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INTRODUCTION 
Although the northern coastal area of British 

Columbia contains a significant number of tracts with 
high mineral potential assessments (Categories 1 and 2 
out of 10; BC Mineral Potential Assessment Program; 
Kilby, 1995; see also Mineral Resources Assessment – 
Mineral Potential, on Mapplace.ca), mineral exploration 
has been at low levels, as indicated by the small number 
of assessment reports and recorded mineral showings. Just 
as it has received comparatively little exploration interest, 
this area also has not seen systematic public geological 
mapping since the original Geological Survey of Canada 
work in the 1960s (Roddick, 1970; Hutchison, 1982).  

This report covers the second of a planned 3-year 
program study of the bedrock geology and mineral 
potential of the British Columbia North Coast area 
(Figure 1). The North Coast bedrock mapping and 
mineral deposit study is part of a cooperative, Natural 
Resources Canada (NRCan)-led endeavour, the Edges 
Multiple Metals – NW Canadian Cordillera (British 
Columbia and Yukon) Project. The Edges Project aims to 
increase our understanding of the far travelled 
lithotectonic terranes that make up the outer, accreted 
margin of the Canadian Cordillera and assess their 
metallic mineral potential (for a  detailed  project 
description  see  http://gsc.nrcan.gc.ca/ 
gem/min/edges_e.php). Edges is a contribution to the 
GEM Program (Geo-mapping for Energy and Mineral), a 
federal program that was initiated in 2008, to enhance 
public geoscience knowledge of northern Canada in order 
to stimulate economic activity in the energy and mineral 
sectors. The Edges project is a collaboration between the 
1 United States Geological Survey, Anchorage, AK 
2 University of Wisconsin at Eau Claire, WI 
3 University of Arizona, Tucson, AZ 
4 Geological Survey of Canada, Vancouver, BC 
This publication is also available, free of charge, as colour 
digital files in Adobe Acrobat® PDF format from the BC 
Ministry of Forests, Mines and Lands website at 
http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCat
alogue/Fieldwork. 

Geological Survey of Canada, British Columbia 
Geological Survey, and Yukon Geological Survey and 
involves the United States Geological Survey and 
Canadian and American academic contributors. 

The northern coastal area of British Columbia is 
underlain in part by rocks of the southern Alexander 
terrane, a large composite crustal fragment that underlies 
most of southeastern Alaska and extends farther north into 
part of the St. Elias Range on the Yukon-Alaskan border, 
(Figure 1; Wheeler et al., 1991). The Alexander terrane as 
a whole has attracted considerable exploration interest 
because of the volcanogenic massive sulphide deposits 
that it hosts, including Niblack and others on southern 
Prince of Wales Island, just north of the British 
Columbia-Alaska border, as well as a trend of Triassic 
deposits, notably Windy Craggy and the Greens Creek 
mine (Figure 1). In 2009, the first year of the North Coast 
project, geological mapping began on and near Porcher 
Island, at the northern end of Alexander terrane rocks 
along the north coast, in order to take advantage of 
proximity to the much better known stratigraphy in 
southeastern Alaska, and to nearby volcanogenic mineral 
deposits. Mapping in 2010 focused on the southern end of 
the terrane near Klemtu. In 2011, sparse exposures of pre-
plutonic stratified rocks in the intervening region will be 
documented. 

PREVIOUS WORK 
The northern coastal region of British Columbia was 

first mapped systematically as part of Geological Survey 
of Canada regional coverage of the entire Coast 
Mountains batholith and enclosed metamorphic rocks. 
The Porcher Island – Grenville Channel area was covered 
as part of the Prince Rupert – Skeena sheet (Hutchison, 
1982) and the Douglas Channel – Hecate Strait sheet 
(Roddick, 1970), and the area around Klemtu as part of 
the Laredo Sound sheet (Baer, 1973), all at a scale of 
1:250 000. The focus of these studies was on the plutonic 
rather than supracrustal rocks; in addition, modern tools 
for the analysis of metamorphosed volcanic and 
sedimentary sequences, including uranium-lead 
geochronology and trace element geochemistry, were not 
available at that time. Recent geological work in the 
northern coastal region of British Columbia has focused 
on understanding the structural and igneous history of the
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Coast Mountains orogen. Within the North Coast project 
area, Porcher Island and Grenville Channel have been 
visited by researchers in the course of much broader 
structural studies and plutonic syntheses (Chardon et al., 
1999; Chardon, 2003; Butler et al., 2006; Gehrels et al., 
2009). Detailed geology, in particular the pre-batholithic 
stratified rocks of the Alexander terrane, have not been 
thoroughly investigated. The sole exception to this is the 
ongoing, mostly unpublished, regional geologic work of 
George Gehrels, part of which is summarized in Gehrels 
(2001) and Gehrels and Boghossian (2000). 

