Ministry of Employment and Investment Energy and Minerals Division Geological Survey Branch # TILL GEOCHEMISTRY OF THE OLD FORT MOUNTAIN MAP AREA, CENTRAL BRITISH COLUMBIA (NTS 93M/1) By Victor M. Levson, Stephen J. Cook, Jennifer Hobday, Dave H. Huntley, Erin K. O'Brien, Andrew J. Stumpf and Gordon Weary OPEN FILE 1997-10a ### INTRODUCTION This paper describes selected results of a till geochemical sampling program conducted in the Old Fort Mountain map area (NTS 93 M/1) by the British Columbia Geological Survey as part of a comprehensive survey of the entire Babine copper porphyry belt. The results of complimentary lake sediment geochemistry and bedrock geology mapping programs are presented by Cook et al. (1997a, b) and MacIntyre et al. (1997a, b in pocket), respectively. The surficial geology of the map area was provided by Huntley et al. (1996). The geochemical data discussed in this paper has previously been presented in a digital format (Levson et al., 1997a). Complete till geochemistry results for the entire Babine copper porphyry belt will be provided in an upcoming publication. The map area occurs at the northern end of the Nechako Plateau in the Babine Lake region and covers the central part of the Babine porphyry belt. Copper porphyry mineralization in the study area is hosted in Eocene Babine intrusives. Major deposits include the former Bell and Granisle copper mines. Porphyry copper deposits remain the primary exploration target in this region and several active porphyry properties, including the Heame Hill prospect, are within the bounds of the map area. The purpose of the regional till geochemistry program is to improve the existing geochemical database of the area. This information will help to better assess the mineral potential of the region and thus increase the possibility of new discoveries. The Nechako Plateau is characterized by subdued topography, an extensive drift cover and poor bedrock exposure which have hindered mineral exploration in the Babine porphyry belt. Results of the till geochemical survey are expected to provide useful new data to stimulate further exploration. Two approaches to till geochemical studies in the Babine porphyry belt have been employed by the British Columbia Geological Survey: 1) regional geochemical surveys to identify geochemically anomalous sites for follow-up by the mineral exploration industry and 2) detailed investigations around areas of mineralization to evaluate the effects of surficial processes on geochemical distribution patterns, refine models of glacial dispersal in montane and plateau areas and develop methods of drift exploration applicable to the Interior Plateau. Surficial geology mapping was also conducted in conjunction with till geochemical sampling in order to understand the glacial history of the area and provide a basis for design of anomaly follow-up programs. Stratigraphic and sedimentologic studies of Quaternary deposits are also included in order to define the glacial history and aid in interpreting till geochemical data. Regional till and lake sediment geochemical surveys and bedrock and surficial geology mapping programs have proven highly effective in stimulating mineral exploration in low-lying drift-covered regions of the northern Interior Plateau. For example, prior till and lake sediment geochemistry surveys in the Nechako River map area (NTS 93F) to the south were successful in delineating several areas of known mineralization (Cook et al., 1995; Levson and Giles, 1997) and in revealing locations of new mineralized zones. For this reason, till geochemical studies in the Babine porphyry belt have been conducted in conjunction with ongoing bedrock geology mapping (MacIntyre et al., 1997a, b), surficial geology mapping (Levson et al., 1997a) and regional lake sediment geochemistry (Cook et al., 1997a, b) components. These studies are part of the Nechako National Mapping (NATMAP) Project, a joint project of the British Columbia Geological Survey Branch, the Geological Survey of Canada and university researchers. #### DESCRIPTION OF SURVEY AREA The Old Fort Mountain map area lies at the northern end of the Nechako Plateau, in the west-central part of the Interior Plateau (Holland, 1976). Physiographically, the map area is dominated by a low mountain range that trends southeasterly through the centre of the map area and by the adjacent Babine Lake valley. The dominant feature in the highest mountain in the area is Old Fort Mountain (1570 m), rising above lake level at about 712 metres above sea level. Other peaks in the area include Hearne Hill (1370 m) in the north-central part of the map sheet and Wedge Mountain (1250 m) in the northeast corner, adjacent to the Northwest Arm of Takla Lake. Well developed flutings and drumlinoid ridges, oriented roughly parallel to the Babine Lake valley, are dominant features in the area. In low-lying regions large glacial lakes formed and deposited extensive belts of glaciolacustrine sediments, generally below 950 metres elevation. Topography in these areas is subdued and older glacial landforms are often difficult to recognize. #### PREVIOUS WORK The surficial geology of the this part of the Babine porphyry belt was discussed by Huntley et al. (1996) and Levson et al. (1997c). Wittneben (1981) completed 1:50 000 scale terrain mapping in parts of the Hazelton map sheet (NTS 93 M/NW, NE, SW). Tipper (1971) and Plouffe (1994, 1996) completed reconnaissance mapping of Quaternary deposits south and west of the Babine area in other parts of the Nechako Plateau. A summary of 1:50,000 scale surficial geology mapping, conducted as part of the NATMAP and Interior Plateau programs, was provided by Levson and Giles (1997). Nine regional (1:50 000-scale) surficial geology maps have been published as part of this work throughout the Nechako Plateau. Till geochemical studies in the Babine region were described by Levson *et al.* (1997a). Recent till geochemical studies elsewhere in the Nechako Plateau were discussed by Levson and Giles (1997). Several case study investigations have been conducted to date, as part of the NATMAP and Interior Plateau programs (Levson and Giles, 1995, 1997; O'Brien et al., 1995; O'Brien, 1996; Stumpf et al., 1996, 1997). An overview of drift prospecting methods and research of particular relevance to the Interior Plateau region was completed by Kerr and Levson (1997). A discussion of current methods of exploration in the southern Nechako Plateau area, typical problems encountered and information that can be used to develop and refine drift exploration methods, was provided by Levson and Giles (1997). ### FIELD AND LABORATORY PROCEDURES #### FIELD METHODS Surficial geology mapping was completed by interpretation of air photographs, field checking existing terrain map data and stratigraphic and sedimentologic studies of Quaternary exposures in the map area. Ice-flow history for the map area was largely deciphered from the study of crag-and-tail features, flutings, drumlins, striae and till fabric data. Till samples were collected for geochemical analysis in order to locate glacially dispersed metallic minerals in the region. Sample sites were selected to provide as complete a coverage of the map area as possible using existing access routes. Sample sites consisted of natural and man-made exposures (roadcuts, borrow pits, soil pits and trenches). Field sites were marked with metal tags and flagging tape. Locations of samples sites were plotted on a 1:50 000 topographic base map with the aid of air photographs and a Geographic Positioning System. Each till sample site is shown with an x on the accompanying bedrock geology map (MacIntyre et al., 1997b, in pocket). A numbered sample location map is provided as an overlay and in Appendix A together with UTM coordinates for each sample site. A total of 287 regional till samples were collected in the study area at an average density of approximately one sample per 3 square kilometres. Higher density sampling was conducted in areas of perceived higher mineral potential and around known mineral prospects, to provide a clearer understanding of glacial dispersal processes. High density sampling in the Hearne Hill area, including a number of depth-profile samples taken as part of detailed process studies, were not included in the regional map data set (described in this paper) to avoid skewing the data towards this area of known mineral potential. Sedimentologic data were collected at all sample sites in order to distinguish till from glacigenic debris flow, colluvium, glaciofluvial or glaciolacustrine sediments. These sediments have different processes of transportation and deposition which must be recognized in order to understand associated mineral anomaly patterns. For example, local variations will be reflected in some sediments while regional trends may be observed in others. Analysis of these sediments will be useful only where their origin is understood. Sedimentologic data collected at each sample site included descriptions of sediment type, primary and secondary structures, matrix texture, presence of fissility, compactness, total percentage and modal size of clasts, rounding of clasts, presence of striated clasts, and sediment genesis and thickness. Further information was noted on soil horizons, local slope, bedrock striae, bedrock lithology, clast provenance and abundance of mineralized erratics. Sedimentologic data for each of the sampled deposits are provided in Appendix A together with summary descriptions of the sample site and other relevant data. ### LABORATORY METHODS AND QUALITY CONTROL samples collected during the regional geochemical survey (each 3-5 kg in weight) are air dried, split and sieved to -230 mesh (<62.5 µm). One split from each sample was reserved for grain size or other follow-up analyses. The -230 mesh fraction from each sample was analyzed by instrumental neutron activation analysis (INAA) for 35
elements at Activation Laboratories Ltd. in Ancaster, Ontario and by inductively coupled plasma analysis (ICP) after aqua regia digestion for 30 elements, at Acme Analytical Laboratories Ltd. in Vancouver, British Columbia. For the ICP analysis, a 0.5 gram sample is digested with 3 millilitres of 3-1-2 HCL-HNO3-H2O for one hour and diluted to 10 millilitres with water. This leach is partial for Mn, Fe, Sr, Ca, P, La, Cr, Mg, Ba, Ti, B and W and limited for Na, K and Al. Mercury analysis was by flameless AA. Distribution maps for gold, arsenic, antimony, iron, copper, zinc, lead, silver, molybdenum and mercury are provided in Appendix A. Maps for remaining elements will be given at a later release for the entire Babine porphyry belt. Analytical results for all 287 samples included in the regional data set are also provided in Appendix A. Data for 27 elements analyzed by INAA and 24 elements analyzed by ICP are included. Elements analyzed by ICP or INAA that are not included are those that are generally below the analytical detection limits by these methods. #### QUALITY CONTROL In order to discriminate geochemical trends related to geological factors from those that result from spurious sampling or analytical errors, a number of quality control measures were included in both the field and laboratory components of the program. These include the use of field duplicates, analytical or blind duplicates and control standards, one of each being randomly inserted into each set of 17 routine field samples to make a block of 20 samples that is submitted for analysis. Field duplicates were taken from randomly selected field locations and subjected to identical laboratory preparation procedures. Analytical, or blind, duplicates consist of sample splits taken after laboratory preparation procedures but prior to analysis. Control reference standards include several British Columbia Geological Survey geochemical reference materials comprising the -180 micron size fraction of a variety of bulk samples. In total, the regional till geochemical data set (excluding samples taken during detailed case studies) included 18 field duplicate pairs and 17 analytical duplicate pairs. Scatter plots of analytical results from duplicate field and analytical pairs are presented for gold, arsenic and antimony (INAA data) and copper, lead, zinc, nickel, molybdenum and iron (ICP data) in Appendix A. The results show good reproducibility $(R^2 > 0.9)$ for both field and analytical duplicates for most elements. The main exceptions are gold and molybdenum where concentrations are near the detection limit and reproducibility is poor (Appendix A). In the case of gold, especially poor reproducibility with field duplicates is attributed to the nugget effect whereas poor reproducibility in molybdenum is probably due to generally low (near background) molybdenum concentrations in tills in the region. To further evaluate reproducibility in gold analysis, the remaining -230 mesh fraction of all samples with gold concentrations greater than 20 ppb were re-analyzed by INAA. Two of seven resubmitted samples from the map area returned greater than 20 ppb gold. Only one of the samples yielded higher results than the first run (49 to 67 ppb) and one was identical (44 ppb); the remainder were lower including three below the detection limit (< 2 ppb). These data illustrate well the reproducibility problems that are encountered with gold concentrations in clastic sediments. To avoid bias, the gold concentrations reported for the regional samples are those from the first analysis; gold concentrations from the re-analyses are reported as Au* (*rechecks) in Appendix A. #### SAMPLING MEDIUM Basal till was selected as the preferred sampling medium for this program rather than other types of surficial materials for several reasons: - Basal tills are deposited in areas directly down-ice from their source and therefore mineralized material dispersed within the tills can be more readily traced to its origin than can anomalies in other sediment types. Processes of dispersal in ablation tills, glaciofluvial sands and gravels, and glaciolacustrine sediments are more complex and they are typically more distally derived. - Due to the potential for the development of large dispersal trains, mineral anomalies in basal tills may be readily detected in regional surveys. - The dominance of one main regional ice-flow direction throughout much of the last glacial period in the survey area (see below) has resulted in a simple linear, downice transport of material. Sampled deposits in the area, interpreted as basal tills, typically consist of compact, fissile, matrix-supported, sandy-silt diamicton (defined as poorly sorted deposits consisting of mud, sand and gravel). They are typically overconsolidated and often exhibit moderate to strong subhorizontal fissility. Vertical jointing and blocky structure are also common, especially in dry exposures. Oxidation of the till, characterized by reddish brown staining, is common and may occur pervasively or along planes vertical joint and horizontal Subhorizontal slickensided surfaces are sometimes present, especially in clay-rich parts of the till. Clasts are mainly medium to large pebbles but they range in size from small pebbles to large boulders. Total gravel content generally is between 10 and 30% but locally may be up to 50%. Subangular to subrounded clasts are most common and typically up to about 20% are glacially abraded. Striated clasts are commonly bullet shaped, faceted or lodged; the a-axes of elongate clasts are often aligned parallel to iceflow direction. Lower contacts of basal till units are usually sharp and planar. All of these characteristics are consistent with a basal melt-out or lodgement till origin. Injections of till into bedrock fractures locally indicate high pressure conditions at the base of the ice during deposition. The presence of sheared, folded and faulted bedrock slabs within these deposits indicates the local development of deformation tills. During the sampling program, basal till deposits were distinguished from other facies of morainal sediments such as glacigenic debris-flow deposits. This distinction is critical as basal tills are first order derivative products whereas debris-flow deposits have undergone a second depositional phase, related either to the paleo-ice surface or the present topography, and are therefore more difficult to trace to their source. Glacigenic debris-flow deposits typically consist of loose, massive to stratified, sandy diamicton. They are usually loose to weakly compact and either massive or interbedded with stratified silts, sands or gravels. Clasts vary in size from small pebbles to large boulders, but are usually medium to large pebbles. These diamictons typically contain 20 to 50% gravel, but locally may have up to 70% clasts. Subangular to subrounded clasts are most common, but local angular fragments dominate in some shallow exposures over bedrock. Lenses and beds of sorted silt, sand and gravel occur in many exposures and may be continuous for up to 5 metres, although they are most frequently 10 to 100 centimetres wide. Debris-flow deposits may exhibit weak to very strong preferential oxidization along the more permeable sand and gravel beds. These deposits commonly are in gradational contact with underlying basal tills. Colluvial diamictons are also differentiated from basal tills by their loose unconsolidated character, the presence of coarse, angular clasts of local bedrock, crude stratification and lenses of sorted sand and gravel. ### GEOLOGY OF THE SURVEY AREA #### **QUATERNARY GEOLOGY** ### LATE WISCONSINAN GLACIAL DEPOSITS AND OLDER SEDIMENTS Morainal sediments of the last glaciation are the most widespread Quaternary deposits in the map area and include compact, matrix-supported, silty diamictons interpreted as lodgement and melt-out tills. Also common are loose, massive to stratified, sandy diamictons of inferred debrisflow origin. These diamictons are often interbedded with stratified silt, sand or gravel. Basal tills usually unconformably overlie bedrock or glaciofluvial deposits. They form a cover of variable thickness across much of the area and may occur as hummocky, kettled, fluted or relatively flat topography. Basal tills seldom occur at the surface, usually being overlain by glacigenic debris-flow deposits, glaciofluvial deposits, glaciolacustrine sediments and, on steep slopes, by resedimented diamictons of colluvial origin. Till thickness varies from a few to several metres in low-lying areas to less than a metre along bedrock ridges and steep slopes. Till thicknesses on bedrock ridges are much less than in the lee of bedrock highs. Thick exposures of till (up to 10 m) also occur locally in narrow valleys oriented perpendicular to the regional ice-flow direction and in main valleys. A Late Wisconsinan age for the last glaciation in the Babine Lake region is indicated by radiocarbon dates on wood and mammoth bones recovered from lacustrine deposits under till at the Bell Copper mine. Single fragments of spruce (Picea sp.) and fir (Abies sp.), yielding dates of 42 900±1860 years B.P. (GSC-1657) and 43 800±1830 years B.P. (GSC-1687), and a date of 34 000±690 years B.P. (GSC-1754) on mammoth bone collagen from the interglacial sediments (Harington et al., 1974), indicate that the overlying till was deposited during the Late Wisconsinan glaciation. Palynological data from interglacial lake sediments are indicative of a shrub tundra vegetation. Morainal sediments in the Nechako Plateau region were assigned by Tipper (1971) to the Fraser glaciation which is dated in several parts of British Columbia as Late Wisconsinan (Ryder and Clague, 1989). Quaternary sediments underlying till are rarely exposed in the survey area but at one site located on Dust Creek a thick sequence of advance-phase glaciolacustrine and glaciofluvial deposits overlain by till was
described (Levson et al., 1997c). The lowest exposed unit overlies bedrock and consists of well stratified, very dense sands. silts and clays. These sediments are interpreted as proximal glaciolacustrine deposits. Their stratigraphic position indicates that they probably were deposited during the advance phase of the last glaciation in the region. Their presence in the Dust Creek valley indicates that glaciers in the Late Wisconsinan occupied the Takla Lake valley before the southern Bait Ranges were completely ice covered. The resulting ice-damming of the Dust Creek drainage resulted in the development of a glacial lake in that valley. A thick sequence of gravels and sands that overlie the glaciolacustrine deposits are interpreted as a prograding deltaic sequence that was deposited by water flowing out from the Bait Range, Large-scale, steeply dipping, planar cross-beds in this unit are interpreted to be forset beds deposited in this prograding delta. Paleoflow directions are highly variable but generally southerly. The forset gravels are erosionally overlain by a trough and planar crossbedded unit of coarse gravels interpreted as channelized topset beds. A locally present, overlying unit of bedded fine sands also may be delta top sediments that were deposited when the main gravelly feeder channels shifted to another part of the delta. The entire sand and gravel sequence is sharply overlain by a massive, matrix supported, dense, silty diamicton, interpreted as a till. The upper part of the diamicton is less dense, has a gravelly-sand matrix and locally is crudely bedded. This unit probably was deposited as a series of debris flows during deglaciation. The capping gravels and sands at the site are interpreted to be glaciofluvial sediments deposited prior to incision of the modern Dust Creek valley, probably beginning in the early Holocene (Levson et al., 1997c). ### LATE WISCONSINAN DEGLACIAL DEPOSITS Deposits formed during deglaciation include both glaciofluvial and glaciolacustrine sediments. Glaciofluvial deposits in the map area occur as outwash plains, eskers, kames, terraces and fans in valley bottoms and along valley flanks. They consist mainly of poorly to well sorted, stratified, pebble and cobble gravels and sands of variable thickness. Eskers are only locally present and are composed mainly of stratified gravels and sands and some diamicton. Glaciofluvial gravels and sands deposited in front and along the margins of retreating glaciers are widespread in the region. Deposition of these sediments likely occurred as ice retreated northeastward up the valley and glaciofluvial drainage extended down valley. Exposures of glaciolacustrine sediments occur mainly in low-lying areas, often near modern lakes. Lake levels were at least locally controlled by ice dams. Maximum lake levels in large valleys in the region such as the Babine Lake valley are recorded by the upper elevation of deltaic deposits at about 760 metres above sea level. Exposures in these raised deltas reveal well stratified, sands and gravels, commonly with normal faults that formed when the deltas partially collapsed as lake levels dropped. Isolated glaciolacustrine and glaciofluvial deltaic deposits occurring at higher elevations reflect more localized ice damming in smaller tributary valleys. ### HOLOCENE FLUVIAL, COLLUVIAL AND ORGANIC DEPOSITS The most dominant Holocene deposits in the region are extensive areas of organic deposits. Low lying areas in the relatively low relief regions are characterized by numerous marshes and shallow lakes filled with organic sediment consisting of decayed marsh vegetation with minor sand, silt and clay. Holocene fluvial sediments in the region are dominated by floodplain silts, fine sands and organics and channel gravels. Colluvial deposits are most common in high relief areas. Steep slopes commonly have a thin veneer of weathered and broken bedrock clasts in a loose sandy matrix. These deposits grade downhill into a thicker cover of colluvial diamicton derived from both local bedrock and till remobilized by gravity after deposition. Colluvial veneers commonly overlie thin tills on steep slopes. Accumulations of talus are relatively uncommon due to the overall subdued topography, but they do occur below steep rocky cliffs that are locally present in the more mountainous parts of the area. #### **ICE-FLOW HISTORY** During Late Wisconsinan glaciation, ice initially moved southeasterly through the study area from the Skeena Mountains, before flowing easterly and northeasterly towards the Rocky Mountains (Tipper, 1971, Levson and Giles, 1997). In the eastern Nechako Plateau, results of ice-flow studies indicate that in most areas there was one dominant flow direction during the Late Wisconsinan glaciation, that shifted from southeast, in the north part of the plateau (Babine Lake region), to east in the central part (François Lake area) and eastnortheast in the south (Nechako Reservoir area; Levson and Giles, 1997). However, in the western Nechako Plateau and in the adjoining Babine Range and Hazelton Mountains, anomalous westerly ice-flow indicators are present and indicate a regional, west to southwest flow event(Levson et al., 1997c, 1998). Results suggest this was a more recent and widespread event than previously thought (Stumpf et al., in prep). This new data is significant for drift exploration programs in central British Columbia. Indications of this westerly ice-flow event include well developed roche-moutonnée, drumlinoids and rat-tails that indicate ice-flow toward the west over the Babine Range and Hazelton Mountains. In many areas this westerly flow was independent of topography as indicated, for example, by upslope flows in the Dome Mountain area (Levson *et al.