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Columbia Ministry of Energy, and is under the umbrella 
of the federal government’s Geo-mapping for Energy and 
Minerals program (GEM) that is specifically examining 
petroleum related geoscience of the Liard and Horn River 
basins. A major focus of this program has involved 
mapping of resources associated with surficial geology 
that are used during drilling and completion of shale gas 
wells (Huntley and Sidwell, 2010; Huntley and Hickin, 
2010). 

LOCATION AND REGIONAL GEOLOGY 
The Liard Basin is located in northeastern British 

Columbia, straddling the British Columbia – Yukon – 
Northwest Territories border (Figures 1, 2), spanning 
NTS map sheets 094N and O, and 095B and C. It is 
traversed by the Liard River and defines a relatively high 
plateau between the southern Selwyn Mountains and 
northern Rocky Mountains. Highway 77 runs along the 
eastern half of the basin and joins with the Alaska 
Highway, which cuts across the southern margin. 
Numerous petroleum development roads and forestry 
access roads extend from these two main highways across 
parts of the basin. Vehicle access across the Liard River is 
provided by a barge which originates at Fort Liard, 
Northwest Territories and terminates south of the 
confluence of La Biche River, where a road connects to 
the Beaver River gas field (Figure 3).  

The Liard Basin was originally defined on the basis 
of the thick Late Paleozoic succession in southeastern 
Yukon by Gabrielse (1967) and extended into 
northeastern British Columbia by Morrow et al. (1993) 
and Richards et al. (1994; Figures 4, 5). The Liard Basin 
formed subsequent to the Horn River Basin and is 
superimposed on the western part of the Horn River Basin 
Figure 2). The Bovie Lake structure marks the eastern 
margin of the Liard Basin, west of which is found an 
anomalously thick section of the Mississippian Mattson 
Formation (Figure 4). Subsequent Late Cretaceous 
movement on this fault has also preserved a thick 
sequence of Early to Late Cretaceous rocks within the 
confines of the basin (Leckie et al., 1991). Although 
development of the Liard Basin had no influence on 
depositional facies and thicknesses within pre-Mattson 
Formation units with shale gas potential (i.e. Muskwa, 
Horn River formations), its initiation has effectively 
marked the current western limit of shale gas 
development in the Horn River Basin. Prospective shale 
horizons in eastern Horn River Basin (Figure 2) have 
been dropped deeper by some 2000 m west of the Bovie 
fault (Figure 4), imposing drilling and completion 
challenges. A consequence of this within the Liard Basin, 
has been a shift to the exploitation of the stratigraphically 
higher Exshaw Formation, which is at a depth and thermal 
maturation that potentially can be economically 
developed for its shale gas resources. 

The Middle Devonian to Middle Mississippian Besa 
River Formation represents the western basinal 
equivalents of predominantly carbonate successions 

between the Upper Keg River and Debolt Formation 
(Figures 4, 5). Further west, in the Selwyn basin and 
Kechika Trough, these rocks correlate with the Devono-
Mississippian Earn Group (Figure 6). Selwyn Basin and 
Kechika Trough are deep water equivalents to Early 
Paleozoic carbonate shelf deposition along the Western 
Canada Sedimentary Basin (MacDonald Platform; Ferri et 
al., 1999) and are filled primarily by shales and siltstones 
of the Kechika and Road River groups. 

In the study area, Besa River shales and siltstones sit 
above carbonates of the Middle Devonian Dunedin 
Formation, which can be traced westward into the 
subsurface where it is equivalent to parts of the 
Chinchaga and Lower Keg River formations (Meijer 
Drees, 1994; Figure 5). During Upper Keg River and 
Slave Point deposition, a well defined barrier reef 
complex developed that marked the eastern limit of the 
Horn River Basin (Oldale and Munday, 1994; Figure 2). 
West of the barrier edge, shales of the Horn River 
Formation include two members, a lower radioactive, 
bituminous shale assigned to the Evie Member, overlain 
by shales of the Otter Park Member (Figures 4, 5). A 
transgression followed Slave Point deposition and pushed 
the shallow carbonate edge eastward (Leduc facies), 
leading to deposition of highly bituminous shales of the 
Muskwa Formation (Duvernay equivalent; Switzer et al., 
1994). Carbonate conditions were re-established to the 
west during Frasnian and Famennian times, resulting in 
deposition of Kakiska to Kotcho formations along a broad 
shelf (Figures 4, 5). A major transgression occurs across 
the Devono-Mississippian boundary, represented by 
deposition of the highly radioactive and bituminous shales 
of the Exshaw Formation. Carbonate deposition again 
migrated westward in Early Carboniferous times, with the 
deposition of the Banff Formation and succeeding Rundle 
Group. 

