE BACKGROUND FOR GENERAL IS 34 SAMPLES TAKEN THE LOWEST FOR COPPER IS 175PPM THE HIGHES AND OF THE ICC PPM THARE WAS ENA SAMPLE AT 1.93 PPM BACKGROUND FOR MOLY IS ZPPM 1890 PPM. THE _15 6.38 Prm THA HAHEST Hb. loppm. WAS THE NEXT LOW EST

THE GOLD ANDMALIAS TREND NW TO SE AND ARA NOT PLACAR INFLUENCIED ACCORDA TO JOIN BALL THE PROJECT GEOLOGIST AT AFTON MINE FOR DRC RESOLACTES.

THE SURVEY PRODUCED FOUR ANOMALCUS AREAS, 3009+3200, 7005 + 3801113005 AND 1.14+0000 - 81505

THIS SURVEY HAS SKETCHED OUT AN ANOMALOUS MINARALIZATION TREND NWTO SE FOR 1. BC Prospectors Assistance Program - Guidebook 2000

	1				1 I.	PROP							
	·····			BIDGED		:						KIONTALUI	a <u><</u> ```
1 1			•	RICHAG	20	-ODME	L PRE	SPRCT	rorz 2	000		ALUES	
			·	. : 	· · · · · ·		· ·		, , , ,			· ·	
····	1	GM	<u>B10</u>	- <u>L</u> 1	4+0	0W -	· 6+0	<u>005</u>	(821	PB Au)			
	2		, 	<u> </u>	4+0	NOV-	- 8+	505	(187	PPBAu,	56 <u>ppgPd</u>	, <u>1140</u> 99	mCu, I
· · · · · · · · · · · · · · · · · · ·	3	(ARE	A	LI	4 + c	WO	- 5.4	J_ CF	ROAD	(SIPPB	Au, 78P	PBRS)	
·····	;		· · · · · · · · · · · ·	• • • •	<u> </u>			· · ·	; ;				
	4	GM											
:	5		<u>(40.4</u> p	pmMo)300	<u> </u>	+ 300	W A	2 20	ಂ್ @	<u>15m</u>	(46PPBA	14, 80ppl	BPD,1
	6			30	<u> </u>	+ 320	w A	<u>π 51</u>	ATION	(280 pr	3 <u>Au</u> , 176pp	o 13, 1640	prmCn
	7		(46.6P	pmMo) 30	<u>م م</u>	+ 320	w A	Z 1	20° (3 40m	(549961	<u>})</u>	:
·	· · · · · ·		· · · · · · · · · · · · · · · · · · ·					· · · · ·	;		·		:
	8	Gm	Bio	-: 80	o's ·	+ 20 W	A	z 16	° @	<u>57m</u>	(49 PPB	Pb)	;
	9			୫୦	<u>o's</u>	+ 20w	<u> </u>	z 16.	ĽΘ	37 m	(78PPB	PD, 105	jorra
	10			<u> </u>	ON	+ 900	5BL A	12 7	് ര	35m	(H6 PPB	P5)	
· · · · · · · · · · · · · · · · · · ·	1		•	0	NO	+ 900 -	BL A	12 10	2° @	30 m	·		
· · · · · · · · · · · · · · · · · · ·	12	· · · · · · · · · · · · · · · · · · ·	۰ ، ۰ ،	1000	5	+ 2013	: e	<u>βγ 5</u> τ	ATION				
			-	: . 	: :	· · ·		· · · ·			<u> </u>		:
	13	Gm e	310	- 50	os s	+ 380	w f	12 5	5° ©	10 m			:
	14	· · · ·	· ·	50	فع	+ 400	<u>w</u> 6	12 11	150	zom	(40PPBA	w.)	:
· · · · · · · · · · · · · · · · · · ·	15			60	05	+ 380	<u>w </u> A	12 2	20° ©	iom		1	;
	16	, ,		60	05	+ 4001	N P	17 51	ATION		50PPB A	u. 4289	ъPb)
·	17	2 ARTA	(43,48	pm Mo) 70	ios	+ 380	N A	z 2	900 0	34m	SOIFPBAU,	46ppopp	8109
· .	18	• •		70	<u>.</u>	+ 3801	<u>N 8</u>	sy st			LIOOPPB A		,
	19			80	os	+ 380	<u> </u>	N LIN	E 🙆	16mW	(42PPB A	u)	
	20	· · · · · · · · · · · · · · · · · · ·		ଝ	05	+ 380	م 2	By ST	ATION	:			:
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·	90	os	+ 380	N ON	1 61413	O	8mW	· · · · · · · · · · · · · · · · · · ·		:
	22		·	9	005	<u>t 380</u>	w <u>A</u>	12 14	15° ©	15m			
· · · · · · · · · · · · · · · · · · ·	23	·····		10	00 S	+ 400	<u>~</u> A	<u> </u>	° @	_25m			
	- 24				005	+ 380	<u></u>		500 @	20m		· · ·	;
· · · · · · · · · · · · · · · · · · ·	25		; ;		05	+ 380	~A	<u>z 17</u>	14° @	25m	(830PBF	<u>}) </u>	
	26			12	00 S	+ 340.	<u>.</u>	z 31	2° 🕲	20m	· · · · · · · · · · · · · · · · · · ·	i :	
	27		<u>, </u>	12	<u>00 5</u>	- 360,	<u> </u>	N LIN	ε @	8mW	·		
·····	28	(3) ARRA ((46.3 pp	m Mo) 13	00 5	+ 240,	<u>.</u> . 01	n lim	r O	9mwl	14° ersfur	81ersb.1	890.em(
	29			13	005	+ 2400	<u>~ A</u>	Z 14!	<u>5° @</u>	Iom		!	
	30			14	00 5	+ 2600		z 28		6m			
	31	AND 311		14	00 S	+ 280	w A	12 29	o° O	8m			_
<u> </u>	32			15	00 5	+ 320	W A	<u>z 30</u>		<u>5m (</u>	48ppBAu): :	:
	33		· · · · · · · · · · · ·	15	<u>00 5</u>	+ 320			° O	18m	· · ·	·	
	34			I ^E	00 S	+ 300	<u>v A</u>	<u>z 34</u>	୧ ୭	15m	· · ·		
	:	. <i>.</i>						· .	·		• •		

