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INTRODUCTION

Establishing links between mineralization and caus-
ative intrusion(s) is an important and fundamental step to
understanding mineralizing systems. In particular, the abil-
ity to distinguish petrological and geochemical characteris-
tics of mineralized versus barren intrusive systems has im-
portant implications for the exploration geologist (e.g.,
Frei, 1996).

This study investigated a Late Triassic alkalic intru-
sion, known as the Bootjack stock, from the south-central
Canadian Cordillera. The Bootjack stock (BS) is part of the
Quesnel arc complex (Fig. 1) that formed above an east-
dipping subduction zone during the Late Triassic to Early
Jurassic (Mortimer, 1987; Panteleyev et al., 1996; Logan
and Mihalynuk, 2005). Other K-rich or alkaline intrusions
of similar age that occur along the Quesnel arc include the
Copper Mountain intrusive rocks (Copper Mountain,
Ingerbelle), White Mountain, Kruger syenite, Kamloops
syenite and Iron Mask batholith (Afton, Ajax and Crescent
in the south; and the Hogem batholith (Lorraine) in the
north. In addition, the BS is age equivalent to syenite at Ga-
lore Creek, Copper Canyon, Zippa Mountain and Rugged
Mountain, which are located within the Stikine arc terrane
(Fig. 1). Anumber of the above intrusions are spatially and
temporally coincident with Cu-Au mineralization. The BS,
in particular, is spatially and temporally associated with the
Cu-Aumineralizing event at Mount Polley; however, no di-
rect links have been made between it and mineralization.
The purpose of this study is to examine new major and trace
element data from the BS, combined with petrographic
descriptions, to determine if there are any features of the BS
that could explain the alteration and mineralization events
at Mount Polley. The study also compares the geochemistry
of the BS with other intrusions of similar age at Mount
Polley and in the Quesnel Lake area.

REGIONAL GEOLOGY

The Bootjack stock (BS) is located in the Quesnel Lake
map area (NTS 093A/12) of south-central British Colum-
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bia and intrudes Triassic Nicola Group arc volcanic rocks
and associated sedimentary rocks within the Quesnel
Terrane (Fig. 1; Fraser, 1994; Panteleyev ef al., 1996; Lo-
gan and Mihalynuk, 2005). The intrusive body is closely
associated, both spatially and temporally, with other alkalic
intrusive phases at Mount Polley, which include diorite and
plagioclase porphyry phases of the Mount Polley stock
(Fraser, 1994). The BS outcrops further to the south
(stratigraphically deeper) of the main mineralized centre
and is separated from the Mount Polley stock and mineral-
ization zones by a narrow belt (~2 km wide) of northwest-
trending metavolcanic flows, breccia units, fine-grained
bedded volcaniclastic units and a pyroxenite body, which
was identified in drillcore and is located beneath Bootjack
Lake (Hodgson et al., 1976; Fraser, 1994). However, the
northward extension of the BS is unknown, and the possi-
bility that it intrudes rocks beneath Mount Polley cannot be
ruled out.

GEOCHRONOLOGY

Intrusions

The relative timing of emplacement of the Bootjack
and Mount Polley stocks is constrained by the presence of
xenoliths. According to Fraser (1994), the BS and
plagioclase porphyry include xenoliths of diorite and are
therefore both younger. However, the age relationship be-
tween the BS and the plagioclase porphyry is unknown.

Estimated absolute ages suggest that the BS crystal-
lized at 202.7 £7.1 Ma (U-Pb date from pseudoleucite
syenite; Mortensen et al., 1995) or 200.8 +2.8 Ma (U-Pb
date from mafic pseudoleucite syenite; Mortensen et al.,
1995), and had cooled below 300°C by 203.1 +2.0 Ma
(Ar/Ar date from mafic pseudoleucite syenite; Bailey and
Archibald, 1990), whereas the plagioclase porphyry crys-
tallized at 204.7 +3 Ma (U-Pb; Mortensen et al., 1995). The
diorite has been dated at 201.7 +£0.4 Ma (U-Pb; Mortensen
et al., 1995). These dates suggest that the crystallization
ages of all these intrusive bodies are very similar. By com-
bining the relative and absolute ages, it can be inferred that
the BS crystallized between 202.0 and 198.0 Ma (using best
U-Pb ages and errors).