In the subsurface, shales of the Fort Simpson 
Formation encompass the westward shale-out of 
carbonate units above the Muskwa Formation. Carbonates 
of the Banff Formation and Rundle Group disappear into 
basinal shales above the Exshaw Formation and transition 
into the Besa River Formation (Figures 4 and 5). 
Approximately 300 m of Besa River siltstones and shales 
equates to over 2000 m of carbonate and siltstone section 
along the Keg River barrier edge. 

The upper part of the Besa River Formation 
interfingers with the Middle to Late Mississippian 
sandstones, siltstones and minor carbonates of the 
Mattson Formation. These exceed 1000 m in thickness 
within the Liard Basin west of the Bovie fault structure. 
This fault has been interpreted as a Late Paleozoic 
extensional structure that was later re-activated during 
Laramide compression (Wright et al., 1994). This is based 
on the preservation of thick Mattson sands, and 
succeeding Kindle Formation, below the Permian 
Fantasque Formation west of the Bovie fault whereas only 
a thin Mattson section occurs below the Fantasque 
Formation east of the fault (Monahan, 2000; MacLean 
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(2008) which included Besa River rocks within the Liard 
Basin area. An assessment of the conventional 
hydrocarbon resources of the Liard Basin was produced 
by Monahan (2000). 

METHODOLOGY AND RESULTS 
A nearly complete section of Besa River Formation 

was measured and described through use of a 1.5 m staff 
along a west-facing valley, approximately 22 km 
southwest of Beavercrow Mountain (base of section; 
UTM 367107E, 6643192N; Zone 10, NAD 83; Figure 7). 
Representative chip samples were acquired across 2 m 
intervals along the entire section. Samples were split, with 
one group being analysed for whole rock, trace and rare 
earth element abundances at Acme Analytical 
Laboratories in Vancouver, and a second group, at 4 m 
spacings, for Rock Eval analysis at Geological Survey of 
Canada (GSC) laboratories in Calgary. A smaller sub-set 
of these samples will also be analysed by x-ray diffraction 
(XRD) at GSC laboratories for semi-quantative 
determination of mineral abundances. Another subset will 
be processed for their potential to contain palynomorphs 
for biostratigraphy. Separate samples were collected for 
thermal maturity determination at GSC laboratories in 
Calgary through reflected light microscopy. In addition, a 
hand held gamma ray spectrometer (RS-230 by Radiation 
Solutions Inc.) was used to measured natural gamma 
radiation every 1 m over a 2 minute time interval allowing  

the calculation of K (%), U (ppm), Th (ppm) and total 
gamma ray count. Data were plotted against depth and 
variation in total natural radiation along the section is 
approximately equivalent to the subsurface gamma ray 
trace routinely collected in oil and gas wells. This assists 
in the correlation of the outcrop section with equivalent 
rocks in the subsurface. 

Approximately 285 m of siltstone and shale 
belonging to the Besa River Formation were measured 
west of Beavercrow Mountain (Figure 8). The upper and 
lower parts of the Besa River Formation were not 
exposed, but examination of rocks to the north indicate 
approximately 15 m of missing Besa River rocks below 
the base of the Mattson Formation, and a structural 
section suggests some 25 m of covered rocks above the 
Dunedin Formation. 