*, 1997c, 1988). Similar westerly ice-flow indicators were previously reported in the Babine Range and in the vicinity of the Equity Silver mine (Tipper, 1994). At the Late Wisconsinan glacial maximum, ice covered all but the highest peaks in the region and movement appears to have been relatively unaffected by topography. In the Bait Range for example, the ice surface was in excess of 1950 metres as indicated by glacial erratics and regionally trending striae and flutings on top of Frypan Peak (elevation 1931 m, Levson et al., 1997c). At the height of the last glaciation, ice flowed from ice domes/divides located to the east of the Babine Lake valley toward the Coast. Preserved evidence of west flow is not restricted to elevations above 2000 m but also is present locally along valley bottoms such as the Babine Lake valley, especially in the lee of topographic obstructions, where it was preserved from later valley-parallel flow. Cross-cutting striae observed at several locations suggest that the westward event occurred at the maximum of the Late Wisconsinan glaciation, after glacier advance along valleys and prior to late-stage, retreat-phase flow that was topographically controlled in many areas. Tipper (1994) postulated that westerly ice flow patterns in the southern Babine Mountains and in the Equity Silver area represented a relict flow pattern from an earlier glaciation or possibly from an early phase of the last glaciation when movement of ice towards the Coast Mountains occurred as the result of the development of an ice dome in the central part of the Interior Plateau. Levson et al. (1997c, 1988), however, inferred that the westerly ice-flow features that they observed formed during the later part of the Late Wisconsinan glaciation. The main evidence of this is the preservation of westerly trending paleoflow indicators at low elevations in the Babine and Bulkley valleys at sites that would not have been protected from later valley-parallel (southeasterly) flow. The full extent and timing of the westerly flow event and its effects on dispersal are currently being investigated (Stumpf et al., in prep.). Evidence for west flow is most readily found west of the Babine Lake valley and diminishes eastward suggesting that the Babine valley was near the eastward limit of the divide or that ice-center migration east of that area was not long-lived. Consequently, westward flow apparently did not influence glacial dispersal to any great extent in the Babine Lake valley but it did have a significant effect further west. In the Babine area, valley-parallel, southeastward flow occurred at the end of the last glaciation. However, since evidence for westward flow is preserved in the Babine Lake area and in other valleys at unprotected, low elevation sites, the erosional effects of the later, valley-parallel flows must have been minimal. These observations suggest that the maximum buildup of interior ice extended late into the last glaciation. During deglaciation, ice flow was increasingly controlled by topography as the glaciers thinned. Striae and other ice-flow indicators that locally diverge from the regional trend reflect this topographically influenced ice-flow during waning stages of glaciation. A more complex local ice-flow history is indicated by highly variable striae trends at a few sites. Topographic control of ice flow during the latter phases is also apparent in many areas of high relief. In these areas, ice flow is clearly indicated by the presence of well developed cirque basins on the north and east facing sides of large mountains. ### GEOLOGY AND INTERPRETATION OF TILL GEOCHEMISTRY RESULTS It is critical, for geochemical interpretation purposes, that detailed descriptions of the sampled deposits are obtained and that different types of materials are distinguished. Regional variations due to surficial geology can therefore be minimized in favour of processes relating to mineralization. There is a particularly significant difference between till-covered areas and colluvial deposits in more mountainous areas. The regional data used in this study were collected from the C-horizon of basal tills in order to minimize variability
related to different surficial sediment types or soil horizons. It is also important to emphasize that glacial sediments can be eroded, transported and deposited by a wide variety of mechanisms, all of which may produce tills of distinctly different character. Tills may form by primary processes involving the direct release of debris from a glacier, or by secondary resedimentation processes in the glacial environment. Till characteristics are dependent on their position of deposition (subglacial. supraglacial or ice marginal), place of transport (basal, englacial or supraglacial) and dominant depositional mechanism (lodgement, melt-out, flow or deformation). For the purposes of drift prospecting, distance of transport is especially critical and two main varieties of till are commonly distinguished: basal tills, comprised of debris transported at or near the glacier base, and supraglacial tills, comprised of debris transported on or near the top of the glacier. The latter are usually deposited as debris flows and are comprised of relatively far-traveled debris. Basal tills, deposited by lodgement or melt-out processes, are typically more locally derived than supraglacial tills. Supraglacial tills may be distinguished from basal tills by higher total clast contents, more angular and fewer striated clasts, typically weaker and more randomly oriented pebble fabrics, and the common presence of interbedded sand and gravel deposits. The two till varieties may also be distinguished geomorphologically; supraglacial tills typically occur in areas of hummocky topography and basal tills in fluted or drumlinized regions. However, geomorphic data alone are not always diagnostic as, for example, fluted and drumlinized areas may be blanketed by a thin cover of supraglacial till. Similarly, basally derived, flow tills may be confused with relatively far-traveled, supraglacial, flow tills. Because of this difficulty in distinguishing different till facies, a multiple criteria sedimentologic, stratigraphic and approach using geomorphic data is recommended for the interpretation of glacial deposits. Any sedimentologic or other data suggestive of an origin other than a basal till, at any of the sample sites, is summarized in the comments column in the field observations table in Appendix A. The influence of bedrock geology must also be considered when interpreting regional till geochemical data because background levels of various elements in tills are controlled in part by the background concentrations in their source rocks. To evaluate the effect of bedrock geology on the regional geochemical data set, the lithology of the underlying bedrock should be identified for each sample site where possible. Open File 1997-10a ### INTERPRETATION OF RESULTS Geochemical results presented here for the Old Fort Mountain map area are based on a statistical analysis of the entire Babine regional data set of 941 samples (from NTS map areas 93 L/16; 93 M/1, 2, 7). Percentile class intervals shown on the element distribution maps in Appendix A are based on this regional data set rather than on the more limited data set from the Old Fort map area (93 M/1) alone. Elevated concentrations of a selection of elements are discussed here in the context of known mineral occurrences and the glacial ice-flow history of the area. 'Elevated' is used here in comparison to other till samples in the region and does not directly imply economic significance. In interpreting the following results, it is important to re-emphasize that concentrations of many elements are typically one or more orders of magnitude lower in tills than in their source rocks. Conversely, low concentrations in tills may reflect significantly high concentrations in bedrock. For this reason, relative, rather than absolute, concentrations are often more meaningful in interpreting till geochemical results. Quantitative evaluations of till geochemical data for any area, therefore, should only be made by comparison with geochemical concentrations in tills derived from known areas of mineralization where lithogeochemical results have been documented and, ideally, where geologic conditions (e.g. bedrock lithology, ice-flow history) are similar. As the latter is often impossible it is usually necessary to make analogies to distant sites where geologic conditions are less similar. This problem is somewhat alleviated in the Old Fort Mountain map area, as some comparisons can be made with the Bell mine area where lithogeochemical and till geochemical results are available (Stumpf et al., 1997). #### **COPPER** Mean and median copper concentrations for all till sites in the Babine area are 45 and 41 ppm, respectively. The highest copper concentration encountered in till in the Babine belt (1550 ppm) is on the Old Fort Mountain map sheet at site 3180 directly northeast of the Bell mine (Appendix A). Since the site is located up-ice of the main mine area it suggests the possibility that a enriched copper zone may occur near or northwest of the sample site. Elevated silver and zinc also occur at this site. Other single sample sites with elevated copper concentrations, above the regional 95th percentile (72 ppm), occur in the vicinity of the Wolf, Morrison and Hearne Hill copper prospects and the Fort showing. Copper concentrations, above the regional 90th percentile (63 ppm), occur in the vicinity of the Sparrowhawk and Copper showings. Till sites with elevated (>95th percentile) copper also occur down-ice of several new areas where recorded showings are not present. These include 4 sites northeast and east of Hautéte Lake, three sites northeast of the northern end of Hatchery Arm, two sites north of the Sparrowhawk showing, one site at the southern tip of Nakinilerak Lake, one site southwest of Nizik Lake, one site east of Hagan Arm, one site east of Nizik Lake and one site northwest of Natowite Lake (Appendix A). Areas with clusters of samples with elevated copper concentrations are considered especially prospective (i.e. areas northeast and east of Hautéte Lake and northeast of the northern end of Hatchery Arm). #### **GOLD** The background concentration of gold in tills in the Babine region, as defined by the median value, is 2 ppb. The mean concentration of gold is 4 ppb. Gold values above the 95th percentile (17 ppb), were obtained on relatively few till samples (6) in the map area but indicate two or three new exploration targets. These include sample sites 3185 west of Morison Lake, 3231 northeast of the northern end of Hatchery Arm, and 3296 northeast of Hautéte Lake. In addition, the distribution of high gold concentrations in the area corresponds well with the locations of known mineral prospects and showings including the Morrison, Hearne Hill and Sparrowhawk properties (Appendix A). Gold concentrations at the Morrison and Hearne Hill properties are two of the highest encountered in the Babine regional survey. #### SILVER The mean and maximum concentrations of silver in tills in the area are 0.17 and 1.4 ppm, respectively, and 90% of the regional till samples have silver concentrations of 0.3 ppm or less. The regional background silver concentration, as defined by the median value, is 0.1 ppm. Elevated concentrations of silver (> 0.4 ppm) occur in the vicinity of the Morrison and Hearne Hill developed prospects, the Fort showing and the Bell mine. Several elevated silver sites also occur in the Old Fort Mountain area and in the western most side of the map sheet (Appendix A). #### ARSENIC AND ANTIMONY Mean arsenic and antimony concentrations in tills are 15.6 and 1.6 ppm, and median concentrations are 15 and 1.4 ppm, respectively. Arsenic concentrations above the 95th percentile for all sites (>29 ppm As) cluster in several areas including the Morrison and Hearne Hill area and the area on the north side of Old Fort Mountain including the Fort showing. Two new areas of interest with elevated arsenic include a cluster of four sites southwest of Takla Lake in the northeast corner of the map area and a cluster of three sites several kilometres west of the south end of Morrison Lake. Antimony concentrations above the 95th percentile for all sites (3.1 ppm) also occur in till at the latter area as well as at the Morrison and Hearne Hill prospects and west of the Sparrowhawk showing. A multi-element anomaly with greater than 95th percentile concentrations of arsenic. antimony and copper occurs at site 3304, east of Hautéte Lake. The highest concentration of antimony in till in the Babine region occurs with elevated (> 95th percentile) copper at site 3120 and moderately elevated arsenic (29 ppm). A similar multi-element Cu-Sb-As anomaly occurs north of Hautete Lake at site 3319. #### LEAD AND ZINC Mean lead and zinc concentrations are 11 and 109 ppm, respectively. Median values for all sites are 10 ppm for lead and 98 ppm for zinc. Maximum values are 78 ppm for lead and 5067 ppm for zinc. Elevated lead concentrations occur in the vicinity of the Morrison and Hearne Hill developed prospects, the Bell mine and the Copper showing. Several other sites with elevated lead and zinc concentrations are coincident with elevated arsenic including clusters of sites southwest of Takla Lake, north of Old Fort Mountain and several kilometres west of the south end of Morrison Lake. Other sites with elevated lead and/or zinc occur west of Natowite Lake, east of the Dorothy prospect, south of Nizik Lake and southwest of Hautéte Lake. #### **MOLYBDENUM** Mean and median molybdenum values in the Babine area are 1.3 and 1 ppm, respectively. The maximum molybdenum concentration in tills in the region is 38 ppm. Only six sites in the map area have elevated (> 3 ppm) molybdenum concentrations. One of these occur near the Fort showing and one occurs near the Wolf developed prospect. One other site (3049) is coincident with the area of elevated arsenic, antimony and lead discussed above. The remaining three sites do not
coincide with elevated concentrations of any of the other elements discussed here. ### **SUMMARY** #### **QUATERNARY GEOLOGY** Morainal sediments deposited during the last glaciation are widespread in the area and provide an excellent sampling medium for drift exploration programs. Basal tills form a cover, varying in average thickness from a few to several metres in low-lying areas, to less than a metre in upland regions. Late Wisconsinan glaciers first advanced into the Old Fort Mountain map area along major valleys such as the Babine Lake and Morrison Lake valleys and glacial dispersal in the region is generally valley parallel (southeasterly) despite a somewhat complex glacial history. During the advance of ice into the area, damming of tributary drainage and the development of proglacial lakes occurred in a few areas. Meltwater streams flowing from the advancing ice, deposited coarse-grained proglacial outwash plains in the valley bottoms and glaciofluvial deltas developed where the streams entered the proglacial lakes. Debris-flow sediments were deposited with the outwash and proglacial lake sediments. Lodgement and meltout tills were eventually deposited by the glaciers as they advanced southeasterly over the entire region. Drumlins, crag-and-tails, flutings and striae in many areas crosscut major topographic highs, and indicate that the ice was thick enough to be relatively unaffected by topography during full-glacial times. In most areas the dominant flow-direction was southeasterly and glacial dispersal patterns appear to be dominated by this regional ice-flow direction. However, a westerly ice-flow event occurred in the region during the maximum build up of ice, probably late in the last glaciation. Evidence of westerly flow is best preserved in the southern Babine Mountains and further to the south and east. The full extent of this event and its influence on glacial dispersal in is currently being investigated. Westerly ice flow is regionally anomalous in the Nechako Plateau and may have occurred when a late-glacial ice divide or series of divides migrated into the plateau from the west. During deglaciation, loose, sandy gravelly diamictons were deposited on top of the tills by debris flows. Stagnant ice masses locally resulted in the development of esker complexes and dammed meltwater to create glacial lakes and associated glaciofluvial deltas. Gravelly outwash plains covered the main valley bottoms as large volumes of sediment and water were removed from the ice margin. Glaciofluvial sediments consist mainly of poorly to well sorted, stratified, pebble and cobble gravels and sands. Glaciolacustrine sediments are common in large valleys, generally at elevations below 950 metres, often near modern lakes. During postglacial times, the surficial geology of the area was modified mainly by fluvial activity and the local development of alluvial fans in the valley bottoms, as well as by colluvial reworking of glacial deposits along the valley sides. #### TILL GEOCHEMISTRY Zones of elevated metal concentrations associated with glacial dispersal of mineralized bedrock in the area, as in other parts of the Nechako Plateau, are typically up to a few kilometres long and several hundred metres or more wide, but isolated anomalies and erratics associated with the dispersal trains may cover much larger areas and be up to several kilometres long. They show a pronounced elongation parallel to ice-flow direction, with mineralized source rocks occurring at or near the up-ice end of the trains. Till geochemistry reflects up-ice bedrock sources and not the immediately underlying bedrock. In areas of thick till, near-surface anomalies may be displaced by 500 metres or more down-ice from their bedrock source. Subsurface exploration targets in these areas should be up-ice, rather than at the head, of the anomaly. Several new exploration targets are highlighted by multi-element geochemical anomalies and most existing mineral properties in the map region are also detected by the regional till geochemical data. For example, elevated (above the regional 95th percentile) copper, silver, antimony, arsenic and lead concentrations, and among the highest gold concentrations encountered in tills in the entire Babine area, occur in the vicinity of the Morrison and Hearne Hill developed prospects. Likewise, elevated lead, zinc and antimony occur southeast and east of the prospect. Dorothy developed Simliarly. concentrations, above the regional 90th percentile (63 ppm), occur in the vicinity of the Sparrowhawk and Copper showings. Till in the Sparrowhawk area also has elevated gold concentrations and till at the Copper showing also has elevated lead. Element concentrations at these sites are typically highest in the tills to the southeast of outcropping mineralized rocks, reflecting down-ice metal dispersal. In addition to reflecting known mineralization, geochemical results around some mineral properties suggest that further exploration in those areas may be warranted. For example, elevated copper, gold, arsenic and molybdenum occur in tills both near and up-ice (northwest) of the Wolf prospect. Similarly, elevated copper, arsenic, lead, zinc, silver and molybdenum occur in tills both near and up-ice of the Fort showing. Likewise, the highest copper concentration encountered in till in the Babine belt (1550 ppm) is on the Old Fort Mountain map sheet at a site directly northeast (up-ice) of the Bell mine. Elevated copper, zinc and silver at this site may reflect a enriched mineralized zone in that area. New prospective areas, where recorded mineral showings are not present, include multi-element anomalies with greater than 95th percentile concentrations of copper, arsenic and antimony at sites east and north of Hautéte Lake. The highest concentration of antimony in till in the Babine region occurs with elevated copper and moderately elevated arsenic (29 ppm) at a site northwest of Natowite Lake. Elevated (>95th percentile) copper and arsenic also occurs at two sites northeast of the northern end of Hatchery Arm and at a site near the southern tip of Nakinilerak Lake. Elevated gold and molybdenum occurs northeast of Hautéte Lake. Two areas of interest with elevated arsenic, lead and zinc include a cluster of four sites southwest of Takla Lake in the northeast corner of the map area and a cluster of three sites several kilometres west of the south end of Morrison Lake. Antimony and molybdenum concentrations, above the 95th percentile, also occur in till at the latter area. #### **ACKNOWLEDGMENTS** Analytical assistance and quality control on all laboratory analyses were provided by Ray Lett. Sample preparation was completed by Rossbacher Laboratory Limited. The cooperation of Bert Struik and Alain Plouffe from the Geological Survey of Canada through the NATMAP program is much appreciated. David Mate assisted with the final formatting of Appendix A. ### REFERENCES - Cook, S.J., Levson, V.M., Giles, T.R. and Jackaman, W. (1995). A Comparison of Regional Lake Sediment and Till Geochemistry Surveys: A Case Study from the Fawnie Creek Area, Central British Columbia; Exploration and Mining Geology, Volume 4, Number 2, pages 93-110. - Cook, S.J., Jackaman, W., Lett, R. and Sibbick, S. (1997a): Regional Geochemical Survey Program: Review of 1996 Activities; in Geological Fieldwork 1996, Lefebure, D.V., McMillan, W.J. and McArthur, J.G, Editors, B.C. Ministry of Employment and Investment, Paper 1997-1, pages 401-404. - Cook, S.J., Lett, E.W., Levson, V.M., Jackaman, W., Coneys, A.M., and Wyatt, G.J. (1997b): Regional Lake Sediment and Water Geochemistry of the Babine Porphyry Belt, Central British Columbia (NTS 93L/9, 93M/1, 2, 7, 8) British Columbia Geological Survey, Open File 1997-17, 31 pages and appendices. - Harington, C.R., Tipper, H.W. and Mott, R.J. (1974): Mammoth from Babine Lake, British Columbia; Canadian Journal of Earth Sciences, Volume 11, pages 285 - 303. - Holland, S.S. (1976): Landforms of British Columbia, A Physiographic, Outline; B. C. Ministry of Energy, Mines and Petroleum Resources, Bulletin 48, 138 pages. - Huntley, D.H., Levson, V.M. and Weary, G.F. (1996): Surficial Geology and Quaternary Stratigraphy of the Old Fort Mountain Area (93M/01) B.C. Ministry of Energy, Mines and Petroleum Resources, Open File 1996-9, (1:50,000 scale map). - Kerr, D.K. and Levson, V.M. (1997): Drift Prospecting Activities in British Columbia: An Overview with Emphasis on the Interior Plateau. in Interior Plateau Geoscience Project: Summary of Geological, Geochemical and Geophysical Studies, Diakow, L.J., and Newell, J.M., Editors, Geological Survey of Canada Open File 3448 and British Columbia Geological Survey, Paper 1997-2, pages 159-172. - Levson, V.M. and Giles, T.R. (1995): Glacial Dispersal Patterns of Mineralized Bedrock with Examples from the Nechako Plateau, Central British Columbia; in Drift Exploration, Bobrowsky, P.T., Sibbick, S.J., Newell, J.M. and Matysek, P.F., Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1995-2, pages 67-76. - Levson, V.M. and Giles, T.R. (1997): Quaternary Geology and Till Geochemistry Studies in the Nechako and Fraser Plateaus, Central British Columbia; in Interior Plateau Geoscience Project: Summary of Geological, Geochemical and Geophysical Studies, Diakow, L.J., and Newell, J.M., Editors, British Columbia Geological Survey, Paper 1997-2 and Geological Survey of Canada Open File 3448, pages 121-145. - Levson, V.M., Cook, S.J., Huntley, D.H., Stumpf, A.J., O'Brien, E.K. and Hobday, J. (1997a): Preliminary till geochemistry Old Fort Mountain Area (NTS 93 M/1); British Columbia Geological Survey, Open File 1997-18 (digital file). - Levson, V.M., Meldrum, D.G., Cook, S.J., Stumpf, A.J., O'Brien, E.K., Churchill, C., Broster, B.E. and Coneys, A.M. (1997b): Till Geochemical Studies in the Babine Porphyry Belt: Regional Surveys and Deposit-Scale Studies (NTS 93 L/16, M/1, M/8); in
