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FOREWORD 
 

Geological Fieldwork 2010 

The British Columbia Geological Survey (BCGS) presents here the results of 2010 field surveys and 
geoscience research in the thirty-sixth edition of Geological Fieldwork.  The articles profile some of the 
considerable staff expertise housed in the Survey. The provision of new geoscience data about British Columbia is a 
key activity of the BCGS that leads to mineral tenure acquisition and increased mineral exploration activity in the 
Province. Most articles are contributions by Survey staff to the understanding of the geology, geochemistry, and 
mineral deposits of the Province. The volume also includes contributions from the Geoscience and Natural Gas 
Development Branch of the Ministry of Energy and other professional geoscientists.  

Late in 2010, the government of British Columbia reorganized the natural resource sector ministries. The 
BCGS moved to the new Ministry of Forests, Mines and Lands along with the Mineral Policy Branch, while the 
regional geologists and the remaining Mines and Minerals Division staff of the former Ministry of Energy, Mines 
and Petroleum Resources moved to the new Ministry of Natural Resource Operations. 

British Columbia Geological Survey Successes 

• The BCGS, in partnership with Geoscience BC, continued with the second year of a surficial geology and 
till geochemistry sampling program in the Colleymount map area southeast of Houston. The aim of the 
fieldwork is two-fold: to reconstruct the region’s glacial and ice-flow history and assess the economic 
potential of covered bedrock. 

• The second season of the North Coast project, jointly delivered with the Geological Survey of Canada 
(GSC), covered a map area of 30 by 50 kilometres. Mapping in 2010 focused on the southern end of the 
Alexander terrane near Klemtu. One highlight of this work is that the Grenville Channel fault is a mid-
Cretaceous sinistral fault of regional extent (>150 km). 

• The Iskut River project followed up on the 2009 summer program with mapping in the Hoodoo Mountain 
area north of the Rock and Roll volcanogenic massive sulphide deposit. This project is a partnership 
between Pacific North West Capital Corp., the University of Victoria, the GSC, and the BCGS.  

• The new Kutcho Creek project is a two-year bedrock mapping program initiated by the BCGS in 2010 in 
partnership with the Geological Survey of Canada and Kutcho Mining Corp. 

• The BCGS and the GSC began collaborating on a multi-year province-wide study of rare metals. This 
project falls under the renewed Targeted Geoscience Initiative program (TGI-4) of the GSC. 

• Our online interface MapPlace and its supporting site now exceed 11,000 web pages. This interface is used 
24 hours a day, 7 days a week by the exploration community world wide and plays an essential and 
growing role in attracting investment to the province.  

• Sixteen mineral resource assessments were completed to facilitate treaty negotiations and government land 
use planning.  

• The Property File database now features more than 25,000 documents online.  
• MINFILE continues to improve with 171 MINFILE occurrences updated and 20 new ones identified.  
• Staff of the BC Mineral Development Office in Vancouver hosted international investor delegations and 

led the mining Asia Investment Mission in November.  
• The BCGS initiated a new Emeritus Scientist program with two new members in 2010. 
• In 2010, the BCGS restarted its 8 member Advisory Subcommittee after a 6-year hiatus. The subcommittee 

includes 4 industry representatives from Geoscience’s BC Technical Advisory Committee and 4 
independent industry members that together provide advice on the technical activities of the Survey. 

• Survey geologists were key presenters at conferences and workshops around the province including 
Roundup, KEG, Minerals South, Minerals North, Smither’s Rock Talk, and led multiple industry field trips 
to the North Vancouver Island, Nechako, and Merritt areas.  

• The BCGS hosted a sold-out International Workshop on the Geology of Rare Metals in Victoria on Nov. 9th 
and 10th. The workshop was held in lieu of a fall BCGS Open House.  

 
D.V. Lefebure 

Chief Geologist 
British Columbia Geological Survey 
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British Columbia Geological Survey Activities in 2010 

by S.M. Rowins, L. Jones, D.V. Lefebure and J. Fredericks 

 
INTRODUCTION 

The British Columbia Geological Survey (BCGS) 
continued to play a leading role in the creation of a 
thriving, safe, and sustainable mining industry in British 
Columbia (BC) in 2010. This was accomplished by 
providing world-class geoscience expertise and data to 
government, industry, and the general public. These 
diverse groups use our expertise and data in different 
ways, but an underlying interest of all groups is to see the 
province position itself as a favoured destination for 
investment by the mineral exploration and mining 
industry. A great attribute of the BCGS in the fast-paced 
world of today is its ability to consistently deliver 
standardized high quality geological maps, geoscience 
reports, and online interactive geoscience databases in a 
very short timeframe. All geoscience products are made 
available online via MapPlace, the award-winning 
internet portal of the BCGS.  

The mineral exploration and mining industry 
continued to perform well throughout the 2008-10 
recession and helped lead the economic recovery in BC. 
Exploration expenditures in 2010 are estimated between 
$220 and $300 million, a significant increase over the 
$154 million spent in 2009. Nevertheless, funding levels 
for the BCGS in 2010 were similar to those in 2009. This 
resulted in the BCGS continuing to focus on creating new 
geoscience products from existing data and developing 
innovative programs that involved cooperative 
partnerships with universities, industry, and other public 
geoscience agencies. The BCGS continued its long 
collaboration with the Geological Survey of Canada 
(GSC) by participating in four joint field projects in 2010. 
Three field mapping projects were delivered as part of the 
GSC’s Geo-mapping for Energy and Minerals (GEM) 
program and a new multi-year rare metals project started 
under the auspices of the renewed Targeted Geoscience 
Initiative program (TGI-4). This rare metals project is a 
national initiative co-lead by George Simandl of the 
BCGS. Its overall objective is to develop new exploration 
methodologies and technologies in the search for rare 
metal deposits. Rare metals are important in the 
manufacturing  of  automobiles  and  many  high-tech 
 
This publication is also available, free of charge, as colour 
digital files in Adobe Acrobat® PDF format from the BC 
Ministry of Forests, Mines and Lands website at 
http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCat
alogue/Fieldwork. 

products such as cell phones and computers. Other 
important BCGS partners included Geoscience BC 
(GBC). In 2010, the BCGS and GBC collaborated on the 
delivery of a surficial mapping and till sampling program 
southeast of Houston in the Tahtsa Lake district of west-
central BC. Finally, as in past years, university students 
were employed as co-op interns and geoscience assistants 
throughout the year. Their help with the delivery of our 
field programs and work on improving our digital 
geoscience databases is greatly appreciated. 

BCGS FIELD ACTIVITIES 
A main priority of the BCGS is to generate new 

geoscience data and products, including bedrock and 
surficial geology maps and targeted mineral deposit 
studies. The locations of the 2010 field projects are shown 
in Figure 1. Projects are typically chosen with the 
objective of helping to diversify local economies by 
attracting mineral exploration activity that may lead to the 
opening of new mines. In many parts of the province, 
mineral exploration and mining are essential drivers of 
local employment and tax revenue, and directly support 
the development of regional infrastructure. 

Field mapping studies (Figure 1) continued in the 
North Coast (Nelson et al., this volume), Iskut River 
(Mihalynuk et al., this volume), and Tahtsa Lake (Ferbey, 
this volume) areas of the province. A new two-year GEM 
“Edges” project in northern British Columbia started in 
2010 with mapping in the Kutcho Creek area near the 
Kutcho Creek volcanogenic massive sulphide deposit 
(Schiarizza, this volume). 

In addition to these 2010 mapping projects, several 
other mineral deposit-related studies were brought to 
completion. These include age determinations of 
mineralization and porphyritic intrusive rocks at the 
Brenda and Woodjam porphyry Cu-Mo (Au) deposits 
(Logan et al., this volume), the creation of a new Mineral 
Deposit Profile for carbonate-hosted, nonsulphide Zn-Pb 
deposits in BC (Paradis and Simandl, this volume), a 
preliminary study of nickeliferous minerals in the Cassiar 
asbestos deposit (Hora et al., this volume), an 
investigation of placer gold nuggets with implications for 
bedrock sources from the Atlin placer camp (Mihalynuk 
et al., this volume), a study of the mineral potential of the 
western Liard Basin in northeastern BC (Ferri et al., this 
volume) and a discussion of the geochemistry of Permo- 
Triassic volcanic rocks of the southern Nicola Group west
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Table 1. Recent investments from Asia in BC-based companies. 
 
 
Year Asian Company Country BC Company Dollar Amount
2000 Korea Zinc Company Korea Teck Cominco US$6.1 million 

2005 POSCO Korea Elk Valley Corp. US$25 million 

2005 Zijin Mining Group China Pinnacle Mines $1.95 million 

2007 Northwest Non-Ferrous Int'l Investment China Yukon Nevada Gold Corp. $3 million 

2007 Sojitz Japan Thompson Creek Mining $100 million 

2007 Chinalco China Peru Copper  US$792 million 

2008 Mitsubishi Materials Japan Copper Mountain $28.7 million 

2008 Daewon Chemical Co.  Korea Nanika Resources $5 million 

2008 Jingduicheng Molybdenum Group/NWF China Yukon Zinc $100 million 

2008 Itochu Corp and LG Int'l Investment Japan 
Korea 

Compliance Clean Energy US$11 million 

2008 Kauilan Clean Coal Ltd. China Canadian Dehua US$5.5 million 

2008 Jilin Jien Nickel Industry Co. - China China Goldbrook Ventures Inc. $45 million 

2009 Toshiba Corp, Tokyo Electric, Japan Bank Japan Uranium One Inc. US$221.4 million 

2009 Daewon Chemical Co. Ltd. Korea Nanika Resources Inc. $5 million 

2009 China Gas Holdings Ltd. (HK) China IMW Industries Ltd. $20 million 

2009 Tongling Nonferrous Metals Group Holdings Co. Ltd. China Canada Zinc Metals Corp. $4.9 million 

2009 China Investment Corporation China Teck Resources Limited  $1.74 billion 

 Minco Gold Corporation China Accel China Growth Fund $4.44 million 

2009 Korea Zinc Company Korea Selwyn Resources Ltd. $3 million 

2009 Zijin Mining Group China Continental Minerals Corporation $25 million 

2009 Yunnan Chihong Zinc & Germanium Co. Ltd. of 
China 

China Selwyn Resources Ltd. $100 million 

2009 Tianjin Huakan Group Co. Ltd. China Merit Mining $15.5 million 

2010 JOGMEC Japan Lomiko Resources US$2.5 million 

2010 State Grid International Development Ltd. China Quadra Mining Ltd. $1 billion 

2010 Jiangxi Copper Company (JCC) China BioteQ Envirommental 
Technologies Inc. 

$2 million 

2010 Japanese Consortium (Sojitz Corporation 50%, 
Dowa Metals & Mining Co., Ltd. 25%, Furukawa Co., 
Ltd. 25%) 

Japan Taseko Mines Ltd. $187 million 

2010 Anthill China Yellowhead Mining $5.4 million 

2010 Investment in Bingay property China Centermount Coal Ltd. $6 million 

2010 Huiyong and Kailun companies China Canadian Dehua International 
Mining 

$20 million 

 
 
 
the Director of the Mineral Development Office in 
Vancouver also left the Survey at the end of the year to 
work as Vice President for Hathor Exploration Limited. 

Andrew Legun, Nick Massey, and Ray Lett all retired 
in 2010 after long and distinguished careers with the 
BCGS. Andrew had worked as both a coal geologist and 
regional mapper, while Nick focused on mapping parts of 
southern British Columbia, particularly on Vancouver 
Island. Ray made major contributions to the regional 

geochemical data, completed numerous topical studies, 
and provided laboratory support for the BCGS staff and 
students. On a positive note, Nick and Ray became the 
first two Emeritus Scientists with the BCGS. The new 
Emeritus Scientist program recognizes their tremendous 
contribution to the Survey and people of British Columbia 
over the years, and allows for their continued 
collaboration with Survey personnel on various projects. 
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NEED MORE INFORMATION? WANT TO 
COMMENT? 

BCGS staff has considerable expertise and welcome 
the chance to share it. Our contact list is online at: 
http://www.empr.gov.bc.ca/Mining/Geoscience/Staff/Pag
es/default.aspx. 

We always appreciate your input regarding our many 
programs and activities. Please email us at 
Geological.Survey@gov.bc.ca or call 250-952-0429. 

To learn about new publications, data releases and 
upcoming events, join the BCGS release notification list 
by emailing Geological.Survey@gov.bc.ca. 
Approximately 15-20 emails are sent per year. 
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Columbia Ministry of Energy, and is under the umbrella 
of the federal government’s Geo-mapping for Energy and 
Minerals program (GEM) that is specifically examining 
petroleum related geoscience of the Liard and Horn River 
basins. A major focus of this program has involved 
mapping of resources associated with surficial geology 
that are used during drilling and completion of shale gas 
wells (Huntley and Sidwell, 2010; Huntley and Hickin, 
2010). 

LOCATION AND REGIONAL GEOLOGY 
The Liard Basin is located in northeastern British 

Columbia, straddling the British Columbia – Yukon – 
Northwest Territories border (Figures 1, 2), spanning 
NTS map sheets 094N and O, and 095B and C. It is 
traversed by the Liard River and defines a relatively high 
plateau between the southern Selwyn Mountains and 
northern Rocky Mountains. Highway 77 runs along the 
eastern half of the basin and joins with the Alaska 
Highway, which cuts across the southern margin. 
Numerous petroleum development roads and forestry 
access roads extend from these two main highways across 
parts of the basin. Vehicle access across the Liard River is 
provided by a barge which originates at Fort Liard, 
Northwest Territories and terminates south of the 
confluence of La Biche River, where a road connects to 
the Beaver River gas field (Figure 3).  

The Liard Basin was originally defined on the basis 
of the thick Late Paleozoic succession in southeastern 
Yukon by Gabrielse (1967) and extended into 
northeastern British Columbia by Morrow et al. (1993) 
and Richards et al. (1994; Figures 4, 5). The Liard Basin 
formed subsequent to the Horn River Basin and is 
superimposed on the western part of the Horn River Basin 
Figure 2). The Bovie Lake structure marks the eastern 
margin of the Liard Basin, west of which is found an 
anomalously thick section of the Mississippian Mattson 
Formation (Figure 4). Subsequent Late Cretaceous 
movement on this fault has also preserved a thick 
sequence of Early to Late Cretaceous rocks within the 
confines of the basin (Leckie et al., 1991). Although 
development of the Liard Basin had no influence on 
depositional facies and thicknesses within pre-Mattson 
Formation units with shale gas potential (i.e. Muskwa, 
Horn River formations), its initiation has effectively 
marked the current western limit of shale gas 
development in the Horn River Basin. Prospective shale 
horizons in eastern Horn River Basin (Figure 2) have 
been dropped deeper by some 2000 m west of the Bovie 
fault (Figure 4), imposing drilling and completion 
challenges. A consequence of this within the Liard Basin, 
has been a shift to the exploitation of the stratigraphically 
higher Exshaw Formation, which is at a depth and thermal 
maturation that potentially can be economically 
developed for its shale gas resources. 

The Middle Devonian to Middle Mississippian Besa 
River Formation represents the western basinal 
equivalents of predominantly carbonate successions 

between the Upper Keg River and Debolt Formation 
(Figures 4, 5). Further west, in the Selwyn basin and 
Kechika Trough, these rocks correlate with the Devono-
Mississippian Earn Group (Figure 6). Selwyn Basin and 
Kechika Trough are deep water equivalents to Early 
Paleozoic carbonate shelf deposition along the Western 
Canada Sedimentary Basin (MacDonald Platform; Ferri et 
al., 1999) and are filled primarily by shales and siltstones 
of the Kechika and Road River groups. 

In the study area, Besa River shales and siltstones sit 
above carbonates of the Middle Devonian Dunedin 
Formation, which can be traced westward into the 
subsurface where it is equivalent to parts of the 
Chinchaga and Lower Keg River formations (Meijer 
Drees, 1994; Figure 5). During Upper Keg River and 
Slave Point deposition, a well defined barrier reef 
complex developed that marked the eastern limit of the 
Horn River Basin (Oldale and Munday, 1994; Figure 2). 
West of the barrier edge, shales of the Horn River 
Formation include two members, a lower radioactive, 
bituminous shale assigned to the Evie Member, overlain 
by shales of the Otter Park Member (Figures 4, 5). A 
transgression followed Slave Point deposition and pushed 
the shallow carbonate edge eastward (Leduc facies), 
leading to deposition of highly bituminous shales of the 
Muskwa Formation (Duvernay equivalent; Switzer et al., 
1994). Carbonate conditions were re-established to the 
west during Frasnian and Famennian times, resulting in 
deposition of Kakiska to Kotcho formations along a broad 
shelf (Figures 4, 5). A major transgression occurs across 
the Devono-Mississippian boundary, represented by 
deposition of the highly radioactive and bituminous shales 
of the Exshaw Formation. Carbonate deposition again 
migrated westward in Early Carboniferous times, with the 
deposition of the Banff Formation and succeeding Rundle 
Group. 

In the subsurface, shales of the Fort Simpson 
Formation encompass the westward shale-out of 
carbonate units above the Muskwa Formation. Carbonates 
of the Banff Formation and Rundle Group disappear into 
basinal shales above the Exshaw Formation and transition 
into the Besa River Formation (Figures 4 and 5). 
Approximately 300 m of Besa River siltstones and shales 
equates to over 2000 m of carbonate and siltstone section 
along the Keg River barrier edge. 

The upper part of the Besa River Formation 
interfingers with the Middle to Late Mississippian 
sandstones, siltstones and minor carbonates of the 
Mattson Formation. These exceed 1000 m in thickness 
within the Liard Basin west of the Bovie fault structure. 
This fault has been interpreted as a Late Paleozoic 
extensional structure that was later re-activated during 
Laramide compression (Wright et al., 1994). This is based 
on the preservation of thick Mattson sands, and 
succeeding Kindle Formation, below the Permian 
Fantasque Formation west of the Bovie fault whereas only 
a thin Mattson section occurs below the Fantasque 
Formation east of the fault (Monahan, 2000; MacLean 
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(2008) which included Besa River rocks within the Liard 
Basin area. An assessment of the conventional 
hydrocarbon resources of the Liard Basin was produced 
by Monahan (2000). 

METHODOLOGY AND RESULTS 
A nearly complete section of Besa River Formation 

was measured and described through use of a 1.5 m staff 
along a west-facing valley, approximately 22 km 
southwest of Beavercrow Mountain (base of section; 
UTM 367107E, 6643192N; Zone 10, NAD 83; Figure 7). 
Representative chip samples were acquired across 2 m 
intervals along the entire section. Samples were split, with 
one group being analysed for whole rock, trace and rare 
earth element abundances at Acme Analytical 
Laboratories in Vancouver, and a second group, at 4 m 
spacings, for Rock Eval analysis at Geological Survey of 
Canada (GSC) laboratories in Calgary. A smaller sub-set 
of these samples will also be analysed by x-ray diffraction 
(XRD) at GSC laboratories for semi-quantative 
determination of mineral abundances. Another subset will 
be processed for their potential to contain palynomorphs 
for biostratigraphy. Separate samples were collected for 
thermal maturity determination at GSC laboratories in 
Calgary through reflected light microscopy. In addition, a 
hand held gamma ray spectrometer (RS-230 by Radiation 
Solutions Inc.) was used to measured natural gamma 
radiation every 1 m over a 2 minute time interval allowing  

the calculation of K (%), U (ppm), Th (ppm) and total 
gamma ray count. Data were plotted against depth and 
variation in total natural radiation along the section is 
approximately equivalent to the subsurface gamma ray 
trace routinely collected in oil and gas wells. This assists 
in the correlation of the outcrop section with equivalent 
rocks in the subsurface. 

Approximately 285 m of siltstone and shale 
belonging to the Besa River Formation were measured 
west of Beavercrow Mountain (Figure 8). The upper and 
lower parts of the Besa River Formation were not 
exposed, but examination of rocks to the north indicate 
approximately 15 m of missing Besa River rocks below 
the base of the Mattson Formation, and a structural 
section suggests some 25 m of covered rocks above the 
Dunedin Formation. 

Generally, the Besa River Formation consists of dark 
grey to black, carbonaceous siltstone and shale (Figure 8). 
Besa River rocks along the measured section can be 
subdivided into 6 units consisting of, from the base 
(Figure 9); 1) Tan to orange-brown or beige weathering, 
dark grey to black carbonaceous siltstone to blocky 
siltstone with shale partings (34 m; Figure 10a); 2) 34 m 
of dark grey to beige weathering, dark grey to black, 
fissile to blocky carbonaceous siltstone; 3) Rusty to grey 
or dark grey weathering, dark grey to black carbonaceous 
blocky siltstone and shale (32 m; Figure 10b); 4) Rusty to 
light grey weathering, grey to light grey, blocky to platy 

 

Figure 8. Aerial photograph of the measured section of Besa River Formation showing the character of exposed lithologies. The light 
coloured material is produced by the more siliceous siltstones of unit 4. Upper Besa River siltstones (unit 6) appear somewhat more 
recessive than the underlying siltstones of unit 5. 

Geological Fieldwork 2010, Paper 2011-1 19



 
Figure 9. Lithologic section of Bessa River Formatioon measured along the eastern ppart of the Cariboou Range. 
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carbon content, suggesting precipitation of uranium either 
syngenetically during periods of higher anoxia or 
diagenetically within horizons rich in organic material. 
Although uranium concentrations appear to generally 
decrease towards the upper part of the section, thorium 
shows an increase in abundance. The concentration of 
potassium does not appear to correlate with the 
abundances of the other elements, and is probably tied to 
the mineralogy of the sediments being deposited. 

The carbonaceous (i.e. organic-rich) nature of these 
sediments is a reflection of the reducing conditions 
present during deposition (Goodfellow and Lydon, 2007). 
These very low oxygen conditions did not permit aerobic 
organic activity and led to the preservation of organic 
matter (Fowler et al., 2005). In these anoxic waters, 
bacteria that respire through reduction of sulphur became 
abundant, producing a large amount of reduced sulphur 
which could then be utilized in the precipitation of metal 
sulphides from any metalliferous brines being expelled on 
the sea floor (Goodfellow and Lydon, 2007). Even if 
these brines had sufficient reduced sulphur, this anoxic 
environment favoured the preservation of any precipitated 
sulphides. Oxygenated bottom waters, as in today’s 
oceans, would have led to the oxidation of the sulphides 
in the water column or along the sea floor, shrinking the 
size of, or totally eliminating, any sulphide mineralization 
(Force et al., 1983). 

BARITE AND SULPHIDE 
MINERALIZATION 

Barite and sulphide mineralization discovered in this 
section is located within the middle to upper part of unit 6 
(Figures 10f, 12a, b). This new showing is named the MT 
occurrence (MINFILE 094N 012). It contains 
mineralization similar to that described within the Scat 
occurrence some 10 km to the south (MINFILE 094N 
010; Burt, 1982). 

At the MT showing, barite nodules over 30 cm in 
diameter are found between the 198 and 202 m level of 
the section, where they constitute up to 15% of the section 
(Figure 10f, 12a, b). The nodules vary in morphology 
from smooth or composite spheres to spheres or coatings 
displaying colloform texture (Figure 12a). 
Morphologically, many nodules have one flat surface 
devoid of colloform texture, suggesting growth on the 
sediment surface (Figure 12b). Other nodules are 
essentially coatings, also suggesting they grew along the 
sediment surface (Figure 12b). These observations imply 
precipitation of barite from ocean waters and would 
support a hydrothermal vent source for the barium, as 
opposed to diagenetic precipitation within the sediment. 
Many of the nodules contain vugs lined with fine, 
prismatic, needle-like crystals consistent with barite, 
although their composition has not been confirmed by x-
ray diffraction. These vugs also give off a very strong 
fetid to petroliferous odour when broken. 

Sulphide mineralization is found at ten levels 
between 235.5 and 279 m of the section and manifests as 
beds 5 to 20 cm in thickness. Most of the sulphide beds 
are thin, less than 10 cm thick and consist of disseminated 
pyrite forming discontinuous horizons traceable laterally 
for several metres, suggesting they may be diagenetic in 
origin (Figures 12c-f). Only two beds (at 257.2 m and 
259.7 m) can be traced for over 30 m along strike (Figure 
12c) and display textures indicative of sedimentary 
exhalative processes (e.g. laminations and graded 
sulphides beds). Sulphide mineralization at 257.2 m is 10 
cm in thickness, contains up to 50% sulphides and 
displaying variation in sulphide contents suggesting 
settling from the water column (Figure 12e). A thicker 
sulphide bed (20 cm), with similar texture, occurs 20 cm 
above the first bed, but is only traceable for a few metres. 
The horizon at 259.7 m is 30 cm thick and traceable 
across the entire section (>50 m). This horizon consists of 
oxidized pyrite and abundant carbonaceous material 
containing remnant sulphides in the upper part (Figure 
12f). This horizon is also visible in the next gulley, 
approximately 250 m to the north.  

Chemical analysis of these beds (Table 1) suggests 
that pyrite constitutes the bulk of the sulphide 
mineralization. Interestingly, there are several horizons 
that are rich in Mn (0.2 to 0.4%), relatively poor in Ba, 
but elevated in Zn, Co and Ni. Although these horizons 
are rich in Fe, the highest horizons are comparatively poor 
in S, suggesting perhaps that the main iron-bearing 
mineral is a non-sulphide and likely a carbonate. This 
may be corroborated by the relatively higher Ca content 
of these horizons. These sulphur-poor horizons may 
reflect changing oxygen levels within the water column 
during deposition resulting in lower amounts of reduced 
sulphur. Mn, which is relatively soluble in anoxic waters, 
readily precipitates when the water column is oxygenated 
(Force et al., 1983). Alternatively, these iron-rich 
horizons may be diagenetic in origin (i.e. nodules). 
Concentrations of elements presented here are comparable 
to pyritic shales of the Akie Formation, in the upper part 
of the Earn Group of the Kechika Trough and correlative 
with the upper Besa River Formation (MacIntyre, 1998). 

DISCUSSION 

SEDEX-style mineralization in the Caribou 
Range 

Previous exploration, as part of the extensive 
exploration boom for SEDEX mineralization within the 
Selwyn and Kechika basins in the late 1970s to early 
1980s, led to recognition of anomalous levels of Pb, Zn, 
together with Ba mineralization within Besa River rocks 
of the Caribou Range (Burt, 1982). This mineralization 
has been catalogued as the Scat mineral occurrence 
(MINFILE 094N 010) and is located within the upper 
Besa River Formation exposed along the Scatter River, 
approximately 10 km due south of the current 
mineralization (Burt, 1982). Lithologic units, geochemical 
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Table 1. Geochemical analysis of several sulphide horizons from the upper part of the Besa River Formation, as measured 
within the study area. 

 

 
 
 
 

Sample FF10-116 FF10-117 FF10-162 FF10-165 FF10-168 FF10-169 FF10-171 FF10-173 FF10-176 FF10-177 FF10-179 FF10-181

Thickness 2 m 2 m 1 m 15 cm 10 cm 10 cm 30 cm 10 cm 8 cm 5 cm 20 cm 10 cm

Elevation
198-      

200 m
200-     

202 m
225-     

226 m 243 m 257.2 m 257.5 m 259.7 m 262.3 m 263.8 m 264.1 m 268.7 m 279 m

Element Accuracy
Detection 

Limit

Au ppb 0.5 <0.5 <0.5 <0.5 0.8 <0.5 0.6 <0.5 0.5 <0.5 <0.5 <0.5 <0.5

Mo ppm 0.1 0.6 0.5 0.7 1.9 0.7 0.8 1.5 0.4 0.6 1 0.3 0.5

Cu ppm 0.1 3 8.1 11.1 13.1 30.7 37.5 15.8 44.9 22 26.2 7.7 6.8

Pb ppm 0.1 34 13.5 27.9 8.2 32.2 21.1 17.5 37 17.6 18.7 10.3 6.9

Zn ppm 1 8 16 9 567 57 109 68 92 358 92 221 308

Ag ppm 0.1 0.7 0.9 0.7 0.3 0.6 0.7 1 1.1 1.1 1.5 0.4 0.2

Ni ppm 0.1 4.4 6.3 2.2 261.1 43.2 57.4 30.8 43.2 82 70 32.6 60.8

Co ppm 0.2 0.7 0.6 0.2 41.7 7.5 9.4 3.5 5.2 8.8 8.7 4.9 16.6

Mn ppm 1 28 65 30 3793 88 88 98 108 201 168 1973 2997

Fe % 0.01 0.74 1.18 1.04 39.87 25.24 19.82 11.97 34.19 16.11 9.96 30.62 31.7

As ppm 1 3 1 4 6 9 11 7 7 9 12 4 9

U ppm 0.1 1.6 3.3 1.3 1.3 1.9 2.8 2.4 1.8 2 2.7 0.7 0.8

Au ppm 0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1

Th ppm 0.1 2.8 4.7 1 1.8 3.8 5.4 5.9 2.5 7 8.6 2.9 1.8

Sr ppm 1 34 61 12 22 33 49 31 22 34 45 26 49

Cd ppm 0.1 <0.1 0.2 <0.1 0.5 <0.1 0.2 <0.1 <0.1 0.4 <0.1 0.4 0.3

Sb ppm 0.1 1.1 0.6 0.9 0.2 0.7 0.7 0.6 0.4 0.5 0.7 0.3 0.3

Bi ppm 0.1 0.2 0.2 <0.1 <0.1 0.1 0.2 0.2 <0.1 0.2 0.2 <0.1 <0.1

V ppm 1 236 229 21 59 139 204 190 70 179 218 69 91

Ca % 0.01 0.02 0.05 0.01 0.36 0.12 0.1 0.02 0.28 0.05 0.03 0.57 1.17

P % 0.001 0.011 0.037 0.016 0.042 0.072 0.066 0.031 0.178 0.026 0.031 0.037 0.162

La ppm 0.1 3.7 16.2 4 16.2 26.7 35.5 23.8 16 25.6 28.9 13.4 18.6

Cr ppm 1 99 101 14 37 59 86 73 38 90 99 34 27

Mg % 0.01 0.41 0.32 0.02 0.75 1.53 1.67 2.01 0.88 2.44 1.99 5.6 4.75

Ba ppm 1 5720 4014 845 64 137 236 36 12 99 138 159 284

Ti % 0.001 0.408 0.245 0.058 0.059 0.145 0.196 0.201 0.089 0.26 0.29 0.103 0.086

Al % 0.01 7.16 5.17 0.5 1.87 3.71 4.91 5.06 2.35 6.95 7.94 2.81 1.77

Na % 0.001 0.195 0.13 0.017 0.016 0.01 0.03 0.017 0.006 0.053 0.13 0.014 0.011

K % 0.01 3.03 2.02 0.12 0.18 0.04 0.4 0.14 0.03 0.4 0.96 0.03 0.02

W ppm 0.1 1.4 0.9 0.3 0.2 0.5 0.7 0.7 0.4 0.7 0.9 0.4 0.4

Zr ppm 0.1 87 62.7 16.4 24.2 43.3 61.9 61.9 27.8 61 71.2 33.2 38.9

Ce ppm 1 10 38 8 26 64 79 50 31 51 61 26 37

Sn ppm 0.1 2.4 1.4 0.3 0.7 1.1 1.5 1.1 1.1 1.7 2.2 0.8 0.5

Y ppm 0.1 2.6 10.6 2.1 69.2 23.8 27.7 18.2 23.9 16.3 19.1 14.9 28.9

Nb ppm 0.1 10.7 6.7 1.6 1.8 5 6 6.8 2.8 7 9 3.4 2.8

Ta ppm 0.1 0.7 0.4 <0.1 0.1 0.2 0.3 0.4 0.2 0.4 0.5 0.2 0.1

Be ppm 1 2 2 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1

Sc ppm 1 9 9 1 5 9 12 8 8 11 14 5 7

Li ppm 0.1 18.7 12.3 14.2 30.2 59.4 69.4 70.4 30.6 135.7 132.4 40.8 40

S % 0.1 0.3 0.1 0.2 4.2 >10.0 >10.0 2.6 >10.0 5.6 2.2 0.4 0.4

Rb ppm 0.1 125.9 95.4 4.1 9.8 2.3 20.1 6.9 0.6 18.1 44.3 <0.1 0.1

Hf ppm 0.1 2.3 1.6 0.4 0.4 0.8 1.3 1.3 0.6 1.5 1.8 0.7 0.5

Analysis performed at ACME Analytical Laboratories Ltd., Vancouver, BC.

Au; 0.5g sample leached in hot Aqua Regia and analyzed by ICP-MS.

All other elements; 0.25g processed by 4-acid digetstion (HNO3-HClO4-HF and HCL) analyzed by ICP-MS.
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precluded any estimate on distance to the vent system. 
The presence of bedded sulphide mineralization 
associated with nodular barite in the current study area 
supports the inference that this is of hydrothermal origin 
and that it may be in a more proximal setting to the source 
of the mineralization. 

REGIONAL CORRELATIONS AND 
METALLOGENY 

Besa River rocks in the study area can be broadly 
correlated with the Earn Group of the Kechika Trough 
(Figure 6). Units 1 through 5 most likely correlate with 
cherty argillite, carbonaceous siliceous shale and lesser 
black carbonaceous siltstone and shale of the Middle to 
Late Devonian Gunsteel Formation (MacIntyre, 1998). 
The succeeding more recessive and crumbly siltstone and 
shales of unit 6 are probably correlative to recessive dark 
grey siltstone of the Akie Formation, postulated to be Late 
Devonian to Early Mississippian in age (MacIntyre, 
1998). 

Correlation of the outcropping Besa River Formation 
with subsurface formations to the east is suggested based 
on the total gamma ray trace across the measured section 
(Figures 13, 14). In the subsurface, as the Keg River reef 
and successive Devonian and Mississippian carbonate 
successions shale out westward into fine clastics of the 
Horn River, Fort Simpson and Besa River successions, 

the distinctive radioactive shales of the Evie, Muskwa and 
Exshaw formations can be traced across into the thick, 
monotonous siltstone sequence. The Exshaw Formation 
can be traced with confidence as it forms a regional 
marker horizon throughout a large part of the Western 
Canada Sedimentary Basin. The Evie shales above the 
Lower Keg River carbonates also define a distinctive 
package, and together with the succeeding Muskwa 
horizon define a recognizable sequence. 

Suggested correlations for several wells west of the 
Liard River are depicted in Figure 14. The Exshaw 
Formation can be traced into the strongly radioactive 
central part of the Besa River section, and the lower most 
radioactive zone equates to the Muskwa Formation. 
Approximately 25 m of basal Besa River siltstones are 
covered; they are assumed to represent the Evie member 
of the Horn River Formation. The siltstones below 
Muskwa-equivalent rocks would be equivalent to the 
Otter Park siltstones, and those between the Muskwa and 
Exshaw horizons to the Fort Simpson Formation. These 
correlations also correspond broadly to the main 
lithologic units described previously: unit 1 corresponds 
to the Otter Park Member, units 2 and 3 to the Muskwa 
Formation, unit 4 to the Fort Simpson Formation, and unit 
5 to the Exshaw Formation (Figure 14). Note that the 
distinctive light grey weathering panel within Besa River 
Formation exposures in the Caribou Range, which 
corresponds to the Fort Simpson equivalent horizon, is 

 
Figure 13. Map showing well locations used in the correlations depicted in Figure 14. Study area is shown by the star symbol. 
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position above the Exshaw marker within the section. In 
Kechika and Selwyn basins, major exhalative sulphide 
deposits are of Frasnian to Famennian age, with minor 
sulphide and barite mineralization within rocks as young 
as Early Mississippian (Paradis et al., 1998; Irwin and 
Orchard, 1991). This younger sulphide mineralization is 
roughly coeval with major volcanogenic massive sulphide 
deposits within arc sequences that lay immediately 
outboard of the Selwyn Basin (Wolverine deposit; Piercey 
et al., 2008 Paradis et al., 1998). 