Generally, the Besa River Formation consists of dark 
grey to black, carbonaceous siltstone and shale (Figure 8). 
Besa River rocks along the measured section can be 
subdivided into 6 units consisting of, from the base 
(Figure 9); 1) Tan to orange-brown or beige weathering, 
dark grey to black carbonaceous siltstone to blocky 
siltstone with shale partings (34 m; Figure 10a); 2) 34 m 
of dark grey to beige weathering, dark grey to black, 
fissile to blocky carbonaceous siltstone; 3) Rusty to grey 
or dark grey weathering, dark grey to black carbonaceous 
blocky siltstone and shale (32 m; Figure 10b); 4) Rusty to 
light grey weathering, grey to light grey, blocky to platy 

 

Figure 8. Aerial photograph of the measured section of Besa River Formation showing the character of exposed lithologies. The light 
coloured material is produced by the more siliceous siltstones of unit 4. Upper Besa River siltstones (unit 6) appear somewhat more 
recessive than the underlying siltstones of unit 5. 
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Figure 9. Lithologic section of Bessa River Formatioon measured along the eastern ppart of the Cariboou Range. 
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carbon content, suggesting precipitation of uranium either 
syngenetically during periods of higher anoxia or 
diagenetically within horizons rich in organic material. 
Although uranium concentrations appear to generally 
decrease towards the upper part of the section, thorium 
shows an increase in abundance. The concentration of 
potassium does not appear to correlate with the 
abundances of the other elements, and is probably tied to 
the mineralogy of the sediments being deposited. 

The carbonaceous (i.e. organic-rich) nature of these 
sediments is a reflection of the reducing conditions 
present during deposition (Goodfellow and Lydon, 2007). 
These very low oxygen conditions did not permit aerobic 
organic activity and led to the preservation of organic 
matter (Fowler et al., 2005). In these anoxic waters, 
bacteria that respire through reduction of sulphur became 
abundant, producing a large amount of reduced sulphur 
which could then be utilized in the precipitation of metal 
sulphides from any metalliferous brines being expelled on 
the sea floor (Goodfellow and Lydon, 2007). Even if 
these brines had sufficient reduced sulphur, this anoxic 
environment favoured the preservation of any precipitated 
sulphides. Oxygenated bottom waters, as in today’s 
oceans, would have led to the oxidation of the sulphides 
in the water column or along the sea floor, shrinking the 
size of, or totally eliminating, any sulphide mineralization 
(Force et al., 1983). 

BARITE AND SULPHIDE 
MINERALIZATION 

Barite and sulphide mineralization discovered in this 
section is located within the middle to upper part of unit 6 
(Figures 10f, 12a, b). This new showing is named the MT 
occurrence (MINFILE 094N 012). It contains 
mineralization similar to that described within the Scat 
occurrence some 10 km to the south (MINFILE 094N 
010; Burt, 1982). 

At the MT showing, barite nodules over 30 cm in 
diameter are found between the 198 and 202 m level of 
the section, where they constitute up to 15% of the section 
(Figure 10f, 12a, b). The nodules vary in morphology 
from smooth or composite spheres to spheres or coatings 
displaying colloform texture (Figure 12a). 
Morphologically, many nodules have one flat surface 
devoid of colloform texture, suggesting growth on the 
sediment surface (Figure 12b). Other nodules are 
essentially coatings, also suggesting they grew along the 
sediment surface (Figure 12b). These observations imply 
precipitation of barite from ocean waters and would 
support a hydrothermal vent source for the barium, as 
opposed to diagenetic precipitation within the sediment. 
Many of the nodules contain vugs lined with fine, 
prismatic, needle-like crystals consistent with barite, 
although their composition has not been confirmed by x-
ray diffraction. These vugs also give off a very strong 
fetid to petroliferous odour when broken. 

Sulphide mineralization is found at ten levels 
between 235.5 and 279 m of the section and manifests as 
beds 5 to 20 cm in thickness. Most of the sulphide beds 
are thin, less than 10 cm thick and consist of disseminated 
pyrite forming discontinuous horizons traceable laterally 
for several metres, suggesting they may be diagenetic in 
origin (Figures 12c-f). Only two beds (at 257.2 m and 
259.7 m) can be traced for over 30 m along strike (Figure 
12c) and display textures indicative of sedimentary 
exhalative processes (e.g. laminations and graded 
sulphides beds). Sulphide mineralization at 257.2 m is 10 
cm in thickness, contains up to 50% sulphides and 
displaying variation in sulphide contents suggesting 
settling from the water column (Figure 12e). A thicker 
sulphide bed (20 cm), with similar texture, occurs 20 cm 
above the first bed, but is only traceable for a few metres. 
The horizon at 259.7 m is 30 cm thick and traceable 
across the entire section (>50 m). This horizon consists of 
oxidized pyrite and abundant carbonaceous material 
containing remnant sulphides in the upper part (Figure 
12f). This horizon is also visible in the next gulley, 
approximately 250 m to the north.  