Mineralization

Brecciation and mineralization are thought to be asso-
ciated with the emplacement of the alkalic intrusive bodies
(Fraser, 1994); however, a definitive link between the vari-
ous intrusions and mineralization has not been established.
The presence of diorite clasts within the breccia (dated at
201.6 £0.5 Ma (U-PDb zircon; Fraser, 1994) and crosscut-
ting lamprophyre dikes that have been dated regionally at
approximately 130 Ma (Mortimer et al., 1990) provide
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some relative age constraints. Absolute dates for mineral-
ization have been estimated at 184 £7 Ma for the Central
zone (K-Ar biotite; Hodgson et al., 1976), or more recently
205.2 +1.2 Ma for the Northeast zone (Ar*”/Ar*® biotite;
Logan and Ullrich, unpublished data, 2005) and 220.8
+1.3 Ma for the Cariboo zone (Ar*’/Ar* biotite; Logan and
Ullrich, unpublished data, 2005).

GEOLOGY OF THE BOOTJACK STOCK

The Bootjack stock (BS) is an elliptical, northwest-
trending body that covers an area of approximately 11 km?
and consists of three main rock types: 1) medium-grained
sparse pseudoleucite melasyenite (MS; =15% mafic miner-
als); 2) orbicular pseudoleucite syenite (OPS; <15% mafic
minerals); and 3) equigranular coarse to medium-grained
syenite (ES; <15% mafic minerals), which contains pegma-
titic zones (Fig. 2).

Medium-grained melasyenite (MS; see Fig. 2), which
makes up approximately 10% of the BS, forms a rim along
the margin of the stock that is estimated to be 50-300 m
wide. In gradational contact with the MS and making up ap-
proximately 85% of the central region of the stock is orbic-
ular pseudoleucite syenite. The remaining 5% of the stock
consists of equigranular syenite (ES), which crops out as a
thin (150 mm) dike at station ABAO05 32-259 or as wider
(~50 m) late intrusive phases at station ABAOS5 33-267,
where it shows pegmatitic textures. Pegmatitic texture
within the ES was also identified at other locations (e.g.,
ABAOS 41-336; Fig. 2).

Hodgson et al. (1976) reported igneous foliation and
phenocryst distribution that impart a gross layering to the
intrusion. In addition, data collected during this study sug-
gest that isolated cumulate layering is evident at numerous
outcrops (e.g., ABAO05 32-260 and JLOO5 30-232), and
trends approximately east and dips steeply to moderately to
the north.

PETROGRAPHY

Samples from the melasyenite, orbicular
pseudoleucite syenite and equigranular syenite were col-
lected, and standard thin sections, polished sections and ep-
oxy mounts were made in order to determine mineral as-
semblages and identify texture, alteration assemblages and
melt and fluid inclusions. Chemical tests were used to iden-
tify sodalite group minerals (sodalite, nosean and haiiyne).
The technique involved decomposition in nitric acid and
evaporation. The precipitation of bladed colourless gyp-
sum crystals confirmed the presence of haiiyne in the sam-
ples (Deer et al., 1992). To the best of the authors’ knowl-
edge, no other isotropic phase that is commonly found in
nepheline syenite shows this behaviour.

Alteration is weak to moderate and assemblages are
common throughout the Bootjack stock (one exception is
JLOO04 17-45, which is altered to sericite and cancrinite).
Weakly altered samples show replacement of nepheline
and hatiyne with cancrinite, and of orthoclase with sericite.
Mafic minerals (augite and hornblende) show reaction rims
in which biotite and chlorite are common replacement
phases. Some augite phases show amphibole replacement,
which is evident from the relict euhedral augite crystal form
with 60° and 120° cleavage angles. Minor calcite alter-
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ation, identified in two samples from the OPS, accounts for
<2% of the rock.

Melasyenite

The melasyenite (MS) is light grey to dark green-grey,
holocrystalline and contains crystals that are 0.5-3 mm in
size. Pseudoleucite texture (pseudomorph after leucite,
comprising a mixture of nepheline and orthoclase) is pres-
ent in most samples, is 5—15 mm in size and light grey, and
makes up 5-15% of the rock (Fig. 3C). The matrix is
melanocratic, accounts for 85-95% of the rock and ranges
from light grey to dark green-grey. At certain locations
(e.g., ABAOS5 34-274-4), the combined effect of a domi-
nantly dark grey matrix and light grey orbicular
pseudoleucite gives the MS a porphyritic texture. At other
localities, the MS is finer grained and shows some cumulate
layering (e.g., JLOO5 30-232).