CONCLUSIONS 
• Approximately 285 m of the Besa River 

Formation outcrops along the western margin of 
the Liard Basin and consists of light grey to 
black weathering carbonaceous siltstone to 
siliceous siltstone. The lower 25 m of the unit 
was not exposed. 

• The Besa River Formation has been subdivided 
into 6 informal units based on overall outcrop 
composition. 

• Rock Eval analysis of representative samples on 
4 m spacing across the outcrop indicate two 
zones of high organic carbon content, with levels 
reaching 6% by weight. 

• A gamma ray spectroscopic log across the 
outcrop defines several zones of higher radiation 
which correlate to higher concentration of 
uranium and organic carbon. 

• Correlation of the gamma ray trace with 
subsurface sections to the east suggests that the 
lower and upper radioactive zones in the outcrop 
correlate with the Muskwa and Exshaw markers, 
respectively. 

• Nodular barite and bedded pyrite mineralization 
was discovered in the upper part of the Besar 
River section (MT showing, MINFILE 094N 
012) which is similar to mineralization at the 
nearby Scat showing (MINFILE 094N 010). 
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Table 1. Analytical results, Cassiar mine tailings samples, British Columbia. 
 

 
 

 
 

 
 

 
 
measured on a Faraday cup. The standards employed 
were synthetic and natural minerals. The data were 
reduced using the Merlot correction (φ). 

Silicate minerals 
Serpentinite mineral aggregates at Cassiar consist 

mainly of the mixture of chrysotile and antigorite 
(O`Hanley et al., 1992). The XRD results of tailings 
samples confirmed the presence of these minerals, the 
chrysotile being both ortho and clinochrysotile. This study 
identified the presence of baumite 
(Mg,Fe,Mn,Zn)₃Si₂O₅(OH)₄, caryopilite (Mg,Mn)₃Si₂O₅ 
(OH)₄ and jamborite (Ni⁺²,Ni⁺³,Fe)(OH)₂(OH, S,H₂O). 
All these silicate minerals together with magnesite and 
stichtite (Mg₆Cr₆(CO₃)(OH)₁₆.4H₂O) were reported 
previously (O`Hanley et al.,1992) and are serpentinization 
products. Other studies of the serpentinization on ore zone 
samples showed it was so pervasive, that no primary 
constituents like olivine or pyroxene have been preserved 
(Gabrielse, 1960, O`Hanley et al., 1992). 

Opaque minerals 
Sample #002 was processed on magnetic separator 

for a further study. The resulting magnetic concentrate 
contained the Cr-magnetite Fe(Fe,Cr)₂O₄ and magnetite 
(Fe₃O₄) only. Because of increased Ni content in the 
analysis of the magnetic concentrate it was expected to 
find a presence of trevorite (NiFe₂O₄) component in 
magnetite or Ni-Fe alloys awaruite (Ni₃Fe) or taenite 
(NiFe). However, petrographic and x-ray analysis did not 
identify the presence of nickel minerals. A possible 
explanation for absence of awaruite may be its usual 
association with antigorite (Eckstrand, 1975). Antigorite 
is a higher alteration temperature mineral product then 
chrysotile. 

MICROPROBE WORK 
Microanalytical study was made on polished rock 

samples collected in 1990 from the ore zone as well as 
polished grains of magnetic concentrate. Nickel in these 
samples was found to be primarily in three main 
minerals–Cr-magnetite, magnetite and heazlewoodite. 
The chemical compositions are presented in Table 2. 

Cr-magnetite and magnetite, both magnetic minerals, 
are the most common minerals in the samples with 
significant nickel contents. In magnetite, 9 out of 16 
measurements show Ni contents between 0.03% and 
0.6%, the remaining 7 between 0.87% and 1.57%. Similar 
values are reported for magnetite from a Western 
Australia serpentinized dunite (Donaldson, 1981). Nickel 
content in Cr-magnetite is of similar values. Out of ten 
measurements six average 0.24% and the remaining four 
average 1.07% nickel. As expected, Cr-magnetite 
contains Al, Mg and Mn, while these elements are low or 
practically absent in the magnetite.  

The third nickeliferous mineral from Cassiar - 
heazlewoodite (Ni₃S₂) is considerably less common in 
studied rock samples and is present in grains of very small 
size around 25 to 100 μm. The chemical compositions of 
the opaque minerals are shown in Table 2. 

As shown on the microphotographs (Figures 2a, b, e), 
Cr-magnetite predates the magnetite. Donaldson (1981) 
describes similar age relationship between magnetite and 
chromite from Archean dunites in Western Australia. Cr-
magnetite is less resistant to alteration (Figures 2c, d), 
which can be particularly noticed where in contact with 
magnetite (Figures 2a, b, e). 

Sample   M o  ppm  C u ppm  P b ppm   Z n ppm   A g ppm   N i ppm  C o  ppm   M n ppm   F e %   A s ppm    U ppm A u ppb

CAS 001 0.3 2.6 1.9 17 <0.1 3131 207 921 18.24 1.3 <0.1

CAS 002 0.2 0.9 1 14 <0.1 2230.9 84.3 562 5.21 <0.5 <0.1 <0.5

  T h ppm   Sr ppm   C d ppm   Sb ppm   B i ppm    V ppm    C a %    P  ppm   La ppm   C r ppm   M g %   B a ppm    T i %

<0.1 1 <0.1 <0.1 0.5 38 0.11 <0.001 <1 1594 14.45 3 0.004

<0.1 2 <0.1 <0.1 <0.1 30 0.08 <0.001 <1 1372 21.48 4 0.004

  B  ppm   A l %   N a %   K %    W ppm    H g ppm   Sc ppm   T l ppm    S %   Ga ppm   Se ppm

<20 0.29 <0.001 <0.01 <0.1 0.02 7.7 <0.1 <0.05 <1 <0.5

32 0.38 <0.001 <0.01 <0.1 <0.01 13.3 <0.1 <0.05 <1 <0.5

ACME Analytical Laboratories Ltd.
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CONCLUSIONS 
• More attention should be paid to the potential for 

non-sulphide nickel minerals. 
• Serpentinization has been documented to 

produce secondary sulphide and non-sulphide 
nickel minerals. 

• British Columbia has considerable distribution of 
serpentinized ultramafics with a number of 
proven and suspected awaruite showings. 

• Cassiar mine tailings have low grade nickel 
present in Cr-magnetite and magnetite. 

• Cassiar tailings are a potential low cost source 
for heavy media suspension material that could 
be used for coal deposits, like the Groundhog. 
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conducted by Romios Gold Resources (Ray, 2006; 
Bernales et al., 2008; Chadwick and Close, 2009). 

Late Triassic Copper Mountain Intrusive-
Related  

Copper, gold and silver mineralization at the Dirk, 
Telena and Birthday Jim prospects is related to a 
regionally extensive Latest Triassic alkaline magmatic 
event, the Copper Mountain Plutonic Suite (Woodsworth 
et al., 1992). This magmatic event is causative to 
porphyry mineralization along the length of British 
Columbia. In the northwest, related mineralization is 
found at Galore Creek, Red Chris and GJ. In central and 
southern BC, related deposits include Mount Polley, 
Afton and Copper Mountain.  

Dirk Showing (MINFILE 104B 114) 

In 1972, Newmont carried out geological mapping, 
airborne and ground magnetometer surveys and drilled six 
holes totalling 93.87 m. Three holes were drilled at each 
of the Dirk and Ken claims using a Winkie drill and “A” 
drill string (the Ken zone is located 5.5 km east of the 
Dirk on NTS map sheet 104B/15, east of the study area 
that we report on here). It was concluded then that the 
Winkie drill was an ineffective tool for sampling these 
zones (Costin, 1973). In 2009, Romios Gold Resources 
conducted followed up geological investigations 
(Chadwick and Close, 2009) and sampling of the 
mineralization on two of the known mineral showings: the 
Dirk and Telena zones, which are separated by a 
kilometre-wide expanse of glacier. 

The Dirk prospect occupies the eastern margin of an 
alkaline intrusive center more than 3 by 4 km in size. The 
intrusive centre is a swarm of easterly-trending sills and 
dikes as well as stock-like bodies of texturally variable, 
porphyritic and equigranular syenite containing orthoclase 
±pseudoleucite. K-feldspar porphyry bodies are identical 
to the Late Triassic "rhomb porphyries" of the alkaline 
feldspar porphyry intrusive suites at Galore Creek, located 
40 km to the northwest. Crystallization ages of the 
intrusions at Galore Creek range from 210.2 ±1.0 Ma 
(U/Pb, titanite; Mortensen et al., 1995) for a syn-mineral 
dike to 208.8 ±0.8 Ma (U/Pb, zircon; Logan, unpublished) 
for a post-mineral dike. The Dirk intrusions, like those at 
Galore, are silica-under saturated, syenite and foid-
bearing syenite characterized by centimetre-scale 
megacrysts of orthoclase and smaller phenocrysts of 
biotite, sodic pyroxene, hornblende, apatite, magnetite, 
and titanite. They are variably altered, containing 
assemblages of andradite garnet, epidote, clinozoisite, 
secondary biotite, chlorite, calcite and anhydrite (?). 
Diatreme bodies containing breccia fragments of 
distinctive porphyritic syenite and bright green pyroxene 
form part of this magmatic suite and are cut by younger 
syenite dikes containing coarse orthoclase crystals. 

The main Dirk showing is an east trending eight 
metre wide skarn zone of patchy bornite, covellite and 

chalcopyrite ±pyrite mineralization replacing limestone 
adjacent to pink, potassium feldspar-phyric syenite dikes. 
Sulphides occupy millimetres thick veinlets and irregular 
patches locally with magnetite and/or andradite, epidote 
and albitic (?) alteration. Metal assemblages of economic 
interest include chalcopyrite ±gold. Alteration 
assemblages (i.e. magnetite, specular hematite, andradite 
and epidote) infer a highly oxidizing character of the main 
hydrothermal event. Late stage iron carbonate and barite 
veins are common at the Dirk and Telena zones. Eight, 1 
m chip samples taken along a north-south traverse across 
the main Dirk showing returned 2.9% Cu and 0.64 g/t Au 
(Chadwick and Close, 2009). Additional copper-gold 
mineralization has been recognized 200 m southeast of 
the main zone and a 3.0 m chip sample from this 
mineralized section assayed 6.21% Cu and 0.57 g/t Au 
(Chadwick and Close, 2009). A sample collected during 
the course of our mapping contained >1% Cu, 5 ppm Ag, 
0.6 ppm Au and 0.38% Zn (see sample 10JLO-254, 
Tables 1 and 2). 

Telena Showing  

Mineralization at the Telena showing is described as 
a 40 by 40 m cliff exposure of disseminated and vein 
chalcopyrite with intermittent bornite-bearing breccias 
within a syenite porphyry (Chadwick and Close, 2009). A 
reported grab sample from the Telena Zone assayed 
2.07% Cu and 0.97 g/t Au. Two samples were collected 
during the course of our mapping. These are 
representative of the two ends of the spectrum of 
mineralized K-feldspar porphyritic rocks. One sample 
was collected from largest of many irregular patches and 
veins of semi-massive chalcopyrite (~0.25 by 1.1 m) 
within a strongly copper-stained, brecciated and 
skarnified coarse K-feldspar and calcite amygdaloidal 
porphyry. A second sample was collected from a 
relatively poorly mineralized dike at least 4 m thick, 
which cuts across the unit from which the first sample 
was collected. This dike contains medium to coarse K-
feldspar phenocrysts. Notable results from analysis of 
these two samples are: Cu, >10 000 ppm, 1058 ppm; Au, 
4.1 ppm, 0.1 ppm; Ag, 15.5 ppm, 0.7 ppm; Pd, 64 ppb, 27 
ppb; Pt, 21 ppb, 3 ppb (samples MMI10-18-11 and 
MMI10-18-11b, Table 1). 

About 650 m southwest of the Telena is a 2 km long, 
west-trending nunatak. It largely underlain by an east-
northeast striking dike swarm of calc-potassic altered 
megacrystic potassium feldspar syenite dikes which abut 
against and intrude a large olistostromal block of thick 
bedded recrystallized limestone forming the eastern end 
of the nunatak. Brecciated, white orthoclase flooded 
syenite porphyries overprinted and replaced by brown or 
green euhedral zoned andradite garnet, anhydrite, traces 
of malachite and late carbonate attest to a vigorous 
magmatic/hydrothermal centre. 
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break in the aeromagnetic responses in the survey 
reported by Jones (2009) may respond to a fault trace B 
on Figure 3 that is deflected slightly to the north. Minimal 
deflection of the fault is shown by the fault trace A 
option. 

HOW MUCH OFFSET ON V-I FAULT (?) 

The displacements of marble bands and quartzose 
sandstone indicate an average sinistral offset of ~1600 m 
in the eastern part of the Iskut River valley. Alternatively, 
decreasing sinistral offset along the fault to the west, as 
could be inferred from the data, may result in westward 
decrease of apparent motion by as much as 350 m per 5 
km. Hence, the northern continuation of the “Sulphide 
ridge” stratigraphy could intersect the fault about 10 km 
west of the offset quartz-rich sandstone. At this point 
~750 m of apparent sinistral offset might be inferred. 
Constraints on the vertical component of motion on the 
fault are lacking.  

WHERE IS THE NORTHERN ROCK AND ROLL (?) 
Modelled offsets and locations of the western V-I 

fault extension have significant implications for 
identification of a northern continuation of the strata that 
host the Rock and Roll deposit. Before speculating on the 
continuation of the Rock and Roll host strata north of the 
Iskut River Valley, it is necessary to consider several 
caveats: 

1) The mineralization at the Rock and Roll deposit 
may not have a northern extension. Although the 
Rock and Roll deposit appears to be stratiform, a 
syngenetic origin has yet to be unequivocally 
established (e.g. Mihalynuk et al., 2010). Even if 
the mineralization is stratiform, it may not have 
had sufficient lateral continuity to outcrop to the 
north. 

2) A northwestern extension of Rock and Roll, if it 
ever existed, may have been located above the 
present erosional surface unless the folds that 
deform the prospective stratigraphy remain 
approximately horizontal on average or plunge 
northwestward. 

3) Units on “Sulphide Ridge” while complexly 
folded, display relatively simple bounding 
surfaces and intersection of these bounding 
surfaces with present day topography have a 
relatively consistent northwest trend. In this 
analysis it is assumed that this trend persists 
beyond the V-I fault extension.  

In the simplest case scenario, barring any of the 
complication noted above, a potential extension to the 
Rock and Roll mineralization could be somewhere 
between the two localities marked by the thick blue and 
red lines on Figure 3. This supposition needs to be tested 
by constraining the location of carbonate belt north of the 
VI fault, particularly because the axis of mineralization 

along “Sulphide ridge” is consistently between 350 and 
450 m northeast of this contact.  

SUMMARY 
Parts of the southern Hoodoo Mountain sheet were 

first mapped at a reconnaissance scale by Forrest Kerr 
between 1926 and 1929. Yet, despite the high mineral 
potential of the adjacent areas, the northern 2/3 of the 
sheet was never systematically mapped prior to the work 
presented here. This report is a synopsis of 2.5 weeks of 
intensive field investigation that established a geological 
framework for the eastern Hoodoo Mountain sheet, and 
extended that framework southwards into the Iskut River 
valley, where a wealth of geological data exists in 
industry reports.  

Our mapping revealed that the regional geological 
contacts formerly extrapolated through the Hoodoo 
Mountain area (Massey et al., 2005) inadequately 
represent its geological complexity and high mineral 
potential. As a result, significant mineral prospects, such 
as the Dirk, which has been recognized since at least 
1972, lacked regional geological framework around 
which a district exploration program could be established.  

Even though our mapping was limited by budgetary 
constraints, it provides enough detail for first order 
predictive metallogeny, and directions for future mineral 
exploration work. For example: 

• Modelled offset on the V-I fault provides an 
exploration target for the northern extension of 
strata that host the Rock and Roll deposit. Future 
work should include detailed structural analyses 
aimed at constraining the displacement on units 
in the western Hoodoo Mountain area, including 
the vertical component of motion on the V-I 
fault. 

• Recognition of a corridor of alkalic 
intrusive/volcanic “centres” permits us to pose 
the question of how extensive are mineralizing 
systems within the corridor? Alkalic rocks 
hosting mineralization at the Dirk are analogous 
to mineralizing intrusions at the Galore Creek 
deposit. Future work should address 
characteristics specific to mineralizing intrusions 
and their extents within the corridor.  

• Our work outlines a bimodal submarine volcanic 
succession of Carboniferous age that contains 
indications of an active VMS mineralizing 
system of regional extent. Future exploration 
work will need to evaluate the significance and 
distribution of newly discovered primary Cu-Ag-
Zn mineralization in both the Andrei rhyolite and 
the Verrett Creek rhyolite separated by ~20 km.  

We will attempt to address some of these questions 
with targeted laboratory work, but others await the future 
work of explorationists and regional mappers in the 
eastern Hoodoo Mountain area. Some answers may lie in 
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the western Hoodoo Mountain area, parts of which STILL 
lack regional geological mapping.  
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Geology and Mineral Potential of the Southern Alexander Terrane and 
western Coast Plutonic Complex near Klemtu, 

Northwestern British Columbia 

by J.L. Nelson, L.J. Diakow, S. Karl1, J.B. Mahoney2, G.E. Gehrels3, M. Pecha3 

and C. van Staal4 

 
KEYWORDS: Alexander terrane, Grenville Channel fault, 
Coast Mountains, Coast Plutonic Complex 

INTRODUCTION 
Although the northern coastal area of British 

Columbia contains a significant number of tracts with 
high mineral potential assessments (Categories 1 and 2 
out of 10; BC Mineral Potential Assessment Program; 
Kilby, 1995; see also Mineral Resources Assessment – 
Mineral Potential, on Mapplace.ca), mineral exploration 
has been at low levels, as indicated by the small number 
of assessment reports and recorded mineral showings. Just 
as it has received comparatively little exploration interest, 
this area also has not seen systematic public geological 
mapping since the original Geological Survey of Canada 
work in the 1960s (Roddick, 1970; Hutchison, 1982).  

This report covers the second of a planned 3-year 
program study of the bedrock geology and mineral 
potential of the British Columbia North Coast area 
(Figure 1). The North Coast bedrock mapping and 
mineral deposit study is part of a cooperative, Natural 
Resources Canada (NRCan)-led endeavour, the Edges 
Multiple Metals – NW Canadian Cordillera (British 
Columbia and Yukon) Project. The Edges Project aims to 
increase our understanding of the far travelled 
lithotectonic terranes that make up the outer, accreted 
margin of the Canadian Cordillera and assess their 
metallic mineral potential (for a  detailed  project 
description  see  http://gsc.nrcan.gc.ca/ 
gem/min/edges_e.php). Edges is a contribution to the 
GEM Program (Geo-mapping for Energy and Mineral), a 
federal program that was initiated in 2008, to enhance 
public geoscience knowledge of northern Canada in order 
to stimulate economic activity in the energy and mineral 
sectors. The Edges project is a collaboration between the 
1 United States Geological Survey, Anchorage, AK 
2 University of Wisconsin at Eau Claire, WI 
3 University of Arizona, Tucson, AZ 
4 Geological Survey of Canada, Vancouver, BC 
This publication is also available, free of charge, as colour 
digital files in Adobe Acrobat® PDF format from the BC 
Ministry of Forests, Mines and Lands website at 
http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCat
alogue/Fieldwork. 

Geological Survey of Canada, British Columbia 
Geological Survey, and Yukon Geological Survey and 
involves the United States Geological Survey and 
Canadian and American academic contributors. 

The northern coastal area of British Columbia is 
underlain in part by rocks of the southern Alexander 
terrane, a large composite crustal fragment that underlies 
most of southeastern Alaska and extends farther north into 
part of the St. Elias Range on the Yukon-Alaskan border, 
(Figure 1; Wheeler et al., 1991). The Alexander terrane as 
a whole has attracted considerable exploration interest 
because of the volcanogenic massive sulphide deposits 
that it hosts, including Niblack and others on southern 
Prince of Wales Island, just north of the British 
Columbia-Alaska border, as well as a trend of Triassic 
deposits, notably Windy Craggy and the Greens Creek 
mine (Figure 1). In 2009, the first year of the North Coast 
project, geological mapping began on and near Porcher 
Island, at the northern end of Alexander terrane rocks 
along the north coast, in order to take advantage of 
proximity to the much better known stratigraphy in 
southeastern Alaska, and to nearby volcanogenic mineral 
deposits. Mapping in 2010 focused on the southern end of 
the terrane near Klemtu. In 2011, sparse exposures of pre-
plutonic stratified rocks in the intervening region will be 
documented. 

PREVIOUS WORK 
The northern coastal region of British Columbia was 

first mapped systematically as part of Geological Survey 
of Canada regional coverage of the entire Coast 
Mountains batholith and enclosed metamorphic rocks. 
The Porcher Island – Grenville Channel area was covered 
as part of the Prince Rupert – Skeena sheet (Hutchison, 
1982) and the Douglas Channel – Hecate Strait sheet 
(Roddick, 1970), and the area around Klemtu as part of 
the Laredo Sound sheet (Baer, 1973), all at a scale of 
1:250 000. The focus of these studies was on the plutonic 
rather than supracrustal rocks; in addition, modern tools 
for the analysis of metamorphosed volcanic and 
sedimentary sequences, including uranium-lead 
geochronology and trace element geochemistry, were not 
available at that time. Recent geological work in the 
northern coastal region of British Columbia has focused 
on understanding the structural and igneous history of the
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Coast Mountains orogen. Within the North Coast project 
area, Porcher Island and Grenville Channel have been 
visited by researchers in the course of much broader 
structural studies and plutonic syntheses (Chardon et al., 
1999; Chardon, 2003; Butler et al., 2006; Gehrels et al., 
2009). Detailed geology, in particular the pre-batholithic 
stratified rocks of the Alexander terrane, have not been 
thoroughly investigated. The sole exception to this is the 
ongoing, mostly unpublished, regional geologic work of 
George Gehrels, part of which is summarized in Gehrels 
(2001) and Gehrels and Boghossian (2000). 

REGIONAL GEOLOGICAL SETTING 
The Alexander terrane (Wheeler et al., 1991), which 

forms the principal focus of this project, is flanked by 
variably metamorphosed and deformed metasedimentary-
metavolcanic rock units that comprise the Banks Island 
assemblage to the west, and the Gravina belt and the 
Yukon-Tanana terrane to the east (Figure 2). With the 
exception of the Banks Island assemblage, which has only 
been recognized along the outer coast of northern British 
Columbia, these terranes continue northward into adjacent 
portions of southeastern Alaska, where equivalents have 
been described by Gehrels and Saleeby (1987; 1996), 
Rubin and Saleeby (1992), Saleeby (2000), and Gehrels 
(2001).  

Alexander terrane 
The Alexander terrane in southeastern Alaska and 

northern coastal British Columbia consists of a broad 
range of volcanic, sedimentary, and plutonic rocks and 
their metamorphic equivalents that are primarily of early 
Paleozoic age, overlain in places by thin younger 
sequences (Figure 3). In southeastern Alaska, these rocks 
have undergone limited post-Paleozoic metamorphism, 
deformation, and plutonism. Farther to the southeast, in 
northern coastal British Columbia, Cretaceous plutons 
become more widespread and the degree of Mesozoic 
deformation and metamorphism increases. In spite of 
these younger overprinting events, it is possible to 
correlate geologic units of southeastern Alaska with those 
of northwestern coastal British Columbia, and as such we 
use the nomenclature established in southeastern Alaska 
wherever possible. The following unit descriptions are 
taken from the well-preserved portion of the Alexander 
terrane in southern southeastern Alaska as decribed in 
Eberlein et al. (1983), Gehrels and Saleeby (1987) and 
Gehrels et al. (1996).  

The oldest rocks recognized in the Alexander terrane 
consist of Late Proterozoic to Cambrian metavolcanic and 
metasedimenary assemblages of the Wales Group (Figure 
3; Gehrels and Saleeby, 1987). Metavolcanic components 
range from mafic to felsic in composition, with lithic units 
ranging from metres to hundreds of metres in thickness. 
Relict textures indicate that protoliths of these rocks were 
pillowed flows, flow breccias, tuffaceous breccias, and 
tuffs. Metasedimentary units, similar in abundance to the 

metavolcanic rocks, consist of volcanic clast-rich 
metagreywacke, pelitc phyllite or schist, and marble. 
These assemblages are intruded by bodies of complexly 
interlayered gabbro, diorite, tonalite, and granodiorite, 
with layering commonly on a metre to decimetre scale. 
All rocks of the Wales Group have a strong foliation and 
lineation that are deformed by outcrop-scale open folds. 
Metamorphism ranges from greenschist facies (actinolite-
chlorite-epidote assemblages) to amphibolite facies 
(amphibole-biotite-muscovite and rare garnet). 

Rocks of the Wales Group in southeastern Alaska are 
overlain by a less deformed, Early Ordovician to Late 
Silurian suite of greenschist or lower metamorphic grade 
volcanic and sedimentary rocks referred to as the Descon 
Formation. Protoliths of these rocks are similar to those in 
the Wales Group. Dioritic to granitic plutons that are 
coeval (and probably cogenetic) with volcanic rocks of 
the Descon Formation are widespread.  

Lower Paleozoic strata are overlain unconformably 
by a variety of Devonian strata that commonly include a 
basal clastic sequence (conglomerates and sandstones, 
including redbeds) of the Karheen Formation, mafic 
volcanic rocks of the Coronados Volcanics and St. Joseph 
Islands Volcanics, and limestones of the Wadlegh 
Formation (Eberlein and Churkin, 1970). The basal 
conglomerate is interpreted to represent a major phase of 
uplift and erosion, the Klakas orogeny, as it overlies and 
contains clasts of a wide variety of older rocks (Gehrels 
and Saleeby, 1987). Younger, local unconformities are 
represented by conglomerates in the Late Devonian Port 
Refugio Formation. The Port Refugio Formation also 
includes fossiliferous and locally dolomitic limestone, 
radiolarian chert, mafic and felsic volcanic rocks, and 
volcaniclastic turbidites. The variability of facies and the 
presence of locally-derived conglomerates and bimodal 
volcanic sequences in these formations suggest that they 
were deposited in rift basins. 

Younger strata in the Alexander terrane include fine 
to medium grained clastic rocks, carbonate, minor basalt 
of Carboniferous and Permian age, and Triassic basal 
conglomerate overlain by bimodal volcanic rocks, 
carbonate, and volcaniclastic strata. The Upper Jurassic to 
Upper Cretaceous Gravina belt, described separately 
below, overlies the Alexander terrane.  

VMS potential of the Alexander terrane 
The Niblack prospect on southern Prince of Wales 

Island (Figure 1) is a copper-zinc-gold-silver-rich 
Kuroko-type volcanogenic massive sulphide deposit, with 
2.6 million tonnes of indicated mineral resource grading  
1.18 per cent copper, 2.33 grams per tonne gold, 2.19 per 
cent zinc and 33.18 grams per tonne silver; and 1.7 
million tonnes of inferred mineral resource grading 1.55 
per cent copper, 2.08 grams per tonne gold, 3.17 per cent 
zinc and 32.56 grams per tonne silver, as of July 2009 
(http://www.heatherdaleresources.com/hdr/Projects.asp). 
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The age of the Banks Island assemblage is 
constrained by the following relationships: 

1) detrital zircons recovered from two quartzites are 
as young as ~415 Ma (Silurian-Devonian 
boundary; G. Gehrels, unpublished data), 

2) an orthogneiss on Aristazabal Island that has 
undergone the regional deformation and 
amphibolite-facies metamorphism along with the 
adjacent marble and metabasite has yielded a U-
Pb age of 357 Ma (Early Mississippian), and 

3) plutons of Late Jurassic age are emplaced into 
these rocks (Gehrels et al., 2009) and at least 
locally intrude across the regional foliation and 
folds. 

These constraints suggest that at least some portions 
of the Banks Island assemblage accumulated during mid-
Paleozoic time.  

Yukon-Tanana terrane 

East of the Alexander terrane are metavolcanic and 
metasedimentary rocks of the Yukon-Tanana terrane that 
underlie the western margin of the Coast Mountains, 
along the length of southeastern Alaska and northern 
coastal British Columbia (Figure 2). In general, these 
rocks form a panel that dips eastward and youngs 
westward, suggesting an overall inverted stratigraphy. 
Using the nomenclature defined in southeastern Alaska 
(Gehrels et al., 1992), the Yukon-Tanana terrane includes 
the following units (Figure 3): 

1) Tracy Arm assemblage: This package contains 
marbles, quartzites, pelitic schists, and 
orthogneisses, which are commonly high in 
metamorphic grade and migmatitic. The age of 
this unit is constrained as Devonian or older 
based on ages from the overlying Endicott Arm 
assemblage.  

2) Endicott Arm assemblage: This unit has a 
distinctive basal conglomerate containing clasts 
derived from the Tracy Arm assemblage. 
Overlying strata include greenschist to 
amphibolite facies felsic to mafic metavolcanic 
rocks, pelitic schists, and minor marble. 
Available faunal and U-Pb geochronologic 
constraints suggest that most strata are 
Devonian-Mississippian in age.  

3) Port Houghton assemblage: These strata 
gradationally overlie the Endicott Arm 
assemblage and consist of greenschist to 
amphibolite facies metaturbidites, pelitic schist, 
and metabasalt. Available faunal constraints 
suggest that most strata are late Paleozoic in age.  

In northwestern British Columbia, the Ecstall belt 
(Alldrick, 2001; Alldrick et al., 2001; see also Gareau and 
Woodsworth, 2000) with its enclosed Devonian 
volcanogenic deposits, is also assigned to the Yukon-

Tanana terrane. The host units are equivalent to the 
middle, Endicott Arm assemblage of southeastern Alaska.  

Gravina belt 

Rocks of the Alexander terrane are overlain by Upper 
Jurassic to Upper Cretaceous (Oxfordian to Cenomanian) 
turbidites and subordinate mafic volcanic rocks of the 
Gravina belt. These rocks can be traced, generally along 
the inboard margin of the Alexander terrane, for the 
length of southeastern Alaska (Berg et al., 1972) and into 
northern coastal British Columbia (Figure 2). On Tongass 
Island in southeastern Alaska, and on the mainland east of 
Port Simpson (Lax Kw’alaams) rocks assigned to the 
Gravina belt also overlie a sequence of metavolcanic and 
metasedimentary rocks that have been assigned to the 
Yukon-Tanana terrane (Gehrels, 2001).  

Plutons of the western Coast Plutonic 
Complex 

Tonalitic to granodioritic plutons of the Coast 
Plutonic Complex, or Coast Mountains batholith, occur as 
isolated bodies in northern and western portions of 
northern coastal British Columbia, and increase in extent 
southeastward to form huge continuous bodies of plutonic 
rock (Gehrels et al., 2009; Figure 2). Compositionally, 
most are tonalite and granodiorite, with subordinate 
diorite and minor gabbro and leucogranodiorite. A large 
majority of plutons have hornblende abundances 
exceeding those of biotite, are rich in titanite, and some 
plutonic suites contain euhedral epidote that is interpreted 
to be magmatic in origin.  

According to a recent comprehensive 
geochronological summary (Gehrels et al., 2009), 
plutonic U-Pb ages record a history of eastward migration 
of emplacement across the Coast Mountains. The 
westernmost plutons are 160-140 Ma (Late Jurassic) 
tonalites and granodiorites. Early Cretaceous (120-100 
Ma) tonalites and granodiorites occur directly east of the 
Late Jurassic bodies. A nearly continuous band of 100-85 
Ma plutons (e.g. Ecstall pluton of Hutchison, 1982) 
underlies the western margin of the Coast Mountains, 
succeeded eastward by mainly tonalitic sills of ca. 70-60 
Ma (latest Cretaceous-earliest Tertiary) age, and the 
central and eastern portions of the Coast Mountains are 
underlain by huge 60-50 Ma (Eocene) granodiorite 
bodies.  

The emplacement depth of plutons also increases 
eastward across the Coast Mountains as shown by 
hornblende barometric studies conducted by Butler et al. 
(2001). This work suggests that westernmost Late Jurassic 
bodies were emplaced at depths of ~15 km, whereas Early 
Cretaceous plutons were slightly deeper, ~20 km, and 
farther east, mid-Cretaceous plutons of the Ecstall belt 
were emplaced at significantly greater depths, perhaps 25-
30 km. This increase in depth of emplacement correlates 
well with the eastward increase in metamorphic grade. 
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SUMMARY OF PORCHER ISLAND – 
NORTHERN GRENVILLE CHANNEL 
GEOLOGY 

The 2009 map area, comprising the vicinity of 
Porcher Island, northwestern Pitt Island and Grenville 
Channel, is underlain by metamorphosed supracrustal and 
plutonic rocks, intruded by late synkinematic Cretaceous 
plutons and cut by an array of northwest-striking sinistral 
faults that divide the geology of Porcher Island into a 
series of panels (Nelson et al., 2010a, b). Some faults 
mark major lithologic breaks, whereas others repeat 
similar sequences. The Grenville Channel fault (GCF) is 
the master fault; from it the Salt Lagoon and Useless fault 
splays cross Porcher Island. The northern continuation of 
GCF in Telegraph Passage may be an older, dextral 
structure (J. Angen, personal communication, 2010).  

Detailed field mapping, supported by U-Pb 
geochronology (Gehrels and Boghossian, 2000; Butler et 
al., 2006; J.B. Mahoney, unpublished data, 2010; G. 
Gehrels, unpublished data, 2010) has allowed positive 
identification of many units in the mapped area, and 
tentative assignment of others. Because they are based on 
more complete geochronological data, unit ages and 
assignments shown on the open file map of the area 
(Nelson et al., 2010b) supercede those in Nelson et al. 
(2010a). Most important, field identification in 2009 of 
possible Wales Group equivalents on Porcher Island 
(Nelson et al., 2010a) was refuted by subsequent 
Ordovician U-Pb ages. The main metavolcanic sequence, 
which comprises most of the Alexander terrane in this 
area, is correlated with the Ordovician Descon Formation 
(s.l.) of southeast Alaska. In particular, it resembles the 
rhyolite-bearing Moira Sound unit, which hosts the 
Niblack volcanogenic massive sulphide deposit. Clastic 
rocks on Kennedy Island and near Baron Point on the 
mainland are correlated with the Early Devonian Karheen 
Formation. 

Pre-Cretaceous plutonic bodies include the 
Ordovician McMicking and Hunt Inlet plutons, the Early 
Mississippian (?) Swede Point pluton, and a Devonian 
pluton in Porcher Inlet. Southwest of the metamorphosed 
supracrustal units, two metamorphosed igneous 
complexes, the Ogden Channel and Billy Bay complexes, 
are recognised. The Billy Bay complex is an intrusive 
equivalent of the Descon volcanic sequence. At this point, 
no conclusive age determination on the Ogden Channel 
complex has been made.  