D. TECHNICAL REPORT (continued)

REPORT ON RESULTS (continued)

5. GEOPHYSICAL RESULTS [Specify the objective of the survey, the method used and the work done. Discuss the results and show the data on an accompanying map of appropriate scale. Any anomalous areas must be indicated on maps by the use of contouring, or some other suitable technique.]

DURING THE 3,45 AND 6 OF OCTOBER 2000 A MAGNETOMETER SURVEY WAS CONDUCTY OVER THE GM CLAIMS, THE INSTRUMENT USED WAS A GEOMETRICS 8166 PROTOM MAGNIZTOMETER, SERIAL NUMBER 6424

THE DATA WAS CORRECTED FOR DIVERNAL VARIATIONS. THE DAYS CHOSEN FOR THE SURVEY WERE MAGNETIC QUIET DAYS CHOSEN FROM INFORMATION ON A GSC WEB SITE THAT MONITORS THE MAGNETIC ACTIVITY.

THE PLETTING AND CONTOURING OF THE DATA REVEALED 2 LOW READING ZONES AND A HIGH READING ZONE THAT ARE AREAS LIKELY TO BE MINERALIZED.

SEE MAGNETOMETER SURVEY MAP

A VLE-EM SURVEY WAS STARTED TO LOCATE MUNACALIZATION AT DRATH DIVE TO THE 30 TO 40 METTERS OF OVERBURDED ON THE CLAIMIS

ALTHOUGH THE GRID WAS CONSTRUCTED WITH 20 METTER STATIONS FOR CATIONING FRASER FILTERING OF RESULTS THE VLF- RM SURVEY WAS ABANDONED. AFTER ONE DAY DUR TO THE INTERFERENCE, OF THREE WIRE FENCES RUNNING FOR SILVERIAL KILOMETERS OVER THE REID, ON THE DATA COLLECTED.