REGIONAL GEOLOGICAL SETTING 
The Alexander terrane (Wheeler et al., 1991), which 

forms the principal focus of this project, is flanked by 
variably metamorphosed and deformed metasedimentary-
metavolcanic rock units that comprise the Banks Island 
assemblage to the west, and the Gravina belt and the 
Yukon-Tanana terrane to the east (Figure 2). With the 
exception of the Banks Island assemblage, which has only 
been recognized along the outer coast of northern British 
Columbia, these terranes continue northward into adjacent 
portions of southeastern Alaska, where equivalents have 
been described by Gehrels and Saleeby (1987; 1996), 
Rubin and Saleeby (1992), Saleeby (2000), and Gehrels 
(2001).  

Alexander terrane 
The Alexander terrane in southeastern Alaska and 

northern coastal British Columbia consists of a broad 
range of volcanic, sedimentary, and plutonic rocks and 
their metamorphic equivalents that are primarily of early 
Paleozoic age, overlain in places by thin younger 
sequences (Figure 3). In southeastern Alaska, these rocks 
have undergone limited post-Paleozoic metamorphism, 
deformation, and plutonism. Farther to the southeast, in 
northern coastal British Columbia, Cretaceous plutons 
become more widespread and the degree of Mesozoic 
deformation and metamorphism increases. In spite of 
these younger overprinting events, it is possible to 
correlate geologic units of southeastern Alaska with those 
of northwestern coastal British Columbia, and as such we 
use the nomenclature established in southeastern Alaska 
wherever possible. The following unit descriptions are 
taken from the well-preserved portion of the Alexander 
terrane in southern southeastern Alaska as decribed in 
Eberlein et al. (1983), Gehrels and Saleeby (1987) and 
Gehrels et al. (1996).  

The oldest rocks recognized in the Alexander terrane 
consist of Late Proterozoic to Cambrian metavolcanic and 
metasedimenary assemblages of the Wales Group (Figure 
3; Gehrels and Saleeby, 1987). Metavolcanic components 
range from mafic to felsic in composition, with lithic units 
ranging from metres to hundreds of metres in thickness. 
Relict textures indicate that protoliths of these rocks were 
pillowed flows, flow breccias, tuffaceous breccias, and 
tuffs. Metasedimentary units, similar in abundance to the 

metavolcanic rocks, consist of volcanic clast-rich 
metagreywacke, pelitc phyllite or schist, and marble. 
These assemblages are intruded by bodies of complexly 
interlayered gabbro, diorite, tonalite, and granodiorite, 
with layering commonly on a metre to decimetre scale. 
All rocks of the Wales Group have a strong foliation and 
lineation that are deformed by outcrop-scale open folds. 
Metamorphism ranges from greenschist facies (actinolite-
chlorite-epidote assemblages) to amphibolite facies 
(amphibole-biotite-muscovite and rare garnet). 

Rocks of the Wales Group in southeastern Alaska are 
overlain by a less deformed, Early Ordovician to Late 
Silurian suite of greenschist or lower metamorphic grade 
volcanic and sedimentary rocks referred to as the Descon 
Formation. Protoliths of these rocks are similar to those in 
the Wales Group. Dioritic to granitic plutons that are 
coeval (and probably cogenetic) with volcanic rocks of 
the Descon Formation are widespread.  

