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INTRODUCTION

Alkaline magmas are important sources of Au and Cu
(Muller and Groves, 1993) and are associated with a num-
ber of world-class porphyry (Dinkidi, Philippines;
Skouries, Greece; Cadia, Australia) and epithermal-style
deposits (Porgera and Landolam, Papua New Guinea; Em-
peror, Fiji; Cripple Creek, United States; see Jensen and
Barton, 2000). British Columbia is well endowed with por-
phyry deposits that formed during two distinct periods in
the development of the Cordillera: the first in the Late Tri-
assic to Early Jurassic and the second in the Late Creta-
ceous to Eocene (McMillan et al., 1995). Alkaline and
cospatial calcalkaline Cu-MotAu porphyry deposits
formed within island-arc settings, represented by the
Quesnel and Stikine terranes, located on the fringes of an-
cestral North America, during Late Triassic to Early Juras-
sic time. These arcs may have extended for up to 3000 km
prior to their collision with ancestral North America, be-
tween 185 and 173 Ma (Nixon et al., 1993; Mihalynuk et
al., 2004), and they now account for more than half of the
accreted crustal material within the BC Cordillera. Late
Cretaceous to Eocene porphyry deposits formed in a conti-
nental-arc setting after amalgamation of the composite
terranes to North America.

Elevated metal prices and recent exploration successes
in BC have rekindled interest in Cu-Au porphyry deposits.
Key exploration targets are the alkalic Cu-Au porphyry de-
posits similar to the Galore Creek, Mount Polley and Afton-
Ajax deposits (Fig. 1).

Mineralized and unmineralized alkaline intrusions are
common throughout the Intermontane Belt, in both Stikine
and Quesnel terranes of the Canadian Cordillera (Barr et
al., 1976; Lueck and Russell, 1994). Alkaline intrusions as-
sociated with porphyry deposits include both silica-satu-
rated and silica-undersaturated types (Lang ef al., 1995),
but worldwide only the BC deposits are associated with
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Figure 1. Location of study area, central Quesnel Trough, central
British Columbia (modified from Wheeler and McFeely, 1991).

small, complex, either nepheline or leucite normative, sil-
ica-undersaturated intrusions, and these contain almost no
quartz. Late Triassic British Columbia deposits are unique
end-members of a continuum of porphyry deposits associ-
ated with calcalkaline, high-K calcalkaline or alkaline sys-
tems. Understanding the conditions of alkaline porphyry
formation and the distinction between barren and fertile al-
kaline intrusions is important for the evaluation of arc
terranes and their economic potential in BC.

Regional geological mapping and sampling continued
at Mount Polley as part of an ongoing study of alkaline Cu-
Au porphyry deposits in BC. This report includes the re-
sults of mapping and rock geochemical data collected from
the eastern side of Quesnel Terrane, in the vicinity of Mount
Polley. Key objectives of the project are to complete a
lithogeochemical transect across the central Quesnel
Terrane at approximately 52.5°N, and to characterize Trias-
sic to Jurassic evolution of the arc, similar to the study of
the southern Quesnel by Mortimer (1987). It is also critical
to establish the tectonic implications of overlapping
calcalkaline and alkaline magmatism and related porphyry
mineralization, and to refine the understanding of the petro-
logical evolution of alkaline-arc magmatism that culmi-
nated in porphyry mineralization at the Triassic—Jurassic
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boundary. In addition, this study includes a melt — fluid in-
clusion study on volcanic and intrusive rocks associated
with mineralized and barren alkalic centres in the Mount
Polley area (Bath and Logan, 2006).

PREVIOUS WORK

The Geological Survey of Canada carried out regional
geological studies in the Quesnel River area during the
1950s and 1960s (Tipper, 1959, 1978; Campbell, 1961,
1963, 1978; Campbell and Campbell, 1970), but it was not
until the work by Fox (1975) that the alkaline composition
of the volcanic rocks was recognized in the Quesnel area.
Detailed mapping and mineral deposit studies in the Horse-
fly area by Morton (1976), and by Bailey (1978) in the area
around Morehead Lake, provided the first stratigraphic de-
scriptions of the rocks encompassing the Mount Polley
deposit.

Bailey (1988a, b, 1990), Panteleyev (1987, 1988) and
Panteleyev and Hancock (1989) carried out regional-scale
geological mapping and mineral evaluation in the area lo-
cated between Quesnel and the Horsefly River as part of the
1985-1990 Canada — British Columbia Mineral Develop-
ment Agreement. The focus of their studies was to remap
and reinterpret the central Quesnel volcanic belt and test the
economic potential for Au and Cu deposits along its volca-
nic-intrusive axis (Panteleyev et al., 1996). Deposit studies
at Mount Polley by Hodgson et al. (1976), Fraser (1994,
1995) and Fraser et al. (1995) recognized three stages of
breccia emplacement (pre, syn and postmineralization) and
the distinctive alkaline porphyry alteration assemblages
that separate the deposit into proximal and distal
mineralized zones.

