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Abstract

Early to Middle Jurassic rocks of the Hazelton Group are extensively mineralized, including the precious metal-rich Eskay Creek deposit that
is hosted by bimodal volcanic successions in the Eskay rift. In this study, we present U-Pb zircon ages of seven Hazelton Group volcanic,
epiclastic and hypabyssal rocks to establish the absolute ages of Hazelton Group units in the McTagg anticlinorium, east of the Eskay Creek
deposit. A felsic volcaniclastic sample from the Brucejack Lake member (Betty Creek Formation) yielded a 187.1+1.9 Ma U-Pb crystallization
age that is consistent with previous fossil and U-Pb age determinations. Six samples from the Bruce Glacier member (Iskut River/Salmon River
Formation) yielded U-Pb crystallization ages of 178.5+1.8, 174.6+1.8, 174.4+1.7, 174.7+1.8, 173.6+1.7, and 173.3+1.8 Ma. These ages indicate
that volcanic rocks coeval with the Eskay member occur in the McTagg anticlinorium, as far south as Mt. Dilworth.

Keywords: Hazelton Group, Eskay Rift, Betty Creek Formation, Iskut River Formation, Salmon River Formation, Bruce Glacier, Treaty Ridge,

geochronology

1. Introduction

The Canadian Cordillera is endowed with abundant and
diverse mineral deposits. Mineralization includes Cu+Au+Mo
porphyry, volcanogenic massive sulphide, gold stockwork,
shear-hosted vein, hydrothermal breccia, and replacement
deposits that range in age from Devono-Mississippian to
Eocene (Nelson and Colpron, 2007; Nelson et al., 2013). Most
prospects and deposits in northwestern British Columbia are
hosted by Triassic to Middle Jurassic volcano-sedimentary and
plutonic rocks of the Stikine terrane (Fig. 1). The nature of
Triassic to Middle Jurassic magmatism in the northern Stikine
terrane changed over time, resulting in episodic emplacement
of calc-alkaline, alkaline, and tholeiitic magmas (e.g., Souther,
1972; Anderson, 1993; Logan et al., 2000). The late Early
Jurassic transition from calc-alkaline to tholeiitic magmatism in
the Hazelton Group (Lower to Middle Jurassic ) is perhaps one
of the most profound changes in magmatic character (Alldrick
et al., 2005 and references therein). This change was caused by
rifting of the Hazelton arc complex, which led to development
of the Eskay rift (Fig. 2; Anderson and Thorkelson, 1990). It
also represents a change to predominantly submarine volcanism
and sedimentation and a change from porphyry and epithermal
to volcanogenic massive sulphide mineralization. Constraining
the age and tectonic significance of this change is critical for
understanding the tectonics of the northwestern Cordillera and
the distribution of Mesozoic mineral deposits.

The Hazelton Group (Tipper and Richards, 1976) hosts
epithermal deposits in Lower Jurassic units and volcanogenic
massive sulphides in Middle Jurassic units, including the
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Fig. 1. Terranes of the northern Cordillera (after Colpron and Nelson,
2011). Iskut River area (star) is in the Stikine terrane (Paleozoic to
Mesozoic).
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Fig. 2. Simplified geological map of the Iskut River area (modified from Lewis 2013). Numbers refer to ages of volcanic and hypabyssal rocks
summarized in Table 1. UTM zone 9, NAD 83.
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Au-rich Eskay Creek volcanogenic massive sulphide deposit
(Roth et al., 1999 and references therein) and the Iron Cap,
Mitchell, Sulphurets, Kerr, Snowfields, and Valley of Kings
Cu-Au porphyry deposits (Nelson and Kyba, 2014). The rift
stratigraphy of the Hazelton Group forms a northerly trend
(Anderson and Thorkelson, 1990). Understanding the regional
distribution of this stratigraphy and the underlying regional-
scale controls on mineralization has been hampered by a lack
of geochronological data from outside of known deposit areas.
Herein, we present Sensitive High Resolution Ion Microprobe
IT (SHRIMP II) data on volcanic, epiclastic, and hypabyssal
samples from the Hazelton Group on the limbs of the McTagg
anticlinorium, east of the Eskay Creek deposit (Fig. 2; Roth et
al., 1999; Nelson and Kyba, 2014, and references therein). Our
main goal is to better understand the stratigraphy and timing
of the key volcano-sedimentary Hazelton Group units with
potential to host economic deposits. We integrate these data
into the compilation map of Lewis (2013) and extend definitive
occurrences of rocks around the McTagg anticlinorium that are
coeval with the Eskay member.