Lower Paleozoic strata are overlain unconformably 
by a variety of Devonian strata that commonly include a 
basal clastic sequence (conglomerates and sandstones, 
including redbeds) of the Karheen Formation, mafic 
volcanic rocks of the Coronados Volcanics and St. Joseph 
Islands Volcanics, and limestones of the Wadlegh 
Formation (Eberlein and Churkin, 1970). The basal 
conglomerate is interpreted to represent a major phase of 
uplift and erosion, the Klakas orogeny, as it overlies and 
contains clasts of a wide variety of older rocks (Gehrels 
and Saleeby, 1987). Younger, local unconformities are 
represented by conglomerates in the Late Devonian Port 
Refugio Formation. The Port Refugio Formation also 
includes fossiliferous and locally dolomitic limestone, 
radiolarian chert, mafic and felsic volcanic rocks, and 
volcaniclastic turbidites. The variability of facies and the 
presence of locally-derived conglomerates and bimodal 
volcanic sequences in these formations suggest that they 
were deposited in rift basins. 

Younger strata in the Alexander terrane include fine 
to medium grained clastic rocks, carbonate, minor basalt 
of Carboniferous and Permian age, and Triassic basal 
conglomerate overlain by bimodal volcanic rocks, 
carbonate, and volcaniclastic strata. The Upper Jurassic to 
Upper Cretaceous Gravina belt, described separately 
below, overlies the Alexander terrane.  

VMS potential of the Alexander terrane 
The Niblack prospect on southern Prince of Wales 

Island (Figure 1) is a copper-zinc-gold-silver-rich 
Kuroko-type volcanogenic massive sulphide deposit, with 
2.6 million tonnes of indicated mineral resource grading  
1.18 per cent copper, 2.33 grams per tonne gold, 2.19 per 
cent zinc and 33.18 grams per tonne silver; and 1.7 
million tonnes of inferred mineral resource grading 1.55 
per cent copper, 2.08 grams per tonne gold, 3.17 per cent 
zinc and 32.56 grams per tonne silver, as of July 2009 
(http://www.heatherdaleresources.com/hdr/Projects.asp). 
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The age of the Banks Island assemblage is 
constrained by the following relationships: 

1) detrital zircons recovered from two quartzites are 
as young as ~415 Ma (Silurian-Devonian 
boundary; G. Gehrels, unpublished data), 

2) an orthogneiss on Aristazabal Island that has 
undergone the regional deformation and 
amphibolite-facies metamorphism along with the 
adjacent marble and metabasite has yielded a U-
Pb age of 357 Ma (Early Mississippian), and 

3) plutons of Late Jurassic age are emplaced into 
these rocks (Gehrels et al., 2009) and at least 
locally intrude across the regional foliation and 
folds. 

These constraints suggest that at least some portions 
of the Banks Island assemblage accumulated during mid-
Paleozoic time.  

Yukon-Tanana terrane 

East of the Alexander terrane are metavolcanic and 
metasedimentary rocks of the Yukon-Tanana terrane that 
underlie the western margin of the Coast Mountains, 
along the length of southeastern Alaska and northern 
coastal British Columbia (Figure 2). In general, these 
rocks form a panel that dips eastward and youngs 
westward, suggesting an overall inverted stratigraphy. 
Using the nomenclature defined in southeastern Alaska 
(Gehrels et al., 1992), the Yukon-Tanana terrane includes 
the following units (Figure 3): 

1) Tracy Arm assemblage: This package contains 
marbles, quartzites, pelitic schists, and 
orthogneisses, which are commonly high in 
metamorphic grade and migmatitic. The age of 
this unit is constrained as Devonian or older 
based on ages from the overlying Endicott Arm 
assemblage.  

2) Endicott Arm assemblage: This unit has a 
distinctive basal conglomerate containing clasts 
derived from the Tracy Arm assemblage. 
Overlying strata include greenschist to 
amphibolite facies felsic to mafic metavolcanic 
rocks, pelitic schists, and minor marble. 
Available faunal and U-Pb geochronologic 
constraints suggest that most strata are 
Devonian-Mississippian in age.  

3) Port Houghton assemblage: These strata 
gradationally overlie the Endicott Arm 
assemblage and consist of greenschist to 
amphibolite facies metaturbidites, pelitic schist, 
and metabasalt. Available faunal constraints 
suggest that most strata are late Paleozoic in age.  

In northwestern British Columbia, the Ecstall belt 
(Alldrick, 2001; Alldrick et al., 2001; see also Gareau and 
Woodsworth, 2000) with its enclosed Devonian 
volcanogenic deposits, is also assigned to the Yukon-

Tanana terrane. The host units are equivalent to the 
middle, Endicott Arm assemblage of southeastern Alaska.  