5. OTHER RESULTS [Drilling - describe objective, type and amount of drilling done. Discuss results, including any significant intersections obtained. Indicate on a map of appropriate scale the drill-hole collar location, the angle of inclination and azimuth. Drill logs correlated with assay results must be included. Physical Work - describe the type and amount of physical work done and the reasons for doing it (where not self-evident). This includes lines/grids, trails, trenches, opencuts, undergound work, reclamation, staking of claims, etc. Discuss results where pertinent.]

Signa

ture	of	Grantee	

Date JANUARY 8, 2001

861

IN13

1.508

18:15

,2260

.

6 + 869

Y

12:4

148%

12.99

· 122

18:30

74 610

× 1189

~ 1904

803 0 7

*

A1229

-

A 1262

× 651 930

1 2201

1 21990

- 2060

-1724

2223 0

-1977

126960/

2640 1

248%

18:4

- 2475

\$2239

2381 8

20:33

-1935

2483 ----

-2209

BODS

008	200	os	300)\$	40	DS	500	0,8	60		\sim	00\$	/ 6	300\$	R	00\$	100	00\$	110	208	120	w\$	BU	202
									0	No an		/		~	. 10	-	2270	i i	1		_			
35, ``,	2632		431 -		2131	_	2177.	~	2150	Z	225	1	222	4	212	4	- 2274 - 2695		2264	-	2148	-	2369	
8	2356		101		2199		2084	`	2258	1-	2239		/ 198	1	1894	2	-2341 2023		1994	1	2371	1	2210	•
t	2215		04k 984		2144 2141		2091		2257		- 192 1818	() 1	181.		214		1753	- /	2521		2309	1	1923 1766	
74	2035	20	oist		22:23		1973	/	2130	/	200	3 /	189	1	204	2 1	,2779	-	2287	/	-2144		1908 1900	
2	1945		025		2281		1849		1924		202		193 203		2070		2605		2449 2430	1	2169 1878		1745	r
<i>[]</i>	1.974	, 2	0/3		2157	5	2086		2106	/	1187	Z	178	5	175-	3	2359	/	2465	1	1835 2150	/	1687 1466	
9 2	1969 1965		620 180		2164	17	2008	J	2094	,	1973		163	2	217	d	2285	-	2.238	-	2063		1383	
04	1953		147	1	2030	/	1894 1974	/	2002	/	207		216		- 212: 214		12237	-	2254		1903 1869		1561 1577	
4	1963 1842	(2	124 -	Í,	2022		1916	~	2155	/	197	0	1 193	B	222	4	1745	-	1976		1854		1485	t
1	1934 1928		916 884	/	1987 1900		1911 1958		1896		174		(198		- 192 183	1/	- 1879 2039		2121 2214		1793		1412 1332	
7	1863	2	2044		1933		1938		1783		177	7	184		- 200	7	2242		2019		1437	~	1261	~
33	1797 1830	1	963		2087		2164	6	1705		179	8	- 200		196 164	7	1887		1751 1505		1310	4	1199	
4	1.79.7		661		1824		1598 1775		1903 1890		154		156.		193		1050		1383 1373	/	6 1178 1028	A-	A 1170 1272	-
3.3	1624	1	534		1450		1602		1290		15L	3	146	7	137	15	V:200	7	1245	1)	× 1226		1462	
74	1793		417 218		1980		1813 1296		1132 1431		138.		143		A . 80		<i>1037</i> ₩ 805	Find	-173	B	1555		1816	
IL)	1155	1	6.92		1540		1243		1441		132		128		A 34	and the second second	× 1369	•	1564		19133		1691 1969	-
19	1522	1	890		1409		1411		13916		128	4-	133	56	N. 68	1 PV	1525		1783		1819		,2078	\$
20	1581 1608		685		1198	A	1418		1289	· 4	V 115 101.	1 14	7 87	1/	A 90.	52	1496 1345		1778		1824 1705	I	2117	
51	1.738	i	542	A	1042	4	1336		5 12/2		106	9 -	A 199	ky by	153	6	1590	*	1821		1802	1	2283	
73	• 1573 1546		528	A	903 1253	\triangleright	1306	A	1156		127	2	144		:00	3	1813		1875		1830		2413	
74	1575	1	227		1157		1077 961		1345	b	139 165	8	153 150		144	1	1767 1789	1	1816 1846		1817	1	2324 2507	
¥1.	1352 1298 ×	c i	c12		1108		1049		1214		156	1	151	6	136	8	1727	-	1761		1689		2555	
41	A 881		961		1170	~ 7	1039	D	► 13£7 1449		162 169		149 145	1	15E 174		1647		i 668 1621		1695 1846	1 1	2706	-
30 4	880	1	116	VV	811 823	7	1195		1524		154	5	179	10	176	4	1543		1787		-210k	/	2.858	0
70 2	1025 -		828		823	V	1234		1724		165		- 201		164		1743		1981	1	2295	, ,	,2235	1
88	AZ	i	089		1179		1571		1735	1	- '200	3	190	>4	210	0 -	213		(129 : :967		2379	/	2154	
or P	+ 408		La J	>	1214		1533	-	- 1907		208		222.		277		2240		2059	1	12696		2360	