2. Regional geology

The study area is in the Stikine terrane (Paleozoic to
Mesozoic) of northwestern British Columbia (Figs. 1, 2). The
oldest rocks in the Stikine terrane are included in the Stikine
assemblage (Devonian to Permian, Monger, 1977). The Stikine
assemblage comprises predominantly Mississippian arc and
backarc volcanic, epiclastic, and plutonic rocks that are overlain
by Pennsylvanian to Permian limestone and chert (e.g., Brown
et al., 1991; Logan et al., 2000; Mihalynuk et al., 2012). The
Stikine assemblage is unconformably overlain by Triassic rocks
of the Stuhini Group and intruded by the Stikine and Copper
Mountain plutonic suites (e.g., Brown et al., 1991; Logan et al.,
2000; Mihalynuk et al., 2012). The Stuhini Group comprises
characteristic augite-phyric volcanic and volcaniclastic rocks,
sedimentary rocks, and minor felsic volcanic rocks. Stuhini
Group volcanic rocks and related intrusions have yielded ca.
223 to 213 Ma crystallization ages (U-Pb zircon; Lewis et al.,
2001; Logan et al., 2000) and Carnian-Norian fossil collections
(Logan et al., 2000). Overall, the Stuhini Group and related
plutonic suites have been interpreted to have formed in an intra-
oceanic arc setting; however, Upper Triassic alkalic magmatism
with Precambrian inheritance (Bevier and Anderson, 1991)
suggests a more complex tectonic setting. Stuhini Group
magmatism ended in the Late Triassic and was followed by
erosion, exhumation of plutonic complexes, development of a
regional angular unconformity (Brown et al., 1996; Logan et
al., 2000; Lewis, 2013; Kyba and Nelson, 2015), initiation of
Labarge Group deposition to the north (Gabrielse, 1998), and
initiation of Hazelton Group deposition and consanguineous
plutonism in northwestern British Columbia (Anderson, 1993;
Thorkelson et al., 1995; Brown et al., 1996; Logan et al., 2000;
Mihalynuk et al., 2012; Nelson and Kyba, 2014).
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2.1. Hazelton Group

The Hazelton Group is aerially extensive in the Stikine
terrane of northwestern British Columbia, from the Smithers-
Hazelton area in the south, through the Iskut region of central-
northern Stikinia and extending north into southern Yukon (e.g.
Tipper and Richards, 1976; Thorkelson et al. 1995, Hart, 1997,
Lowey, 2004). Regionally, it consists of a lower and upper part.
The lower Hazelton Group is arc-related, whereas the upper
Hazelton Group records arc demise, regional subsidence, and
local development of the Eskay rift (Gagnon et al., 2012).