LOCAL GEOLOGY – 2010 MAPPING 
NEAR KLEMTU 

The 2010 map area is located 100 km southeast of the 
2009 map area, in eastern Laredo Sound (103A) map 
sheet. It extends from Return Channel in the south to 
Graham Reach, on the eastern side of Princess Royal 
Island, in the north (Figure 1). As shown in Figure 5, most 

of this area is underlain by large plutons, with deformed 
and metamorphosed older stratified rocks of the 
Alexander terrane exposed in narrow pendants between 
them. The southern projection of the Grenville Channel 
fault passes through Klemtu Pass at Klemtu, then crosses 
Finlayson Channel and continues south through Jackson 
and Oscar passages and into southern Mathieson Channel. 

Because of difficult access to the island interiors and 
extensive forest cover, most of the observations that form 
the basis of our mapping were made along shorelines. 
These were supplemented with logging road traverses, 
helicopter spot checking and limited traverses, together 
with image analysis of 5-metre resolution SPOT-5 
satellite data captured between 2004 and 2006. 

The geology in Figure 5 is based on a 1:50 000-scale 
open file map in preparation that will be available in early 
2011 (Nelson et al., 2011). 

Stratified Units 

Mathieson Channel Formation  

Strong lithologic similarities between layered 
metasedimentary and metavolcanic pendants in the 
Alexander terrane scattered throughout the 2010 map area 
have led to their inclusion within a single map unit, herein 
named the Mathieson Channel Formation. Because the 
original depositional relationships and stratigraphic 
continuity of units is disrupted by strike-slip faults, 
several generations of intrusive rocks and repeated by 
isoclinal folding, no simple stratigraphic section can be 
constructed, and true thicknesses of the stratigraphic 
layers are uncertain due to folding and structural 
repetition. However, overall stratigraphy of the Mathieson 
Channel Formation is based on consistent internal 
lithologic features and contact relationships that are 
documented in the layered units throughout the area. 
Figure 6 shows an interpretive stratigraphic section of the 
formation, measured along the eastern shoreline of Pooley 
Island. It includes the following provisional stratigraphic 
members: 

1) Clastic-carbonate member 
Calcareous siliciclastic rocks and calcarenite 
make up the most widespread and abundant map 
unit. 

2) Marble member 
Clastic-poor carbonates grade into the main 
clastic-carbonate member. They form mappable 
bodies in the Graham Reach area.  

3) Conglomerate-greywacke member 
Coarse clastic units are locally important on 
eastern Pooley Island where they are interlayered 
with the clastic-carbonate member. They also 
occur at a few other sites in the area. 

4) Andesite-gabbro member 
Andesite sills and flows (?) are restricted to part 
of the eastern shore of Graham Reach. 
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origin. However, the resemblance of siltstone clasts to the 
Mathieson Channel Formation may provide a 
sedimentological link between the two units. In this case, 
pericontinental rocks possibly formed part of the 
basement to the Mathieson Channel basin, and the Jorkins 
Point conglomerate could have formed along a western 
scarp. Gehrels et al. (1996) argued that the Silurian-
Devonian Klakas orogeny involved interaction between 
the Alexander terrane and an outboard (present 
coordinates) continental fragment, such as is represented 
by the Banks Island assemblage (Gehrels and Boghossian, 
2000; Figure 2, this paper). The Jorkins Point 
conglomerate may represent a “missing link” between the 
two. Ongoing detrital zircon studies (J.B. Mahoney, 2010-
11) may shed light on this important potential correlation.  

Intrusive units 
As shown on Figure 2, over 90 per cent of the project 

area is underlain by Cretaceous intrusive rocks of the 
western Coast Plutonic Complex. In the original mapping 
of the Laredo Sound area (Baer, 1973), the granitoids 
were given unit assignments based on composition and 
degree of foliation. This study benefited from the use of 
uranium-lead zircon dates from representative sites in the 
area (Gehrels et al., 2009), as well as an enhanced 
appreciation for styles of deformation of the plutonic 
bodies. This has resulted in significant changes in the 
location of plutonic contacts and interpreted contact 
relationships.  

Uranium-lead ages reported by Gehrels et al. (2009) 
were important in the definition of three main plutonic 
suites in the study area (Figure 5). The oldest plutonic 
suite is based on an age of ca. 123 Ma from a site north of 
the east end of Jackson Passage (Figure 5), obtained from 
a penetratively deformed, amphibolite grade diorite-
pyroxenite-gabbro complex. In our mapping, this 
metaplutonic complex corresponds to most of Baer’s unit 
2 and some of his unit 3; several small bodies of 
trondhjemite, shown on his map as unit 5, are also part of 
the complex. The second plutonic suite ranges in age from 
ca. 104 to ca. 94 Ma and is dominated by large 
homogenous tonalite bodies that comprise much of Sarah 
and Roderick islands, adjacent to Finlayson Channel. 
These plutons range from comparatively leucocratic and 
unfoliated cores (Baer’s unit 5) to darker and more 
foliated margins (Baer’s unit 3). The youngest plutonic 
suite, designated as unit 14a in Baer (1973), have several 
ages of approximately 82 Ma. One small intrusion was 
mapped near James Bay, along the western shoreline of 
Mathieson Channel. This body continues southeast across 
the channel where a coeval age indicates that it also 
includes a body previously mapped as Baer’s unit 5. 
These significant changes emphasise the importance of 
new detailed mapping in concert with U-Pb dating as 
necessary to the understanding of the Coast Plutonic 
Complex.  

 
 

Early Cretaceous (ca. 123 Ma) mafic 
intrusive complex 

A deformed and metamorphosed, generally mafic 
plutonic suite outcrops extensively along both sides of 
Mathieson Channel. Similar bodies also occur northwest 
of Klemtu and north of Green Inlet. Diorite is the 
dominant phase, although variants from ultramafite to 
trondhjemite are present. Where large enough, the 
gabbro-ultramafite and trondhjemite bodies have been 
mapped separately from the main, undivided, dominantly 
dioritic bodies. It should be noted, however, that this suite 
shows strong variability even at outcrop scale (Figure 
11a).  

Diorites, which are most abundant throughout these 
complexes, are typically penetratively foliated to 
protomylonitic with asymmetric fabrics (Figure 11b). The 
foliation involves fine grained metamorphic hornblende, 
accompanied by quartz, calcic plagioclase, and titanite. 
Primary igneous minerals survive as pseudomorphs and 
porphyroclasts. Gabbro bodies contain areas of ultramafic 
cumulates, for instance near the eastern entrance of 
Jackson Passage. Ultramafites are metamorphosed to 
coarse grained tremolite/actinolite-clinochlore-biotite 
assemblages, in one case with bright green picotite (?) 
grains. Trondhjemites south of southern Mathieson 
Channel are highly foliated to protomylonitic, with a 
strong biotite fabric (Figure 11c). 

No relationships with angular discordance were 
observed between phases of this complex and the 
Mathieson Channel Formation. Foliation involving 
amphibolite-facies assemblages is strongly developed in 
both, parallel to their contacts. 

A U-Pb age of 123.3 ± 1.4 Ma was reported by 
Gehrels et al. (2009) from this suite, at a location 1.5 km 
north of the eastern end of Jackson Passage. The sample 
is from a medium-grained diorite with moderate foliation, 
which grades compositionally into gabbro and tonalite. 
The latest phase at this outcrop is a highly foliated 
trondhjemite/pegmatite dike (Figure 11a). 

An unusual body of partly protomylonitic 
granodiorite in Neekas Inlet is tentatively assigned to this 
suite, based on its occurrences as a northwest-aligned 
sliver, and its degree of deformation. In it, coarse igneous 
microcline grew in equilibrium with plagioclase, and 
large brown allanite grains are rimmed with epidote. 
Subsolidus mylonitic fabrics include wispy biotite trains 
partly overgrown by late muscovite and chlorite, quartz 
ribboning and extensive development of trains of small 
neoblasts. Well-formed epidote grains grow across biotite. 
This body will form part of a U-Pb geochronological 
study by M. Pecha, aimed at constraining ages of 
deformation (2010-11). 
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phases of sinistral motion on the Grenville Channel and 
related faults demonstrates an important mid-Cretaceous 
metallotect in coastal British Columbia. 

DISCUSSION 

The southern Alexander Terrane in coastal 
British Columbia 

In 2009 and 2010, detailed mapping was completed 
for the Alexander terrane near both ends of its extent 
south of Alaska. The two areas are underlain by 
stratigraphically different units. At the northern end of the 
Alexander terrane, Ordovician volcanogenic and related 
plutonic rocks are widespread on Porcher Island and 
northern Pitt Island. By contrast, the southern end of the 
Alexander terrane consists of a siliclastic, carbonate and 
bimodal volcanic unit named herein the Mathieson 
Channel Formation and speculated to be of Devonian age. 
Broadly similar clastic rocks are limited to a few locales 
in the north. Regionally, the oldest exposed Alexander 
terrane rocks progress in age from Precambrian-Cambrian 
Wales Group on southern Prince of Wales Island, through 
Ordovician rocks along the northern Inside Passage, to 
possible Devonian clastic rocks in the far south, in the 
Laredo Sound map area.  

Volcanogenic base metal mineral potential in the 
Alexander terrane is primarily associated with Ordovician 
arc sequences, notably the Moira Sound unit of Karl et al. 
(2009), which hosts the Niblack deposit on southern 
Prince of Wales Island. Thus the Mathieson Channel 
Formation in the current map area is considered 
unprospective for syngenetic volcanogenic deposits. The 
bimodal volcanic rocks in it erupted into a shallow basin, 
probably under oxidizing conditions as indicated by the 
possible presence of redbeds. 

The Mathieson Channel Formation and the quartzite-
siltstone-volcanic conglomerate at Jorkins Point are 
significant indicators of the tectonic history of the 
Alexander terrane. They reflect patterns of tectonics and 
sedimentation in the aftermath of the earliest Devonian 
Klakas orogeny. The Mathieson Channel Formation, with 
its dominant fine-grained siliciclastics and carbonates, its 
narrow intervals of bimodal and potentially alkalic 
volcanics, and its sporadic local influxes of very coarse 
clastic debris, is inferred to represent a rift basin fill.  

In the Alexander terrane of southeastern Alaska, the 
slightly older Silurian Heceta conglomerates have been 
speculated to be equivalent to late Caledonian rift basin 
sequences (Soja and Krutikov, 2008). A similar 
correlation will be possible for the Mathieson Channel 
Formation, if suspected Devonian ages are confirmed by 
detrital U-Pb geochronology of possible rift-related clastic 
rocks. 

The Jorkins Point conglomerate may have been 
deposited in or near the Mathieson Channel basin. The 
presence of Mathieson-like siltstone clasts supports this 
idea; although its depositional age is not yet known. The 

prominence of quartzite clasts in Jorkins Point 
conglomerate certainly demonstrates recycling of 
continentally derived debris, possibly due to arc-continent 
sliver amalgamation events such as the Early Devonian 
Klakas orogeny.  

Early to mid-Cretaceous sinistral tectonics, 
the Grenville Channel fault, and 
mesothermal gold mineralization 

In 2010 mapping, we have recognized the southern 
Grenville Channel fault near Klemtu as a locus of mid-
Cretaceous sinistral shearing, and also documented a 
somewhat older Early Cretaceous event of distributed 
shear during amphibolite facies metamorphism. Magmatic 
ages constrain the timing of the distributed sinistral shear 
event between 123 and 105 Ma, the age of the 
synkinematic versus postkinematic plutons. These 
observations provide an important dimension to the mid-
Cretaceous sinistral shear history of the northern 
Grenville Channel fault and its splays. Intense fabric 
development in the ca. 123 Ma plutonic suite indicates 
that this deformation is entirely Early Cretaceous, rather 
than a continuation of the mid-Jurassic accretion 
kinematics of Alexander and Yukon-Tanana terranes.  

The Early to mid-Cretaceous sinistral-oblique shear 
system, as recorded in exposed rocks, evolved from deep-
crustal, sinistral-reverse motion, to upper crustal, nearly 
pure transcurrent motion on the Grenville Channel fault, 
in which the latest synkinematic phases record greenschist 
facies metamorphism at high fluid pressures as shown by 
the presence of abundant chlorite, sericite and carbonate. 
Tectonically, regimes of partitioned transcurrent motion 
during exhumation from amphibolite to greenschist facies 
are recognized worldwide as highly favourable to the 
emplacement of mesothermal (orogenic) gold-quartz vein 
systems. Therefore it is no surprise that two significant 
ex-producing gold mines of this type lie proximal to the 
Grenville Channel fault, controlled by second and third 
order fault arrays. Another promising gold-quartz vein 
system, Yellow Giant (MINFILE 103G 021, 24, 25, 26, 
30), is located on Banks Island. It is currently held by 
Imperial Metals, who hope to begin an exploration 
program there in 2011 (Jim Miller-Tait, personal 
communication, November 2010). 

FUTURE RESEARCH DIRECTIONS AND 
MAPPING PLANS 

The third and final field season of the North Coast 
Project is planned for 2011. It will have the following key 
goals: 

1) Revisit and resample for geochronology parts of 
the areas previously mapped, in which present 
structural, lithologic and geochronometric data 
indicate unsolved problems. Examples of this 
include a) the Devonian pluton in Porcher Inlet, 
which cuts an older orthogneiss complex that so 
far has only yielded an apparent Jurassic U-Pb 
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Laserchron age displaying complex systematics 
(J.B. Mahoney, unpublished data, 2010); b) the 
Swede Point pluton on Porcher Island, which 
may be Mississippian or, alternatively, Mesozoic 
with inherited cores and c) Kumealon Inlet, 
where a structural contact between Alexander 
terrane and Yukon-Tanana terrane has been 
inferred (Nelson et al., 2010b), but detrital zircon 
data are conflicting, and where U-Pb dating of 
the metavolcanic rocks has yet to be done. 

2) Collaborate with Joel Angen, who is studying the 
fault systems on Porcher Island and along 
northern Grenville Channel as an M.Sc. thesis at 
the University of Waterloo. His work is 
sponsored by the Geological Survey of Canada 
as a contribution to the Edges project. 

3) Visit key mineral occurrences in the area, 
particularly the Yellow Giant mesothermal Au 
deposit and the Pitt volcanogenic prospect, in 
order to place them in regional context. 

4) Complete field investigation of the Alexander 
terrane between Grenville Channel and northern 
Princess Royal Island, targeting a full update of 
this part of the BC Geological Map in 2012. 

SUMMARY AND CONCLUSIONS 
In this second year of operation, the North Coast 

project can list the following accomplishments: 
Completion of geological map coverage of an area of 

30 by 50 km, covering the channels and islands between 
Return Channel and northern Princess Royal Island, in 
eastern Laredo Sound map area (103A). This map will be 
released as a British Columbia Geological Survey open 
file in early 2011 (Nelson et al., 2011). 

Rock units of the Alexander terrane of southeastern 
Alaska can be traced into northwestern British Columbia 
(Porcher and Pitt islands), including those that are known 
to host Ordovician volcanogenic massive sulphide 
mineralization. Farther south, in the current map area, the 
Alexander terrane is represented by younger, probably 
Devonian, clastic-carbonate strata. 

The Grenville Channel fault is a mid-Cretaceous 
sinistral fault of regional extent (>150 km). It and its 
splays form the tectonic framework for mesothermal 
gold-quartz vein systems including Surf Point on Porcher 
Island, Surf Inlet on Princess Royal Island, and probably 
Yellow Giant on Banks Island. This is an important new 
metallotect on the coast of British Columbia. 

ACKNOWLEDGMENTS 
We once again acknowledge the key role of our 

captain, Don Willson and his boat, the Phoebe, in 
providing a convenient logistical base of operations and 
safe coordination of our daily zodiac traverses. The senior 
author (Nelson) wishes to thank all the members of the 

project team for their strong contributions to our task, 
deterred by neither metamorphism nor voluminous 
intrusion nor polyphase deformation from reconstructing 
original depositional environments and establishing the 
regional framework of faults. We were also fortunate to 
have two excellent, hard-working student assistants from 
the University of Wisconsin, Brennan Kadulski and Julia 
Potter. The North Coast Project is part of Edges (Multiple 
Metals – NW Canadian Cordillera (Yukon, British 
Columbia); financial and logistical support from the 
Geological Survey of Canada made it all possible. 
Moreover, the conduct of this project within the larger 
framework of Edges, with its focus on understanding the 
exotic terranes, their accretion and interaction with the 
continent margin, gives it more meaning than if it stood 
alone. Fil Ferri’s careful review improved the accuracy 
and clarity of the manuscript. 

REFERENCES 
Alldrick, D.J. (2001): Geology and mineral deposits of the 

Ecstall belt, northwest B.C.: in Geological Fieldwork 
1999, B.C. Ministry of Energy and Mines, Paper 2000-1, 
pages 279-306. 

Alldrick, D.J., Friedman, R.M. and Childe, F.C. (2001): Age and 
geologic history of the Ecstall greenstone belt, northwest 
B.C: in Geological Fieldwork 1999, B.C. Ministry of 
Energy and Mines, Paper 2000-1, pages 269-278. 

Alldrick, D.J., Nelson, J.L. and Barresi, T. (2005): The geology 
and mineral deposits of the upper Iskut River area: 
Tracking the Eskay rift through northern British 
Columbia (104G/1,2; 104B/9,10,15,16) in Geological 
Fieldwork 2004, B.C. Ministry of Energy and Mines, 
Paper 2005-1, pages 1-30. 

Ayuso, R.A., Karl, S.M., Slack, J.F., Haeussler, P.J., 
Bittenbender, P.E., Wandless, G.A. and Colvin, A.S. 
(2005): Oceanic Pb-isotopic sources of Proterozoic and 
Paleozoic volcanogenic massive sulphide deposits on 
Prince of Wales Island and vicinity, southeastern Alaska: 
in Studies by the U.S. Geological Survey in Alaska 2005, 
U.S. Geological Survey, Professional Paper 1732-E, 
pages 1-20. 

Baer, A.J., 1973: Bella Coola – Laredo Sound map-areas, British 
Columbia; Geological Survey of Canada, Memoir 372, 
122 pages, 1:250 000 geological maps. 

Berg, H.C., Jones, D.L. and Richter, D.H. (1972): Gravina-
Nutzotin belt – tectonic significance of an upper 
Mesozoic sedimentary and volcanic sequence in southern 
and southeastern Alaska; U.S. Geological Survey, 
Professional Paper 800-D, pages D1-D24. 

Butler, R.F., Gehrels, G.E., Hart, W., Davidson, C., and 
Crawford, M.L. (2006): Paleomagnetism of Late Jurassic 
to mid-Cretaceous plutons near Prince Rupert, British 
Columbia, in Haggart, J.W., Enkin, R.J., and Monger, 
J.W.H., eds., Paleogeography of the North American 
Cordillera: Evidence for and against large-scale 
displacements: Geological Association of Canada, 
Special Paper 46, pages 171-200. 

Chardon, D. (2003): Strain partitioning and batholith 
emplacement at the root of a transpressive magmatic arc; 
Journal of Structural Geology, Volume 25, pages 91-108. 

Geological Fieldwork 2010, Paper 2011-1 95



Chardon, D., Andronicos, C.L., and Hollister, L.S. (1999): 
Large-scale transpressive shear zone patterns and 
displacements within magmatic arcs: the Coast Plutonic 
Complex, British Columbia; Tectonics, Volume 18, pages 
278-292. 

Crawford, M.L., Crawford, W.A. and Gehrels, G.E. (2000): 
Terrane assembly and structural relationships in the 
eastern Prince Rupert quadrangle, British Columbia; in 
Stowell, H.H. and McClelland, W.C., editors., Tectonics 
of the Coast Mountains, southeastern Alaska and British 
Columbia; Geological Society of America, Special Paper 
343, pages 1-22. 

Eberlein, G.D., and Churkin, M. Jr. (1970): Paleozoic 
stratigraphy in the northwest coastal area of Prince of 
Wales Island, southeastern Alaska: U.S. Geological 
Survey Bulletin 1284, 67 pages, 2 sheets, 1:125 000 scale. 

Eberlein, G.D., Churkin, M. Jr., Carter, C., Berg, H.C. and 
Ovenshine, A.T. (1983): Geology of the Craig 
quadrangle, Alaska: U.S. Geological Survey Open-File 
Report 83-91, 28 pages, 1:250 000 scale. 

Gareau, S.A. and Woodsworth, G.J. (2000): Yukon-Tanana 
terrane in the Scotia-Quaal belt, Coast Plutonic Complex, 
central-western British Columbia, in Stowell, H.H. and 
McClelland, W.C., editors., Tectonics of the Coast 
Mountains, southeastern Alaska and British Columbia, 
Geological Society of America, Special Paper 343, pages 
23-44. 

Gehrels, G.E. (2001): Geology of the Chatham Sound region, 
southeast Alaska and coastal British Columbia: Canadian 
Journal of Earth Sciences, Volume 38, pages 1579-1599. 

Gehrels, G.E. and Boghossian, N.D. (2000): Reconnaissance 
geology and U-Pb geochronology of the west flank of the 
Coast Mountains between Bella Coola and Prince Rupert, 
coastal British Columbia; in Stowell, H.H. and 
McClelland, W.C., editors., Tectonics of the Coast 
Mountains, southeastern Alaska and British Columbia; 
Geological Society of America, Special Paper 343, pages 
61-76. 

Gehrels, G.E. and Kapp, P.A. (1998): Detrital zircon 
geochronology and regional correlation of 
metasedimentary rocks in the Coast Mountains, 
southeastern Alaska; Canadian Journal of Earth 
Sciences, Volume 3, pages 269-279. 

Gehrels, G. E. & Saleeby, J. B. (1987): Geologic framework, 
tectonic evolution and displacement history of the 
Alexander terrane, Tectonics, Volume 6, pages 151-174. 

Gehrels, G.E., Berg, H.C., and Saleeby, J.B. (1983): 
Ordovician-Silurian volcanogenic massive sulfide 
deposits on southern Prince of Wales Island and the 
Barrier Islands, southeastern Alaska; US Geological 
Survey, Open File Report 83-318, 11 pages.  

Gehrels, G.E., McClelland, W.C., Samson, S.D., Patchett, J.P. 
and Orchard, M.J. (1992): Geology of the western flank 
of the Coast Mountains between Cape Fanshaw and Taku 
Inlet, southeastern Alaska; Tectonics, Volume 11, pages 
567-585. 

Gehrels, G.E., Dickinson, W.R., Ross, G.M., Stewart, J.H. and 
Howell, D.G. (1995): Detrital zircon reference for 
Cambrian to Triassic miogeoclinal strata of western 
North America.; Geology, Volume 23, pages 831-834. 

Gehrels, G. E., Butler, R. F. and Bazard, D. R. (1996): Detrital 
zircon geochronology of the Alexander terrane, 

southeastern Alaska, Geological Society of America 
Bulletin, Volume 108, pages 722-734. 

Gehrels, G. , Rusmore, M. , Woodsworth, G. , Crawford, M. , 
Andronicos, C. , Hollister, L. , Patchett, J. , Ducea, M. , 
Butler, R. , Klepeis, K. , Davidson, C. , Friedman, R. , 
Haggart, J. , Mahoney, B. , Crawford, W., Pearson D. and 
Girardi, J. (2009): U-Th-Pb geochronology of the Coast 
Mountains batholith in north-coastal British Columbia: 
Constraints on age and tectonic evolution; Geological 
Society of America Bulletin, Volume 121, pages 1341-
1361.  

Hutchison, W.W. (1982): Geology of the Prince Rupert – 
Skeena map area, British Columbia; Geological Survey of 
Canada Memoir 394, 115 pages, with 1:250 000 scale 
geological map GSC Map 1427A. 

Karl, S.M., Ayuso, R.A. , Slack, J.F. and Friedman, R.M. 
(2009): Neoproterozoic to Triassic rift-associated VMS 
deposits in the Alexander composite oceanic arc terrane, 
southeast Alaska; in Morris, H., editor, Mining: Modern 
Mine Reclamation: Alaska Miners Association 2009 
Annual Convention, Abstracts, page 9. 

Kilby, W. E., (1995): Mineral Potential Project - Overview; in 
Geological Fieldwork 1994, Grant, B. and Newell, J.M., 
Editors, B.C. Ministry of Energy, Mines and Petroleum 
Resources, Paper 1995-1, pages 411-416. 

Nelson, J.L. and Gehrels, G.E. (2007): Detrital zircon 
geochronology and provenance of the southeastern 
Yukon-Tanana terrane; Canadian Journal of Earth 
Sciences, Volume 44, pages 297-316. 

Nelson, J.L., Mahoney, J.B., Gehrels, G.E., van Staal, C. and 
Potter, J.J. (2010a): Geology and mineral potential of 
Porcher Island, northern Grenville Channel and vicinity, 
northwestern British Columbia; B.C. Ministry of Energy 
and Mines, Geological Fieldwork 2009, pages 19-42. 

Nelson, J.L., Mahoney, J.B. and Gehrels, G.E. (2010b): Geology 
and mineral potential of the Porcher Island – Grenville 
Channel area, northwestern British Columbia; B.C. 
Ministry of Energy and Mines, Open-File 2010-03 (also, 
Geological Survey of Canada, Open File 6654, 1:50 000 
scale. 

Nelson, J.L., Diakow, L.J., Karl, S., Mahoney, J.B. , Gehrels 
G.E. , Pecha, M. , and van Staal, C. (2011): Geology of 
the mid-coast region of BC near Klemtu, parts of 
103A/08, A09, A/15 and A/16; B.C. Ministry of Energy 
and Mines, Open-File 2011-3, 1:100 000 scale. 

Roddick, J.A. (1970): Douglas Channel – Hecate Strait map-
area, British Columbia; Geological Survey of Canada, 
Paper 70-41; 70 pages, with 1:250 000 scale geological 
map, GSC Map 23-1970. 

Rubin, C.M. and Saleeby, J.B. (1992) Tectonic history of the 
eastern edge of the Alexander terrane, southeast Alaska; 
Tectonics, Volume 11, pages 586-602. 

Rusmore, M.E., Woodsworth, G.J. and Gehrels, G.E. (2005): 
Two-stage exhumation of midcrustal arc rocks, Coast 
Mountains, British Columbia; Tectonics, Volume 24, 
Oct. 2005, Paper TC5013, doi:10.1029/2004TC001750, 
25 pages. 

Saleeby, J.B. (2000): Geochronologic investigations along the 
Alexander-Taku terrane boundary, southern 
Revillagigedo Island to Cape Fox areas, southeast 
Alaska; in Stowell, H.H. and McClelland, W.C., editors, 
Tectonics of the Coast Mountains, southeastern Alaska 

96 British Columbia Geological Survey



and British Columbia; Geological Society of America 
Special Paper 343, pages 107-143. 

Slack, J.F., Shanks, W.C., Karl, S.M., Gemery, P.A., 
Bittenbender, P.E. and Ridley, W.I. (2005): Geochemical 
and sulphur-isotopic signatures of volcanogenic massive 
sulphide deposits on Prince of Wales Island and vicinity, 
southeastern Alaska: in Studies by the U.S. Geological 
Survey in Alaska 2005, U.S. Geological Survey 
Professional Paper 1732-C, 37 pages. 

Soja, C.M. and Krutikov, L. (2008): Provenance, depositional 
setting, and tectonic implications of Silurian polymictic 
conglomerates in Alaska’s Alexander terrane; in 
Blodgett, R.B. and Stanley, G.D. Jr., The terrane puzzle: 
new perspectives on paleontology and stratigraphy from 
the North American Cordillera; Geological Society of 
America Special Paper 442, pages 63-75. 

von Einsiedel, C. (2001): Underground drilling report, Surf mine 
900 level, Surf Inlet Project. B.C Ministry of Energy, 
Mines and Petroleum Resources, Assessment Report 
26704, 31 pages. 

Wheeler, J.O., Brookfield, A.J., Gabrielse, H., Monger, J.W.H., 
Tipper, H.W. and Woodsworth, G.J. (1991): Terrane map 
of the Canadian Cordillera: Geological Survey of Canada 
Map 1713A, 1:2 000 000 scale. 

Geological Fieldwork 2010, Paper 2011-1 97



 

98 British Columbia Geological Survey



Geology of the Kutcho assemblage between Kutcho Creek and the Tucho 
River, northern British Columbia (NTS 104I/01) 

by P. Schiarizza 

 
KEYWORDS: Kutcho assemblage, Cache Creek terrane, 
King Salmon fault, Nahlin fault, Kutcho fault, Kutcho 
Creek volcanogenic massive sulphide deposit 

INTRODUCTION 
The Kutcho project is a two-year bedrock mapping 

program initiated by the British Columbia Geological 
Survey Branch in 2010. The aim of the project is to gain a 
better understanding of, and provide more detailed 
geological maps for, the Permo-Triassic Kutcho 
assemblage, which hosts the Kutcho Creek volcanogenic 
massive sulphide deposit. The study is part of the Edges 
(Multiple Metals-Northwest Canadian Cordillera (Yukon, 
British Columbia)) project, which is a contribution to the 
GEM (Geomapping for Energy and Minerals) program. 
This program was initiated by the Federal Government in 
2008 to enhance public geoscience knowledge in northern 
Canada, in order to stimulate economic activity in the 
energy and mineral sectors. 

This report summarizes preliminary results from the 
first year’s fieldwork on the Kutcho project. Fieldwork 
was conducted over seven weeks (July 2-28; August 12 - 
September 2) by a single traverse team comprising the 
author and student assistant Scott Caldwell (University of 
Victoria). Work was conducted from Kutcho Copper 
Corporation’s exploration camp on Kutcho Creek. 
Operating funds were provided by the British Columbia 
Geological Survey, a private-public partnership 
agreement with Kutcho Copper Corporation, the 
Geological Survey of Canada (Edges project) and a 
partnership agreement with the University of Victoria. 

The 2010 map area covers about 200 square 
kilometres and encompasses the main exposure belt of the 
Kutcho assemblage, between Kutcho Creek and the 
Tucho River, including the Kutcho Creek Cu-Zn 
volcanogenic massive sulphide occurrence (MINFILE 
104I 060). It is located in the southeast corner of NTS 
map sheet 104I (Cry Lake) and encompasses the 
transition between the Stikine Ranges of the Cassiar 
Mountains to the north and the Spatsizi Plateau to the 
south. The nearest community is Dease Lake, located on 
 
This publication is also available, free of charge, as colour 
digital files in Adobe Acrobat® PDF format from the BC 
Ministry of Forests, Mines and Lands website at 
http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCat
alogue/Fieldwork. 

Highway 37, 100 km west-northwest of the Kutcho Creek 
deposit. A poor tote road connects the map area to Dease 
Lake, but the most efficient access is by air, facilitated by 
a gravel airstrip at the exploration camp on the west side 
of Kutcho Creek. 

PREVIOUS WORK 
Geological studies by the Geological Survey of 

Canada in the Cry Lake and Dease Lake map areas, 
carried out intermittently from 1956 to 1991, are 
summarized in the report and 1:250 000-scale geological 
maps of Gabrielse (1998). This work incorporates 
regional studies of the Kutcho assemblage by Monger 
(1977), Monger and Thorstad (1978), Thorstad (1979, 
1984) and Thorstad and Gabrielse (1986), as well as 
studies carried out in the immediate vicinity of Kutcho 
Creek deposit by provincial government geologists from 
1974 to 1977 (Panteleyev, 1975, 1978; Pearson and 
Panteleyev, 1976; Panteleyev and Pearson, 1977a, b). 

The Kutcho Creek massive sulphide deposit, 
discovered in 1973, was described by Bridge et al. (1986) 
after more than a decade of exploration, including 292 
drillholes, by Esso Minerals Canada and Sumitomo Metal 
Mining Co. More recently, the deposit and host rocks 
were described by Barrett et al. (1996), who document 
details of primary and alteration geochemistry. A 
concurrent study by Childe and Thompson (1997) 
presents U-Pb radiometric dates and radiogenic isotope 
characteristics of the Kutcho assemblage. 

REGIONAL GEOLOGICAL SETTING 
The geological setting of the Kutcho Creek – Tucho 

River map area is shown on Figure 1. The map area is 
located at the east end of the King Salmon allochthon, a 
relatively narrow structural/stratigraphic belt that has been 
traced several hundred kilometres to the west-northwest, 
and separates the main exposures of the oceanic Cache 
Creek terrane to the north from those of the Stikine arc 
terrane to the south. The allochthon itself consists mainly 
of Early to Middle Jurassic clastic sedimentary rocks of 
the Inklin Formation, which forms the main exposure belt 
of the Whitehorse trough in northern British Columbia. 
Older rocks that are preserved locally in the eastern part 
of the allochthon include bimodal volcanic and 
volcaniclastic rocks of the Kutcho assemblage, as well as 
narrow lenses of oceanic rock (basalt, chert, serpentinite) 
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that have been included in Cache Creek terrane 
(Gabrielse, 1998). The King Salmon allochthon is 
bounded by the King Salmon and Nahlin faults, which are 
interpreted as northerly dipping thrust faults that were 
active in early Middle Jurassic time. 

The King Salmon allochthon, together with adjacent 
Cache Creek and Stikine terranes, is truncated to the 
northeast by a system of northwest-striking faults that 
record significant dextral strike-slip displacement of 
Cretaceous and Tertiary age (Gabrielse, 1985, 1998; 
Gabrielse et al., 2006). The fault panels directly northeast 
of the Cache Creek – King Salmon – Stikine belts include 
mid-Paleozoic, late Paleozoic and Mesozoic arc 
sequences that are part of Yukon-Tanana and Quesnel 
terranes (Gabrielse, 1991; Nelson and Friedman, 2004). 
Farther northeast, these rocks are faulted against, and 
intruded by, a major belt of granitic rocks that includes 
the Cretaceous Cassiar Batholith. The rocks northeast of 
this granitic belt consist mainly of Proterozoic through 
Paleozoic sedimentary rocks of North American affinity, 
locally overlain by thrust slices of oceanic Slide Mountain 
terrane, Quesnel terrane and Yukon-Tanana terrane, 
which together comprise the Sylvester allochthon 
(Gabrielse, 1991; Nelson and Friedman, 2004). 

GEOLOGICAL UNITS 
The distribution of the main geological units within 

the 2010 map area is shown on Figure 2, and a schematic 
vertical cross-section through the western part of the area 
is shown on Figure 3. Most units are part of the King 
Salmon allochthon, which includes the Permo-Triassic 
Kutcho assemblage, together with a structurally 
underlying unit of mainly metabasalt and serpentinite 
assigned to the Cache Creek Complex, and a Triassic-
Jurassic metasedimentary succession that overlies the 
Kutcho assemblage across an erosional unconformity. 
The latter succession includes a local conglomerate unit 
containing clasts derived from the Kutcho assemblage, 
and overlying limestone, slate, siltstone and sandstone 
correlated with the regionally extensive Late Triassic 
Sinwa and Early to Middle Jurassic Inklin formations. All 
map units within the allochthon are deformed by south-
verging folds, with an associated axial planar cleavage 
defined by greenschist facies mineral assemblages. The 
allochthon is bounded to the south by the north dipping 
King Salmon thrust fault, and to the north by the Nahlin 
fault. Jurassic chert-pebble conglomerate of the Bowser 
Lake Group occurs in the footwall of the King Salmon 
fault, and serpentinized ultramafic rocks of the Cache 
Creek terrane crop out on the north side of the Nahlin 
fault. The northwest striking Kutcho fault truncates the 
King Salmon allochthon near the northeast edge of the 
map area, and juxtaposes it against undated plutonic 
rocks, mainly granodiorite and quartz diorite, which are 
part of the Quesnel terrane. The youngest unit mapped in 
the area is a small post-metamorphic plug of diorite that 
cuts the Kutcho assemblage in the southwest part of the 
map area. This plug, and abundant sills and dikes of 

hornblende-pyroxene-plagioclase porphyry that are too 
small to be shown on Figure 2, are probably Eocene in 
age. 