Chemical analysis of these beds (Table 1) suggests 
that pyrite constitutes the bulk of the sulphide 
mineralization. Interestingly, there are several horizons 
that are rich in Mn (0.2 to 0.4%), relatively poor in Ba, 
but elevated in Zn, Co and Ni. Although these horizons 
are rich in Fe, the highest horizons are comparatively poor 
in S, suggesting perhaps that the main iron-bearing 
mineral is a non-sulphide and likely a carbonate. This 
may be corroborated by the relatively higher Ca content 
of these horizons. These sulphur-poor horizons may 
reflect changing oxygen levels within the water column 
during deposition resulting in lower amounts of reduced 
sulphur. Mn, which is relatively soluble in anoxic waters, 
readily precipitates when the water column is oxygenated 
(Force et al., 1983). Alternatively, these iron-rich 
horizons may be diagenetic in origin (i.e. nodules). 
Concentrations of elements presented here are comparable 
to pyritic shales of the Akie Formation, in the upper part 
of the Earn Group of the Kechika Trough and correlative 
with the upper Besa River Formation (MacIntyre, 1998). 

DISCUSSION 

SEDEX-style mineralization in the Caribou 
Range 

Previous exploration, as part of the extensive 
exploration boom for SEDEX mineralization within the 
Selwyn and Kechika basins in the late 1970s to early 
1980s, led to recognition of anomalous levels of Pb, Zn, 
together with Ba mineralization within Besa River rocks 
of the Caribou Range (Burt, 1982). This mineralization 
has been catalogued as the Scat mineral occurrence 
(MINFILE 094N 010) and is located within the upper 
Besa River Formation exposed along the Scatter River, 
approximately 10 km due south of the current 
mineralization (Burt, 1982). Lithologic units, geochemical 
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Table 1. Geochemical analysis of several sulphide horizons from the upper part of the Besa River Formation, as measured 
within the study area. 

 

 
 
 
 

Sample FF10-116 FF10-117 FF10-162 FF10-165 FF10-168 FF10-169 FF10-171 FF10-173 FF10-176 FF10-177 FF10-179 FF10-181

Thickness 2 m 2 m 1 m 15 cm 10 cm 10 cm 30 cm 10 cm 8 cm 5 cm 20 cm 10 cm

Elevation
198-      

200 m
200-     

202 m
225-     

226 m 243 m 257.2 m 257.5 m 259.7 m 262.3 m 263.8 m 264.1 m 268.7 m 279 m

Element Accuracy
Detection 

Limit

Au ppb 0.5 <0.5 <0.5 <0.5 0.8 <0.5 0.6 <0.5 0.5 <0.5 <0.5 <0.5 <0.5

Mo ppm 0.1 0.6 0.5 0.7 1.9 0.7 0.8 1.5 0.4 0.6 1 0.3 0.5

Cu ppm 0.1 3 8.1 11.1 13.1 30.7 37.5 15.8 44.9 22 26.2 7.7 6.8

Pb ppm 0.1 34 13.5 27.9 8.2 32.2 21.1 17.5 37 17.6 18.7 10.3 6.9

Zn ppm 1 8 16 9 567 57 109 68 92 358 92 221 308

Ag ppm 0.1 0.7 0.9 0.7 0.3 0.6 0.7 1 1.1 1.1 1.5 0.4 0.2

Ni ppm 0.1 4.4 6.3 2.2 261.1 43.2 57.4 30.8 43.2 82 70 32.6 60.8

Co ppm 0.2 0.7 0.6 0.2 41.7 7.5 9.4 3.5 5.2 8.8 8.7 4.9 16.6

Mn ppm 1 28 65 30 3793 88 88 98 108 201 168 1973 2997

Fe % 0.01 0.74 1.18 1.04 39.87 25.24 19.82 11.97 34.19 16.11 9.96 30.62 31.7

As ppm 1 3 1 4 6 9 11 7 7 9 12 4 9

U ppm 0.1 1.6 3.3 1.3 1.3 1.9 2.8 2.4 1.8 2 2.7 0.7 0.8

Au ppm 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Th ppm 0.1 2.8 4.7 1 1.8 3.8 5.4 5.9 2.5 7 8.6 2.9 1.8