The following summary of the Iskut area is from Lewis
(2013) and Nelson and Kyba (2014). The Hazelton Group is
exposed in a series of north-northeast trending anticlines and
synclines (Fig. 2). The lower Hazelton Group is divided into
the Jack and Betty Creek formations (Lewis 2013), although
the divisions are not universally agreed upon (Fig. 3; see Table
1 in Nelson and Kyba, 2014). Unconformably overlying Stuhini
Group rocks, the Jack Formation consists of conglomerate,
sandstone, and siltstone with limey interbeds. Fossil collections
from the Jack Formation yielded ammonites that are diagnostic
of Upper Hettangian to Lower Sinemurian age (Lewis, 2013).
The overlying Betty Creek Formation includes predominantly
volcanic and volcaniclastic strata of the Unuk River member
(andesitic), the Brucejack Lake member (dacitic to rhyolitic),
and predominantly siliciclastic and carbonate rocks of the
Treaty Ridge member (Lewis, 2013). The Unuk River and
Brucejack Lake members may be, in part, laterally equivalent
and have yielded ca. 194-185 Ma U-Pb ages (Table 1, Fig. 3;
Lewis, 2013). The overlying Treaty Ridge member yielded
Upper Pliensbachian to Upper Aalenian fossil collections,
suggesting a significant gap in magmatism prior to onset of
upper Hazelton Group magmatism (Lewis, 2013). Nelson and
Kyba (2014) include the Treaty Ridge member in the upper
Hazelton Group.

The upper Hazelton Group comprises bimodal volcanic rocks
that overlie the Treaty Ridge member (Fig. 3). These rocks
were assigned to the Salmon River Formation by Lewis (2013)
and Iskut River Formation by Gagnon et al. (2012) and Nelson
and Kyba (2014). Gagnon et al. (2012) proposed that the term
‘Salmon River Formation’ be formally abandoned because it
was inaccurately defined in its type area and confused with
the Bowser Lake Group. For clarity however, we retain the
term here so that our samples can be readily cross referenced
with units on the Lewis (2013) compilation. The Salmon
River Formation (Figs. 4, 5) is divided into the Bruce Glacier
member (predominantly felsic volcanic rocks), the Troy Ridge
member (predominantly tuffs and other sedimentary rocks),
the John Peak member (predominantly mafic volcanic rocks)
and the Eskay member (predominantly felsic volcanic rocks).
The Bruce Glacier member is distinguished geochemically
from the Eskay member on the basis of Al-Ti-Zr ratios (Childe,
1996; Roth et al., 1999; Lewis, 2013). Nelson and Kyba (2014)
retained these members, but followed Gagnon et al. (2012) and
included the Bruce Glacier, John Peaks, and Eskay members
in the Iskut River Formation of the upper Hazelton Group.
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Table 1. Geochronology data for volcanic and hypabyssal rocks in the Iskut River area.

# Unit Rock Type Age (Ma) Reference
Bruce Glacier Section

9  Bruce Glacier member Felsic volcaniclastic 1746 £1.8 This Study

10 Bruce Glacier member Dacite flow 176.2+£2.2 Lewis et al. 2001

11 Bruce Glacier member Spherulitic rhyolite 1785+ 1.8 This Study

12 Brucejack Lake member Felsic crystal tuff 190 +5/-1 Lewis et al. 2001
Iron Cap Section

13 Bruce Glacier member Felsic volcaniclastic 1733+1.8 This Study

14 Bruce Glacier member Dacite to rhyolite flow 178 +5/-1 Lewis et al. 2001

15 Brucejack Lake member Kspar megacrystic flow 187.7 +5.8/-1.5 Lewis et al. 2001

16 Brucejack Lake member Rhyolite flow 194 £3 Lewis et al. 2001

Treaty Glacier Section
1

2
3
4
5
Mt. Dilworth
17
Eskay Creek
Leduc Glacier
17

Bruce Glacier member
Bruce Glacier member
Bruce Glacier member
Brucejack Lake member

Unuk member

Bruce Glacier member
Bruce Glacier member
Eskay Rhyolite member

Bruce Glacier member

Brucejack Lake member

Feldspar-phyric rhyolite

Hypabyssal flowbanded rhyolite
Dacite-rhyolite pyroclastic flow
Alkali-feldspar porphyritic volcaniclastic
Andesite-dacite pyroclastic flow