Gravina belt 

Rocks of the Alexander terrane are overlain by Upper 
Jurassic to Upper Cretaceous (Oxfordian to Cenomanian) 
turbidites and subordinate mafic volcanic rocks of the 
Gravina belt. These rocks can be traced, generally along 
the inboard margin of the Alexander terrane, for the 
length of southeastern Alaska (Berg et al., 1972) and into 
northern coastal British Columbia (Figure 2). On Tongass 
Island in southeastern Alaska, and on the mainland east of 
Port Simpson (Lax Kw’alaams) rocks assigned to the 
Gravina belt also overlie a sequence of metavolcanic and 
metasedimentary rocks that have been assigned to the 
Yukon-Tanana terrane (Gehrels, 2001).  

Plutons of the western Coast Plutonic 
Complex 

Tonalitic to granodioritic plutons of the Coast 
Plutonic Complex, or Coast Mountains batholith, occur as 
isolated bodies in northern and western portions of 
northern coastal British Columbia, and increase in extent 
southeastward to form huge continuous bodies of plutonic 
rock (Gehrels et al., 2009; Figure 2). Compositionally, 
most are tonalite and granodiorite, with subordinate 
diorite and minor gabbro and leucogranodiorite. A large 
majority of plutons have hornblende abundances 
exceeding those of biotite, are rich in titanite, and some 
plutonic suites contain euhedral epidote that is interpreted 
to be magmatic in origin.  

According to a recent comprehensive 
geochronological summary (Gehrels et al., 2009), 
plutonic U-Pb ages record a history of eastward migration 
of emplacement across the Coast Mountains. The 
westernmost plutons are 160-140 Ma (Late Jurassic) 
tonalites and granodiorites. Early Cretaceous (120-100 
Ma) tonalites and granodiorites occur directly east of the 
Late Jurassic bodies. A nearly continuous band of 100-85 
Ma plutons (e.g. Ecstall pluton of Hutchison, 1982) 
underlies the western margin of the Coast Mountains, 
succeeded eastward by mainly tonalitic sills of ca. 70-60 
Ma (latest Cretaceous-earliest Tertiary) age, and the 
central and eastern portions of the Coast Mountains are 
underlain by huge 60-50 Ma (Eocene) granodiorite 
bodies.  

The emplacement depth of plutons also increases 
eastward across the Coast Mountains as shown by 
hornblende barometric studies conducted by Butler et al. 
(2001). This work suggests that westernmost Late Jurassic 
bodies were emplaced at depths of ~15 km, whereas Early 
Cretaceous plutons were slightly deeper, ~20 km, and 
farther east, mid-Cretaceous plutons of the Ecstall belt 
were emplaced at significantly greater depths, perhaps 25-
30 km. This increase in depth of emplacement correlates 
well with the eastward increase in metamorphic grade. 
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SUMMARY OF PORCHER ISLAND – 
NORTHERN GRENVILLE CHANNEL 
GEOLOGY 

The 2009 map area, comprising the vicinity of 
Porcher Island, northwestern Pitt Island and Grenville 
Channel, is underlain by metamorphosed supracrustal and 
plutonic rocks, intruded by late synkinematic Cretaceous 
plutons and cut by an array of northwest-striking sinistral 
faults that divide the geology of Porcher Island into a 
series of panels (Nelson et al., 2010a, b). Some faults 
mark major lithologic breaks, whereas others repeat 
similar sequences. The Grenville Channel fault (GCF) is 
the master fault; from it the Salt Lagoon and Useless fault 
splays cross Porcher Island. The northern continuation of 
GCF in Telegraph Passage may be an older, dextral 
structure (J. Angen, personal communication, 2010).  