Geological Fieldwork 1996, Lefebure, D.V., McMillan, W.J. and McArthur, J.G, Editors, British Columbia Geological Survey, Paper 1997-1, pages 457-466. - Levson, V.M., Stumpf, A.J., Meldrum, D.G., O'Brien, E.K., and Broster, B.E. (1997c): Quaternary geology and Ice Flow History of the Babine Lake Region: (NTS 93 L/16, M/1, M/8); in Geological Fieldwork 1996, Lefebure, D.V., McMillan, W.J. and McArthur, J.G, Editors, British Columbia Geological Survey, Paper 1997-1, pages 427-438. - Levson, V.M., Stumpf, A.J., and Stuart, A.J. (1998): Quaternary Geology and Ice Flow Studies in the Smithers and Hazelton Map Areas (93 L and M): Implications for Exploration; in Geological Fieldwork 1997, Lefebure, D.V., and McMillan, W.J., Editors, British Columbia Geological Survey, Paper 1998-1, pages 5-1 to 5-8. - MacIntyre, D.G., Webster, I.C.L. and Desjardins P. (1997a): Bedrock Geology of the Old Fort Mountain Area North-Central B.C. (NTS 93M/1); B.C. Ministry of Employment and Investment, Open File 1997-10, (1:50,000 scale map). - MacIntyre, D.G., Webster, I.C.L. and Desjardins P. (1997b): Bedrock Geology of the Old Fort Mountain Area (93M/1); in Geological Fieldwork 1996, Lefebure, D.V., McMillan, W.J. and McArthur, J.G, Editors, B.C. Ministry of Employment and Investment, Paper 1997-1, pages 47-67. - O'Brien, E.K. Broster, B.E. Giles, T.R. and Levson, V.M. (1995): Till Geochemical Sampling: CH, Blackwater-Davidson, and Uduk Lake Properties, British Columbia: Report of Activities; in Geological Fieldwork 1994, Grant, B. and Newell, J.M., Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1995-1, pages 207-211. - O'Brien, E.K. (1996): Till Geochemistry Dispersal Patterns at the CH, Blackwater-Davidson and Uduk Lake Mineral Properties, Central British Columbia; unpublished M.Sc. thesis, *University of New Brunswick*, 198 pages. - Plouffe, A. (1994): Surficial Geology, Chuchi Lake (93N/SE) and Tezzeron Lake (93K/NE), British Columbia; Geological Survey of Canada, Open Files 2842 and 2846 (1:100 000 maps). - Plouffe, A. (1996): Surficial Geology, Tsayta Lake (93N/SW), Fraser Lake (93K/SE), Cunningham Lake (93K/NW), Burns Lake (93K/SW), Manson Creek (93N/NE) and Old Hogem (93N/NW); Geological Survey of Canada, Open Files 3071, 3182, 3183, 3184, 3312, and 3313 (1:100 000 maps). - Ryder, J.M. and Clague, J.J. (1989): British Columbia Quaternary Stratigraphy and History, Cordilleran Ice Sheet; in Quaternary Geology of Canada and Greenland, Fulton, R.J., Editor, Geological Survey of Canada, Geology of Canada, Number 1, pages 48-58. - Stumpf, A., Huntley, D.H., Broster, B.E. and Levson, V.M. (1996): Babine Porphyry Belt Project: Detailed Drift Exploration Studies in the Old Fort Mountain (93M/01) and Fulton Lake (93L/16) Map Areas, British Columbia; in Geological Fieldwork 1995, Grant, B. and Newell, J.M., Editors, B.C. Ministry of Energy, Mines and Petroleum Resources, Paper 1996-1, pages 37-44. - Stumpf, A.J., Broster, B.E. and Levson, V.M. (1997): Evaluating the Use of Till Geochemistry to Define Buried Mineral Targets: A Case Study from the Bell Mine Property, (93 L/16, M/1) West-Central British Columbia; in Geological Fieldwork 1996, Lefebure, D.V., McMillan, W.J. and McArthur, J.G, Editors, British Columbia Geological Survey, Paper 1997-1, pages 439-456. - Stumpf, A.J., Broster, B.E. and Levson, V.M. (in prep.): Shifts in Late Wisconsinan Ice Sheet Centres, WestCentral British Columbia; to be submitted to Quaternary Research. - Tipper, H.W. (1971): Glacial Geomorphology and Pleistocene History of Central British Columbia; Geological Survey of Canada, Bulletin 196, 89 pages. - Tipper, H.W., (1994): Preliminary Interpretation of Glacial Features and Quaternary Information from the Smithers Map Area (93 L), British Columbia; Geological Survey of Canada, Open File 2837, Report with Map, (scale 1:250,000). - Wittneben, U. (1981): Terrain Maps for the Hazelton Map Area (NTS 93 M/NW, NE, SE); B.C. Ministry of Environment, Lands and Parks, unpublished 1:50,000 scale maps. ### **APPENDIX A** - Sample location map - MINFILE location map - · Element distribution maps for copper, gold, arsenic, antimony, lead zinc, silver, molybdenum, iron and mercury - · Scatter plots of analytical and field duplicate pairs - ICP analytical data - INA analytical data - · Field site descriptions and reference guide 126°30′ W 670000 m. E 55°15′ N Cu,Mo Hilly Cu,Mo 006 6110000 m, N Old Fort Copper 1-4 Old Fort Ag,Pb,Zn Cu,Mo 162 004 Newman North Fireweed Ag,Pb,Zn 6100000 m. Cu 159 151 Babine Lake 55°00' N 660000 m. E. 126°00° W B.C. Geological Survey Branch ### Open File 1997-10a # Till Geochemistry of the Old Fort Mountain map area (NTS 93 M/01, 1:50,000 scale) National Topographic System Transverse Mercator Projection NAD 1983 UTM Grid Zone 9 Geology Simplified from MacIntyre et al., (1997). For more details see MacIntyre et al. (1997b; enclosed map) - Showing - C) Prospect - Developed Prospect 126°30° W 690000 m.E. 670000 m. E. 55°15′ N 6120000 m. N. 6110000 m. 6100000 m. N. Babine Lake 55°00' N 680000 m. 660000 m. E. 126°00' W B.C. Geological Survey Branch Open File 1997-10a # Till Geochemistry of the Old Fort Mountain map area (NTS 93 M/01, 1:50,000 scale) National Topographic System Transverse Mercator Projection NAD 1983 UTM Grid Zone 9 # Copper (ppm) Glacial till | Conce | ntration | F | requ | ency/F | Regional %tile | |-------|----------|---|------|--------|----------------| | 72 to | 1550 | • | n= | 19 | (>95%) | | 63 to | | 8 | n= | 19 | (91-95%) | | 48 to | 63 | | n= | 62 | (71-90%) | | 41 to | 48 | • | n= | 71 | (51-70%) | | 9 to | 41 | × | n= | 116 | (<51%) | 126°30′ W 670000 m. E 55°15′ N 6120000 m. N. 6100000 m. N. Babine Lake 55°00′ N 660000 m. E. 126°00′ W B.C. Geological Survey Branch ### Open File 1997-10a # Till Geochemistry of the Old Fort Mountain map (NTS 93 M/01, 1:50,000 scale) National Topographic System Transverse Mercator Projection NAD 1983 UTM Grid Zone 9 # Gold (ppb) Glacial till | Concent | tration | , F | requ | ency/F | Regional %tile | |---------|---------|-----|------|--------|----------------| | 11.1 to | 84.1 | • | n= | | (>95%) | | 9.1 to | | | n= | 17 | (91-95%) | | 5.1 to | 9.1 | | n= | 57 | (71-90%) | | 2.1 to | 5.1 | • | n= | 56 | (51-70%) | | <2 to | 2.1 | * | n= | 151 | (<51%) | 126°30' W 690000 m.E. 670000 m. E. 55°15' N 6120000 m. N. Babine Lake 660000 m. E. B.C. Geological Survey Branch ### Open File 1997-10a ### Till Geochemistry of the Old Fort Mountain map (NTS 93 M/01, 1:50,000 scale) National Topographic System Transverse Mercator Projection NAD 1983 UTM Grid Zone 9 # Arsenic (ppm) Glacial till | Cond | cent | ration | F | requ | ency/F | Regional %tile | |------|------|--------|---|------|--------|----------------| | 29 | to | 131 | - | n= | 29 | (>95%) | | | | 29 | 1 | | 16 | (91-95%) | | 18 | to | 25 | • | n= | 110 | (71-90%) | | 15 | to | 18 | • | n= | 61 | (51-70%) | | 5 | to | 15 | * | n= | 71 | (<51%) | n_{total}=287 Samples 55°00' N 126°00′ W B.C. Geological Survey Branch ### Open File 1997-10a # Till Geochemistry of the Old Fort Mountain map area (NTS 93 M/01, 1:50,000 scale) National Topographic System Transverse Mercator Projection NAD 1983 UTM Grid Zone 9 # Antimony (ppm) Glacial till | Concent | tration | | requ | ency/F | Regional %tile | |---------|---------|---|------|--------|----------------| | 3.1 to | 30.1 | • | n= | 8 | (>95%) | | 2.6 to | | | n= | 8 | | | 1.8 to | | | n= | 84 | (71-90%) | | 1.5 to | | | n= | • | (51-70%) | | 0.4 to | 1.5 | × | n= | 100 | (<51%) | 126°30′ W 670000 m. E. 55°15′ N 6120000 m. N. Babine Lake 55°00' N 660000 m. E. B.C. Geological Survey Branch ### Open File 1997-10a # Till Geochemistry of the Old Fort Mountain map area (NTS 93 M/01, 1:50,000 scale) | 93
M/07 | 93 M/08 | |------------|---------| | 93
M/02 | 93 M/01 | | Wod. | 93 L/16 | | | 93 L/09 | National Topographic System Transverse Mercator Projection NAD 1983 UTM Grid Zone 9 # Lead (ppm) Glacial till | F | requ | ency/F | Regional %tile | |---|------|--------|---------------------------------| | • | n= | 12 | (>95%) | | | n= | 6 | (91-95%) | | • | n= | 68 | (71-90%) | | • | n= | 75 | (51-70%) | | × | n= | 126 | (<51%) | | | | • U= | n= 12
n= 6
n= 68
n= 75 | n_{total}=287 Samples 126°00′ W 126°30′ W 670000 m. E 55°15′ N 6100000 m. N. Babine Lake 55°00′ N 126°00′ W 660000 m. E. B.C. Geological Survey Branch Open File 1997-10a # Till Geochemistry of the Old Fort Mountain map area (NTS 93 M/01, 1:50,000 scale) National Topographic System Transverse Mercator Projection NAD 1983 UTM Grid Zone 9 # Zinc (ppm) Glacial till | Concentration | F | requ | ency/R | Regional %tile | |---------------|----|------|--------|----------------| | 171 to 627 4 | • | n= | 12 | (>95%) | | 143 to 171 | 64 | n= | 12 | (91-95%) | | 112 to 143 | • | n= | 64 | (71-90%) | | 98 to 112 | • | n= | 78 | (51-70%) | | 38 to 98 | × | n= | 121 | (<51%) | 126°30′ W 690000 m.E. 670000 m. E. 55°15' N 6120000 m. N. 100000 m. N. Babine Lake 55°00′ N 680000 m. E. 660000 m. E. 126°00° W B.C. Geological Survey Branch Open File 1997-10a # Till Geochemistry of the Old Fort Mountain map (NTS 93 M/01, 1:50,000 scale) | 93
M/07 | 93 M/08 | |------------|-----------------| | 93
M/02 | 93 M /01 | | vions | 93 L/16 | | | 93 L/09 | National Topographic System Transverse Mercator Projection NAD 1983 UTM Grid Zone 9 # Silver (ppm) Glacial till 126°30′ W 670000 m. E 55°15′ N 6120000 m. N. Babine Lake 55°00' N 680000 m. E. 126°00° W B.C. Geological Survey Branch Open File 1997-10a # Till Geochemistry of the Old Fort Mountain map area (NTS 93 M/01, 1:50,000 scale) National Topographic System Transverse Mercator Projection NAD 1983 UTM Grid Zone 9 ## Molybdenum (ppm) #### **AICP** Glacial till Concentration Frequency/Regional %tile 3 to 39 n= 6 (>95%) 2 to 3 n= 47 (91-95%) <2 to 2 n= 234 (<90%) 126°30′ W 55°15′ N Babine Lake 126°00′ W 660000 m. E. B.C. Geological Survey Branch ### Open File 1997-10a # Till
Geochemistry of the Old Fort Mountain map area (NTS 93 M/01, 1:50,000 scale) National Topographic System Transverse Mercator Projection NAD 1983 UTM Grid Zone 9 # Mercury (ppb) Glacial till | Concentration | F | reque | ency/F | Regional %tile | |---------------|-----|-------|--------|----------------| | 240 to 951 | • | n= | 26 | (>95%) | | 200 to 240 | 100 | n= | 21 | | | 137 to 200 | | n= | 88 | (71-90%) | | 100 to 137 | • | n= | 54 | (51-70%) | | 10 to 100 | * | n= | 98 | (<51%) | B.C. Geological Survey Branch Open File 1997-10a # Till Geochemistry of the Old Fort Mountain map area (NTS 93 M/01, 1:50,000 scale) National Topographic System Transverse Mercator Projection NAD 1983 UTM Grid Zone 9 # Iron (%) Glacial till | Concentration | F | requ | ency/F | Regional %tile | |---------------|---|------|--------|----------------| | 5.78 to 7.80° | • | n= | 16 | (>95%) | | 5.45 to 5.78 | | n= | 17 | (91-95%) | | 4.76 to 5.45 | • | n= | 83 | (71-90%) | | 4.36 to 4.76 | • | n= | 67 | (51-70%) | | 1.73 to 4.36 | × | n= | 104 | (<51%) | ICP Field Duplicate Pairs (n=18) ICP Analytical Duplicate Pairs (n=17) ICP Field Duplicate Pairs (n=18) INA Analytical Duplicate Pairs (n=17) | | | | | Element
Units | | Mo
ppm | Cu
ppm | Pb
ppm | Zn
ppm | • | | Co
ppm | Mn
ppm | Fe
% | As
ppm | Sr
ppm | Cd
ppm | Sb
ppm | Bi
ppm | | | | Cr
ppm | Mg
% | Ba
ppm | | AI
% | | | Hg
ppb | |---|---|----------------|--|---|----------|------------------------|----------------|----------------------|-------------------|---------------------------------|-----------------------------|---------------------------|-------------------------------------|--------------------------------------|---------------------|--------------------|------------------------------------|------------|---------------------------------------|----------------------------|--------------------------------------|--------------------------------------|----------------------------|--------------------------------------|---------------------------------|--------------------------------------|----------------------|--------------------------------------|----------------------|--------------------------------| | | | | | Detection limit | | ·· 1 | | _ | | | 1 | | | 0.01 | | | 0.2 | | | | 0.01 | 0 | | 0.01 | | 0.01 | | | | 10 | | MAP | ID | UTMZ | UTME | UTMN | Rep | AICP CAA | | 93M01
93M01
93M01
93M01
93M01 | 95-3005 | 9U
9U
9U | 662188
661957
673220
662486
662486 | 6125462
6123162
6118884
6102732
6102732 | 10
20 | 1
1
1
1 | 52
36 | 15
11
11 | 133
114
94 | < .3 | 13
49
31
32
33 | 6
20
14
14
14 | 936
866
844 | 2.76
3.69
4.26
3.69
3.95 | 13
21
10 | 80
28
67 | 0.2
0.3 | < 2 2 | <2
<2
3
<2
<2 | 46 | 0.26
1.09 | 0.06
0.06
0.07 | 20
26
30
20
21 | 0.57
0.45 | 305
316
177
208
224 | 0.04
0.05 | 1.63
2.2
1.64 | 0.03
0.02
0.01
0.03
0.03 | 0.12 | 10
205
130
110
100 | | 93M01
93M01
93M01
93M01
93M01 | 95-3008
95-3009
95-3010
95-3011
95-3012 | 9U
9U
9U | 661134
660007
662837
661788
661562 | 6103109
6103209
6101555
6102043
6100722 | | 1
1
<1
1 | 43
28
21 | 15
9
6 | 113
80
54 | 0.5
0.3
< .3 | 28
39
21
21
25 | 8
17
8
6
10 | 1350
463
271 | 4.39
3.22 | 10
8
3 | 70
55
47 | < .2
0.3
< .2
< .2
0.2 | < 2
< 2 | <2
<2
2
2 | 47
50
44
36
48 | 0.61
0.51
0.43 | 0.06
0.05 | 24
18 | 0.38 | 241
220
200 | 0.04
0.03
0.07
0.08
0.06 | 1.88
1.6
1.52 | 0.03
0.02 | 0.09
0.07
0.05 | 155
115
75
50
75 | | 93M01
93M01
93M01
93M01
93M01 | 95-3013
95-3014
95-3015
95-3016
95-3017 | 9U
9U
9U | 660075
670140
669294
669670
668063 | 6101214
6098344
6099165
6099948
6099042 | | 1
2
1
1 | 36
26 | 12
12
11 | 99
97
69 | < .3
< .3
< .3
< .3 | 21
31
30
20
31 | 7
14
14
8
12 | 899
1020
432 | 3.08
4.36
4.08
3.47
4.18 | 13
14
9 | 51
66
35 | 0.2
0.4
< .2 | < 2
< 2 | | 63
52
45 | 0.77 | 0.06
0.07
0.05 | 24
22
19 | 0.41
0.53
0.51
0.41
0.53 | 192
298
156 | 0.06 | 2.21
1.88
1.87 | 0.02
0.02
0.03
0.02
0.03 | 0.09
0.1 | 90
105
95
75
90 | | 93M01
93M01
93M01
93M01
93M01 | 95-3018
95-3019
95-3020
95-3022
95-3023 | 9Ü
9Ü
9Ü | 668008
666735
666757
665645
664210 | | | 1
1
1
1 | 37
41
36 | 12
15
11 | 92
102
94 | <.3
<.3
<.3
<.3 | 46
33
30
31
34 | | 891
1017
978 | 3.82
3.92 | 15
14
9 | 64
56
54 | 0.3
0.5
0.3 | < 2 | 2 < 2
< 2
< 2
< 2
2 < 2 | 49 | 0.62
1.05
0.59 | 0.07
0.08 | 22
19 | 0.57
0.49
0.41
0.44
0.46 | 278
282
238 | | 1.82
1.55
1.75 | 0.03
0.03 | 0.08
0.08
0.08 | 85
90
80
80
80 | | 93M01
93M01
93M01
93M01
93M01 | 95-3025
95-3026
95-3027
95-3028
95-3029 | 9U
9U
9U | 665768
665218
664524
674384
676176 | 6099050
6124740 | | 1
1
1
<1
1 | 27
42
83 | 9
12
10 | 72
103
120 | < .3
< .3
< .3
< .3 | 26
19
41
137
28 | 17
34 | 518
938
1633 | 3.84
5.29 | 10
12
26 | 56
77
51 | < .2
0.5
0.8 | 3 | | 41
47
71 | 0.64
0.58
1.71
0.87
0.78 | 0.07
0.07
0.06 | 23 | 0.34
0.61
1.44 | 225
222
157 | 0.07
0.02
0.08 | 1.39
1.75
2.07 | 0.03
0.04 | 0.05
0.09
0.05 | 120
90
150
120
80 | | 93M01
93M01
93M01
93M01
93M01 | 95-3030
95-3031
95-3032
95-3033
95-3034 | 9U
9U
9U | 676985
676985
663015
662759
661336 | 6123689
6100169
6099195 | 10
20 | 1
1
1
1 | 49
32
15 | 16
11
5 | 136
77
62 | < .3
< .3
< .3
< .3 | 47
45
22
19
20 | 26
8
6 | 279 | 4.83
3.6 | 18
11 | 61
51
40 | 0.5
< .2
< .2 | < 2
< 2 | < 2 | 65
64
48
38
41 | 0.65
0.57
0.4 | 0.09
0.07
0.06
0.04
0.06 | 31
20 | 0.49
0.47
0.43
0.39
0.4 | 302
226
174 | 0.02
0.05
0.07 | 1.89
1.77
1.43 | 0.02 | 0.09
0.07
0.05 | 235
265
100
35
75 | | 93M01
93M01
93M01
93M01
93M01 | | 9U
9U
9U | 660516
660516
662315
672095
672484 | 6098949
6098269
6108760 | 10
20 | < 1
< 1
1
1 | 35
43
40 | 9
12
11 | 107
97
93 | < .3
< .3
< .3
< .3 | 46
48
32
32
25 | 22
15
11 | 542 | 3.86
3.7
4.37 | 14
13
15 | 73
77
30 | 0.4
0.5
0.4 | < 2 | | 46
46
45
52
43 | 1.66
2.06
0.31 | 0.06
0.04 | 24
24
19
28
21 | 0.64
0.55
0.5 | 212
207
186 | 0.02
0.02
0.02
0.01
0.02 | 1.64
1.55
1.93 | 0.02
0.03
0.01 | 0.09
0.08 | 85
85
100
120
210 | | | 95-3040
95-3042
95-3043
95-3044
95-3045 | 9U
9U
9U | 672484
659901
661260
662531
663568 | 6115908
6115702
6115444 | | 1
1
1
1 | 30
31
33 |) 13
 21
 11 | 76
95
95 | <.3
<.3
<.3
<.3
<.3 | 30
25
32
32
39 | 14
13 | 930
812 | 3.21
4.15
3.64 | 13
18
14 | 42
61
44 | < .2
0.3
0.2 | < 2
< 2 | 2 < 2 | 44
39
46
43
45 | 0.41
0.5
0.47 | | 22 | 0.32
0.4
0.4 | 212
188
249 | 0.03
0.05
0.02
0.02
0.01 | 1.15
1.53
1.46 | 0.02
0.01 | 0.06
0.07
0.08 | 200
80
75
95
115 | | | | 9U
9U
9U | 661492
662917
659434
661981 | 6117211
6111161
6118058 | 10
20 | 2
2
1
4 | 47
43
54 | 7 19
3 13
1 31 | 154
107
168 | | 32
61
40
34
31 | 37
14
17 | 1047
1657
761
1376
1360 | 4.36
4.12
4.87 | 34
2 15
7 52 | 58
67
2 38 | 0.5
< .2
0.5 | < 2
i | 2 < 2
< 2
3 < 2
5 2
3 < 2 | 41
48 | 0.56
2.05
0.62
0.64
0.63 | 0.06
0.06
0.07 | 25 | 0.47
0.52
0.44 | 243
301
239 | | 1.53
1.85
1.55 | 0.02
0.03
0.02 | 0.1
0.12
0.09 | 145 | | 93M01 | 95-3052
95-3053
95-3054
95-3055
95-3056 | 9U
9U
9U | 660137
660413
660939
660981
661888 | 6111805
6113337
6112340 | | 1
1
2
1 | 37
27
47 | 7 10
2 11
7 56 | 98
110
122 | | | 9
7
19 | 387
340
1051 | 3.47 | 3 8
7 12
2 14 | 46
2 22
3 65 | < .2
< .2
0.2 | <2
; <2 | 3 < 2 | 42
40
45 | | 0.07
0.05
0.07 | 28
23
28 | 0.41 | 217
107
271 | 0.01
0.02
0.02
0.02
0.01 | 1.61
1.81
1.82 | 0.02 | 0.07
0.07
0.09 | 135
65
200 | #### ICP Analytical Data | | | | | Element | | | | | Zn | • | Ni | Co | | Fe
e | As | | Cd | Sb | | V | | | Cr | Mg
% | Ba
pom | Ti
% | AI
% | Na
% | | Hg
pob | |---|---|----------------|--|---|----------|-----------------------|----------------------------|----------------------------|--------------------------------|-------------------------------------|----------------------------|----------------|------------------------------------|----------------------|----------------------
----------------------------|---------------------|-------------------------|---|----------------------------|----------------------|----------------------|----------------------------|----------------------------|-------------------|--------------------------------------|--------------------------------------|--------------------------------------|----------------------|---------------------------------| | | | | | Units
Detection limit | | ppm
1 | ppm
1 | ppm
3 | ppm
1 | ppm
0.3 | ppm
1 | | | %
0.01 | | | рр ті
0.2 | | ppm
2 | • • | 0.01 | 7 0 | | 0.01 | | 0.01 | | | | 10 | | MAP | ID | UTMZ | UTME | UTMN | Rep | AICP | AICP | | AICP CAA | | 93M01
93M01 | 95-3060 | 9Ú
9U
9U | 668481
669002
668532
667184
667145 | 6110192
6108107
6109182
6110696
6111574 | | 1
1
2
1
1 | 14
31
53
40
47 | 8
10
25
10
14 | | < .3 | 16
32
38
43
47 | | 411
1294
573 | 3.41
5.34
3.93 | 11
34
17 | | 0.2 | 3 3 | <2
<2
<2
<2
<2 | 36
42
50
43
50 | 0.25
0.49
0.43 | 0.05
0.06
0.06 | 18
25
23
28
30 | 0.42
0.42
0.4 | 162 | 0.04
0.01
0.02 | 1.31
1.79
1.52 | 0.01
0.01
0.02
0.02
0.02 | 0.05
0.09
0.06 | 50
110
230
155
210 | | 93M01
93M01
93M01
93M01
93M01 | 95-3064
95-3065
95-3066 | 9U
9U
9U | 668619
669872
669543
670797
670630 | 6111166
6110706
6112095
6111319
6112895 | 10 | 1
1
1
1 | 43
32
45
58
42 | 11
12
14
8
11 | | | 46
32
49
41
50 | 11
17
11 | 777
1117
1101
614
1082 | 4.49
4.69
3.93 | 10
10
8 | 33
25
36
32
69 | 0.2
0.2
< .2 | 2 2 | 2
 < 2
 < 2
 < 2
 < 2 | 43
37
48
45
47 | 0.36
0.54
0.65 | 0.08
0.07
0.05 | 27
23
30
33
28 | 0.49
0.43
0.59 | 235
265
218 | 0.03
0.02
0.01
0.04
0.01 | 1.45
1.72
1.7 | 0.01
0.02
0.02 | 0.09
0.06
0.06 | 190
180
160
130
170 | | 93M01
93M01
93M01
93M01
93M01 | 95-3069
95-3070
95-3072 | 9Ü
9U
9U | 670630
667890
668490
663851
664329 | 6112895
6112292
6113179
6125339
6124040 | 20 | 1
1
1
1 | 42
53
33
44
32 | 15
12
10
14
10 | 139
93
101 | <.3
<.3
<.3
<.3 | 51
63
36
47
28 | 21
11
16 | 1403 | 4.57
3.77
4.01 | 16
10
10 | 43
54 | 0.5
< .2
0.5 | < 2
< 2 | | 46
47
46
52
47 | 1.34
0.51
0.67 | 0.07
0.06
0.07 | 28
33
29
29
26 | 0.59
0.45
0.51 | 222
269
255 | 0.01 | 1.79
1.63
1.85 | 0.02 | 0.08
0.08
0.13 | 160
160
135
170
105 | | | 95-3075
95-3076
95-3077 | 9Ü
9U
9U | 665444
664306
664144
664194
663918 | 6123489
6122948
6120258
6117429
6118603 | | 1
1
1
2
1 | 33
44
36
45
44 | 6
13
11
11
13 | 96
86
112 | < .3
< .3
< .3
< .3 | 39
42
29
40
32 | 12
10
16 | 662
532
1484 | 4.27
3.56 | 12
9
13 | 37
57 | < .2
< .2 | <2
3 < 2 | | 48
50
41
48
46 | 0.31
0.58 | 0.05
0.03
0.06 | 27
31
22
24
24 | 0.5
0.33
0.51 | 296
240
345 | 0.02
0.01 | 2.76
2.01
1.44
1.86
1.66 | 0.02
0.02
0.03 | 0.11
0.06
0.11 | 145
310
135
200
210 | | 93M01
93M01 | 95-3079
95-3080
95-3082
95-3083
95-3084 | 9U
9U
9U | 664117
666259
666094
663298
662335 | 6119356
6122431
6121704
6122402
6122429 | | 1
1
2
1
1 | 39
32
39
36
44 | 12
9
10
11 | 112
66 | < .3
< .3
< .3
< .3 | 33
30
31
32
40 | 10
10
9 | 314
464
534 | 3.64
3.24
3.72 | 8
10 | 30
34 | <.2
<.2
<.2 | < 2
< 2 | <2
<2
<2
<2
<2 | 51
43 | 0.3
0.25 | 0.08
0.02
0.04 | 22 | 0.41
0.42
0.34 | 144
201
228 | 0.02 | 2.23
1.34
1.52 | 0.01
0.01
0.01 | 0.06
0.06
0.07 | 185
65
155
180
540 | | | 95-3086
95-3087
95-3088 | 9U
9U
9U | 665985
666035
667049
663625
665087 | | | 1
1
1
2
1 | 44
48
36
43
52 | 10
14
9
14
14 | 101
112
80
107
111 | < .3
0.3
0.4 | 40 | 18
9
14 | 865 | 4.22
3.57
3.81 | 12
13
12 | 76
50
43 | 0.5
0.2
0.5 | 5 < 2
2 < 2
5 . : | <2
<2
<2
<2
<2 | 52
46
45 | 0.52 | 0.06
0.07
0.07 | 20 | 0.57
0.31
0.31 | 354
242
291 | 0.04 | 1.94
1.29
1.24 | 0.02
0.02 | 0.12
0.04
0.08 | 165
115
195
220
185 | | 93M01
93M01 | 95-3093
95-3094 | 9U
9U
9U | 668170
670580
669529
662396 | 6117015
6124122 | 10
20 | 1 1 1 | 35
43
33
44
45 | 12
9
7
11
12 | 73
103 | < .3
< .3 | 36
27 | 13
8
24 | 744 | 3.23 | 14
3 12
3 13 | 62
41
86 | 0.2
0.2
0.6 | 2 :
5 < 2 | 2 < 2 | 51 | | 0.07
0.05
0.06 | 28 | 0.46
0.4
0.57 | 314
205
335 | 0.01 | 1.66
1.42
1.6 | 0.01
0.02 | 0.07
0.06
0.13 | 190
265
145
240
195 | | 93M01 | 95-3098
95-3099 | 9U
9U
9U | 664355
680620
679733
679660
679336 | 6100028
6101532
6106596 | | 1
1
1
1 | 45
55
56
65
64 | 15
11
13
13 | 112
94
105 | | | 16
13
20 | 798
1518 | 4.03
4.09
5.04 | 17
16
1 20 | 61
44
41 | 0.6
0.3 | 5 < 2
3
5 | 2 < 2
< 2
2 < 2
2 < 2
2 < 2 | 50
57
57
75
72 | 2.11
0.69
0.7 | 0.07
0.07
0.09 | 29
24
27
36
34 | 0.54
0.44
0.66 | 221
252
294 | 0.03 | 1.43
1.6
1.93 | 0.02
0.02
0.03 | 0.07
0.1 | 180
210
180
160
145 | | 93M01
93M01
93M01 | 95-3102
95-3103
95-3104
95-3105
95-3106 | 9U
9U
9U | 681051
678344
678879
679029
678091 | 6104048
6102809 | | 1
1
1
1 | 98
52
50
62
55 | 9
14
8
12
9 | 147
110
108 | < .3
< .3
< .3
0.3
< .3 | 36
30
43
41
36 | 14
14
17 | 1084
7 969 | 4.69
4.4
4.02 | 9 14
1 14
2 17 | 40
49
88 | 0.2 | 2
3
6 | 3 < 2
3 < 2
2 < 2
3 < 2
2 < 2 | 123
76
59
56 | 0.39
0.54
2.71 | 0.04
0.06
0.07 | 30
29 | 0.51
0.48
0.59 | 273
301
267 | 0.02
0.02
0.03 | 1.79
1.79
1.55 | 0.02 | 0.09
0.08
0.08 | 180
145
200
380
240 | | 93M01
93M01
93M01 | 95-3108
95-3108
95-3109
95-3111
95-3112 | 9U
9U
9U | 677596
676749
690033
687158
687158 | 6105597
6099578
6108321 | 10
20 | 1
1
1
1 | 29
34
51
68
65 | 6
9
8
78
97 | 105
309 | 0.4 | 29 | 10
12
15 | 448 | 3.73
4.28
4.82 | 3 11
3 12
2 22 | 43
53
62 | 1. | 3 | 2 < 2
2 < 2
2 < 2
4 2
2 2 | | 0.32
0.71
0.97 | 0.04
0.07
0.07 | 27
33 | 7 0.53
3 0.72
9 0.67 | 219
212
217 | 0.03
0.01
0.04
0.06 | 1.84
2.14
2.35 | | 0.09
0.09
0.08 | 120
145
155
190
165 | | | | | | Element
Units | | | Cu | Pb | Zn | • | Ni | Co | Mn | Fe e | As | | Cd | Sb | | ٧ | Ca | | Cr
ppm | • | | Ti
% | | Na
% | | Hg
pob | |-------------------|--|----------------------|--|---|----------|------------------------|----------------------------|----------------------------|-------------------|-------------------------------------|----------------------------|---------------------------|---------------------|----------------------|-------------------|----------------------------|---------------------|---|---------------------------------|------------------------------------|----------------------|----------------------|----------------------------------|--------------------------------------|---------------------------------|--------------------------------------|----------------------|--------------------------------------|----------------------|---------------------------------| | | | | | Detection limit | | ppm
1 | ppm
1 | ppm
3 | | • • • • | ppm
1 | ٠. | ppm 2 | 78
0.01 | | | | | ppm 2 | | 0.01 | %
0 | | 0.01 | ppm
1 | | | 0.01 | | 10 | | MAI | QI . | UTMZ | UTME | UTMN | Rep | AICP | | | | | | AICP CAA | | 93M
93M
93M | | 4 9U
5 9U
6 9U | 688346
686430
685154
685058
684360 | 6108661
6108760
6108172
6109598
6109331 | | 1
1
1
1 | 43
26
52
52
28 | 8
11
15
11 | 77
96
81 | < .3
< .3
< .3
< .3 | 19
19
29
24
21 | | 502
1117
1039 | 4.43
3.85 | 13
14
14 | 52
29
36
36
27 | 0.2 | 3
 < 2
 < 2
 < 2
 < 2 | < 2
< 2
< 2
< 2 | 63
66
74
66
62 | 0.48 | 0.04
0.05
0.05 | 21
24
27
25
25 | 0.48
0.59
0.49
0.45 | 164
117
197
189
122 | 0.08
0.07
0.07 | 1.6
1.88
1.49 | 0.02 | 0.05
0.07 | 125
75
135
155
90 | | 93M
93M
93M | 1 95-311
1 95-311
1 95-312
1 95-312
1 95-312 | 9 9U
0 9U
2 9U | 684534
683556
682505
681260
681260 | 6110338
6111042
6111184
6109632
6109632 | | 1
1
1
1 | 70
58
76
42
72 | 10
15
14
13 | 119
120 | < .3
< .3 | 26
39
30
21
28 | 23 | | 4.68
4.8
3.28 | 16
25
10 | 40
43
30 | 0.6
0.6
0.5 | | 2
3
< 2
< 2
< 2 | 81
70
77
55
6 6 | 0.59 | 0.07
0.07
0.05 | 29
30
22 |
0.83
0.58
0.63
0.43
0.57 | 187
277
277
150
182 | 0.07
0.07 | 1.95
1.88
1.33 | 0.03
0.03
0.01 | 0.07
0.04 | 135
205
215
130
200 | | 93M
93M
93M | 95-312
1 95-312
1 95-312
1 95-312
1 95-312 | 5 9U
6 9U
7 9U | 681997
680997
681762
683938
682271 | 6110243
6112624
6111457
6104350
6105338 | | 1
1
1
1
2 | 61
68
55
67
65 | 12
10
12
15 | 111
116
132 | < .3
< .3
< .3
< .3 | 35
27
30
33
38 | 12
14
18 | | 4.38
4.48
4.93 | 15
14
12 | 39
50 | 0.2
0.6 | 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < | < 2
< 2
4
3
< 2 | 70
69
70
79
67 | 0.44
0.63 | 0.06
0.07
0.07 | 31 | 0.58
0.67
0.65
0.73
0.52 | 240
243
215 | 0.04
0.05 | 1.99
1.96
2.13 | 0.02
0.02
0.02 | 0.07
0.1
0.1 | 220
220
150
170
255 | | 93M
93M
93M | 1 95-312
1 95-313
1 95-313
1 95-313
1 95-313 | 0 9U
1 9U
2 9U | 681389
691090
689672
685783
686384 | 6106416
6105152
6105728
6103325
6104744 | | 1
2
1
1
1 | 75
21
47
51
65 | 11
10
11
10
11 | 64
100
96 | < .3
< .3
< .3
< .3 | 34
23
24
30
33 | 17
9
9
12
15 | 313
466
760 | 4.12
4.32 | 13
12
11 | 22
61
39 | 0.2
< .2
0.2 | < 2
< 2
< 2
< 2
< 2 | <2
<2
<2
<2
<2 | 82
57
75
69
80 | 0.22
0.75
0.51 | 0.05
0.07
0.07 | 22
30
27 | 0.65
0.49
0.62
0.49
0.78 | 117
212
206 | | 2.06
2
1.71 | 0.01
0.01
0.03
0.02
0.02 | 0.03
0.07 | 175
75
115
170
265 | | 93M
93M | 95-313
1 95-313
1 95-313
1 95-313
1 95-313 | 6 9U
7 9U
8 9U | 686973