Felsic volcaniclastic
Dacite flow
Rhyolite breccia and tuffs

Flow-banded rhyolite

Dacite breccia

1733 +£1.8
1744+ 1.7
177.6 £ 1.0
187.1£1.9
187.7 +5.3/-1.5

173.6 £1.7

173.6 +5.6/-0.5

174 +2/-1

175+2

186.6 £ 5.6

This Study
This Study
Lewis et al. 2001
This Study
Lewis et al. 2001

This Study
Childe 1994
Childe 1996

Childe 1996

Lewis et al. 2001

These upper Hazelton units have yielded 178-172 Ma U-Pb
ages and Upper Toarcian to Bajocian fossils (Table 1, Fig. 3;
Lewis, 2013). The Hazelton Group is conformably overlain by
siliciclastic cover rocks of the Bowser Lake Group (Evenchick
et al., 2010; Gagnon et al., 2012).

3. U-Pb Geochronology

Seven samples were collected and analyzed from the Bruce
Glacier, Iron Cap, Treaty Ridge, and Mt. Dilworth areas of
the McTagg anticlinorium (Fig. 2), including at or near the
type sections of Hazelton Group members (see Lewis 2013
and Nelson and Kyba 2014). The upper Hazelton Group
samples analyzed herein display low Al/Ti ratios (Anderson,
unpublished data) indicating affinity with the Bruce Glacier
member rather than the Eskay member (e.g., Childe, 1996;
Roth et al., 1999). U-Pb SHRIMP data are presented in Table
2 and Figure 6.

3.1. Analytical procedures

SHRIMP 1II (Sensitive High Resolution Ion MicroProbe)
analyses were conducted at the Geological Survey of Canada
using analytical procedures described by Stern (1997), with
standards and U-Pb calibration methods following Stern and
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Amelin (2003). Heavy mineral concentrates were prepared
from the samples using standard mineral separation techniques,
including: crushing, grinding, hydrogravimetric Wilfley™
table, and heavy liquid separation. This was followed by final
separation of the zircon grains by magnetic susceptibility using a
Frantz™ isodynamic separator and hand-picking. Zircons from
the samples and fragments ofthe GSC laboratory zircon standard
(26266 zircon, with 2°Pb/>%U age = 559 Ma) and a secondary
zircon standard (Temora 2) were cast in an epoxy grain mount
(see Table 2 for GSC mount number), polished with diamond
compound to reveal the grain centers, and photographed
in transmitted light. Internal features of the zircons (such as
zoning, structures, and alteration) were characterized in back-
scattered electron (BSE) and cathodoluminescence (CL) modes
using a Zeiss Evo 50 scanning electron microscrope (SEM).
Mount surfaces were evaporatively coated with 10 nm of high
purity Au. Analyses were conducted using an O primary beam,
projected onto the zircons with an elliptical 17um x 23um spot
(K120). The count rates of ten masses including background
were sequentially measured over 6 scans with a single electron
multiplier and a pulse counting system with deadtime of 23 ns.
Off-line data processing used customized in-house software.
The SHRIMP analytical data are presented in Table 2, where
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Fig. 4. Simplified geological maps (modified from Lewis, 2013). a) Bruce Glacier area. b) Iron Cap-Treaty Glacier area. ¢) Mt. Dilworth area.
Numbers refer to ages of volcanic and hypabyssal rocks in the Iskut River area (Table 1). UTM zone 9, NAD 83.

the 10 external errors of 2°Pb/?®U ratios incorporate a 1.0%
error in calibrating the standard zircon (Stern and Amelin,
2003). A fractionation correction was not applied to the Pb-

isotope data; common Pb correction

used the Pb composition

95

of the surface blank (Stern, 1997). The 207-corrected 2°°Pb/?3¥U
ages of analyses overlapping concordia were used to calculate
weighted means and construct cumulative probability plots
(Fig. 6). Weighted means were calculated using Isoplot v.
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Fig. 5. Representative photographs of analyzed samples. a) Thick unit of foliated and crenulated, monolithic, felsic lapilli tuff of the Bruce
Glacier member (Sample 04-ATSL-042-L01; z8337). b) Felsic lapilli tuff in the Iron Cap area (Sample 04-AT-1001-L01; z8567). ¢) Spherulitic,
flow-banded rhyolite from Treaty Ridge (Sample 04-ATSK-008-L01; z8336). d) Felsic tuff in the Mt. Dilworth area (Sample 04-ATSK-004-L01;

28392).