Detailed field mapping, supported by U-Pb 
geochronology (Gehrels and Boghossian, 2000; Butler et 
al., 2006; J.B. Mahoney, unpublished data, 2010; G. 
Gehrels, unpublished data, 2010) has allowed positive 
identification of many units in the mapped area, and 
tentative assignment of others. Because they are based on 
more complete geochronological data, unit ages and 
assignments shown on the open file map of the area 
(Nelson et al., 2010b) supercede those in Nelson et al. 
(2010a). Most important, field identification in 2009 of 
possible Wales Group equivalents on Porcher Island 
(Nelson et al., 2010a) was refuted by subsequent 
Ordovician U-Pb ages. The main metavolcanic sequence, 
which comprises most of the Alexander terrane in this 
area, is correlated with the Ordovician Descon Formation 
(s.l.) of southeast Alaska. In particular, it resembles the 
rhyolite-bearing Moira Sound unit, which hosts the 
Niblack volcanogenic massive sulphide deposit. Clastic 
rocks on Kennedy Island and near Baron Point on the 
mainland are correlated with the Early Devonian Karheen 
Formation. 

Pre-Cretaceous plutonic bodies include the 
Ordovician McMicking and Hunt Inlet plutons, the Early 
Mississippian (?) Swede Point pluton, and a Devonian 
pluton in Porcher Inlet. Southwest of the metamorphosed 
supracrustal units, two metamorphosed igneous 
complexes, the Ogden Channel and Billy Bay complexes, 
are recognised. The Billy Bay complex is an intrusive 
equivalent of the Descon volcanic sequence. At this point, 
no conclusive age determination on the Ogden Channel 
complex has been made.  

LOCAL GEOLOGY – 2010 MAPPING 
NEAR KLEMTU 

The 2010 map area is located 100 km southeast of the 
2009 map area, in eastern Laredo Sound (103A) map 
sheet. It extends from Return Channel in the south to 
Graham Reach, on the eastern side of Princess Royal 
Island, in the north (Figure 1). As shown in Figure 5, most 

of this area is underlain by large plutons, with deformed 
and metamorphosed older stratified rocks of the 
Alexander terrane exposed in narrow pendants between 
them. The southern projection of the Grenville Channel 
fault passes through Klemtu Pass at Klemtu, then crosses 
Finlayson Channel and continues south through Jackson 
and Oscar passages and into southern Mathieson Channel. 

Because of difficult access to the island interiors and 
extensive forest cover, most of the observations that form 
the basis of our mapping were made along shorelines. 
These were supplemented with logging road traverses, 
helicopter spot checking and limited traverses, together 
with image analysis of 5-metre resolution SPOT-5 
satellite data captured between 2004 and 2006. 

The geology in Figure 5 is based on a 1:50 000-scale 
open file map in preparation that will be available in early 
2011 (Nelson et al., 2011). 

Stratified Units 

Mathieson Channel Formation  

Strong lithologic similarities between layered 
metasedimentary and metavolcanic pendants in the 
Alexander terrane scattered throughout the 2010 map area 
have led to their inclusion within a single map unit, herein 
named the Mathieson Channel Formation. Because the 
original depositional relationships and stratigraphic 
continuity of units is disrupted by strike-slip faults, 
several generations of intrusive rocks and repeated by 
isoclinal folding, no simple stratigraphic section can be 
constructed, and true thicknesses of the stratigraphic 
layers are uncertain due to folding and structural 
repetition. However, overall stratigraphy of the Mathieson 
Channel Formation is based on consistent internal 
lithologic features and contact relationships that are 
documented in the layered units throughout the area. 
Figure 6 shows an interpretive stratigraphic section of the 
formation, measured along the eastern shoreline of Pooley 
Island. It includes the following provisional stratigraphic 
members: 

1) Clastic-carbonate member 
Calcareous siliciclastic rocks and calcarenite 
make up the most widespread and abundant map 
unit. 

2) Marble member 
Clastic-poor carbonates grade into the main 
clastic-carbonate member. They form mappable 
bodies in the Graham Reach area.  

3) Conglomerate-greywacke member 
Coarse clastic units are locally important on 
eastern Pooley Island where they are interlayered 
with the clastic-carbonate member. They also 
occur at a few other sites in the area. 

4) Andesite-gabbro member 
Andesite sills and flows (?) are restricted to part 
of the eastern shore of Graham Reach. 
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origin. However, the resemblance of siltstone clasts to the 
Mathieson Channel Formation may provide a 
sedimentological link between the two units. In this case, 
pericontinental rocks possibly formed part of the 
basement to the Mathieson Channel basin, and the Jorkins 
Point conglomerate could have formed along a western 
scarp. Gehrels et al. (1996) argued that the Silurian-
Devonian Klakas orogeny involved interaction between 
the Alexander terrane and an outboard (present 
coordinates) continental fragment, such as is represented 
by the Banks Island assemblage (Gehrels and Boghossian, 
2000; Figure 2, this paper). The Jorkins Point 
conglomerate may represent a “missing link” between the 
two. Ongoing detrital zircon studies (J.B. Mahoney, 2010-
11) may shed light on this important potential correlation.  