Cache Creek Complex within the King 
Salmon allochthon 

Metabasalt and related rocks that occur at the base of 
the King Salmon allochthon in the southwest part of the 
map area are assigned to the Cache Creek Complex. 
These rocks rest structurally above the Bowser Lake 
Group across the King Salmon fault, and are in turn 
overlain by the basal part of the Kutcho assemblage 
across a suspected fault contact. They pinch out to the 
east, within the current map area, but have been traced as 
a continuous belt for 25 km to the west of the area 
(Gabrielse, 1998). 

The Cache Creek Complex in the southwestern part 
of the map area is dominated by metabasalt, but also 
includes minor amounts of bedded chert, limestone and 
gabbro, and includes substantial amounts of serpentinite 
along the structural base and top of the succession. The 
fine-grained metabasalt is medium to pale green, weakly 
to strongly schistose, and typically forms monotonous 
greenish brown to rusty brown weathered exposures that 
show little or no indication of original mineralogy or 
texture. Vague pillow outlines occur locally, and 
fragmental schist, containing light greenish grey epidote 
altered feldspathic fragments and dark green chloritic 
fragments, was noted in one area about 2 km south-
southeast of peak 2075. Thin sections of typical 
metabasalt reveal a foliated metamorphic assemblage of 
mainly actinolite, chlorite and epidote, with partial 
preservation of an original groundmass comprising 
intergrown clinopyroxene and plagioclase, as well as rare 
clinopyroxene microphenocrysts. 

Fine and medium grained chlorite-epidote-
plagioclase semischists, derived from diabasic and 
gabbroic rocks, respectively, were noted at two widely-
spaced locations within the southern Cache Creek 
Complex, and may represent sills or dikes within the 
compositionally similar metabasalt. Medium grey to 
brownish grey bedded chert, comprising chert beds 1-4 
cm thick separated by chloritic partings, forms an interval 
about 10 m thick that is intercalated with metabasalt just 
west of peak 1667. Similar chert, and light grey 
weathered limestone, occur as lenses between the 
metabasalt and structurally underlying serpentinite, about 
300 m southwest of the peak. The serpentinite forms the 
structural base of the Cache Creek Complex, and rests 
above chert-pebble conglomerate of the Bowser Lake 
Group across the unexposed trace of the King Salmon 
fault. Serpentinite also occurs at the structural top of the 
Cache Creek Complex, directly beneath unit KS1 of the 
Kutcho assemblage, and commonly encloses lenses of 
silicified metabasalt and chert. 

The rocks described above are readily included in the 
Cache Creek Complex on the basis of lithology. They are 
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Figure 2. Generalized geology of tthe Kutcho Creekk – Tucho River map area, basedd mainly on 2010
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with thinner interbeds of slaty siltstone. Limestone and 
brown weathered calcareous sandstone form thin to 
medium beds and lenses in the basal part of the formation, 
giving the impression of a gradational contact with the 
underlying Sinwa Formation. 

The Inklin exposures within the current map area 
have been traced westward through the Cry Lake and 
Dease Lake map areas (Gabrielse, 1998) into the type area 
of the Inklin Formation in the Tulsequah map area 
(Souther, 1971). The formation is not well dated 
anywhere along this belt (Gabrielse, 1998), but fossil data 
from contiguous strata still farther to the northwest, in the 
Atlin Lake and Tagish Lake areas, indicate an Early 
Jurassic, Sinemurian to Toarcian age (Johannson et al., 
1997; Mihalynuk, 1999). Correlative strata farther north, 
in the Yukon, range from Lower to Middle Jurassic 
(Bajocian) (Pálfy and Hart, 1995). 

Ultramafic rocks of Cache Creek terrane 
north of the Nahlin fault 

Ultramafic rocks of the Cache Creek terrane crop out 
along the north margin of the study area. They are 
juxtaposed against the Inklin Formation across the Nahlin 
fault, and are truncated to the east by the Kutcho fault. 
They are part of a widespread ophiolitic assemblage that 
forms a major part of the Cache Creek terrane of northern 
British Columbia (Monger, 1975; Terry, 1977; Ash, 2001; 
English et al., 2010). 

The ultramafic rocks for the first 100 to 200 m north 
of the Nahlin fault comprise irregularly foliated and 
fractured serpentinite that weathers to shades of light to 
dark green and grey. The serpentinization is less 
pervasive farther north, where the protolith is largely 
harzburgite with local patches of dunite. The harzburgite 
weathers to a rusty brown colour, with an irregular 
surface that is the result of resistant grains of 
orthopyroxene, 4 to 12 mm in size, standing in relief 
against a recessive background inferred to be mainly 
serpentinized olivine. Dunite, consisting mainly of 
serpentinized olivine, is characterized by weathered 
surfaces that are relatively smooth and a lighter reddish 
tan colour. Lenses of chlorite schist occur locally within 
serpentinized ultramafite and might be tectonic inclusions 
or altered mafic dikes. A lens of dark grey slaty siltstone 
that was traced for about 150 m in a west-northwest 
direction, 600 m north of the trace of the Nahlin fault, is 
probably a fault-bound sliver derived from the Inklin 
Formation. 

Ultramafic rocks along the Kutcho fault are altered to 
orange weathered listwanite which forms a conspicuous 
band up to 200 m wide. Listwanite was also noted along a 
minor north-striking fault within the main part of the 
ultramafic unit, several kilometres west of the Kutcho 
fault. The listwanite consists of finely crystalline 
magnesite, locally with scattered small grains of 
mariposite, cut by variably oriented veins of quartz and 
magnesite. 

Plutonic rocks of Quesnel terrane 
Granitic rocks that crop out on the northeast side of 

the Kutcho fault are part of an unnamed and undated 
pluton within Quesnel terrane. The pluton cuts Late 
Triassic volcanic and sedimentary rocks of the Shonektaw 
Formation to the east and northeast of the map area 
(Gabrielse, 1998). Exposures examined in the northern 
and central parts of the current study area comprise a 
heterogeneous mixture of hornblende diorite to quartz 
diorite and hornblende-biotite tonalite, with numerous 
patches of dark grey hornfels and fine grained dioritic 
rock that probably represent screens of country rock 
and/or older phases of the pluton. Exposures in the 
southern part of the area are more homogeneous, 
consisting of grey-green, medium grained, equigranular 
hornblende granodiorite. 

Bowser Lake Group 
Rocks assigned to the Bowser Lake Group form the 

southernmost unit mapped within the study area, where 
they occur in the footwall of the King Salmon thrust fault. 
They were examined in several exposures along lower 
Josh Creek near the eastern edge of the map area, and in a 
small exposure in the southwestern part of the area, on the 
wooded slopes near the southern limit of mapping. Pebble 
conglomerate forms the latter exposure, and is the 
dominant lithology in the Josh Creek exposures. It 
weathers brown to rusty brown, and contains subangular 
to subrounded clasts ranging from a few millimetres to 5 
cm in size. The clasts are dominated by chert, in shades of 
light to dark grey and light to medium green, but 
fragments of mafic volcanic rock, siliceous argillite and 
quartz are also present. The small size fraction grades into 
a sandy matrix dominated by grains of chert and quartz. 

Brown weathered, fine to coarse-grained sandstone, 
composed mainly of chert and quartz, occurs as single or 
multiple thin to medium beds intercalated with 
conglomerate in the Josh Creek exposures. Some beds are 
graded, and overlying conglomerate forms a channel 
cutting into the top of one sandstone bed. 

The Bowser Lake Group along Josh Creek also 
includes exposures of dark grey slate that were not seen in 
stratigraphic contact with the dominant conglomerate. 
The slate is highly folded and faulted, and contains 
cleavage-parallel veins and lenses of rusty weathered Fe-
Mg carbonate. 

The Bowser Lake Group ranges from Middle Jurassic 
to Early Cretaceous in age (Tipper and Richards, 1976; 
Evenchick, 1991). The panel of rocks in the current map 
area probably represents part of the lower, Middle 
Jurassic, portion of the group (Gabrielse, 1998); it has 
yielded Bajocian fossils 30 km west of the map area, and 
is cut by a late Middle Jurassic pluton 15 km southeast of 
the map area. 
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Eocene intrusions 
Small, intermediate to mafic, post-metamorphic 

intrusions are scattered sparsely through much of the map 
area, and are common within the Kutcho assemblage and 
Cache Creek Complex in the southwestern part of the 
area. Most of the intrusions are porphyritic sills and dikes, 
ranging from a few metres to a few tens of metres wide, 
comprising phenocrysts of feldspar, hornblende and 
locally pyroxene, within a grey to brown, massive to 
platy, aphanitic to very fine grained feldspathic 
groundmass. Medium grained, equigranular diorite that 
might be part of the same plutonic suite forms a small 
stock, 300 m in diameter, that underlies peak 2075, and 
also a north-northeast striking dike, 6 to 8 m wide, that 
cuts schists of unit KN3 about 1 km northeast of peak 
1732. The diorite contains approximately equal 
proportions of plagioclase and mafic minerals, the latter 
comprising clinopyroxene, hornblende and biotite. 

The intrusive suite described above is inferred to be 
Eocene, on the basis of a radiometric date obtained from a 
dike that crops out 1 km northeast of peak 2075. Stevens 
et al. (1982) report that a hornblende separate, containing 
about 10% biotite, from this dike yielded a K/Ar date of 
55.4 ±3.0 Ma. 

STRUCTURE 

Mesoscopic structure 
All map units within the King Salmon allochthon are 

characterized by a penetrative cleavage or schistosity 
defined by the preferred orientation of greenschist facies 
metamorphic mineral assemblages and, in coarse-grained 
units, variably flattened primary crystal and lithic 
fragments. The schistosity typically dips at moderate to 
steep angles to the north, and is axial planar to 
mesoscopic folds of bedding which were observed 
sporadically within well-bedded units. The folds plunge 
gently to the west or west-northwest, and typically verge 
to the south. Lineations defined by bedding/cleavage 
intersections and, rarely, the elongation of mineral and 
lithic fragments, are parallel to the fold axes. A younger 
crenulation cleavage, which dips more gently to the north, 
was observed to cut the schistosity at a few locations 
scattered across the map area. It is best developed in the 
Inklin Formation within the core of the syncline 2.5 km 
north-northeast of peak 2075. There, the crenulation 
cleavage dips 30 to 40 degrees to the north, and is axial 
planar to open folds of the main slaty cleavage that plunge 
gently to the west-northwest. The main schistosity is also 
deformed by another, more common set of mesoscopic 
folds and kinks with axes that plunge steeply to the north 
or northeast. Axial surfaces are typically steep and do not 
have an associated cleavage. 

 
 

Macroscopic structure of the King Salmon 
allochthon 

The macroscopic structure of the King Salmon 
allochthon comprises predominantly north dipping and 
facing map units that are locally deformed by south-
verging asymmetric folds and(?) north dipping thrust 
faults (Figure 3). The folds formed at the same time as the 
penetrative schistosity displayed by all units within the 
allochthon. The bounding King Salmon and Nahlin thrust 
faults, as well as the inferred north dipping thrust faults 
within the allochthon, probably formed during the same 
deformational event, but in detail may be slightly 
younger. A variety of constraints beyond the current map 
area suggest that this deformation occurred in early 
Middle Jurassic time (Tipper, 1978; Mihalynuk et al., 
1992, 2004). 

The Cache Creek rocks that form the base of the 
allochthon in the southwest part of the map area are 
inferred to underlie the Kutcho assemblage across a north 
dipping thrust fault that appears to merge with the King 
Salmon fault. The overlying southern division of the 
Kutcho assemblage forms a panel that mainly dips and 
faces to the north. The sinuous contact between units KS1 
and KS2 is suspected to be the result of stratigraphic 
interfingering, but might indicate the presence of an east-
plunging south-verging fold pair. 

The central division of the Kutcho assemblage 
structurally overlies the southern division with no 
apparent discordance. The contact is interpreted to be 
stratigraphic, but is not well enough exposed to preclude 
the presence of significant layer-parallel faults. A west-
plunging syncline in the southwestern part of the division 
is defined by infolded Sinwa and Inklin formations, and a 
poorly defined complimentary anticline to the north is 
apparently cored by metarhyolite and tonalite. The 
northern part of the central division occupies the north 
limb of this anticline, and is deformed by numerous 
mesoscopic and medium-scale folds that show southward 
vergence, as defined by long moderately north-dipping 
backlimbs and short, steeply-dipping forelimbs. 

The northern part of the King Salmon allochthon, 
including the northern division of the Kutcho assemblage 
and overlying sedimentary units, forms a predominantly 
north dipping and facing succession that is deformed by a 
west-plunging, south-verging anticline/syncline pair that 
is well defined by the conglomerate unit and overlying 
Sinwa Formation. The Inklin Formation displays 
considerable internal folding and might encompass 
additional folds of similar magnitude, but was not 
examined in sufficient detail to determine if this is the 
case. The structure of the southern part of this panel, 
including the contact between the northern and central 
divisions of the Kutcho assemblage, is not well 
understood. It is suspected that the boundary between the 
two divisions is a system of faults, in part because there is 
an apparent truncation of medium-scale folds in the 
central division along this contact in the western part of 
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the map area. Farther east, there is a structural(?) 
interleaving of central and northern division lithologies 
across recessive contacts that are suspected, but not 
proven, to be faults. This system of inferred faults may 
have accommodated south-directed thrust movement, 
congruent with other major structures within and 
bounding the King Salmon allochthon. However, as 
discussed previously, these faults may, in part, have 
originated at an earlier time, as down-to-the-north growth 
faults that localised deposition of the conglomerate unit. 

The youngest structures mapped within the King 
Salmon allochthon are steeply dipping, northwest-striking 
faults that correspond to local offsets of the 
predominantly east trending lithologic contacts and 
structures. These late structures display both dextral and 
sinistral apparent offsets, but the actual sense of 
movement was not established. 

King Salmon thrust fault 
The King Salmon fault is an important regional 

structure that forms the structural base of the King 
Salmon allochthon. It has been traced about 300 km west-
northwest from the current map area, where it apparently 
merges with the long-lived, northwest trending Llewellyn 
fault zone (Mihalynuk, 1999). Where exposed, the King 
Salmon fault dips at low to moderate angles to the north, 
and displays deformation fabrics and map relationships 
consistent with south-directed thrust motion (Souther, 
1971; Thorstad and Gabrielse, 1986; Gabrielse, 1998). 

The King Salmon thrust fault crosses the southern 
part of the map area, but its position is well constrained 
only in the southwest corner of the area, southwest of 
peak 1667, and along the lower reaches of Josh Creek in 
the southeast part of the area. In the southwest, the fault 
separates the Cache Creek Complex from the Bowser 
Lake Group. It is constrained by exposures of Cache 
Creek serpentinite and Bowser Lake chert-pebble 
conglomerate about 200 m apart, but no structures or 
fabrics related to the fault were observed. 

The fault is more tightly constrained along Josh 
Creek, where it is defined by exposures of Kutcho 
assemblage and Bowser Lake Group about 30 m apart. 
The Kutcho rocks directly above the fault are part of unit 
KS1, and consist mainly of dark grey phyllite that locally 
contains thin to medium graded sandstone beds that dip 
and face 45º to the north-northwest. The grey phyllite is 
commonly altered to pale green, rusty weathered ankerite-
sericite schist, and the phyllitic cleavage is contorted by 
folds with highly variable orientations. Folds within 
altered ankerite-sericite schist near the structural base of 
the exposure, however, generally plunge gently to the east 
or west, and, where asymmetric, verge to the south. 
Exposures of footwall Bowser Lake Group most proximal 
to the fault trace consist of chert pebble conglomerate 
with local graded sandstone interbeds that are vertical and 
face to the north-northeast. These rocks are cut by brittle 
faults that dip at moderate to steep angles to the north, and 
locally display downdip striations. Farther to the 

southeast, an isolated exposure displays a minor thrust(?) 
fault that dips 45º to the north and places massive chert-
pebble conglomerate above contorted magnesite-altered 
slate that is also part of the Bowser Lake Group. Similar 
magnesite-altered slate forms a larger exposure farther 
downstream, but still within 100 m of the King Salmon 
fault trace. In this exposure the slaty cleavage is folded by 
northeast-plunging folds that are cut by younger faults 
that dip at moderate to steep angles to the east-northeast. 

Nahlin fault 
The Nahlin fault has been traced from the current 

map area more than 350 km west-northwest to the Atlin 
Lake area (Souther, 1971; Mihalynuk et al., 1992; 
Gabrielse, 1998). It forms the northeast boundary of the 
King Salmon allochthon, and juxtaposes the Inklin 
Formation, on the southwest side of the fault, with rocks 
of the Cache Creek terrane to the northeast. The fault is 
generally interpreted as a northeast-dipping thrust, 
although some segments dip steeply and may have a 
component of dextral strike-slip movement (Gabrielse, 
1998). 

The trace of the Nahlin fault trends east-southeast 
across the northern part of the map area, and bends 
sharply to the southeast as it is truncated by the Kutcho 
fault. It juxtaposes ultramafic rocks of the Cache Creek 
terrane to the north and northeast against the Inklin 
Formation to the south and southwest. The fault is easily 
identified where it crosses alpine ridges and juxtaposes 
green serpentinite against grey metasedimentary rocks, 
but it was not studied in enough detail to establish its 
orientation or kinematic history. A notable feature, 
however, is the common presence of lenses of rock along 
the fault trace that are not derived from either the Cache 
Creek ultramafic unit or the Inklin Formation. These 
lenses include limestone, sericite-quartz schist 
(metarhyolite?), silicified chlorite-sericite schist and 
actinolite-epidote-chlorite schist. They resemble rocks 
that are common in the Sinwa Formation and the Kutcho 
assemblage, and may have been derived from these units 
as the fault ramped through them into the overlying Inklin 
Formation. 

Kutcho fault 
The Kutcho fault is a prominent northwest striking 

regional structure that truncates the east end of the King 
Salmon allochthon. It is part of a network of orogen-
parallel dextral strike-slip faults, of Cretaceous to Eocene 
age, with a combined displacement of several hundred 
kilometres (Gabrielse, 1985; Gabrielse et al., 2006). The 
Kutcho fault displays mylonitic fabrics with dextral 
kinematic indicators where it cuts the Cassiar Batholith to 
the northwest of the current map area (Gabrielse, 1998). 
Right-lateral displacement of about 100 km is indicated 
by offset of the Hottah and Klinkit faults, which are 
truncated by the Kutcho fault 15 and 115 km northwest of 
the present map area (Gabrielse, 1985). Restoration of an 
additional 200 km of displacement, distributed along 
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other faults of the network (Thibert, Thudaka, Finlay, 
Ingenika, Takla), matches the King Salmon allochthon 
with correlative units included in the Sitlika assemblage 
of central British Columbia (Monger et al., 1978; 
Gabrielse, 1985). 

The Kutcho fault transects the northeast corner of the 
Kutcho-Tucho map area, where it truncates the Kutcho 
assemblage and overlying units, and juxtaposes them 
against granitic rocks of Quesnel terrane. The fault is 
easily defined by the contrasting rock packages it 
separates, and its trace is highly visible through much of 
the area because ultramafic rocks directly southeast of the 
fault are altered to orange weathered listwanite. Granitic 
rocks directly northeast of the fault are highly fractured 
and altered with chlorite, epidote and carbonate. The 
deflection of the Nahlin fault into the younger structure is 
consistent with dextral movement along the Kutcho fault. 

MINERAL OCCURRENCES 
The Kutcho Creek Cu-Zn volcanogenic massive 

sulphide deposit occurs within the upper part of the 
Kutcho assemblage about 6 km east of Kutcho Creek. 
Known mineralization elsewhere within the map area is 
restricted to a few minor occurrences of disseminated 
chalcopyrite and sphalerite. Some of these, however, are 
associated with extensive zones of pyrite-sericite-quartz 
alteration, indicating that there is potential for future 
discoveries within the Kutcho assemblage. 

Kutcho Creek (MINFILE 104I 060) 
The Kutcho Creek volcanogenic massive sulphide 

deposit is hosted by the northern division of the Kutcho 
assemblage on the south side of Andrea Creek. The 
deposit comprises three lenses of massive sulphide that 
form a linear, west-northwest trending belt about 3.5 km 
long. These lenses were originally named, from east to 
west, the Kutcho, Sumac West and Esso West deposits 
(Bridge et al., 1986), but are currently referred to as the 
Main, Sumac and Esso deposits (Makarenko et al., 2010). 
The deposit was not examined during the current study, 
and the summary presented here is based mainly on the 
published reports of Bridge et al. (1986) and Barrett et al. 
(1996), as well as a preliminary economic assessment 
prepared for Kutcho Copper Corporation by JDS Energy 
and Mining Inc. in July 2010 (Makarenko et al., 2010). 

The Kutcho Creek deposit was detected in 1967 by 
anomalous values for Cu and Zn in a stream sediment 
sample collected during a joint-venture regional 
geochemical survey operated by Imperial Oil Ltd. 
Subsequent prospecting in 1968 identified pyritic quartz-
sericite schists, and claims were staked over the not-yet-
discovered Main lens. These claims were allowed to 
lapse, but Imperial Oil Ltd. returned to restake the area in 
1972. However, Sumac Mines Ltd. had staked claims in 
the same area earlier that year, after locating disseminated 
pyrite-chalcopyrite mineralization during follow-up 
exploration of a Cu-Zn stream sediment anomaly in a 

creek west of the Imperial Oil anomaly. The staking by 
Imperial Oil (later to become Esso Minerals Canada Ltd.) 
in 1972, and additional staking in the following years, 
generated a large claim block that surrounded the Sumac 
claims. Subsequent exploration by both companies, 
including about 60 000 m of diamond drilling carried out 
between 1974 and 1982, outlined the 3 massive sulphide 
lenses, with the western part of the Main lens and the 
Sumac lens located within the claim block held by Sumac 
Mines Ltd., and the eastern part of the Main lens and the 
Esso lens located on claims held by Esso Minerals 
Canada Ltd. A partnership agreement to conduct 
engineering and development work was signed by the two 
companies in 1983, and a prefeasibility study was 
completed in 1985, but the project was then put on hold 
pending further exploration results. 

Homestake Canada Ltd. bought most of Esso’s 
mining assets in 1989. Some regional and deposit-scale 
work was carried out on the Kutcho property in 1990 and 
1992 under option agreements with American Reserve 
Mining Corp. and Teck Cominco Ltd. Homestake was 
purchased by Barrick Gold Corp. in 2003, and Western 
Keltic Mines Inc. purchased the Kutcho property from 
Barrick and Sumitomo in 2004. Western Keltic carried 
out drill programs on the Kutcho deposit in 2004, 2005 
and 2006, and completed a pre-feasibility study in 2007. 
In May 2008 Sherwood Copper Corp. acquired Western 
Keltic Mines Ltd., and amalgamated it with a wholly 
owned subsidiary to create the Kutcho Copper 
Corporation. Later that same year, Sherwood merged with 
Capstone Mining Corp., such that Kutcho Copper 
Corporation, owner of the Kutcho property, became a 
wholly owned subsidiary of Capstone Mining Corp. 
Major drilling programs were carried out by Kutcho 
Copper Corporation in 2008 and 2010. The company 
released a preliminary economic assessment in September 
2009, and a revised preliminary economic assessment in 
July 2010. 

The three massive sulphide lenses that comprise the 
Kutcho Creek deposit occur at about the same 
stratigraphic level, at the top of unit KN2, and define a 
west-northwest plunging linear array, 3.5 km long, that 
probably defines the intersection of a fracture or fault 
system with the seafloor at the time of their accumulation. 
The individual lenses are elongate parallel to this trend, 
and approximately conformable with the enclosing 
stratigraphy. The east end of the Main lens intersects the 
topographic surface, and the Esso lens occurs at depths of 
400-500 m below the surface. Drillholes have intersected 
several additional small massive sulphide pods up to 450 
m west of the Esso lens, along the same linear trend. The 
Main lens is the largest and best defined, and measures 
about 1500 m long by 260 m wide, with a maximum 
thickness of 36 m. The Esso lens is smaller but higher 
grade, and was the main target of the 2010 diamond-drill 
program by Kutcho Copper Corporation. The intervening 
Sumac lens is fairly large but remains poorly defined 
because of relatively low grades. In detail, individual 
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map area, within schists of unit KS1 just north of the 
small diorite plug that forms peak 2075. The schists 
enclose several lenses of pyrrhotite, with minor amounts 
of chalcopyrite and sphalerite, which were discovered in 
1982, and further evaluated in 1983, during exploration 
programs by Canamax Resources Inc. (Fleming and Roth, 
1983). The pyrrhotite lenses range from 0.5 to 1 m in 
width, and vary from laminated to brecciated. Grab 
samples returned up to 1100 ppm Cu, 1700 ppm Zn and 
6.17 ppm Ag (Fleming and Roth, 1983). The mineralized 
lenses have been documented in only a very small area, 
and have apparently received little attention since their 
initial discovery. 
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Quaternary Geology and Till Geochemistry of the Colleymount Map Area 
(NTS 093L/01), West-Central British Columbia 

by T. Ferbey 

 
KEYWORDS: Nechako Plateau, Quaternary geology, 
surficial mapping, till geochemistry, heavy minerals, gold 
grain counts, porphyry Cu-Mo, polymetallic vein, 
volcanogenic massive sulphide 

INTRODUCTION 
The Tahtsa Lake district, and surrounding area, has 

high potential to host undiscovered porphyry Cu±Mo and 
polymetallic vein-style (including Au) mineralization. 
Centred on Tahtsa Lake (approximately 100 km south of 
Houston, British Columbia; Figure 1) this district, and 
areas immediately adjacent to it, have a rich mineral 
exploration history and at present host a producing 
porphyry Cu-Mo mine (Huckleberry mine) and numerous 
developed Cu±Mo prospects (e.g. Berg, Lucky Ship, 
Whiting Creek; Figure 2). This district also hosts 
epithermal vein and perhaps volcanogenic massive 
sulphide (VMS) style mineralization, as suggested by past 
producers such as Equity Silver, Emerald Glacier, and 
Silver Queen (MacIntyre, 1985; MacIntyre et al., 2004; 
Alldrick et al., 2007; Figure 2). 

A two-year Quaternary geology and till geochemistry 
program is currently underway within the northern 
portion of the Tahtsa Lake district, within NTS map areas 
093E/15, 16, and 093L/01, 02 (Figure 2). Presented here 
are observations made, and details on till samples 
collected, during the 2010 field season within 
Colleymount map area (NTS 093L/01). This is the second 
and final year of this program and builds on previous 
Quaternary geology and till geochemistry work by Ferbey 
(2010a, b) conducted immediately to the southwest in 
NTS 093E/15. 

The Colleymount map area is ideally suited for 
Quaternary geology studies and till geochemical 
exploration as much of the map area is covered with 
glacial drift and continuously exposed bedrock outcrop is 
limited. Till geochemical surveys are an effective method 
for assessing the metallic mineral potential of areas 
covered with glacial drift (Levson, 2001a) and can be 
used to follow-up airborne geophysical data acquired over 
drift covered areas. 
 
This publication is also available, free of charge, as colour 
digital files in Adobe Acrobat® PDF format from the BC 
Ministry of Forests, Mines and Lands website at 
http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCat
alogue/Fieldwork. 

 
Figure 1. Location of study area in west-central British Columbia. 

The objectives of this two-year Quaternary geology and 
till geochemistry program are to: 

1) characterize and delineate the Quaternary 
materials that occur in the study area and 
reconstruct the region’s glacial and ice-flow 
history; and 

2) assess the economic potential of covered bedrock 
(subcrop) by conducting till geochemistry 
surveys. 

The study area falls within the mountain pine beetle 
impacted zone and Geoscience BC’s QUEST-West 
Project area. The goal of the project discussed here is to 
provide the mineral exploration community with high 
quality, regional scale, geochemical data that will help 
guide exploration efforts. In addition to geochemical and 
geophysical data recently collected by Geoscience BC, 
historic regional bedrock mapping and geochemical data 
have been published by the British Columbia Geological 
Survey (BCGS) and the Geological Survey of Canada 
(GSC) (Hanson et al. ,1942; Tipper, 1976; Church and 
Barakso, 1990; Alldrick, 2007a, b). The BCGS has also 
made significant contributions towards an understanding 
of the region’s metallogeny (e.g. Carter, 1981; MacIntyre, 
1985, 2001; MacIntyre et al., 2004; Alldrick, 2007a, b; 
Alldrick et al., 2007). New discoveries, and new insights 
into known mineral occurrences, will likely be realized 
through the integration of these new and existing datasets. 
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                  Figure 4. Bedrock geology of the study area. Quaternary sediment cover is approximated by the light grey transparent overlay 
                  and black dashed line. 
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Ferbey and Levson (2010) near the Copper Star 
Cu±Mo±Au occurrence, approximately 50 km west-
northwest of the study area, also provide geochemical 
evidence for an ice-flow reversal. These results suggest 
that interpreting trace element geochemical data from tills 
or soils in this region, in particular transport direction, can 
be complex. 

Ney et al. (1972) recognized this ice-flow reversal 
during the early stages of exploration on the Sam Goosly 
deposit (eventually to become Equity Silver mine) when 
exploratory trenching and drilling of Ag anomalies in 
soils was initially unsuccessful. The eventual recognition 
of westward transport of glacial sediments (resulting from 
studies of ice-flow indicators on bedrock outcrop and in 
aerial photographs) led to drilling up-ice or northeast of 
the Ag anomalies in soils. This resulted in the delineation 
of a mineralized zone.  

Plouffe and Ballantyne (1993), Plouffe (1995), 
Plouffe et al. (2001), and Levson and Mate (2002) have 
also conducted till geochemistry surveys to the east of the 
study area, in NTS 093F and K. Using percentile plots of 
precious metal, base metal, and pathfinder element 
concentrations, and/or gold grain counts, each of these 
surveys identifies prospective ground where there were no 
previously reported mineral occurrences. 

Sample Media 
During the 2010 field season, 2-3 kg till samples 

were collected at 85 sample sites for major, minor, and 
trace element geochemical analyses (Figure 2). An 
additional 18 till samples, each weighing 10-15 kg, were 
collected for heavy mineral separation and gold grain 
counts (Figure 2). These larger samples were collected at 
sites where there was an adequate exposure of sample 
material. Till sample density for this survey is one sample 
per 10.5 km2. Most samples were collected from 
unweathered till typically 1 m below surface. 

Till samples collected for major, minor, and trace 
element analyses were sieved, decanted and centrifuged, 
to produce a silt plus clay sized (<0.063 mm) and clay-
sized (<0.002 mm) fraction. This sample preparation was 
conducted at Acme Analytical Laboratories Ltd. 
(Vancouver, British Columbia). Heavy mineral samples 
were sent to Overburden Drilling Management (Nepean, 
ON), where heavy mineral (0.25 to 2.0 mm) and gold 
grain (<2.0 mm) concentrates were produced using a 
combination of gravity tabling and heavy liquids. 

On the 2-3 kg samples, minor and trace element 
analyses (37 elements) were conducted on splits of the silt 
plus clay and clay-sized fractions, respectively, by 
inductively coupled plasma mass spectrometry (ICP-MS), 
following an aqua regia digestion. Major element analyses 
were conducted on a split of the silt plus clay-sized 
fraction only using inductively coupled plasma emission 
spectrometry (ICP-ES), following a lithium 
metaborate/tetraborate fusion and dilute nitric acid 
digestion. This analytical work was conducted at Acme 

Analytical Laboratories Ltd. (Vancouver, British 
Columbia). 

Also as part of this project, a split of the silt plus 
clay-sized fraction (<0.063 mm) was analyzed for 35 
elements by instrumental neutron activation analysis 
(INAA) at Becquerel Laboratories Inc. (Mississauga, 
ON). Instrumental neutron activation analyses for 
elements such as Au, Ba and Cr complement those 
produced by an aqua regia digestion followed ICP-MS as 
they are considered to be a near-total determination and 
hence more representative of rock forming and economic 
mineral geochemistry. Additionally, INAA 
determinations will be conducted on bulk heavy mineral 
concentrates produced from the 10-15 kg samples. 

Quality Control 
Quality control measures for analytical 

determinations include the use of field duplicates, 
analytical duplicates, and reference standards. For each 
block of 20 samples submitted for analysis, one field 
duplicate (taken at a randomly selected sample site), one 
analytical duplicate (a sample split after sample 
preparation but before analysis), and one reference 
standard is included in INAA and ICP-MS (following an 
aqua regia digestion) analyses. Reference standards used 
are a combination of certified Canada Centre for Mineral 
and Energy Technology (CANMET) and in-house BCGS 
geochemical reference materials. Duplicate samples are 
used to measure sampling and analytical variability, 
whereas reference standards are used to measure the 
accuracy and precision of the analytical methods. 

SUMMARY 
During the 2010 field season 85 basal till samples 

were collected for major, minor, and trace element 
geochemical analyses, while an additional 18 till samples 
were collected for separation and analysis of heavy 
mineral concentrates and gold grain counts. The goal of 
this till geochemical survey is to assess the mineral 
potential of the Colleymount map area (NTS 093L/01). 
Mineral exploration of this area will benefit from a 
regional till geochemistry program as much of the map 
area is covered with glacial drift and continuous bedrock 
outcrop is limited. Ongoing surficial geology mapping at 
1:50 000-scale and a regional ice-flow study will 
complement this till geochemical survey. Delineating and 
characterizing surficial materials of the study area and 
quantifying the net transport direction of basal tills are 
integral to the interpretation of resultant till geochemical 
data and will be useful to mineral exploration companies 
conducting their own surficial sediment geochemistry 
surveys in the area. 

The 2010 field season saw the completion of field 
work for the second and last year of a Quaternary geology 
program designed to assess the mineral potential of the 
northern portion of the Tahtsa Lake district, and adjacent 
areas (NTS 093E/15, 16, and 093L/01, 02). This study 
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area falls within Geoscience BC’s QUEST-West Project 
area where additional geochemical data have recently 
been compiled and collected, mineral occurrence data 
have been updated (i.e. MINFILE, 2010), and helicopter-
borne time domain electromagnetic and gravity data have 
been acquired. These new data in combination with the 
previous data published by the BCGS and GSC, makes 
the Colleymount map area an attractive area to explore. 

Till geochemical data for the Colleymount map area 
(NTS 093L/01) will be the topic of a combined BCGS 
Open File and Geoscience BC Report to be released in 
late spring 2011. 
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(Pennask batholith) and Woodjam-Southeast zone 
(Takomkane batholith ) to be essentially synchronous. We 
assert that the Takomkane/Wildhorse magmatic belt is not 
an exploration dud, but rather is highly prospective along 
its length – currently known to extend 375 km. 