REGIONAL GEOLOGY

The study area lies along the eastern margin of the
Intermontane Belt close to its tectonic boundary with the
Omineca Belt, in south-central BC. At this latitude, the
Intermontane Belt is underlain mainly by Late Paleozoic to
Early Mesozoic arc volcanic, plutonic and sedimentary
rocks of the Quesnel Terrane. Farther west are coeval rocks
of the oceanic Cache Creek Terrane (Fig. 1). The Quesnel
Terrane (Quesnellia) consists of a Late Triassic to Early Ju-
rassic magmatic arc complex that formed above an east-
dipping subduction zone (Mortimer, 1987). The Cache
Creek Terrane, with its Late Triassic to Middle Jurassic
(Patterson and Harakal, 1974; Ghent et al., 1996)
blueschist-facies rocks, represents the remnants of this
subduction-accretionary complex (Travers, 1977;
Mihalynuk et al., 2004). Quesnellia is fault bounded, juxta-
posed on the west with Paleozoic and Mesozoic rocks of the
Cache Creek complex, and on the east by Mesozoic to Pa-
leozoic and older metasedimentary, metavolcanic and
metaplutonic rocks of the pericratonic Kootenay Terrane.
The Barkerville and Cariboo subterranes of the Kootenay
Terrane separated Quesnellia from North America until the
Middle Jurassic, at which time they were imbricated and
thrust eastward onto the North American craton (Nixon et
al., 1993). The tectonic boundary between the Kootenay
and Quesnel terranes is intruded by the Jurassic—Creta-
ceous Raft batholith to the south. Tertiary volcanic rocks
and feeder dikes of the Chilcotin Group are the youngest
rocks in the region (Mathews, 1989).
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Quesnel arc magmatism and associated porphyry min-
eralization migrated eastward with time, beginning in the
west ca. 212 Ma with development of calcalkaline Cu-
MozAu deposits at Highland Valley and Gibraltar. East of
Gibraltar, submarine to subaerial Na and K-rich lava flows,
cogenetic alkaline intrusions and 204 Ma, Cu-Au mineral-
ization occupy the central axis of the arc. Mount Polley is
hosted by a high-level, alkaline intrusive complex that is of
latest Triassic age (202 Ma; Mortensen et al., 1995). A
chain of similar deposits extends the length of the
Intermontane Belt (Barr et al., 1976; Fig. 1). In the south,
they are associated with the Iron Mask batholith (Afton,
Ajax and Crescent) and Copper Mountain intrusions (Cop-
per Mountain and Ingerbelle) and, to the north, with the
Hogem batholith (Lorraine). Uplift and erosion of the fore-
arc produced sub-Jurassic unconformities as magmatism
shifted east and culminated with intrusion of 195 Ma
calcalkaline plutons in the south (Takomkane, Thuya, Wild
Horse and Pennask) and deposition of distal volcaniclastic
and younger sedimentary rocks across the terrane.

NICOLA GROUP ROCKS

The central Quesnel belt consists of a twofold
lithostratigraphic subdivision: a lower fine-grained sedi-
mentary succession and an upper ‘alkalic or shoshonitic’
sequence of calcalkaline arc volcanic deposits that are
gradational with and conformably overlie the sedimentary
package. The volcanic succession occupies the central
northwest-trending belt and is flanked on the east by ‘black
phyllite” and on the west by fine-grained volcanic sand-
stone, siltstone and conglomerate. The opposing regional
dips of the Middle to Late Triassic sedimentary units be-
neath the younger, Upper Triassic volcanic succession pro-
vide the geometric definition for the Quesnel Trough
(Roddick et al., 1967; Campbell and Tipper, 1970;
Panteleyev ef al., 1996). This twofold sedimentary-volca-
nic distinction of Quesnellia is recognized in the Mount
Milligan and Manson Creek — Germansen Landing areas to
the north (Ferri and Melville, 1994; Nelson and
Bellefontaine, 1996) and as far south as Little Fort
(Schiarizza and Israel, 2001).

Schiarizza et al. (2002) subdivided the Nicola Group
rocks in the Clearwater — Little Fort area into five informal
units: a central (lower) volcanic and (overlying)
volcaniclastic package, an eastern sedimentary (Lemieux
Creek) and two western sedimentary successions (Merid-
ian and Wavey Lake). They recognized similar rock types
and equivalent ages for the sedimentary rocks east and west
of the volcanic axis and mapped them as facies-equivalent
units. Relevant to the present study are the Anisian,
Ladinian and Early Carnian conodont ages from limestone
interbedded with grey phyllite, slate and slaty siltstone of
their easternmost Lemieux Creek succession, which sup-
port correlation with the lithologically similar Middle to
Late Triassic basal Nicolarocks of unit 1 (Panteleyev et al.,
1996) in the Quesnel Lake area.

The base of the Nicola, unit 1 (Fig. 2), forms a north-
west-trending belt exposed east of Quesnel Lake. It has
been estimated to constitute at least 2500 m (Rees, 1987), to
locally 4000 m (Bloodgood, 1990), of fine-grained gra-
phitic and quartzose sedimentary rocks that grade upward
into (Carnian to Norian) basal units of the upper volcanic
unit. Missing from the Lemieux Creek succession but well
described by Bloodgood (1987), Rees (1987) and
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Figure 2. Stratigraphic sections for Nicola Group volcanic and sedimentary rocks in the Spanish Mountain, Fryingpan Road, Morehead

Lake and Gavin Lake areas.

Panteleyev et al. (1996, unit 1A) in the Eureka Peak and
Quesnel Lake areas are mafic hornblende, pyroxene volca-
nic breccia, conglomerate and tuffaceous argillite, which
occur near the top of the sedimentary sequence (MLRNV).

Augite porphyritic flow, breccia and volcaniclastic
units define a northwest-trending belt, up to 20 km wide, of
subaqueous and subordinate subaerial volcanic rocks with
an estimated thickness on the order of 5-6.5 km (Rees,
1987; Panteleyev ef al., 1996). Thickest accumulations of
volcanic rocks and coeval subvolcanic intrusions define the
magmatic axis of the Quesnel arc and show remarkable
similarity in chemical affinity and geochronological corre-
lations along the length of the arc, as well as with other Late
Triassic arcs in the Cordillera (Mortimer, 1987; Mihalynuk
etal., 1994, Nelson and Bellefontaine, 1996; Panteleyev et
al., 1996; this study). Green or maroon, clinopyroxene
(augite)—phyric basalt to basaltic andesite (LKNpv) is the
dominant and identifying rock type, but augite-oliv-
inexplagioclase, augite-plagioclase-analcime (L KNav) and
hornblende-plagioclase-augite (LKNhv) basalt composi-
tions occur across the study area. Volumetrically, fine to
medium-grained volcaniclastic deposits far exceed tuff and
breccia units, and coherent lava and flow breccia units form

Geological Fieldwork 2005, Paper 2006-1

the least abundant components of the arc within the study
area.