688084
689143
689585
690293 | 6103102
6103010
6102300
6103608
6102177 | | 1
1
1
<1
2 | 58
79
54
24
54 | 11
7
8
5
9 | 107
112
53 | < .3
< .3
0.3
< .3
< .3 | 37
31
45
17
31 | 19
12
14
5
12 | 786
317 | 4.65
4.44
2.43 | 13
13
4 | 48
54
42 | 0.2 | | <2
<2
<2
<2
<2 | 76
76
62
48
73 | 0.67
0.5
0.54 | 0.07
0.05 | 31
32
32
19
30 | 0.66
0.54 | 225
367 | 0.01
0.1 | 2.19
2.08
1.26 | 0.03
0.02 | 0.09 | 175
125
180
55
145 | | 93M
93M
93M | 95-314
95-314
1 95-314
1 95-314
1 95-314 | 2 9U
3 9U
4 9U | 691504
691504
689544
690442
691184 | 6102070
6102070
6101500
6104329
6103389 | 10
20 | 1 1 1 | 45
45
30
45
55 | 9
10
7
9
12 | 101
67
98 | < .3
< .3
< .3
< .3 | 25
24
18
22
28 | 14
14
7
12
17 | 944
398 | 3.9
3.53
3.79 | 11
9
10 | 59
44
67 | 0.4
0.3
0.6 | <2
<2
<2
<2
<2 | <2
<2
<2
<2
<2 | 65
62
60
64
69 | 1.59
0.53
1.82 | 0.06 | 23
22
22
23
27 | 0.59 | 169
150
192 | 0.08
0.08 | 1.63
1.77
1.58 | 0.03
0.02
0.04 | 0.07
0.07
0.08 | 145
105
85
130
130 | | 93M
93M
93M | 95-314
1 95-314
1 95-314
1 95-314
1 95-315 | 7 9U
8 9U
9 9U | 679528
680618
678153
677136
676825 | 6113767 | | 1
1
1
1 | 72
37
42
88
53 | 8
10
7
10
7 | 94
69
140 | < .3
< .3
< .3
< .3 | 34
24
17
30
32 | 10
10
16 | | 3.98
3.94
5.52 | 17
11
19 | 33
29
33 | < .2
< .2
0.2 | | <2
<2
2
<2 | 76
56
71
91
105 | 0.5
0.66 | 0.03 | 31
26
25
36
35 | 0.67
0.89 | 195
125
236 | 0.1 | 1.88
1.43
2.35 | 0.02
0.02
0.02 | 0.07 | 185
125
120
180
230 | | 93M
93M
93M | 95-315
1 95-315
1 95-315
1 95-315
1 95-315 | 2 9U
3 9U
4 9U | 675879
674795
674840
673916
673920 | | | 1
1
1
1 | 69
42
76
63
80 | 12
6
9
10
10 | 74
102
105 | < .3
< .3
0.4
< .3
< .3 | 31
24
31
41
33 | 10
14
18 | 882
1135 | 4.05
4.38
4.47 | 20
24
17 | 22
44
58 | 0.2
0.2 | 2 < 2 2 | < 2 | 72
69
57
59
65 | 0.36
0.45
0.6 | 0.03
0.06
0.07 | 30
27
27
27
27
33 | 0.63
0.43
0.51 | 151
255
317 | 0.05
0.07
0.04
0.03
0.04 | 1.46
1.64
1.8 | 0.02
0.03 | 0.06
0.07 | 205
60
400
670
175 | | 93M
93M
93M | 95-315
95-315
1 95-315
1 95-316
1 95-316 | 7 9U
8 9U
0 9U | 673884
681877
682563
683487
684450 | 6113346
6117295
6116227
6112439
6112692 | | 1
1
1
1 | 49
45
51
42
46 | 9
9
15
5
12 | 90
120
93 | 0.3
0.4
0.3 | 23
24
19 | 12
8 | 829
1006
628 | 3.84
4.35
3.7 | 14
15
14 | 51
50
38 | 0.4
0.2
< .2 | 1 < 2
1 < 2
2 < 2
< 2
< 2 | < 2
< 2
< 2
< 2
< 2 | 54
61
66
66
70 | 0.45
0.64
0.65 | 0.07
0.08
0.07 | 24
27
25
25
26 | 0.5
0.49 | 201
212
185 | 0.09 | 1.85
1.82
1.69 | | 0.07
0.07
0.05 | 270
95
195
125
135 | | 93M
93M
93M | | 4 9U
5 9U
6 9U | 685723
686145
688380
689238
688688 | 6107561
6106730 | | 1
1
1
1 | 44
23
48
40
61 | 7
7
11
6
8 | 55
128
83 | <.3
<.3
<.3
<.3 | 18
18
27
19
27 | 12 | 589
765
589 | 4.31
3.42 | 8
1 10
2 12 | 33
65
56 | < .2
0.2
0.2 | | <2
<2
<2
<2
<2 | 65
59
72
64
74 | 0.39
0.84
0.81 | 0.07
0.08 | 25
23
31
23
28 | 0.69
0.47 | 171
213
176 | 0.09
0.07 | 2.11
1.46 | 0.02
0.04
0.04 | 0.03
0.09
0.05 | 180
60
125
125
120 | | | | | | | Units | | ppm % | ppm | ppm | ppm | ppm | ppm | ppm | % | % | ppm | % | ppm | % | % | % | % | ppb | |-------------------|-------------------|---|----------------------|--|---|----------|------------------------|------------------------------|---------------------------|---------------------------------|--------------------------------------|------------------------------|-------------------------|---------------------|----------------------|----------------------|----------------------|---------------------|--|---|----------------------------|--------------------------------------|----------------------|----------------------------|----------------------|-------------------|--------------------------------------|----------------------|----------------------|----------------------|---------------------------------| | | | | | | Detection limit | | 1 | 1 | | 1 | | | 1 | | 0.01 | | | | - | | | 0.01 | 0 | | 0.01 | | | 0.01 | | | 10 | | M/ | ₽ | ID | UTMZ | UTME | UTMN | Rep | AICP CAA | | 93N
93N
93N | AO1
AO1
AO1 | 95-3168
95-3169
95-3170
95-3171
95-3172 | 9U
9U
9U
9U | 685359
685359
686870
687751
685459 | 6106568
6106568
6105934
6106327
6105252 | 10
20 | 1
1
1
1 | 50
55
55
53
55 | 10
10
8
9 | 109
115
110
107
112 | < .3
< .3
< .3 | 32
33
26
29
30 | 16 | | 4.5
4.25
4.58 | 14
15
15 | 42
42
50 | 0.5 | < 2
< 2
< 2 | <2
<2
<2
<2
<2 | 66
69
71
74
68 | 0.58
0.75
0.67
0.71
0.53 | 0.06
0.07
0.07 | 29
25
31 | | 245
206
243 | 0.04
0.08
0.07 | 1.95 | 0.02
0.03
0.03 | 0.09 | 155
135
180
150
145 | | 931
931
931 | A01
A01
A01 | 95-3173
95-3174
95-3175
95-3176
95-3177 | 9U
9U
9U
9U | 670015
670477
671360
671690
676147 | 6120694
6119744
6118996
6118255
6112416 | | 1
2
1
2
1 | 19
264
51
49
45 | 6
13
41
14
10 | 133 | 0.6
< .3 | 23
46
30
38
28 | | 419
1016
1121 | 5.32
3.67
4.35 | 122
50
34 | 23
40
81 | 0.4
0.3
0.4 | <2
 <2
 <2
 <2 | 1 < 2 | 43
57
54
60
52 | 0.17
0.45
0.59 | 0.04
0.06
0.07 | 22
26
24
28
22 | 0.35
0.43
0.55 | 160
175
234 | 0.06 | 1.49
1.41 | 0.01
0.01
0.02 | 0.11 | 100
375
205
205
735 | | 931
931
931 | #01
#01
#01 | 95-3179
95-3180
95-3182
95-3183
95-3184 | 9U
9U
9U
9U | 679049
677793
677533
677155
665504 | 6122365
6099215
6100271
6099278
6121739 | | 1
1
1
1
2 | 55
1550
38
49
11 | 11
16
8
46
3 | 125
434
77
101
135 | < .3
0.3 | 30 | | 809 | 4.35
3.72
4.43 | 15
12
13 | 55
36
53 | < .2
0.4 | < 2
< 2 | 3 < 2
2 < 2
3 < 2 | 56
50 | 0.33
0.42 | 0.07
0.03
0.05 | 29
28
28
29
11 | 0.61
0.51 | 460
187
347 | 0.02
0.02
0.02 | 2.01
1.81 | 0.02
0.02
0.02 | 0.09 | 180
130
205 | | 931
931
931 | WO1
WO1
WO1 | 95-3185
95-3186
95-3187
95-3189
95-3190 | 9U
9U
9U
9U | 665671
667070
666528
666849
668253 | 6121729
6120447 | 10 | 1
1
38
1
1 | 47
20
230
42
37 | | 59
79
67 | < .3
< .3
< .3
< .3 | 38
23
33
29
29 | 12
7
10
8
7 | 253
294
359 | 2.75
3.54
3.05 | 7
11
13 | 25
22
35 | < .2
< .2 | <2
? < 2 | 2 < 2 | 71
38
50
38
44 | 0.22
0.22
0.33 | 0.05
0.05 | 21
32 | 0.36 | 175
143
151 | 0.05 | 1.45
1.82 | 0.01
0.01 | 0.05
0.09
0.06 | 75
125
105 | |
931
931
931 | MO1
MO1
MO1 | 95-3191
95-3192
95-3193
95-3194
95-3195 | 9U | 668253
665028
666377
667398
668104 | 6118240
6117444 | 20 | 1
1
1
1 | 36
43
42
49
34 | | 99
119
105 | < .3 | 43 | 14 | 808
1046
1009 | 4.05
3.97
4.2 | 15
16 | 63
58
66 | 0.4
0.3
0.4 | | 3 < 2
3 < 2
< 2
< 2
< 2 | 44
46
44
48
41 | 0.84
0.76
0.7 | 0.06
0.07
0.07 | 25
23
25 | 0.43 | 279
160
240 | 0.02
0.03
0.05 | 1.68
1.6
1.84 | 0.02
0.02
0.03 | 0.08 | 265
235 | | 931
931
931 | W01
W01
W01 | 95-3196
95-3197
95-3198
95-3199
95-3200 | 9U
9U
9U
9U | 666402
667675
679973
679975
680816 | 6116236
6118248
6119228 | | 1
1
1
2
2 | | 9
10 | 102
178
109 | | | 11 | 1314
527
837 | 4.18
4.14
3.78 | 16
15
17 | 37
19
43 | 0.5 | <2
1 < 2
5 < 2
1 < 2
2 < 2 | <2
<2
<2
<2 | 46
48
59
53 | 0.36
0.26
0.5 | 0.06
0.1
0.07 | 23
23 | 0.41
0.37
0.38 | 230
124
158 | 0.01
0.02
0.03
0.06
0.06 | 1.82
2
1.43 | 0.01
0.01
0.02 | 0.04 | 105
85
435 | | 931
931
931 | W01
W01
W01 | 95-3202
95-3203
95-3204
95-3205
95-3206 | 9U
9U | 680948
677940
678235
679010
678819 | 6111449
6110448
6111300 | | 1
1
1
1 | 41
54
27
63
42 | 8
17 | 57
175 | 0.3
< .3
< .3
< .3 | 29
19
18
25
22 | 8
8
11 | 359
464
810 | 3.36
3.07
3.88 | 18
13
19 | 21
24
41 | < .2
< .2
0.5 | < 2 | 2 < 2
2 < 2
< 2
2 < 2
2 < 2 | 57
53
48
55
56 | 0.19
0.24
0.44 | 0.03
0.03
0.06 | 22
20
24 | 0.45 | 163
117
258 | 0.04
0.07
0.05 | 1.01
1.51 | 0.01
0.02
0.02 | 0.05 | 120
155
265 | | 931
931
93 | MO1
MO1
MO1 | 95-3207
95-3208
95-3209
95-3210
95-3211 | 9U | 677000
681974
681817
682812
682812 | 6101242
6101841
6101819 | 10
20 | 1
1
1
1 | 63 | 8
11
11 | 89
71
111 | < .3
< .3
< .3
< .3 | 23
25
28
34
34 | 13
14 | 258
591
872 | 4.24
3.96
4.7 | 9
3 10
7 17 |) 16
) 23
' 37 | < .2
0.2
0.4 | 2 2 | <2
<2
3 <2
3 <2
<2 | | 0.12
0.47
0.73 | 0.02
0.03
0.06 | 28
29
32 | 0.6 | 136
126
204 | 0.02
0.03
0.04 | 1.97
2.07 | 0.01
0.01
0.02 | 0.03
0.04
0.09 | 70
75
180 | | 93
93
93 | M01
M01
M01 | 95-3213
95-3214
95-3215
95-3216
95-3217 | 9U
9U
9U | 684961
686027
686535
670864
671860 | 6102282
6101005
6106037 | | 1
2
1
2
1 | 68 | 9
10
13 | 68
120
108 | < .3
< .3
< .3
< .3
< .3 | 37
20
29
27
28 | 10 | 715
985
3 328 | 3.46
4.69
3.52 | 11
11
2 27 | 30
49
23 | < .2 | 3 < 2
< 2 | <2
<2
<2
<2
<2 | 72
61
71
41
38 | 0.73
0.2 | 0.05
0.07
0.05 | 22
31
21 | 0.7 | 85
197
125 | 0.05 | 1.27
2.07
1.31 | 0.02
0.03
0.01 | 0.08 | 105
135
55 | | 93
93
93 | M01
M01
M01 | 95-3218
95-3220
95-3222
95-3223
95-3224 | 9U
9U
9U | 672545
686111
685104
685104
687137 | 6100136
6101230
6101230 | 10
20 | 1
1
1
1 | 22
31
37
39
62 | 10
10
13 | 75
79
80 | < .3
< .3
< .3
< .3 | 24
21
22
24
3 28 | 10 | 510
486
509 | 3.59
3.7 |) 12
7 13
3 12 | 2 37
3 23
2 22 | < .2
0.1
< .2 | | 3 < 2
3 < 2 | 36
60
66
67 | 0.57
0.29
0.29 | 0.05
0.04
0.04 | 25
26
29 | 0.51 | 126
136
138 | 90.08
80.0 | 1.79
1.69
1.77 | 0.02
0.01
0.01 | 0.06 | 80
95
95 | #### ICP Analytical Data | | | | | Element | | Мо | Cu | Pb | Zn | Ag | Ni | co | Mn | Fe | As | Sr | Cd | Sb | Bi | ٧ | | | | Mg | Ba | | Al | Na | | Hg | |---|---|----------------------|--|---|----------|-----------------------|-----------------------------|----------------------------|--------------------------------|-------------------------------------|----------------------------|-----------------|------------------------------------|----------------------|----------------------|----------------------|--------------------|-------------------------|----------------------------|----------------------------|--------------------------------------|----------------------|----------------|--------------------------------------|-------------------|--|----------------------|----------------------|----------------------|---------------------------------| | | | | | Units | | ppm | | | ppm | | ppm | | | | • • | | ppm | | % | % | | ppb | | | | | | Detection limit | | 1 | 1 | 3 | 1 | | 1 | | _ | 0.01 | _ | | 0.2 | | | - | 0.01 | 0 | | 0.01 | | 0.01 | | | | 10 | | MAP | ID | UTMZ | UTME | UTMN | Rep | AICP CAA | | 93M01
93M01
93M01
93M01
93M01 | 95-3225
95-3226
95-3227
95-3229
95-3230 | 9U
9U
9U | 677552
678765
678417
675625
677839 | 6106053
6107386
6106755
6115768
6115156 | | 1
1
1
1 | 50
55
91
44
32 | 16
13
14
9
13 | 109
110
101
64
100 | < .3
< .3
< .3 | 54
44
34
20
26 | 19
14
8 | 430 | 4.38
4.22 | 16
15
15 | 47
44
29 | | < 2
2 < 2 | <2
<2
<2
<2
<2 | 49
60
55
53
54 | 1.65
0.63
0.47
0.42
0.63 | 0.07
0.06
0.04 | 30
29
29 | 0.62
0.52
0.46
0.54
0.56 | 289
290
156 | 0.01
0.03
0.02
0.06
0.04 | 1.7
1.72 | 0.02
0.02
0.02 | 0.08
0.09
0.06 | 155
170
210
120
125 | | 93M01
93M01
93M01
93M01
93M01 | 95-3231
95-3232
95-3233
95-3234
95-3235 | 9U
9U
9U | 676471
679032
682379
680018
681607 | 6114618
6114958
6113257
6115016
6112622 | | 2
1
1
1 | 61
29
26
41
14 | 10
10
10
16
8 | 99
80
161 | < .3
< .3
< .3
0.4
< .3 | 27
29
21
28
17 | 8
13 | 430
482
920 | 3.08
4.7 | 19
14
36 | 37
29
38 | 0.2
< .2 | 2 2
4 2
3 3 | <2
<2
3
2 | 71
54
52
68
46 | 0.37
0.8 | 0.04
0.04
0.07 | 24
32 | 1.04
0.59
0.48
0.71
0.51 | 223
152
227 | 0.04 | 1.81
1.84
2.02 | 0.02
0.02
0.02 | 0.07
0.04
0.07 | 70
125
80
145
90 | | 93M01
93M01
93M01
93M01
93M01 | 95-3236
95-3237
95-3238
95-3239
95-3240 | 9U
9U
9U | 664530
681451
665513
668349
666386 | | | 8
1
2
1
2 | 105
69
38
41
23 | 12
13
20
15
9 | 167
173
102 | <.3 | 86
34
41
53
12 | 13
20
21 | 1451
1127
1597
1377
70 | 4.62
4.94
4.08 | 21
23
11 | 29
55
50 | 0.5
0.5 | 5 < 2
5 < 2
5 < 2 | | 65
66
55
47
37 | 0.58 | 0.06
0.08
0.07 | 27 | | 218
212
304 | 0.05
0.02
< .01
0.01
< .01 | 2.93
2.35
1.7 | 0.02
0.01
0.02 | 0.06
0.09 | 265
110
155
140
70 | | 93M01
93M01
93M01
93M01
93M01 | 95-3244
95-3245 | 9U
9U
9U | 667308
667308
677687
662931
677290 | 6108636
6108636
6107353
6111416
6106918 | 10
20 | 2
2
1
1 | 23
25
51
44
44 | 14
11
14
13
7 | 93 | | 20
24
37
50
24 | 16
15 | 240
732
822 | 3.82
3.84 | 16
10
11 | 10
38
52 | 0.3
0.3
0.6 | 3 < 2
5 < 2 | 3
<2
2
3 | 56
58
47
41
47 | 0.04
0.5
0.85 | 0.04
0.06
0.07 | 26
25 | 0.36
0.39
0.35
0.47
0.36 | 121
300
185 | < .01
0.01
0.01
0.02
< .01 | 2.82
1.48
1.39 | 0.01
0.02
0.02 | 0.04
0.07
0.07 | 65
70
190
115
165 | | 93M01
93M01
93M01
93M01
93M01 | | 9U
9U
9U | 664027
676769
663440
675818
664921 | 6116242 | | 1
1
2
1
1 | 56
47
42
43
45 | 13
12
15
14
13 | 134
77
122
101
105 | 0.3
< .3
0.4
0.3
0.4 | 83
25
36
32
48 | 9
16
15 | 493
937
950 | 3.79
4.18
4 | 16
32
22 | 39
52
44 | < .2
0.4
0.3 | 1 3
3 < 2 | <2
<2
<2
<2 | 48 | 0.54
0.35
1.36
0.51
0.5 | 0.05
0.06
0.06 | 24
22 | 0.65
0.37
0.46
0.33
0.51 | 257
232
277 | < .01
0.04
0.02
0.03
< .01 | 1.42
1.47
1.39 | 0.02 | 0.08
0.1
0.06 | 165
350
145
200
130 | | 93M01
93M01
93M01
93M01
93M01 | 95-3255 | 9U
9U
9U | 676416
664790
676299
666879
675564 | 6114000
6110754
6115072 | | <1
1
1
1 | 14
56
44
36
55 | 5
13
11
11
13 | 121
88 | < .3
0.3
< .3
< .3
< .3 | 14
55
33
39
43 | 14
13
16 | 678
832 | | 17
15
12 | 41
5 57
2 48 | 0.4 | 3 < 2
4 < 2 | < 2 | 49
51
41 | | 0.06
0.07
0.07 | 35
24
22 | 0.31
0.51
0.48
0.38
0.61 | 214
198
188 | 0.06
0.01
0.03
0.02
0.03 | 1.59
1.45
1.25 | 0.02
0.02
0.01 | 0.05
0.07
0.07 | 50
160
150
110
260 | | 93M01
93M01
93M01 | 95-3257
95-3259
95-3260
95-3262
95-3263 | 9U
9U
9U | 667901
670232
675695
675939
667853 | 6120313
6120883 | 10 | 1
4
1
1 | 48
42
41
36
17 | 18
15
14
12
8 | 116
118
103 | 0.3
< .3 | 41
40
27
30
28 | 15
14
11 | | 4.12
4.26
4.33 | 2 11
2 24
3 25 |
40
32
5 20 | 0.4 | 4 < 2
5 < 2
3 4 | 2 < 2
< 2
< 2
< 2 | 50
50
62
66
39 | 0.63
0.58 | 0.07
0.06
0.04 | 26
30 | 0.44
0.39
0.55
0.63
0.43 | 258
213
150 | 0.02
0.01
0.05
0.04
0.04 | 1.7
1.79
2.2 | 0.02
0.02
0.01 | 0.07
0.06
0.06 | 135
190
325
150
55 | | 93M01
93M01
93M01 | 95-3264
95-3265
95-3266
95-3267
95-3268 | 9U
9U
9U | 667853
676005
673000
675077
674267 | 6119287
6119660 | 20 | 1
1
1
1 | 19
33
33
38
65 | 7
11
12
11
14 | 112
144
233 | < .3
< .3
0.3
< .3
< .3 | 28
30
26
29
35 | 15
12
14 | 512
800 | 4.18
4.88
4.98 | 3 9
3 18
3 27 | 24
3 22
7 12 | 0.5
0.5
0.6 | 5 < 2 | <2
<2
<2
<2
<2 | 38
63
71
84
70 | 0.11
0.26
0.11 | 0.06
0.06
0.06 | 29
32 | 0.53
0.65 | 143
179
109 | 0.04
0.03
0.02
0.05
0.03 | 3.05
2.32 | 0.01
0.01
0.01 | 0.05
0.04
0.03 | 70
90
80
90
115 | | 93M01
93M01 | 95-3269
95-3270
95-3271
95-3273
95-3274 | 9U
9U
9U
9U | 673772
674064
684321
683070
673314 | 6120230
6126273
6124860 | | 2
1
2
2
1 | | 6
12
14
22
10 | 147
285
97 | < .3
< .3
< .3
< .3 | 17
34
22
19
25 | 15
11
9 | 648
863
500 | 4.84
4.19 | 7 21
1 10
3 16 | 1 19
0 66
3 39 | 0.8 | 1 < 2 | <2
<2
<2 | 63
86
95
73
54 | 0.28
0.86
0.44 | 0.06
0.08 | 45 | | 156
174
117 | 0.01
0.03
0.12
0.11
0.04 | 3.11
2.33
1.51 | 0.01
0.04 | 0.06
0.07
0.06 | 65
90
75
30
85 | | 93M01
93M01
93M01 | | 5 9U
7 9U
3 9U | 671409
671552
691024
690081
690153 | 6122254
6117393
6119935 | | 2
1
1
2
1 | | 12
6
11
11
10 | 71
111
131 | < .3 | 25
23
27
23
14 | 7
16
3 14 | 408
1013
1016 | 4.41
5.07 | 7 14
1 10
7 16 | 1 36
0 70
5 69 | 0.2
0.0
0.0 | 5 < 2
2 | 2 < 2
< 2 | 58
49
74
82
69 | 0.44
1.14
1 | | 22
24
21 | 0.43
0.46
0.58
0.56
0.44 | 156
194
187 | 0.05 | 1.43
1.95
2.23 | 0.02
0.04
0.04 | | 100
65
55
65
30 | ### ICP Analytical Data | | | | | | Element | | Мо | Cu | Pb | Zn | Ag | Ni | Co | Mn | Fe | As | Sr | Cd | Sb | Bi | ٧ | Ca | P | Cr | Mg | Ва | Ti | Al | Na | K | Hg | |-------------------|-------------------|---|----------------|--|---|----------|-----------------------|----------------|---------------------------|-------------------|--------------------------------------|----------------------------|----------------------|---------------------|----------------------|---------------------|------------------|----------------------|---------------------------------------|---|---------------------------------|--------------------------------------|----------------------|----------------------------|--------------------------------------|-------------------|---------------------------------------|----------------------|--------------------------------------|--------------------------------------|---------------------------------| | | | | | | Units | | ppm % | | | | | | ppm | | % | ppm | | • • | % | % | % | | ppb | | | | | | | Detection limit | | 1 | | _ | | 0.3 | | - | | 0.01 | | | 0.2 | | 2 2 | | 0.01 | - | | 0.01 | | | | 0.01 | | 10 | | M/ | NP. | ID | UTMZ | UTME | UTMN | Rep | AICP CAA | | | 101
101
101 | 95-3280
95-3282
95-3283
95-3284
95-3285 | 9Ü
9Ü
9U | 688700
687856
688571
688535
688832 | 6119390
6118230
6126020
6125055
6123989 | | 1
1
1
2
2 | | 14
11
18
7
20 | 95
155
144 | < .3
< .3
< .3
< .3 | 23
22
29
24
13 | 18
11 | 1235
773 | 4.14
5.11
4.22 | 16
57
52 | 71
59
74 | 0.4
0.8
0.5 | 3 :
5 < 2 | 2 < 2 | 72
81
76 | 1.97
0.79
0.76
0.99
0.52 | 0.08
0.07
0.07 | 21
27
26
27
16 | 0.52
0.55 | 182
191
176 | 0.06
0.08
0.08
0.05
< .01 | 1.8
1.76 | 0.03 | 0.11
0.08
0.09
0.09
0.08 | 50
100
100
60
60 | | 93N
93N
93N | 101
101
101 | 95-3286
95-3287
95-3288
95-3289
95-3290 | 9U
9U
9U | 689166
688794
688794
687452
686376 | 6122765
6121807
6121807
6120555
6121022 | 10
20 | 2
1
2
1
1 | 45
45
37 | 13
9 | 131
131
107 | 0.4
< .3
< .3
< .3 | 17
17
20
17
22 | 14
14
10 | 883
591 | 4.14
4.19
3.83 | 18
16
5 | 82
82
72 | 0.6
0.4 | 5 : | 4 < 2
2 < 2
4 < 2
2 < 2
3 < 2 | 71
71 | 2.68
1.58 | 80.0
80.0
80.0 | 19
20
23 | 0.64
0.55 | 144
140
121 | 0.08 | 1.7
1.73
1.6 | 0.03
0.05
0.05
0.04
0.04 | 0.09
0.1
0.09
0.09
0.09 | 120
60
55
55
75 | | 93N
93N
93N | 101
101
101 | 95-3291
95-3292
95-3293
95-3294
95-3296 | 9U
9U
9U | 687648
687482
686335
686581
683295 | 6122268
6123619
6124903
6124270
6122493 | | 2
1
1
1
4 | 25
23
22 | 8
6 | 73
57
72 | < .3
< .3
< .3
< .3
< .3 | 15
16
14
15 | 10 | 446
335
385 | 3.68
3.35
3.35 | 3
6
3 | 36
64
55 | < .2
< .2
< .2 | < 2 | <2
<2
<2
<2
3 <2
3 <2 | 82
68
73 | 0.81
0.37
0.71
0.53
0.55 | 0.05
0.06
0.06 | 23
22
21 | 0.46
0.48 | 177
149
151 | | 2.65
1.6
2.01 | 0.04
0.02 | 0.05
0.05 | 40
35
35
30
50 | | 93N
93N | 101
101
101 | 95-3297
95-3298
95-3299
95-3300
95-3302 | 9U | 684275
685558
684696
685880
686741 | 6122469
6121868
6125089
6123939
6123194 | | 1
1
2
1
1 | 46
44
36 | 15
11
12 | 98
140
134 | < .3
< .3
< .3
< .3 | 17
18
20
16
15 | 14
8
11 | 1022
607
1026 | 4.43
4.58
4.32 | 10
10
10 | 62
99
113 | 0.3
0.4
0.4 | 3
1 | 4 < 2
2 < 2
3 < 2
3 < 2
2 < 2 | 72
85 | 0.85
1.12 | 0.07
0.08
0.08 | 22
27
21 | 0.53
0.64
0.6 | 137
155
139 | 0.1
0.07
0.11
0.13
0.13 | 2.13
2.03 | 0.03
0.04
0.06 | 0.07
0.08 | 80
65
55
45
40 | | 93A
93A
93A | 101
101
101 | 95-3303
95-3304
95-3305
95-3306
95-3307 | 9U
9U
9U | 686710
687052
685976
685535
685558 | 6119061 | | 1
2
3
2
1 | 67
55 | 16
17 | 134
79
141 | < .3
< .3
< .3
< .3 | 14
30
21
30
29 |) 16
 11
 14 | 937
718
1044 | 5.47
3.86
4.4 | 39
16
12 | 74
47
65 | 0.0
0.3
0.4 | 5 :
3 : | 3 < 2
5 < 2
4 < 2
2 < 2 | 74
77
68
66
2 91 | 0.9
0.56
0.75 | 0.08
0.07
0.08 | 32
26
33 | 0.57
0.72
0.56
0.57
1.36 | 231
124
254 | 0.07
0.11
0.06 | 2.16
1.44
1.87 | 0.02
0.03 | 0.09
0.07 | 45
95
40
130
75 | | 93A
93A
93A | AO1
AO1
AO1 | 95-3308
95-3309
95-3310
95-3311
95-3312 | 9U
9U
9U | 684669
683837
686395
685277
674566 | 6116024
6117307
6116787
6116961
6125604 | | 2
1
2
1
2 | 30
45
64 | 8
11
13 | 97
78
99 | <.3
<.3
<.3
<.3 | 27
18
20
26
25 | 3 7
3 7
5 10 | 379
378
607 | 2.61
4.02
4.24 | 7
2 11
1 14 | 40
60
78 | 0.4
< .2
0.3 | 4 | 2 < 2
2 < 2
3 4 < 2
4 < 2 | 62
46
67
65
49 | 0.33
0.49
0.75 | 0.03
0.05
0.07 | 22
30
29 | 0.49
0.32
0.53
0.53
0.38 | 227
227
242 | 0.03
0.08
0.06 | 1.57
2.14
1.86 | 0.02 | 0.03
0.07
0.08 | 190
55
85
125
145 | | 93A
93A
93A | AO1
AO1
AO1 | 95-3313
95-3314
95-3316
95-3317
95-3318 | 9U
9U
9U | 675460
675460
676478
678116
680521 | 6124503 | 10
20 | 1
1
2
2
2 | 50
46
46 | 14
11
14 | 122
221
135 | < .3 | 21 | 20
9
1 14 | 1073 | 4.89
4.06
4.44 | 22
3 11
1 16 | 50
49
49 | 0.0
0.4
0.3 | 5 < 2
4
3 | < 2 | 2. 60
60
2 49
56
56 | 0.7
0.57
0.51 | 0.07
0.06 | 28
23
26 | 0.36 | 306
164
218 | 0.03
0.05
0.04 | 1.68
1.27
1.6 | 0.02
0.02 | 0.08
0.05
0.06 | 305
285
290
280
200 | | 93A
93A
93A | AO1
AO1
AO1 | 95-3319
95-3320
95-3322
95-3323
95-3324 | 9U
9U
9U | 682033
672043
672713
683021
683010 | 6122992
6123847
6120026 | | 2
1
1
2
1 | 23
19
74 | 12
7
11 | 91
83
98 | < .3
< .3
< .3 | 22
23
25 | 2 8
3 9
5 10 | 484
572
570 | 3.66
3.48
4.57 | 3 15
7 16 | 26
36
62 | 0.:
0.:
0.: | 7 < 2
2 < 2
5
3 < 2
5 < 2 | < 2
2 < 2 | 48
2 68 | 1.79
0.24
0.43
0.55
0.67 | 0.04
0.03
0.07 | 24
26
32 | 0.65 | 126
158
228 | 0.03
0.04
0.07 | 1.69
1.6
2.47 | 0.04
0.01
0.02
0.02
0.03 | 0.05
0.05
0.08 | 90 | | 931
931
931 | MO1
MO1
MO1 | 95-3326
95-3327
95-3328
95-3329
95-3330 | 9U
9U
9U | 683005
684477
684686
684686
684981 | 6119658
6118445
6118445 | 10
20 | 2
1
2
2
1 | 43
80
87 | 10
11 | 61
92
91 | 0.3
 < .3 | 21
20 | 3 6
1 9 | 321
557
591 | 3.06
4.29
4.38 | 8
9 14
3 14 | 68
74
72 | 0.:
0.:
0.: | 2 < 2 | < 2
< 2
2 < 2 | 69 | 0.71
0.69
0.68 |
0.07
0.08
0.08 | 25
28
28 | 0.46
0.56
0.59 | 189
209
206 | 0.1
0.1
0.11 | 1.73
1.9
1.91 | | 0.05
0.05
0.05 | | | 931
931
931 | MO1
MO1
MO1 | 95-3331
95-3332
95-3333
95-3334
95-3335 | 9U
9U
9U | 683911
683384
677211
669144
677758 | 6115343
6115022 | 10 | 1
1
1
1 | | 10
7 | 288
88
2 96 | < .3
< .3
< .3
< .3
< .3 | 38
28
21
42
44 | 3 9
1 8
2 18 | | 4.13
2.9
3.77 | 3 9
9 10
7 13 | 15
24
5 57 | 0.
0.
0. | 6
4 < 2
5 < 2
8 < 2
3 < 2 | 2 < 2
< 2
< 2
< 2 | 65
2 46
46 | 0.23 | 0.04
0.03
0.07 | 30
25
24 | 0.51
0.56
0.45 | 100
131
289 | 0.04 | 2.96
1.82
1.55 | 0.01
0.01
0.02 | 0.09 | 250
85 | #### ICP Analytical Data | | | | | Element | | Мо | Cu | Pb | Zn | Ag | Ni | Co | Mn | Fe | As | Sr | Cd | Sb | Bi | ٧ | Ca | Р | Cr | Mg | Ва | Ti | Al | Na | K | Hg | |----------------|--|------|--------------------------------------|--|-----|------------------|-----------------------|------|-----------|---------------------------|------|---------|----------------------------|--------------|------|----------|------|----------------------|-------------|-----------------------|------|------|----------|--------------|------------|------------------------------|-------------|------|--------------|-----| | | | | | Units | | ppm % | ppm | ppm | ppm | ppm | ppm | ppm | % | * | ppm | % | ppm | % | % | % | % | ppb | | | | | | Detection limit | | 1 | 1 | 3 | 1 | 0.3 | 1 | 1 | 2 | 0.01 | 2 | : 1 | 0.2 | 2 | 2 | 1 | 0.01 | 0 | 1 | 0.01 | 1 | 0.01 | 0.01 | 0.01 | 0.01 | 10 | | MAP | ID | UTMZ | UTME | UTMN | Rep | AICP CAA | | 93M01
93M01 | 95-3336
95-3337
95-3338
95-3342 | 9U | 677758
673230
672830
676785 | 6101883
6116021
6117721
6100567 | 20 | 1
1
2
1 | 46
51
123
52 | | 80
136 | 0.3
0.3
0.6
< .3 | 27 | 8
15 | 1028
381
466
1245 | 3.41
7.79 | 16 | 46
36 | 0.3 | <2
<2
<2
<2 | < 2 2 2 3 3 | 53
47
109
47 | 0.61 | 0.07 | 28
48 | 0.45
1.03 | 236
170 | 0.02
0.03
0.08
0.02 | 1.53
1.9 | 0.02 | 0.07
0.19 | | NOTES AICP = Aqua regia-ICP of -63 micron sample fraction CAA = Flameless atomic absorption of -63 micron sample fraction UTMZ = UTM Zone UTME = UTM Easting UTMN = UTM Northing Rep = Replicate sample ⁻ Analysis done by ACME Analytical Ltd., Vancouver. | | | | | Element | | Au Au* | | Ва | | | | | Fe
~ | | lr | Na
~ | | | Sc | | Th | | | Zn I | | | | Sm | | | | | Mass | |---|---|----------------|--|-------------------------------|----------|----------------------------|-----------------------------|-------------------|----------------------|----------------|-----------------------------|-----------------------|--------------------------------------|-------------------|----------|----------------------|-------------------|---------------------------------|----------------------------|-------------------------------------|---------------------------------|---------------------------------|---------------------------|---------------------------------|----------------------------|----------------------------|----------------------------|---------------------------------|---------------------------------|--------------------------------------|-------------------|-------------------------------------|-------------------------| | | | | | Units Detection limit | F | opb ppb
2 | ppm
0.5 | | ppm
0.5 | ppm
1 | ppm
5 | | 76
0.02 | ppm
1 | | 70
0.01 | | • • | | ppm
0.5 | | | | ppm (
50 | | ppm ;
3 | | | 0.2 | | | | 9 | | MAP | ID | UTMZ | UTME | UTMN | Rep I | NA INA | | | INA | INA | INA | | | INA | | | INA | | | | | | INA | INA I | INA bal | | 93M01
93M01
93M01
93M01
93M01 | 95-3002
95-3003
95-3004
95-3005
95-3006 | 9U
9U
9U | 662188
661957
673220
662486
662486 | 6123162
6118884
6102732 | 10
20 | -2
4
-2
-2
13 | 6.5
18
30
18
20 | 740
690 | -0.5
-0.5
-0.5 | 24
16 | 110 | 5
2
3 | 4.99
4.68
5.02
4.53
4.73 | 5
2 5
3 4 | -5 | 1.09
1.53
1.8 | 41
-15
47 | 1.1
2.7
1.6
1.8
1.9 | 15
18
16
15
16 | -0.5
-0.5
-0.5 | 5.6
6.5
4.6
4.7
5.4 | 2.8
3.2
2.3
2
2.1 | -1
3 | 102
244
180
117
195 | 28
23
20
23
24 | 74
56
45
53
58 | 33
23
17
18
20 | 4.3
4.5
3.6
4.5
4.8 | 1.6
1.5
1.5
1.5
1.8 | -0.5
0.7
0.8
1.1
0.6 | 3.2
2.8
2.9 | 0.34
0.51
0.42
0.5
0.44 | 25.16 | | 93M01
93M01
93M01 | 95-3008
95-3009
95-3010
95-3011
95-3012 | 9U | 661134
660007
662837
661788
661562 | | | -2
-2
-2
-2
4 | 14
23
13
8.6
16 | 760
730
610 | -0.5
2.1 | 10
7 | 87
100
76
82
76 | 4
2
2 | 4.01 | 6
5
5 | -5 | 1.66
1.96
1.9 | -15
-15
-15 | 1.5
2
1.6
1.3
1.7 | 14 | -0.5
-0.5
-0.5
1.4
-0.5 | 4.9
5.4
5
4.6
4.8 | 1.5
3.3
3.4
2.6
2.8 | 1
1
1
1 | 158
245
144
122
152 | 23
26
24
24
22 | 47
60
50
49
48 | 26
26
28
21
22 | 4.5
5.2
4.6
4.1
4.1 | 1.4
2.2
1.9
1.5
1.6 | -0.5
-0.5
-0.5
-0.5
-0.8 | 3.3
2.8
2.6 | 0.38 | 27.3
29.2 | | 93M01
93M01
93M01 | 95-3015 | 9U
9U | 660075
670140
669294
669670
668063 | 6098344
6099165
6099948 | | -2
-2
-2
8
-2 | 11
19
20
13
19 | 630
690
650 | 1.5
1.3
2 | 10 | 67
86
82
79
83 | 2
3
3
2
3 | 5.2
4.6
4.06 | 5
5
5
5 | -5
-5 | 1.58
1.67
1.65 | 41
47
-15 | 1.3
1.7
1.7
1.4
1.7 | 18
15 | | 4.7
5.5
4.8
3.8
5.1 | 2.1
2.7
2
2.4
1.8 | -1
-1
-1
-1 | 95
-50
136
-50
164 | 26
23
21
19
24 | 49
53
45
41
54 | 25
18
15
15
17 | 4.6
4.6
4.4
3.2
4.8 | 1.7
1.9
1.7
1.2