Intrusive units 
As shown on Figure 2, over 90 per cent of the project 

area is underlain by Cretaceous intrusive rocks of the 
western Coast Plutonic Complex. In the original mapping 
of the Laredo Sound area (Baer, 1973), the granitoids 
were given unit assignments based on composition and 
degree of foliation. This study benefited from the use of 
uranium-lead zircon dates from representative sites in the 
area (Gehrels et al., 2009), as well as an enhanced 
appreciation for styles of deformation of the plutonic 
bodies. This has resulted in significant changes in the 
location of plutonic contacts and interpreted contact 
relationships.  

Uranium-lead ages reported by Gehrels et al. (2009) 
were important in the definition of three main plutonic 
suites in the study area (Figure 5). The oldest plutonic 
suite is based on an age of ca. 123 Ma from a site north of 
the east end of Jackson Passage (Figure 5), obtained from 
a penetratively deformed, amphibolite grade diorite-
pyroxenite-gabbro complex. In our mapping, this 
metaplutonic complex corresponds to most of Baer’s unit 
2 and some of his unit 3; several small bodies of 
trondhjemite, shown on his map as unit 5, are also part of 
the complex. The second plutonic suite ranges in age from 
ca. 104 to ca. 94 Ma and is dominated by large 
homogenous tonalite bodies that comprise much of Sarah 
and Roderick islands, adjacent to Finlayson Channel. 
These plutons range from comparatively leucocratic and 
unfoliated cores (Baer’s unit 5) to darker and more 
foliated margins (Baer’s unit 3). The youngest plutonic 
suite, designated as unit 14a in Baer (1973), have several 
ages of approximately 82 Ma. One small intrusion was 
mapped near James Bay, along the western shoreline of 
Mathieson Channel. This body continues southeast across 
the channel where a coeval age indicates that it also 
includes a body previously mapped as Baer’s unit 5. 
These significant changes emphasise the importance of 
new detailed mapping in concert with U-Pb dating as 
necessary to the understanding of the Coast Plutonic 
Complex.  

 
 

Early Cretaceous (ca. 123 Ma) mafic 
intrusive complex 

A deformed and metamorphosed, generally mafic 
plutonic suite outcrops extensively along both sides of 
Mathieson Channel. Similar bodies also occur northwest 
of Klemtu and north of Green Inlet. Diorite is the 
dominant phase, although variants from ultramafite to 
trondhjemite are present. Where large enough, the 
gabbro-ultramafite and trondhjemite bodies have been 
mapped separately from the main, undivided, dominantly 
dioritic bodies. It should be noted, however, that this suite 
shows strong variability even at outcrop scale (Figure 
11a).  

Diorites, which are most abundant throughout these 
complexes, are typically penetratively foliated to 
protomylonitic with asymmetric fabrics (Figure 11b). The 
foliation involves fine grained metamorphic hornblende, 
accompanied by quartz, calcic plagioclase, and titanite. 
Primary igneous minerals survive as pseudomorphs and 
porphyroclasts. Gabbro bodies contain areas of ultramafic 
cumulates, for instance near the eastern entrance of 
Jackson Passage. Ultramafites are metamorphosed to 
coarse grained tremolite/actinolite-clinochlore-biotite 
assemblages, in one case with bright green picotite (?) 
grains. Trondhjemites south of southern Mathieson 
Channel are highly foliated to protomylonitic, with a 
strong biotite fabric (Figure 11c). 

No relationships with angular discordance were 
observed between phases of this complex and the 
Mathieson Channel Formation. Foliation involving 
amphibolite-facies assemblages is strongly developed in 
both, parallel to their contacts. 

A U-Pb age of 123.3 ± 1.4 Ma was reported by 
Gehrels et al. (2009) from this suite, at a location 1.5 km 
north of the eastern end of Jackson Passage. The sample 
is from a medium-grained diorite with moderate foliation, 
which grades compositionally into gabbro and tonalite. 
The latest phase at this outcrop is a highly foliated 
trondhjemite/pegmatite dike (Figure 11a). 