This report aims to briefly outline the geological 
setting, age, mineralization and alteration within the 
Takomkane/Wildhorse magmatic belt as displayed at two 
deposits, the past producing Brenda mine, and the actively 
developing Woodjam prospect. 

LOCATION & GEOLOGICAL SETTING 
The Brenda mine and the Woodjam property are 

located within the Quesnel terrane (Figure 1), a stack of 
Paleozoic and Mesozoic arcs that nucleated on a crustal 
ribbon that lay adjacent to ancestral North America 
(ANA). Subduction of ancient Pacific Ocean crust to form 
the proto-Quesnel and conjoined Stikine arcs is believed 
to have begun in the Devonian (e.g. Logan et al., 2000; 
Beatty et al., 2006). Arc growth continued sporadically 
with a significant pulse in the Late Triassic–Early Jurassic 
(212-192 Ma). Na-and K-rich volcanic arc magmatism 
evolved during this 20 Ma epoch with the emplacement 
into the arc of three main Cordilleran-wide plutonic 
suites: the Late Triassic Guichon batholith (212-208 Ma), 
Latest Triassic Copper Mountain (206-200 Ma) and Early 
Jurassic Takomkane/Wildhorse (197-193 Ma) suites 
(Woodsworth et al. 1991; Logan and Mihalynuk , in 
review) and their associated porphyry mineralizing 
events. In southern British Columbia these respective 
mineralizing events produced Highland Valley and 
Gibraltar; Copper Mountain, Afton and Mountain Polley; 
and Brenda and Woodjam. Normal arc subduction 
beneath the composite Quesnel terrane ceased following 
its accretion to ANA in Early Jurassic time (~186 Ma, 
Nixon et al., 1993; herein we use the Jurassic time scale 
of Palfy et al., 2000). 

Brenda mine (MINFILE 092HNE047) 

The Brenda copper-molybdenum deposit is hosted 
within the "Brenda stock", an informal subdivision of the 
much larger, polyphase granodiorite and quartz diorite of 
the Early Jurassic Pennask batholith. It is located about 22 
km west of Peachland. Carr (1967) mapped five, 
northerly-trending textural phases of quartz diorite, in the 
vicinity of the Brenda mine distinguished by slight 
variations in grain size and modal mineralogy. 
Progressing eastward from the hornfelsed contact with 
Nicola Group volcaniclastic rocks, the five phases are: 

1) medium quartz diorite, 
2) speckled quartz diorite, 
3) uniform quartz diorite, 
4) porphyritic quartz diorite, and 
5) fine quartz diorite (Figure 2). 

Typical mineral contents average: quartz (25%), 
plagioclase (50%), potassium feldspar (5-20%), 
hornblende (5-7%) and biotite (5-7%). Later work by 
Soregaroli and Whitford (1976) simplified the geology to 
only two units. Unit 1, is a marginal phase with more 
abundant mafic minerals (hornblende>biotite) and angular 
quartz grains, that embraces most of Carr’s phases 1, 2, 
and 3. Unit 2 is characterised by fewer mafic minerals 
(biotite>hornblende), euhedral biotite phenocrysts and 
subhedral quartz grains, that include Carr’s phases 4 and 5 
(Figure 2). The contact between the two units is described 
as typically diffuse, but where sharp, Unit 2 is chilled 
against Unit 1(Soregaroli and Whitford, 1976). Several 
ages and compositions of pre and post-ore dikes cut the 
stock. The deposit is approximately 390 m from the 
contact with Nicola Group rocks to the west (Figure 2). 

Mineralization is confined almost entirely to veins 
which cut relatively unaltered quartz diorite. Vein walls 
can be sharp and/or diffuse where gangue and sulphides 
have variably infiltrated and replaced the wall rock. Vein 
density within the Brenda Mines orebody is not uniform. 
It ranges from less than 9 veins per metre near the 
periphery of the orebody to 63 per metre and locally 90 
per metre near the centre (Oriel, 1972). Potassic alteration 
forms narrow potash feldspar or biotite alteration 
envelopes related to sulphide mineralization, where as 
propylitic alteration predates and accompanies some of 
the late-stage veining events. Soregaroli (1968) and Oriel 
(1972) studied the mineralogy, geometry and crosscutting 
relationships of veins at Brenda and developed the 
following paragenesis: 

Stage 1. Biotite-chalcopyrite 
Stage 2. Quartz-potassium feldspar-sulphide. These 
veins form the bulk of the mineralization. They are 
composed of quartz and potassium feldspar, with 
variable quantities of chalcopyrite, molybdenite and 
pyrite (Figure 3). 
Stage 3. Quartz-molybdenite-pyrite 
Stage 4. Epidote-sulphide-magnetite 
Stage 5. Biotite; calcite; quartz. 
Production at the mine began in early 1970 and 

officially ceased June 08, 1990 after milling 181.7 Mt of 
ore grading 0.22% Cu and 0.064% Mo (mill head grades; 
Weeks et al., 1995). Production totalled 0.27 Mt of 
copper, 0.068 Mt Mo and 2.28 t Au (MINFILE). 

Woodjam (MINFILE 093A 078) 

The Woodjam property is located 35 km southeast of 
the Mount Polley copper-gold mine. It is underlain by 
hornfelsed Late Triassic Nicola Group volcanic and 
related sedimentary rocks within the contact metamorphic 
aureole of the Late Triassic to Early Jurassic Takomkane 
batholith (~202-193 Ma); a composite, quartz-saturated 
calcalkaline intrusion composed of hornblende 
monzodiorite to hornblende-biotite monzogranite (Figure 
4). Intrusive rocks dominate the eastern portion of the
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Figure 3. Stage 2 quartz-potassium feldspar-sulphide vein cutting 
hornblende±biotite granodiorite of the Brenda stock - Pennask 
batholith. Note diffuse vein boundary with chalcopyrite (Cpy) 
>>pyrite replacement peripheral to vein as well as chalcopyrite 
and molybdenite (Mo) interstitial to potassium feldspar (Ksp) and 
quartz (Qtz) vein gangue. 

property. To the west, Miocene to Pleistocene alkali 
olivine flood basalts of the Chilcotin Group overlie Nicola 
Group volcanic rocks (Wetherup, 2000; Schiarizza et al., 
2009a). Cu-Mo±Au mineralization is hosted within the 
intrusion (Southeast zone) and Cu-Au±Mo mineralized 
quartz stockwork and breccias (Megabuck, Deerhorn, 
Spellbound and Takom zones) are hosted in the volcanic 
and volcaniclastic country rock up to 1.5 km west of the 
north-trending contact with the batholith (Logan et al., 
2007). 

Mineralization at Megabuck crosscuts upper 
volcaniclastic units of the Nicola Group and consists of an 
early quartz-magnetite-chalcopyrite±gold stockwork 
system overprinted by carbonate±chalcopyrite-pyrite 
veinlets. A pyritic halo surrounds the mineralized 
stockwork. Analogy with the alkalic porphyry 
mineralization at Mount Polley mine has been suggested, 
but the alkaline Cu-Au porphyries are typically quartz 
undersaturated. In addition, the alkalic porphyries are not 
characterized by quartz stockwork, and they are Late 
Triassic in age (Logan and Bath, 2006). 

The Southeast zone is a blind deposit that was 
discovered in 2007 by drilling a well-defined (>1500 m 
wide), overburden-covered IP chargeability anomaly. 
Three widely spaced vertical diamond-drill holes 

completed during the 2007 program were mineralized 
from top to bottom (each hole reaching ~300 m depth). 
The best grades came from hole WJ-07-79, which 
intersected 203.55 m grading 0.34% Cu and 0.014% Mo 
(Fjordland Exploration Inc., 2008). Follow-up drilling to 
date totals 18 holes and indicates that the pyrite, 
chalcopyrite and molybdenite mineralization is vertically 
zoned from copper-gold mineralization (1.01% Cu, 0.44 
g/t Au over 200.8 m) to copper- molybdenum (0.24% Cu, 
0.014% Mo over 60.0 m) mineralization with increasing 
depth (Peters, 2009; Fjordland website). Mineralization in 
the Southeast zone consists of pyrite, chalcopyrite, 
molybdenite and trace bornite, which occur along 
fractures, in quartz veinlets and as disseminations (Figure 
5). It is hosted entirely in quartz monzonite and 
granodiorite of the Takomkane batholith. 

PREVIOUS AGE DATING 
Isotopic age determinations for mineralized rock 

assemblages sampled in the vicinity of the Brenda deposit 
have been reported by various authors (Figures 2, 6). 
Parrish and Monger (1992) reported U/Pb dates for 
zircons and titanite separates. White et al. (1968) and 
Oriel (1972) report a number of K-Ar dates from whole 
rock, hornblende and biotite samples. A sample collected 
13 km north of the Brenda pit returned an Early Jurassic 
U-Pb crystallization age from zircon, and a sample 
collected 13 km southwest of the pit yielded cooling ages 
between 150 and 140 Ma for titanite (Parrish and Monger, 
1992). The titanite corroborates similar age brackets for 
K/Ar, biotite cooling ages at Brenda mine. The historical 
K/Ar data from biotite and hornblende separates for the 
Brenda mine suggested a ~176 Ma age for primary (?) 
hornblende and a ~146 Ma age for secondary, 
hydrothermal (?) biotite, with an interpretation that the 
pluton that hosts the deposit is older and not the causative 
phase assuming that the secondary biotite is dating the 
mineralizing event (Soregaroli and Whitford, 1976). To 
test this hypothesis we collected three samples from the 
vicinity of Brenda pit; one for U-Pb analyses, one for Ar-
Ar and a mineralized vein sample for Re-Os age 
modelling. 

Age dating in the vicinity of the Woodjam Property 
includes U-Pb, zircon constraints on the crystallization 
age of a number of phases of the Takomkane batholith 
and cooling ages established by Ar-Ar step heating of 
hornblende and feldspar mineral separates (Logan et al., 
2007; Schiarizza et al., 2009a&b). Schiarizza (personal 
communication) has provided unpublished zircon ages of 
196.84 ±0.22 Ma for the Woodjam Creek phase of the 
Takomkane batholith and a rough age estimate of ca. 204 
Ma for an unnamed coarse plagioclase porphyry stock; 
both are shown on Figure 4. In addition a drill core 
sample (WJ04-37) of quartz-feldspar-biotite porphyry 
dike that cuts mineralization in the Megabuck Cu-Au 
zone returned an undisturbed biotite cooling age of 
163.67 ±0.83 Ma, providing an upper age limit for the 
Cu-Au±Mo mineralization (Logan et al., 2007).  
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for Re-Os dating was collected from the northeast corner 
of the Brenda pit (Zone 10, UTM 715279E, 5529449N) 
from a 35 cm wide, steeply dipping northeast trending 
bullish quartz vein mineralized with chalcopyrite, 
disseminated pyrite and fracture-filling molybdenite 
(Figure 7). The mineralogy, orientation and its’ 
crosscutting relationship with pegmatitic feldspar-quartz 
veins suggest that the molybdenite sampled comes from a 
Stage 3 vein (Soregaroli and Whitford, 1976).  

Woodjam - Southeast zone  

Hornblende±biotite quartz monzonite  
A well-mineralized interval of Takomkane batholith 

quartz monzonite containing molybdenum was sampled 
from an 8 cm long sample of split drillcore (provided by 
B. Laird, of Mincord Exploration Consultants Ltd.) from 
317 m below the collar of diamond-drill hole WJ07-79 
(Zn 10, 613104E, 5788240N). Molybdenite and 
chalcopyrite occupy millimetre-wide quartz veins and 
fractures cutting weak potassium-altered and silicified 
medium-grained hornblende quartz monzonite. 
Molybdenite was separated from the quartz monzonite 
and analysed to obtain a model age for mineralization. 

U-PB AND 40AR/39AR 
GEOCHRONOLOGY METHODS 

Sample preparation and analytical work for both the 
U-Pb and the 40Ar/39Ar isotopic ages presented herein was 
conducted at the Pacific Centre for Isotopic and 
Geochemical Research (PCIGR) at the Department of 
Earth and Ocean Sciences, The University of British 
Columbia.  

Zircon was separated from the “Brenda stock” 
sample JLO07-32-225 using standard mineral separation 
techniques (crushing, grinding, Wilfley (wet shaker) 
table, heavy liquids and magnetic separation), followed 
by hand picking. Details of the separation techniques can 
be found in Logan et al. (2007). Air abraded single zircon 
grains were analysed with results listed in Table 1 and 
plotted in Figure 8a. U-Pb isotopic age determinations 
were obtained by Thermal Ionization Mass Spectroscopy 
(U-Pb ID-TIMS). Details of the both the mineral 
separation and analytical techniques are presented in 
(Logan et al., 2007). 

40Ar/39Ar isotopic age determinations were obtained 
by the laser-induced step-heating technique. Details of the 
analytical techniques are presented in (Logan et al., 
2007). Hornblende and biotite were separated from a 
granodiorite phase of the Brenda stock and analysed 
separately to constrain its cooling history.  

U-Pb geochronology results 
U-Pb analyses of five zircon grains separated from 

the Brenda granodiorite were determined by thermal 
ionization mass spectrometry (TIMS) technique.  

 
Figure 7. Stage 3 quartz vein mineralized with disseminated 
pyrite (Py), coarse blebby chalcopyrite (Cpy) and fracture-filling 
molybdenite (Mo). Re/Os sample JLO07-226. 

 
Figure 8a. Concordia plot for U/Pb TIMS data for sample JLO07-
32-226. 2 σ error ellipses for individual analytical fractions are red. 
Minimum age 194.7 ±0.3 Ma based on 206Pb/238U date of oldest 
grain. Concordia bands include 2 σ errors on U decay constants. 

Analysed mineral fractions and results are presented in 
Table 1, and the data are illustrated in Figure 8a. 

Of the five grains dated, four overlap Concordia at 
the 2 σ confidence level between about 192-195 Ma and 
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Table1. U-Pb Thermal Ionization Mass Spectrometry analytical data for zircon from hornblende, biotite quartz diorite of the 
Brenda stock, sample JLO07-32-225. 
 

 
 
one is normally discordant, lying slightly off Concordia at 
about 184 Ma. This data array is likely the result of Pb 
loss from at least four of the five analysed grains (Figure 
8a, Table 1). The 206Pb/238U date for the oldest grain, at 
194.7 Ma, is taken as a minimum age of crystallization for 
the rock, which assumes that none of the analysed grains 
contain older inherited zircon. 

40Ar/39Ar cooling age 
Hornblende separated from the Brenda stock yields a 

complicated argon release spectra with older apparent 
ages in the low-temperature steps (1-5) indicating 
probable excess argon. The five-step plateau age of 160.7 
±0.9 Ma is calculated from the final 40.8% of the total 
39Ar (Figure 8b). Gas measurements obtained during each 
of the heating steps are presented in Table 2.  

Biotite from the same sample Brenda stock 
granodiorite gave a well-defined plateau age of 158.22 
±0.82 Ma, represented by 83.7% of the total 39Ar released 
(Figure 8c). Gas measurements obtained during each of 
the heating steps are presented in Table 3. The inverse 
isochron results in 11 points which define a poor quality 
isochron with an age of 158.7 ±1.1 Ma, an initial 
40Ar/36Ar of 211 ±160 Ma, and a MSWD of 1.07.  

RE-OS GEOCHRONOLOGY METHODS 
Molybdenite was separated from the rock samples by 

metal-free crushing and milling, and concentrated using 
gravity and magnetic methods following Selby and 
Creaser (2004). The Re content was established for each 
molybdenite separate, to determine optimal spiking for 
the subsequent measurement of Re and Os by isotope 
dilution using a mixed double spike solution containing 
isotopically enriched 185Re and isotopically enriched 188Os 
and 190Os.  

 

 
Figure 8b. Step-heating gas release plot for 40Ar/39Ar analyses for 
hornblende sample JLO07-32-225-2 hornblende.  

 
Figure 8c. Step-heating gas release plot for 40Ar/39Ar analyses for 
biotite sample JLO07-32-225-2. 

Wt. U Th Pb 206Pb* mol % Pb* Pbc
206Pb 208Pb 207Pb 207Pb 206Pb corr. 207Pb 207Pb 206Pb

Sample mg ppm U ppm x10-13 mol 206Pb* Pbc
(pg) 204Pb 206Pb 206Pb % err 235U % err 238U % err coef. 206Pb ± 235U ± 238U ± % disc

(a) (b) (c) (d) (c) (e) (e) (e) (e) (f) (g) (g) (h) (g) (h) (g) (h) (i) (h) (i) (h) (i) (h)
JLO-07-32-225
A 0.013 202 0.351 6.2 3.3605 99.55% 65 1.24 4142 0.112 0.050188 0.590 0.210449 0.690 0.030412 0.264 0.545 203.69 13.68 193.93 1.22 193.13 0.50 5.19
B 0.009 251 0.376 7.8 2.9461 99.58% 70 1.01 4452 0.120 0.049979 0.239 0.208895 0.367 0.030314 0.229 0.773 194.00 5.56 192.62 0.64 192.51 0.43 0.77
C 0.008 368 0.375 10.9 3.3267 99.56% 67 1.21 4212 0.120 0.050012 0.239 0.199138 0.372 0.028879 0.240 0.778 195.53 5.56 184.40 0.63 183.53 0.43 6.14
D 0.007 448 0.376 13.8 3.6796 99.76% 122 0.73 7699 0.120 0.049945 0.553 0.208626 0.683 0.030295 0.328 0.598 192.42 12.87 192.40 1.20 192.40 0.62 0.01
E 0.006 113 0.357 3.6 0.9137 99.28% 40 0.54 2586 0.113 0.049906 0.340 0.210936 0.422 0.030655 0.169 0.637 190.60 7.92 194.34 0.75 194.65 0.32 -2.12
(a) A, B etc. are labels for abraded single zircon grains.
(b) Fraction masses determined on Sartorious SE2 ultramicrobalance to +/- 1 microgram.
(c) Nominal U and total Pb concentrations subject to uncertainty in fraction masses.
(d) Model Th/U ratio calculated from radiogenic 208Pb/206Pb ratio and 207Pb/235U age.
(e) Pb* and Pbc represent radiogenic and common Pb, respectively; mol % 206Pb* with respect to radiogenic, blank and initial common Pb.
(f) Measured ratio corrected for spike and fractionation only. Mass discrimination of 0.23% +/- 0.05%/amu +/- 1s, absolute, based on analysis of NBS-982; all Daly analyses.
(g) Corrected for fractionation, spike, and common Pb; up to 1 pg of common Pb was assumed to be procedural blank: 206Pb/204Pb = 18.50 ± 1.0%; 207Pb/204Pb = 15.50 ± 1.0%;
     208Pb/204Pb = 38.40 ± 1.0% (all uncertainties 1-sigma).  Excess over blank was assigned to initial common Pb with Stacey and Kramers (1975) model Pb composition at 195 Ma.
(h) Errors are 2-sigma, propagated using the algorithms of Schmitz and Schoene (2007) and Crowley et al. (2007).
(i) Isotopic dates are calculated using the decay constants l238=1.55125E-10 and l235=9.8485E-10 (Jaffey et al., 1971). 206Pb/238U and 207Pb/206Pb ages corrected for initial disequilibrium in 230Th/238U
      using Th/U [magma] = 3.
(j) Corrected for fractionation, spike, and blank Pb only.
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Table 2. 40Ar/39Ar step heating gas release data from sample JLO07-32-225-2 hornblende. 

 

 
 
 
 
Table 3. 40Ar/39Ar step heating gas release data from sample JLO07-32-225-2 biotite. 

 

 
 
 
 
 
 
 

07JLO32-225-2 Hornblende
Laser Isotope Ratios
Power(%) 40Ar/39Ar 38Ar/39Ar 37Ar/39Ar 36Ar/39Ar Ca/K Cl/K %40Ar atm f 39Ar 40Ar*/39ArK Age
2 195.8500±0.0417 0.4150±0.0670 -0.1166±18.0450 0.5249±0.0583 0 0.073 79.32 0.08 38.143±7.094 327.07±55.63
2.3 42.6956 0.0149 0.0992 0.0827 0.1174 1.5399 0.0994 0.0257 0.461 0.016 68.72 1.25 13.071 0.662 118.88  5.83
2.6 20.6180 0.0096 0.0360 0.1174 0.0945 0.9724 0.0218 0.0404 0.371 0.004 30.16 2.34 14.070 0.291 127.65  2.55
2.9 19.5351 0.0060 0.0374 0.0371 0.2265 0.2086 0.0095 0.0440 0.888 0.005 13.6 5.6 16.689 0.160 150.44  1.39
3.2 19.1815 0.0054 0.0962 0.0197 0.7585 0.0195 0.0041 0.0559 2.974 0.019 5.27 10.34 18.055 0.121 162.22  1.04
3.5 19.3676 0.0067 0.1537 0.0176 1.1309 0.0233 0.0037 0.0396 4.436 0.032 4.41 15.4 18.438 0.134 165.50  1.15
3.8 19.4876 0.0067 0.1589 0.0159 1.7967 0.0159 0.0038 0.0217 7.055 0.033 4.01 24.23 18.670 0.130 167.50  1.12
4.1 18.3525 0.0046 0.0745 0.0187 0.5371 0.0386 0.0018 0.0499 2.105 0.014 2.03 13.31 17.876 0.088 160.68  0.75
4.3 18.1525 0.0042 0.0709 0.0260 0.5589 0.0422 0.0012 0.0934 2.191 0.013 1.05 11.66 17.848 0.084 160.44  0.72
4.5 18.2846 0.0076 0.0573 0.0786 0.4295 0.1939 0.0015 0.2607 1.684 0.01 1.16 5.15 17.851 0.179 160.47  1.54
4.8 18.3992 0.0058 0.0636 0.0563 0.5870 0.0847 0.0018 0.1195 2.301 0.011 1.37 4.46 17.902 0.124 160.91  1.07
5.4 18.3739 0.0053 0.0691 0.0469 0.6906 0.0970 0.0017 0.0886 2.708 0.013 1.42 6.19 17.930 0.107 161.15  0.92

Total/Average 19.2832±0.0011 0.1050±0.0042 1.9943±0.0031 0.0050±0.0067 3.655 0.02 100 17.974±0.025
J-error = 0.005211±0.000008
Volume 39ArK = 385.12
Integrated Date = 161.53±0.49
Volumes are 1x10-13 cm3 NPT
Neutron flux monitors: 28.02 Ma FCs (Renne et al., 1998)
Isotope production ratios: (40Ar/39Ar)K=0.0302±0.00006, (37Ar/39Ar)Ca=1416.4±0.5, (36Ar/39Ar)Ca=0.3952±0.0004, Ca/K=1.83±0.01(37ArCa/39ArK).

07JLO32-225-2 Biotite
Laser Isotope Ratios
Power(%) 40Ar/39Ar 38Ar/39Ar 37Ar/39Ar 36Ar/39Ar Ca/K Cl/K %40Ar atm f 39Ar 40Ar*/39ArK Age
2 123.5134±0.0287 0.1456±0.1915 0.2985±0.0827 0.3857±0.0491 1.168 0.016 93.21 0.04 7.862±4.704 72.34±42.42
2.3 31.9991 0.0076 0.0549 0.1191 0.1600 0.0343 0.0745 0.0372 0.621 0.006 68.65 0.46 9.776 0.811 89.52  7.25
2.6 19.1244 0.0045 0.0334 0.0473 0.0606 0.0411 0.0182 0.0427 0.235 0.004 27.4 1.21 13.648 0.240 123.79  2.10
2.9 19.4652 0.0043 0.0322 0.0154 0.0258 0.0282 0.0072 0.0286 0.1 0.004 10.77 6.75 17.280 0.098 155.35  0.85
3.1 18.6313 0.0044 0.0320 0.0250 0.0179 0.0572 0.0038 0.0209 0.069 0.004 5.85 7.8 17.456 0.082 156.86  0.70
3.3 17.9873 0.0044 0.0307 0.0211 0.0200 0.0375 0.0011 0.0619 0.078 0.004 1.67 8.35 17.602 0.081 158.12  0.70
3.5 17.8601 0.0043 0.0314 0.0353 0.0194 0.0238 0.0007 0.0881 0.075 0.004 0.97 8.5 17.602 0.080 158.12  0.69
3.7 17.8887 0.0051 0.0312 0.0381 0.0278 0.0272 0.0007 0.0609 0.108 0.004 0.9 9.56 17.648 0.093 158.51  0.80
3.8 17.9001 0.0045 0.0314 0.0240 0.0218 0.0351 0.0006 0.1005 0.084 0.004 0.78 6.98 17.669 0.083 158.69  0.71
4 17.8708 0.0049 0.0340 0.0403 0.0580 0.0244 0.0007 0.0854 0.223 0.005 0.88 7.36 17.625 0.089 158.32  0.77
4.2 17.8661 0.0044 0.0313 0.0206 0.0367 0.0297 0.0006 0.0865 0.141 0.004 0.77 7.79 17.642 0.081 158.47  0.69
4.4 17.9249 0.0048 0.0318 0.0451 0.0406 0.0221 0.0007 0.1042 0.156 0.004 0.96 7.27 17.663 0.089 158.64  0.77
4.6 17.8118 0.0045 0.0315 0.0207 0.0448 0.0265 0.0006 0.0916 0.172 0.004 0.81 7.99 17.582 0.082 157.95  0.71
4.8 17.9181 0.0046 0.0322 0.0244 0.0488 0.0290 0.0008 0.0685 0.187 0.004 1.06 6.5 17.634 0.085 158.40  0.73
5 17.8185 0.0046 0.0317 0.0181 0.0783 0.0235 0.0008 0.0954 0.301 0.004 1.05 6.54 17.538 0.086 157.57  0.74
5.3 17.8425 0.0047 0.0318 0.0274 0.1172 0.0152 0.0009 0.0434 0.45 0.004 1.13 6.88 17.552 0.085 157.69  0.73

Total/Average 18.1053±0.0006 0.0320±0.0041 0.0890±0.0018 0.0020±0.0068 0.163 0.005 100 17.491±0.014
J-error = 0.005204±0.000008
Volume 39ArK = 1149.1
Integrated Date = 157.17±0.34
Volumes are 1x10-13 cm3 NPT
Neutron flux monitors: 28.02 Ma FCs (Renne et al., 1998)
Isotope production ratios: (40Ar/39Ar)K=0.0302±0.00006, (37Ar/39Ar)Ca=1416.4±0.5, (36Ar/39Ar)Ca=0.3952±0.0004, Ca/K=1.83±0.01(37ArCa/39ArK).
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The Carius-tube method was used in this study for 
the dissolution of molybdenite and equilibration of 
sample and tracer Re and Os. Molybdenite samples were 
dissolved and equilibrated with a known amount of tracer 
in reverse aqua regia (2:1 16 N HNO3 and 12N HCl, 3 ml) 
at 240°C for 24 h then cooled and refrigerated prior to Os 
and Re separation. Extraction of OsO4 from the acid-
sample mix was achieved using modified solvent 
extraction and microdistillation techniques. Mo was 
removed by solvent extraction from the acid-sample 
mixture after Os separation. Rhenium was then purified 
by HNO3 + HCl-based anion exchange chromatography 
using standard techniques. Total procedural blanks for Re 
and Os are less than 2 picograms and 0.5 picograms, 
respectively. These procedural blanks are insignificant in 
comparison to the Re and Os concentrations in the 
molybdenite analysed here. The purified Re and Os was 
analysed by Negative Thermal Ion Mass Spectrometry 
(N-TIMS), and abundances of 187Re and 187Os calculated. 

Typically, 20 mg of molybdenite was used for the 
full Re-Os analysis, and all data are presented in Table 4. 
An overview of the Re-Os method of dating molybdenite 
can be found in Stein et al. (2001). 

Model ages are calculated from the simplified isotope 
equation: t = ln(187Os/187Re + 1)/λ, where λ is the 187Re 
decay constant (1.666 ±0.005 x 10-11 a-1; Smoliar et al., 
1996), which contains a ±0.31% uncertainty in the value 
of λ (Selby et al., 2007) and assumes that molybdenite 
crystallizes with only Re and no Os. The 2σ age 
uncertainty quoted above (Table 4) reflects all known 
sources of analytical error, fully propagated to arrive at 
the quoted age uncertainty. 

Re-Os Geochronology Results 
The Re-Os model ages for molybdenite from the 

Brenda mine and Southeast zone of the Woodjam South 
property are early Jurassic, 193.9 ±0.9 Ma and 196.9 ±0.9 
Ma respectively (Table 4). These are considered good 
quality data that accurately reflect the age of molybdenite 
crystallization. 

DISCUSSION OF AGE 
DETERMINATIONS 

Typical porphyry systems are characterized by 
multiple intrusive and hydrothermal phases that overprint 

and reset metal and alteration zonations and isotopic-
signatures (Gustafson and Hunt, 1975). So too has 
copper-molybdenum mineralization at the Brenda deposit 
formed during multiple stages, as evidenced by 
crosscutting mineralized vein assemblages. To unravel the 
relationships between the magmatic (i.e. crystallization 
age) and mineralization and later cooling history of the 
Brenda stock; we utilized three different techniques: U-Pb 
zircon for magmatic crystallization, Re-Os isotope system 
for hydrothermal mineralization, and 40Ar/39Ar dating of 
two mineral systems for the age and rate of cooling. 
Zircon closure temperatures are generally taken to be > 
900oC in a magmatic environment (Mezger, 1990).The 
Re-Os geochronometer is remarkably resilient to both 
hydrothermal metamorphism (Selby and Creaser, 2001) 
and granulite-facies metamorphism (Bingen and Stein, 
2002 ) and should reliably date crystallization of 
molybdenite, not later disturbance events. Hornblende and 
biotite have Ar retention closure temperatures of 570-
465oC and 360-280oC (Reiners and Brandon, 2006) 
respectively. The 40Ar/39Ar dating techniques is more 
robust than the K-Ar biotite technique used in the past and 
provides more information about the rate of cooling.  

Brenda 
Historical potassium-argon dates of samples from the 

Brenda mine area produced a mean age (n=4) for 
hornblende of 178.5 ±15.5 Ma and a mean age of 148 
±9.2 Ma (n=5) for apparent co-existing biotite (Figure 6). 
Interpretation of these results suggested that the Brenda 
stock crystallized about ca. 178 Ma and the148 Ma biotite 
date from the pit area was interpreted to be the age of 
mineralization (White et al., 1968). In addition, it was 
postulated that the Cu and Mo could have been emplaced 
at different times due in part to their independent 
concentration within separate structural trends. Copper is 
distributed along northeast-trends and the molybdenite on 
northwest-trending structures. To test this scenario the 
molybedenite mineralization dated was collected from 
one of the younger vein sets (Stage 3 vein). However, it 
has an Early Jurassic Re-Os model age identical, within 
error, to the crystallization age of the batholith.  

Our 40Ar/39Ar results for hornblende indicate 
excessive radiogenic argon and a plateau age defined by 
only 40% of 39Ar and a biotite cooling age that is 
identical, within error, to the hornblende data ca 159 Ma. 
This age is intermediate to the historic K/Ar clusters for 

 
 
Table 4. Re/Os isotopic results and age determinations of molybdenite for samples JLO07-226 and WJ-07-79.  
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hornblende and biotite (Figure 6) and has no clear cause 
inherent to the Brenda stock. However, a ~167 Ma titanite 
cooling age (Parrish and Monger, 1992; Figure 6) is 
reported for a sample of the Pennask batholith collected 
~2 km north of its southern contact with the Osprey Lake 
batholith (166 ±1 Ma) and less than a kilometre away 
from a suite of north-trending Early Tertiary (62 ±2 Ma) 
potassium feldspar porphyry dikes and plugs (Parrish and 
Monger, 1992). In addition, historic K/Ar, Ar/Ar and 
Rb/Sr dates from around the mine range down to 135 Ma 
(Figure 6; Breitsprecher and Mortensen, 2004) and 
probably reflect partial re-setting of original cooling ages 
by younger magmatic suites in the area including; Middle 
Jurassic (Osprey Lake batholith), mid-Cretaceous 
(Okanagan batholith) and Early Tertiary (Nicola 
batholith) granitic bodies. 

Our U/Pb results for zircon separated from the 
granodiorite hosting mineralization at the mine: ~194.7 
±0.3 Ma is identical, within error, to the 194 ±1Ma 
crystallization age reported for Pennask batholith biotite 
granodiorite by Parrish and Monger (1992). The Re-Os 
model age for molybdenite mineralization is 193.9 ±0.9 
Ma also synchronous within error (Figure 6).  

Woodjam - Southeast zone 
The Re/Os model age for Southeast zone 

molybdenite mineralization at ~196.9 ±0.9 Ma is identical 
to the U/Pb, zircon crystallization ages (196.84 ±0.22 Ma, 
P. Schiarizza, personal communication, 2010) and is 
compatible with the Ar/Ar, biotite and feldspar cooling 
ages (193.0 ±1.2 Ma and 192.2 ±1.1 Ma, Logan et al., 
2007) for the Woodjam Creek phase of the Takomkane 
batholith (Schiarizza et al., 2009b). The ore mineralogy, 
style and age indicate that Southeast zone formed in 
response to Early Jurassic calcalkaline magmatism. It is 
ca. 10 to 15 Ma younger than mineralization at Gibraltar 
(Oliver et al., 2009) and ca. 8 Ma younger than 
mineralization associated with alkaline magmatism at 
Mount Polley. 

If there is any systematic difference in the ages of 
intrusion and mineralization, its measurement is beyond 
the resolution of the geochronometers available to us. 
This contemporaneity of intrusion and hypogene 
mineralization is consistent with the results of similarly 
robust datasets elsewhere within the Cordilleran belt for 
alkalic porphyry deposits (e.g. Iron Mask and Mt. Polley 
(Logan et al., 2007), and results from other porphyry 
systems globally (McInnes et al., 2005). Our new data 
provide a tight integration with the ~195 Ma calcalkaline 
Cu-Mo±Au porphyry event that is exposed along the 
length of Quesnellia and may have implications for 
similar aged Cu-Au-Mo metallogenic systems in Stikinia 
(i.e. Kerr, Sulphurets and Premier (?)) and northern 
Cordillera.  

MESOZOIC QUESNEL 
Spatial and temporal relationships between magmatic 

cycles in arcs and porphyry copper formation has long 
been recognized (Sillitoe, 1972; Clark et al., 1976; 
Sillitoe and Perrelló, 2005) and is well displayed in 
southern Quesnel terrane, where three subparallel, linear, 
Cu-Mo, Cu-Au and Cu-Mo±Au porphyry belts occur 
within the 20 Ma epoch considered here (Figure 9). In 
southern Quesnellia, migration of Late Triassic to Early 
Jurassic magmatism across southern British Columbia is 
indicated by linear belts of temporal plutons reflecting 50 
Ma of arc evolution above an east-dipping subduction 
zone (Mortimer, 1987; Parrish and Monger 1992; Ghosh, 
1995). Quesnel arc magmatism and associated porphyry 
mineralization migrated eastward with time, beginning in 
the west, ca. 210-215 Ma with emplacement of plutons 
and development of calcalkaline Cu-Mo±Au deposits at 
Highland Valley and Gibraltar. New data suggests 
multiple stages of mineralization at Highland Valley; that 
post-dates intrusion of the Guichon batholith by up to 4 
Ma (Ash et al., 2007). In the central axis of the arc are 
slightly younger alkaline intrusions and 205 Ma, Cu-Au 
mineralization at Mount Polley (Logan et al., 2007) and 
Copper Mountain (Mihalynuk et al., 2008), part of the 
chain of similar deposits that extends the length of the 
Intermontane Belt (Barr et al., 1976; Figure 1). 