In thin section, fresh samples consist of orthoclase
(30-50%; Carlsbad twinning), nepheline (0-45%), haiiyne
(0-5%), biotite (0-5%) and augite (15-25%). Orthoclase,
nepheline, haiiyne and biotite are anhedral to subhedral and
0.5-3 mm in size, and have irregular to sharp grain bound-
aries, whereas augite is subhedral to euhedral and has sharp
boundaries. Accessory phases include apatite, titanite and
traces of fluorite; all ranging from <0.1 to 0.5 mm in size.
Apatite commonly occurs as crystal inclusions within
pyroxene. Opaque minerals include subhedral to anhedral
magnetite, minor pyrite and tiny (<5 wm) bornite and chal-
copyrite inclusions in haiiyne. Haiiyne occurs in the matrix
as subhedral crystals in approximately 50% of the MS
samples.

Orbicular Pseudoleucite Syenite

The orbicular pseudoleucite syenite (OPS) is a
holocrystalline porphyritic rock consisting of
pseudoleucite trapezohedrals that are 10—50 mm in diame-
ter (Fig. 3A, B). The matrix constitutes 50-95% of the rock.
It has a granitic texture and contains leucocratic phases, as
well as subordinate mafic and opaque phases that are 0.5—
3 mm in size. Four of the five samples are strongly domi-
nated by pseudoleucite, which makes up 80-95% of the
rock. One sample (ABAOS 33-266) is more of a hybrid be-
tween OPS and ES, and contains only 50% pseudoleucite.
Samples ABAOS 33-266 and MMI104 18-1 differ from other
samples in that their matrix includes a significant modal
abundance of fresh interstitial haiiyne (10—15%), which in-
cludes small (<5 um) sulphide inclusions of bornite and
chalcopyrite (Fig. 4A—D). Haiiyne is present but less com-
mon in other samples. It occurs both in the matrix and as a
constituent of the pseudoleucite region of the rock, but is
mostly devoid of inclusions and is commonly weakly
altered to cancrinite.

In thin section, fresh rocks include orthoclase (50—
70%; Carlsbad twinning), nepheline (15-25%), biotite (0—
1%), augite (4—8%), hatiyne (2—15%), hornblende (trace—
10%), plagioclase (0—1%), apatite (trace—1%), magnetite
(2-3%) and pyrite (trace). All phases are anhedral to
subhedral in crystal form and have irregular but sharp grain
boundaries. An exception to this is apatite, which is
euhedral to subhedral with sharp grain boundaries and
commonly occurs as crystal inclusions within
clinopyroxene.
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Figure 3. A) Outcrop of orbicular pseudoleucite syenite (OPS), which shows golf ball weathering. B) Fresh orbicular pseudoleucite syenite
(OPS) from station ABA05 19-163. C) Melasyenite (MS) with pseudoleucite from station ABA05 32-259-1. D) Equigranular syenite (ES)
with a miarolitic cavity from station ABA0S 33-267. Miarolitic cavity consists of orthoclase, nepheline, magnetite, cancrinite, natrolite,
sphene and fluorite.

Equigranular Syenite

The equigranular syenite (ES) is highly variable. It
ranges from light to medium grey to pink, is holocrystalline
and contains crystals that are 0.5-6 mm in size (Fig. 3D).
Pegmatitic texture is common (e.g., ABAO5 41-336).

In thin section, fresh rocks contain orthoclase (40—
60%; Carlsbad twinning), nepheline (25-35%),
hornblende (1-3%), augite (1-4%), haiiyne (2—7%), acces-
sory apatite (trace) and magnetite (1%). Orthoclase,
cancrinite and hatiyne are anhedral to subhedral, whereas
all other phases are subhedral to euhedral. In pegmatitic ES,
hatiyne is a common phases and includes sulphide inclu-
sions of bornite and chalcopyrite.

MELT INCLUSIONS

Numerous types of melt and fluid inclusions were
identified in apatite, sphene, pyroxene, hornblende and
hatiyne (usually less than 20 um in size). Inclusions hosted
in apatite, sphene, hornblende and pyroxene are dominated
by silicate glass with small shrinkage bubble(s) and aque-
ous fluid inclusions, whereas inclusions in hailiyne consist
of sulphide minerals and unknown light green transparent
material. This study will focus only on inclusions hosted in
interstitial hatiyne.