An unusual body of partly protomylonitic 
granodiorite in Neekas Inlet is tentatively assigned to this 
suite, based on its occurrences as a northwest-aligned 
sliver, and its degree of deformation. In it, coarse igneous 
microcline grew in equilibrium with plagioclase, and 
large brown allanite grains are rimmed with epidote. 
Subsolidus mylonitic fabrics include wispy biotite trains 
partly overgrown by late muscovite and chlorite, quartz 
ribboning and extensive development of trains of small 
neoblasts. Well-formed epidote grains grow across biotite. 
This body will form part of a U-Pb geochronological 
study by M. Pecha, aimed at constraining ages of 
deformation (2010-11). 
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phases of sinistral motion on the Grenville Channel and 
related faults demonstrates an important mid-Cretaceous 
metallotect in coastal British Columbia. 

DISCUSSION 

The southern Alexander Terrane in coastal 
British Columbia 

In 2009 and 2010, detailed mapping was completed 
for the Alexander terrane near both ends of its extent 
south of Alaska. The two areas are underlain by 
stratigraphically different units. At the northern end of the 
Alexander terrane, Ordovician volcanogenic and related 
plutonic rocks are widespread on Porcher Island and 
northern Pitt Island. By contrast, the southern end of the 
Alexander terrane consists of a siliclastic, carbonate and 
bimodal volcanic unit named herein the Mathieson 
Channel Formation and speculated to be of Devonian age. 
Broadly similar clastic rocks are limited to a few locales 
in the north. Regionally, the oldest exposed Alexander 
terrane rocks progress in age from Precambrian-Cambrian 
Wales Group on southern Prince of Wales Island, through 
Ordovician rocks along the northern Inside Passage, to 
possible Devonian clastic rocks in the far south, in the 
Laredo Sound map area.  

Volcanogenic base metal mineral potential in the 
Alexander terrane is primarily associated with Ordovician 
arc sequences, notably the Moira Sound unit of Karl et al. 
(2009), which hosts the Niblack deposit on southern 
Prince of Wales Island. Thus the Mathieson Channel 
Formation in the current map area is considered 
unprospective for syngenetic volcanogenic deposits. The 
bimodal volcanic rocks in it erupted into a shallow basin, 
probably under oxidizing conditions as indicated by the 
possible presence of redbeds. 

The Mathieson Channel Formation and the quartzite-
siltstone-volcanic conglomerate at Jorkins Point are 
significant indicators of the tectonic history of the 
Alexander terrane. They reflect patterns of tectonics and 
sedimentation in the aftermath of the earliest Devonian 
Klakas orogeny. The Mathieson Channel Formation, with 
its dominant fine-grained siliciclastics and carbonates, its 
narrow intervals of bimodal and potentially alkalic 
volcanics, and its sporadic local influxes of very coarse 
clastic debris, is inferred to represent a rift basin fill.  

In the Alexander terrane of southeastern Alaska, the 
slightly older Silurian Heceta conglomerates have been 
speculated to be equivalent to late Caledonian rift basin 
sequences (Soja and Krutikov, 2008). A similar 
correlation will be possible for the Mathieson Channel 
Formation, if suspected Devonian ages are confirmed by 
detrital U-Pb geochronology of possible rift-related clastic 
rocks. 

The Jorkins Point conglomerate may have been 
deposited in or near the Mathieson Channel basin. The 
presence of Mathieson-like siltstone clasts supports this 
idea; although its depositional age is not yet known. The 

prominence of quartzite clasts in Jorkins Point 
conglomerate certainly demonstrates recycling of 
continentally derived debris, possibly due to arc-continent 
sliver amalgamation events such as the Early Devonian 
Klakas orogeny.  

Early to mid-Cretaceous sinistral tectonics, 
the Grenville Channel fault, and 
mesothermal gold mineralization 

In 2010 mapping, we have recognized the southern 
Grenville Channel fault near Klemtu as a locus of mid-
Cretaceous sinistral shearing, and also documented a 
somewhat older Early Cretaceous event of distributed 
shear during amphibolite facies metamorphism. Magmatic 
ages constrain the timing of the distributed sinistral shear 
event between 123 and 105 Ma, the age of the 
synkinematic versus postkinematic plutons. These 
observations provide an important dimension to the mid-
Cretaceous sinistral shear history of the northern 
Grenville Channel fault and its splays. Intense fabric 
development in the ca. 123 Ma plutonic suite indicates 
that this deformation is entirely Early Cretaceous, rather 
than a continuation of the mid-Jurassic accretion 
kinematics of Alexander and Yukon-Tanana terranes.  