Early Jurassic calcalkaline magmatism and Cu-
Mo±Au mineralization was initiated following an 
approximate 3-5 Ma hiatus. In southern QN the roots of 
this arc are defined by a 375 km long arcuate belt of 197-
193 Ma granodiorite plutons (Takomkane/Wildhorse 
suite) and in the north by the Hogem batholith. In central 
QN, it is under represented, probably because of the thick 
glacial cover in this region. Late Early Jurassic alkaline 
magmatism and porphyry Cu-Au formation at Mt 
Milligan closely followed emplacement of the Quesnel 
arc onto Ancestral North American (ANA) margin at 
~186 Ma (Nixon et al., 1993). A second pulse of alkaline 
magmatism at ~178 Ma in northern QN at Lorraine 
(Logan and Mihalynuk, in review) and >156 Ma in 
southern QN at Sappho (Nixon and Laflamme, 2002) are 
probable post-subduction partial melts of subduction-
modified arc-lithosphere (Richards, 2009). 

CONCLUSIONS 
Copper-molybdenum±gold mineralization at the 

Brenda deposit formed during several stages, as 
evidenced by mineralogically different and crosscutting 
vein assemblages. Our isotopic age dating results show 
that the time span between magma crystallization and the 
final stages of mineralization is too small to be measured 
by the geochronometers employed. It is most likely less 
than a million years. It formed from the same evolving 
magmatic/mineralizing episode responsible for 
emplacement and crystallization of the Early Jurassic 
Pennask batholith. The same relationship between 
mineralization and magmatism is evident on the
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Woodjam property 280 km to the north, where 
molybdenum from the Southeast zone has a Re-Os model 
age for mineralization that overlaps the Early Jurassic 
crystallization age of the host Takomkane batholith. 

Early Jurassic mineralization at Brenda and 
Woodjam-Southeast is hosted in large, medium to coarse-
grained, equigranular calcalkaline intrusives. In both 
cases Cu-Mo±Au mineralization occurs very close to the 
margins of these upper crustal batholith-sized intrusions. 
These are important exploration criteria that incorporate 
the type of porphyry deposit and degree of uplift and 
erosion affecting these parts of the porphyry belt. In 
contrast, the Late Triassic Cu-Au±Ag alkalic systems are 
small, high level complex intrusions which intrude coeval 
and cogenetic? volcanic rocks. Mineral and alteration 
assemblages are unique to each type of porphyry deposit 
(Sillitoe, 2002; McMillan, 2005). As a result, 
geochemical and geophysical responses dictate different 
techniques to delineate alkaline (eTh/K lows located on 
flanks of magnetic highs; Shives et al., 1997) vs. 
calcalkaline (conductive I.P. geophysical response related 
to sulphide halo) porphyry deposits. It follows then, to 
ensure successful exploration along the Quesnel arc it is 
critical to understand where and in which 
magmatic/metallogenic belt you are and which potential 
targets you should expect. 

It is anticipated from the exploration successes at 
Woodjam property by Fjordland Exploration Inc, Cariboo 
Rose Resources and Gold Fields Horsefly Exploration 
Corp., that the recognition of this Early Jurassic Cu-
Mo±Au porphyry belt will help to focus more exploration 
on this 375 km long prospective belt of calcalkaline 
intrusions in south-central British Columbia. If so, new 
discoveries are certain to be realized. 
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Southern Nicola Project: Geochemistry of Volcanic Rocks of the Nicola 
Group West of the Boundary Fault (Parts of NTS 092H/02, 07 and 10) 

by N.W.D. Massey 
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INTRODUCTION 
The Southern Nicola Project area covers about 850 

km2 of southern British Columbia, south and west of the 
town of Princeton (Figure 1). The project area stretches 
from the Copper Mountain and Wolfe Creek area 
southwest to the boundary of Manning Park and 
northwest to the Tulameen River. Tectonically, the 
project area lies at the western edge of Quesnellia – just 
east of the bounding Pasayten fault, and includes the 
southernmost exposures of the Late Triassic Nicola 
Group. Mapping by Rice (1947), Preto (1972), Monger 
(1989) and Massey et al. (2010) has outlined the essential 
distribution of Late Triassic Nicola Group strata in the 
Princeton area (92HSE) and their relationships to younger 
intrusive and volcano-sedimentary sequences. 

The bulk of Princeton Group volcanic and 
sedimentary units in the central part of the project area 
accumulated within a half-graben bounded on its eastern 
side by the Boundary fault (Figure 1). This subvertical, 
east-side down fault was first identified by Preto (1972), 
and confirmed by Read (1987), to the north. Present 
mapping continues the trace of the fault to the south 
where it curves into the valley of Placer Creek. Although 
active during the Eocene, the Boundary fault is part of a 
larger system, mapped mainly to the north, suspected by 
Preto (1979) to have been established early in the 
geological history of the region, controlling facies 
distributions and pluton emplacement within the Nicola 
Arc. 

The Nicola Group in southern British Columbia has 
been subdivided into a western calcalkaline belt and 
central and eastern alkaline (shoshonitic) belts (Preto, 
1979; Mortimer, 1987) Within the project area, rocks of 
the Nicola Group east of the Boundary fault display an 
alkalic affinity and have been assigned to the “Eastern 
Belt” (Preto, 1979). They host the important porphyry and 
skarn deposits of the Copper Mountain area (Preto, 1972). 
 
This publication is also available, free of charge, as colour 
digital files in Adobe Acrobat® PDF format from the BC 
Ministry of Forests, Mines and Lands website at 
http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCat
alogue/Fieldwork. 

However, prior to the present study, the designation of 
Nicola Group rocks west of the Boundary fault was 
uncertain. Mortimer (1987) suggested they may belong to 
the calcalkaline “Western Belt”, though no geochemical 
data were presented from the area, while Monger (1989) 
referred to them as “undifferentiated”. The “Central Belt” 
terminates north of Princeton (Preto, 1979) and does not 
extend into the project area. 

This paper focuses on the results of geochemical 
analyses of samples of Nicola Group volcanic and 
volcaniclastic rocks collected in 2008 and 2009. These 
results confirm correlation of the Nicola Group rocks west 
of the Boundary fault with the “Western Belt” as 
suggested by Mortimer (1989). 

GEOLOGY OF THE NICOLA GROUP 
WEST OF THE BOUNDARY FAULT 

Rocks of the Nicola Group southwest of Princeton 
are divided into two informal lithologic units, a clastic 
sedimentary unit and a volcanic unit. These are 
lithologically similar to units to the east, but differ in 
details of the stratigraphic succession (Preto, 1972; 
Massey et al., 2009; Massey and Oliver, 2010).  

Clastic Sedimentary Unit 
The clastic sedimentary unit is dominated by black 

argillite interbedded with grey to green-grey siltstone and 
sandstone and polymictic conglomerate. Finer grained 
beds are massive to laminated and may have a limy or 
siliceous matrix. Coarser beds can be massive, graded or 
laminated. Beds vary from millimetres to several 
centimetres thick. Layers of matrix supported, polymictic 
granule to pebble conglomerate are intercalated with the 
finer sedimentary rocks. The clasts are dominantly clastic 
sedimentary, but locally include limestone and volcanic 
material. The sedimentary rocks in the northwest corner 
of the map area are strongly metamorphosed in the 
aureole of the Eagle Plutonic Complex to produce a 
sequence of quartz ±feldspar-rich schists with variable 
proportions of biotite, actinolite, garnet, muscovite and 
magnetite. Chlorite and epidote may occur as secondary 
alteration minerals. Calcareous beds are recrystallized to 
buff weathering, medium to coarse grained white marble. 
The marbles are usually massive, but can display a weak 
foliation delineated by quartz, chlorite or minor 
calcsilicate minerals.  
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In the Lamont Main area, clastic sedimentary rocks 
are intercalated with feldspathic tuff, tuff breccia, 
tuffaceous sandstone, pebbly sandstone and fine grained 
cherty siltstone. Pyroxene is rare to absent in these beds. 
The clastic sediment and feldspathic volcaniclastic unit 
passes westwards, and probably upwards, into typical 
Nicola pyroxene-feldspar tuffs, lapilli tuffs and breccias 
of the volcanic unit.  

Volcanic Unit 
The volcanic unit includes interbedded pyroxene-

feldspar tuffs, lapilli tuffs, breccias, agglomerates and 
tuffaceous sedimentary. They are light grey in colour, 
weathering to green-grey with orange stained fracture 
surfaces. Lithic clasts vary from angular to subrounded 
and are typically 3-5 cm across, ranging up to 20-25 cm in 
breccias and agglomerates. They are dominantly pyroxene 
feldspar porphyritic basalts and basaltic andesites, 
showing a wide variation in proportions and sizes of 
phenocrysts. Fragments of aphyric basalt are also present. 
The clasts are usually matrix supported. The matrix is 
medium to coarse sand sized, containing feldspar and 
pyroxene crystals as well as small lithic clasts. Epidote, 
chlorite and calcite occur as alteration minerals in clasts 
and matrix, and also in veins. Quartz veins are also 
common.  

A sequence of massive feldspar phyric basalt flows 
occurs in the area southeast of the Granite Creek 
campsite. These are massive, fine grained, medium grey 
to green in colour. Feldspar phenocrysts are lath shaped, 1 
to 3 millimetres in size and comprise 5 to 10% of the 
rock. One flow also contained subhedral pyroxene 
phenocrysts, 2 to 3 millimetres in size, with distinct blue-
green feldspars in a bluish grey groundmass. Epidote and 
chlorite alteration is common, both in the matrix and in 
veins. 

The volcanic rocks become progressively schistose 
from east to west. The tuffs and lapilli tuffs look massive 
in outcrop but display a weak foliation on broken 
surfaces. This foliation becomes progressively more 
penetrative to the west. Finer grained tuffs produce bluish 
green-grey chlorite schists. Relict pyroxenes are 
chloritized and vary from euhedral shapes to smeared 
blebs along the schistosity. Clasts in lapilli tuffs and 
breccias are undeformed to slightly flattened. Chloritic 
rims may develop around the clasts with feathering of 
their terminations along the foliation. Actinolite and 
biotite are developed in metavolcanic rocks in the aureole 
of the Eagle Plutonic Complex. 

GEOCHEMISTRY OF THE VOLCANIC 
ROCKS 

Thirty eight samples from the Nicola Group were 
analyzed for whole rock major, minor and trace elements. 
These are predominantly volcaniclastic rocks and some 
massive flows of the volcanic unit, but include three 
samples of volcaniclastic rocks interbedded with the 

clastic sediments. Results are summarized in Table 1. 
Samples range in composition from basalt to andesite 
(Figures 2 and 3). They show some mobility of alkalis but 
generally all preserve a subalkalic, medium-K 
calcalkaline character (Figures 2-5). They compare 
closely with the type 2 calcalkaline lavas of Mortimer 
(1987), which he collected from the Nicola Group in the 
“Western Belt” in the Merritt area and to the west of the 
Guichon batholith. They differ significantly from the 
shoshonitic type 1 lavas that are characteristic of the 
“Central” and “Eastern” belts (Mortimer, 1987; Preto, 
1979).  

Extended trace element spidergrams show typical 
calcalkaline patterns with the negative Nb-Ta anomaly 
characteristic of volcanic arcs (Figure 6). Minor and trace 
element petrotectonic discrimination diagrams are 
primarily designed for use with aphyric basaltic flows 
rather than porphyritic or volcaniclastic rocks. However, 
these plots support the formation of the Nicola Group 
volcanic rocks in an arc environment, though not all 
diagrams successfully discriminate them as calcalkaline 
(Figures 7-10). A few massive flows have higher P2O5 
(>0.4 %), Zr (150 – 200 ppm) and Ti/V ratios (10 – 50), 
that compare with Mortimer’s type 3 lavas. These latter 
are intermediate between arc and intra-plate character and 
occur in all three belts. 

REGIONAL CORRELATIONS 
The lithogeochemical data presented here support the 

correlation of Nicola Group volcanic rocks in the project 
area, west of the Boundary fault, with the “Western Belt” 
to the north, as originally proposed by Mortimer (1987). 
However, dacitic to rhyolitic rocks which are fairly 
common in the “Western Belt” to the north, are 
apparently absent within the project area. No 
paleontological or geochronological data are available on 
these rocks within the project area. Scattered fossil ages to 
the north are mainly late Carnian to early Norian (Monger 
and McMillan, 1989; Preto, 1979) and felsic volcanic 
rocks in the Merritt area yield late Triassic (Carnian) ages 
of 224.6 ±0.9 Ma and 224.5 ±0.3 Ma (Diakow and 
Barrios, 2009).  

Correlation with the “Western Belt” may have 
implications for mineralization in the project area. Felsic 
volcanic rocks in the “Western Belt” are potential hosts to 
volcanic-hosted massive sulphide deposits. However, 
felsic volcanic rocks have not yet been identified in the 
project area.  

Conversely, alkalic porphyry-copper deposits, like 
that at Copper Mountain, are hosted within, and probably 
consanguineous with, the shoshonitic “Eastern Belt” of 
the Nicola Group. Such mineralization is less likely to 
occur within the calcalkaline Western Belt. However, 
there are no geochemical or geochronological data from 
the diorite-pyroxenite stocks and minor intrusions of the 
project area, e.g. the Rice stock, which may test this. 
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Table 1. Whole rock chemical analyses for Nicola Group volcanic rocks. Major elements and Rb, Sr, Ba, Y, Zr, Nb, V, Ni, 
Cr determined by XRF (majors on fused disc, traces on pressed powder pellet) by Teck (Global Discovery) Labs. REEs, 
Th, Ta, Hf determined by peroxide fusion-ICPMS by Memorial University of Newfoundland. Dashes indicate element 
determinations below detection limit; blank values indicate element not analyzed. Map unit is as on Massey et al. (2010). 
 
 
 

 
 
 
 
 
 
 
 
 

Sample 09SOL02-04 09SOL02-05-02 08NMA35-10 08NMA21-03 09NMA14-13 09NMA14-14 09NMA14-03 09NMA14-04 09NMA18-10

Lithology

px relics in act-
qz-fsp-bio-chl-
epid schist

px-phyric chl-
act-bio-musc 
schist

fsp tuffs 
massive, some 
small lapilli 

px-fsp 
porphyry, 
massive

fsp basalt, 
strong epidote 
alteration

blue-green fsp-
px basalt, 
massive

massive 
vesicuar basalt

fsp basalt massive 
aphyric basalt, 
sparse vesicles

Map Unit TrNs TrNs TrNsv TrNv TrNvm TrNvm TrNv TrNv TrNv

SiO2 49.61 49.21 57.17 46.68 48.41 47.28 45.49 54.47 54.20
TiO2 0.79 0.62 0.64 0.65 1.72 1.13 1.11 1.34 1.34
Al2O3 17.38 13.37 17.44 14.60 15.56 17.99 16.24 16.31 14.34
Fe2O3t 10.03 10.23 7.39 10.10 11.99 9.73 9.74 7.14 10.86
MnO 0.17 0.17 0.14 0.15 0.17 0.17 0.16 0.11 0.15
MgO 5.43 10.73 3.25 8.77 4.50 4.91 9.80 3.25 3.53
CaO 9.83 11.38 5.94 13.00 7.41 10.13 8.25 5.74 6.00
Na2O 4.18 1.90 3.56 1.46 4.37 3.07 1.52 4.47 3.68
K2O 0.79 0.82 0.79 0.46 1.16 1.78 2.66 1.89 2.77
P2O5 0.15 0.11 0.23 0.13 0.47 0.30 0.58 0.38 0.51
BaO 0.02 0.02 0.03 0.01 0.03 0.03 0.08 0.04 0.07
LOI 1.30 1.40 2.66 3.92 3.70 3.20 4.40 3.20 2.00
Total 99.68 99.95 99.24 99.93 99.51 99.77 99.96 98.30 99.41

Ba 175 243 293 109 345 346 791 368 674
Rb 21 17 13 14 25 32 54 38 58
Sr 287 417 155 397 688 330 348 585 460
Y 16 16 27 18 24 23 26 26 42
Nb -3 -3 16 7 4 4 9 8 5
Zr 34 30 104 52 69 116 166 192 180
V 279 251 133 257 236 287 144 320 255
Ni 43 129 -3 122 31 12 16 -3 34
Co 18 52
Cr 18 351
La 20.703 13.153 34.449
Ce 34.497 28.624 70.060
Pr 4.236 3.888 8.607
Nd 16.432 17.235 34.722
Sm 3.421 4.369 6.939
Eu 1.245 1.243 2.043
Gd 3.455 4.524 5.908
Tb 0.579 0.709 0.847
Dy 3.485 4.473 4.649
Ho 0.731 0.883 0.806
Er 1.993 2.415 2.116
Tm 0.315 0.354 0.296
Yb 2.359 1.975 1.739
Lu 0.338 0.275 0.245
Hf 2.446 1.714 3.505
Ta 0.238 0.329 0.502
Th 5.218 1.834 6.746
Latitude (N) 49.493688 49.497555 49.391573 49.155825 49.493416 49.497105 49.491525 49.491832 49.443818
Longitude(W) 120.905837 120.906923 120.710806 120.586382 120.668382 120.668910 120.694723 120.693914 120.682400
Zone 10 10 10 10 10 10 10 10 10
Northing 5484447 5484874 5473506 5447582 5484922 5485331 5484653 5484689 5479377
Easting 651648 651557 666115 675980 668842 668791 666941 666999 667997
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Table 1. (continued) 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

09NMA10-05 09NMA13-10 08NMA26-01-02 08SOL25-04 08SOL25-05 08NMA31-02-01 08NMA31-02-02 08JVI29-03 08JVI29-04 08JVI29-14
vesicular basalt px-fsp basalt green-grey 

tuffaceous 
sandstone, silt

px meta lapilli 
tuff, 

px meta tuff, px-fsp tuff, lap 
tuff; w eak 
foliation

px-fsp lap tuff; 
moderate 
foliation

massive 
tuffaceous 
sandstone and 
px crystal tuff

tuffaceous 
sandstone

tuffaceous 
sandstone

TrNv TrNv TrNv TrNv TrNv TrNv TrNv TrNv TrNv TrNv

48.295 47.92 46.41 50.37 49.54 47.92 50.34 51.55 48.73 48.96
0.81 0.97 0.79 0.69 0.67 0.65 0.65 0.80 0.84 0.78
17.085 18.79 15.22 14.28 12.94 14.78 15.20 16.46 18.04 15.80
10.96 10.08 10.52 9.54 9.70 9.85 9.28 8.38 9.32 9.96
0.15 0.16 0.14 0.12 0.14 0.13 0.09 0.12 0.14 0.16
6.22 4.72 14.29 9.42 13.48 11.17 9.07 6.65 6.83 8.07
8.795 10.25 3.50 9.29 5.26 7.24 8.86 11.51 9.54 9.96
3.81 1.76 3.26 1.55 2.56 2.29 1.48 1.17 1.91 2.65
0.065 1.82 0.41 1.06 1.38 1.59 0.98 0.61 0.95 0.78
0.15 0.28 0.07 0.28 0.19 0.26 0.15 0.29 0.37 0.23
0.01 0.02 0.01 0.06 0.03 0.06 0.03 0.02 0.04 0.01
3.4 3.20 5.00 2.90 3.80 3.80 3.67 2.26 2.91 2.56
99.735 100.00 99.66 99.60 99.68 99.74 99.81 99.82 99.62 99.92

71.5 244 130 588 337 600 351 165 416 129
9 36 9 25 18 33 25 13 26 17
253 640 90 443 103 332 505 294 380 343
11 18 13 17 13 22 16 24 24 24
-3 6 -3 -3 -3 8 5 10 11 5
33.5 59 62 77 52 87 60 144 123 70
292.5 208 270 224 233 270 249 238 306 255
24 32 136 156 189 186 115 75 43 96

47 32 30 46
436 177 98 259

3.083 25.783 39.949 34.495 8.822
7.871 51.091 80.436 72.890 19.641
1.295 6.348 9.750 9.114 2.719
6.614 25.324 38.717 38.133 12.443
2.075 4.771 6.897 6.926 3.285
0.777 1.447 1.866 2.016 1.071
2.475 3.831 4.963 5.826 3.656
0.443 0.540 0.612 0.768 0.552
2.736 2.954 3.336 4.142 3.445
0.567 0.524 0.620 0.822 0.670
1.686 1.494 1.795 2.250 1.937
0.266 0.203 0.254 0.312 0.269
1.496 1.420 1.708 2.096 1.952
0.203 0.238 0.242 0.335 0.286
0.899 1.818 3.409 2.979 1.623
0.073 0.082 0.116 0.136 0.038
0.475 4.310 8.277 5.835 1.436
49.522734 49.473473 49.296624 49.279527 49.296584 49.323464 49.324289 49.365568 49.364846 49.381870
120.810926 120.687642 120.657719 120.678707 120.658002 120.692235 120.691125 120.748600 120.732478 120.746621
10 10 10 10 10 10 10 10 10 10
5487871 5482662 5463070 5461122 5463065 5465976 5466070 5470533 5470488 5472350
658426 667516 670295 668827 670274 667694 667772 663458 664631 663548
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Table 1. (continued) 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

09NMA10-01 09NMA13-13 08NMA31-08 08NMA28-13-01 08NMA28-13-02 08NMA28-14 08NMA29-04 08NMA29-11 08NMA34-09 08SOL25-01
fsp-px lithic tuff px-fsp crystal 

lapilli tuff 
medium-coarse 
grained, px-fsp 
tuff

fsp-phyric 
chloritic meta-
tuff 

f ine grained  
chloritic meta-
tuff

px-fsp chlorite 
schist

px-phyric, 
chlorite schist

px-fsp chlorite 
schist 

px chlorite 
schist 

px-fsp phyric 
meta-tuff 

TrNv TrNv TrNv' TrNv' TrNv' TrNv' TrNv' TrNv' TrNv' TrNv'

46.81 42.45 46.14 48.95 50.63 46.58 47.29 47.65 44.17 48.01
1.26 0.81 0.77 0.85 0.98 0.69 0.66 0.63 0.66 0.57
16.96 16.62 16.57 20.23 18.33 14.67 15.35 14.51 15.99 11.71
10.32 10.31 9.50 10.25 8.93 9.18 8.71 8.78 9.59 9.87
0.14 0.15 0.13 0.15 0.18 0.14 0.14 0.09 0.13 0.16
3.13 7.76 8.86 3.94 2.98 9.64 10.14 6.84 9.37 12.87
8.56 11.01 8.70 8.40 9.51 10.75 8.94 7.79 8.18 11.81
4.90 2.40 2.79 3.04 3.00 2.26 2.53 3.20 1.54 1.17
1.04 1.46 0.92 0.65 0.91 0.68 1.01 0.51 0.71 0.69
0.40 0.13 0.33 0.10 0.12 0.17 0.19 0.18 0.18 0.12
0.03 0.03 0.03 0.02 0.02 0.02 0.05 0.02 0.03 0.02
6.00 6.80 4.78 3.30 4.00 4.90 4.80 9.70 9.10 2.80
99.53 99.94 99.52 99.91 99.62 100 99.79 99.93 99.59 99.79

308 302 336 168 161 157 472 230 289 197
27 19 21 18 19 17 25 16 22 16
458 350 601 173 175 387 473 426 636 369
27 15 20 16 23 17 15 17 18 18
9 -3 6 -3 -3 -3 -3 -3 -3 -3
138 36 106 36 49 32 46 61 55 25
284 222 285 250 200 235 213 242 248 206
16 111 72 6 6 147 181 90 111 199

39
161

34.821 8.043 28.230
74.539 17.356 56.949
9.386 2.411 7.033
36.888 10.791 29.179
7.045 2.752 5.524
2.094 0.921 1.746
6.383 3.060 4.540
0.843 0.465 0.650
4.959 2.929 3.835
0.935 0.583 0.721
2.528 1.700 1.954
0.346 0.229 0.293
2.063 1.420 1.937
0.290 0.209 0.298
2.430 0.886 2.376
0.465 0.150 0.088
3.862 1.461 4.535
49.523798 49.481554 49.319200 49.280177 49.280177 49.288021 49.303283 49.301167 49.339825 49.296099
120.799553 120.704556 120.693300 120.736689 120.736689 120.736050 120.690157 120.683841 120.722864 120.739422
10 10 10 10 10 10 10 10 10 10
5488013 5483523 5465500 5461067 5461067 5461940 5463737 5463516 5467727 5462830
659246 666263 667631 664609 664609 664629 667914 668380 665414 664357
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Table 1. (continued) 
 
 
 
 
 
 

 
 
 
 
 
 
 

08SOL25-03 09NMA08-13 09NMA02-03 09NMA02-04 09NMA03-03-01 09SOL01-12 09SOL02-07 09NMA01-09-03 09NMA07-01
px meta-tuff feldspathic 

tuffs w ith minor 
px

px-act schist; 
minor calcite

schistose px-
phyric lapilli 
tuffs (act-chlor)

px-act-chlor 
schist

fsp-chlor 
schist, epidote

px-phyric chl-
bio-act schist

chlor-bio-act 
schist (relict 
px) 

chlor mafic 
meta-tuffs, fsp 
xst tuff

TrNv' TrNv' TrNv' TrNv' TrNv' TrNv' TrNv' TrNv' TrNv'

49.25 47.66 47.30 48.33 48.29 47.98 47.64 49.38 48.14
0.67 0.92 0.65 0.60 0.69 0.63 0.58 0.58 0.77
14.42 18.55 13.78 12.16 14.89 19.80 11.65 12.54 16.32
9.51 8.63 9.90 9.68 9.74 9.96 10.07 9.58 9.27
0.15 0.16 0.17 0.17 0.14 0.16 0.16 0.16 0.15
8.77 5.59 11.41 12.53 10.52 5.68 12.94 11.69 9.03
10.89 9.72 11.00 13.25 10.37 9.69 11.38 11.75 7.63
2.69 3.61 2.51 1.49 1.97 2.62 1.81 1.78 3.61
0.42 0.96 0.44 0.23 1.18 0.49 0.47 0.73 0.97
0.13 0.21 0.15 0.13 0.17 0.07 0.11 0.12 0.20
0.01 0.02 -0.01 -0.01 0.02 0.02 0.01 0.02 0.02
2.60 3.80 2.60 1.30 1.90 2.80 3.00 1.50 3.90
99.48 99.81 99.94 99.85 99.86 99.88 99.84 99.81 99.96

117 164 37 12 216 164 110 167 158
13 22 14 10 27 15 15 15 22
499 379 273 335 433 359 210 283 354
20 15 14 16 12 9 10 17 14
-3 -3 -3 -3 -3 -3 4 -3 -3
28 33 48 41 39 33 38 44 60
218 245 233 230 265 217 223 225 233
88 27 176 182 145 16 203 153 66

49.245159 49.474289 49.370972 49.372289 49.380612 49.494517 49.505620 49.512924 49.410049
120.695089 120.740078 120.806183 120.808296 120.815929 120.898125 120.910815 120.922770 120.780393
10 10 10 10 10 10 10 10 10
5457265 5482637 5471011 5471153 5472062 5484554 5485763 5486551 5475409
667752 663715 659260 659103 658522 652203 651250 650362 661005
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Figure 2. Total alkali vs SiO2 (anhydrous weight %) plot for Nicola Group volcanic rocks. Classification fields and nomenclature after Cox 
et al. (1979). The alkaline-subalkaline dividing line after Irvine and Baragar (1971). Massive flows: closed symbols (squares: interbedded 
with volcaniclastic rocks; triangles: from massive subunit SE of Granite Creek); volcaniclastic rocks: open symbols (squares: from volcanic 
unit; triangles from sedimentary unit). 

 

 
Figure 3. Zr/TiO2 vs SiO2 (anhydrous weight %) plot for Nicola Group volcanic rocks. Classification fields and nomenclature after 
Winchester and Floyd (1977). Symbols as in Figure 2. 
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Figure 4. AFM diagram for Nicola Group volcanic rocks after Irvine and Baragar (1971). A = Na2O + K2O; F = FeOtotal; M = MgO, all as 
anhydrous weight percents. Symbols are as in Figure 2. 

 

 
 

Figure 5. K2O vs SiO2 (anhydrous weight %) plot for Nicola Group volcanic rocks. Classification fields and nomenclature after Peccerillo 
and Taylor (1976). Symbols as in Figure 2. 
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Figure 6. Trace element concentrations normalized to chondrite, after Thompson (1982). a) massive flows; b) volcaniclastic rocks. 
Symbols as in Figure 2. Only samples with the complete range of determined elements are plotted. The shaded field shows the range for 
all samples; arrow indicates that many samples have Nb values below the detection limit (3 ppm). 
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Figure 7. MnO-TiO2-P2O5 (anhydrous weight %) discrimination diagram for Nicola Group volcanic rocks after Mullen (1983). OIT: ocean-
island tholeiite; OIA: ocean-island alkali basalt; MORB: mid-ocean ridge basalt; IAT: island-arc tholeiite; CAB: calcalkaline basalt; Bon: 
boninite. Symbols are as in Figure 2. Only samples with 45<SiO2<54 are shown. 

 
 
 
 
 
 

 
 
 
Figure 8. Trace element discrimination diagrams for Nicola Group volcanic rocks after Pearce and Cann (1973). a) Ti-Zr-Y diagram, A: 
island-arc tholeiites; B: mid-ocean ridge basalts, island-arc tholeiites and calcalkaline basalts; C: calcalkaline basalts; D within-plate 
basalts. b) Ti-Zr-Sr diagram, A: island-arc tholeiites; B: calcalkaline basalts; C: mid-ocean ridge basalts. Symbols are as in Figure 2. Only 
basaltic samples with 12<CaO + MgO<20 are shown. 
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Figure 9. Ti-Zr (anhydrous parts per million) discrimination diagram for Nicola Group volcanic rocks after Pearce and Cann (1973). A: 
island-arc tholeiites; B: mid-ocean ridge basalts, island-arc tholeiites, calcalkaline basalts; C: calcalkaline basalts; D: within-plate basalts. 
Symbols are as in Figure 2. Only basaltic samples with 12<CaO + MgO<20 are shown. 

 
 
Figure 10. Th-Hf-Ta discrimination diagram for Nicola Group volcanic rocks after Wood (1980). IAT: island-arc tholeiite; CAB: calcalkaline 
basalt; N-MORB: normal-type mid-ocean ridge basalts; E-MORB: enriched-type mid-ocean ridge basalts; WPT: within-plate tholeiite; 
WPA: within-plate alkali basalt. Symbols are as in Figure 2.  
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Improving the Efficiency in the Maintenance 
of the Provincial Geological Database 

by Y. Cui 

 
KEYWORDS: geological map, spatial database, 
maintenance, update, GIS, MapPlace, best practices 

INTRODUCTION 
This paper describes some of the best practices that 

are promoted by the British Columbia Geological Survey 
(BCGS) to improve the efficiency in maintaining 
geological maps. The main focus is to leverage 
interoperable (including freely available) spatial database 
technology to reduce the redundancy and efforts in map 
compilation and data integration while enhancing the data 
quality. 

BCGS is responsible for producing and publishing 
province-wide geological maps through MapPlace 
(http://www.empr.gov.bc.ca/Mining/Geoscience/MapPlac
e/Pages/default.aspx) to mineral exploration, mining, land 
planning and other users. BCGS recognizes the value of a 
corporate database management environment for a 
seamless digital data flow from outcrop to dynamic maps 
on the web.  

The most recent province-wide geological map was 
published at a scale of 1:250 000 scale in 2005 (Massey et 
al., 2005). The map compilation was made in support of 
the Mineral Potential Project (1992-96), with updates in 
2003 and 2004. The province-wide geological map has 
not been updated since 2005, except certain focused areas 
such as QUEST (Logan et al., 2009).  

Currently, new map compilation and updating are 
carried out by BCGS staff members using Manifold® 
System and MapInfo® desktop GIS tools. Data files are 
distributed across different file servers and desktop 
workstations of the mapping geologists. When a mapping 
project is completed, a version of the data is converted to 
the appropriate format and made available to the public 
through MapPlace. In addition to publications such as 
Geological Fieldwork, Open File, GeoFile and 
Geoscience Maps, geological maps are also available 
online as PDF files and GIS formats for download from 
MapPlace. 

The GIS software tools (e.g., Manifold® and 
 
This publication is also available, free of charge, as colour 
digital files in Adobe Acrobat® PDF format from the BC 
Ministry of Forests, Mines and Lands website at 
http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCat
alogue/Fieldwork. 

MapInfo®) are sufficient in map compilation and analysis 
when working with a relatively small dataset and a 
limited number of data layers. However, this environment 
has a number of challenges and limitations, including: 

• difficult to apply common data standards among 
the mapping geologists; 

• unable to manage and apply data quality rules; 
• difficult to share consistent legend and map 

styles; 
• difficult to manage multiple versions of the same 

map at varying stages of editing and correction; 
• slow performance in loading and incremental 

saving of edits for a large map; potential risk of 
losing un-saved work when the system crashes 
(more frequent on workstations with certain 
operating systems); 

• limitation on accessing and loading a large 
volume of data, e.g., province-wide topographic 
base map which is required to node the 
geological features; 

• unable or difficult to collaborate amongst staff 
members on compiling adjacent mapping areas, 
resulting in discrepancies along the map 
boundaries and inconsistencies between mapping 
areas; 

• unable to automatically create derived products 
(e.g., different scales and customization) from 
the source geoscience data; 

• difficult to manage multiple versions of the same 
map at different scales and customization; 

• no automation in detecting and correcting defects 
or inconsistencies in the geoscience data; and 

• difficult or unable to discover and access datasets 
from different sources, in different formats and 
projections, and stored on different locations, 
including staff’s workstations. 

The geology operational database environment 
(GODE) is proposed as part of a solution to address some 
of these issues at BCGS. This paper briefly describes the 
architecture of GODE, with a focus on the recommended 
best practices to maintain the operational database.  

Typically, when organizations change operational 
environment, they should consider not only the specific 
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business drivers and user requirements, but also the 
existing processes, tools and most importantly the culture 
and human aspect in adopting changes. At BCGS, the 
following requirements are addressed in order to 
document a high level view of the GODE system 
architecture and design: 

• full context of relevant map layers is available 
and not constrained by the volume of data: base 
maps, existing geological maps, new updates 
from other mapping projects, archived and 
retired or historical maps; 

• base maps that are readily available and at the 
appropriate scales with consistent styles for new 
map compilation or updating, to provide the 
geographic context and geo-referencing in some 
cases; 

• adopting consistent data model that can be 
enforced by schema validation and schema 
mapping; 

• a custom user interface to Manifold® and 
MapInfo® for data capture and manual data 
entry to improve efficiency and to reduce errors; 

• a workspace where the province-wide geoscience 
data, including other project geologists’ maps, is 
readily accessible for data quality assurance and 
integrations (e.g., boundary issues, connectivity, 
currency); 

• an environment to support versioned map 
compilation and data archiving; 

• reduced inconsistency in data through database 
triggers and constraints based on data access 
policies and data quality rules; 

• shared legends and styles: if a new rock type and 
associated styles are defined, they become 
available instantly to all the users the moment 
they are implemented in the database; 

• ability to carry out province-wide statistical and 
spatial analyses: e.g., spatial overlay of bedrocks, 
faults, geochemical results, geophysical survey 
results; 

• ability to create derived products through 
province-wide data processing; 

• ability to provide up-to-date information through 
MapPlace directly served up from a database; 
and  

• provision of dynamic provincial geological map 
as GeoWeb services such as WMS, WFS and 
KML. 