3.0 (Ludwig, 2003) with errors on the ages quoted at the 20
level and cumulative probability plots were constructed using
AGEDISPLAY (Sircombe, 2004).

3.2. Bruce Glacier area
3.2.1. 04-ATSK-106-L.01 (z8335): Spherulitic rhyolite,
Bruce Glacier member

In the Bruce Glacier section (Fig. 4a), the Stuhini Group is
unconformably overlain by the Jack Formation, which is in turn
unconformably overlain by the Bruce Glacier member (Lewis
2013; see also Fig. 3 in Nelson and Kyba 2014). West of the
McTagg anticlinorium, the base of the Bruce Glacier member
is an angular unconformity that cuts through the Treaty Ridge
and Unuk River members (Lewis 2013). We collected a sample
of spherulitic rhyolite considered to be typical of the Bruce
Glacier member along Bruce Glacier, northeast of John Peaks
and east of Unuk River (Fig. 4a). The sample yielded two
size populations of zircon. One consists of clear, colourless,
euhedral prism tips ~150 pm long, with abundant fractures, rare
inclusions, and faint to strong oscillatory growth zoning typical
of magmatic zircons. The second consists of clear, colourless,
euhedral prismatic crystals, prism tips and tabular grains

96

~100 pum long, lacking visible fractures or inclusions. These
grains display faint oscillatory growth and sector zoning, both
typical of magmatic zircons (Fig. 6a). Excluding one analysis
interpreted to be inherited (analysis 8335-33.1, Table 2), sixteen
analyses from both populations yielded a mean 2*°Pb/3*U age
of 178.5+1.2 (MSWD = 1.2). Taking into account the error
associated with the zircon standards, the crystallization age of
the rhyolite is interpreted as 178.5+£1.8 Ma (Fig. 6a).

3.2.2. 04-ATSL-042-1.01 (z8337): Felsic volcaniclastic rock,
Bruce Glacier member

South of John Peaks, the Stuhini Group is overlain by the
Jack Formation at a well-exposed, sharp, angular unconformity
(Fig. 4a; Lewis 2013). The Jack Formation is in turn overlain
by the Brucejack, Unuk River and Treaty Ridge members of the
Betty Creek Formation. Bruce Glacier member felsic volcanic
rocks overlie the Betty Creek Formation above an angular
unconformity (Fig. 4a; Lewis 2013). We collected a sample of
monolithic, felsic lapilli tuff from the Bruce Glacier member
(Fig. 5a). The sample yielded two size populations of zircon.
The first population comprises 50-100 pum, clear, colourless,
subhedral prismatic grains and prism fragments with rounded
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tips, and rare to abundant fractures. The second comprises
150-200 pm, clear, colourless, euhedral to subhedral prismatic
grains with rare fractures and inclusions. Both populations lack
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zoning typical of magmatic zircons (Fig. 6b, inset). Sixteen
0.000, 00 470 | 180 | 190 200 210 220 250 ° analyses yielded two age populations. A weighted mean
2ppY Age (Ma) 206Pb/23¥U age of fifteen analyses is calculated at 174.6+1.4 Ma

(MSWD=1.5). Taking into consideration the error associated

with the zircon standards, the crystallization age of the felsic
tuff is interpreted as 174.6+£1.8 Ma (Fig. 6b). A single unzoned
prism fragment (analysis 8337-21.0, Table 2) yielded ca. 213
Ma age and is interpreted to be inherited (Fig. 6b).
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3.3. Iron Cap area
3.3.1. 04-AT-1001-L.01 (z8567): Lapilli tuff, Bruce Glacier
member