West of the magmatic axis is a second package of fine-
grained sedimentary and volcaniclastic rocks, the Gavin
Lake succession, which underlies pyroxene volcanic brec-
cia and flow rocks of the main volcanic facies (Fig. 2). It
crops out north of Beaver Creek valley and extends about
20 km in a northwest-trending belt between Antoine and
Gavin lakes. Panteleyev ef al. (1996) mapped these as
equivalent to their eastern sedimentary assemblage (unit 1).
On its northern side, the contact between the Gavin Lake
succession and overlying volcanic rocks trends northwest,
orthogonal to the regional bedding in the lower sedimen-
tary succession. At outcrop scale, however, the contact is
gradational and conformable. The southern contact is
poorly exposed and unconformably overlain and/or faulted
against unnamed Jurassic sedimentary and Tertiary basalt
units (units 6 and 11 of Panteleyev et al., 1996).

The Gavin Lake succession is dominated by fine-
grained, well-stratified, 25—30 mm thick beds of light and
dark grey, wavy laminated siltstone, normal graded sand-
stone and cherty shale. Interbedded, massive or thick bed-
ded pyroxene and plagioclase-rich crystal sandstone occurs
locally or forms the matrix of thick-bedded debris flows.
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The thin-bedded rocks are dark grey, black and rusty-
weathering slate and dense cherty argillite that breaks with
a conchoidal fracture. Interlayered with these are medium-
bedded, pale and dark green, grey and brown cherty volca-
nic siltstone, brown medium-grained feldspathic sandstone
with shale and siltstone rip-up clasts, and rare polylithic
volcanic conglomerate. Also present, west of Antoine
Lake, are coarse polymictic volcanic conglomerate, nor-
mal-graded beds of limestone, clast-dominated debris
flows and finer grained laminar crossbedded sandstone-
siltstone couplets. The conglomerate includes angular to
subrounded pebbles of siltstone, green and maroon
pyroxene-phyric basalt and pink hornblende—phyric
subvolcanic monzonite supported by a silty or crystal-rich
wacke matrix. Panteleyev et al. (1996) reported a Late Tri-
assic (probably lower Norian) age for a suite of conodonts
(GSC locality No. C-117644; Orchard, 1995). The colour
alteration index (CAI) of 3.5 —4.5 is slightly lower than the
5.0-5.5 CAI for Middle Triassic conodonts collected from
the eastern sedimentary package of black phyllite.

North of Gavin Lake, the fine-grained sedimentary
rocks are overlain conformably by bedded polymictic vol-
canic breccia and matrix-supported granule to pebble con-
glomerate, graded sandstone and cherty volcanic siltstone.
Normal-graded beds and load structures indicate upright-
facing, immature volcaniclastic units that contain pyroxene
and plagioclase crystal-rich horizons and angular lithic
fragments. Analcime and pyroxene flow breccias conform-
ably cap the section (Fig. 2).

BASALT STRATIGRAPHY

The authors agree with the general stratigraphy of
Bailey (1978) and Panteleyev et al. (1996), who recognized
four main volcanic units in the study area (unit 1A and units
2,3 and 4; see Fig. 2). Volcanic and epiclastic rocks of unit
la were separated from the upper, dominantly volcanic se-
quence because they occur entirely within the Middle to
Upper Triassic sedimentary unit 1, albeit near the top of the
succession (Fig. 2), and on the basis of their petrochemical
differences (Panteleyev et al., 1996). They are interpreted
to represent initiation of arc magmatism in a marginal-basin
setting Bloodgood (1987). In the present study, these are re-
ferred to as Eastern arc basalt (MLENV).

Units 2, 3 and 4 record the evolution of magmatism and
the main construction period of the arc during the Late Tri-
assic. These define the central axis of the arc and are re-
ferred to as Central arc basalt (LKNV). In general, the volca-
nic stratigraphy consists of a subaqueous pyroxene-phyric
basalt unit, consisting mainly of flows and breccias;
pyroclastic and lahar deposits of more evolved ‘felsic’
compositions; and an upper, subaerial, analcime-bearing
olivine basalt unit (Logan and Mihalynuk, 2005). Ages of
these three units were interpreted to span the Upper Triassic
to Early Jurassic boundary. Subsequent U-Pb isotopic age
dating of the various intrusive phases of the Polley and
Bootjack stocks indicates that these intrusions are Late Tri-
assic (Palfy et al., 2000); therefore, they cannot intrude
rocks younger than 200 Ma (Fig. 2).

Evidence for isolated Early Jurassic calcalkaline vol-
canism and plutonism is recognized in the area: for exam-
ple, the 197 Ma (Logan et al., in press) quartz-phyric dacite
unit located immediately north of Mount Polley mine (Lo-
gan and Mihalynuk, 2005) and the 195 Ma quartz syenite
dike at Shiko Lake. However, the majority of Early Jurassic
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strata within the study area are well-bedded sedimentary
units that contain Early Sinemurian, Canadensis Zone fos-
sils (GSC locality No. 93215b, 93960, 93961; Poulton and
Tipper, 1991; Tipper, 1992) and mature, well-bedded,
polylithic, monzonite-bearing conglomerate (Logan and
Mihalynuk, 2005; Fig. 2). Provenance studies of Early Ju-
rassic sedimentary sequences in the study area indicate im-
mature arc-derived sandstone containing Late Triassic to
Early Jurassic detrital zircons that suggest local sources
dominated, or diluted and masked, any evolved North
American continental sedimentary influence (Petersen et
al., 2004).