 
 
 
 

DEVELOPMENT OF OPERATIONAL 
ENVIRONMENT 

Guiding Principles 
The development of GODE and the recommended 

best practices follow a set of guiding principles that are 
common in service-oriented architecture: 

• Interoperable: GODE will be designed and 
developed based on ISO and open standards and 
specifications to ensure meaningful 
interoperability with other systems and services. 

• Scalable: GODE will be designed to manage 
cumulative new map compilations and 
versioning of the integrated province-wide 
geological map. 

• Encapsulated: Map maintenance users should 
be able to access all the relevant data and use the 
tools within GODE without the need to be 
exposed to the complexities of the underlying 
technology and information infrastructure. 

• Collaborative: GODE will be developed with a 
“locking” mechanism and user profiles to 
facilitate collaborative map updating, especially 
at map boundaries of adjacent project areas. 

• Efficient: Data quality and validation rules will 
be formally specified and automatically applied 
wherever possible to eliminate simple defects in 
the data and reduce repeated efforts, to sustain 
long-term maintainability. 

Business Drivers 
The requirements of GODE are largely driven by the 

business needs and processing cycles at BCGS. The 
collection and management of geoscience data are 
logically related to three service components and can be 
functionally grouped and deployed on a common Spatial 
Data Infrastructure (Figure 1): 

1) Mapping Services: geological field mapping, 
mineral potential assessment, geochemical 
survey, and geophysical survey; 

2) Data Management Services: map compilation, 
data quality assurance, data integration, and 
production; and 

3) Publication and Access Services: MapPlace and 
other third party GeoWeb services. 

Publication and Access Services are the front end 
where products and services are provided to clients. 
Access Services are positioned to collect and 
communicate user needs, which are documented as 
updated requirements and specifications of products and 
services. This would drive Mapping Services with 
mapping projects to address the new and changing 
business needs. Updates and new mapping results are 
available to Data Management Services to produce 

160 British Columbia Geological Survey



products and services that Publication and Access 
Services rely on. 

System Context 
GODE forms part of the Spatial Data Infrastructure 

(SDI) at BCGS to facilitate the management and 
provision of geoscience data. The SDI provides a suite of 
client-facing GeoWeb services enabled by standards, 
spatial database, and software components. Figure 2 
shows the high-level context view of BCGS GeoWeb 
services and how the components or services interact with 
each other. The modelling and system architecture of the 
SDI at BCGS loosely follow ISO/ITU standard 10746-3 
on Reference Model for Open Distributed Processing 
(e.g., Farooqui et al., 1996; ISO, 1998; ISO, 2010) and 
some of the recent work on modelling SDI (e.g., Brodeur, 
2011; Cooper, 2007; Hjelmager, 2005; Hjelmager, 2008). 

System Architecture 
To briefly describe the system architecture of GODE 

at a high-level, graphical depictions of a few selected 
viewpoints are presented here to illustrate the system 
domains, components in each domain, actors and 
interfaces. The enterprise viewpoint describes the 
purpose, scope and policies of the SDI. Figure 3 shows 
the actors (GODE Operator), domains (e.g., Data Sources, 
GODE, and Geology Application Database Environment), 
and components in each domain in the context of this 
enterpriser viewpoint. The information viewpoint consists 
of BCGS geological data models enhanced with 
additional metadata to manage versioning and keep track 

of the various stages of initial field observation, quality 
assurance, integration, archiving and production. Due to 
its large volume, details of the information viewpoint are 
not included in this paper. The computational viewpoint 
(Figure 4) depicts the decomposed database components 
and interfaces that are required for the GODE to function. 
The engineering viewpoint (Figure 5) shows how the 
components used in the system are distributed across the 
various servers.  

The technology viewpoint describes the hardware, 
software versions and other technologies used in the 
system. The feasibility study and prototyping of GODE 
rely heavily on free and open source software, including 
PostgreSQL/PostGIS as spatial database, OpenJUMP as 
desktop GIS, JEQL as a query and batch Web processing 
engine, and Apache PHP running on Windows Server® 
2003 and Windows XP® and Vista® on workstations. 
The test deployment also includes Microsoft® SQL 
Server® 2008 R2 running on Windows Server® 2008 R2 
64-bit, and Manifold® System as desktop GIS running on 
Windows Vista® 32-bit workstations. 

Open distributed processing amongst the various 
system components and servers that are part of or related 
to GODE, is shown in Figure 5. These are supported by 
the adoption of Open Geospatial Consortium (OGC) 
standards, including the OGC Simple Features 
Specification for SQL (OGC, 1999). Spatial data, encoded 
as GEOMTRY or GEOGRAPHY data types on the 
database side, can be exposed as well-known text (WKT) 
or well-known binary (WKB) (OGC, 2001; OGC, 2010), 
to desktop clients and web services. This ensures  
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Figure 4. GODE database components. 

 

 

Figure 5. GODE engineering viewpoint. 
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interoperability at a more primitive and practical level 
without the need to parse a markup language with a 
complex schema and overloaded with redundancy. 

BEST PRACTICES 

Data Quality Assurance Rules and Policies 
Geological mapping has multiple stages, from field 

survey, map compilation, cartographic enhancement, to 
final production. In addition to rigorous training and years 
of practical experience by the seasoned mapping 
geologists, there is also abundant literature on the 
geological mapping specifications and techniques for the 
various map producing stages, including the BC RIC 
standard (RIC, 1997), Ontario Digital Line Standards 
(Muir et al., 2000), unpublished guide and manuals at 
BCGS, and over a decade of “Digital Mapping 
Techniques” workshop proceedings from the Association 
of American State Geologists and USGS 
(http://ngmdb.usgs.gov/Info/standards/datacapt/datacaptur
eWG.html). 

The recommended best practices are derived from 
these established and well-adopted standards and 
guidelines with an emphasis on achieving efficiency in 
the configuration of map compilation environment and 
the specification and applications of data quality rules, 
such as:  

• size of features: minimum area size of polygonal 
features, minimum length of linear features; 

• density of coordinates: too many coordinates or 
too few coordinates; and 

• geometric irregularity: duplicates, kick-backs, 
sharp angles between two lines, overlaps, 
overshoots, undershoots and gaps. 

Map Projection 
At different stages of geological mapping, a specific 

map projection is preferred to meet the requirements. In 
the initial map compilation, it is essential to ensure the 
proper positioning of the field observations with 
referencing to the most detailed topographic map, to 
preserve measurements of angles and orientation of 
directed linear features (e.g., thrust fault traces). As an 
example, the choice of projection is conformal while the 
use of UTM is preferred by many geologists because 
orientation data works better with the orthogonal grid. At 
the stage of province-wide map integration and map 
production for applications such as statistical analysis, the 
choice of projection is equal-area based. In British 
Columbia, the preferred projection is BC Albers. 

It is well known in the geospatial user community 
that coordinates can drift and shapes can change after map 
projection and round-trips of re-projections (e.g., from 
geographic coordinate system WGS84, to BC Albers, to 
UTM and then back to WGS84). While it is impossible to 

avoid projections, there are measures that can be taken to 
reduce the coordinate drifting, including proper use of 
explicit unit of precision, coordinates densification for 
large features that do not have enough coordinates along 
straight and long edges, and avoiding clip or cookie-cut of 
contact lines when checking out the features for a 
mapping project area (more in the section of “Checking-
out” Existing Geological Maps). 

For maps published in a non-conformal projection, 
orientation is distorted in areas not at the central meridian. 
Certain orientation data (e.g., the strike of a bedding) can 
be stored in a database as true north and displayed as 
symbols. This stored orientation data should be projected 
so that it is displayed consistently with the “distorted” 
orientation of other geological features. 

Awareness of Varying Mapping Scales 
Traditional systematic geological mapping at a fixed 

scale for a map sheet has been replaced by mapping at 
varying scales designed to answer specific geological 
questions or targeting economic mineral potential. At 
BCGS, project-based mapping can be carried out at a 
scale of 1:10 000 to 1:50 000, and the publication at 
regional or provincial extent might be generalized at a 
scale of 1:250 000 to 1:2 000 000. 

It is worthwhile to include the mapping scale in the 
metadata and adjust the data capturing with positional 
accuracy, unit of precision (see next section), and level of 
details appropriate to the map scale. Digital mapping 
provides a perfect breeding ground for imperfect mixing 
of data captured at different scales in the same area or 
maps at different scales adjacent to each other. Data 
processing with scale awareness can treat the data at finer 
granularity while performing data validation and data 
quality assurance. 

Explicit Unit of Precision 
Most GIS and database systems can store coordinates 

and perform computation at a unit of precision below 
microscopic resolution. It is perfectly fine to use the 
highest precision that a system supports for computation. 
However, it can cause data quality issues with an 
excessively finer precision or different units of precision 
for data stored in different systems or formats, for 
mapping at a scale of 1:50 000 or smaller. 

In GODE, map compilation is to be carried out at 
decimetre precision (or 7 floating points in decimal 
degrees), and the data is maintained at metre precision (or 
6 floating points in decimal degrees) on the database side. 

Common Topographic Base Maps 
Topographic base maps are essential components for 

geological mapping, as background and cartographic 
enhancement to the final publication, as one of the 
sources for georeferencing or checking positional 
uncertainty, and also as noding bases to close off certain 
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geological boundaries to the topographical boundaries 
such as lake shores, river banks and coastal lines. 

Corporate spatial database makes it possible to store 
a very large volume of the most detailed topographic base 
maps and to retrieve any given map sheets easily.  

Another major advantage is that the styles applied to 
the base maps can be stored on the database side and 
shared by every user. This approach not only saves time 
on discovering, retrieving and styling base maps, it also 
provides visually consistent base map layers to the final 
publications. 

Provincial orthophotography and other digital images 
at high resolution are available as WMS layers or image 
files to validate the accuracy of important geological 
features. 

“Checking-out” Existing Geological Maps 
Geological map updating can start during field 

surveys, which would require the “checking-out” of the 
existing geological map from the corporate database for 
the project or target area. A common practice is to use 
map sheet or project area neatlines as a cookie-cutter to 
clip out only the portion of the map in the area. It has 
been proven that this practice can cause lot of data issues 
by the time the updates are to be integrated to the 
corporate database. 

It is highly recommended that the project area 
neatlines are used to intersect all the polygonal features 
(e.g., bedrock polygons) in their entirety and then use the 
polygons to extract all linear geological contacts and 
faults that either form or intersect these polygons. When 
the updating is completed, the integration process should 
only involve accepting features marked as one of the 
following: 

• no change, 
• new compilation, 
• revised with updates: geometries, attributes, both 

geometries and attributes, or due to integration), 
and 

• retired (e.g., replaced by updates). 

Attribution through Standard Lexicon 
Templates 

It is a challenge to standardize the nomenclature of 
geological units for an area as large as British Columbia 
with diverse geology and mapping contributions, 
primarily by BCGS, but also by federal government 
agencies, universities and mining industry. Nevertheless, 
an attempt is to derive a standard template by reconciling 
the differences between the Canadian Geoscience 
Knowledge Network (CGKN) lexicon entries for British 
Columbia and the ones existed in the current Geological 
Map of British Columbia database. 

In order to accommodate more detailed mapping and 
subdivision of existing major geological units, a template 
for sub-units is also created.  

During initial map compilation, the geological unit 
code mapped to the standardized lexicon in the template 
should be used to simplify the population of the 
attribution. Whereas the geological units are subdivisions 
of an existing major unit, then a template for the sub-units 
can be used or new sub-units can be created. 

Map Neatline (Knowledge Boundaries) 
A province-wide geological database could contain 

project-based mapping updates at multiple scales and 
different stages of completion. This would leave 
inconsistency, lost connectivity and other issues at map 
boundaries. While it is possible to produce a product at 
the smallest scale as a common denominator, the 
inconsistency and boundary issues will remain to be 
resolved at the observation level and has to be managed 
properly. One recommendation is to introduce a new 
contact type, “neatline”, to separate areas of different 
mapping scales or stages of updating. In that sense, 
neatline is also the knowledge boundary, meaning a lack 
of knowledge occurs beyond the neatline, at the level of 
detail that a recent mapping project has taken place. The 
neatline is removed only when knowledge becomes 
available to resolve the inconsistency, connectivity and 
other data issues at the map boundary. 

Treatment of Small Geological Units 
There are bedrock units that are geologically or 

economically important, as determined by the mapping 
geologist, but they are small in size or spatial extent. 
These features should be kept in a separate map layer or a 
separate table in a spatial database. While most of them 
are mapped as polygons, some of them are best digitized 
as points or lines such that they can be properly 
symbolized or styled for display. 

Mapping Mineralization 
Mineralization or mineral occurrences can be mapped 

as points, lines and polygons. In most cases they are 
captured in a separate map layer or maintained in a 
separate table in a spatial database. In some cases the 
mineralization can be annotated through the use of a 
modifier code on the geological unit designation, 
preferably as a sub-unit, with explanation in the 
description.  

There are also situations where the mineralization is 
significant both in importance and geographic extent and 
the hostrock or original rock types cannot be reliably 
traced through the zone of modification. In this case, it is 
acceptable that a new geological unit is created. 
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DATA UPDATING AND INTEGRATION 

Data Loading 
When a project-based map is available for updating 

the province-wide geological database, the contact lines 
(including regular contacts, faulted contacts and faults) 
and bedrock polygons are loaded into the observation 
database after schema mapping and validating 
projections, scales, and geo-referencing. The data remains 
in its original state without any changes or fixing. 

A mandatory column in the data is a lexicon-based 
geological unit or unit code which must exist and can be 
matched to the lexicon major unit or sub-unit templates. If 
it is a new unit or subunit, full attribution must be 
provided. 

Noding and Polygonization 
A copy of the contact lines and existing province-

wide geological contact lines are loaded into the staging 
database (Figure 4) for detecting changes, adding new 
features, replacing or retiring updated features, and 
noding contact lines. The resulting contact lines are used 
to form bedrock polygons. 

Both the noding and polygonization can be carried 
out on the staging database side, through desktop GIS or 
batched processing services. At BCGS, most of the work 
is carried out in Manifold® System with linked in maps 
(or database tables) from the staging database. 

Data Quality Assurance 
During or after the noding and polygonization 

processes, a number of data quality assurance (QA) 
procedures are repeated to check and fix some of the 
potential data quality issues against the data quality rules. 
The QA rules and policies can be specified and stored on 
the database side to ensure the QA rules are not only 
enforced but also applied consistently. Another benefit is 
the potential to apply the QA rules automatically through 
the development of database side triggers, constraints, 
SQL scripts or other means accessing the same QA rules 
and policies stored on the database side. 

At BCGS, the current QA work is carried out in a 
hybrid approach, depending on the functions, strength and 
performance on the spatial database side, desktop GIS and 
batched processing services. There is some success in a 
batched processing service enabled by JEQL scripts 
developed in-house to deal with certain QA tasks that are 
less efficient by the off-the-shelf software tools. 

Population Attributes 
After QA work is completed and a final version of 

polygons is formed, a centroid is generated for each of the 
polygons. A centroid must be guaranteed inside the 
intended polygon, e.g., using ST_PointOnSurface, not 
ST_Centroid in PostGIS; using Centroid (Inner) in 
Manifold® System. 

Through a spatial overlay of the centroids and the 
update source bedrock polygon table stored in the 
observation database, the geological unit or unit code is 
transferred from the polygon table to the centroids stored 
in the staging database. The geological unit or unit code 
and other attributes associated with each of the centroids 
are then transferred to the new and updated polygons. 

The final population and QA checking of the 
attributes for the updated bedrock polygons are carried 
out by applying the lexicon major and sub-unit templates 
stored on the database. With a database, this is a process 
that can be fully automated with SQL scripts. 

Consistent map styles and themes are applied to the 
updated maps and new styles for new geological units or 
sub-units are added to the metadata table and shared by 
any users connecting to the same database. 

Archiving 
Both the newly updated area and the province-wide 

bedrock maps and contact lines are versioned with time 
stamps and loaded to the archive database. The maps are 
consistent and complete within a given mapping area at a 
time or stage of progression. Data stored in the archive is 
considered as the BCGS authoritative source. 

Production 
Products are derived from the authoritative data 

source maintained by the archive database. Production is 
carried out by processes designed according to either 
product specifications or requirements for applications, 
such as a map at a specific scale or with a specific mineral 
focus, for visualization or high performance query, etc. 
The production can be automated with database side 
triggers or GeoRSS on updates, a topic beyond the scope 
of this discussion. 

CONCLUSIONS 
Efficiency in maintaining geological maps can be 

achieved by leveraging recent advancement in 
interoperable (and also freely available) spatial database 
and geospatial tool, and distilling a set of best practices by 
harvesting available knowledge and expertise in 
geological mapping. 

British Columbia Geological Survey has shown 
success in prototyping a geology operational database 
environment (GODE) at a time of limited resources in 
information technology support and staffing. In-house 
expertise and the use of free and open source software, 
including PostgreSQL/PostGIS, JEQL and OpenJUMP, 
provide a cost effective solution to the GODE prototype. 

BCGS is promoting the best practices of map 
compilation among the staff mapping geologists and some 
early adoption has helped to refine and expand the list of 
best practices. Using a phased approach to implement 
GODE on corporate infrastructure, BCGS builds a fully 
functional system component into the system architecture 
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before working on the next component. Currently 
Microsoft® SQL Server® 2008 R2 has been deployed as 
the back-end corporate spatial database, accessible from 
desktop GIS Manifold® System and batched data 
processing engine JEQL. It is already in heavy use for on-
going data quality assurance and data integration. The 
next step is to implement the data quality assurance 
policies and applications, and to populate the database 
with required data layers such as the topographic base 
maps. 
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Regional Geochemical Survey: Validation and Refitting 
of Stream Sample Locations 

by Y. Cui 
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INTRODUCTION 
It is a common and challenging task to refit or adjust 

spatial data collected and geo-referenced on vintage hard 
copy topographic base maps at smaller scales, to more 
accurate digital topographic base maps at a much larger 
scale, in order to add value and advance the application of 
the spatial data. 

A prerequisite of this task often involves the 
assessment or validation of the spatial data quality, and 
the need to manage and reduce the effects of uncertainty 
and error propagation. While spatial data quality is a topic 
that has been widely researched and published (e.g., 
Goodchild, 1989; Guptill and Morrison, 1995; Shi et al., 
2002), it remains to be an issue to organizations that 
collect, integrate, disseminate and publish spatial data. 

This paper summarizes recent work at the British 
Columbia Geological Survey (BCGS) in data quality 
assurance, data refitting and the results of the refitted 
Regional Geochemical Survey (RGS) stream sample sites 
in the province of British Columbia. The goal of the 
exercise is to develop an automated, practical and re-
usable methodology based on a set of criteria and 
algorithms that computation can be performed within a 
spatial database environment. Highly uncertain sites will 
still require manual verification using high resolution 
imagery, large scale topographic maps and scanned paper 
maps. A brief summary is also provided on the 
preliminary results of adjusting the RGS stream sample 
sites from the streams on the original paper based 
National Topographic System (NTS) maps, to their 
equivalent or matching 1:20 000 scale streams from 
Terrain Resource Information Management (TRIM). The 
methodology and cases presented in this paper can be 
used as a guide to future efforts in validation of RGS 
stream sample sites. 
 
This publication is also available, free of charge, as colour 
digital files in Adobe Acrobat® PDF format from the BC 
Ministry of Forests, Mines and Lands website at 
http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCat
alogue/Fieldwork. 
 

 

The RGS program started in the 1970s and represents 
an investment of over $20 million in collecting and 
analysing over 60 000 stream sediment, moss, and lake 
sediment and water samples covering approximately 75% 
of British Columbia. The published RGS datasets contain 
analytical determinations for up to 50 elements, field 
observations and sample location information, which have 
been widely used in mineral exploration, land use 
planning, public health, and many other areas. 

While the sample site location criteria are recognized 
as some of the most important aspects for the success of 
the RGS program (Ballantyne, 1991), the positional 
accuracy or data quality for the RGS sample locations has 
not been formally established or specified, partially due to 
the fact that the RGS program started as a geochemical 
survey of stream sediments at a reconnaissance scale to 
identify regions with a high mineral potential. As such 
positional accuracy of stream sample sites was not 
deemed as a concern. 

The requirements of validating RGS data quality, 
especially positional accuracy of the stream sample 
locations, are largely driven by the applications of the 
RGS geochemical results in mineral exploration, through 
more detailed geochemical modelling and levelling.  

Catchment basins of stream geochemical survey sites 
are recognized as being more effective to advance the 
levelling, interpretation, application and presentation of 
the geochemical results (e.g., Bonham-Carter and 
Goodfellow, 1986; Bonham-Carter et al., 1987; Hawkes, 
1976; Jackaman and Matysek, 1995; Matysek and 
Jackaman,1995; Matysek and Jackaman, 1996; Sibbick, 
1994; Sleath and Fletcher, 1982). BCGS has developed a 
fully automated algorithm to delineate catchment basins 
with high performance (Cui et al., 2009). In order to use 
the most recent and detailed heights of land as the base of 
the catchment basins, it is required that RGS stream 
sample sites are validated and adjusted (or refitted) to the 
streams from the TRIM topographic base maps at a scale 
of 1:20 000. The confidence level of the RGS stream 
sample locations not only help to delineate catchment 
basins properly, but they also help to constrain the 
interpretation of the geochemical anomalies based on 
catchment basin analysis. 
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DATA SOURCES 

Regional Geochemical Survey Sample 
Location Data 

The RGS data includes more than 60 000 sample 
locations, field observations and analytical results for up 
to 50 elements for water, stream and lake sediment 
samples collected over a period of 30 years. Of the RGS 
samples, more than 52 000 were stream sediment and 
water sample sites. 

The locations of the stream sample sites were 
measured on NTS paper-based maps at a scale of 
1:250 000 and later more commonly at a scale of 
1:50 000. The NTS maps were based on the NAD27 
datum and have not been updated since publication. In 
recent years, the sample sites have been located with the 
aid of handheld GPS devices. 

The selection method of RGS stream sample sites 
was based on Garrett et al. (1980), Ballantyne (1991) and 
refined by BCGS (Lett and Jackaman, 2004; Lett, 2005), 
which includes some of the following criteria: 

• a regional survey with an average sample density 
of 1 sample per 13 square kilometres (km2); 

• active flowing first or second order streams that 
have a drainage basin area between 2 and 15 km2 
(first order streams will only generally be 
sampled for more detailed surveys, e.g., 1 
sample/5 km2); 

• within the active stream channel (subject to 
annual flooding); 

• approximately 60 metres upstream from sources 
of possible contamination; 

• approximately 60 metres upstream from a 
confluence; 

• approximately 60 metres upstream from a high 
tide mark; 

• upstream from lakes, ponds and marshes; 
• prefer streams containing abundant fine-grained 

sediment (silts and clays) that have clean flowing 
water; and 

• avoid very high or very low energy sites if 
possible. 

The NTS paper maps at a scale of 1:50 000 are used 
as the Master Sample Location Maps to plan the traverse 
of the survey area, for identifying proposed sample 
collection sites. The sample collection crews use field 
copies of the paper maps as the Traverse Field Maps to 
record the actual sample sites, which may be different 
from the proposed location. The locations are transferred 
to the Master Sample Location Maps at the end of each 
day. 

Further to potential uncertainty in identifying and 
marking the sample locations properly on the paper maps, 

the validation of the sample locations is also pertinent due 
to uncertainties from changes of geo-referencing sources 
and datum over the last 30 years and potential errors 
introduced from data transcription and transformation. 

1:50 000 NTS Maps 
While 1:250 000 NTS paper maps were used to 

locate some of RGS samples, the majority of the RGS 
samples were located on the 1:50 000 NTS maps. In 
addition to the available hard copy of paper based maps, a 
digital representation of the 1:50 000 NTS stream layer is 
used in this project. This dataset is also known as the 
“blueline” streams. In total, there are over 1 million 
stream network edges. Non-geometric attributes for this 
stream network include a hydrographical feature code, 
stream order, stream magnitude and a new watershed 
code which cross-references hydrographical features 
between the streams based on TRIM at a scale of 
1:20 000 and the NTS 1:50 000 streams. 

1:20 000 TRIM I Stream Data 
For this project, the stream network and watersheds 

derived from the 1:20 000 scale TRIM I topographic base 
are considered as the provincial standard hydrographical 
base. The stream network has full connectivity by adding 
‘skeleton’ network edges or connectors through water 
bodies such as lakes, rivers and canals digitized as 
polygons. In total, there are approximately 5 million 
stream network edges and over 3 million watershed 
polygons. Stream data collected through TRIM II and 
updates from the TRIM data exchange program are not 
included. 

The stream network’s non-geometric attributes are 
identical to the 50k stream attributes, except that they 
include a hierarchical key that was introduced to enable 
upstream and downstream queries in a non-spatial 
manner. The hierarchical keys were computed as the 
proportional distance along a stream where a child stream 
flows into its parent. 

There is a stream cross-reference table 
(XREF_20K_50K_STREAMS) that lists the 50k stream 
edges and their equivalent or matching TRIM I stream 
edges. This table is used both in locating the matching 
TRIM I streams and in assessing data quality. 

External Data Sources 
For manual verification and visual inspection, high 

resolution imagery (e.g., orthophotography) and more 
detailed topographic base map (e.g., TRIM II streams) 
from external web services are accessed as WMS layers. 

METHODOLOGY 

Principles 
This exercise is to develop a practical and re-usable 

methodology with the goal of validating the source data 
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and reducing the uncertainty in the positional accuracy of 
the sample locations. The procedures based on this 
methodology will also be used to refit or adjust the 
sample locations to the matching TRIM streams. 

Throughout the process, the positional uncertainty of 
the original sample locations is assessed, leading to the 
ranking and the development of confidence levels that can 
be assigned to each of the sites after the adjustment to 
TRIM I streams is completed. 

Processing Environment 
To ensure re-usability of the procedure, the 

prototyping, data analysis and processing are carried out 
in a fully interoperable environment consisting of desktop 
GIS, GeoWeb and Web-based batch processing services 
connecting to spatial databases that support Open 
Geospatial Consortium (OGC) Simple Features 
Specification.  

Microsoft SQL Server® 2008 and 
PostgreSQL/PostGIS are used to store and query RGS and 
hydrographic data.  

To visualize and edit specific sample sites in the 
context of the 50k NTS streams and 20k TRIM streams 
anywhere in the province, all data has to be served up 
dynamically by a bounding box to handle the huge data 
volume (over 9 million of hydrographic data alone). Two 
free and open source desktop GIS packages, OpenJUMP 
and Quantum GIS, are used to directly query and 
visualize the over 9 million records of 50k NTS streams, 
20k TRIM I streams and watersheds stored in a 
Postgres/PostGIS database. This high performance 
visualization is achieved through the use of the viewing 
and panning screen as a bounding box to dynamically and 
efficiently load the spatial data from a PostGIS databases. 

Web-based batch processing services are enabled by 
JEQL, a query tool with enhancement to SQL and full 
access to spatial functions available from JTS Topology 
Suite. 

Google Earth® and OpenJUMP are used to access 
imagery and detailed topographic base maps served up as 
WMS layers. 

PROCEDURES 
Through prototyping and testing, the refitting 

procedure is developed and refined with three major 
steps. A simplified view of the procedure is depicted in a 
flow-chart (Figure 1). 

During the test period, a set of criteria is developed to 
determine and assign confidence level to the refitting 
results (Table 1).  

Step 1: Selecting 50k Streams Nearest to the 
RGS Sample Sites 

This step is taken to determine if a given RGS sample 
site can be located on an NTS 50k stream within a 

reasonable distance or tolerance, as a way to assess the 
positional uncertainty. 

The “nearest” algorithm is used to calculate the 
distances between a given RGS sample site and the 50k 
streams within a given tolerance. The nearest stream is 
selected with the shortest distance and constrained by 
stream code and stream orders. The constraint on stream 
code is to avoid selecting stream edges that are part of the 
stream network but not appropriate as sample locations, 
e.g., a construction line through a lake. The constraint on 
stream orders is to ensure that the selected 50k stream is 
appropriate with a stream order specified by the RGS 
sampling guide (i.e., first or second order), and matching 
the actual stream order recorded in the RGS field data.  

A tolerance of 300 metres is used arbitrarily after 
consideration of uncertainties in estimating coordinates 
from a paper map at a scale of 1:50 000, potential 
positional drift due to a conversion between NAD27 to 
NAD83, and rounding errors. To put it in perspective, the 
size of a pencil circle marked as a sample site on the 50k 
paper maps is 150 metres. The tolerance can and should 
be adjusted so a practical number of sites deemed as 
highly uncertain can be manually inspected. 

Step 2: Selecting TRIM I Streams Nearest to 
the RGS Sample Sites 

This step consists of three different passes to select 
the matching or nearest TRIM I stream for a given RGS 
sample site. 

In the first pass, the 50k streams identified for the 
RGS sample sites from Step 1 are used to select their 
equivalent or matching TRIM I streams through the 
stream cross-reference table (XREF_20K_50K_ 
STREAMS). 

In the second pass, a query is executed to select the 
TRIM I streams for the stream sample sites that are on or 
near the 50k streams as identified from Step 1 but they do 
not have matching or equivalent TRIM I streams based on 
the cross-reference table (XREF_20K_50K_STREAMS).  

In the third pass, a query is performed to locate 
TRIM I streams within a radius of 150 metres and the 
nearest stream is selected for the stream sample sites not 
near any 50k streams within 300 metres. 

Visual inspection is required for stream sample sites 
that are not near any 50k stream within 300 metres or near 
any TRIM I stream within 150 metres. Visual inspection 
is carried out on 50k paper maps (if available), TRIM II 
stream and orthophotography as WMS layers. 

In the above three passes, the selection of TRIM I 
streams is constrained by the TRIM I stream order and the 
stream order recorded in the RGS field data. The TRIM I 
stream order must be the same or slightly higher than the 
matched 50k stream orders or the stream orders recorded 
in the RGS field data, due to the differences between 
mapping at scales of 1:20 000 and 1:50 000. Manual 
review is required if the stream orders are not equivalent 
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Figure 1. A simplified flow-chart of validation and refitting process. 

 
between the selected TRIM I streams and the 50k streams 
or the RGS field data. 

Some other constraints are placed on the TRIM I 
stream data to avoid selecting stream edges that are 
deemed not appropriate as the sample locations, e.g., a 
construction line linking the main flow to a side channel. 
This is achieved by filtering them out based on spatial and 
non-spatial attributes. 

The positional uncertainty of a site is assessed based 
on its distances to the nearest 50k stream and TRIM 
stream, if there is a match between the nearest 50k stream 
and nearest TRIM stream, and if the TRIM stream order 
matches the stream order recorded in the RGS field data.  

The selected TRIM I streams are tested if they are 
located in the same 20k watersheds derived from TRIM I 
that contain the original RGS stream sample sites. This is 
carried out by spatial overlay between the 20k watershed 
polygons and the original RGS stream sample sites as 
points and the matched TRIM I streams as drainage 
lineStrings. 

For a given sample site if there is no matching TRIM 
I stream, it is visually reviewed on the NTS 50k paper 
maps that were used in the field (if available) and then 
verified with the aid of TRIM II streams and high 
resolution images. 
 

172 British Columbia Geological Survey



Table 1. Criteria for confidence level of validation and refitting results. 
 

Confidence 
Level Criteria 

5 • Located on or near a 50k stream within 150 metres 
• A match between the nearest 50k and TRIM stream 
• Adjusted to the nearest TRIM stream within 150 metres with an 

equivalent stream order as the one from the RGS field data 
• Same resulting catchment basin after the adjustment of sample 

location 
4 • Located on or near a 50k stream within 200 metres 

• A match between the nearest 50k stream and TRIM stream 
• Adjusted to a TRIM stream that is not the nearest but still within 200 

metres with an equivalent stream order as the one from the RGS field 
data 

• Same resulting catchment basin after the adjustment of sample 
location or different catchment basin but the adjustment distance is less 
than 150 metres. 

3 • Located on or near a 50k stream within 300 metres 
• No match between the nearest 50k stream and TRIM stream 
• Adjusted to a TRIM stream that may not be the nearest but still within 

150 metres with the same stream order as or slightly higher than the 
stream order from the RGS field data 

• Different resulting catchment basin after the adjustment of sample 
location  

2 • Located on or near a 50k stream over 300 metres 
• Not matched between the nearest 50k stream and TRIM stream 
• Adjusted to a TRIM stream over 150 metres 
• Different resulting catchment basin after the adjustment of the sample 

location to TRIM stream 
1 • Location highly uncertain even after review and verification on other 

data sources 
• Adjustment distance is greater than 300 metres 
• Different resulting catchment basin after the adjustment of sample 

location 
0 • No 50k or TRIM streams within 300 metres 

• Manual inspection unable to resolve a reasonable location 
• Adjustment is not applied: site left at its original location 

  
 
Step 3: Adjusting RGS Sample Sites to the 
Matched TRIM Streams 

The automated process to adjust or “snap” the 
original locations of the RGS stream sample sites to their 
matched TRIM I streams is carried out in a spatial 
database. When a matched TRIM I stream is identified as 
the best candidate for a given stream sample site, the 
stream is selected from the database. The lineString of the 
selected stream is trimmed for 1 metre at the ends, to 
prevent potentially snapping a sample site to a confluence 
with multiple up stream edges, thus ambiguity in 
upstream query and in conflict with the RGS guide of 
selecting sample sites 60 metres above a confluence. The 
adjustment of the stream sample sites to the trimmed 
TRIM I streams is carried out with the nearest algorithm 
that is executed in a spatial database. 

Manual adjustment is carried out in a desktop GIS for 
stream sample sites that are located on TRIM II streams  

as identified by visual inspection or manual checking in 
Step 2. 

Step 4: Quality Assurance and Manual 
Fixing 

The final step is to sort the results based on their 
confidence level and manually check the results with the 
assistance of TRIM II streams, digital elevation models, 
high resolution orthophotography and other sources of 
information. Manual inspection and correction are carried 
out where results are considered incorrect or at a low 
confidence level. 

