

GEOSCIENCE MAP 1993-9 GEOLOGY OF THE NOAXE CREEK AND SOUTHWESTERN BIG BAR CREEK MAP AREAS

NTS 920/1, 2

Geology compiled by P. Schiarizza and R.G. Gaba

Based on geological mapping by P.Schiarizza, J.K. Glover, J.I. Garver, P.J. Umhoefer, R.G. Gaba, J.M. Riddell, D.F. Payne, R.W.J. Macdonald, T. Lynch, K.E. Safton and P.P. Sajgalik (1986-1989)

OPHIOLITIC ASSEMBLAGES (continued)

Unconsolidated glacial, fluvial and alluvial deposits; locally may include small bedrock exposures not examined during the present study

Miocene and(?) Pliocene

CHILCOTIN GROUP

MPC Olivine basalt flows

EBV BIG SHEEP MOUNTAIN VOLCANICS: quartz-phyric rhyolite RED MOUNTAIN VOLCANICS (ERr to Ers)

Rhyolite; Erri - partly intrusive Ena Andesite; in part pyroxene-feldspar-phyric

Ens Sandstone, siltstone and conglomerate

RELAY MOUNTAIN - BRIDGE RIVER OVERLAP (UPPER TYAUGHTON BASIN)

UPPER CRETACEOUS

UKPC POWELL CREEK FORMATION: medium to dark green volcanic breccia and lapilli tuff; volcanic conglomerate; pyroxene porphyry flows

LOWER AND/OR UPPER CRETACEOUS

Albian and/or Cenomanian

SILVERQUICK FORMATION: medium to thick-bedded pebble to cobble conglomerate containing clasts of chert, volcanic rock and sandstone; lesser amounts of sandstone, siltatone and shale; upper part of unit includes intercalations of volcanic breccia and voicanic conglomerate

LOWER AND(?) UPPER CRETACEOUS
TAYLOR CREEK GROUP (IUKTOB to IKTOE)

Albian and/or Cenomanian BEECE CREEK SUCCESSION: sandstone, siltstone and shale; pebble conglomerate containing clasts of chert, volcanic rock and clastic sedimentary rock; calcareous sandstone and shale; ash and crystal tuff

Medium green to grey volcanic breccia and lapilli tuff; mafic to intermediate volcanic flows; volcanic conglomerate and sandstone

IKTCL LIZARD FORMATION: thin to medium-bedded, light brown to grey-weathering micaceous quartzofeldspathic sandstone, and dark grey laminated shale; IKTCLC - thick-bedded polymict conglomerate intercalated with micaceous quartzofeldspathic sandstone; green lithic sandstone, conglomeratic sandstone and polymict conglomerate

IKTCD DASH FORMATION: orange-weathering, medium to thick-bedded, locally massive chert-pebble conglomerate, thin to medium-bedded chert-rich sandstone, and dark grey shale

Albian and(?) older

PARADISE FORMATION: thin-bedded medium to dark grey shale and green-grey sandstone; lesser amounts of thick-bedded pebble to cobble conglomerate containing voicanic clasts and less abundant sedimentary and plutonic clasts

ELBOW PASS FORMATION: medium to thick-bedded green-grey sandstone, dark grey shale, and pebble conglomerate containing intermediate and mafic volcanic clasts

RELAY MOUNTAIN TERRANE

MIDDLE JURASSIC TO LOWER CRETACEOUS

RELAY MOUNTAIN GROUP (IKRMS to muJRMs) Hauterivian and(?) Barremian

IKRMS Dark grey shale and siltatone; lesser amounts of sandstone and calcareous sandstone Jpper Oxfordian to Valanginian

Grey, brown and green sandstone and siltstone, locally calcareous; commonly massive, locally medium to thick-bedded; *Buchia* pelecypods and belemnites common, coquina beds locally abundant; lesser amounts of conglomerate and conglomeratic sandstone containing mainly volcanic and plutonic clasts

Callovian to lower Oxfordian Dark grey siliceous shale intercalated with thin beds of green to brown siltstone and fine grained sandstone; commonly rusty-weathering; lesser amounts of thin to mediumbedded, medium to coarse grained sandstone, calcareous sandstone, and calcareous siltstone; locally includes pebble conglomerate containing mainly felsic to intermediate volcanic clasts

MISSISSIPPIAN TO MIDDLE JURASSIC BRIDGE RIVER COMPLEX

MJBR Undivided ribbon chert, argillite and pillowed to massive greenstone, with lesser amounts of limestone, gabbro, diabase, sandstone, pebble conglomerate and serpentinite; MJBRI - limestone; MJBRS - serpentinite with knockers and fault slivers of other Bridge River rock types

CADWALLADER TERRANE

LOWER TO MIDDLE JURASSIC Hettangian to Bajocian

LAST CREEK FORMATION: brown calcareous sandstone, slitstone and conglomerate; imJLc overlain by dark grey to black calcareous shale

TYAUGHTON GROUP (ukt2 and ukt1)

Limestone conglomerate; overlain by thin to medium-bedded green sandstone intercalated with granule to pebble conglomerate containing mainly volcanic and limestone clasts; overlain by brown sandstone and slitstone intercalated with beds of fossiliferous calcareous sandstone; overlain by thin to medium-bedded green sandstone intercalated with thin beds of pebble conglomerate containing intermediate to felsic