Geological Fieldwork 2005, Paper 2006-1

Three types of coexisting primary melt inclusions were
identified in haiiyne (types 1-3). Type 1 consists entirely of
intergrown bornite and chalcopyrite (Fig. 4D). The
bornite/chalcopyrite ratio is highly variable and, in many
samples, inclusions exist entirely of bornite or chalcopy-
rite. Inclusions are mostly <5 um in diameter and are
irregular to globular.

Type 2 inclusions consist entirely of birefringent mate-
rial (silicate, sulphate and carbonate?) and rarely contain a
small shrinkage bubble (Fig. 4C). Type 2 inclusions range
in shape from irregular to cubic to tabular and are mostly
<5 um in diameter.

Type 3 inclusions are composite inclusions comprising
sulphide minerals (chalcopyrite and bornite), birefringent
material (type 2 composition) and rarely a small shrinkage
bubble (Fig. 4C). The ratio of sulphide minerals to
birefringent material is highly variable. Type 3 inclusions
are mostly <10 wm in diameter and range from irregular to
globular in shape.

GEOCHEMISTRY
Analytical Methods

Fourteen samples from the Bootjack syenite were ana-
lyzed for major, minor and trace elements. Six samples



Figure 4. A) Photomicrograph of sample ABA05 33-266 (OPS) under plane-polarized light. Note the presence of orthoclase (Or), nepheline
(Ne), hatiyne (Hi) and hornblende (Hb). B) Photomicrograph of sample ABA0S5 33-266 (OPS) under cross-polarized light. Note the intersti-
tial haliyne and the small birefringent inclusions (type 2 and 3) within halyne (silicate, sulphate or carbonate material?). C) Type 2 and 3 in-
clusions in haliyne. D) Type 1 inclusions under plane-polarized light (bottom) and reflected light (top). The latter shows bornite (Bn)
intergrown with chalcopyrite (Ccp), which is a common feature of type 1 inclusions.

were collected from the MS, six from the OPS and two from
the ES. All samples were crushed and milled at the BC Geo-
logical Survey using a Cr-Fe plated jaw crusher, a tungsten
carbide mill for major oxides (plus select trace elements)
and a Cr-Fe mill for trace elements. In all cases, samples
were free of xenoliths and weathered surfaces. For quality
control, several hidden duplicates were included in the
batch of samples to enable estimation of analytical preci-
sion, and several standard rock powders were included to
allow estimation of analytical accuracy (Tables 1, 2).

Major oxides and Ba were determined by analyzing a
fusion disc with a Siemens SRS-200 sequential X-ray fluo-
rescence spectrometer (XRF) at Cominco Research Labs,
Vancouver. Select trace elements (Rb, Sr, Y, Zr, Nb) were
also analyzed by XRF using a pressed powdered pellet, and
FeO was analyzed by titration at Cominco Research Labs.
Analysis of rare earth elements (REE), Y, Th, Zr, Nb, Ba, Hf
and Ta was carried out using the sodium peroxide sinter di-
gestion technique and analyzed with a Hewitt Packard
4500plus ICP-MS at Memorial University, Newfoundland
(MUN). The elements Mo, Cu, Pb, Zn, Ag, Ni, Co, As, U,
Biand W were all analyzed with a Perkin Elmer Elan 9000
ICP-MS at ACME Analytical Laboratories Ltd., Vancou-
ver (four-acid [HCIO4, HNO;, HCI and HF] digest ultra-
trace method). Gold was determined by fire assay and ICP-
ES (SpectroCirus Vision) at ACME.