The ca. 195 Ma Iron Cap intrusion and related volcaniclastic
rocks that host the Iron Cap porphyry Cu-Au deposit (Kirkham
and Margolis, 1995) are unconformably overlain by the Treaty
Ridge member (Middle Jurassic; Lewis et al., 2001) west of the
Brucejack fault (Fig. 4b; see Fig. 5 in Nelson and Kyba, 2014).
East of the Brucejack fault, the Treaty Ridge member is absent
and Unuk River member andesitic rocks are unconformably
overlain by the Bruce Glacier member (Fig. 4b). A sample
from a unit of flow-banded felsic lapilli tuff was collected to
test its correlation with the Bruce Glacier member (Fig. 5b).
The sample yielded abundant zircon grains ranging in size from
50-100 um with variable morphologies, including euhedral to
subhedral prismatic grains and prism fragments and sparse
euhedral to subhedral, tabular grains. Some grains display
oscillatory growth zoning typical of magmatic zircons (Fig. 6¢).
Excluding one analysis interpreted to be xenocrystic (analysis
8567-82.1, Table 2), thirteen analyses yielded a weighted mean
206Ph/238U age of 172.8+1.2 Ma (MSWD = 1.1). Taking into
account the error associated with the zircon standards, the
crystallization age of the lapilli tuff is interpreted as 172.8+1.7
Ma (Fig. 6¢).

3.4. Treaty Glacier area
3.4.1. 04-ATSK-026-L.02 (z8391): Flow-banded rhyolite,
feeder to Bruce Glacier member?

Southeast of the Treaty Glacier, on the Treaty Nunatak,
hypabyssal felsic dykes and stocks, assigned by Lewis (2013)
to the Texas Creek plutonic suite, intrude a southeast-younging
succession of sedimentary rocks and pillow basalts interpreted
as the Treaty Ridge and John Peaks members (Fig. 4b; Lewis,
2013). A sample of hypabyssal flow-banded rhyolite was
collected to establish the age of these intrusive rocks and to
provide a minimum age for the volcano-sedimentary rocks
that are assigned to the Treaty Ridge member. The sample
yielded abundant zircon grains that are clear, colourless,
stubby, prismatic crystals 75-100 um long, with rare fractures
and inclusions. Some grains display oscillatory growth zoning
typical of magmatic zircons (Fig. 6d), and some have possible
inherited cores that were not analyzed. Thirteen analyses
yielded a weighted mean **Pb/?*U age of 174.4+1.1 Ma
(MSWD = 0.9). Taking into consideration the error associated
with the zircon standards, the crystallization age of the rhyolite
and related felsic stocks is interpreted as 174.4+1.7 Ma (Fig.
6d). It is significantly younger than the Texas Creek suite, and
corresponds to ages of nearby felsic rocks of the Bruce Glacier
member.

3.4.2. 04-ATSK-020-L01 (z8457): Felsic volcaniclastic
rock, Brucejack Lake member

The base of Treaty Ridge, south of Treaty Creek, exposes
volcanic rocks of the lower Hazelton Group that were included
in the Unuk River member by Lewis (2013). These rocks are
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overlain by the Treaty Ridge, John Peaks, and Bruce Glacier
members (Fig. 4b). A sample of alkali feldspar-phyric felsic
volcaniclastic rock was collected from near the base of exposed
section. The sample yielded abundant zircon grains including
clear, colourless subhedral to euhedral, tabular prismatic
crystals and prism fragments, 50-100um long, that contain
many fractures and inclusions. These grains are either unzoned
or display oscillatory growth zoning typical of magmatic zircons
(Fig. 6¢). A weighted mean of the 2°Pb/*#U ages of fourteen
analyses is calculated at 187.1£1.2 Ma (MSWD=1.0). Taking
into account the error associated with the zircon standards,
the crystallization age of the felsic volcanic is interpreted as
187.1+1.9 Ma (Fig. 6e).