1.8 | -0.5
-0.5
0.7
-0.5
-0.5 | 3.1
2 | 0.4
0.46
-0.05
0.37
0.5 | 22.25
23.24
28.37 | | 93M01
93M01
93M01 | 95-3018
95-3019
95-3020
95-3022
95-3023 | 9U
9U | 668008
666735
666757
665645
664210 | 6099756
6098293
6098251 | | -2
-2
-2
-2
-2 | 15
16
21
18
12 | 750
840
810 | -0.5
-0.5
-0.5 | 15
17 | 83
97
96 | 4
2
3 | 4.77
4.74
4.46
4.75
3.82 | 5
5
5
5 | -5
-5 | 1.66
1.8
1.7 | 44
62
-15 | 1.6
1.9
1.9
1.8
1.5 | 17
15
16 | 1.6
-0.5
-0.5 | 4.9
5.2
4.5
4.8
4.4 | 2.3
1.1
1.7
2
2.6 | 1
1
1
1 | 165 | 23
23
23
23
25 | 49
47
51
55
55 | 23
26
17
22
19 | 4.5
4.8
4.6
4.6
5 | 1.6
1.7
1.7
1.8
1.8 | 0.8
-0.5
0.7
-0.5
0.9 | 2.9
2.9
3 | 0.51 | | | 93M01
93M01
93M01
93M01
93M01 | 95-3026
95-3027 | 9U | 665768
665218
664524
674384
676176 | 6099607
6099050
6124740 | | -2
-2
-2
-2
-2 | 20
12
17
30
14 | 730
810
740 | 2.3
-0.5
2.3 | 18
40 | 75
100 | 2 | 4.68
6.59 | 5
3 5
9 4 | -5
-5 | 1.62
1.62
1.41 | -15
41
-15 | 2.1
1.6
1.7
1.4
2.9 | 17
23 | -0.5
-0.5 | 4.9 | 1.7
1.3
2
1.6
2.2 | | 126
103
127
160
179 | 25
23
23
17
30 | 51
44
48
37
60 | 25
23
21
17
28 | 4.9
4.3
4.6
4
6 | 1.9
1.6
1.6
1.5
2.1 | 0.6
0.7
-0.5
0.8
-0.5 | 2.8
3.2
3.5 | 0.4
0.48 | 29.06
21.36 | | 93M01
93M01
93M01
93M01
93M01 | 95-3031
95-3032 | 9U | 676985
676985
663015
662759
661336 | 6123689
6100169
6099195 | 10
20 | 11
8
-2
-2
3 | 22
20
15
9
14 | 770
660
490 | -0.5 | 27
10
8 | 110
76
68 | 3
3
2
2 | 5.73
4.1 | 3 5
1 5
3 4 | -5 | 1.35
1.8
1.92 | 34
40
39 | 1.2 | 22
15
11 | | 5.1
4.5
3.7 | 1.8
1.8
1.7
1.8
2 | -1
-1
-1
2
-1 | -50 | 24
25
23
21
25 | 58
61
46
42
52 | 21
22
17
15
20 | 5
5.2
4.7
3.5
4.8 | 1.8
1.8
1.8
1.3
1.8 | -0.5
1
0.8
-0.5
0.9 | 3.7
3
2.5 | 0.46
0.37 | 27.53
29.46 | | 93M01
93M01
93M01
93M01
93M01 | 95-3037
95-3038 | 9U
9U | 660516
660516
662315
672095
672484 | 6098949
6098269
6108760 | 10
20 | -2
-2
-2
5
2 | 16
16
14
20
18 | 650
620
700 | -0.5
-0.5
-0.5 | 23
17
12 | 100
79
110 | 3 | 4.34
5.13 | 5
4
3
5 | .5
.5 | 1.55
1.31
1.26 | -15
49
36 | 1.5 | 17
17
18 | -0.5
-0.5
-0.5 | 4.6
4.1
4.9 | 2.3 | | 144
152 | 22
22
20
22
26 | 47
48
45
48
58 | 22
24
17
24
20 | 4.3
4.3
4
4.4
5.5 | 1.6
1.6
1.5
1.6
2 | 0.7
-0.5
0.8
0.7
-0.5 | 2.9
2.9
3 | 0.44
0.44
0.5 | 21.34
22.39 | | 93M01
93M01
93M01
93M01
93M01 | 95-3044 | 9U | 672484
659901
661260
662531
663568 | 6115444 | | 4
6
5
7
10 | 16
18
23
21
21 | 710
720
790 | 2.3
4.4
-0.5 | 9
16
16 | 94
110 | 3
2
3
4
4 | 3.55
4.77
4.53 | 5 5
7 5
3 5 | -5
-5 | 1.54
1.36
1.36 | -15
19
43 | | 13
16
16 | 1.1
-0.5 | 5.2
5.2
4.9 | 2.1 | | 157 | 27
27
27
24
24 |
49
50
61
50
52 | 22
24
28
18
21 | 5.7
5.4
5.5
4.5
4.5 | | 0.9
0.9
0.8
0.8 | 3
3.3
2.9 | 0.47
0.53 | 29.58
25.31
22.41 | | 93M01
93M01
93M01
93M01
93M01 | 95-3047
95-3048
95-3049 | 9U
9U | 661492
662917
659434
661981
661981 | 6117211
6111161 | 10
20 | 3
-2
-2
3
11 | 27
41
18
60
57 | 770
770
580 | -0.5
-0.5
3.1 | 39
14 | 93
100 | 4
4
4
4 | 4.94
4.64
5.37 | 4 5
4 5
7 6 | .5
.5 | 1.23
1.25
1.47 | 34
63
28 | 1.8
3.8 | 18
17
19 | -0.5
-0.5
1.1 | 5.1
5.3
4.3 | 2.2
1.8
1.5 | -1 | | 23
21
23
23
24 | 49
48
50
50
52 | 19
20
24
17
17 | 4.5
4.4
4.4
5.2
5.1 | 1.6
1.5
1.6
1.9 | 0.8
0.7
0.7
0.7
0.9 | 2.9
2.8
3.5 | 0.5
0.52
0.61 | 22.37
23.4 | | 93M01
93M01
93M01 | 95-3054 | 9U
9U
9U | 660137
660413
660939
660981
661888 | 6113337
6112340 | | -2
5
9
4
2 | 17
13
13
18
19 | 660
590
690 | 1.6
-0.5
-0.5 | 10
9
20 | 99
120 | 3
3
4 | 3.67 | 1 5
7 5
4 5 | 5.5 | 1.42 | 36
44
37 | 1.5
1.2
2 | 15
11
17 | -0.5
-0.5
-0.5 | 4.5
5.1
5.1 | 2
1.4
2.1 | -1 | 155
130
115
142
170 | 26
24
22
25
27 | 56
50
46
58
55 | 25
20
20
21
26 | 5.5
4.6
3.4
4.8
5.4 | 1.9
1.6
1.1
1.8
1.8 | 0.8
0.6
-0.5 | 3.1
2.6
3.5 | 0.49
0.42
0.52 | 25.37
24.21
22.59 | | | | | | Element | | | Au* | | | | | | | Fe | Hf | ir | Na | | | | | Th | | | | | | | | Eu | | | Lu | Mass | |-------------------------|---|----------------------|--|---|----------|----------------------------|-----|----------------------------|----------------------------------|--------------------------------------|----------------------------|---------------------------------|------------------------|----------------------|-------------|----------|----------------------|------------------------------|---------------------------------|-----------------------------|--------------------------------------|---------------------------------|------------------------------------|----------------------|--------------------------------|----------------------------|----------------------------|----------------------------|---------------------------------|---------------------------------|--------------------------------------|---------------------------------|-------------------------------------|-------------------------| | | | | | Units | | | ppb | ppm | ppm | ppm | ppm | ppm | ppm | % | ppm | | | | ppm | ppm | ppm | ppm | | ppm | | | ppm | | | | ppm | | ppm | - | | | | | | Detection limit | | 2 | | 0.5 | 50 | | | - | | 0.02 | | | 0.01 | | | 0.1 | | | 0.5 | 1 | | | 3 | | | 0.2 | 0.5 | | | | | MAP | ID | UTMZ | UTME | UTMN | Rep | INA I | NA | INA bal | | 93M01
93M01
93M01 | 95-3057
95-3058
95-3059
95-3060
95-3062 | 9U
9U
9U | 668481
669002
668532
667184
667145 | 6110192
6108107
6109182
6110696
6111574 | | -2
-2
6
5
-2 | | 10
14
40
18
26 | 480
550
840
790
580 | 1.9
-0.5
2.8
2.4
1.8 | 18
11 | 120
130
140 | 2
2
4
2
2 | 3.65
5.89
4.12 | 5
6
5 | -5
-5 | 1.39
1.22
1.32 | | 1.1
1.5
2.9
1.7
1.9 | 9.4
12
22
16
16 | 1.3
1
-0.5
-0.5
-0.5 | 4.1
4.7
5.2
4.6
4.4 | 2.7
2.7
3
1.9
1.5 | | 79
103
186
159
166 | 21
24
33
25
24 | 43
48
60
48
47 | 18
23
34
24
24 | 3
4.5
7.9
5.3
5.3 | 1
1.6
2.9
1.9
1.9 | 0.6
0.9
1.5
0.9
0.9 | 2.4
2.8
4.9
3.2
3.1 | 0.45
0.75 | 22.47
29.74 | | 93M01
93M01
93M01 | 95-3063
95-3064
95-3065
95-3066
95-3067 | 9U
9U
9U
9U | 668619
669872
669543
670797
670630 | 6111166
6110706
6112095
6111319
6112895 | 10 | -2
10
-2
-2
-2 | | 22
13
17
11
22 | 600
730
740
590
840 | 4.5 | 18
12 | 120
150 | -1
9
2
2
3 | 5.14
4.2 | 5
6
5 | -5
-5 | 1.32
1.37
1.38 | 39
60
36
20
55 | 2
1.6
1.6
1.2
1.8 | 16
18
18
16
18 | -0.5
-0.5
0.9
-0.5
-0.5 | 4.2
5
5.1
4.3
4.7 | 1.5
1.6
1.7
2.2
3.2 | 1
1
1
1 | 180
119 | 20
35
23
21
23 | 42
61
53
41
46 | 20
39
23
19
23 | 4.3
9.1
5.3
4.5
4.3 | 1.5
3.3
1.9
1.6
1.4 | 0.8
1.9
1
-0.5
-0.5 | 3 | 0.47 | 28.92
22.65
26.74 | | 93M01
93M01 | 95-3068
95-3069
95-3070
95-3072
95-3073 | 9U
9U
9U | 670630
667890
668490
663851
664329 | 6112895
6112292
6113179
6125339
6124040 | 20 | 7
-2
-2
6
-2 | | 16
25
14
19
13 | 910
650
820
930
660 | -0.5
-0.5
-0.5
-0.5
-0.5 | 20
14 | 160
130
110 | 3
3
2
2 | 5.01
4.33
4.99 | 5
4 | -5
-5 | 1.22
1.39
1.37 | -15
-15
44
61
65 | 2.1
2.3
1.5
1.7
1.4 | 18
18
16
17
13 | -0.5
-0.5
-0.5
-0.5
-0.5 | 6.2
4.8
5.8
6.3 | 2.4
1.8
-0.5
-0.5
-0.5 | -1
-1
-1
-1 | 189
110 | 24
22
22
24
21 | 52
48
52
49
42 | 22
22
36
24
22 | 4.4
4.6
4.6
4.7
3.7 | 1.8 | 0.9
-0.5
-0.5
1.1
-0.5 | 3.1
2.7
2.9 | 0.48
0.5
0.48
0.34
0.41 | 25.69
23.76
22.58 | | 93M01
93M01
93M01 | 95-3074
95-3075
95-3076
95-3077
95-3078 | 9U
9U
9U
9U | 665444
664306
664144
664194
663918 | 6123489
6122948
6120258
6117429
6118603 | | -2
-2
9
12
10 | | 10
19
14
22
17 | | 3.4
2.8
-0.5
-0.5
2.1 | 11
15
11
17
13 | 110
100 | 2
4
3
6
4 | 4.92
4.05
5.11 | 5
5
5 | -5
-5 | 1.2 | 51
53
62 | 0.7
1.9
2
2.4
1.8 | 12
18
14
20
17 | -0.5
-0.5
-0.5
1
-0.5 | 4.8
4.8
4.8
5.9 | -0.5
3.5
2.7
-0.5
-0.5 | -1
-1
-1
-1 | 163
148
110 | 19
25
24
24
22 | 51
48
50
53
50 | 15
23
12
24
27 | 3.6
5
4.3
5.1
4.9 | . 2 | -0.5
-0.5
-0.5
-0.5
0.9 | 2.8
3.4 | 0.54
0.46
0.54 | 22.79
26.53
21.59 | | 93M01
93M01
93M01 | 95-3079
95-3080
95-3082
95-3083
95-3084 | 9U
9U
9U
9U | 664117
666259
666094
663298
662335 | 6119356
6122431
6121704
6122402
6122429 | | -2
-2
-2
6
13 | | 18
17
12
15 | 810
610
640
660
720 | 2.3 | | 91
93
110 | 2
3
3
3
3 | 3.99
3.56 | 5
5
5 | .5
.5 | 1.1
1.41
1.28 | | 1.8
1.3
1.2
1.8
2.4 | 15
10
11
14
16 | -0.5
1.5
-0.5
-0.5
-0.5 | 5.4
3.8
4.3
5.7
5.2 | -0.5
2
3.5
2.5
2.3 | 1
1
1
1 | 84
-50
96 | 23
19
23
22
22 | 47
39
49
51
47 | 24
17
12
20
22 | 4.5
2.5
3.3
3.9
4.3 | 8.0 | -0.5
-0.5
-0.5
-0.5
-0.5 | 2.1
2.4
2.6 | 0.34
0.38
0.39 | 23.62
23.64
24.31 | | 93M01
93M01
93M01 | 95-3085
95-3086
95-3087
95-3088
95-3090 | 9U
9U
9U
9U | 665985
666035
667049
663625
665087 | 6119717
6120396
6119444
6121572
6121169 | | -2
-2
5
-2 | | 17
15
14
16
19 | 680
890
600
590
1000 | -0.5
-0.5 | 18
10
14 | 110
110
110
110
140 | 3 | 4.06 | 4
5
6 | -5
-5 | 1.09 | 42
-15 | 1.7
1.5
1.4
2
1.8 | 15
18
13
13 | -0.5
-0.5
-0.5
-0.5
-0.5 | 5.7
5.4
3.9
4.6
5.6 | 1.5
2.9
1.3
1.9
2.8 | 1
1
1
1 | 160
-50
111 | 22
21
21
23
24 | 50
48
45
51
56 | 16
17
20
21
22 | 4.7
4.1
4.1
4.5
4.4 | 1.5
1.6 | -0.5
-0.5
-0.5
-0.5
1.2 | 2.8
2.6
2.8 | 0.47
0.43
0.43 | 21.45
29.59
26.57 | | 93M01
93M01
93M01 | 95-3091
95-3092
95-3093
95-3094
95-3095 | 9U
9U
9U
9U | 668170
670580
669529
662396 | | 10
20 | -2
-2
7
-2
-2 | | 16
20
13
16
15 | 670
770
690
850
900 | 1.7
-0.5
-0.5
-0.5
-0.5 | 15
10
25 | 120 | 2
2
2
4
4 | 4.35
3.59
4.56 | 5
5
5 | -5
-5 | 1.37
1.5
1.12 | -15
47 | 1.7
1.5
1.6
1.9 | 14
15
13
17
17 | -0.5
-0.5
-0.5
-0.5
-0.5 | 5.5
4.8
4.8
5.3
4.7 | 2.6
2.4
2.4
2.9
2.2 | -1
-1
-1
-1 | 120
190 | 25
23
23
23
22 | 53
49
48
51
49 | 30
23
17
21
22 | 4.9
4.5
4
4.2
4.3 | 1.5 | -0.5
-0.5
-0.5
-0.5
-0.5 | 3
2.6
3 | 0.46
0.46
0.47 | 21.53
25.48
22.56 | | 93M01
93M01 | 95-3096
95-3097
95-3098
95-3099
95-3100 | 9U
9U
9U
9U | 664355
680620
679733
679660
679336 | 6121873
6100028
6101532
6106596
6105051 | | -2
-2
-2
-2
24 | | 18
21
20
26
20 | 660
610
680
770
650 | -0.5
4 | 17
15
23 | 110 | 4
2
2
2
3 | 4.4
4.55
5.73 | 5
5
5 | -5
-5 | 1.53
1.47
1.78 | 42
-15 | 1.7
2
1.9
1.7
1.8 | 16
16
17
21
21 | 1.1
-0.5
-0.5
-0.5
1.1 | 5.8
4.2
4.8
5.1
4.6 | 1.4
1
1.5
-0.5
2.5 | 1
1
1
1 | 118
139 | 23
20
22
21
20 | 49
43
46
53
47 |
24
26
17
20
13 | 4.5
3.9
4.4
5
4.2 | 1.5
1.5
1.7 | 0.8
0.9
0.7
0.8
-0.5 | 2.8
3
4.4 | 0.45
0.52
0.65 | 30.09
26.88
24.48 | | 93M01
93M01
93M01 | 95-3102
95-3103
95-3104
95-3105
95-3106 | 9U
9U
9U | 681051
678344
678879
679029
678091 | 6098452
6105114
6104048
6102809
6103439 | | 5
-2
2
-2
5 | | 16
18
19
21
18 | 730
670
830
690
850 | | | 100
120
120 | 3
4
3
3
3 | 5.3
4.69 | 5 | -5
-5 | 1.06
1.45 | -15
54 | 1.5
3.7
2.4
2.9
1.8 | 26
20
19
17
18 | -0.5
-0.5
-0.5
-0.5
-0.5 | 4.5
4.6
4.8
4.8
5 | | .1
.1
.1
.1 | 189
192 | 19
19
24
21
23 | 44
43
53
49
46 | 18
18
24
17
21 | 4.3
3.4
4.8
4.1
4.9 | 1.1 | -0.5
-0.5
0.6
0.8
0.9 | 2.7
3.3
2.9 | 0.45
0.58
0.46 | 24.71
22.37
27.09 | | 93M01
93M01
93M01 | 95-3107
95-3108
95-3109
95-3111
95-3112 | 9U
9U
9U
9U | 677596
676749
690033
687158
687158 | 6099578
6108321 | 10
20 | -2
-2
7
-2
-2 | | 12
17
14
24
23 | 590
700
770
650
730 | -0.5
-0.5
3.1
-0.5
2.2 | 15
16 | 120
110
76 | 1
3
3
3
3 | 4.48
5.16
5.26 | 5
5
4 | -5
-5 | 1.32
1.66 | 31
43 | 1.1
1.4
1.2
2.2
2.1 | 11
17
21
20
21 | -0.5
-0.5
-0.5
-0.5
-0.5 | 4.4
4.9
4.4
4.2
4.1 | 2.9
2.6
2.6 | -1 | 141
301 | 20
22
22
20
21 | 43
47
44
42
45 | 16
18
21
20
21 | 3.9
4.5
4.2
4.4 | 1.8
1.6 | -0.5
-0.5
0.9
-0.5 | 2.9
3.7
3.5 | 0.47
0.56
0.57 | 23.03
27.02
25.69 | | | | | | Element | | Au A | ۱u• | As | Ba | Br | Со | Cr | Cs | Fe | Hf | Ir | Na | Rb | Sb | Sc | Ta | Th | Ų | W | Zn I | La (| Се | Nd | Sm | Eu | Tb | Yb | Lu | Mass | |---|---|----------------------|--|---|----------|----------------------------|------|----------------------------|---------------------------------|--------------------------------------|----------------|-------------------------------|------------------------|----------------------|-------------|----------------|----------------------|-----------------|---------------------------------|----------------------------|----------------------|---------------------------------|-----------------------------------|----------------------|---------------------------------|----------------------------|----------------------------|----------------------------|---------------------------------|---------------------------------|--------------------------------------|---------------------------------|--------------------------------------|-------------------------| | | | | | Units | 1 | ppb p | pb | ppm | ppm | ppm | ppm | ppm | ppm | % | ppm | ppm | % | ppm (| ppm g | | | | | | Detection limit | | 2 | | 0.5 | 50 | 0.5 | 1 | 5 | 1 | 0.02 | 1 | 5 | 0.01 | 15 | 0.1 | 0.1 | 0.5 | 0.5 | 0.5 | 1 | 50 | 0.1 | 3 | 5 | 0.1 | 0.2 | 0.5 | 0.2 | 0.05 | | | MAP | ID | UTMZ | UTME | UTMN | Rep | NA II | NA I | NA | INA I | NA I | INA bal | | 93M01
93M01
93M01
93M01
93M01 | 95-3113
95-3114
95-3115
95-3116
95-3117 | 9U
9U
9U
9U | 688346
686430
685154
685058
684360 | 6108661
6108760
6108172
6109598
6109331 | | 6
4
6
5
6 | | 17
16
22
19
15 | 750
600
670
730
580 | -0.5
2.7
-0.5
1.6
4.5 | 9
18 | 78
86
86
86
85 | 2
2
2
2
2 | 3.55
5.07 | 4 4 | -5
-5
-5 | 1.9
1.75 | -15
35
23 | 1.6
1.3
1.7
1.6
1.3 | 15
12
18
17
13 | -0.5
-0.5
-0.5 | 3.4
3.2
4.5
3.8
3.7 | 1.4
1.8
2
1.8
1.2 | -1 | 128
99
138
129
107 | 19
16
19
19
16 | 41
37
48
46
38 | 19
19
18
20
10 | 4
3
3.7
4.1
2.7 | 1.5
1.2
1.4
1.5 | -0.5
-0.5
0.8
0.8
-0.5 | 2.3
2.4
2.8
3
2.3 | 0.11
0.38
0.45
0.5
0.37 | 26.36
27.04
28.49 | | 93M01 | | 9U
9U
9U
9U | 684534
683556
682505
681260
681260 | 6110338
6111042
6111184
6109632
6109632 | | 8
-2
2
11
-2 | | 15
22
29
13
21 | 640
870
760
570
680 | -0.5
-0.5
-0.5
-0.5 | | 68
96
97
88
97 | 2
2
-1
1
2 | 5.18
3.41 | 5
4 | -5
-5
-5 | 1.66
1.98
1.77 | | 1.5
1.7
30
1.3
1.8 | 18
20
20
12
18 | -0.5
-0.5
-0.5 | 3.4
4.4
4.3
3.6
3.8 | 1
1.5
1.7
1
2.2 | -1
-1
-1 | 125
153
148
117
612 | 17
21
22
19
21 | 35
51
45
39
45 | 19
20
20
13
19 | 3.5
4.5
4.8
3.3
4.3 | 1.4
1.6
1.8
1.2
1.6 | -0.5
0.9
0.8
-0.5 | 2.7
3.3
3.5
2.5
3.3 | 0.44
0.49
0.57
0.4
0.52 | 24.25
27.42
29.11 | | 93M01
93M01
93M01
93M01
93M01 | 95-3125
95-3126 | 9U
9U
9U | 681997
680997
681762
683938
682271 | 6110243
6112624
6111457
6104350
6105338 | | 4
6
9
8
6 | | 24
21
21
20
19 | 790
670
690
660
630 | 3.1
2.6
-0.5
-0.5
-0.5 | | 100
89
86
94
96 | 3
2
2
3
2 | 4.8
4.8 | 4 | -5
-5
-5 | 1.64
1.48
1.62 | -15 | 2.1
1.6
1.6
1.5
1.8 | 20
20
18
21
18 | -0.5
-0.5 | 5
3.9
4.3
4.3
4.2 | 1.9
1.7
2.1
2.5
2.1 | -1 | | 22
21
19
21
20 | 51
43
39
47
42 | 20
16
21
19
19 | 4.7
4.4
3.9
4.3
4.2 | 1.7
1.6
1.4
1.6
1.6 | -0.5
-0.5
0.7
-0.5
0.7 | 3.6
3.5
3
3.7
3.1 | 0.58
0.51
0.5
0.55
0.55 | 25.6
26.99
23.32 | | 93M01
93M01 | 95-3131
95-3132 | 9U
9U
9U
9U | 681389
691090
689672
685783
686384 | | | 11
-2
-2
-2
-2 | | 18
14
14
15
19 | 610
530
670
630
660 | -0.5
-0.5
-0.5
-0.5
-0.5 | 10
11
13 | 92
81
85
94
98 | 2
2
2
2
3 | 3.55
4.49
4.51 | 5
4
5 | -5
-5
-5 | 1.73 | 21
34
35 | | 19
11
18
17
26 | | 4.2
9.3
3.9
3.8
4.4 | 2.4
2.5
2.1
-0.5
-0.5 | -1
-1
-1
-1 | 132
133 | 19
27
20
20
22 | 41
68
37
41
42 | 15
17
16
21
21 | 3.4
3.2
3.9
4.4
5.7 | 1.3
1.1
1.4
1.6
1.7 | 0.7
0.6
0.9
0.8
-0.5 | 2.5
2.5 | 0.43
0.4
0.23
0.53
0.68 | 27.89
28.12
30.22 | | 93M01
93M01
93M01 | 95-3134
95-3136
95-3137
95-3138
95-3139 | 9U
9U
9U
9U | 686973
688084
689143
689585
690293 | 6103102
6103010
6102300
6103608
6102177 | | 6
3
4
5
2 | | 19
18
20
7
17 | 790
860
980
870
940 | -0.5
-0.5
-0.5
-0.5
3.5 | 16
8 | 93
97
120
95
92 | 3
4
2 | 5.66 | 5
6
5 | -5
-5 | 1.73
1.24
2.46 | 49
130
58 | 1.5
0.9 | 23
25
23
17
23 | -0.5 | 4
3.9
4.9
4.2
4.7 | 2.7
-0.5
3.3
4.3
2.2 | .1
.1
.1 | 164 | 21
23
26
22
23 | 50
50
51
44
45 | 25
21
31
16
26 | 5
6
5.8
5.1
5.5 | 1.6
1.9
1.8
1.4
1.5 | -0.5
-0.5
-0.5
-0.5
-0.5 | | 0.56
0.64
0.59
0.51
0.66 | 27.83
27.08
29.59 | | 93M01
93M01 | 95-3140
95-3142
95-3143
95-3144
95-3145 | 9U
9U
9U
9U | 691504
691504
689544
690442
691184 | 6102070
6102070
6101500
6104329
6103389 | 10
20 | 3
-2
2
8
-2 | | 13
15
11
16
16 | 990
780
890
860
890 | -0.5
-0.5
-0.5
-0.5
-0.5 | 8
15 | 89
80
86
87
93 | -1
3 | 4.36
4.77 | 6
5
5 | -5
-5
-5 | 2.07 | -15
50 | 1.2
0.9
1.3 | | -0.5
-0.5
-0.5 | 5.5
5
4.8
4.1
4.9 | 2.8
2.1
1.7
2.6
2.2 | 1
1
1
1 | 131
-50
-50 | 25
26
21
20
27 | 56
53
47
42
56 | 27
28
17
24
29 | 5.4
5.4
4.5
4.9
6.2 | 1.8
1.7
1.4
1.5
2 | -0.5
-0.5
-0.5
-0.5
1.1 | 3.7
4
3
3.1
3.9 | 0.55
0.63
0.49
0.51
0.68 | 29.38
28.04
25.4 | | 93M01
93M01
93M01 | 95-3146
95-3147
95-3148
95-3149
95-3150 | 9U
9U
9U
9U | 679528
680618
678153
677136
676825 | 6113767 | | 4
-2
9
-2
-2 | | 28
27
15
27
23 | 960
750
690
890
760 | -0.5
-0.5
2.8
-0.5
-0.5 | 11
11 | 91
95
83
93
94 | 3
3
3 | | 5 | -5
-5
-5 | 1.28
2.43
1.94 | 59
-15 | 1.6 | 26
22
20
30
25 | -0.5
-0.5 | 4.5
4.1
3.7
4.3
3.9 | 3.3
2.5
2
2.4
2.6 | -1
-1
-1
-1 | 150 | 21
22
17
20
17 | 49
49
37
42
36 | 19
22
19
25
23 | 5.2
5
4.3
5.5
4.5 | 1.7
1.6
1.3
1.8
1.4 | -0.5
-0.5
-0.5
-0.5
-0.5 | 3.5 | 0.61
0.56
0.58
0.64
0.54 | 26.94
29.46
23.5 | | 93M01
93M01 | 95-3151
95-3152
95-3153
95-3154
95-3155 | 9U
9U
9U
9U | 675879
674795
674840
673916
673920 | 6114133
6114157 | | 3
13
6
6
5 | | 25
23
31
23
26 | 830
910
890
870
870 | 1.8
-0.5
-0.5
-0.5
-0.5 | 13
14
18 | 96
100
120
110
97 | 3
-1
2
2
2 | 4.6
5.33
4.95 | 5
6
5 | -5
-5 | 1.99
1.44
1.4 | 48
46
44 | 1.6
1.8
1.7 | 22
18
21
19
21 | -0.5
-0.5
| 3.6
5.3 | 2.3
2.5
2
2.5
1.6 | -1
-1
-1
-1 | 129
125
170 | 20
16
27
22
19 | 43
41
54
48
39 | 24
12
23
21
22 | 4.8
3.2
6.3
4.9
4.3 | 1.5
1
1.9
1.5
1.4 | 1.1
-0.5
0.6
1
0.6 | 3.4
2.9
3.7
3 | 0.52
0.38
0.58
0.51
0.48 | 25.3
27.98
27.78 | | 93M01
93M01
93M01 | 95-3156
95-3157
95-3158
95-3160
95-3162 | 9U
9U
9U
9U | 673884
681877
682563
683487
684450 | 6112439 | | 5
6
-2
9
2 | | 21
16
17
18
17 | 890
900
790
880
760 | 3.4
3.5
-0.5
2.8
-0.5 | 12
10 | 110
82
70
88
79 | 2
2
2 | | 5
4
5 | -5
-5 | 1.81
1.85 | 36
71
-15 | 1.4
1.2 | | 1.5
0.5
-0.5 | 4.2
3.2
3.7 | 1.8
1.6
1.3
1.9
1.7 | -1
-1
-1 | 152 | 21
21
21
21
19 | 45
56
41
48
42 | 20
21
24
26
17 | 4.6
4.6
5.2
5.6
4.5 | 1.4
1.4
1.6
1.8
1.5 | | 3.4
3.5 | 0.42
0.45
0.56
0.56
0.54 | 24.79
28.7
25.78 | | 93M01
93M01
93M01 | 95-3163
95-3164
95-3165
95-3166
95-3167 | 9U
9U
9U
9U | 685723
686145
688380
689238
688688 | 6107561
6106730 | | -2
-2
5
-2
6 | | 15
10
16
15
18 | 840
860
780
910
920 | 2.3
-0.5
-0.5
-0.5
3.3 | 12
9 | 83
73
76
91
80 | -1
2
2 | 4.62 | 4 | -5
-5
-5 | 2.1
1.67
2.21 | 55
-15
42 | 1.1
1.3
1.2 | | -0.5
-0.5
1.8 | 2.7
4.1
3.4 | 1
1.1
2
2
1.7 | -1
-1
-1
-1 | 99
184
138 | 20
15
21
19
22 | 40
41
45
38
46 | 22
14
19
18
27 | 5.1
2.9
4.6
4.3
5.7 | 1.7
0.9
1.4
1.4
1.9 | 0.9
-0.5
-0.5
0.7
1 | 2.2
3.3 | 0.36
0.5 | 29.63
26.53
29.64 | | | | | | Element
Units | | Au
ppb | Au* | | Ba
ppm | | | | Cs | | Hf
ppm | | | | | | | Th | | | Zn l | | | | | Eu | | | | Mass | |-------------------------|---|----------------------|--|---|----------|---------------------------|-----|-----------------------------|----------------------------------|-------------------------------------|----------------------------|---------------------------------|------------------------|--------------------------------------|-------------|----------------------------|--------------------------------------|--------------------------------|---------------------------------|----------------------------|--------------------------------------|---------------------------------|-----------------------------------|---------------------------|---------------------------------|----------------------------------|----------------------------|----------------------------|---------------------------------|---------------------------------|-------------------------------------|---------------------------------|--------------------------------------|--| | | | | | Detection limit | | 2 | | 0.5 | 50 | ppm
0.5 | | 5 | | 0.02 | | | 0.01 | | | | | | | 1 | ppm p
50 | | | | | | • • | | 0.05 | g | | MAP | ID | UTMZ | UTME | UTMN | Rep | INA I | INA | INA I | NA I | INA I | INA | INA | INA | INA | INA | INA | bal | | 93M01
93M01 | 95-3171 | 9U
9U
9U
9U | 685359
685359
686870
687751
685459 | | 10
20 | 12
4
4
5
3 | | 17
18
17
21
18 | 820
820
730
880
830 | 1.9
2.2
-0.5
1.7
-0.5 | 14
15 | 97
93
97
93
94 | 2
3
2
2
2 | 5
4.95
5.37 | 4
5
4 | .5
.5
.5
.5
.5 | 1.57
1.48
1.95
1.8
1.66 | 27 | 1.5
1.6
1.4
1.6
1.5 | 19
20
22
22
21 | -0.5
-0.5
-0.5
-0.5
-0.5 | 4.2
4.4
3.7
4.2
4.1 | 1.9
1.5
3
1.1
2.4 | -1
-1
-1
-1 | 142
153 | 21
20
22
22
22
22 | 45
47
47
47
44 | 22
20
21
19
25 | 4.7
4.6
5.4
5.3
5.3 | 1.5
1.5
1.8
1.5
1.8 | 0.6
-0.5
-0.5
0.9
0.9 | 3
3.1
3.8
3.6
3.7 | 0.48
0.54
0.62
0.63
0.56 | 25.38
24.39
28.28
23.2
26.75 | | 93M01
93M01
93M01 | 95-3173
95-3174
95-3175
95-3176
95-3177 | 9U
9U
9U | 670015
670477
671360
671690
676147 | | | -2
44
8
6
7 | | 14
130
55
37
20 | 610
570
680
850
910 | 2.3
1.6
1.9
2
-0.5 | 13
12
14 | 110
100
100
110
130 | 2
2
2
3
2 | 5.68
4.09 | 4
5
5 | -5
-5
-5
-5 | 1.49
1.33
1.64
1.4
1.64 | 40
-15
23
32
35 | 1
4
2.1
1.7
1.5 | 12
14
16
20
17 | -0.5
-0.5
-0.5
-0.5
-0.5 | 3.9
4.2
4.3
4.9
4.6 | 2
3
2.4
1.9
1.8 | -1
-1
-1
-1 | 96
169
182
220
81 | 18
20
21
21
21 | 46
43
46
47
47 | 15
20
21
22
25 | 3.6
3.5
4.6
4.9
4.7 | 1.1
1.1
1.5
1.7
1.4 | -0.5
-0.5
0.7
1
0.5 | 2.5
2.3
2.8
3.5
3 | 0.4
0.38
0.44
0.51
0.43 | 29.3
29.46
29.29
22.52
29.5 | | 93M01
93M01
93M01 | 95-3179
95-3180
95-3182
95-3183
95-3184 | 9U
9U
9U
9U | 679049
677793
677533
677155
665504 | 6122365
6099215
6100271
6099278
6121739 | | 5
6
-2
4
-2 | | 18
19
17
18
40 | 940
1200
780
900
580 | -0.5
2.2
2.3
-0.5
-0.5 | 17
10 | 110
120
120
110
41 | 2
4
3
3
5 | 4.63
4.99 | 5
5
5 | -5
-5
-5
-5 | | 62
48
43 | 1.8
1.7
1.4
1.7
1.9 | 21
19
19
19
23 | -0.5
0.7
-0.5
-0.5
-0.5 | 4.4
4.6
5
4.7
2.6 | 1.6
2
2.1
1.7
1.9 | -1
-1
-1
8
-1 | 98
162 | 23
29
21
23
11 | 47
49
44
48
25 | 26
21
20
20
13 | 5.1
5.8
4.6
5.7
3.3 | 1.6
1.9
1.4
1.8
0.8 | -0.5
-0.5
-0.5
0.8
-0.5 | 3.3
3.3
2.9
3.4
3.2 | 0.56
0.52
0.48
0.52
0.49 | | | 93M01
93M01 | 95-3185
95-3186
95-3187
95-3189
95-3190 | 9U
9U
9U
9U | 665671
667070
666528
666849
668253 | 6122241
6121711
6121729
6120447
6117845 | 10 | 84
-2
3
5 | | 16
11
12
16
12 | 630
590
660
730
860 | 1.4
-0.5
-0.5
-0.5
-0.5 | 15
8
10
9
8 | 150
120
92
110
100 | 3
2
3
2
2 | 3.21
4.3
3.57 | 6
5
5 | -5
-5
-5
-5 | 1.26
1.51
1.04
1.62
1.5 | 50
26
49
37
41 | 1,1
1
1,7
1,4
1,3 | 16
11
13
12
15 | 0.9
-0.5
-0.5
1
-0.5 | 5.2
4.1
4.7
4.7
4.4 | 3.3
2.2
2.3
1.5
1.8 | -1
-1
-1
-1 | 161
-50
83
101
60 | 20
19
21
22
22 | 46
42
41
49
42 | 17
17
19
18
24 | 3.5
3.2
3.2
4.3
5.1 | 1
0.9
1.3
1.6 | -0.5
-0.5
-0.5
0.6
0.8 | 2.4
2.4
1.9
2.2
3 | 0.37
0.37
0.13
0.23
0.45 | 24.9
28.25
24.94
27.77
27.66 | | 93M01
93M01 | 95-3191
95-3192
95-3193
95-3194
95-3195 | 9U
9U
9U
9U | 668253
665028
666377
667398
668104 | 6117845
6118367
6118240
6117444
6116376 | 20 | 3
-2
3
-2
9 | | 13
15
19
17
14 | 860
640
750
720
770 | -0.5
-0.5
-0.5
-0.5
1.8 | | 100
99
110
100
120 | 2
4
3
3
2 | 4.84
4.51 | 5
5
5 | 5
5
5
5
5 | 1.42
1.23
1.35
1.33
1.56 | 40
51
29
43
50 | 1.2
1.7
1.7
1.4
1.4 | 16
18
18
17
16 | 1.1
-0.5
1.6
0.8
-0.5 | 4.6
4.7
5
4.5
4.6 | 1.7
2.7
2.9
2.5
2.3 | 1
1
1
1 | 109
162 | 22
22
23
23
25 | 48
50
52
51
53 | 22
21
29
25
28 | 5.1
4.8
5.2
5.5
5.6 | 1.5
1.5
1.7
1.7
1.8 | 0.8
-0.5
0.7
-0.5
0.9 | 2.9
3.2
3.4
3.3
2.4 | 0.47
0.5
0.55
0.55
0.17 | 23.41
26.3
23.67
26.44
22.61 | | | 95-3196
95-3197
95-3198
95-3199
95-3200 | 9U
9U
9U
9U | 666402
667675
679973
679975
680816 | 6116126
6116236
6118248
6119228
6118197 | | -2
3
-2
-2
-2 | | 16
18
20
20
17 | 840
780
650
820
660 | 2
-0.5
3.5
-0.5
2.6 | 13
18
9
14
12 | 120
140
75
100
80 | 3
2
2
2
-1 | 5.35
4.77
4.32
4.2
3.82 | 6
5
5 | .5
.5
.5
.5 | 1.45
1.5
1.52
1.91
1.76 | 51
30
42
-15
-15 | 1.7
1.4
1.3
1.8
1.8 | 21
16
15
15
14 | 1.2
-0.5
1.4
2.6
1.6 | 5.2
4.5
3.6
3.9
4.7 | 2.6
2.7
1.8
2.6
2.2 | 1
1
1
1 | 189
134
218
-50
178 | 26
22
16
22
21 | 48
51
36
54
53 | 28
19
13
-5
16 | 6.3
4.6
2.8
4.2
3.8 | 1.9
1.5
0.9
1.6
1.5 | 0.8
-0.5
-0.5
-0.5
-0.5 | 3.9
2.9
2.7
2.8
2.5 | 0.6
0.47
0.43
0.53
0.43 | 22.7
26.6
27.34
25.61
28.72 | | 93M01
93M01
93M01 | 95-3202
95-3203
95-3204
95-3205
95-3206 | 9U
9U
9U | 680948
677940
678235
679010
678819 | 6117202
6111449
6110448
6111300
6112252 | | 2
-2
5
2
-2 | | 36
19
16
21
17 | 870
630
690
560
710 | -0.5
-0.5
2.4
-0.5
-0.5 | 15
8
9
12
11 | 120
120
100
100
98 | | 6.17
3.79
3.3
4.43
4.19 | 5
5
5 | 5
5
5
5
5 | 1.7
1.79
1.83
1.82
1.76 |
-15
-15
57
-15
-15 | 2.3
1.5
1.4
1.8
1.7 | 22
13
11
16
14 | -0.5
-0.5
-0.5
-0.5
-0.5 | 5.4
4.8
3.9
3.8
3.9 | 2.4
2.2
0.5
2.5
2.1 | -1
-1
-1
-1 | 233
-50
146
321
139 | 27
21
20
21
18 | 53
43
45
48
41 | 26
17
15
23
17 | 6.3
3.4
3.5
4.5
3.3 | 2.3
1.1
1.2
1.6
1.4 | 0.9
-0.5
-0.5
0.8
-0.5 | 4.3
2.5
2
3
2.5 | 0.66
0.39
0.38
0.44
0.41 | 22.61
26.7
29.68
22.4
24.5 | | 93M01
93M01 | 95-3207
95-3208
95-3209
95-3210
95-3211 | 9U
9U
9U | 677000
681974
681817
682812
682812 | 6112732
6101242
6101841
6101819
6101819 | 10
20 | -2
-2
5
-2
-2 | | 16
16
13
23
23 | 600
520
380
790
650 | 2.2
2.1
3.3
2.7
-0.5 | 13
10
15
18
18 | 81
110
110
110
120 | 2 | 4.74
5.73 | 5
4
5 | -5
-5
-5
-5 | 1.63
1.35
1.66
1.53
1.58 | -15
-15
-15
-15
43 | 1.3
1.2
1.5
1.8
1.9 | 13
12
18
21
22 | -0.5
-0.5
-0.5
-0.5
-0.5 | 4.2
3.8
4.2
5.4
4.9 | 2.5
-0.5
2.5
-0.5
1.2 | -1
-1
-1
-1
3 | -50
159
-50
166
179 | 18
16
19
23
23 | 42
34
49
51
50 | 15
24
22
26
29 | 3.1
2.6
3.5
5 | 1
1.2
1.9
1.8 | -0.5
-0.5
1
0.8
0.6 | 2.3
2.3
2.5
3
3.5 | 0.38
0.3
0.48
0.17
0.57 | 21.58 | | 93M01
93M01
93M01 | 95-3213
95-3214
95-3215
95-3216
95-3217 | 9U
9U
9U | 684961
686027
686535
670864
671860 | 6102294
6102282
6101005
6106037
6105113 | | -2
5
6
-2
-2 | | 21
12
20
29
9.5 | 690
450
680
470
560 | -0.5
-0.5
1.8
1.3
1.8 | 10 | 97
81
110
91
110 | 1 | 5.52
4.15
5.68
3.75
3.09 | 5
5
5 | -5
-5
-5
-5
-5 | 1.62
2.16
1.8
1.32
1.39 | 65
-15
45
54
45 | 1.8
1.5
1.6
1.9
1.1 | 20
16
22
11
11 | -0.5
-0.5
-0.5
-0.5
-0.5 | 4.5
4.4
4.6
4
3.7 | 1.9
2.1
1.8
2.1
1.6 | 1
1
1
1 | 132
109
168
103
136 | 22
27
23
21
21 | 50
50
54
44
46 | 20
23
15
17
16 | 4.6
4.7
4.8
3.2
3.3 | 1.4
1.6
1.9
1.1
1.2 | -0.5
0.8
0.9
1.5
-0.5 | 3.7
2.7
3.5
2.3
2.3 | 0.52
0.43
0.55
0.38
0.39 | 22.34 | | 93M01
93M01
93M01 | 95-3218
95-3220
95-3222
95-3223
95-3224 | 9U
9U