10

It is important to note that trace elements Ba, Nb, Y and
Zr were analyzed using both XRF and ICP-MS. However,
according to P. King of MUN (pers. comm., 2005) the use
of Ba, Nb, Ta, Hf and Zr data from the ICP-MS method
should be treated only semiquantitatively (particularly Ba,
Hf and Zr), as development work is still in progress to im-
prove the reliability of these particular elements at MUN.
Therefore, only XRF data for Zr and Nb will be used in this
manuscript for interpretation purposes. Cominco Research
Labs indicated that Ba values detected using XRF should
also be treated with caution, so Ba has not been used in this
manuscript for interpretation purposes. However, it is inter-
esting to note that the comparison between the XRF and
ICP-MS methods showed no correlation for Ba (i.e., R* =
<0.1), a very weak correlation for Nb (R? = 0.28, slope =
0.89), moderate correlation for Y (R*=0.51, slope = 0.84)
and a moderate to strong correlation for Zr (R*=0.72, slope
=1.15). In the case of Zr, Nb and Y, some of the error can be
attributed to the difference in detection limit between the
two methods (see Tables 1, 2). This is particularly impor-
tant for Y and Nb, where the measured values are not
significantly greater than the detection limit for the XRF
method (3 ppm).

British Columbia Geological Survey
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Major Oxides and Normative Mineralogy

Major oxides data can be found in Table 1. These data
are presented in order to 1) classify rocks from the BS using
the IUGS system (Streckeisen, 1976); 2) determine if frac-
tionation trends exist between the various rock types; and
3) compare the BS with other regional alkalic intrusions
from the Quesnel Lake area (i.e., Mount Polley stock, Bul-
lion Pit, Gavin Lake, Shiko Lake, QR mine and Bootjack
Lake pyroxenite), which are either assumed or known to be
similar in age to the BS (Table 1; Fig. 5).

For classification purposes, CIPW normative calcula-
tions were used to plot each sample on a Streckeisen dia-
gram (Fig. 6). Plots show that the BS is nepheline norma-
tive and ranges from Foid syenite to Foid monzonite.
Exceptions to this are the finer grained MS and more al-
tered OPS sample (JLO04 17-42) from the northeastern
margin of the intrusion, which have normative composi-
tions resembling Foid-bearing alkali-feldspar syenite to
Foid-bearing syenite (Fig. 6; Streckeisen, 1976). Other dis-
crimination plots used include the Ne-Q-Ka (nepheline-
quartz-kalsilite) diagram (Fig. 7), which demonstrates that
BS rocks plot in the leucite field (Rollinson, 1993), and the
total alkali versus SiO, (TAS) plot, which demonstrates that
the BS ranges from basic to intermediate (between 45 and
67 wt% SiO;) and plots in the alkaline field (Wilson, 1989;
Fig. 5)).

To test if fractionation trends exist between the various
phases of the BS, MgO was selected as a common abscissa
on a series of bivariant diagrams (Fig. SA-I). The variation
diagrams show that rocks of the BS are depleted in MgO
(0.17-2.22 wt%) compared to other regional intrusions.
The ES and the OPS have lower MgO values (0.17—
1.07 wt% and 0.23—-0.79 wt%, respectively) and the MS has
higher MgO values (0.93-2.22 wt%), which directly re-
flects the mafic component of the rock (i.e., rocks with
greater than ~1 wt% MgO tend to have =15% mafic miner-
als). For plots of TiO,, FeOr, CaO and P,0s versus MgO
(Fig. 5), strong positive linear trends exist, which is consis-
tent with the crystallization (subtraction) of pyroxene (Mg,
Ca and Fe), Fe and Ti-oxides, amphibole (Ca), minor
plagioclase (Ca) and apatite (Ca and P) during fraction-
ation. In contrast, Al,Os, SiO, and total alkali show strong
negative linear correlations with MgO (Fig. 5), whereas
K,0O shows a weak negative correlation with SiO, and
Na,O shows no correlation. Overall, OPS rocks are the
most fractionated and MS are the least fractionated.

Bivariant diagrams employing MgO are also used here
to compare the BS with other alkalic intrusive phases from
the Quesnel Lake area. The bivariant diagrams demonstrate
that a single moderate to strong correlation exists for MgO
versus TiO,, FeOr, CaO and P,Os for all intrusive rocks,
with the BS at the most evolved end of the spectrum and the
pyroxenite at the least evolved end. In the case of Al,Os3,
Si0, and K,O, there is a single trend for the regional intru-
sive rocks that differs from the BS. Alumina and K,O are
both significantly more enriched for the BS when com-
pared to regional intrusions with equivalent MgO, whereas
the BS is depleted in SiO, compared to regional intrusions
with equivalent MgO. It is important to note that, although
the regional intrusions are more enriched in SiO, compared
with the BS, they are almost always silica undersaturated
and tend to plot within the Foid-bearing syenite or
monzonite field on the Streckeisen diagram (Fig. 6). One
other significant difference between the BS and regional in-
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trusions is that BS rocks plot in the leucite field on the Ne-
Q-Ka diagram, whereas all regional intrusions plot in the
feldspar field (Fig. 7).