Middle to Late Triassic Metavolcanic Rocks
(unit 1A)

Nine samples of metavolcanic rocks representing
rocks from unit 1A (Panteleyev et al., 1996) were collected
from Spanish Mountain (n=2), east of Spanish Lake (n=23)
and east of Horsefly in the vicinity of Viewland Mountain
(n=75). The rocks in the area of Spanish Mountain include
plagioclase crystal tuffaceous siltstone, volcanic conglom-
erate and hornblende-plagioclase porphyritic breccia.
Northeast of Spanish Lake, pale green foliated tuffaceous
phyllite, massive greenstone and breccia dominate, with
rare, thin pillowed flows of pyroxene porphyry basalt. Sec-
tions containing pyroxene basalt appear identical to the
younger volcanic stratigraphy in the main Quesnel volca-
nic belt farther west. However, thin-section investigation
reveals substantial recrystallization and low-grade meta-
morphism. Analcime basalt identified in the field is, in fact,
metabasalt with secondary albite porphyroblasts filling
vesicles. Panteleyev et al. (1996) showed a 1-2 km wide,
northwest-trending belt of volcanic rocks extending be-
tween Horsefly and Quesnel lakes, centred on Viewland
peak. Reconnaissance along the length of this belt collected
representative samples of intermediate to mafic metavol-
canic breccia and flow units. Deformation and lower
greenschist metamorphism have also variably affected the
massive breccia flow and tuffaceous units.

The volcanic rocks from the vicinity of Eureka peak
(Bloodgood, 1987) comprise coarse porphyritic flows,
breccia and fine-grained tuff. Phenocryst assemblages con-
sist of pyroxene, hornblende and plagioclase. The volcanic
rocks have been metamorphosed to lower greenschist fa-
cies. Metamorphic minerals include actinolite, albite,
epidote, chlorite, quartz and calcite. Conodonts from lime-
stone-bearing rocks southwest of Spanish Mountain have
yielded Middle Triassic ages ranging from Anisian to
Ladinian (Orchard, 1995), with conodont alteration indices
(CAI) of 5.0-5.5. Bloodgood (1987) concluded that the
chemistry suggested an island-arc origin with possible
back-arc or marginal-basin affinities.

Late Triassic Augite-Phyric Volcanic Rocks

Maroon, green and grey pyroxene-phyric flow, breccia
and pyroxene crystal-rich volcaniclastic units form the ma-
jority of the central volcanic belt. They are interfingered
with augite-olivine, analcime and hornblende-bearing ba-
salt units throughout the stratigraphic column (Panteleyev
et al., 1996; Logan and Mihalynuk, 2005) and near the top
by limestone and felsic crystal tuffs (Fig. 2). Normal
graded-bedding, crossbedding and load features are com-
mon in the sedimentary rocks; all indicate upright facing
beds and a subaqueous environment of deposition.
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Coherent flows comprise 30% (to a maximum of 50%)
medium to coarse-grained euhedral pyroxene (Fig. 3A, B),
20% subhedral plagioclase phenocrysts in a fine-grained
felted seriate groundmass of plagioclase, pyroxene, +oliv-
ine, magnetite and apatite. Euhedral coarse pyroxene crys-
tals up to 5 mm in diameter are well zoned and often show
alignment of melt inclusions along growth planes. Porphy-
ritic augite flow breccia and flow tops are commonly amyg-
daloidal and exhibit trachytic alignment of plagioclase
laths in a chloritic vitrophyric matrix.

Late Triassic Analcime-Phyric Volcanic
Rocks

Analcime-bearing mafic flows crop out near Trio
Lake, Mount Polley, west of Morehead Lake (Logan and
Mihalynuk, 2005) and south of Antoine and Shiko lakes.
South of Jacobie Lake, analcime-bearing basalt forms the
basal flow unit that overlies the Gavin Lake succession. Ex-
cellent exposures are found along the highway north of
Prior Lake within an ~260 m thick volcanic section domi-
nated by dark grey-green to maroon, vesicular augite por-
phyry flows. Analcime content varies from one flow to the
next, as do pyroxene and olivine contents.

Typical flows comprise 30% medium to coarse-
grained euhedral pyroxene (up to 60%); 20-50% fine to
coarse plagioclase, locally including coarse, trachytically
aligned, bladed phenocrysts; 2—10% medium-grained oliv-
ine, commonly replaced by bright red iddingsite; up to 10%
amygdules, mostly filled with calcite and chlorite; and 0—
20% euhedral, salmon pink analcime up to 3 cm diameter
(Fig. 3C, D).

Analcime occurs as euhedral phenocrysts, as irregular
interstitial matrix material and as amygdule fillings in co-
herent basalt flows. In addition, it is present as euhedral
grains in juvenile crystal lithic tuff and epiclastic units,
which would support a primary origin for this phenocryst.
The debate whether analcime is primary or secondary in
similar Nicola lavas (Coates, 1960; Mortimer, 1987) or the
younger Crowsnest Formation (Peterson and Currie, 1993)
is inconclusive. Karlsson and Clayton (1991) presented
strong isotopic and microprobe data to support low-tem-
perature replacement of early leucite and a secondary
origin for pristine analcime crystals.

Late Triassic to Early Jurassic (?)
Hornblende-Phyric Volcanic Rocks

Hornblende-phyric basalt flows, dikes and breccia
units form a subordinate but distinctive sequence exposed
along the eastern side of the central volcanic belt at the QR
deposit (Fox and Cameron, 1995) and north of Shiko Lake.
Panteleyev et al. (1996) correlated these rocks (their unit
2d) with units 2a and 2b, which occupy a lower position in
the Upper Triassic stratigraphy. Fossil or isotopic age con-
straints are lacking. From observations during the present
study, similar hornblende-phyric flows and dikes are asso-
ciated with sedimentary units high in the stratigraphy.
These units are quartz poor and different from the Early
Jurassic quartz-phyric hornblende dacite.