9U | 672545
686111
685104
685104
687137 | 6104753
6100136
6101230
6101230
6098759 | 10
20 | -2
-2
9
-2
-2 | | 12
11
15
15
18 | 580
610
650
560
710 | -0.5
-0.5
-0.5
1.9
2.4 | 8
11
12
12
16 | 120
84
92
93
85 | 2
2
2
-1
3 | 2.98
4.01
4.14
4.18
5.3 | 5
5
5 | -5
-5
-5
-5 | 1.56
2.02
1.9
1.87
1.7 | 36
68
-15
-15
41 | 1.3
1.2
1.4
1.5
1.5 | 12
15
15
15
20 | -0.5
-0.5
-0.5
-0.5
-0.5 | 4.3
3.4
3.6
3.9
4.4 | 1.7
2.1
1.8
1.2
1.9 | -1
-1
-1
-1 | 76
-50
114
68
182 | 21
19
20
20
21 | 45
42
44
44
47 | 20
19
19
11
17 | 3.4
3.6
3.4
3.4
4.7 | 1.1
1.3
1.2
1.2
1.7 | -0.5
0.6
0.6 | 2.2
2.7
2.6
2.7
3.4 | 0.44
0.43
0.38 | 25.55
26.3
25.42
24.41
23.29 | | | | | | Element | | Au | Au* | As | Ba | Br | Co | Cr | Cs | Fe | | ir | Na | Rb | Sb | Sc | Та | Th | U ' | W. | Zn | La | Ce | Nd | Sm | Eu | Tb | Υb | Lu | Mass | |---|---|----------------------|--|-------------------------------|----------|----------------------------|-----|-----------------------------|----------------------------------|-------------------------------------|----------------------------|-------------------|-------------|--------------------------------------|-------------|----------|----------------------|------------------|---------------------------------|-----------------------------|-------------------------------------|---------------------------------|---------------------------------|----------------------|---------------------------------|----------------------------|----------------------------|----------------------------|---------------------------------|---------------------------------|----------------------------------|-------------------------------|--------------------------------------|-------------------------| | | | | | Units | | | ppb | ppm | ppm | ppm | ppm | ppm | ppm | % | ppm | ppm | % | ppm g | | | | | | Detection limit | | 2 | | 0.5 | 50 | 0.5 | 1 | 5 | 1 | 0.02 | 1 | 5 | 0.01 | 15 | 0.1 | 0.1 | 0.5 | 0.5 | 0.5 | 1 | 50 | 0.1 | 3 | 5 | 0.1 | 0.2 | 0.5 | 0.2 | 0.05 | | | MAP | ID | UTMZ | UTME | UTMN | Rep | INA bal | | 93M01
93M01
93M01
93M01
93M01 | | | 677552
678765
678417
675625
677839 | 6107386
6106755
6115768 | | -2
5
-2
-2
-2 | | 17
21
20
21
22 | 760
800
750
720
810 | 1.6
-0.5
-0.5
2.4
2.7 | 22
15
10 | 100 | 2
2
2 | 4.61
5.11
4.46
4.07
4.35 | 4 | .5
.5 | 1.5
1.29
1.98 | 46
-15
35 | 1.9
1.8
1.7
1.6
1.4 | 18
19
17
17
18 | -0.5
-0.5
-0.5 | 4.3
4.6
4.1
3.4
4 | 1.7
1.5
1.6 | -1
-1
-1 | 110
170
157
152
125 | 21
23
22
19
22 | 45
54
45
37
45 | 24
20
20
17
22 | 4.5
4.4
3.9 | 1.4
1.7
1.7
1.4
1.7 | 0.6
-0.5 | 2.8
3 | 0.47
0.5
0.41
0.47
0.32 | 22.54
23.43
24.54 | | 93M01
93M01
93M01
93M01
93M01 | 95-3231
95-3232
95-3233
95-3234
95-3235 | 9U
9U
9U
9U | 676471
679032
682379
680018
681607 | 6114958
6113257
6115016 | | 32
-2
-2
8
7 | 6 | 19
25
16
41
7.9 | 620
820
670
800
600 | 1.6
3.6
2.9
6.5
2.5 | 14
10
10
15
10 | 100
85
95 | 2 | 5.57
4.49
3.57
5.32
2.9 | 5
4 | -5
-5 | 1.44
1.9
1.71 | -15
-15
39 | 1.9
1.2
1.3
1.4 | 20
18
14
21
11 | -0.5
-0.5
1.3
-0.5
-0.5 | 3.6
4.7
4
4
3.7 | 2.1 | -1
-1
-1 | 102
165
126
223
155 | 17
22
18
21
16 | 42
43
37
50
32 | 19
19
11
21
12 | 4.8 | 1.5
1.7
1.3
1.7
0.9 | -0.5
-0.5
-0.5
1
0.7 | 3.7 | 0.6
0.48
0.42
0.58
0.34 | 22.46
23.5
21.4 | | 93M01
93M01 | 95-3238
95-3239 | 9U
9U
9U
9U | 664530
681451
665513
668349
666386 | 6114581
6108237
6114322 | | 7
-2
9
4
-2 | | 41
28
33
15
8.8 | 940
710
840
750
470 | 17
7.2
7.5
-0.5
5.6 | 22
16
25
19
5 | 91
200
110 | | 4.4 | 5
7
5 | -5
-5 | 1.8
1.43
1.26 | 35
-15
41 | 1.9
1.3
2.5
1.6
0.8 | 26
29
17
16
11 | 1.8
-0.5
-0.5
-0.5
1.3 | 7
4.8
5.9
4.6
4 | 2.4 | 1 1 1 | 215
286
287
112
-50 | 41
40
26
21
20 | 70
73
66
49
43 | 43
34
28
19
16 | 9.6
5.4
4.3 | 2.9
3.6
2.2
1.5 | 0.8 | | 0.74
0.75
0.6
0.44
0.45 | 20.4
11.22
24.13 | | 93M01 | 95-3242
95-3243
95-3244
95-3245
95-3246 | 9U
9U
9U
9U | 667308
667308
677687
662931
677290 | 6108636
6107353
6111416 | 10
20 | 3
-2
10
12
2 | | 21
27
16
18
9.2 | 500
670
660
620
680 | 6.3
7.2
-0.5
-0.5
2.2 | 9
17
17 | | 3
2
2 | | 6
5
5 | .5
-5 | 1.34
1.07 | 44
53
37 | 1.3
1.7
1.3
1.8
0.9 | 12
14
17
14
20 | -0.5
-0.5
-0.5 | 3.9
4.9
5
4.9
5 | 1.6
1.1 | -1
-1
-1 | 128
104
91
140
144 | 17
21
23
24
24 | 37
43
50
51
48 | 11
15
24
19
26 | 3
4.7
4.6 | 0.9
1.1
1.7
1.6
2 | -0.5
-0.5
0.7
0.8
1 | 3.1 | 0.48
0.47
0.46
0.56 | 20.02
24.17
26.2 | | 93M01
93M01
93M01 | | 9U
9U
9U
9U | 664027
676769
663440
675818
664921 | 6108376
6116242
6109714 | | 6
8
-2
8
2 | | 16
19
39
24
20 | 1100
720
670
650
940 | 2.3
-0.5
-0.5
-0.5
-0.5 | 21
11
18
15
13 | 99
120 | 2
4 | 5.24
4.35
4.77
4.24
4.93 | 6
5
6 | -5
-5 | 1.52
1.31
1.49 | 32
27 | 1.7
1.7
2.9
1.5
2 | 21
15
17
15
20 | 1.3
-0.5 | 5.2
5.4
5.1
4.1
5.3 | | -1 | 146
126
178
122
168 | 24
24
21
20
24 | 55
50
49
43
50 | 21
20
18
13
23 | | 1.9
1.6
1.5
1.4
1.7 | 0.8
-0.5
0.6
-0.5 | 3
2.3
3
2.7
3.3 | 0.21
0.07
0.52
0.44
0.54 | 26.16
22.11
29.4 | | 93M01
93M01
93M01
93M01
93M01 | 95-3253
95-3254 | 9U
9U
9U
9U | 676416
664790
676299
666879
675564 | 6114000
6110754
6115072 | | 4
12
-2
10
-3 | | 8.3
21
20
13
22 | 520
640
700
600
870 | -0.5
-0.5
-0.5
-0.5
2.9 | 13 | 170
100
110 | 2 | 2.43
4.63
3.91
4.19
5.24 | 5
5
5 | -5
-5 | 1.34
1.57
1.47 | 44
39
-15 | 1.1
1.7
1.7
2.2
2.4 | 9.5
18
14
14
19 | -0.5 | 3.8
5
4.4
4.3
5.5 | 1.7
1.9
2.1
1.5
2.1 | -1
-1 | -50
145
119
119
133 | 17
26
20
20
24 | 37
51
45
44
52 | 13
23
15
17
29 | 5.8 |
0.9
2
1.4
1.5
2 | 0.5
-0.5 | 2
3.6
2.5
2.7
3.1 | 0.3
0.57
0.4
0.44
0.53 | 27.2
28.69
28.26 | | 93M01
93M01
93M01
93M01
93M01 | 95-3259
95-3260 | 9U
9U
9U
9U | 667901
670232
675695
675939
667853 | 6120313
6120883 | 10 | -2
-2
6
-2
-2 | | 19
16
30
28
10 | 760
780
780
570
550 | 1.3
2
4
2.4
-0.5 | 17
17
15
12
9 | 98
100 | 3
2
2 | 4.69
4.62
4.77
4.61
2.96 | 6
5
4 | -5
-5 | 1.44
1.66
1.56 | 49
27
40 | 2
1.7
1.5
1.5
1.1 | 16
17
20
15
9.9 | -0.5
-0.5 | 4.4
5
4.5
4
4.4 | 2.2 | -1
-1 | 131
172
156
103
86 | 24
23
26
17
19 | 54
51
57
36
43 | 24
23
25
13
15 | 4.8
5.8
2.7 | 1.9
1.8
1.9
1 | 0.9
0.6
0.9
-0.5
0.7 | 3
3.2
3.8
2.5
2 | 0.48
0.5
0.57
0.41
0.35 | 23.25
23.4
25.38 | | | 95-3264
95-3265
95-3266
95-3267
95-3268 | 9U
9U
9U | 667853
676005
673000
675077
674267 | 6119287
6119660
6118842 | 20 | -2
-2
-2
12
-2 | | 9.7
18
33
35
29 | 540
540
680
540
560 | 5.1
5.3
5.3
3.1 | 8
19
16
19 | 130
99 | 2
2
3 | 2.93
5.08
6.44
5.86
5.19 | 5
6
4 | -5
-5 | 1.48 | -15
55
-15 | 1
1.7
1.5
1.6
1.5 | 10
14
15
18
19 | -0.5
2.1 | 4.2
4.7
4.6
4.3
4.8 | 2.6 | -1
-1 | 72
210
271
322
179 | 20
18
22
15
21 | 42
42
49
33
48 | 12
13
20
8
17 | 2.8
4.3 | 1.1
1
1.4
1.1
1.3 | | 2.1
2
3.3
2.7
2.9 | 0.34
0.05
0.57
0.46
0.5 | 25.31
22.38
25.47 | | 93M01 | 95-3269
95-3270
95-3271
95-3273
95-3274 | 9U
9U
9U
9U | 673772
674064
684321
683070
673314 | 6120230
6126273
6124860 | | 7
-2
3
-2
-2 | | 17
32
13
21
28 | 640
750
770
820
590 | 4.8
4.9
-0.5
-0.5
-0.5 | 8
20
14
11 | 140
66
63 | 2
3 | 3.88
7.11
5.51
4.77
4.22 | 5
5
4 | -5
-5 | 1.65
2.09
2.38 | 44
-15
34 | 1.2
2.6
1.1
3.2
1.9 | 11
18
23
18
14 | -0.5
-0.5 | 4.3
4
3.7
3.6
4.3 | 1.6
2.7 | -1
-1
-1 | 108 | 17
17
24
24
18 | 32
39
49
43
40 | 18
16
25
21
16 | 3
5.7
4.8 | 0.9
0.9
2
1.7 | -0.5
-0.5
1
-0.5
1.5 | 2.6
4.1 | 0.35
0.43
0.7
0.52
0.44 | 22.19
29.12
29.31 | | 93M01
93M01
93M01
93M01
93M01 | 95-3275
95-3276
95-3277
95-3278
95-3279 | 9U
9U
9U
9U | 671409
671552
691024
690081
690153 | 6122254
6117393
6119935 | | 9
-2
-2
-2
-2 | | 31
19
14
19
12 | 890
750
740
780
660 | 7.7
4
2
2.9
-0.5 | 15
10
18
15
12 | 110
80
50 | 2
2
3 | 5.05
3.42
4.97
5.72
4.28 | 6
5
4 | -5
-5 | 1.8
1.73
1.55 | 35
50
39 | 1.4
1.3
1.2
1.2
0.9 | 20
14
20
23
14 | -0.5
-0.5
-0.5 | 5
4.5
3.4
3
2.9 | 1.5
-0.5
2.3 | -1
-1
-1
-1 | 235
-50
127
142
72 | 26
20
19
20
14 | 62
49
45
47
38 | 21
14
21
25
10 | 5.6
3.9
4.3
4.8
2.7 | 2
1.4
1.7
1.7
1.1 | -0.5
0.8
1.2 | 2.8
3.3
4 | 0.65
0.48
0.53
0.65
0.37 | 24.17
28.15
22.33 | | | | | | Element | | Au | Au* | As | Ba | Br | Co | Cr | Cs | Fe | Hf | lr | Na | Rb | Sb | Sc | Та | Th | U | W | Zn | La | Се | Nd | Sm | Eu | Ть | Υb | Lu | Mass | |-------------------------|---|----------------------------|--|---|----------|---------------------------|-----|-----------------------------|----------------------------------|-------------------------------|----------------|------------------------------|-----------------------|----------------------|-------------|----------------|----------------------|----------------|---------------------------------|----------------------------|--------------------------------------|-----------------------------|-----------------------------------|---------------------|---------------------------------|----------------------------------|----------------------------|----------------------------|---------------------------------|---------------------------------|-------------------------------------|---------------------------------|--------------------------------------|-------------------------| | | | | | Units | | ppb | ppb | ppm | ppm | ppm | ppm | ppm | ppm | % | ppm | ppm | % | ppm g | | | | | | Detection limit | | 2 | | 0.5 | 50 | 0.5 | 1 | 5 | 1 | 0.02 | 1 | 5 | 0.01 | 15 | 0.1 | 0.1 | 0.5 | 0.5 | 0.5 | 1 | 50 | 0.1 | 3 | 5 | 0.1 | 0.2 | 0.5 | 0.2 | 0.05 | | | MAP | ID | UTMZ | UTME | UTMN | Rep | INA bal | | 93M01
93M01
93M01 | 95-3280
95-3282
95-3283
95-3284
95-3285 | 9U
9U
9U
9U
9U | 688700
687856
688571
688535
688832 | 6119390
6118230
6126020
6125055
6123989 | | -2
-2
7
9
-2 | | 19
21
67
59
40 | 780
690
890
820
700 | 1.5 | 10
18
13 | 52
64
70
63
39 | 2
2
2
4
4 | 4.43
5.4
4.79 | 4 | -5
-5 | 1.9
1.61
1.52 | 55
28
34 | 1.1
1.9
1.9
1.4
1.6 | 20
16
21
21
20 | 1.3
-0.5
1.3
-0.5
-0.5 | 3.8
3.2
3.5 | -0.5
2.3
2.4
1.9
1.6 | 1
1
1
1 | 87
172
213 | 18
20
21
20
21 | 39
40
47
45
44 | 16
21
23
18
18 | 4.1
4.2
4.7
4.4
4.4 | 1.6
1.5
1.7
1.7
1.5 | -0.5
-0.5
0.8
0.9
0.9 | 3.3
3.5
3.2
3.2 | 0.55
0.47
0.52
0.57
0.52 | 28.27
25.13
25.74 | | 93M01
93M01
93M01 | 95-3286
95-3287
95-3288
95-3289
95-3290 | 9U
9U
9U
9U | 689166
688794
688794
687452
686376 | 6122765
6121807
6121807
6120555
6121022 | 10
20 | -2
7
-2
-2
-2 | | 32
24
22
13
10 | 780
790
670
770
740 | -0.5
-0.5 | 17
17
13 | 47
48
52
60
52 | 3
3
2
2 | 5.06
4.96
4.59 | 4 | -5
-5
-5 | 1.96
1.87
2.22 | 35
38
38 | 1.5
1
1
1.1
1.1 | 23
20
19
17
17 | -0.5
-0.5
-0.5
-0.5
-0.5 | 2.7
3.1
3.1 | 2.6
1.4
1.1
-0.5
1.1 | 1
1
1
1 | 169
129 | 26
19
18
17
17 | 52
45
40
40
37 | 30
22
17
19
16 | 5.9
4.3
4
4
3.7 | 2.2
1.5
1.5
1.5
1.3 | 1
0.8
0.6
-0.5
-0.5 | 3.3 | 0.3
0.53
0.5
0.44
0.44 | 26.41 | | 93M01
93M01
93M01 | 95-3291
95-3292
95-3293
95-3294
95-3296 | 9U
9U
9U
9U | 687648
687482
686335
686581
683295 | 6122268
6123619
6124903
6124270
6122493 | | 3
-2
-2
-2
23 | | 11
6.8
9.3
5
16 | 730
910
750
720
830 | 5.5
2.2
3
2.6
4.7 | 13
8 | 50
53
54
48
80 | 2
2
2
2
3 | 4.23
3.73
3.74 | 4 | -5
-5
-5 | 2.05
2.08
2.07 | 28
30 | 0.7
0.5
0.4
0.5
1.5 | 21
13
17
13
16 | -0.5
-0.5
-0.5
-0.5
-0.5 | 2.9
2.4 | 0.9
-0.5
2.1
-0.5
1.8 | | 93 | 21
11
18
14
15 | 40
30
36
32
34 | 18
10
18
11
14 | 4.9
2
4.2
2.9
2.6 | 1.8
0.9
1.5
1.1
0.9 | 1
-0.5
-0.5
-0.5
-0.5 | 2.9
1.9
3.1
2.3
2.4 | 0.21
0.34
0.48
0.36
0.38 | 27.31
25.29 | | 93M01
93M01
93M01 | 95-3297
95-3298
95-3299
95-3300
95-3302 | 80
80
80
80 | 684275
685558
684696
685880
686741 | 6122469
6121868
6125089
6123939
6123194 | | -2
3
6
-2
-2 | | 12
14
13
12
9.7 | 770
730
830
850
740 | -0.5
1.4
-0.5 | 17
12
15 | 50
60
52
46
48 | 2
2
2
3
2 | 5.11
5.39
4.78 | 4
5
4 | -5
-5
-5 | 2.06
2.24
2.19 | 43
38
56 | 1.1
1.2
0.9
0.9
0.7 | 20
20
21
20
20 | -0.5
-0.5
0.8
-0.5
-0.5 | 2.7
3.2 | 1.6
1.5
2
-0.5
0.9 | | 122
133
122 | 19
21
19
18
18 | 40
46
35
38
39 | 19
18
17
20
18 | 4.3
4.7
4.8
4.2
4.3 | 1.7
1.6
1.8
1.5
1.5 | -0.5
0.7
0.8
0.7
0.9 | 3.5
3.5
4
3.6
3.4 | 0.58
0.53
0.62
0.56
0.51 | 24.53 | | 93M01
93M01
93M01 | 95-3303
95-3304
95-3305
95-3306
95-3307 | 8N
8N
8N
8N | 686710
687052
685976
685535
685558 | 6122226
6119061
6119897
6114730
6115677 | | 5
8
13
8 | | 14
42
20
19
17 | 690
760
790
960
720 | -0.5
1.5
-0.5 | 18
12
16 | 45
69
56
84
92 | 2
3
1
2
5 | 5.59
4.02
4.96 | 4 | -5
-5 | 1.75
2.03
1.78 | 49
46
45 | 0.9
3.6
2.7
2.1
2.1 | 18
19
13
18
17 | -0.5
-0.5
-0.5
-0.5
-0.5 | | 1.7
1.5
1.8
1.6
2.2 | -1
-1
-1 | 136
174
107
137
116 | 17
23
23
21
29 | 36
45
43
47
58 | 16
19
18
18
21 | 3.9
4.8
4.2
4.3
4.7 | 1.4
1.7
1.4
1.5
1.7 | -0.5
1
0.6
0.7
0.6 | 2.5
3.1 | 0.5
0.51
0.39
0.46
0.38 | 27.01
27.92 | | 93M01
93M01
93M01 | 95-3308
95-3309
95-3310
95-3311
95-3312 | 9U
9U
9U
9U | 684669
683837
686395
685277
674566 | 6116024
6117307
6116787
6116961
6125604 | | 8
-2
-2
7
3 | | 18
9.3
14
18
17 |
750
630
760
790
630 | 2.3
-0.5 | 9
9
12 | 75
76
79
70
87 | 2
1
2
2
2 | 2.96
4.63
4.66 | 4 | -5
-5 | 1.61
1.81
1.75 | 40
41
37 | 2
1.1
1.5
2.1
1.6 | 16
12
17
17
14 | -0.5
0.8 | 3.8
4
3.9 | 2.2
2.3
1.8
1.7
1.8 | 1
1
1
1 | 118
136 | 21
23
20
21
19 | 41
44
41
40
43 | 16
18
16
20
18 | 4.3
3.9
3.7
4.2
3.7 | 1.5
1.4
1.4
1.5
1.3 | 0.7
-0.5
-0.5
-0.5
-0.7 | 2.4 | 0.42
0.37
0.41
0.47
0.43 | 25.04
26.37
29.33 | | 93M01
93M01
93M01 | 95-3313
95-3314
95-3316
95-3317
95-3318 | 9U
9U
9U
9U | 675460
675460
676478
678116
680521 | 6124157
6124157
6124503
6122675
6121716 | 10
20 | -2
20
6
7
-2 | -2 | 27
28
17
22
19 | 740
870
570
630
860 | -0.5
1.9
2.5 | 10
15 | 95
110
92
93
100 | 3
3
2
2
2 | 5.67
4.11
4.64 | 5
4
4 | -5
-5 | 1.5
1.62
1.57 | 26
16
36 | 2.2
2.2
1.9
2
2.2 | 20
21
16
18
17 | -0.5
-0.5
-0.5
0.7
-0.5 | 4.2
5
4
4.4
4.2 | 1.5
1.6
2.3 | -1
-1
-1 | | 22
23
24
24
24
24 | 44
53
48
46
46 | 20
22
23
24
20 | 4.6
5
5.3
5.6
4.9 | 1.6
1.9
1.8
2.1
1.8 | 0.7
1.1
1
0.8
1.1 | 3.8
3.4 | 0.54
0.61
0.53
0.54
0.52 | 23.33
27.8
29.34 | | 93M01
93M01
93M01 | 95-3319
95-3320
95-3322
95-3323
95-3324 | 9U
9U
9U
9U | 682033
672043
672713
683021
683010 | 6121206
6122992
6123847
6120026
6118462 | | 6
4
4
12
5 | | 29
26
19
21
20 | 720
500
700
700
900 | 2.2 | 9
9
12 | 72
88
82
71
89 | 3
2
2
2
2 | 3.77
3.79
4.75 | 4 | -5
-5 | 1.43
1.55
1.67 | 33
47
30 | 3.1
1.4
1.4
2.5
2.1 | 18
12
14
17
20 | 0.8
-0.5
0.7
-0.5
-0.5 | 4.1
4.4 | 1.6
1.9
1.9
1.7
1.8 | -1 | 126
127 | 21
18
18
22
23 | 46
38
45
46
42 | 22
16
17
20
22 | 4.2
2.8
3.4
4.2
5.1 | 1.5
0.9
1.2
1.4
1.8 | 0.6
0.7
0.5
0.6
1 | 2.4
2.5
2.7
2.8
3.5 | 0.16
0.39
0.42
0.41
0.53 | 27.3
24.32
24.3 | | 93M01
93M01
93M01 | 95-3326
95-3327
95-3328
95-3329
95-3330 | 9U
9U
9U
9U | 683005
684477
684686
684686
684981 | 6121098
6119658
6118445
6118445
6103654 | 10
20 | 5
6
20
-2 | | 14
13
18
18
12 | 810
680
780
800
550 | 2.1 | 9
11
11 | 65
79
70
74
78 | 1
2
2
2
2 | 4.49 | 4 | -5
-5
-5 | 2.08
2.05
2.13 | 43
34
21 | 1.9
1.8
1.8
1.9
1.1 | 11
15
18
19
19 | 0.8
-0.5
-0.5
-0.5
-0.5 | 4.1
4.2
4.3 | 1.6
1.8
1.4
1.8
2.2 | 2
-1
-1
-1 | 125 | 16
22
24
24
22 | 39
43
44
45
42 | 12
21
23
24
21 | 3
4.4
5.3
5.4
4.9 | 1
1.6
1.9
2.1
1.8 | -0.5
-0.5
0.8
-0.5
0.9 | 3.2
3.4 | 0.37
0.44
0.49
0.53
0.51 | 27.32 | | 93M01
93M01
93M01 | 95-3331
95-3332
95-3333
95-3334
95-3335 | 9U
9U
9U
9U | 683911
683384
677211
669144
677758 | 6101875
6100893
6115343
6115022
6101883 | 10 | 5
.2
9
.2
3 | | 22
15
14
15
21 | 770
500
670
810
1000 | 4
2
-0.5 | 13
9
18 | 98 | 3
3
2
3 | 3.04
3.91 | 6
5
5 | -5
-5 | 1.61
1.69
1.56 | 53
42
36 | 1.7
1.4
1.1
1.7
1.9 | 20
13
13
15
18 | -0.5
-0.5
-0.5
-0.5
-0.5 | 4
3.4
4.7 | 2.1
1.9 | 1
1
1
1 | 376
139
95 | 23
17
17
22
24 | 56
40
36
50
54 | 22
14
13
22
22 | 4.8
2.9
2.7
4.3
4.9 | 1.7
0.9
0.9
1.5
1.8 | -0.5
1.1
-0.5
-0.5
-0.5 | 2.8
2.6
3 | 0.65
0.42
0.46
0.5
0.59 | 25.19
28.86
28.12 | | | | | | Element | | Au | Au* | As | Ba | Br | Со | Cr | Cs | Fe | Hf | Ir | Na | Rb | Sb | Sc | Ta | Th | U | W | Zn | La | Се | Nd | Sm | Eu | Tb | Yb | Lu | Mass | |-------|---------|------|--------|-----------------|-----|-----|-----|-----|-----|------|-----|-----|-----|------|-----|------|------|-----|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|-----|------|-------| | | | | | Units | | ppb | ppb | ppm | ppm | ppm | ppm | ppm | ppm | % | ppm | ppm | % | ppm g | | | | | | Detection limit | | 2 | | 0.5 | 50 | 0.5 | 1 | 5 | 1 | 0.02 | 1 | 5 | 0.01 | 15 | 0.1 | 0.1 | 0.5 | 0.5 | 0.5 | 1 | 50 | 0.1 | 3 | 5 | 0.1 | 0.2 | 0.5 | 0.2 | 0.05 | | | MAP | ID | UTMZ | UTME | UTMN | Rep | INA bal | | 93M01 | 95-3336 | 9U | 677758 | 6101883 | 20 | -2 | | 19 | 890 | 2.4 | 20 | 130 | 3 | 5.04 | | -5 | 1.49 | 42 | , , | 19 | -0.5 | 5.8 | 1.6 | -1 | 116 | 25 | 54 | 24 | 5 | 1.8 | -0.5 | 2.8 | 0.05 | 23.29 | | 93M01 | 95-3337 | 9U | 673230 | 6116021 | | 5 | | 22 | 900 | 4.3 | 11 | 120 | 3 | 3.83 | ē | 5 -5 | 1.63 | | | 19 | | 5.1 | | | | | | | - | 1.7 | | 3.2 | | 22.37 | | 93M01 | 95-3338 | 9U | 672830 | 6117721 | | 49 | 67 | 21 | 690 | 5.3 | 22 | 140 | 5 | 9.14 | 7 | -5 | 2.52 | 54 | 4.2 | 34 | -0.5 | 6 | 2.2 | -1 | 157 | 29 | 68 | 28 | 7 | 2.4 | 1 | 5.7 | | 22.28 | | 93M01 | 95-3342 | 9U | 676785 | 6100567 | | -2 | | 26 | 980 | -0.5 | 27 | 130 | 4 | 4.94 | - 6 | 5 -5 | 1.43 | 61 | 2.2 | 19 | 0.9 | 5 | 2.2 | -1 | 142 | 24 | 55 | 27 | 4.9 | 1.7 | -0.5 | 3.7 | 0.59 | 22.14 | #### Notes INA = Neutron activation of -63 micron sample Au* = gold re-analysis UTMZ = UTM Zone UTME = UTM Easting UTMN = UTM Northing Rep = Replicate sample - Analysis done by Actlabs, Ancaster, Ontario. # Reference Guide to Field Observations and Bedrock Geology | ID | Sample Number | |------------|---| | UTME | UTM East Coordinate | | UTMN | UTM North Coordinate | | REP | 10 - first duplicate sample, 20 - second duplicate sample | | MAP UNIT | M - Morainal, FG - Glaciofluvial sediments, LG - | | MAN CIVIT | Glaciolacustrine, C - Colluvial, R - Bedrock, b - blanket, | | | v - veneer, a - ablation, r - resedimented, t - terrace, | | | f - fan. e.g. Mb - Morainal blanket | | MATERIAL | Sampled sediment type | | | Dmm - Massive, matrix-supported diamicton, s - sand, | | | z - silt, c - clay, g - gravel, () - minor component | | DEPTH | Depth to sample from surface, in metres | | EXPOSURE | r - roadcut, s - stream cut, p - pit, q - quarry | | TERRAIN | 1 - flat, 2 - undulating, 3 - Rolling, 4 - Montane | | SLOPE | Inclination of the surface at the sample site | | DRAINAGE | 1 - poor, 2 - moderate, 3 - well | | VEGETATION | P - Lodgepole pine, s - spruce, cc - clearcut, | | | al - alder, as - aspen, d - deciduous, b - birch | | SOIL | Disturbed (x) or undisturbed (depth given in m) | | FISSILITY | 0 - none, 1 - weak, 2 - moderate, 3 - strong | | DENSITY | 1 - low, 2 - moderate, 3 - high | | OXIDATION | 0 - none, 1 - mild, 2 - moderate, 3 - high | | JOINTING | 0 - none, 2 - weakly, 3 - moderate, 4 - well | | MATRIX | Percentage of matrix | | | 60, 70, 80, 90 | | TEXTURE | Matrix Texture | | 1 | 1 - sand, 2 - silt, 3 - silty sand, 4 - sandy silt, 5 - clay rich | | | silt or sand. | | CLAST SIZE | Maximum clast size observed | | | | |------------|---| | COLOUR | Matrix colour | |] | b - brown, db - dark brown, lb - light brown, g - grey, | | | lg - light grey, dg - dark grey, o - orange, gr - green, | | | dgr - dark green bl - blue, bt - blue tinge, ol - olive, | | | redb - reddish brown, dg-b - dark grey brown | | CLAST MODE | 1 - small pebble, 2 - medium pebble, 3 - large pebble. | | | 0.5 is intermediate between any two mode classifications. | | SHAPE | Average shape of clasts | | | 1 - angular, 2 - sub-angular, 3 - sub-rounded, 4 - rounded | | | 5 - well rounded. Note, 0.5 is an intermediate value | | | between any two shape classifications. | | STRIATED | Presence of striations on clasts | | | 1 - <1% rare, 2 - 1-10% common, 3 - >10% abundant | | BEDROCK | n/v - not visible, ss - sandstone, zs - siltstone, | | | ms - mudstone, sh - shale, and andesite, dac dacite, | | | arg argillite, sy syenite, tr trachyte, br - breccia, | | | b - basalt, ves vesicular, qz quartz, aug augen, | | | lt - lithic tuff, gw - greywacke, p and porphyritic | | | andesite, dk. b pyro dark basaltic pyroclastics, | | | H and Hazelton andesite, arg. hf argillaceous | | | hornfels, amy. b - amygdaloidal basalt, dio diorite, | | | grd granodiorite, sil silicified, asic asicular, | | | min mineralized, epid epidote, bs - basic, | | | hfd ch hornfelsed chert, bd - banded, rhy rhyolite, | | | vc - volcaniclastics, metseds - metasediments, | | | alt altered, fb - flow banded, ser sericitized, | | | lapt - lapilli tuff, cong conglomerate, gs - gritstone, | | | pbr - pipe breccia, intr intruded, w - weathered, | | | phy phyllite, (f) - fossiliferous, (v) - volcanigenic, | | | (c) - coarse grained, (m) - medium grained, (fg) - fine | | | grained, BFP/QFP - biotite/quartz feldspar porphyry | | COMMENTS | Relevant sedimentologic, geologic and other data | | Q | UTME | UTMIN | Rep | MAP UNIT | MATERIAL | DEPTH (m) | EXPOSURE | TERRAIN | ASPECT | SLOPE (deg) | DRAINAGE | VEGETATION | SOIL | FISSILITY | DENSITY | OXIDATION | JOINTING | MATRIX (%) | COLOUR | TEXTURE | CLAST MODE (cm) | CLAST SIZE (cm) | SHAPE | STRIATED | BEDROCK | COMMENTS | |---|--|---|----------
---|--|--------------------------------------|---------------|-----------------------|-----------------------------|--------------------------|-----------------------|-----------------------------------|-----------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------------|------------------------------|-----------------------|---------------------------|----------------------------|---------------------------------|-----------------------|---|----------| | 95-3002
95-3003
95-3004
95-3005
95-3006 | 662188
661957
673220
662486
662486 | 6125462
6123162
6118884
6102732
6102732 | | Mb
Mb
Mv/Cv
Mb
Mb | sz Dmm
sDmm
sDmm
zDmm
zDmm | 1.00
2.50
0.80
1.00
1.00 | r
r/s
r | 3
2
4
1 | NW
SW
ridge
E
E | 5
8
1
5
5 | 3
2
2
2
2 | P/s/cc
P/s
s
cc
cc | x
x
0.11
x
x | 1
1
0
3
3 | 3
1
3
3 | 0
0
2
1
1 | 1
1
0
3
3 | 65
60 | b
db
b
db
db | 3
3
3
3 | 2
4
2
1.5
1.5 | 60 | 2
2
2
3
3 | 2
3
2
2
2 | Cong, gs 1km
n/v
n/v | * | | 95-3008
95-3009
95-3010
95-3011
95-3012 | 661134
660007
662837
661788
661562 | 6103109
6103209
6101555
6102043
6100722 | | Mb
Mb
Mb
Mb
Mb | zsDmm
szDmm
sDmm
zsDmm
zsDmm | 0.60 | | 3
3
2
2 | N
NW
S | 1
1
1
1
5 | 3
3
3
3 | s
al
s/cc
P
P/cc | 0.10
x
x
0.20
x | 3
2
2
1
1 | 3
2
2
3 | 1
2
1
2
1 | 2
3
1
0
0 | 80
80
70 | ig
b
dg
ig
b | 3
4
3
3
3 | 1
1.5
2
3
2 | 2
10
15
50
30 | 3
3
3
3 | 1
2
1
2
2 | n/v
n/v
n/v
n/v | * * * * | | 95-3013
95-3014
95-3015
95-3016
95-3017 | 660075
670140
669294
669670
668063 | 6101214
6098344
6099165
6099948
6099042 | | Mb
Mv
Mb
Mb
Mv | zDmm
szDmm
szDmm
szDmm
czDmm | 0.80
1.00
0.40 | Γ | 2
4
4
2
3 | NE | 1
25
10
30
1 | 3
2
2
2
2 | P/cc
s
s
s
P/cc | x
0.30
0.10
0.08
0.21 | 2
1
0
2
3 | 2
3
2
2
3 | 2
1
0
0
1 | 1
0
1
2
0 | 80
70
80 | b
b
b
dg-b
dg | 2
4
4
3
2 | 2
1.5
2
2
1 | 20
15
15
10
10 | 3
2.5
3
2.5
2.5 | 1
1
2
1
1 | n/v
and./dac.
n/v
n/v
n/v | * * * | | 95-3018
95-3019
95-3020
95-3022
95-3023 | 668008
666735
666757
665645
664210 | 6098138
6099756
6098293
6098251
6098126 | | Mb
Mb
Ma/Mb
Mb
Mb | szDmm
zsDmm
sDmm
szDmm
zsDmm | 1.00
0.55
1.00
0.80
0.70 | r/s
r/p | 2
2
1
2
1 | NE
N
NW
E | 5
5
3
5 | 2
2
3
3
2 | s
P/cc
P/cc
P/cc
P/cc | 0.20
x
x
0.35
0.30 | 2
3
1
1
2 | 3
2
2
1 | 1
1
0
2
1 | 0
3
0
0 | 60 | dg
dg-b
b
b | 4
3
1
4
3 | 2.5
1.5
3
1
2 | 20
15
35
10
10 | 2.5
2.5
2.5
2.5
2.5 | 2
2
2
2
1 | n/v
n/v
n/v
n/v | * | | 95-3025
95-3026
95-3027
95-3028
95-3029 | 665768
665218
664524
674384
676176 | 6100826
6099607
6099050
6124740
6123011 | | Mib
Mib
Mib
Mw/FGb
FGb//Mib | szDmm
szDmm
szcDmm
zsDmm
szDmm | 0.50
1.30 | р
р
г | 4
2
2
1
1 | NE
W | 1
1
1
6
6 | 2
3
2
3
2 | P/s/cc
P/s
cc
s/cc
s | 0.10
0.21
x
x | 1
2
2
2
2 | 2
1
3
3
3 | 2
1
1
2
1 | 0
0
2
0
3 | 75
70 | b
b
dg
b-o
b | 4
3
5
3
4 | 1
1.5
1.5
2
2 | 70
20
30
60
20 | 2.5
2.5
2.5
2
2 | 2
1
1
1
3 | n/v
n/v
n/v
b
ves., amy. and. | * | | 95-3030
95-3031
95-3032
95-3033
95-3034 | 676985
676985
663015
662759
661336 | 6123689
6123689
6100169
6099195
6099597 | 10
20 | Mb
Mb
Mb
Mb/Ma
Mb/Ma | czDmm
czDmm
zDmm
zsDmm
zsDmm | 3.50
3.50
1.00
0.80
0.50 | r
s | 2
2
2
3
3 | E
E
NE
NE
NE | 3
5
7
7 | 3
3
2
2
3 | ∞
∞
s
s | x
x
0.25
x
x | 3
3
3
2 | 3
3
3
3 | 2
2
0
2
2 | 2
2
3
2
1 | 65
65
80
80
80 | dgr
dg
b
b | 5
5
5
3
3 | 2
2
3
2
2 | 25
25
80
90
30 | 2.5
2.5
2.5
2
2.5 | 2
2
3
3
3 | n/v
n/v
n/v
n/v | * * | | 95-3035
95-3036
95-3037
95-3038
95-3039 | 660516
660516
662315
672095
672484 | 6098949
6098949
6098269
6108760
6110063 | 10
20 | | czDmm
czDmm
czDmm
czDmm
sDmm | 3.00
3.00
0.70
0.75
1.50 | r
p
p | 3
3
3
2 | NE
NE
NE
SSE
SW | 7
7
10
10
5 | 3
3
2
3
3 | s/as
s/as
s
cc
cc | x
0.50
x | 3
3
2
2
0 | 3
3
3
2 | 0
0
1
2 | 1
1
2
1
0 | 80
80
90
80
60 | dg
dg
dg
g-b
b-o | 5
5
5
5 | 1.5
1.5
1
2
2 | 20
20
25
20
35 | 3.5
3.5
2.5
2.5
2 | 3
1
2
1 | n/v
n/v
n/v
n/v | * * | | Q | UTME | NMT | Rep | MAP UNIT | MATERIAL | DEPTH (m)
EXPOSURE | TERRAIN | ASPECT | SLOPE (deg) | DRAINAGE | VEGETATION | SOIL | FISSILITY | DENSITY | OXIDATION | JOINTING | MATRIX (%) | COLOUR | TEXTURE | CLAST MODE | QLAST SIZE (cm) | SHAPE | STRIATED | BEDROCK | COMMENTS | |---|--|---|-----|--|---|--|-----------------------|--------------------|--------------------------|-----------------------|-----------------------------|-----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------------|------------------------------|-----------------------|-------------------------------|----------------------------|--------------------------------------|-----------------------|--|----------| | 95-3040
95-3042
95-3043
95-3044
95-3045 | 672484
659901
661260
662531
663568 | 6110063
6115908
6115702
6115444
6114881 | | Cv/Ma Mb
Mb
Mb/LG
Mb
Mb | zsDmm
zsDmm
szDmm
czDmm
czDmm | 2.00 r
0.75 r
2.50 r
0.75 r
1.00 r | 2
2
2
3
2 | N
NW
SE | 5
15
6
2 | 2
1
1
2
3 | ∝
s
s
P/s
s | x
0.33
0.60
x
x | 0
2
0
2
3 | 1
2
1
2
2 | 2
0
2
0
0 | 0
1
0
0
1 | 70
75 | b
dg
db
b | 3
3
4
5
5 | 2
2
3
2
1 | 35
20
40
50
15 | 2
2.5
2.5
2.5
2.5 | 1
2
1
2
1 | nAv
H and.