Trace and Rare Earth Elements

Trace element data for the BS and regional intrusions
can be found in Table 2. The data and various graphs are
presented in order to 1) determine if fractionation trends ex-
ist for trace elements versus MgO; 2) compare primordial
mantle — normalized data from the BS with other regional
intrusions on a spider diagram; and 3) determine if any cor-
relations exist between Cu, Au, Ag and other metals of
commercial value.

Rocks from the BS show a positive correlation for
MgO versus REE (R*=0. 53-0.75), Y (R*=0, 67), Ni (R*=
0.60), Zn (R*=0.54), W (R*=0.47) and Co (R*=0.96). The
positive correlation of REE and Y with Mg may be attrib-
uted to the fact that REE and Y tend to partition strongly
into apatite, which commonly occurs as inclusions in
clinopyroxene. This notion is supported by the relationship
between REE-Y and P,0Os, which show moderate (e.g.,Lu)
to strong (e.g., Eu) positive correlations (R* = 0.55-0.85).
The positive correlation of Mg with Co and Ni is also
consistent with fractionation.

Trace elements for OPS, MS, ES and regional intru-
sions were normalized to primordial mantle (PM; Sun and
McDonough, 1989) and plotted on a spider diagram in or-
der to compare trends between the various rock types
(Fig. 8). Figure 8 demonstrates that the OPS, MS, ES and
regional intrusions are all significantly enriched in large-
ion lithophile elements (LILE; Rb, Ba, K and Sr), Pb and U
compared to high field-strength elements (HFSE), which is
a characteristic of arc rocks (e.g., Kamenetsky et al., 1997;
Coulson et al., 1999). It can also be concluded that all intru-
sions show a similar pattern across the diagram, although
some intrusions are more depleted in certain elements com-
pared to others. Of note are the heavy rare earth elements
(HREE), medium rare earth elements (MREE) and Ti,
which are significantly more depleted in the OPS compared
with the MS and regional intrusions. The disparity can be
attributed to the partitioning of these elements into the
phases augite, apatite and hornblende, and the higher
modal abundance of these phases in the MS relative to the
OPS.

A variety of metal abundances from samples of the BS
and regional intrusions (Table 2) were plotted on bivariant
diagrams to evaluate their covariance (Fig. 9). Rocks from
the BS show positive correlatlons for Ag versus Cu (R
0.86; Fig. 9A), Zn versus Pb (R?=0.24), Niversus Co (R*=
0. 50) and Au versus As (R>=0.69; ; Fig. 9B). No correlation
exists for Auversus Ag or Cu. With the exception of Ni ver-
sus Co, there are no correlations between the BS and re-
gional intrusions. In the case of Pb versus Zn, however, the
regional intrusions show a steeper positive trend compared
to the BS. Moreover, when Zn/Pb is plotted against MgO,
there is a single positive linear trend for all intrusions,
which suggests that Zn was depleted relative to Pb with
fractionation.
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Figure 5. Major oxide bivariant diagrams for the Bootjack stock (MS, filled square; OPS, filled diamond; ES, filled trian-
gle), regional intrusions (unfilled triangle) and a pyroxenite (sample MTP92-050 PX from Fraser, 1994). Part J is a total
alkali versus silica (TAS) diagram. Note that the dotted line separates alkalic rocks from subalkalic rocks (after Wilson,
1989) and that all data are normalized to 100% anhydrous.
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DISCUSSION

Petrological and Geochemical Features of
the Bootjack Stock

Notably, one of the most significant aspects of the
Bootjack stock (BS) is the existence of packed orbicular
pseudoleucite syenite (OPS), which makes up an estimated
80% of the intrusion. Hence, an understanding of the gene-
sis of pseudoleucite is particularly important with respect to
understanding the BS. According to Deer et al. (1992), the
genesis of pseudoleucite can be ascribed to two probable
processes: 1) the breakdown of early-formed leucite with a
Na-rich liquid; or 2) the breakdown of Na-rich leucite (or
K-rich analcite) solid-solution series phase, which has been
synthesized in experimental work. In natural systems, how-
ever, the composition of leucite does not depart signifi-
cantly from the ideal formula (KAISi,O), and replacement
of K by Nararely exceeds 10% (Phillips and Griffen, 1981;

Deer et al., 1992); alternatively, though, analcite contain-
ing up to 20% of leucite component in basalt has been
reported (Deer et al., 1992).