Hornblende-plagioclase porphyry dikes and diorite
sills north of the Quesnel River at QR and Shiko Lake
crosscut black and grey, thin laminated argillite and
siltstone. The dikes are commonly rusty and contain 1-2%

pyrite.
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The rocks contain 3—5 mm euhedral grains of conspic-
uous hornblende, smaller euhedral pyroxene and
plagioclase within a fine-grained seriate groundmass of the
same minerals. Accessory minerals include magnetite, apa-
tite, pyrite and the alteration minerals chlorite and carbon-
ate. A white zeolite, possibly laumontite, occupies
amygdules.

Intrusive Bodies

Dark green, 10-20 m wide pyroxenite bodies intrude
fine-grained volcaniclastic rocks in two locales west of
Gavin Lake. The pyroxenite occupies sill-like (conform-
able with bedding) bodies and dikes that crosscut bedding
at high angles. The pyroxenite consists of coarse-grained,
euhedral zoned pyroxene phenocrysts, altered subhedral
olivine pseudomorphed by serpentine and talc, and
plagioclase laths within a fine-grained, altered, opaque-
rich (magnetite and pyrite) matrix of plagioclase, pyroxene
and alteration minerals, including chlorite, talc and calcite.
These intrusions are relatively rich in MgO (10.26 wt%; Ta-
ble 1), represent a less fractionated magma, and contain
similar major-element abundances as the pyroxenite at
Mount Polley (see Bath and Logan, 2006; Fraser, 1994).
They are likely feeder dikes to some of the early pyroxene-
phyric basalt flows that stratigraphically overlie the west-
ern volcaniclastic sequence. Younger, texturally similar
augite porphyry (AP) dikes that intrude the mine stratigra-
phy at Mont Polley have much lower MgO contents (5.26
wt% MgO; Fraser, 1994).

The western portion of the study area is intruded by
metre to decimetre-wide quartz porphyritic monzonite
dikes. The dikes consist of a fine-grained leucocratic ma-
trix, variable amounts of finely disseminated pyrite and
sparse to 10% euhedral quartz phenocrysts. Biotite (up to
several percent) and rarely hornblende are present, but both
are often completely replaced by sericite and carbonate.
Weathering produces a distinctive limonitic-pinkish, fine-
grained massive rock with conspicuous (2—-8 mm) quartz
phenocrysts. The largest concentration of these intrusive
rocks occurs at Gavin Lake, where a coalescing swarm of
east-trending dikes and small quartz monzonite porphyry
plugs intrude an area approximately 0.5 km by 3 km imme-
diately north of the lake. Chalcopyrite and molybdenite
mineralization is associated with quartz and K-feldspar
stockwork veining in the dikes. North-trending quartz
veins, in places up to 5 m wide, cut the fine-grained
volcaniclastic sequence. Mineralization includes chalco-
pyrite and galena with Au and Ag values reported
(Hodgson, 1970). Bailey (1978) and Panteleyev et al.
(1996) correlated these quartz-bearing calcalkaline intru-
sions with hornblende-biotite monzogranite of the Nyland
Lake stock and included them in the Cretaceous Naver
plutonic suite (Woodsworth et al., 1991). A sample of
quartz porphyritic monzogranite was collected for U-Pb
geochronology; results are pending.

WHOLE-ROCK GEOCHEMISTRY

More than 100 representative samples were collected
during the regional mapping of the Quesnel Lake area.
These included samples of all major phases of the Mount
Polley igneous complex, phases of equivalent (?) regional
intrusive centres and a suite of the surrounding host lavas.
Weathered surfaces or altered samples were screened by

British Columbia Geological Survey
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careful inspection of hand samples, and 75 were selected
for analysis. Samples were milled in chrome steel (trace el-
ements) and tungsten carbide (major oxides) at the BC
Geological Survey laboratory in Victoria. Replicate sam-
ples and standards were included and the splits were
shipped for analyses to Teck Cominco Laboratories, Van-
couver for major-element and trace-element abundances
(Ba, Rb, Sr, Nb, Zr and Y) by X-ray fluorescence (XRF);
Acme Analytical Laboratories Ltd., Vancouver for trace-
element analyses using inductively coupled plasma — emis-
sion spectrometry (ICP-ES); and Activation Laboratories
Ltd., Ancaster, Ontario for trace-element analyses using in-
strumental neutron activation analysis (INAA). A subset of
the samples was sent to Memorial University, Newfound-
land (MUN) for trace-element analyses using inductively
coupled plasma — mass spectrometry (ICP-MS). Detection
limits, precision and accuracy are discussed in a companion
paper (Bath and Logan, 2006).

This report focuses on the geochemical characteriza-
tion of the Triassic basalt stratigraphy across the axis of the
Quesnel arc at the latitude of Quesnel Lake, in the vicinity
of the alkalic Cu-Au porphyry deposit at Mount Polley.
Thirty-seven basalt samples are discussed in this report.
Samples of the volcanic units have moderate to high loss-
on-ignition values (0.99-4% LOI). This data set was com-
plemented by whole-rock analyses from published sources
(Bloodgood, 1987; Panteleyev et al., 1996; Fraser, 1995).