nAv
nAv | * | | 95-3046
95-3047
95-3048
95-3049
95-3050 | 661492
662917
659434
659388
661981 | 6117659
6117211
6111161
6111170
6118058 | | Mb/R
Mb/R
Mb
Mb
Mb | szDmm
szDmm
zcDmm
sDmm
sDmm | 1.00 r
3.00 r
0.50 r
2.00 r
2.00 r | 2
3
3
3
3 | S
S
SE
SE | 2
5
10
10 | 2
2
2
3
3 | | x
0.28
x
x
x | 2
2
3
3
3 | 2
2
3
2
2 | 1
2
0
0
0 | 0
1
1
3
3 | 75
65
85
80
80 | b
b/bt
b
db
db | 4
4
5
1 | 1.5
3
1
2
2 | 10
20
10
70
70 | 2.5
2
2.5
2.5
2.5
2.5 | 1
2
2
2
2 | n/v
zs
dk. b pyro.
p and.
p and. | * | | 95-3052
95-3053
95-3054
95-3055
95-3056 | 660137
660413
660939
660981
661888 | 6110256
6111805
6113337
6112340
6111695 | | Mb
Mb
Mb
Mbr
FGb/Mb | czDmm
zcDmm
zDmm
szDmm
zsDmm | 0.60 r
0.30 r
0.80 r
1.00 r
0.50 r | 1
2
2
2
2 | SW | 10
1
5
5
5 | 2
2
2
3
2 | cc
s
cc
s | x
x
x
x | 1
2
0
3
2 | 3
1
3
3 | 1
0
3
0
1 | 1
1
0
2
1 | 80
80
70
70
80 | lg
g
b
dg
b | 5
5
4
4
3 | 2
2
2
2
2 | 30
20
20
15
20 | 2.5
2.5
2
2
3 | 2
2
2
3
3 | n/v
n/v
n/v
n/v | | | 95-3057
95-3058
95-3059
95-3060
95-3062 | 668481
669002
668532
667184
667145 | 6110192
6108107
6109182
6110696
6111574 | | Mv
Mvr
Mor
Mb/FGv
Mb | zsDmm
zsDmm
zsDmm
szDmm
szDmm | 0.40 r
1.00 p
0.40 p
0.80 r
1.70 r | 3
3
1
2 | SE
N
N | 1
15
10
10
5 | 3
3
1
2
2 | ∞
∞
∞
P/s
∞ | 0.24
x
x
x
x | 0
2
1
1
2 | 1
2
2
2
2 | 2
2
1
1
0 | 0
1
0
0 | 70
85
80
75
80 | lg
dg
g
b | 3
3
4
4 | 2
1.5
2
1.5
2 | 20
15
20
10
30 | 2.5
2.5
2.5
2.5
3 | 2
3
2
2
2 | dk. gr ss(m)
qz dio.
arg. hf
n/v
n/v | | | 95-3063
95-3064
95-3065
95-3066
95-3067 | 668619
669872
669543
670797
670630 | 6111166
6110706
6112095
6111319
6112895 | 10 | Ma/FG/Mb
Mv
Mb
Mb
Mb
Mb | sDmm
sDmm
zsDmm
zDmm
czDmm |
1.20 r
1.00 r
0.50 p
0.35 r
2.50 r | 2
3
3
1 | S | 1
10
10
5
15 | 2
3
3
3
2 | ∞ P/s ∞ c ∞ s/as | x
x
x
x | 1
1
3
2
3 | 1
1
3
2
2 | 2
2
0
0
0 | 0
0
2
0
3 | 70
60
80
80
75 | b
gr
dg
b
dg | 1
1
3
2
5 | 2.5
1.5
1.5
1
1.5 | 10
10
15
10
35 | 2.5
2
2.5
2.5
3 | 2
1
2
2
2 | amy. b
gr. bd metseds
n/v
n/v | * | | 95-3068
95-3069
95-3070
95-3072
95-3073 | 670630
667890
668490
663851
664329 | 6112895
6112292
6113179
6125339
6124040 | 20 | Mb
FGv Mb
Mb/FG
Mb
Mb | czDmm
zcDmm
zDmm
zcDmm
zcDmm
szDmm | 2.50 r
1.50 r
0.40 r
0.60 p
0.50 r | 1
2
3
2
2 | E
ENE
W | 15
5
10
5
1 | 2
2
2
2
2 | s/as
s
s
s
cc | x
x
x
x | 3
2
1
3
3 | 2
2
2
2
2 | 0
0
2
0
0 | 3
0
0
2
2 | 75
80
70
80
80 | dg
g
b
b | 5
3
2
5
4 | 1.5
1.5
1
1.5
2 | 35
25
50
15
20 | 3
2.5
2.5
2.5
2.5 | 2
2
2
2
3 | n/v
n/v
n/v
n/v | * | | 95-3074
95-3075
95-3076
95-3077
95-3078 | 665444
664306
664144
664194
663918 | 6123489
6122948
6120258
6117429
6118603 | | Cv/FG Mb
Mb
Cb Mv
Mbr
Mbr | sDmm
scDmm
szDmm
zsDmm
szDmm | 0.80 p
1.00 r
1.50 r
1.30 r
2.00 r | 2
1
4
3
3 | S
NE | 8
5
15
8
10 | 1
3
2
3
2 | P/s
cc
cc
cc
cc | x
x
1.11
0.30
x | 1
1
1
3
3 | 1
3
1
3
3 | 2
1
2
0
0 | 0
2
0
3
3 | 70
80
70
85
80 | b-o
b-o
dg
dg
dg | 1
5
4
3
4 | 2.5
2
2.5
2 | 15
15
20
20
20 | 2.5
2.5
2.5
2.5
2 | 2
2
3
3
2 | ss(v)
n/v
p and.
n/v
n/v | * | | Ω | UTME | UTMN | Rep | MAP UNIT | MATERIAL | DEPTH (m)
EXPOSURE | TERRAIN | ASPECT | SLOPE (deg) | DRAINAGE | VEGETATION | SOIL | FISSILITY | DENSITY | OXIDATION | JOINTING | MATRIX (%)
COLOUR | TEXTURE | CLAST MODE | CLAST SIZE (cm) | SHAPE | STRIATED | веркоск | COMMENTS | |---|--|---|----------|------------------------------------|--|--|-----------------------|-----------|--------------------------|-----------------------|---------------------------------------|--------------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|-----------------------|-----------------------------|----------------------------|---------------------------------|-----------------------|-----------------------------------|----------| | 95-3079
95-3080
95-3082
95-3083
95-3084 | 664117
666259
666094
663298
662335 | 6119356
6122431
6121704
6122402
6122429 | | Mb
Mv
Cv/Mv
Mbr
Mbr | szDmm
zsDmm
zDmm
zsDmm
zsDmm | 1.00 r
0.40 s
0.40 p
1.20 p
0.30 r | 1
4
4
3
3 | w
sw | 8
15
2
15
10 | 3
2
3
2
2 | & & & & & & & & & & & & & & & & & & & | x
0.13
x
x
x | 3
2
1
2
3 | 3
2
1
2
2 | 2
1
3
0
0 | 0
0
0
0
2 | 75 b
70 dg
60 lg
80 b
80 g | 4
3
2
3
3 | 2.5
1
1
1
2 | 20
15
10
15
15 | 2.5
2.5
2
2.5
2.5 | 2
1
1
2
2 | n∕v
grd
arg.
n/v
n/v | | | 95-3085
95-3086
95-3087
95-3088
95-3090 | 665985
666035
667049
663625
665087 | 6119717
6120396
6119444
6121572
6121169 | | Mb
Mb
Mb
Cv/Mv
Mb | zDmm
zDmm
zsDmm
csDmm
zsDmm | 0.20 p
0.30 r
0.30 p
1.50 r
3.00 r | 1
1
3 | W | 5
5
10
10
20 | 3
2
2
3 | œ | x
x
x
x
0.70 | 2
3
3
1
2 | 3
3
1
3 | 0
0
2
0
0 | 2
2
1
0
1 | 80 g
80 g
80 b
60 b
75 b | 2
2
3
5
3 | 1.5
2
1
2.5
2 | 10
15
15
15
15 | 2.5
2.5
2.5
2.5
2.5 | 2
2
2
2
1 | gw
gw
n/v
ss (fg)
n/v | | | 95-3091
95-3092
95-3093
95-3094
95-3095 | 668170
670580
669529
662396
662396 | 6118507
6116116
6117015
6124122
6124122 | 10
20 | | zDmm
zDmm
zsDmm
szDmm
szDmm | 1.00 r
0.70 r
0.50 r
2.50 r
2.50 r | 2
2
2 | s | 10
5
1
7
7 | 3
2
3
3 | cc
cc
s | x
x
x
x | 2
3
1
3
3 | 2
2
3
3
3 | 0
1
1
0
0 | 0
2
1
2
2 | 80 b
80 o-b
80 b
70 dg
70 dg | 2
2
3
4
4 | 1.5
2
2
2
2 | 10
10
15
20
20 | 2.5
2.5
2.5
2.5
2.5 | 1
2
2
3
3 | n/v
n/v
n/v
n/v | | | 95-3096
95-3097
95-3098
95-3099
95-3100 | 664355
680620
679733
679660
679336 | 6121873
6100028
6101532
6106596
6105051 | | Mb
Mb
Mb/Ma
Cv/Mb
Mb | szDmm
sDmm
sDmm
szDmm
czDmm | 1.50 r
1.30 r
0.80 p
1.50 r
2.00 r | 1
3
2
4 | WSW
SW | 7
10
5
15 | 3
3
3
3 | &
&
& | x
x
x
x | 3
2
1
3
3 | 3
1
2
2
3 | 0
0
2
0 | 2
1
0
2
2 | 80 dg
70 b
70 o-b
80 b
85 dg | 4
1
1
4
4 | 2.5
1.5
2
1
1.5 | 15
15
15
10
20 | 2.5
2.5
2.5
2.5
3 | 2
2
1
2
3 | n/v
n/v
p and., bs dykes | * | | 95-3102
95-3103
95-3104
95-3105
95-3106 | 681051
678344
678879
679029
678091 | 6098452
6105114
6104048
6102809
6103439 | | Mb
Mb
Mb
Mb
Mb | zDmm
sDmm
zsDmm
zsDmm
czDmm | 4.00 r
0.70 r
1.00 r
1.30 r
1.00 r | 1
3
3
1 | E
S | 15
3
15
8
2 | 1
3
3
3
3 | ∝
∝ | x
0.35
x
x
x | 3
3
2
2 | 3
3
2
2 | 2
2
0
2
0 | 3
3
2
2 | 75 b
70 o-b
80 b
80 o-b
80 b | 2
1
3
3
5 | 2
1.5
3
1.5
1.5 | 30
10
30
10
10 | 2.5
1.5
2
2.5
2.5 | 2
2
2
2
2 | qz-aug rhy. (alt.)
n/v
n/v | * | | 95-3107
95-3108
95-3109
95-3111
95-3112 | 677596
676749
690033
687158
687158 | 6104320
6105597
6099578
6108321
6108321 | | Mb
Mb
FGb//Mb
Mv
Mv | sDmm
zsDmm
czDmm
zsDmm
zsDmm | 0.80 r
0.70 r
0.30 p
1.00 r
1.00 r | 2 2 2 | S | 5
3
2
5
5 | 3
1
3
3 | cc
P
P | x
x
x
x | 2
3
0
3
3 | 3
3
2
3
3 | 1
1
0
0 | 1
2
0
3
3 | 70 o-b
80 b
65 g
75 db
75 db | 1
3
5
3
3 | 2
1.5
1
1
1 | 10
10
10
15
15 | 2.5
2.5
2.5
3.5
3.5 | 2
2
2
2
2 | n/v
n/v
ss(f) & silt | | | 95-3113
95-3114
95-3115
95-3116
95-3117 | 688346
686430
685154
685058
684360 | 6108661
6108760
6108172
6109598
6109331 | | FGb/Mb
Mbr
Mb
Mb
Cb/Mb | sDmm
sDmm
zsDmm
zcDmm
czDmm | 0.40 r
0.60 p
1.50 r
0.30 p
1.30 p | 3 3 3 | N
SE | 5
10
5
10
12 | 2
3
3
3
2 | &
&
& | x
x
x
x
1.00 | 1
1
2
2
2 | 2
2
2
3
2 | 2
1
1
0
0 | 0
0
2
1
1 | 90 b
80 b
80 b
70 g
80 g | 1
1
3
5
5 | 2
2
2
1.5
1.5 | 15
10
20
10
10 | 2.5
2.5
2.5
2.5
2,5 | 1
1
1
2
2 | | * | | Ω | UTME | UTMN | Rep | MAP UNIT | MATERIAL | DEPTH (m) | EXPOSURE | TERRAIN | ASPECT | SLOPE (deg) | DRAINAGE | VEGETATION | SOIL | FISSLITY | DENSITY | OXIDATION | JOINTING | MATRIX (%) | COLOUR | TEXTURE | Q_AST MODE | CLAST SIZE (cm) | SHAPE | STRIATED | ВЕDROCK | COMMENTS | |---------|--------|---------|-----|-------------|----------|-----------|----------|---------|--------|-------------|----------|------------|------|----------|---------|-----------|----------|------------|--------|---------|------------|-----------------|-------|----------|-----------------|----------| | 95-3118 | 684534 | 6110338 | N | /tb | zDmm | 2.00 | r | 2 | NE | 10 | 3 | al | x | 3 | 3 | 0 | 3 | 2 | dg | 2 | 1 | 10 | 2.5 | 3 | n/v | | | 95-3119 | 683556 | 6111042 | | /lb | zDmm | 1.80 | r | 3 | NNE | 12 | 3 | œ | x | 3 | 3 | 0 | 3 | | db | 2 | 2 | 25 | 2.5 | 3 | zs and ss | * | | 95-3120 | 682505 | 6111184 | N | /lb | sDmm | 1.00 | ٢ | 3 | NE | 10 | 1 | œ | x | 2 | 2 | 0 | 1 | 70 | b | 1 | 2 | 15 | 2.5 | 2 | zs, ss and br | | | 95-3122 | 681260 | 6109632 | N | /lb | szDmm | 1.00 | s | 2 | SE | 5 | 2 | cc | x | 3 | 3 | 0 | 2 | | b | 4 | 2 | 15 | 2.5 | 3 | | * | | 95-3123 | 681260 | 6109632 | N | /l b | szDmm | 1.00 | s | 2 | SE | 5 | 2 | œ | x | 3 | 3 | 0 | 2 | 80 | Ь | 4 | 2 | 15 | 2.5 | 3 | hfd ch,zs, sst. | * | | 95-3124 | 681997 | 6110243 | N | /l b | Dmm | 1.20 | r | 1 | W | 1 | 10 | œ | x | 3 | 3 | 0 | 3 | 80 | g | 2 | 1.5 | 20 | 2.5 | | zs and sh | * | | 95-3125 | 680997 | 6112624 | N | /lb | zDmm | 0.20 | | 3 | NW | 10 | 10 | P | x | 3 | 3 | 0 | 2 | 80 | g-b | 2 | 1 | 5 | 2.5 | 2 | n/v | | | 95-3126 | 681762 | 6111457 | N | /lb | scDmm | 1.20 | | 3 | NE | 10 | 2 | cc/al | x | 2 | 3 | 0 | 2 | 80 | db | 5 | 1.5 | 10 | 2.5 | 2 | n/v | | | 95-3127 | 683938 | 6104350 | | /lb | zDmm | 1.70 | г | 2 | E | 2 | 3 | s | x | 3 | 3 | 0 | 2 | 75 | ďb | 2 | 1.5 | 10 | 2.5 | 2 | | | | 95-3128 | 682271 | 6105338 | | Σν Mb | zsDmm | 2.00 | | 1 | S | 5 | 1 | s | 1.10 | 3 | 2 | 0 | 3 | 70 | b | 3 | 2 | 15 | 2.5 | 2 | zs and ss | * | | 95-3129
| 681389 | 6106416 | ٨ | /l b | zsDmm | 1.00 | r | 4 | s | 10 | 3 | cc/s | x | 2 | 2 | 0 | 2 | 80 | b | 3 | 1.5 | 15 | 2.5 | | zs and gw | * | | 95-3130 | 691090 | 6105152 | M | ۸v | zDmm | 0.50 | q | 2 | NE | 3 | 3 | P/s | x | 0 | 2 | 1 | 0 | | oł. b | 2 | 1.5 | 15 | 2.5 | 2 | | | | 95-3131 | 689672 | 6105728 | M | ∕lib | cDmm | 1.10 | r | 2 | NE | 5 | 2 | P/s/al | x | 2 | 3 | 0 | 0 | | ol. b | 5 | 1 | 10 | 2.5 | 2 | | | | 95-3132 | 685783 | 6103325 | M | ∕ltb | szDmm | 1.00 | r | 3 | SE | 5 | 2 | | x | 2 | 3 | 0 | 2 | | b | 4 | 2 | 30 | 2.5 | 2 | | * | | 95-3133 | 686384 | 6104744 | N | Иb | czDmm | 1.20 | L | 3 | Ε | 10 | 2 | s | x | 1 | 3 | 0 | 2 | 70 | g | 5 | 1.5 | 15 | 2.5 | 2 | n/v | | | 95-3134 | 686973 | 6103102 | | √lb | czDmm | 2.00 | | 2 | SE | 4 | 1 | - | x | 1 | 3 | 0 | 2 | | b | 5 | 1 | 15 | 2.5 | 2 | | | | 95-3136 | 688084 | 6103010 | | √lb | zsDmm | 1.25 | | 2 | SE | 3 | 2 | | X | 2 | 3 | 1 | 2 | | b | 3 | 3.5 | 15 | 2.5 | 2 | | | | 95-3137 | 689143 | 6102300 | | νtb | zDmm | 0.50 | | 2 | S | 5 | 2 | | X | 2 | 3 | 0 | 1 | | ol. g | 2 | 2 | 15 | 2.5 | 2 | | | | 95-3138 | 689585 | 6103608 | • | √lb | zsDmm | 0.30 | | 2 | | 3 | 3 | | x | 2 | 2 | 0 | 1 | | b | 3 | 2.5 | 8 | 2.5 | 2 | • | | | 95-3139 | 690293 | 6102177 | ħ | νIb | szDmm | 1.20 | ı | 2 | SE | 5 | 2 | P/s | X | 2 | 3 | 0 | 1 | 75 | ol. b | 4 | 1.5 | 15 | 2.5 | 3 | n/v | | | 95-3140 | 691504 | 6102070 | | √lb | zsDmm | 1.00 | | 2 | SE | 3 | 2 | | x | 2 | 3 | 0 | 2 | | b | 3 | 2 | 15 | 2.5 | 2 | • | | | 95-3142 | 691504 | 6102070 | | Vfb | zsDmm | 1.00 | | 2 | SE | 3 | 2 | | X | 2 | 3 | 0 | 2 | | b | 3 | 2 | 15 | 2.5 | 2 | • | | | 95-3143 | 689544 | 6101500 | | Мb | zDmm | 0.70 | | 2 | | 5 | 2 | | 0.25 | 2 | 3 | 1 | 1 | | g | 2 | 1.5 | 40 | 2.5 | 1 | | | | 95-3144 | 690442 | 6104329 | | ₩b | zsDmm | 0.30 | р | 2 | | 5 | 3 | | X | 2 | 2 | 0 | 1 | | ol. b | 3 | 1.5 | 10 | 2.5 | 2 | • | | | 95-3145 | 691184 | 6103389 | ı | VIb//FGb | scDmm | 1.00 | r | 2 | W | 3 | 1 | S | x | 1 | 1 | 2 | 0 | 80 | bl-g | 5 | 1.5 | 20 | 2.5 | 1 | n/v | * | | 95-3146 | 679528 | 6113227 | | Мb | zcDmm | 2.50 | | 3 | SW | 5 | 2 | | x | 2 | 3 | 0 | 2 | 75 | | 5 | 2 | 20 | 2.5 | 2 | | * | | 95-3147 | 680618 | 6114157 | | Μb | zDmm | 0.20 | | 2 | SE | 2 | 3 | œ | X | 3 | 3 | 0 | 3 | 75 | Ь | 2 | 1 | 10 | 2.5 | 1 | | | | 95-3148 | 678153 | 6113767 | f | FG/Mb | szDmm | 0.25 | р | 2 | SW | 5 | 3 | œ | x | 2 | 3 | 0 | 1 | | o-b | 4 | 2 | 10 | 2.5 | 1 | | | | 95-3149 | 677136 | 6114504 | | Mb | scDmm | 0.20 | Р | 2 | SW | 1 | 1 | S | X | 2 | 3 | 2 | 1 | | o-b | 5 | 2 | 10 | 2.5 | 1 | | * | | 95-3150 | 676825 | 6113238 | ı | Mbr/FGb | sDmm | 2.00 | r | 3 | NE | 10 | 3 | œ | x | 2 | 3 | 0 | 1 | 80 | ol. g | 1 | 1.5 | 10 | 2.5 | 2 | n/v | | | 95-3151 | 675879 | 6113687 | ı | Mb | czDmm | 2.00 | | 3 | SW | 8 | 3 | | x | 3 | 2 | 2 | 2 | | b-o | 5 | 2 | 40 | 2.5 | 1 | | * | | 95-3152 | 674795 | 6115305 | | Mvr | szDmm | 0.40 | | 3 | SE | 15 | 3 | | 0.30 | 1 | 2 | 2 | 0 | | ol. g | 4 | 1.5 | 10 | 2.5 | 2 | | | | 95-3153 | 674840 | 6114133 | | Mb/LG | csDmm | 1.50 | | 2 | WSW | 6 | 3 | | 0.85 | 3 | 3 | 2 | 1 | | o-b | 5 | 2 | 15 | 2 | 1 | | * | | 95-3154 | 673916 | 6114157 | l | _G/Mb | zDmm | 1.50 | r | 2 | SW | 3 | 2 | | x | 3 | 2 | 2 | 3 | | o-b | 2 | 2.5 | 300 | | 1 | | * | | 95-3155 | 673920 | 6115094 | 1 | Mb | czDmm | 1.75 | Г | 1 | SW | 7 | 3 | S | x | 3 | 3 | 0 | 2 | 75 | b | 5 | 2 | 15 | 2 | 1 | n/v | | | Ω | UTME | UTMN | Rep | MAP UNIT | MATERIAL | DEPTH (m) | EXPOSURE | TERRAIN | ASPECT | SLOPE (deg) | DRAINAGE | VEGETATION | SOIL | FISSILITY | DENSITY | OXIDATION | JOINTING | MATRIX (%) | COLOUR | TEXTURE | Q.AST MODE | QLAST SIZE (cm) | SHAPE | STRIATED | BEDROCK | COMMENTS | |--------------------|------------------|--------------------|-----|------------------|----------------|--------------|----------|---------|---------|-------------|----------|------------|--------|-----------|---------|-----------|----------|------------|------------|---------|------------|-----------------|------------|----------|----------------------------|----------| | 95-3156 | 673884 | 6113346 | | Mb | zDmm | 1.50 | | 1 | SW | 5 | 2 | | x | 2 | 1 | 2 | 0 | | b | 2 | 2 | 10
10 | 2.5
2.5 | 2 | n/v | * | | 95-3157
95-3158 | 681877
682563 | 6117295
6116227 | | FGb Mb
Ma//Mb | sDmm
zsDmm | 4.00
0.30 | | 1 | NE
E | 15
5 | 2 | oc
s | X
X | 1 | 2 | 0 | 0
2 | 60
70 | b
h | 1 | 1.5
1.5 | 10 | 2.5 | 1 2 | n/v
n/v | | | 95-3160 | 683487 | 6112439 | | Mb | zsDmm | 0.35 | | 2 | E | 5 | 2 | s | x | 2 | 2 | 1 | 2 | | b | 3 | 1.5 | 10 | 2.5 | 2 | n/v | * | | 95-3162 | 684450 | 6112692 | | Ma//Mb | szDmm | 1.00 | | 2 | | 3 | 2 | œ | x | 2 | 2 | 1 | 1 | 70 | b | 4 | 1.5 | 10 | 2.5 | 2 | n/v | | | 95-3163 | 685723 | 6111776 | | Mb | zsDmm | 2.50 | | | Ε | 3 | 2 | œ | x | 1 | 2 | 2 | 0 | 80 | | 3 | 1 | 15 | 2.5 | 1 | n/v | * | | 95-3164 | 686145 | 6110547 | | Mb | zDmm | 0.30 | | 2 | E | 1 | 3 | œ | x | 2 | 2 | 1 | 1 | 75 | | 2 | 1 | 10 | 2.5 | 1 | n/v | | | 95-3165
95-3166 | 688380
689238 | 6107561
6106730 | | Mb
Ma//Mb | szDmm | 1.20
0.40 | | 2 | E
E | 5
5 | 2 | s
P/cc | X | 2 | 3
2 | 0
1 | 1 | | ol.g
b | 5
1 | 1.5
1.5 | 10
10 | 2.5
2.5 | 1 2 | n∕v
n∕v | | | 95-3167 | 688688 | 6105629 | | Mb | sDmm
szDmm | | | 2 | | 2 | 2 | cc | X
X | 2 | 2 | Ö | 1 | 75 | | 3 | 1.5 | 10 | 2.5 | 2 | n/v | | | | | | | | | | • | 95-3168 | 685359 | 6106568 | 10 | Mb | czDmm | | • | | W | 15
15 | 1 | œ | X | 2 | 3
3 | 1 | 1 | 80
80 | | 5
5 | 1.5
1.5 | 10
10 | 2.5
2.5 | 2 | alt. florhy
alt. florhy | * | | 95-3169
95-3170 | 685359
686870 | 6106568
6105934 | 20 | Mb
Mb | czDmm
zsDmm | 0.40
1.30 | | 1 | W
E | 3 | 1 2 | oc
oc | x
x | 1 | 2 | 1 | 1 | | g
b | 3 | 2.5 | 25 | 2.5 | 2 | nAv | • | | 95-3171 | 687751 | 6106327 | | Mb | zDmm | 0.40 | | 2 | w | 5 | 3 | P | x | 3 | 3 | ò | 2 | 80 | g | 2 | 2 | 15 | 2.5 | 2 | sy | | | 95-3172 | 685459 | 6105252 | | FGv/Mb | zDmm | 0.60 | | 3 | | 12 | 2 | œ | x | 2 | 3 | Ö | 1 | 80 | ol. b | 2 | 1.5 | 10 | 2.5 | 2 | grd | * | | | | | | | _ | | | | | | | | | | • | | | 70 | | | | 40 | ۰. | | | | | 95-3173 | 670015
670477 | 6120694 | | Mb
Mv/Cv | sDmm | 0.60 | | 1 | NW
S | 8
5 | 3 | S | X | 1 | 2 | 0
3 | 0 | 70
60 | | 1 | 1.5
2.5 | 40
50 | 2.5
1.5 | 1 | n/v
ser, QFP and rhy. | | | 95-3174
95-3175 | 671360 | 6119744
6118996 | | Mb | zsDmm
szDmm | 0.75
1.00 | | 3 | S
E | 5 | 2 | oc
s | X
X | 2 | 3 | 1 | 2 | 75 | lg
g | 3 | 1.5 | 10 | 2.5 | 2 | ss (c) | * | | 95-3176 | 671690 | 6118255 | | Mb | zsDmm | 0.40 | | i | w | 10 | 2 | S | x | 2 | 3 | ò | 1 | 70 | g | 3 | 2.5 | 15 | 2.5 | 2 | n/v | • | | 95-3177 | 676147 | 6112416 | | Mb | szDmm | 0.60 | • | | SW | 5 | 3 | P | x | 3 | 3 | 0 | 2 | 80 | ol. b | 4 | 2.5 | 15 | 2.5 | 2 | n/v | | | 95-3179 | 679049 | 6122365 | | Mb | szDmm | 3.00 | _ | 1 | NE | 15 | 3 | œ | | 3 | 3 | 0 | 3 | 80 | b | 4 | 1.5 | 10 | 2.5 | 2 | ss(f)(c) and zs(f) | | | 95-3180 | 677793 | 6099215 | | Mb | zsDmm | 1.30 | | 3 | ENE | 10 | 3 | s/as/b | X
X | 3 | 3 | 0 | 2 | 85 | b | 3 | 1.5 | 10 | 2.5 | 2 | crystal and lapt | | | 95-3182 | 677533 | 6100271 | | Mb | czDmm | 0.40 | | 2 | NE | 5 | 3 | s/as | x | 3 | 3 | ő | 2 | 75 | ol. b | 5 | 1.5 | 10 | 2.5 | 2 | n/v | - | | 95-3183 | 677155 | 6099278 | | Mb | czDmm | 0.50 | | 2 | | 3 | 3 | 8 | x | 3 | 3 | 1 | 2 | 80 | red b | 5 | 1 | 5 | 2.5 | 2 | n/v | | | 95-3184 | 665504 | 6121739 | | Mv | zsDmm | 0.40 | p | 4 | W | 5 | 3 | P/s | 0.32 | 1 | 2 | 2 | 1 | 85 | l g | 3 | 1 | 5 | 2.5 | 1 | phy and BFP | | | 95-3185 | 665671 | 6122241 | | Cv/Mv | sDmm | 0.60 | р | 4 | w | 5 | 3 | P/s | 0.30 | 1 | 1 | 3 | 0 | 80 | o-b | 1 | 1.5 | 15 | 2.5 | 1 | w BFP | * | | 95-3186 | 667070 | 6121711 | | Cb/Mb | sDmm | 1.00 | p | 1 | Ε | 8 | 2 | s/b | x | 1 | 2 | 1 | 0 | 80 | b | 1 | 1.5 | 10 | 2.5 | 1 | n/v | | | 95-3187 | 666528 | 6121729 | | Mv | zDmm | 0.40 | | 1 | | 15 | 3 | P | X | 2 | 1 | 1 | 1 | 70 | kg . | 2 | 1 | 10 | 2.5 | 1 | grd | | | 95-3189 | 666849 | 6120447 | 40 | Mb | zsDmm | 1.00 | | 1 | | 10 | 3 | Р | 0.55 | 1 | 2 | 1 | 0 | 80 | b | 3 | 1 | 15
10 | 2.5 | 1 | n/v | | | 95-3190 | 668253 | 6117845 | 10 | Mb | zsDmm | 0.40 | Γ | 2 | E | 3 | 3 | œ | x | 2 | 3 | 0 | 2 | 80 | b | 3 | 1.5 | 10 | 2.5 | 2 | n∕v | * | | 95-3191 | 668253 | 6117845 | 20 | | zsDmm | 0.40 | | | Ε | 3 | 3 | œ | x | 2 | 3 | 0 | 2 | 80 | b | 3 | 1.5 | 10 | 2.5 | 2 | n/v | * | | 95-3192 | 665028 | 6118367 | | Mb | czDmm | 1.30 | | 3 | SW | 10 | 2 | œ | x | 3 | 3 | 0 | 2 | 80 | g | 5 | 1.5 | 10 | 2.5 | 2 | n/v | * | | 95-3193 | 666377 | 6118240 | | Mb | czDmm | 2.00 | | 3 | SW | 10 | 2 | œ | X | 3 | 2 | 0 | 2 | 80 | b | 5
4 | 1.5
2 | 25
20 | 2.5
2.5 | 2 | n/v | * | | 95-3194
95-3195 | 667398
668104 | 6117444
6116376 | | Mb
Mb | szDmm
szDmm | 1.60
2.00 | | 3 | S
E | 10
5 | 2 | ∝
P | X
X | 3 | 2 | 0 | 2 | 80
70 | g | 4 | 1.5 | 10 | 2.5 | 2 | n∕v
n∕v | | | 30-0130 | 000104 | 0110370 | | IVIU | SZUIIIII | 2.00 | • | 2 | C | J | - | | ^ | 3 | J | v | - | , 0 | 5 | 7 | 1.0 | 10 | 2.0 | - | • | | . . | Ω | UTME | UTMIN | Rep | MAP UNIT | MATERIAL | DEPTH (m)
EXPOSURE | TERRAIN | ASPECT | SLOPE (deg) | DRAINAGE | VEGETATION | SOIL | FISSILITY | DENSITY | OXIDATION | JOINTING | MATRIX (%) | COLOUR | TEXTURE | CLAST MODE | CLAST SIZE (cm) | SHAPE | STRIATED | BEDROCK | COMMENTS | |---|--|---|----------|---|---|--|-----------------------|---------------------------|----------------------------|-----------------------|-----------------------------|-----------------------------
-----------------------|-----------------------|-----------------------|-----------------------|----------------------------|---------------------------|-----------------------|-----------------------------|----------------------------|---------------------------------|-----------------------|--|----------| | 95-3196
95-3197
95-3198
95-3199
95-3200 | 666402
667675
679973
679975
680816 | 6116126
6116236
6118248
6119228
6118197 | | Mb/Cb
Ma Mb
Mb
Mb/FG
Mb/Cb | zDmm
zsDmm
zsDmm
szDmm
szDmm | 1.50 r
0.60 r
0.50 p
0.60 r
0.40 r | 1
2
3
1
1 | S
SE
NE
NE
NE | 5
5
10
10
8 | 2
3
2
1
1 | &
&
&
&
&
s | x
x
x
x | 3
2
1
2
1 | 3
2
3
2
2 | 0
0
1
0
1 | 2
1
1
1
0 | 80
70
70
80
60 | b
b | 2
3
3
4
4 | 2
2.5
2
2
1.5 | 80
15
20
15
10 | 2.5
2.5
2.5
2.5
2.5 | 2
2
2
2
2 | n/v
n/v
n/v
n/v | * | | 95-3202
95-3203
95-3204
95-3205
95-3206 | 680948
677940
678235
679010
678819 | 6117202
6111449
6110448
6111300
6112252 | | Mb
Cf/Mb
Mb
Mb
Mb | zDmm
szDmm
szDmm
sDmm
zsDmm | 0.10 r
1.30 p
0.80 p
1.00 r
2.50 r | 1
4
4
3
3 | NE
NW
W
NW
N | 5
15
15
10
10 | 2
3
3
2
2 | cc
cc
P/cc
cc
s | x
x
x
x | 3
2
1
2
2 | 3
2
2
2
2 | 0
1
1
0
0 | 2
1
1
1
1 | 80
70
70
80
80 | b
b
b | 2
4
4
1
3 | 2.5
2
2.5
2 | 15
10
15
10 | 2
2.5
2.5
2.5
2.5 | 2
1
2
2
2 | n/v
dio. intr. into pbr
vc br
grd with minor pyrite
p and. | * | | 95-3207
95-3208
95-3209
95-3210
95-3211 | 677000
681974
681817
682812
682812 | 6112732
6101242
6101841
6101819
6101819 | 10
20 | | szDmm
szDmm
zsDmm
czDmm
czDmm | 1.00 p
0.40 r
0.40 r
2.50 r
2.50 r | 2
3
1
1 | W
E
NE
NW
NW | 15
10
10
10
10 | | P
s
s
s | x
x
x | 2
1
2
3
3 | 3
2
2
3
3 | 1
2
1
0
0 | 2
1
1
2
2 | 70
75
70
80
80 | lb
b
g | 4
4
3
5
5 | 1.5
1.2
2.5
2
2 | 15
10
15
15
15 | 2.5
2.5
2.5
2.5
2.5 | 2
3
2
2
2 | dio. with epid.