The geochemistry of four fresh samples from the OPS,
each containing approximately 80-95% pseudoleucite,
was examined in order to estimate the composition of the
pseudoleucite constituent of the rock. Optically, all four
samples have a matrix mineral assemblage that closely re-
sembles the pseudoleucite constituent of the rock, with the
exception of subordinate aegirine-augite and magnetite.
Hence, whole rock data are believed to closely represent
pseudoleucite geochemistry, with the exception of minor
Na and Fe enrichment. Geochemical data for four OPS
samples show Si/Al molar ratios close to two (average =
2.02; standard deviation = 0.032), which is consistent with
the chemical formula for leucite, but Al/K molar ratios av-
erage 1.82 (st. dev. = 0.12), which is significantly greater
than the ideal leucite formula (1:1). Molar ratios for
Al/(K+Na)arecloseto 1:1 (i.e.,avg. = 1.07; st. dev. = 0.04),
suggesting that either the alkali substitution of Na for K was
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Figure 9. Bivariant diagrams for the Bootjack stock (MS, filled square; OPS, filled diamond; ES, filled triangle), regional intrusions (unfilled
triangle) and Bootjack Lake pyroxenite (unfilled square; sample MTP92-050PX from Fraser, 1994).
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efficient during the breakdown of leucite to form nepheline
and orthoclase (see equation 1, after Deer et al., 1992) or
that the original leucite/analcite protolith composition
ranged from 51-64% component leucite. Naturally occur-
ring leucite or analcite are not known to exist with this
range of composition, the inference being that
pseudoleucite was formed as a result of leucite breakdown
by Na-rich fluids, although the latter scenario cannot be en-
tirely discounted. The presence of interstitial late-stage

haiiyne suggests that the final melt to crystallize was en-
riched in Na, Ca and S (both S* and S*"), as well as minor
Cl, and supports the notion of a Na-rich melt that could fa-
cilitate the breakdown of leucite to pseudoleucite.

2KAISi,Og + Na* <> NaAISiO, + KAISi;Og + K* (1)

(leucite) (nepheline + orthoclase)
(pseudoleucite)

One important characteristic of interstitial haiiyne is
that, in certain samples (e.g., ABA05 33-266, MMI104 81-1

Assumptions: The loss of Cu was proportional to the loss
of K during the alkali exchange reaction. That sample
ABAOS 19-163 represents the starting composition of Cu
in the OPS prior to significant Cu loss during the alkali
exchange reaction.

Average Cu in OPS =58 ppm

Concentration of Cu in most K-rich sample (ABA0S 19-
163) =78 ppm

Area of OPS = 10 km? (determined from map)
Thickness of OPS =300 m (not well constrained but is

known to be atleast 300 m thick based on topography
relief)
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Figure 10. Bivariant diagrams for alkalis, Cu and Au for rocks from the Bootjack stock (parts A-D; MS, filled square; OPS, filled diamond;
ES, filled triangle) and calculations for Cu lost from BS (part E). Note that graphs Aand B show Au versus Na and Cu versus K, respectively.
In graph A, note the strong correlation between Au and Na for OPS samples (excluding sample JLO04 17-45, which is strongly altered). In
graph B, note the moderate correlation between Cu and K for OPS samples. No correlation, however, exists for MS samples. Graphs C and
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the average amount of Cu lost from the BS during the alkali exchange reaction.
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and ABAO5 41-336), hatiyne displays type 1 inclusions,
which represent trapped sulphide melt. Hence, there is
strong evidence to suggest that the residual Na-rich melt,
which facilitated the breakdown of leucite, also contained
significant amounts of Cu.