SOW HOOM

SDOE

300E

ZOUE

(XK)

DE

NOW

ZOON

SOUN

METERS Suever - - 2289 MALLE: 20m = 10 SMIRS 122P OCTOBER NTB Com. A 7 821 A1143 A A 1038 -2158 1450 AZ 27.3 SAMPLE ZESL SITES 24:8 BIOGEOCHEM ANOMALIES DING-PALLADIUM 250E ALIZED 37 JU MALIZED 37 JU MMDS FEMA EN NICKEL 2822 . 3074 . 2280 0 GOLD DOPPER NO CAMA 17.3 · MOLY 171/E ACE 56,0 NOTE:

1200\$ 13005 11008 9003 10009 005 500,8 6005 7005 800\$ 2005 300\$ 1005 4005

SDOE	25; 10 102	1401 1318	2632 2632 2356 2288	2431- , 2101 - 2044 2044	2.131 - 2.194 21.48 21.44	- 2177 2082 2011 2091	2150 2258 2218 2257	2254 2421 - 2234 2138 - 1921	2225 2016 / 1980 2005 1813	2 122 2314 1896 1996 2192	2274 - 2695 - 2341 2023 1753	2264 1994 1934 - 2521	/ 2148 / 2371 / 2564 / 2369	- 2369 2418 2210 1923	
4006	1001 481 4* 849 542 7 555	1525 1493 1574 1542 1262	2215 2110 2035 1945 1890	1984 2015 2025 2025 2002 2013	2174 214) 2223 2281 2129 2157	1957 1973 1849 1904 2086	2/62 2/62 2/30 1960 1924 2/06	1818 2013 2025 2034 1872	1874 1891 1931 2038	2182 2042 2074 1645 1753	/ 2601 2774 22774 2374 2374 2359	- 1529 2287 2449 2430 2465	2179 2144 2165 1878 1835	1764 1908 1900 1745 1887	
ZUE	705 942 927 861 1013	₹ 419 ₹ 419 ₹ 651 930 920	1974 1969 1965 1953 1953	2013 2020 2081 2147 2140 2124	2137 2164 2087 2030 1981 2022	- 2008 - 2008 1875 1894 1974 1914	-) 2094 2074 2002 2009	(1978) 1970 2076 1991 1990	1632 1702 2169 2230	1938 - 2170 - 2125 - 2125 - 2144 2222	/ 2373 2285 - 2287 - 2287 - 2247 1745	1968 2.238 2259 1899 1976	2150 - 2063 1903 1869 1854	1466 1383 1561 1577 1485	5
ZNE	945 1171 1214 1480 1400	794 951 1116 1127 1183	1842 1934 1928 1843 1797	1916 1884 2044 1963 1767	1987 1900 1933 2087 1942	1911 1958 1938 2164 1815	1894 2000 1783 1705 1780	1746 1816 1777 1792 1518	(1982 2106 1844 2003	- 1921 - 1831 - 2009 - 1961 - 1617	- 1879 2039 2242 2129 1887	2121 2214 2019 1751 1505	1793 1542 1437 1487 1310	1412 1332 1261 7 976 1199	4
1005	1445 1360 1512 1692 1697	1333 1254 1047 983 1174 1300	1830 797 1811 624 773 384	1661 1688 1539 1417 1218	1824 (643 (450 (980 1809	1598 1755 [602 1813 [296	1903 1890 1290	1355	1565 1556 1467 1434	1931 849 1377 1-163 A. 163	1650 1270 7 1200 7 1037 805	1383 1373 1245 1245 173 173	× 1178 1028 × 1× 1245 × 1555 1838	A 1170 1272 1462 1776 1816	