and.
bd chert and zs
vc and porphyry
vc and porphyry | * | | 95-3213
95-3214
95-3215
95-3216
95-3217 | 684961
686027
686535
670864
671860 | 6102294
6102282
6101005
6106037
6105113 | | Mb
Mb
Mb
Mb
Mb | czDmm
szDmm
csDmm
zDmm
csDmm | 2.50 r
3.00 r
3.00 r
1.50 p
0.40 p | 2
1
2
3
2 | SW | 5
10
5
10
5 | 2
2
2
2
2 | s
s
cc
s | x
x
x
0.50
x | 3
3
1
2 | 3
3
1
2 | 0
0
0
1 | 2
2
2
0
1 | 80
80
80
80
80 | db
b
b
b | 5
4
5
2
3 | 2
2.5
2
1.5
2 | 15
10
10
10
10 | 2.5
2.5
2.5
2.5
2.5 | 2
2
2
1
2 | and. or ss(fg)
n/v
sil. and. | * * | | 95-3218
95-3220
95-3222
95-3223
95-3224 | 672545
686111
685104
685104
687137 | 6104753
6100136
6101230
6101230
6098759 | 10
20 | i.Gv Mb
Mb
Mav Mb
Mav Mb
Mb | zsDmm
szDmm
sDmm
sDmm
szDmm | 0.70 p
1.00 r
0.70 r
0.70 r
1.00 r | 2
3
4
4
2 | SE
N
N | 1
10
10
10
5 | 3
1
3
3 | cc
cc
s
s | 0.28
0.25
x
x
x | 2
2
1
1
3 | 2
2
2
2
2 | 0
0
2
2
0 | 1
0
1
1 | 75
70
80
80
75 | lg
b
gb
gb
b | 3
4
1
1
4 | 1.5
2
1.5
1.5
2 | 10
15
10
10
15 | 2.5
2.5
2.5
2.5
2.5 | 1
3
2
2
2 | min. sil. ss | * | | 95-3225
95-3226
95-3227
95-3229
95-3230 | 677552
678765
678417
675625
677839 | 6106053
6107386
6106755
6115768
6115156 | | Mb
Mb
Mb
Mar Mbr
Cv Mb | czDmm
czDmm
csDmm
zDmm
scDmm | 1.00 r
1.10 r
0.70 r
1.50 p
1.20 p | 1
1
2
3
2 | W
W
SW | 5
10
2
15
5 | 3
2
3
3 | s
cc
s
P/cc
s | x
x
0.20
0.58 | 3
3
3
2 | 3
3
3
3 | 0
0
0
0 | 3
2
3
2
0 | 75
75
80
80
80 | g b
b | 5
5
5
2
5 | 2
2.5
2
1.5
2 | 15
15
10
15
10 | 2.5
2.5
2.5
2.5
2.5 | 3
2
2
2
2 | n/v
n/v
crystal it: | * | | 95-3231
95-3232
95-3233
95-3234
95-3235 | 676471
679032
682379
680018
681607 | 6114618
6114958
6113257
6115016
6112622 | | Mb
Mb
Mb
Cv FG M
Mb | zsDmm
scDmm
zsDmm
csDmm
zsDmm | 0.50 p
0.70 p
0.40 r
1.20 p
0.50 r | 3
2
2
2
2 | SW
SW
NE
S
NE | 10
8
2
2
5 | 2
2
2
1
2 | s/cc
s
cc
s
cc | x
0.55
x
0.80
x | 2
2
2
1
2 | 3
2
2
3 | 0
1
0
2
0 | 2
1
1
1
2 | 70
60
70
60
80 | b
o-b
b
o-b
g | 3
5
3
5
3 | 1.5
2
2.5
2
1.5 | 20
15
10
20
10 | 2.5
1.5
2.5
2.5
2.5 | 2
1
2
2
2 | n/v
n/v | | | Q | UTME | NMTO | Rep | MAP UNIT | MATERIAL | DEPTH (m) | EXPOSURE | TERRAIN | ASPECT | SLOPE (deg) | DRAINAGE | VEGETATION | SOIL | FISSILITY | DENSITY | OXIDATION | JOINTING | MATRIX (%) | COLOUR | TEXTURE | CLAST MODE | CLAST SIZE (cm) | SHAPE | STRIATED | BEDROCK | COMMENTS | |---|--|---|----------|---|---|--|----------|-----------------------|----------------------------|--------------------------|-----------------------|---------------------------|-----------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------------|----------------------------|-----------------------|-------------------------------|-----------------------------|--|-----------------------|---|----------| | 95-3236
95-3237
95-3238
95-3239
95-3240 | 664530
681451
665513
668349
666386 | 6107813
6114581
6108237
6114322
6108089 | | Cv Mv
Mb
Cv Mav
Mbr
Cv/Mv | scDmm
zsDmm
sDmm
scDmm
csDmm | 1.20 p
0.40 r
1.00 p
1.50 r
0.60 p | , | 4
2
4
2
4 | SE
NE
N
S
SW | 10
8
8
5
5 | 1
2
3
2
2 | P/s
∞
s
∞
s | 0.90
x
0.70
x
x | 0
2
0
3
0 | 1
3
1
3
1 | 1
0
2
0
0 | 0
1
0
3
0 | 70
70
60
80
90 | g b
o-b
g
g b | 5
3
1
5
5 | 2
1.5
1.5
1.5
1 | 15
10
10
10
50 | 2
2.5
2.5
2.5
2.5 | 2
1
2
1 | n/v
n/v
ss (fg), zs (fg)
n/v
dio. | * | | 95-3242
95-3243
95-3244
95-3245
95-3246 | 667308
667308
662931
664027
677290 | 6108636
6108636
6111416
6112220
6106918 | 10
20 | Ma/Mv
Ma/Mv
Mb
Mb/FG
Mav Mb | zsDmm
zsDmm
zsDmm
szDmm
scDmm | 0.50 p
0.50 p
1.30 r
2.00 r
1.50 p | | 2
2
2
2
3 | NE
NE
NW
E
SE | 5
5
5
8
10 | 3
2
1
3 | s
s
s
cc | 0.58
0.58
x
x
x | 0
0
2
3
2 | 1
1
2
3
3 | 3
3
0
0
2 | 0
0
1
2
1 | 80
80
80
70
85 | o
o
b
b
g - o | 3
3
4
5 | 1.5
1.5
2
1.5
1 | 10
10
10
15
15 | 2
2
2.5
2.5
1 | 1
1
2
2
2 | n/v
n/v
n/v
n/v
and. | | | 95-3247
95-3248
95-3249
95-3250
95-3251 | 664023
676769
663440
675818
664921 | 6112205
6108376
6116242
6109714
6113193 | | Mib
Mib
FG Mib
LGv Mib
Mib | zsDmm
zsDmm
szDmm
zsDmm
scDmm | 1.20 r
0.30 p
2.50 r
0.60 r
0.50 r | | 2
2
3
2
2 | NE
NW
N
W | 5
5
10
3
5 | 2
3
2
2
2 | s
cc
s
s | x
x
x
x | 3
3
2
2 | 3
3
2
3 | 0
0
0
0 | 3
2
2
1
2 | 80
80
80
70
80 | | 3
4
3
5 | 1.5
2
2
2
2 | 50
15
30
10
100 | 2.5
2.5
2.5
2.5
2.5 | 2
2
2
2
2 | n/v
n/v
n/v
n/v | * | | 95-3252
95-3253
95-3254
95-3255
95-3256 | 676416
664790
676299
666879
675564 | 6110175
6114000
6110754
6115072
6111247 | | LG Mb
Mb
Mb
Ma/FG Mb
Cv LG | zDmm
zDmm
szDmm
szDmm
czDmm | 0.20 p
0.80 r
1.00 r
0.80 r
1.00 r | | 2
2
2
3
2 | W
NE
N
NW
SW | 2
5
5
10
1 | 2
2
3
2
3 | cc
cc
s
cc
es | x
x
x
x | 2
3
3
3
3 | 2
3
2
3
3 | 1
0
0
0 | 1
2
3
2
3 | 80
70
80
80
60 | lg
g
dg
g | 2
2
4
4
5 | 1
1.5
1.5
1.5
2.5 | 5
10
15
10 | 2.5
2.5
2.5
2.5
2.5
2.5 | 1
2
2
2
3 | n/v
n/v
n/v
n/v | | | 95-3257
95-3259
95-3260
95-3262
95-3263 | 667901
670232
675695
675939
667853 | 6115568
6113810
6120313
6120883
6119802 | 10 | Ma Mb
Mb
Mb
Ma/Mv
Ma/Mv
Mb | zcDmm
zsDmm
zsDmm
zsDmm
zDmm
| 0.20 r
0.50 r
1.20 g
0.90 g
0.60 g |)
) | 2
1
2
3
2 | NE
NE
SW
SW
SE | 5
10
5
10
5 | 2
2
3
3
2 | cc
s
s
cc | x
x
x
0.55
x | 3
3
1
3 | 3
3
2
3 | 0
0
0
2
0 | 2
2
2
0
2 | 80
80
80
75
70 | g
g
b
o-b
lg | 5
3
3
2 | 1
2
2
2
1.5 | 150
10
10
10
15 | 2.5
2.5
2.5
2.5
2.5
2.5 | 2
2
2
2
2 | n/v
n/v
n/v
n/v | * * | | 95-3264
95-3265
95-3266
95-3267
95-3268 | 667853
676005
673000
675077
674267 | 6119802
6119287
6119660
6118842
6118470 | 20 | Mb
Mb//Ma
Cv Mv
Ma//Mb
Cv Mb | zDmm
zsDmm
sDmm
zDmm
zsDmm | 0.60 g
0.90 g
1.00 g
0.70 g
1.20 g |)
) | 2
2
4
3
4 | SE
N
N
SE
NE | 5
5
20
10
5 | 2
3
2
2
1 | | x
0.47
0.10
0.52
x | 3
1
1
0
2 | 3
2
1
1
2 | 0
2
1
3 | 2
0
0
0
1 | 70
70
70
70
80 | o-b
o-b
o | 2
3
3
2
3 | 1.5
2.5
2
2
2 | 15
15
10
15
15 | 2.5
2.5
2.5
2.5
2.5 | 2
2
2
1
2 | n/v
n/v
n/v
n/v | * | | 95-3269
95-3270
95-3271
95-3273
95-3274 | 673772
674064
684321
683070
673314 | 6119596
6120230
6126273
6124860
6124576 | | Mbr
Mv
Mb
Ma/FG M
Ma Mb | szDmm
zsDmm
sDmm
szDmm
sDmm | 1.30 g
0.40 g
2.00 g
1.50 g |) | 3
4
3
3
4 | NW
W
SE
S | 5
10
20
10
2 | 3
2
3
3
3 | s
s
s
cc
P/s | 0.25
0.10
0.45
x
0.40 | 1
1
2
2
1 | 2
2
3
3
2 | 1
1
0
0 | 0
0
2
2
2 | 70
80
70
80
80 | b
o-b
g b
dg
b | 4
3
1
3
1 | 2
2
2.5
2
1.5 | 10
10
15
10
15 | 2.5
2.5
2
2.5
2.5
2.5 | 2
1
2
2
1 | n/v
n/v
sil. ss
sil. ss
n/v | * | . . | Ω | UTME | UTMIN | Rep | MAP UNIT | MATERIAL | DEPTH (m) | EXPOSURE | TERRAIN | ASPECT | SLOPE (deg) | DRAINAGE | VEGETATION | SOIL | FISSILITY | DENSITY | OXIDATION | JOINTING | MATRIX (%) | COLOUR | TEXTURE | QLAST MODE | CLAST SIZE (cm) | SHAPE | STRIATED | BEDROCK | COMMENTS | |---|--|---|----------|---|--|--------------------------------------|-------------|-----------------------|-------------------------|-------------------------|-----------------------|--|-----------------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------------------|-----------------------------|-----------------------|-------------------------------|----------------------------|---------------------------------|-----------------------|--|----------| | 95-3275
95-3276
95-3277
95-3278
95-3279 | 671409
671552
691024
690081
690153 | 6121356
6122254
6117393
6119935
6118667 | | Ma//Mb
Mb
Mb
Mb
Mb/FG | szDmm
szDmm
cszDmm
zscDmm
sDmm | | r | 3
2
3
1
2 | W
SE
S
W | 9
1
10
10
5 | 3
3
2
3 | s
s
cc
cc | 0.80
x
x
x
0.27 | 0
2
2
3
2 | 1
2
3
3
3 | 1
0
0
0
1 | 0
2
2
3
2 | 80
80
75 | b
dg
dg
b
o-b | 4
4
5
5
1 | 2.5
2.5
2
2.5
1 | 10
15
10
15
5 | 2.5
2.5
2.5
2.5
2.5 | 2
2
2
2
1 | n/v
n/v
n/v
n/v | * * | | 95-3280
95-3282
95-3283
95-3284
95-3285 | 688700
687856
688571
688535
688832 | 6119390
6118230
6126020
6125055
6123989 | | FG Mb
FGv Mb
Mb
Mb
Mb | szDmm
sDmm
sDmnm
scDmm
scDmm | 2.00
1.50
2.00
2.00
1.00 | Γ
Γ | 2
1
2
2
1 | S
E
E
SE | 2
5
10
10
5 | 2
2
3
1
2 | s
cc
s
s | x
x
x
x | 3
3
0
2 | 2
2
3
3
2 | 0
1
0
2
0 | 2
2
3
0
0 | 80
80 | dg
b
dg
g-b
dg | 4
1
2
5
5 | 2.5
2.5
2.5
3
2 | 30
10
10
20
10 | 2.5
2.5
2.5
2.5
2.5 | 3
2
2
1
2 | n/v
n/v
n/v
ss
n/v | * | | 95-3286
95-3287
95-3288
95-3289
95-3290 | 689166
688794
688794
687452
686376 | 6122765
6121807
6121807
6120555
6121022 | 10
20 | | zDmm
szDmm
szDmm
zDmm
czDmm | 2.00
5.00
5.00
2.30
6.00 | r
r | 1
1
1
1 | E
E
E
SE
SW | 8
10
10
5
8 | 1
2
2
2
2 | s
s
s
s | x
x
x
x | 2
2
2
3
3 | 3
3
3
3 | 0
0
0
0 | 1
1
3
2 | 80
80
70 | bl
b
b
b | 2
4
4
2
5 | 2
1.5
1.5
1.5
1.5 | 30
15
15
15
15 | 2.5
2.5
2.5
2.5
2.5 | 2
2
2
2
2 | n/v
n/v
n/v
n/v | * * * | | 95-3291
95-3292
95-3293
95-3294
95-3296 | 687648
687482
686335
686581
683295 | 6122268
6123619
6124903
6124270
6122493 | | Mib
Mib
Cfi[Mib
Mib
FG Mibr | szDmm
zsDmm
zsDmm
szDmm
sDmm | 1.50
0.40
0.60
1.40
1.50 | P
P
P | 2
4
4
4
1 | SE
S
SW
N
S | 5
5
10
5
2 | 2
3
2
3
2 | &
&
&
&
&
& | x
x
x
x
15.00 | 3
2
2
3
1 | 2
2
3
3
2 | 0
0
0
0 | 2
1
1
1
0 | 80
70 | b
b
b
g | 4
3
3
4
1 | 1.5
1.5
1.5
2
2 | 15
10
10
20
15 | 2.5
2.5
2.5
2.5
2.5 | 2
2
2
2
2 | n/v
bel. zs
p dio.
p and.
asic. p dio. | * | | 95-3297
95-3298
95-3299
95-3300
95-3302 | 684275
685558
684696
685880
686741 | 6122469
6121868
6125089
6123939
6123194 | | FG/Mb
FG Mb
Mb
Mb
Mb | szDmm
zDmm
szDmm
szDmm
szDmm | 1.50
2.00
1.20
2.10
0.50 | Γ
Γ | 1
1
2
1
2 | N
SW
SW
SW | 8
2
5
8
8 | 2
3
3
3
2 | cc
cc
cc
s | x
x
x
x | 2
2
2
2
2 | 3
2
3
3
2 | 0
0
0
0 | 1
1
2
2
1 | | b
g
b | 4
2
4
4
3 | 2
2
1.5
1.5 | 10
15
10
10 | 2.5
2.5
2.5
2.5
2.5 | 2
2
2
2
2 | asic. p and.
n/v
n/v
ss (c)
sst and zs | * * * | | 95-3303
95-3304
95-3305
95-3306
95-3307 | 686710
687052
685976
685535
685558 | 6122226
6119061
6119897
6114730
6115677 | | Mb
Mbr
Mb
FGb Mb
Mb | szDmm
szDmm
zDmm
zsDmm
sDmm | 1.20
1.00
1.80
2.00
5.00 | p
r
p | 2
1
2
2
1 | SW
NE
SE
S | 5
5
5
1 | 2
3
2
3
3 | &
&
&
&
&
&
&
&
&
& | x
x
x
x | 3
2
2
3
3 | 3
3
2
3
3 | 0
0
0
0 | 2
1
1
3
3 | 70
75
80 | b
b
ol. b
b | 4
4
2
3
1 | 1.5
1.5
2
2.5
2.5 | 15
15
15
15
20 | 2.5
2.5
2.5
2.5
2.5 | 2
2
2
3
3 | n/v
n/v
felsic
n/v
n/v | * * | | 95-3308
95-3309
95-3310
95-3311
95-3312 | 684669
683837
686395
685277
674566 | 6116024
6117307
6116787
6116961
6125604 | | Mb
Mb
Mb
Mb
Ma Mb | csDmm
czDmm
csDmm
zsDmm
czDmm | 2.00
0.40
0.60
1.10
0.60 | r
p
r | 2
2
2
2
3 | S
S
NE
S
NE | 2
2
5
2
2 | 2
1
2
1
2 | & & & & & & & & & & & & & & & & & & & | x
x
x
x | 2
2
2
3
2 | 3
2
2
2
3 | 0
0
0
0 | 3
2
2
2
2 | 80
80
80
80
80 | dk.g
dg
dg
b
dg | 5
5
5
3
5 | 2
2.5
2
1.5
2.5 | 10
20
10
10 | 2.5
2.5
2.5
2.5
2.5 | 2
2
2
2
2 | n/v
n/v
n/v
n/v | * * * | | Ω | UTME | N N N N N N N N N N N N N N N N N N N | Rep | MAP UNIT | MATERIAL | DEPTH (m) | EXPOSURE | TERRAIN | ASPECT | SLOPE (deg) | DRAINAGE | VEGETATION | SOIL | FISSILITY | DENSITY | OXIDATION | JOINTING | MATRIX (%) | COLOUR | TEXTURE | CLAST MODE | CLAST SIZE (cm) | SHAPE | STRIATED | ВЕDROCK | COMMENTS | |---------|--------|---------------------------------------|-----|----------|-----------|-----------|----------|---------|--------|-------------|----------|------------|------|-----------|---------|-----------|----------|------------|--------|---------|------------|-----------------|-------|----------|--------------|----------| | 95-3313 | 675460 | 6124157 | 10 | Mb | sDmm | 1.50 | r | 1 | NE | 10 | 2 | œ | x | 3 | 3 | 0 | 3 | 75 | b | 1 | 2.5 | 15 | 2.5 | 2 | n/v | * | | 95-3314 | 675460 | 6124157 | 20 | Mb | sDmm | 1.50 | | 1 | NE | 10 | 2 | œ | X | 3 | 3 | Ō | 3 | | | 1 | 2.5 | 15 | 2.5 | 2 | n/v | * | | 95-3316 | 676478 | 6124503 | | FG Mv | sDmm | 1.00 | | 1 | NE | 10 | 3 | s | X | 3 | 2 | 1 | Ō | 90 | tan | 1 | 1 | 10 | 2 | 2 | siliceous ss | * | | 95-3317 | 678116 | 6122675 | | FGIMv | sDmm | 1.00 | | 1 | NW | 5 | 3 | P/s | x | 2 | 2 | 1 | 0 | 80 | b | 1 | 1 | 10 | 2 | 2 | siciceous ss | | | 95-3318 | 680521 | 6121716 | | Mb/FG | sDmm | 0.70 | | 1 | S | 2 | 2 | s | x | 1 | 2 | 1 | 1 | 70 | dg | 1 | 2 | 10 | 3 | 2 | n/v | * | | 95-3319 | 682033 | 6121206 | | Mb | csDmm | 3.00 | _ | 4 | SW | 2 | 2 | s | x | 3 | 3 | ٥ | 2 | 80 | dg | 5 | 1.5 | 10 | 2.5 | 2 | n/v | * | | 95-3320 | 672043 | 6122992 | | Mb | szDmm | 1.00 | | 2 | NW | 5 | 2 | S | x | 1 | 2 | 1 | 1 | 80 | dg | Ă | 2.5 | 15 | 2.5 | 2 | n/v | - | |
95-3322 | 672713 | 6123847 | | Mb | szDmm | 0.40 | | 2 | NW | 5 | 3 | S | x | 2 | 2 | 'n | , | 80 | dk.g | 4 | 2 | 10 | 2.5 | 2 | n/v | | | 95-3323 | 683021 | 6120026 | | MajMb | csDmm | 0.60 | | 1 | SW | 2 | 1 | S | x | 1 | 2 | Ŏ | 1 | 80 | dg | 5 | 1.5 | 10 | 2.5 | 2 | n/v | * | | 95-3324 | 683010 | 6118462 | | FGIMb | sDmm | 1.00 | | 1 | N | 5 | 1 | s | X | 3 | 2 | ō | ò | 80 | b | 1 | 1 | 10 | 2 | 2 | n/v | * | | 30-0024 | 000010 | 0110102 | | . 0, | 05 | 1.00 | • | • | •• | • | | • | | • | _ | | | | | | | | | | | | | 95-3326 | 683005 | 6121098 | | MalMb | sDmm | 0.90 | D | 1 | S | 2 | 3 | s | 0.85 | 0 | 2 | 2 | 0 | 80 | b | 1 | 1.5 | 10 | 2.5 | 2 | n/v | * | | 95-3327 | 684477 | 6119658 | | Mb | sDmm | 0.70 | | 1 | SE | 2 | 1 | œ | x | 1 | 2 | 0 | 2 | 75 | b | 1 | 1.5 | 30 | 2.5 | 3 | n/v | * | | 95-3328 | 684686 | 6118445 | 10 | FGIMb | zsDmm | 0.60 | r | 1 | SE | 2 | 3 | s | x | 1 | 2 | 0 | 0 | 75 | dg | 3 | 2.5 | 200 | 2.5 | 3 | n/v | * | | 95-3329 | 684686 | 6118445 | 20 | FGMb | zsDmm | 0.60 | r | 1 | SE | 2 | 3 | s | x | 1 | 2 | 0 | 0 | 75 | dg | 3 | 2.5 | 200 | 2.5 | 3 | n/v | * | | 95-3330 | 684981 | 6103654 | | Mb | szDmm | 0.40 | Γ | 2 | SE | 8 | 1 | œ | x | 3 | 2 | 0 | 1 | 80 | | 4 | 1.5 | 10 | 2.5 | 2 | n/v | | | 95-3331 | 683911 | 6101875 | | Mb | czDmm | 2.00 | - | 3 | NW | 10 | 2 | œ | x | 3 | 3 | 0 | 2 | 80 | h | 5 | 2 | 15 | 2.5 | 2 | n/v | | | 95-3332 | 683384 | 6100893 | | CvlMa | zsDmm | 0.70 | | 4 | N | 10 | 3 | s | 0.70 | ō | 1 | 3 | ō | | | 3 | 1 | 10 | 1.5 | 1 | n/v | | | 95-3333 | 677211 | 6115343 | | Mb | csDmm | 0.70 | | 2 | s | 5 | 2 | s | 0.35 | 2 | 2 | ŏ | 1 | 80 | - | 5 | 2 | 10 | 2.5 | 2 | n/v | • | | 95-3334 | 669144 | 6115022 | | Mb | szDmm | 1.30 | | 2 | SE | 5 | 2 | œ | X | 3 | 3 | ō | 3 | 80 | g | 4 | 1 | 15 | 2.5 | 2 | n/v | * | | 95-3335 | 677758 | 6101883 | 10 | LGIMb | czDmm | 1.30 | | 2 | W | 5 | 3 | œ | x | 3 | 3 | Õ | 3 | 80 | | 5 | 1.5 | 15 | 2.5 | 2 | n/v | * | | 00-0000 | 377700 | 3101000 | | 201110 | OLD IIIII | 1.50 | • | - | | • | • | | - | • | _ | - | - | | • | - | | | , | - | • | - | | 95-3336 | 677758 | 6101883 | 20 | LGIMb | czDmm | 1.30 | r | 2 | W | 5 | 3 | œ | x | 3 | 3 | 0 | 3 | 80 | g | 5 | 1.5 | 15 | 2.5 | 2 | n/v | * | | 95-3337 | 673230 | 6116021 | | Mb | szDmm | 1.20 | r | - 1 | W | 8 | 3 | as | x | 2 | 3 | 1 | 2 | 70 | g | 4 | 2 | 15 | 2.5 | 1 | n/v | | | 95-3338 | 672830 | 6117721 | | Mb | zsDmm | 0.45 | | 1 | W | 15 | 3 | as | x | 1 | 2 | 0 | 0 | 60 | • | 3 | 2 | 10 | 2.5 | 1 | n/v | * | | 95-3342 | 676785 | 6100567 | | Mb | zcDmm | 0.50 | г | 2 | Ε | 8 | 3 | s | x | 3 | 3 | 0 | 2 | 70 | b | 5 | 1.5 | 10 | 2.5 | 2 | n/v | # | | * COMME | NTS | | | | | | | |---------|--------|---------|---|---------|--------|---------|---| | ID | UTME | UTMN | Comments | ID | UTME | UTMN | Comments | | | | | | | | | | | 95-3003 | 661957 | 6123162 | striae-152 to 162 (50m north) | 95-3156 | 673884 | 6113346 | huge boulders on surface | | 95-3004 | 673220 | 6118884 | slightly washed till | 95-3160 | 683487 | 6112439 | mineralized float: trace pyrite and epidote alteration | | 95-3008 | 661134 | 6103109 | A good till | 95-3163 | 685723 | 6111776 | drumlinoid ridge oriented 150 | | 95-3009 | 660007 | 6103209 | oxidation around clasts | 95-3168 | 685359 | 6106568 | mineralized float: disseminated pyrite in silicified sst. | | 95-3010 | 662837 | 6101555 | good till | 95-3169 | 685359 | 6106568 | mineralized float: disseminated pyrite in silicified sst. | | 95-3011 | 661788 | 6102043 | Upper 50 cm reworked | 95-3172 | 685459 | 6105252 | mineralized float; chal. and pyr. in andesite. | | 95-3012 | 661562 | 6100722 | root and organic matter abundant | | | | Striae 102-104. Roche moutonee 106. | | 95-3014 | 670140 | 6098344 | Good basal till 20cm above bedrock | 95-3174 | 670477 | 6119744 | significant bedrock mineralization: chal., pyr and born. | | 95-3015 | 669294 | 6099165 | Dense basal till | 95-3175 | 671360 | 6118996 | bedrock locally mineralized: pyrite | | 95-3016 | 669670 | 6099948 | Very good till on unmarked road | 95-3179 | 679049 | 6122365 | striae: 130, 106, 110 | | 95-3017 | 668063 | 6099042 | Clay over till. | 95-3180 | 677793 | 6099215 | mineralized bedrock; mineralized float:pyr in felsics | | 95-3018 | 668008 | 6098138 | Dense basal till | 95-3185 | 665671 | 6122241 | till overlies weathered bedrock | | 95-3019 | 666735 | 6099756 | Numerous meltwater channels. Dense basal till | 95-3190 | 668253 | 6117845 | mineralized andesite and siltstone: diss. pyrite | | 95-3020 | 666757 | 6098293 | May be reworked in situ; near meltwater channels | 95-3191 | 668253 | 6117845 | mineralized andesite and sittstone: diss. pyrite | | 95-3027 | 664524 | 6099050 | Clay-rich till | 95-3192 | 665028 | 6118367 | mineralized andesite and sittstone: diss. pyrite | | 95-3029 | 676176 | 6123011 | Till oxidized along joint faces | 95-3193 | 666377 | 6118240 | mineralized sittstone: diss. pyrite | | 95-3030 | 676985 | 6123689 | Dense basal till | 95-3196 | 666402 | 6116126 | min. andesite; pyrite mineralization along fractures | | 95-3031 | 676985 | 6123689 | Dense basal till | 95-3197 | 667675 | 6116236 | 2m chert pebble congl. boulders | | 95-3032 | 663015 | 6100169 | Silicified clasts; altered rhyolite with bornite and pyrite | 95-3204 | 678235 | 6110448 | ice-streamlined ridges oriented ca. 170 | | 95-3033 | 662759 | 6099195 | Very stony till | 95-3209 | 681817 | 6101841 | mineralized float | | 95-3035 | 660516 | 6098949 | Dense basal till | 95-3210 | 682812 | 6101819 | mineralized bedrock: disseminated pyrite | | 95-3036 | 660516 | 6098949 | Dense basal till | 95-3211 | 682812 | 6101819 | mineralized bedrock: disseminated pyrite | | 95-3038 | 672095 | 6108760 | Drumlinoid ridge draped by glaciolacustrine clays | 95-3215 | 686535 | 6101005 | mineralized : pyrite in altered felsics | | 95-3039 | 672484 | 6110063 | Ridge above swampy area. Washed till | 95-3216 | 670864 | 6106037 | disseminated pyrite in 30% of float | | 95-3040 | 672484 | 6110063 | Not so washed till | 95-3217 | 671860 | 6105113 | diss. pyrite in 5% distal felsics | | 95-3043 | 661260 | 6115702 | Pebble rich clay near lake. Diamicton on slope | 95-3222 | 685104 | 6101230 | disseminated chalco and pyrite | | 95-3044 | 662531 | 6115444 | Quite wet | 95-3223 | 685104 | 6101230 | disseminated chalco and pyrite | | 95-3045 | 663568 | 6114881 | Clayey till | 95-3226 | 678765 | 6107386 | disseminated pyrite in diorite float | | 95-3047 | 662917 | 6117211 | Dark blue grey till surrounding most clasts (siltstone). MgO? | 95-3227 | 678417 | 6106755 | bornite in silicified sandstone | | 95-3048 | 659434 | 6111161 | See section: sand and clay interbeds | 95-3229 | 675625 | 6115768 | massive pods of magnetite /phyrotite in outcrop | | 95-3067 | 670630 | 6112895 | Dense basal till | 95-3240 | 666386 | 6108089 | boulders have finely disseminated pyrite | | 95-3068 | 670630 | 6112895 | Dense basal till | 95-3266 | 673000 | 6119660 | rare disseminated pyrite in 50 % of clasts | | 95-3072 | 663851 | 6125339 | Noticeable sand component to matrix | 95-3269 | 673772 | 6119596 | washed basal till | | 95-3078 | 663918 | 6118603 | Excellent till | 95-3271 | 684321 | 6126273 | disseminated pyrite | | 95-3098 | 679733 | 6101532 | Washed till | 95-3273 | 683070 | 6124860 | mineralized float | | 95-3106 | 678091 | 6103439 | Noticeable sandy component | 95-3282 | 687856 | 6118230 | mineralized float. | | 95-3114 | 686430 | 6108760 | whalebacks oriented ca. 140 | 95-3287 | 688794 | 6121807 | mineralized clasts | | 95-3119 | 683556 | 6111042 | mineralization: disseminated pyrite | 95-3288 | 688794 | 6121807 | mineralized clasts | | 95-3122 | 681260 | 6109632 | striae at 290, 278, 250, 240 | 95-3296 | 683295 | 6122493 | striae 130 | | 95-3123 | 681260 | 6109632 | striae at 290, 278, 250, 240 | 95-3300 | 685880 | 6123939 | striae 162-165 | | 95-3124 | 681997 | 6110243 | patchy mineralization: disseminated pyrite | 95-3308 | 684669 | 6116024 | mineralized BFP | | 95-3128 | 682271 | 6105338 | striae: 100, 120, 139, 140, 150, 164 | 95-3311 | 685277 | 6116961 | mineralized float | | 95-3129 | 681389 | 6106416 | mineralization: disseminated pyrite | 95-3319 | 682033 | 6121206 | mineralized float | | 95-3132 | 685783 | 6103325 | good till | 95-3326 | 683005 | 6121098 | mineralized clasts | | 95-3145 | 691184 | 6103389 | possibly resedimented till | 95-3327 | 684477 | 6119658 | mineralized clasts | | 95-3146 | 679528 | 6113227 | mineralized float: sediments with sulphides | 95-3328 | 684686 | 6118445 | mineralized clasts and boulders | | 95-3149 | 677136 | 6114504 | mineralized float: pyrite, chalco, bornite | 95-3329 | 684686 | 6118445 | mineralized clasts and boulders | | 95-3151 | 675879 | 6113687 | sandy | 95-3331 | 683911 | 6101875 | mineralized float | | 95-3153 | 674840 | 6114133 | lake-reworked till | 95-3332 | 683384 | 6100893 | mineralized float | | 95-3154 | 673916 | 6114157 | very large boulders over lake sediments nearby | 95-3338 | 672830 | 6117721 | colluviated till | | | | | | | | | |