Middle(?) and upper Norian Massive to thick bedded conglomerate and conglomeratic sandstone intercalated with medium to thin-bedded red to brown sandstone; conglomerate contains clasts of limestone, intermediate to felsic volcanic rocks and locally plutonic rocks; overlain by thick to thin-bedded grey limestone

HURLEY FORMATION (utch and utchy) Thin to thick-bedded sandstone, calcarenite and slitstone; lesser amounts of polymict conglomerate with clasts of limestone, mafic to felsic volcanic rocks and granitoid rocks; locally includes pebbly mudstone, limestone-greenstone brecola and micritic

Greenstone, mafic volcanic breccia and tuff intercalated with sandstone, tuffaceous sandstone, micritic limestone and polymict conglomerate containing clasts of limestone, mafic to felsic volcanic rocks and granitoid rocks

OPHIOLITIC ASSEMBLAGES

BRALORNE-EAST LIZA COMPLEX PBEL Serpentinite, gabbro, diabase, greenstone; PBELV - mainly pillowed greenstone

PERMIAN (AND YOUNGER AND? OLDER)

SHULAPS ULTRAMAFIC COMPLEX (Psm and Psh)

Psm SERPENTINITE MÉLANGE UNIT: serpentinite, derived from olivine-clinopyroxene ultramafite, with knockers of ultramafic rock, gabbro, diorite, diabase, amphibolite, greenstone, rodingite, chert, phyllite, sandstone, conglomerate and limestone

PSH HARZBURGITE UNIT: harzburgite, with lesser amounts of dunite and orthopyroxenite (variably serpentinized); locally with a penetrative foliation and lineation inferred to be

a mantle tectonite fabric

PMs Serpentinite and serpentinized ultramafite, in part altered to quartz-carbonate-mariposite rock (listwanite); PMsf - undivided serpentinite, listwanite and fault slivers

METHOW TERRANE - YALAKOM MOUNTAIN FACIES

LOWER CRETACEOUS JACKASS MOUNTAIN GROUP (IKJMy2 and IKJMy1)

Arkosic sandstone, conglomeratic sandstone, siltstone, shale and conglomerate

Barremian-Aptian

[KJMy1] Green to grey lithic sandstone, granule conglomerate and conglomeratic sandstone; lesser amounts of slitstone and shale; very minor amounts of laminated slity limestone

Medium to dark grey-green volcanic breccia; andesitic flows; volcanic conglomerate

Lithic-arkosic sandstone intercalated with lesser amounts of granule to small pebble conglomerate, siltstone and shale; thin-bedded siltstone and laminated shale

METHOW TERRANE - CHURN CREEK FACIES

LOWER CRETACEOUS JACKASS MOUNTAIN GROUP (IKJMc2 and IKJMc1)

Toarcian(?) to Bajocian

Polymict pebble to boulder conglomerate containing mainly granitoid and volcanic clasts; lesser amounts of sandstone, conglomeratic sandstone, siltstone and shale

Lithic sandstone, conglomeratic sandstone and pebble conglomerate containing mainly volcanic clasts; lesser amounts of siltstone and shale; abundant fossil plant remains

mJcs Grey siltstone and fine-grained sandstone

INTERMONTANE BELT

DASH-CHURN SUCCESSION (KDC3 to KDC1) Well stratified volcanic conglomerate and breccia; lesser amounts of thin to medium bedded volcanic sandstone and siltstone

Andesitic volcanic breccia and lapilli tuff; lesser amounts of volcanic sandstone, conglomerate and andesitic flows

Granule to boulder volcanic conglomerate; lesser amounts of volcanic sandstone

INTRUSIVE ROCKS

Miocene or Pilocene(?) MPmp Mario plug

Hornblende-biotite-quartz-feldspar porphyry

Hornblende-biötite-quartz-feldspar porphyry, quartz diorite, granodiorite

LATE CRETACEOUS AND/OR EARLY TERTIARY KTad Equigranular quartz diorite to granodiorite

Geological contact (defined, approximate, assumed)......

Hornblende-feldepar porphyry, hornblende-biotite-feldepar porphyry; locally grading to KTp diorite and quartz diorite

Bedding, tops observed (inclined, vertical, overturned)... Bedding, tops not observed (inclined, vertical)..... Bedding estimated from pillows (inclined).... Igneous layering (inclined, vertical)..... Cleavage, schistosity (inclined, vertical)..... Mesoscopic fold axis.....

Anticline (upright, overturned)....... Syncline (upright, overturned)...... Thrust or reverse fault; teeth on upthrust block

(defined, approximate, assumed)....... Fault; solid dot indicates downthrown block, arrows

indicate relative sense of strike-slip movement (defined, approximate, assumed)......

A3 - clay; A4 - chlorite-epidote; A5 - biotite)............

Limit of quaternary cover

Limit of geological mapping.......

Dike (mainly hornblende-feldspar porphyry and quartz-feldspar porphyry)..... Alteration zone (A1 - quartz-carbonate-mariposite; carbonate; A2 - carbonate; carbonate-quartz ± sericite ± pyrite;

Mineral occurrence (number refers to 920 MINFILE number)... Macrofossii locality..... Macrofossil from clast in congiomerate.....

Conodont fossil locality...... Conodont from clast in conglomerate...... Radiolarian fossil locality......