Sr ppm 1 34 61 12 22 33 49 31 22 34 45 26 49

Cd ppm 0.1 <0.1 0.2 <0.1 0.5 <0.1 0.2 <0.1 <0.1 0.4 <0.1 0.4 0.3

Sb ppm 0.1 1.1 0.6 0.9 0.2 0.7 0.7 0.6 0.4 0.5 0.7 0.3 0.3

Bi ppm 0.1 0.2 0.2 <0.1 <0.1 0.1 0.2 0.2 <0.1 0.2 0.2 <0.1 <0.1

V ppm 1 236 229 21 59 139 204 190 70 179 218 69 91

Ca % 0.01 0.02 0.05 0.01 0.36 0.12 0.1 0.02 0.28 0.05 0.03 0.57 1.17

P % 0.001 0.011 0.037 0.016 0.042 0.072 0.066 0.031 0.178 0.026 0.031 0.037 0.162

La ppm 0.1 3.7 16.2 4 16.2 26.7 35.5 23.8 16 25.6 28.9 13.4 18.6

Cr ppm 1 99 101 14 37 59 86 73 38 90 99 34 27

Mg % 0.01 0.41 0.32 0.02 0.75 1.53 1.67 2.01 0.88 2.44 1.99 5.6 4.75

Ba ppm 1 5720 4014 845 64 137 236 36 12 99 138 159 284

Ti % 0.001 0.408 0.245 0.058 0.059 0.145 0.196 0.201 0.089 0.26 0.29 0.103 0.086

Al % 0.01 7.16 5.17 0.5 1.87 3.71 4.91 5.06 2.35 6.95 7.94 2.81 1.77

Na % 0.001 0.195 0.13 0.017 0.016 0.01 0.03 0.017 0.006 0.053 0.13 0.014 0.011

K % 0.01 3.03 2.02 0.12 0.18 0.04 0.4 0.14 0.03 0.4 0.96 0.03 0.02

W ppm 0.1 1.4 0.9 0.3 0.2 0.5 0.7 0.7 0.4 0.7 0.9 0.4 0.4

Zr ppm 0.1 87 62.7 16.4 24.2 43.3 61.9 61.9 27.8 61 71.2 33.2 38.9

Ce ppm 1 10 38 8 26 64 79 50 31 51 61 26 37

Sn ppm 0.1 2.4 1.4 0.3 0.7 1.1 1.5 1.1 1.1 1.7 2.2 0.8 0.5

Y ppm 0.1 2.6 10.6 2.1 69.2 23.8 27.7 18.2 23.9 16.3 19.1 14.9 28.9

Nb ppm 0.1 10.7 6.7 1.6 1.8 5 6 6.8 2.8 7 9 3.4 2.8

Ta ppm 0.1 0.7 0.4 <0.1 0.1 0.2 0.3 0.4 0.2 0.4 0.5 0.2 0.1

Be ppm 1 2 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1

Sc ppm 1 9 9 1 5 9 12 8 8 11 14 5 7

Li ppm 0.1 18.7 12.3 14.2 30.2 59.4 69.4 70.4 30.6 135.7 132.4 40.8 40

S % 0.1 0.3 0.1 0.2 4.2 >10.0 >10.0 2.6 >10.0 5.6 2.2 0.4 0.4

Rb ppm 0.1 125.9 95.4 4.1 9.8 2.3 20.1 6.9 0.6 18.1 44.3 <0.1 0.1

Hf ppm 0.1 2.3 1.6 0.4 0.4 0.8 1.3 1.3 0.6 1.5 1.8 0.7 0.5

Analysis performed at ACME Analytical Laboratories Ltd., Vancouver, BC.

Au; 0.5g sample leached in hot Aqua Regia and analyzed by ICP-MS.

All other elements; 0.25g processed by 4-acid digetstion (HNO3-HClO4-HF and HCL) analyzed by ICP-MS.
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precluded any estimate on distance to the vent system. 
The presence of bedded sulphide mineralization 
associated with nodular barite in the current study area 
supports the inference that this is of hydrothermal origin 
and that it may be in a more proximal setting to the source 
of the mineralization. 