RESULTS

Major Oxides

Major and trace-element compositions of representa-
tive volcanic rocks from the Nicola Group are provided in
Table 1. Normative calculations, discriminant and
bivariant plots use chemical data that are recalculated to
100% volatile free. Overall, the rock compositions are
comparable to Nicola lavas from the southern (Mortimer,
1987), central (Barrie, 1993) and northern (Takla; Dostal et
al., 1999) Quesnel Terrane (Souther, 1977). The silica con-
tent varies between 45 and 52 wt%. The rocks have a mod-
erately high content of alkalis (5—7 wt% Na,0O+K,0) and
plot as transitional to alkaline on the total alkali versus sil-
ica diagram (Irvine and Baragar, 1971) and as subalkaline
basalt and andesitic basalt on the Zr/TiO, versus Nb/Y im-
mobile element plot (Fig. 4) of Winchester and Floyd
(1977), aresult of the relatively depleted Nb and lower high
field strength elements (HFSE; e.g., <1.1 wt% TiO,) that
characterize volcanic arc rocks. Intraplate rifts and conti-
nental alkalic suites are enriched in Nb and TiO; relative to
volcanic rocks formed at destructive plate boundaries, and
plotto theright of the shaded area in the alkali basalt field.

An AFM plot (Fig. 5) shows a calcalkaline trend for the
majority of the sample suite. Basalt from the Eureka peak
area (Bloodgood, 1987) and stratigraphically equivalent
lavas from the eastern side of the arc at Spanish Mountain
(SM), east of Spanish Lake (SL) and in the Viewland Peak
area (VP) straddle the tholeiitic-calcalkaline trend. These
basalts are interlayered with Middle to Upper Triassic sedi-
mentary rocks, and are older than the main arc and may
therefore represent early volcanism and initiation of arc
magmatism (Bloodgood, 1987; Panteleyev et al., 1996).
The typically high MgO contents (mean values of 7—
10 wt%; Table 1) indicate that these volcanic rocks repre-
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Figure 4. Zr/TiO2 vs. Nb/Y plot of Triassic Nicola Group volcanic
rocks showing compositional range and classification for Mount
Polley area (after Winchester and Floyd, 1977). Rock type codes:
LENhv, hornblende phyric basalt; LXNv, analcime-phyric basalt;
LTNvpv, pyroxene-phyric basalt; MLENv, hornblende-pyroxene
metabasalt; small square, this study; large square, data from
Bloodgood (1987).
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Figure 5. AFM ternary diagram showing calcalkaline nature of
Mount Polley igneous rocks. Rock type codes as in Figure 4 plus
LTNmn, Late Triassic regional intrusive rocks (diorite to
monzonite) and LTBJsy, Bootjack stock syenite.

\ AVA AV \ \

sent a primary magma that has not under gone substantial
fractionation (see Fig. 6).

When plotted against an index of fractionation such as
wt% MgO (Fig. 6), the major-element abundances can be
used to determine the cogenetic relationships between dif-
ferent rock units. With the exception of a subset of the most
primitive Eureka Peak basalt (Bloodgood, 1987;
Panteleyev ef al., 1996, unit 1A), the smooth linear trends
for the remaining samples suggest they can all be related by
simple fractional crystallization. The FeOr, TiO,, P,0s,
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Figure 7. Primitive mantle—normalized (Sun and McDonough, 1989) multielement plots for Late Triassic Nicola Group basalt and basaltic
andesite (LXNv) from the central part of the arc (A and C) and Middle to Late Triassic ‘black phyllite’—hosted volcanic rocks (MLTNv) from
the eastern side of the arc (B and D). Shaded areas in A correspond to the range of values for Late Triassic regional diorite to monzonite in-
trusive rocks (dark) and syenite of the Bootjack stock (light). Plot C compares average pattern of pyroxene, analcime and hornblende-
phyric basalts with a typical calcalkaline island-arc basalt from the Sunda Arc (Jenner, 1996). Plot D compares average pattern of Viewland
Peak metabasalt and pillowed basalt (L05-12-100) from Spanish Mountain with OIB, E-MORB and N-MORB from Sun and McDonough

(1989).

CaO and Ni values display positive correlations, whereas
Al,03, Na,O and SiO, and Na,O+K,O correlate negatively.
The major-oxide trends show the least differentiated (i.e.,
highest wt% MgO) to be the oldest basalt of unit 1A, and
show progressive evolution and differentiation from
pyroxene to analcime and finally hornblende-bearing ba-
salt and the coeval/cogenetic intrusive suites of diorite-
monzodiorite-syenite (Panteleyev et al., 1996; this study).
The pyroxenite that intrudes the Gavin Lake sedimentary
succession is more primitive and shows better overall posi-
tive correlation with differentiation trends than the Mount
Polley pyroxenite (Fraser, 1994). In fact, the Mount Polley
pyroxenite sample has an intermediate MgO value relative
to the most primitive basalt and the most fractionated
syenite samples from the Bootjack stock (Bath and Logan,
2006). Overall, the differentiation trends are normal and
consistent with fractional crystallization of olivine,
clinopyroxene, Fe-Ti oxides, plagioclase and apatite. The
increase in Al,O5 and SiO, and the sharp decrease in CaO
and MgO beginning at approximately 9 wt% MgO proba-
bly reflect fractional crystallization (removal) of
clinopyroxene. The sharp decline in Ni (and Cr) supports
an early fractionation of olivine and clinopyroxene, and the
general increase in P,Os and TiO, contents with decreasing
MgO reflects early suppression and subsequent crystal
fractionation of apatite and sphene (Fig. 6).

Geological Fieldwork 2005, Paper 2006-1

The K,O values show no correlation, whereas Na,O
shows a strong negative correlation, as does Na,O+K,0
with the exception of the highly differentiated and potassic
Bootjack stock syenite.

Trace Elements and Rare Earth Elements

Trace and rare earth element (REE) abundances of rep-
resentative volcanic rocks from the Nicola Group are given
in Table 2.