The Early to mid-Cretaceous sinistral-oblique shear 
system, as recorded in exposed rocks, evolved from deep-
crustal, sinistral-reverse motion, to upper crustal, nearly 
pure transcurrent motion on the Grenville Channel fault, 
in which the latest synkinematic phases record greenschist 
facies metamorphism at high fluid pressures as shown by 
the presence of abundant chlorite, sericite and carbonate. 
Tectonically, regimes of partitioned transcurrent motion 
during exhumation from amphibolite to greenschist facies 
are recognized worldwide as highly favourable to the 
emplacement of mesothermal (orogenic) gold-quartz vein 
systems. Therefore it is no surprise that two significant 
ex-producing gold mines of this type lie proximal to the 
Grenville Channel fault, controlled by second and third 
order fault arrays. Another promising gold-quartz vein 
system, Yellow Giant (MINFILE 103G 021, 24, 25, 26, 
30), is located on Banks Island. It is currently held by 
Imperial Metals, who hope to begin an exploration 
program there in 2011 (Jim Miller-Tait, personal 
communication, November 2010). 

FUTURE RESEARCH DIRECTIONS AND 
MAPPING PLANS 

The third and final field season of the North Coast 
Project is planned for 2011. It will have the following key 
goals: 

1) Revisit and resample for geochronology parts of 
the areas previously mapped, in which present 
structural, lithologic and geochronometric data 
indicate unsolved problems. Examples of this 
include a) the Devonian pluton in Porcher Inlet, 
which cuts an older orthogneiss complex that so 
far has only yielded an apparent Jurassic U-Pb 
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Laserchron age displaying complex systematics 
(J.B. Mahoney, unpublished data, 2010); b) the 
Swede Point pluton on Porcher Island, which 
may be Mississippian or, alternatively, Mesozoic 
with inherited cores and c) Kumealon Inlet, 
where a structural contact between Alexander 
terrane and Yukon-Tanana terrane has been 
inferred (Nelson et al., 2010b), but detrital zircon 
data are conflicting, and where U-Pb dating of 
the metavolcanic rocks has yet to be done. 

2) Collaborate with Joel Angen, who is studying the 
fault systems on Porcher Island and along 
northern Grenville Channel as an M.Sc. thesis at 
the University of Waterloo. His work is 
sponsored by the Geological Survey of Canada 
as a contribution to the Edges project. 

3) Visit key mineral occurrences in the area, 
particularly the Yellow Giant mesothermal Au 
deposit and the Pitt volcanogenic prospect, in 
order to place them in regional context. 

4) Complete field investigation of the Alexander 
terrane between Grenville Channel and northern 
Princess Royal Island, targeting a full update of 
this part of the BC Geological Map in 2012. 

SUMMARY AND CONCLUSIONS 
In this second year of operation, the North Coast 

project can list the following accomplishments: 
Completion of geological map coverage of an area of 

30 by 50 km, covering the channels and islands between 
Return Channel and northern Princess Royal Island, in 
eastern Laredo Sound map area (103A). This map will be 
released as a British Columbia Geological Survey open 
file in early 2011 (Nelson et al., 2011). 

Rock units of the Alexander terrane of southeastern 
Alaska can be traced into northwestern British Columbia 
(Porcher and Pitt islands), including those that are known 
to host Ordovician volcanogenic massive sulphide 
mineralization. Farther south, in the current map area, the 
Alexander terrane is represented by younger, probably 
Devonian, clastic-carbonate strata. 

The Grenville Channel fault is a mid-Cretaceous 
sinistral fault of regional extent (>150 km). It and its 
splays form the tectonic framework for mesothermal 
gold-quartz vein systems including Surf Point on Porcher 
Island, Surf Inlet on Princess Royal Island, and probably 
Yellow Giant on Banks Island. This is an important new 
metallotect on the coast of British Columbia. 
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