POE	493 1531 1871 1488 1622 1626	1300 1396 1482 1299 128 (1220	1527 1155 1294 1522 1581 1608		1540 1397 1409	1243 1606 1411 74 1418 1362	1491 1440 1396 1289 1271	1324 1324 1286 7 1150	1288 1503 7 1335 7 809	A 7120 346	× 1368 × 1368	1564 1656 1783 1778 1849	2014 15133 1819 1824 1705	1691 1969 2078 2117 2177	3
INOM!	1944 2118 1799 1846	1451 1603 1773 1894 1950	1+738 1573 1546 1575	1542 1526 [127 1227	A 1042 A 903 1253 1157 1148	4 1336 1306 1248 1077 961	× 12/2 × 1156	1069 1275 7 1462 1398	A 4/194 1447 1532	1536 1367 1003 1441 1550	1590 1697 1813 1767 1789	1821 1877 1875 1815 1816 1846	1802 - 1850 - 1830 - 1817 - 1765	228: 2444 2413 2324 250	
ZROM	1667 1807 1443 1643 1508	194) 1707 124 1 C 34	A 581 A 580	& ici2 961 1042 1116	110E 1170 1179 1179	1049 1039 1194 1195 1236	► 1214 ► 1327 1449 1524	1561 1620 1691 1545	1516 1492 1451 1790	1368 1554 1743 1764 1646	722 647 6 6 543	1761 1668 1621 1787	1689 1695 1846 1-2106 2249		
Maie	1 638 1 860 1 757 1 845 2053	1891 1888 1900 2051	× 1025 × + 408 × 4 610	V 828 602 1089 629 629 629	V 1178 V 214 V 1214 V 1476	¥ 1457 1371 1533 1867	1732 1735 	1896 - 2003 2084 2033	1872 1904 2116 22231		- 2088 - 2134 2266 2240 - 2317	1981 1929 1967 2059 2141	2295 2379 2475 2475 2696 2695	2235 2154 2309 2360	
Mash	/ 21 14 1887 1870 2056 2076	2217 2213 - 2318	\	2040	1964 1962 2117	2201 2024 2199 204 204 204 204 204 204 204 204	$2116 - 2372 \\ 2223 \\ - 2358 \\ - 1724 \\ - 1724 \\ - 2358 \\ - 1724 $	248 1935 1465 1264	2381 2489 2308 1913	2600 2551 - 2475 - 2135	245b 2457 248k - 248k	2121 2176 2176 2226 2112 -1977	2469 2309 2124 - 1719 1854	2640 2340 	
Seen	2159 2262 2322	r 2131 2240			2394 2534 2534	1. 1507 1781 1521	i 351	2088	e 1414 1390			1673	1671 2001	and the second se	1

4006 BUE

(XK

Nave

14003 1500\$ METERS SURVEY $\begin{array}{c} 2455\\ 2436\\ 22436\\ 2283\\ 2183\\ 2183\\ 2183\\ 2183\\ 2183\\ 2183\\ 2183\\ 2183\\ 2183\\ 2183\\ 1555\\ 1555\\ 1555\\ 1555\\ 1032\\ 1033\\ 1556\\ 1032\\ 1033\\ 1556\\ 1032\\ 1033$ 2615 100 2000 MANETOMETER ! 2000 0 GM-CLAIMS 122P DCTOREE SCALES N73--5 A ۸. TUFF HILL 21578 2389 2281 2092 2234 2462 MAG HIGH 145° AZ MAG Low 2650 2404 2467 2278 2172 2214 2044 (879 2311 2545 2468 2506 2694 2822 3074 2822 3074 2822 1877 1882 1877 1882 1877 1882 1877 1882 1877 1882 1877 · . . 15 CATTAC NOTE: THE TOTAL GAMMA REPUNSE ARE NORMALIZED 37 JUSTRAT SU, OCO CAMMAS FRAM EAUA CA 00-50 2