DISCUSSIONS OF RESULTS 

Summary of the Original RGS Stream 
Sample Sites 

Stream order for a sample site is useful in resolving 
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A Comparison of Several Commercially Available Methods for the 
Geochemical Analysis of Rare Earth, Rare Metal and High Field Strength 

Elements in Geological Samples 

by R.E. Lett and K. Paterson1 

 
KEYWORDS: REE, RM, HFES, geochemical analysis, 
gold deposits 

INTRODUCTION 
Rare earth elements (REE: La, Ce, Pr, Nd, Sm, Eu, 

Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu), rare metals (RM: Sc, 
Nb, Ta) and high field strength elements (HFSE: Y, Zr, 
Hf) are important components in a wide range of 
industries such as the manufacture of computers, wind 
turbines and hybrid cars. They are also used extensively 
in geoscience research as a geochemical tool for 
discriminating different rock types or petrotectonic 
environment. Industry and geoscience research need an 
accurate estimation of REE, RM and HFSE content of 
rock and ore samples to satisfy both economic and 
scientific credibility. Fortunately, today, there are a 
number of analytical methods that satisfy this 
requirement. Some of the techniques, such as x-ray 
fluorescence (XRF) described by Potts and Webb, 1992, 
and instrumental neutron activation (INAA) described by 
Hoffman, 1992, and El-Taher, 2006 are non-destructive 
and are considered to produce an accurate determination 
of REE, RM and HFSE values. Other methods such as a 
fusion, sinter or acid digestion (Longerich et al., 1990; 
Hall and Pelchat, 1990, Bayon et al., 2009) are, by 
contrast, destructive and generate elemental values that 
range from near total to a partial estimate depending on 
the ability of the fusion or the digestion technique to 
completely release an element from rock-forming 
minerals in the sample. A reliable estimation of a rare 
earth-rare metal concentration before an economic 
resource requires a method to be accurate and precise, but 
not necessarily to be particularly sensitive because 
economic grades greatly exceed detection limits. 
However, high accuracy, good precision and low 
detection limits are all desirable criteria for a technique 
that will be used for lithogeochemical research.  

Hall and Plant (1992) carried out a comprehensive 
 
1 Artisanal Gold Council, Victoria, BC 
This publication is also available, free of charge, as colour 
digital files in Adobe Acrobat® PDF format from the BC 
Ministry of Forests, Mines and Lands website at 
http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCat
alogue/Fieldwork. 

and detailed study of the accuracy and precision of RE 
and HFS elements obtainable from XRF, INAA, lithium 
metaborate fusion - inductively coupled plasma mass 
spectrometry (ICPMS), and 4 acid (hydrofluoric-nitric-
perchloric-hydrochloric) digestion-ICPMS analysis of 
bedrock samples and 8 reference standards. The aim of 
their study was to assess the reliability of REE and HFSE 
data produced by commercial laboratories. This paper 
describes a similar study using commercial laboratory 
analysis of bedrock samples from the Spanish Mountain 
Au deposit and the Galore Creek porphyry Cu-Au deposit 
in British Columbia and a reference standard, for REE, 
RM and HFSE elements by INAA, sodium peroxide 
sinter and inductively coupled plasma mass spectrometry 
(sinter-ICPMS), lithium metaborate-tetraborate fusion–
inductively coupled plasma mass spectrometry (LMB–
ICPMS), 4 acid digestion-ICPMS, XRF and AR 
(hydrochloric-nitric acid) digestion–ICPMS. 

ANALYTICAL METHODS 
All samples were jaw crushed in a Rhino TM™ jaw 

crusher, split into a subsample with a Jones splitter and a 
100-150 gram subsample milled to 95 percent – 150 mesh 
in a Rocklabs™ ring and puck mill in the laboratory of the 
British Columbia Geological Survey, Victoria. Milled 
subsamples and quality control samples (sample 
duplicates, milled quartz blanks, a CANMET reference 
standard) were analyzed for REE, HFSE and RM at 
several laboratories by the following methods: 

1) XRF analysis: La, Y, Nb and Zr were determined 
by x-ray fluorescence using a lithium 
metaborate-tetraborate pressed pellet (1 g 
sample: 5 g lithium metaborate-tetraborate) and 
Siemens model 3000 x-ray fluorescence 
spectrometer at Global Discovery Laboratories 
(now Acme Analytical Laboratories), Vancouver 
British Columbia. 

2) INAA analysis: La, Ce, Nd, Sm, Eu, Tb, Yb, Lu, 
Sc, Ta, Cs were determined by irradiating 1-2 g 
of the milled rock sample for 20 minutes in a 
neutron flux (1011 neutrons/cm2/second) and 
then, after a decay period of approximately 1 
week, measuring the gamma-ray emissions from 
the sample with a gamma-ray spectrometer 
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equipped with a high resolution, coaxial 
germanium detector (Hoffman, 1992). 

3)  Sinter-ICPMS analysis: La, Ce, Pr, Nd, Sm, Eu, 
Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y, Nb, Zr, Ta 
and Hf were determined by sintering 0.2 g of 
milled rock with 0.8 g of sodium peroxide for 1 
hour at 480°C in a closed nickel crucible 
(Longerich et al., 1990). After dissolution of the 
sinter cake in 8M nitric acid the solution was 
analyzed for elements using an HP 4500 plus 
ICPMS at the Department of Earth Sciences, 
Memorial University, Newfoundland. 

4)  LMB-ICPMS analysis: La, Ce, Pr, Nd, Sm, Eu, 
Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Cs, Y, Sc, Ta, 
Nb, Zr were determined by fusing 0.2 g of milled 
rock with lithium metaborate-lithium tetraborate 
flux at 980°C in a graphite crucible, dissolving 
the fused bead with weak hydrofluoric and 
hydrochloric acids and analyzing the solution by 
ICPMS at Acme Analytical Laboratories, 
Vancouver. 

5) 4 acid digestion-ICPMS: La, Ce, Y, Hf, Nb, Zr, 
Ta, Sc were determined by digesting 0.5 g of 
milled sample in Teflon test tubes with HF-
HClO4-HNO3-HCl acids and ICPMS analysis of 
the solutions at Acme Analytical Laboratories, 
Vancouver, British Columbia. 

6) AR-ICPMS: La, Sc, were determined by 
digestion in HNO3-HCl-H2O and ICPMS 
analysis at Acme Analytical Laboratories, 
Vancouver, British Columbia. 

Table 1 lists elements determined by methods 1 to 6 
and detection limits reported by the laboratories for each 
element. 

ORIGIN OF THE SAMPLES 
Two groups of samples were used in the study. One 

group of 60 bedrock samples and diamond drill core 
samples were collected from the Spanish Mountain Au 
deposit and analysed as part of a University of Victoria 
B.Sc. Honours Thesis project (Paterson, 2009). Results of 
the project are also described by Paterson et al. (2009). 
All of the samples from Spanish Mountain were analysed 
for major, minor and trace elements by INAA, 4-acid - 
ICPMS, AR-ICPMS and by XRF. Selected samples were 
also analyzed for REEs by sinter-ICPMS and by LMB-
ICPMS. Figure 1 shows the location of the Spanish 
Mountain and Galore Creek deposits and Figure 2 shows 
the distribution of mainly argillite and greywacke samples 
collected from the Spanish Mountain property. A second 
group of 27 volcanic and mineralized intrusive bedrock 
samples were collected by Logan, 2005, during a previous 
study of Galore Creek Cu-Au deposit.  
 
 

 
Figure 1. Locations of the Spanish Mountain Au and Galore 
Creek Cu-Au deposits. 

 
Figure 2. Location of bedrock and diamond-drill core samples 
collected by Paterson (2009), from the Spanish Mountain 
property. 

ACCURACY AND PRECISION 
As part of the British Columbia Geological Survey 

quality control program, the CANMET diorite gneiss 
standard SY4 (Bowman, 1995) is analysed routinely for 
REE, RM and HFSE by XRF, INAA, sinter-ICPMS, 
LMB-ICPMS and 4 acid-ICPMS. While the number of 
SY4 repeat determinations by each method is small (4-6 
analyses), the analytical results allow a direct comparison 
of accuracy and precision for elements by different 
methods. For example, SY4 is analysed for La, Ce, Hf 
and Ta by all methods except AR – ICPMS. Figure 3 
compares the mean value for La in SY4 by sinter-ICPMS, 
INAA, LMB-ICPMS and 4 acid-ICPMS, and the ±2 
standard deviation (2 σ) range from multiple analyses, 
with the La content in SY4 (58 ppm) recommended by 
Bowman (1995). Mean La values by sinter-ICPMS, 
LMB-ICPMS  
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Table 1. Instrumental detection limits for elements described in this study by XRF, INAA, sinter-ICPMS, LMB-ICPMS, 4 
acid-iCPMS and AR-ICPMS. Elements are grouped into REE, RM and HFSE. 
 

 
 

 
Figure 3. Determinations of La in SY4 by sinter-ICPMS, INAA, 
LMB-ICPMS and 4 acid - ICPMS. The mean value is indicated by 
a diamond symbol. The ±2 standard deviation range from the 
repeat analyses is shown by the triangle symbols and the 
recommended average La content (58 ppm) in SY4 (Bowman, 
1995) is a broken line. 

and INAA are within ±3 ppm of the recommended value 
and the ±2 standard deviation range is 4.5 ppm. However, 
the mean La value by 4 acid-ICPMS is 20 ppm lower than 
the recommended value and the ±2 standard deviation 
range is 14 ppm indicating that not all of the La is 
recovered by acid digestion from the standard matrix and 
there is a greater variation in values. 

Figure 4 similarly compares the mean Ce value ±2 
standard deviations in CANMET SY4 by the same four 
analytical methods with the recommended value for Ce in 
SY4 (122 ppm; Bowman, 1995). Cerium by sinter-
ICPMS, INAA and LMB-ICPMS is within ±13 ppm of 
the recommended values for SY4 (122 ppm) with the 
INAA Ce having the largest variation. The Ce mean by 4 
acid digestion ICPMS is much lower than by the other 
methods. In general, the precision estimate from the mean 
±2 standard deviation range decreases in order from 
sinter-ICPMS > INAA> LMB-ICPMS => 4 acid digestion 
ICPMS. 

Element XRF AR ICPMS 4 ACID ICPMS INAA Sinter-ICPMS LMB-ICPMS
Units ppm ppm ppm ppm ppm ppm
REE
La 3 0.5 0.1 0.5 0.03 0.1
Ce 1 3 0.14 0.1
Pr 0.02 0.02
Nd 5 0.03 0.3
Sm 0.1 0.8 0.05
Eu 0.2 0.04 0.02
Gd 0.07 0.05
Tb 0.2 0.01 0.01
Dy 0.06 0.05
Ho 0.01 0.02
Er 0.06 0.03
Tm 0.01 0.01
Yb 0.2 0.08 0.05
Lu 0.05 0.01 0.01
RM
Cs 1 0.1
Sc 0.1 1 0.1
Ta 0.1 0.5 0.08 0.1

HFSE
Hf 0.1 1 0.09 0.1
Nb 3 0.1 0.08 0.1
Y 3 0.1 0.04 0.1
Zr 3 0.1 0.07 0.1

0.0

10.0

20.0

30.0

40.0

50.0

60.0

70.0

ppm

Sinter
LMBINAA

4 Acid

SY4 - 58 ppm

Lanthanum

Geological Fieldwork 2010, Paper 2011-1 183



Fi
LM
th
(B

an
Fi
w
va
va
fr
< 
SY
re
m
th
IC

of
th
co
th
pr
Zr
re
IC
By
th
th
m
th
de
ad
de
ac

4 
si
H
hi
st
ot
pp
fo

gure 4. Determ
MB-ICPMS 4 ac
e recommende

Bowman, 1995) is

Precision a
nalyses of SY
igures 5, 6, 7 

whereas Zr, Y 
alues are within
alue (10.6 ppm
rom the standar

LMB-ICPMS
Y4 by LMB
ecommended v

much lower (Fig
he +/- 2 standa
CPMS> LMB>

Zirconium 
f SY4 is simila
he non destruct
omparison of t
he recommende
recise and accu
r mean by 

ecommended v
CPMS is 42 p
y contrast to L

he 4 acid diges
he standard. A

methods for Zr 
he analytical er
etection limit. 
dvantage over 
etection limit (
ccuracy at a low

Unlike othe
determined by
milar and is 

However, the sin
igher than th
tandard deviati
ther methods, m
pm Nb-XRF 
orming mineral

inations of Ce i
cid-ICPMS. symb
d average Ce 
s a broken line. 

and accuracy f
Y4 by multiple

and 8. Only H
and Nb are m
n 1.2 ppm of th

m) and the dep
rd are in the o

S < 4 acid-ICP
B-ICPMS is 
value and the 
gure 5). Hafniu
ard deviation r
> INAA> 4 acid
precision and 

ar to Hf except 
tive method of 
the mean Zr v
ed value (517 p
urate of the fo
sinter-ICPMS

value whereas
ppm higher tha
LMB-ICPMS 
st-ICPMS only
Although XRF
at a concentra

rror may be lar
Sinter-ICPMS
XRF in that th

(0.1 ppm) and 
wer concentrat
er REEs and H
y XRF, LMB 
within 1 ppm

nter-ICPMS N
he recommend
on range for N
most likely ref
detection lim

ls zircon is kno

n SY4 by sinter
bols are the sam

content (122 

for Hf, Zr, Nb
e methods are 
Hf is determin

measured by XR
he CANMET r
parture of the 

order INAA < 
PMS Hf. The H

clearly high
4 acid-ICPMS

um precision e
range is in the
d-ICPMS.  
accuracy from
that XRF repl

f analysis (Figu
value by XRF 
ppm) this is cle
our analytical m
 is 69 ppm
s the Zr mea
an the recomm
and sinter-ICP
y recovers 48 
F is most acc
ation similar to
rger close to th
S and LMB-IC
hey can detect 
consequently, 
tion.  

HFSEs, the Nb 
and 4 acid-IC

m of 13 ppm
Nb mean is mor
ded value. Th
Nb by XRF, co
flects a value 

mit. Among c
own to be a hos

r-ICPMS, INAA, 
me as Figure 3. 

ppm) in SY4 

b and Y from 
compared in 

ned by INAA, 
RF. Mean Hf 
recommended 

mean values 
sinter-ICPMS 
Hf content in 

her than the 
S Hf value is 
stimated from 

e order sinter-

m the analysis 
aces INAA as 

ure 6). From a 
(513 ppm) to 
early the most 
methods. The 

m above the 
an by LMB-

mended value. 
PMS analysis,
ppm Zr from 

curate of the 
o the standard 
he XRF 3 ppm 
PMS have an 
Zr to a lower 
have a higher 

content in SY 
CPMS is very 
m (Figure 7).
re than 3 ppm 
he larger ±2 
mpared to the 
close to the 3

common rock
st for Nb, but 

Figure 5.
LMB-ICPM
as Figure 3
SY4 (Bowm

Figure 6.
LMB-ICPM
as Figure 3
SY4 (Bowm

Figure 7.
LMB-ICPM
as Figure 
SY4 (Bowm

the simil
much low
(e.g. Fe-T
accuracy 
XRF> LM

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

ppm

0.0

100.0

200.0

300.0

400.0

500.0

600.0

700.0

800.0

ppm

0.0

5.0

10.0

15.0

20.0

25.0

ppm

Determinations 
MS and 4 acid di
3. The recomme
man, 1995) is a b

Determinations 
MS and 4 acid di
3. The recomme
man, 1995) is a b

Determinations 
MS and 4 acid di

3. The recomme
man, 1995) is a b

ar Nb mean b
wer Zr mean su
Ti oxides) host
and precision 

MB-ICPMS> s

Sinter

I

Sinter

Sinter

of Hf in SY4 b
gestion-ICPMS. 

ended average H
broken line.  

of Zr in SY4 b
gestion-ICPMS. 

ended average Z
broken line.  

of Nb in SY4 b
gestion-ICPMS. 
ended average N
broken line.  

by 4 acid-ICP
uggests other r
ts the Nb. Figu
for Y in SY4 

sinter-ICPMS>

Hafniu

LMB
INAA

LMBXRF

Zirconi

LMB

XRF

by sinter-ICPMS,
Symbols are the

Hf content (10.6 p

by sinter-ICPMS
Symbols are the

Zr (517 ppm) con

by sinter-ICPMS
Symbols are the

Nb content (13 p

PMS compared
rock forming m
ure 8 shows th
follows the or

> 4 acid-ICPMS

um

B

4 Acid

SY4 - 10.6 ppm

B

4 Acid

SY4 - 517 ppm

ium

4 Acid

SY4 -
13 pp

Niobium

 
, INAA, 
e same 
ppm) in 

 
S, XRF, 
e same 
ntent in 

 
S, XRF, 
e same 
ppm) in 

d to a 
mineral 
hat the 
rder of 
S.  

m

-
pm

184 British Columbia Geological Survey



 
Figure 8. Determinations of Y in SY4 by sinter-ICPMS, XRF, 
LMB-ICPMS and 4 acid digestion-ICPMs. Symbols are the same 
as Figure 3. The recommended average Y content (119 ppm) in 
SY4 (Bowman, 1995) is a broken line.  

Mean values and ±2 standard deviation ranges of Eu 
and Lu (typical of the heavier REEs) in SY4 by sinter-
ICPMS, INAA and LMB-ICPMS are shown in Figures 9 
and 10. Both elements display similar patterns 

 
Figure 9. Determinations of Eu in SY4 by sinter-ICPMS, INAA 
and LMB-ICPMS. Symbols are the same as Figure 3. The 
recommended average Eu content (2 ppm) in SY4 (Bowman, 
1995) is a broken line. 

 
Figure 10. Determinations of Lu in SY4 by sinter-ICPMS, INAA 
and LMB-ICPMS. Symbols are the same as Figure 3. The 
recommended average Lu content (2.1 ppm) in SY4 (Bowman, 
1995) is a broken line. 

with mean values close to those recommended (Eu = 2 
ppm, Lu = 2.1 ppm). The wider +/- 2 standard deviation 
range for INAA Eu and Lu could reflect values closer to 
the INAA detection limit compared to the sinter and 
LMB-ICPMS detection limits. 

COMPARISON OF PARTIAL AND NEAR 
TOTAL METHODS FOR ANALYSIS  

Aqua regia (HCl-HNO3) or a similar mineral acid 
reagent (e.g. HCl-HNO3-H2O) is commonly used to 
dissolve soil, drainage sediment and rock samples before 
analysis by ICPMS for a range of ore indicator, 
mineralization pathfinder and other trace elements. Rare-
earth element analyses produced by such acid digestions 
can be useful for outlining areas of mineralized bedrock. 
However, the determinations must be used cautiously if 
REE data are applied to geological research because 
accurate element values are essential for a confident 
interpretation of lithogeochemical results. There is often 
only a partial REE recovery by the acid digest from the 
different rock-forming minerals in the sample, limiting 
the usefulness of the results. An example of variable REE 
release is illustrated in Figure 11 by a scatter graph of La 
determined by AR-ICPMS (partial recovery) plotted 
against La determined by INAA (near-total estimate) 
from analyses of the rock samples from Spanish 
Mountain. A poor correlation between AR-ICPMS La and 
INAA La (correlation coefficient, R2 = 0.422) and the 
analyses are scattered along a trend line of increasing La 
concentration. The scatter of values and the 0.3326 
regression coefficient suggest that a varying, partial 
amount of the INAA determined La is liberated from 
individual samples by the AR-ICPMS acid digestion.  

The stronger 4 acid digestion improves the La 
recovery from rock samples. For example, in Figure 12, 
La determined by the 4 acid digestion is plotted against 
La determined by INAA for the same samples. The values 
are more closely grouped along a common trend and the 

 
Figure 11. Scatter plot for La determined by AR-ICPMS and INAA 
in rock samples from Spanish Mountain. A least mean squares 
trend line, a regression equation and the correlation coefficient 
are shown on the graph and the trend line for a 1:1 correlation. 
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Figure 12. Scatter plot for La determined by 4 acid - ICPMS and 
INAA in rock samples from Spanish Mountain. A least mean 
squares trend line, a regression equation and the correlation 
coefficient are shown on the graph and the trend line for a 1:1 
correlation.  

correlation coefficient for the two populations is now R2 = 
0.88. However, the coefficient of 0.746 for the La-INAA 
– La 4 acid-ICPMS regression equation suggests that the 
acid still fails to release all of the La from samples. 
Although there are only 9 samples from Spanish 
Mountain analysed for La by INAA and LMB-ICPMS the 
correlation between the two populations is high 
(coefficient of R2 = 0.996) with negligible scatter along 
the regression line (Figure 13). The coefficient of 0.9668 
for the La-LMB-La-INAA regression equation indicates 
that virtually all of the La is determined by the two 
methods from the same samples.  

While the rock samples from Galore Creek have only 
been analysed for REE elements by sinter-ICPMS and 
LMB-ICPMS the larger number of samples (29) allows 
comparison of results by the two methods over a different 
concentration range and in different rock types. Scatter 
graphs for La by sinter-ICPMS vs. La by LMB-ICPMS; 
Eu by sinter-ICPMS vs. Eu by LMB-ICPMS and for Lu  

 
Figure 13. Scatter plot for La determined by LMB-ICPMS and 
INAA in the 9 rock samples from Spanish Mountain. A least mean 
squares trend line, a regression equation and the correlation 
coefficient are shown on the graph and the trend line for a 1:1 
correlation.  

by sinter-ICPMS vs. Lu by LMB-ICPMS in Figures 14, 
15 and 16 all show that values cluster close to a trend line. 
Correlation coefficients are close to 1 and, similarly, the 
coefficients for the LMB-ICPMS – sinter-ICPMS 
equation are also close to 1. 

 
Figure 14. Scatter plot of La by LMB-ICPMS and by sinter-ICPMS 
in 29 rock samples from Galore Creek.  

 
Figure 15. Scatter plot of Eu by LMB-ICPMS and by sinter-
ICPMS in 29 rock samples from Galore Creek.  

 
Figure 16. Scatter plot of Lu by LMB-ICPMS and by sinter-ICPMS 
in 29 rock samples from Galore Creek.  
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A practical application of comparing REE analyses 
using different digestions and sinter-ICPMS/fusion-
ICPMS methods is to select the most suitable technique in 
terms of sensitivity, accuracy and economy for producing 
the data needed to create chondrite-normalized and other 
discrimination diagrams. Figure 17 is an example of a 
REE diagram from two argillite samples from the Spanish 
Mountain suite analysed by LMB-ICPMS and INAA. The 
only obvious divergence along the common REE plot for 
Argillite 1 is for Ce where the chondrite-normalized 
INAA Ce value is noticeably higher than LMB-ICPMS 
Ce value. Argillite 2 has much lower REE content and 
there is a greater difference between the INAA and LMB-
ICPMS plots largely due to the Eu and Tb levels below 
the INAA detection limit. This emphasizes a requirement 
that an REE analytical method must have a detection limit 
able to cover a concentration range anticipated in all rock 
types.  

A second comparison of chondrite-normalized values 
for a wacke and argillite from Spanish Mountain is shown 
in Figure 18. Plots for argillite and a wacke samples by 
sinter-ICPMS and LMB-ICPMS show a marked 
difference in the REE signature of the two rock types that 

 
Figure 17. Chondrite-normalized (Nakamura, 1974) REE plot of 
two argillite samples from Spanish Mountain analysed by LMB 
fusion-ICPMS and INAA.  

 
Figure 18. Log transformed chondrite-normalized (Nakamura, 
1974) REE plot of argillite and wacke samples from Spanish 
Mountain analysed by LMB fusion-ICPMS and sinter-ICPMS. 

possibly reflects a difference in the geochemistry of 
continental derive sediment (wacke) and island arc 
derived sediment (argillite). However, the two methods 
do produce very similar REE plots for each rock type. 
The only significant difference between the plots is for 
the heavier REEs, (Tm, Yb, Lu) in the argillite sample. A 
third example of sinter-ICPMS and LMB-ICPMS REE 
analysis (Figure 19) shows chondrite-normalized 
diagrams for three rock samples from Galore Creek. The 
two biotite-monzonite dikes show increasing light REE 
enrichment compared to the basalt and the only noticeable 
difference between the plots for the heavier REEs in the 
dike samples.  

 
Figure 19. Log transformed chondrite-normalized (Nakamura, 
1974) REE plot of a basalt and two bioite-monzonite dike samples 
from Galore Creek analysed by LMB fusion-ICPMS and sinter-
ICPMS.  

CONCLUSIONS 
A study of La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, 

Er, Tm, Yb, Lu, Nb, Ta, Y, Zr, Hf accuracy and precision 
determined by the analysis of the CANMET diorite gneiss 
standard SY4 and bedrock samples from two mineral 
deposits by several commercially available methods has 
revealed that: 

• Sodium peroxide sinter-ICPMS, LMB fusion-
ICPMS, INAA and XRF are preferred methods 
for geochemical research because they produce 
the most accurate and precise data. Both 4 acid-
ICPMS and AR-ICPMS analyses, while 
sufficiently precise for mineral exploration 
purposes, are inaccurate due to the inability of 
the acid to fully digest all rock-forming minerals 
and release all of the element in a sample.  

• X-ray fluorescence is the most accurate 
technique for Zr, Hf, Y and Nb, but has a 
disadvantage of higher detection limits compared 
to sinter-ICPM and LMB fusion-ICPMS 
analysis. Accuracy and precision of lithium 
metaborate-tetraborate fusion-ICPMS 
approaches that of XRF and elements can be 
determined to lower detection limits. Mean 
values for Zr and Hf in the standard SY4 by 4 
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acid digest-ICPMS are much lower than the 
recommended value indicating that there is only 
a partial recovery of these elements from the 
standard.  

• Instrumental neutron activation produces 
sufficiently accurate data for creating chondrite- 
normalized REE plots, but the high detection 
limits for some elements (Eu, Tb) are 
problematic for samples with low REE 
concentrations.  

• Sodium peroxide sinter-ICPMS and LMB 
fusion-ICPMS analysis generate very similar 
chondrite-normalized REE profiles in contrasting 
rock types for all elements except for Ce.  

• Analysis of other standard reference materials by 
the same methods would be a valuable 
complement to this study so that accuracy and 
precision of REE, RM and HFES elements can 
be determined over a wider concentration range.  
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Carbonate-hosted, Nonsulphide Zn–Pb (supergene) 
Mineral Deposit Profile B09 

by S. Paradis1 and G.J. Simandl 

 
IDENTIFICATION 

SYNONYMS 
Zinc-oxides, Calamines, Galman 

COMMODITIES (BYPRODUCTS) 
Zn, Pb (Ag, Cu, barite, Cd) 

EXAMPLES 
(British Columbia - Canada/International): Redbird 
(MINFILE 082FSW024), Lomond (MINFILE 
082FSW018), Reeves MacDonald (MINFILE 
082FSW026), Annex (MINFILE 082FSW219), Caviar 
(MINFILE 082FSW060), HB (MINFILE 082FSW004), 
Oxide (MINFILE 082FSW022), Cariboo Zinc (which 
comprises Canopener, DeBasher (MINFILE 093A 050), 
Flipper Creek, Dolomite Flats, Main (MINFILE 093A 
065), Gunn, and Que (MINFILE 093A 062); Leadville 
(Colorado, USA), Balmat (New York, USA), Sierra 
Mojada, Mapimi (Mexico), Accha, Mina Grande (Peru), 
Ariense (Brazil), Tynagh, Silvermines and Galmoy 
(Ireland), La Calamine (Belgium), Reocin (Spain), 
Silesia-Cracow district (Poland), San Giovanni (Italy), 
Lavrion (Greece), Touissit (Morocco), Um Gheig (Egypt), 
Zamanti district (Turkey), Jabali (Yemen), Angouran, 
Mehdiabad, Irankuh, Kuh-e-Surmeh (Iran), Shaimerden 
(Kazakhstan), Skorpion (Namibia), Padaeng (Thailand), 
Long Keng (Myanmar), Cho Dien (Vietnam), Jinding, 
Qiandong Shen Shen (China), Magellan (Australia). 

GEOLOGICAL CHARACTERISTICS 

CAPSULE DESCRIPTION 

Nonsulphide deposits are commonly hosted in 
carbonate rocks. The main minerals are hemimorphite, 
smithsonite, hydrozincite, cerussite, Fe-oxyhydroxides 
(including goethite), and hematite. The deposits are 
broadly divided into three subtypes: the more common – 
1) direct replacement and 2) wallrock replacement; and 
the less common – 3) residual and karst-fill.  Direct  
 
1 Geological Survey of Canada, Sidney, BC 
This publication is also available, free of charge, as colour 
digital files in Adobe Acrobat® PDF format from the BC 
Ministry of Forests, Mines and Lands website at 
http://www.empr.gov.bc.ca/Mining/Geoscience/PublicationsCat
alogue/Fieldwork. 

replacement deposits have similar shape as the sulphide 
protore from which they are derived and may contain 
vestiges of sulphide mineralization. Wallrock replacement 
deposits are located at various distances from the protore, 
have simpler mineralogy and higher Zn/Pb ratio than 
direct replacement deposits, and occur as irregular masses 
encrustations, tabular bodies, and open-space fillings. 
Residual and karst-fill deposits form generally small, high 
grade, irregular bodies of partly consolidated material that 
may have detrital component. Some nonsulphide deposits 
may share characteristics of more than one of these 
subtypes.  

TECTONIC SETTING(S) 

Supergene nonsulphide deposits derived from 
Mississippi Valley-type (MVT) and Irish-type deposits 
are located in carbonate platform settings, typically in 
relatively undeformed orogenic foreland rocks, commonly 
in foreland thrust belts inboard of clastic rock-dominated 
passive margin sequences, and in continental rift systems. 
Those derived from sedimentary exhalative (SEDEX) 
deposits are located in intracratonic or continental margin 
environments in fault-controlled basins and troughs. 
Volcanic-hosted massive sulphide (VHMS)-derived 
supergene nonsulphide deposits are emplaced under 
extensional crustal regime, such as oceanic or back-arc 
spreading ridges, continental rifts, back-arc basins, 
oceanic ridges close to continental margins, and rift 
environment within, or perhaps behind, an oceanic or 
continental margin arc. 

DEPOSITIONAL ENVIRONMENT / GEOLOGICAL 
SETTING 

Hostrocks of supergene nonsulphide Zn-Pb deposits 
are mostly deposited in platform successions within 
shallow and deep water environments. The nonsulphide 
deposits are found in both arid and tropical environments; 
however, many of the best supergene nonsulphide 
deposits recognized to date formed in semi-arid 
environments. Some are found in cold, wet climates at 
higher latitudes. 

AGE OF MINERALIZATION 
Ages of nonsulphide mineralization are commonly 

poorly constrained. Ore formation coincides with or 
postdates the exhumation of the hostrocks and generally 
postdates the main tectono-metamorphic event. Most of 
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Figure 4. Microphotographs (polarised light) of A) concentric 
aggregates of radiating crystals of hemimorphite replacing the 
carbonate groundmass and tabular crystals of hopeite filling up 
crosscutting veinlets, and B) aggregates of tabular crystals of 
hemimorphite lining cavities. 

the nonsulphide minerals to form “mixed ores”. The 
primary sulphides may contain anglesite-coated nodules 
of galena and remnants of sphalerite. Chalcocite, 
malachite, and azurite are present in some deposits. 

GANGUE MINERALOGY (Principal and 
subordinate) 

Carbonates (dolomite, calcite, aragonite), hematite, 
goethite, other Fe-oxyhydroxides, gypsum, minor quartz. 

ALTERATION MINERALOGY 
Coarse crystalline dolomite spatially associated with 

MVT-type protore may survive in proximity to 
nonsulphide deposits and contrast with regional finely 
crystalline dolostone. Local alteration may also include 
silicification and rare secondary barite, both a result of the 
alteration and breakdown of feldspar (e.g., Skorpion). The 
sulphide weathering and near surface alteration of protore 
corresponds to formation of supergene mineralization. 

 
 

WEATHERING 

The nonsulphide mineralization forms by weathering 
of sulphides. Multicyclic oxidation and leaching of 
nonsulphides is a part of the ore-forming process and may 
affect even previously formed wallrock replacement 
bodies (see genetic model). Such bodies may be gradually 
converted into porous brown to reddish smithsonite 
intergrown with hemimorphite. Further leaching may 
result in mixture of hemimorphite, sauconite, hematite- or 
goethite-dominated iron oxides, and hematitic 
chalcedonic silica, and ultimately transformed into a 
barren goethite-chalcedonic silica rock. 

ORE CONTROLS 
Most favourable conditions for oxidation are 

achieved in hot, arid or semiarid climates, which 
maximize the quantity of metals available for transport by 
supergene solutions. Sedimentary successions containing 
carbonate rocks are the most common regional hosts for 
nonsulphide lead and zinc deposits. In general, the 
oxidation of the protore takes place above water table. 
Karst, faulting, fracturing and to lesser extend porosity are 
important in enhancing the depth and intensity of the 
oxidation. Major faults represent channels for oxygenated 
solutions and permit oxidation to depths exceeding 500 
m. Faults also increase the reactive surface of hostrocks 
(i.e. provoking changes in pH and Eh). Direct 
replacement deposits are confined to protore envelope. 
Wallrock replacement orebodies are commonly located 
near the level of the paleo and/or present water table. 

GENETIC MODEL 

Supergene nonsulphide Zn-Pb deposits form when 
base metal sulphide mineralization is subject to intense 
weathering and metals are liberated by the oxidation of 
sulphide minerals. The formation of nonsulphide minerals 
is influenced by the composition, size and morphology of 
the preexisting sulphide body. During the formation of a 
direct replacement deposit, primary ore (protore) is 
oxidized, and base metals pass into solution and are 
redistributed and trapped within space originally occupied 
by the protore. If the base metals liberated by the 
oxidation of sulphides are not trapped locally, they are 
transported by percolating waters down and/or away from 
the sulphide protore, and under favourable geological 
conditions may form wallrock replacement deposits. 
Wallrock replacement deposits can be located in 
proximity to protore or several hundreds of metres away. 
Lead is less mobile in the supergene environment than 
zinc, so in general, it is left behind as relict galena 
nodules and lead carbonate or lead sulphates. Wallrock 
replacement deposits tend to have higher Zn content and 
higher Zn/Pb ratios than direct replacement deposits. 
Residual and karst-fill deposits are formed as 
accumulations of mechanically and/or chemically 
transported zinc-rich material in karstic cavities or lows in 
basement topography. Some nonsulphide zinc deposits 
are assigned a hypogene origin. These deposits are 
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nonsulphide Zn-Pb deposits could be also significant 
sources of Pb, as illustrated by the exploitation of the 
Magellan deposit, which has ore reserves of 8.5 Mt 
grading 7.12% Pb. 

ECONOMIC LIMITATIONS 
The economic value of nonsulphide ores is dependent 

on the physical setting of individual deposit, the specific 
characteristics of the mineralogical association and the 
nature of the gangue minerals. The large, near-surface 
deposits are amenable to high volume, open pit mining. 
Underground mining is less common. Depending on the 
type of ore and mineralogy, a dedicated processing plant 
may be required. However, there is also the possibility 
that limited quantities of zinc-rich carbonates or silicate-
bearing material (with low levels of impurities) may be 
used by conventional smelters as a sweetener (instead of 
Ca carbonate that is commonly used to control the pH) or 
as source of silica; this should be investigated.  

IMPORTANCE 
Nonsulphide deposits were the main source of zinc 

prior to the 1930s. Following the development of 
differential flotation and breakthrough in smelting 
technology, the mining industry turned its attention 
almost entirely to sulphide ores. Today, most zinc is 
derived from sulphide ore. The nonsulphide deposits 
provided roughly 7% of the world’s zinc production in 
2009. The successful operation of a dedicated processing 
plant at the Skorpion mine to extract zinc, through direct 
acid leaching, solid-liquid separation, solvent extraction 
and electro winning from nonsulphide ore has attracted 
more attention to these types of deposits. These deposits 
are attractive targets because they are characteristically 
low in lead, sulphur and other deleterious elements, offer 
low-cost onsite production, and are environmentally 
friendly.  
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