Mafic rocks from the central belt are basalt and basaltic
andesite. They have TiO, contents of 0.7-0.85 wt% and
low Nb contents ranging from <3 to 7 ppm (Table 1). The
chondrite-normalized REE patterns for the basalt from the
central belt are characterized by mean light rare earth ele-
ment (LREE) enrichments (La/Ybeny=3.4,3.9 and 5.6) and
a downward sloping pattern toward the heavy rare earth el-
ements (HREE). The HREE are essentially flat, (<10 times
chondrite, not shown). Primitive mantle-normalized trace-
element patterns of the Central arc basalt suite (LKNpv,
L'KNav and LKNhv) have broadly similar patterns (Fig. 7A,
C). All are characterized by moderate negative Nb anoma-
lies relative to Th and La, and all possess negative Ti anom-
alies and a generally downward sloping profile from LREE
to HREE. The geochemical patterns for the basalt, and a
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suite of Late Triassic diorite-monzonite-syenite intrusive
rocks collected from the study area, are similar and suggest
that they are cogenetic. Also shown is the trace-element
pattern of the Late Triassic Bootjack syenite stock, with its
higher concentrations of incompatible elements (left side
of diagram) and lower concentrations of compatible ele-
ments (right side of diagram) compared to the regional
diorite and basalt, which is consistent with fractionation
from a dioritic parent magma (Bath and Logan, 2006).
Primitive mantle-normalized mean trace-element values of
the hornblende, analcime and pyroxene-phyric basalts
(Fig. 7C) are variably depleted but closely parallel the pat-
tern for calcalkaline-arc basalt from the Sunda arc (Jenner,
1996), which supports the field relationships (i.e.,
interlayered breccia flows and coarse to fine tuff, polylithic
breccia and epiclastic deposits).

The mafic volcanic rocks from the eastern volcanic
belt (Spanish Lake, Spanish Mountain and Viewland Peak
suites) are subalkaline basalt and andesite. They have simi-
lar TiO, contents 0of 0.7—1.0 wt% and low Nb contents of 3—
14 ppm (Table 1), but show different trace-element abun-
dances and multielement patterns when compared.
Chondrite-normalized REE patterns for the basalt from the
Viewland Peak suite are characterized by mean LREE en-
richments (La/Ybcny = 2.8) and a downward sloping pattern
toward the HREE, but the basalt from Spanish Mountain is
characterized by an upward sloping pattern toward the
HREE. The HREE are essentially flat (~10 times chondrite
for VP and 20 times chondrite for SM, not shown). The
primitive mantle—normalized trace element patterns of the
Viewland Peak and Spanish Mountain basalts (Fig. 7B, D)
are characterized by depletions in the LREE (La, Ce) and
most incompatible elements (Th, Nb), and therefore reflect
typical depleted-mantle sources. Both have a positive Nb
anomaly relative to Th and La, and positive Zr and Ti anom-
alies. They have flat or slightly negative slopes that closely
overlap the global compilation patterns (Sun and
McDonough, 1989) for enriched mid-ocean ridge basalt
(E-MORB) and normal mid-ocean ridge basalt (N-
MORB), respectively. The primitive mantle—normalized
trace-element patterns for the Spanish Lake basalt are simi-
lar to patterns for subduction-generated arc basalt, but
show elevated incompatible elements (Th, Nb) in
comparison to central belt alkaline basalt.

On the Zr-Y-Ti tectonic discrimination diagram (after
Pearce and Cann, 1973; Fig. 8), which is used to distinguish
non-arc basalt (high Ti/Y ratios) from other magma types,
all of the basalt from the central volcanic belt plots in arc-
basalt fields, specifically fields A (tholeiitic volcanic-arc
basalt, VAB) and B (MORB and calcalkaline VAB), with
three metabasalt samples (ML RNvV) from the eastern side of
the arc (Viewland Peak area) plotting in field C
(calcalkaline VAB). The distinction between fields A and B
and field C can be modelled by upper crustal assimilation,
which changes the composition from the average N-MORB
mantle toward average upper crustal compositions (higher
Zr values; Pearce, 1996). All of the basalt from the central
volcanic belt has high-field-strength element (HFSE)
abundances that are characteristic of VAB (high Th/Y ratios
and Nb depletion) and plot in the calcalkaline (Hf/Th ratios
<3) portion of the arc-basalt field on Figure 9 (after Wood,
1980). A single sample of pillowed basalt from Spanish
Mountain falls into the MORB field (A).
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Figure 8. Tectonic discrimination diagram based on Zr, Ti, Y (after
Pearce and Cann, 1973), used to distinguish non-arc basalt (high
Ti/Y ratios) from other magma types and a partial separation of
MORB and VAB. MORB plot in field B, calcalkaline VAB plot in
fields B and C, tholeiitic VAB plot in field A and C, and non-arc
within-plate basalt (WPB) plot in field D. Symbols as for Figure 3.
All basalt and basaltic andesite from the central volcanic belt plot
within fields A and B, with the exception of three basalt samples
(MLENv) from the eastern side of the arc (Viewland Peak area),
which occupy field C.

Hf/3

Figure 9. Tectonic discrimination diagram based on Th, Hf, Ta (af-
ter Wood, 1980), used to distinguish arc basalt (high Th/Ta) and
theoretically between calcalkaline basalt, tholeiitic-arc basalt and
non-arc basalt. Basalt and basaltic andesite from the central volca-
nic belt fall within the calcalkaline-arc basalt field (D). A single pil-
lowed basalt sample from Spanish Mountain plots within the
MORB field (A).
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DISCUSSION

The Late Triassic Takla and Nicola rocks of Quesnellia
have features of shoshonitic rocks derived from island arcs
(de Rosen-Spence, 1985; Mortimer, 1987; Barrie, 1993;
Pantelyev et al., 1996; Nelson and Bellefontaine 1996),
similar to the Late Triassic Stuhini rocks of Stikinia (Logan
and Koyanagi, 1994; Logan, unpublished data, 2005). Low
initial Sr ratios and eNd values (Preto et al., 1979; Smith et
al., 1995; Lang et al., 1995) indicate a primitive
intraoceanic setting that was not underlain by continental
(enriched-mantle) material.