Geochemical and Petrographic Links
Between Haliyne, Cu and Au

The OPS samples containing the most interstitial
haiiyne tend to have the highest concentration of Auand Na
and a positive linear trend for Au versus Na, suggesting an
intimate link between Au and aresidual Na- and S-rich melt
(Fig. 10A, C). In contrast no correlation is evident between
Cu and Na. Moreover, those samples containing the most
interstitial haiiyne tend to have lower concentrations of Cu
and K (Fig. 10B, D). To explain this relationship, the au-
thors suggest that haiiyne crystallized from a S and Na-rich
residual melt that actively scavenged Cu (with S) and re-
placed K (with Na) as it moved through the crystal mush.
Thus, those parts of the magma chamber that were more af-
fected by the interstitial late-stage melt tend to have less Cu
and K. For OPS rocks, there is a moderate positive correla-
tion for Cuversus K, which is interpreted to be related to the
affect of the residual melt.

From the relationship between K and Cu, it is possible
to approximate how much Cu may have been lost as a result
of leucite breakdown and Na exchange. Based on the
known extent of the OPS (~10 km?) and assuming a thick-
ness of 300 m, the loss of Cu from the OPS as a result of S
scavenging is estimated to be approximately 156 000 t (see
Fig. 10E). This calculation for Cu loss from the BS is not
significantly different from estimated total Cu reserves and
total Cu production at Mount Polley (Imperial Metals Cor-
poration, 2004). However, the calculation is considered to
be a minimum estimate, given that the absolute extent of the
BS is poorly constrained and the likelihood that the overall
loss of Cu (as well as Au and Ag) from the BS may have
been significantly greater based on the high concentration
of these metals in cogenetic, less evolved alkali basalt (see
Logan and Bath, 2006), which likely resembles the
composition of the parental melt for the BS.

Emplacement and Differentiation of the BS

The BS is a zoned intrusive body that is characterized
by an OPS and ES core and an MS rim. The authors infer
that the mafic-rich rim is a product of differentiation, where
mafic phases accumulated along the walls of the intrusion.
This idea is supported by the relative density of the mafic
phases and the existence of cumulate layering at certain
outcrops. Conversely, the OPS is interpreted to represent
the accumulation of leucite crystals. Given the relatively
low density of leucite (specific gravity =2.47-2.50: Deer et
al., 1992), it is suggested that leucite, on crystallizing,
floated to the top of the magma chamber and accumulated
at the carapace of the intrusion (similar conclusion to
Coulson et al. [1999] for Zippa Mountain). The ES is con-
sidered to be a late component of the system, as it is seen to
crosscut the MS; however, it has not been observed to cut
the OPS. The occurrence of pegmatitic texture within the
ES, and also within local regions of the OPS, suggests that
volatiles likely accumulated in the core of the magma
chamber beneath the leucite layer and were then released as
local pulses.
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CONCLUSIONS

e Rocks from the Bootjack stock (BS) show geochemical
fractionation trends, similar to those of coeval intrusions
from the Mount Polley complex, Bullion pit, Shiko Lake
and QR mine, that suggest a cogenetic relationship.
However, the BS is more fractionated compared to other
intrusions.

e Rocks from the orbicular pseudoleucite syenite (OPS)
have Si/Al molar ratios that are close to 2, and
Al/(Na+K) ratios of close to 1, which is consistent to that
of leucite when Na for K substitution is taken into ac-
count. The transition from leucite to pseudoleucite oc-
curred by the introduction of Na-rich melt, which is evi-
dent from the presence of interstitial haiiyne.

e The presence of sulphide melt inclusions within intersti-
tial hatiyne from the BS is primary evidence of a Cu-rich
sulphide melt, concentrated in a residual S and Na-rich
melt, that could have migrated through the intrusive
body and accumulated at the carapace of the intrusion
along with magmatic volatiles and metals.

e The generation of excess K as a result of leucite break-
down to pseudoleucite may explain the pervasive early
K alteration in the rocks at Mount Polley, whereas the
late-stage S and Na- rich residual melt may represent the
later Na alteration at Mount Polley.

e Further study on hatiyne is required in order to accu-
rately determine its crystal chemistry and the composi-
tion of type 2 inclusions (sulphate, silicate or carbon-
ate?). These studies may help to establish whether an
intimate link exists between the BS and mineralization at
Mount Polley.

e As shown by Frei (1996), testing the ratio of oxidized
and reduced sulphur in bulk rock as well as individual
minerals (e.g., apatite) can be an important indicator for
distinguishing barren from mineralized intrusions. The
authors wonder if unaltered haiiyne from the BS could
also be used as a tool for tracing the oxidation state of S,
given the high concentration of S in its structure and its
ability to readily host both S and S*.
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