REGIONAL CORRELATIONS AND 
METALLOGENY 

Besa River rocks in the study area can be broadly 
correlated with the Earn Group of the Kechika Trough 
(Figure 6). Units 1 through 5 most likely correlate with 
cherty argillite, carbonaceous siliceous shale and lesser 
black carbonaceous siltstone and shale of the Middle to 
Late Devonian Gunsteel Formation (MacIntyre, 1998). 
The succeeding more recessive and crumbly siltstone and 
shales of unit 6 are probably correlative to recessive dark 
grey siltstone of the Akie Formation, postulated to be Late 
Devonian to Early Mississippian in age (MacIntyre, 
1998). 

Correlation of the outcropping Besa River Formation 
with subsurface formations to the east is suggested based 
on the total gamma ray trace across the measured section 
(Figures 13, 14). In the subsurface, as the Keg River reef 
and successive Devonian and Mississippian carbonate 
successions shale out westward into fine clastics of the 
Horn River, Fort Simpson and Besa River successions, 

the distinctive radioactive shales of the Evie, Muskwa and 
Exshaw formations can be traced across into the thick, 
monotonous siltstone sequence. The Exshaw Formation 
can be traced with confidence as it forms a regional 
marker horizon throughout a large part of the Western 
Canada Sedimentary Basin. The Evie shales above the 
Lower Keg River carbonates also define a distinctive 
package, and together with the succeeding Muskwa 
horizon define a recognizable sequence. 

Suggested correlations for several wells west of the 
Liard River are depicted in Figure 14. The Exshaw 
Formation can be traced into the strongly radioactive 
central part of the Besa River section, and the lower most 
radioactive zone equates to the Muskwa Formation. 
Approximately 25 m of basal Besa River siltstones are 
covered; they are assumed to represent the Evie member 
of the Horn River Formation. The siltstones below 
Muskwa-equivalent rocks would be equivalent to the 
Otter Park siltstones, and those between the Muskwa and 
Exshaw horizons to the Fort Simpson Formation. These 
correlations also correspond broadly to the main 
lithologic units described previously: unit 1 corresponds 
to the Otter Park Member, units 2 and 3 to the Muskwa 
Formation, unit 4 to the Fort Simpson Formation, and unit 
5 to the Exshaw Formation (Figure 14). Note that the 
distinctive light grey weathering panel within Besa River 
Formation exposures in the Caribou Range, which 
corresponds to the Fort Simpson equivalent horizon, is 

 
Figure 13. Map showing well locations used in the correlations depicted in Figure 14. Study area is shown by the star symbol. 
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position above the Exshaw marker within the section. In 
Kechika and Selwyn basins, major exhalative sulphide 
deposits are of Frasnian to Famennian age, with minor 
sulphide and barite mineralization within rocks as young 
as Early Mississippian (Paradis et al., 1998; Irwin and 
Orchard, 1991). This younger sulphide mineralization is 
roughly coeval with major volcanogenic massive sulphide 
deposits within arc sequences that lay immediately 
outboard of the Selwyn Basin (Wolverine deposit; Piercey 
et al., 2008 Paradis et al., 1998). 

CONCLUSIONS 
• Approximately 285 m of the Besa River 

Formation outcrops along the western margin of 
the Liard Basin and consists of light grey to 
black weathering carbonaceous siltstone to 
siliceous siltstone. The lower 25 m of the unit 
was not exposed. 

• The Besa River Formation has been subdivided 
into 6 informal units based on overall outcrop 
composition. 

• Rock Eval analysis of representative samples on 
4 m spacing across the outcrop indicate two 
zones of high organic carbon content, with levels 
reaching 6% by weight. 

• A gamma ray spectroscopic log across the 
outcrop defines several zones of higher radiation 
which correlate to higher concentration of 
uranium and organic carbon. 

• Correlation of the gamma ray trace with 
subsurface sections to the east suggests that the 
lower and upper radioactive zones in the outcrop 
correlate with the Muskwa and Exshaw markers, 
respectively. 

• Nodular barite and bedded pyrite mineralization 
was discovered in the upper part of the Besar 
River section (MT showing, MINFILE 094N 
012) which is similar to mineralization at the 
nearby Scat showing (MINFILE 094N 010). 
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