Arc basalt is derived from essentially two sources; the
subarc mantle wedge and an aqueous fluid and/or melt
(adakitic lavas; Kay, 1981; Peacock et al., 1994) derived
from the subducted slab (Davies and Stevenson, 1992;
Kerrich and Wyman, 1996). Dehydration of the slab at
depths of approximately 100 km releases fluids that
metasomatize the overlying subarc mantle wedge (MORB-
like; Pearce and Peate, 1995), enriching it in the volatiles,
S, SiO, and large-ion lithophile elements (LILE) such as
Rb, K, Cs, Ba and Sr (Tatsumi ef al., 1986; de Hoog et al.,
2001). Certain high-field-strength elements (HFSE), such
as Ti, Nb and Ta, are not mobilized (conservative elements;
Pearce and Peate, 1995) but are retained in the downgoing
slab. Melting of the subarc mantle wedge produces primary
basaltic magmas that are distinguished from MORB by
their higher H,O and LILE and anomalously low Ti, Nb and
Ta contents (Richards, 2003). These magmas rise to the
base of the crust where they undergo a multistage process
involving crustal melting, assimilation, storage and
magma homogenization (“MASH’ model of Hildreth and
Moorbath, 1988).

In southern BC, the Quesnel Terrane is an isotopic and
geochemically primitive arc complex that formed above an
east-dipping subduction zone (Cache Creek Terrane).
Early Mesozoic magmatism responsible for construction of
the arc is characterized by calcalkaline and alkaline stages
of development. Arc magmatism migrated eastward with
time, beginning in the west, ca. 212 Ma, with development
of Cu-MozAu deposits at Highland Valley and Gibraltar
that are related to calcalkaline intrusions of the Guichon
plutonic suite (Woodsworth et al., 1991). At the latitude of
Mount Polley (east of Gibraltar), the majority of the arc
consists of Na and K-rich, submarine to subaerial lava
flows and cogenetic alkaline intrusions that represent
~20 m.y. (Norian stage) of alkaline magmatism. The chemi-
cal trends of the basaltic rocks change over time (up stratig-
raphy) from primitive eastern basalt (MLKNv) and
pyroxenite to more evolved/felsic central basalt (LKNv).
They overlap and parallel the chemical evolution of the
Late Triassic intrusions and are likely cogenetic.
Magmatism culminated between 204 and 200 Ma (Copper
Mountain plutonic suite of Woodsworth ez al., 1991) with
the intrusion of evolved monzonitic to syenitic bodies and
Cu-Au porphyry mineralization. The causative magma in a
mineralized porphyry system provides the heat, H,O, S and
metals to the system. These elements are exsolved from the
magma and produce the brecciation, alteration and Cu min-
eralization. Bath and Logan (2006) present chemistry and
petrography that favours the Late Triassic Bootjack stock
(Bailey and Archibald, 1990) as a late fractionate/compo-
nent of the causative magma responsible for mineralization
at Mount Polley.

Geological Fieldwork 2005, Paper 2006-1

Uplift and erosion of the fore-arc produced sub-Juras-
sic unconformities as magmatism shifted east and culmi-
nated with intrusion of calcalkaline plutons at 195 Ma and
deposition of distal volcaniclastic and younger sedimen-
tary rocks across the terrane. In the study area, only small,
high-level, quartz-bearing calcalkaline intrusions repre-
sent the voluminous Early Jurassic calcalkaline
magmatism that is preserved in the southern and northern
Quesnel Terrane. To the south, this magmatism is repre-
sented by an arc-parallel belt of 195 Ma calcalkaline
batholiths (Takomkane, Thuya, Wild Horse, Pennask) in
the eastern part of the Quesnel Terrane that represent the
roots of this Early Jurassic magmatic arc.

CONCLUSIONS

The basalt and trachyte of the Nicola Group have well-
developed high-field-strength element (Nb, Ta, Zr, Hf, Ti)
depletions, and Th, U, and large-ion lithophile element (Rb,
Ba, K, Sr) enrichment, which is typical of subduction-zone
magmas in the central belt. They have REE concentrations
similar to those of the Mount Polley igneous complex, con-
sistent with a similar melt source and a cogenetic relation-
ship through fractional crystallization.

The eastern volcanic belt contains metavolcanic units
with geochemical characteristics of non-arc basalt that rep-
resent initiation of volcanism either in a back-arc basin or
transitional volcanic arc-marginal basin setting. The latter
model is supported by geochemistry and Nd isotope char-
acteristics of Upper Triassic sedimentary rocks in the
southern Quesnel Terrane (Unterschutz et al., 2002).

An interpretation that the rocks in the Quesnel Lake
area may have been erupted within mature island-arc set-
tings is consistent with the dominance of alkaline basaltic
over intermediate andesitic compositions, the shoaling of
the arc, and shallow-water deposition of limestone and re-
worked, locally derived volcaniclastic rocks.

The intrusive complex at Mount Polley represents one
of a number of Cu-Au-mineralized magmatic centres that
define the culmination of alkaline magmatism (Copper
Mountain plutonic suite of Woodsworth ez al., 1991) in the
Latest Triassic development of the Quesnel Terrane. An
eastward shift of magmatism in the Early Jurassic and the
return to mainly calcalkaline volcanism is marked by the
appearance of a quartz-bearing dacite and Early Jurassic
fossiliferous sedimentary rocks.
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