3.4.3. 04-ATSK-008-L01 (z8336): Spherulitic rhyolite,
Bruce Glacier member

We collected a sample of fine-grained, feldspar-phyric,
spherulitic thyolite from the Bruce Glacier member upsection
from sample 04-ATSK-020-LO1 (see above, Fig. 5c). The
sample yielded abundant zircon grains that are 50-100um long
and include clear, colourless, euhedral to subhedral tabular
prisms, with rare fractures and local inclusions. Some grains
display strong oscillatory growth zoning typical of magmatic
zircons (Fig. 6f). Fifteen analyses yielded a weighted mean
26Pb/28U age of 174.7+1.2 Ma (MSWD=0.8). Taking into
account the error associated with the zircon standards, the
crystallization age of the rhyolite is taken to be 174.7+1.8 Ma
(Fig. 6f). Three zircon grains yielded significantly older ages,
which are interpreted to be inherited. Inherited analyses of ca.
194 and 200 Ma ages (analyses 8336-8.1 and 8336-23.1) were
from euhedral to subhedral prismatic grains lacking evidence
of inherited cores. A rounded grain with a possible older core
yielded an age of ca. 218 Ma (analysis 8336-2.1; Fig. 6f).

3.5. Mt. Dilworth area
3.5.1. 04-ATSK-004-1.01 (z8392): Felsic volcaniclastic
rock, Bruce Glacier Member

North of Mt. Dilworth and east of Summit Lake, the Betty
Creek Formation is overlain by a continuous unit of dacitic
volcaniclastic rocks that extends over 20 kilometres along strike
(Fig. 4c). This unit was assigned to the Mt. Dilworth Formation
by Alldrick (1991, 1993). Its age was poorly constrained by
a single Toarcian macrofossil collection from an overlying
limestone unit (Alldrick, 1993), and a ca. 178 Ma U-Pb age
with complicated systematics (ATP-Troy Ridge, in Lewis et al.,
2001). As evidence began to emerge of the Middle Jurassic (ca.
174-176 Ma) age of the Eskay and Bruce Glacier members,
Lewis (2001) considered that the Mt. Dilworth Formation was
significantly older than originally defined and discontinued use
of the term in the Iskut area. A sample of a volcaniclastic rock
(Fig. 5d) was collected to determine the age of magmatism
in the Mt. Dilworth area and to test its correlation with other
felsic units of the Hazelton Group (i.e. Brucejack and Bruce
Glacier members). The sample yielded abundant zircon grains
that are 50-100 um long and include clear, colourless, euhedral
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prismatic crystals and prism fragments with rounded tips, no
fractures and few inclusions, and elongate prisms up to 150 pm
long. Some grains display oscillatory growth zoning typical
of magmatic zircons (Fig. 6g). Fourteen analyses yielded a
weighted mean 2°Pb/>*8U age of 173.6+1.7 Ma (MSWD=1.7),
which is interpreted as the crystallization age of the felsic
volcanic rock (Fig. 6g). Two inherited zircon analyses include
a core of a subhedral rounded grain (analysis 8392-5.1: Table
2) with an age of ca. 183 Ma and an oscillatory growth zoned
euhedral prism (analysis 8392-31.1: Table 2) with an age of ca.
189 Ma.

4. Discussion

In this study, we present U-Pb zircon data from seven
Hazelton Group samples to establish the absolute ages of
volcano-sedimentary units in the McTagg anticlinorium, east
of the Eskay Creek deposit (Tables 1, 3). One sample of felsic
volcaniclastic rock documents the age of the Brucejack Lake
member of the Betty Creek Formation at Treaty Ridge. Six
samples limit the spatial and temporal extent of the Bruce
Glacier member of the Iskut River Formation.

4.1. Brucejack Lake Member

The Treaty Ridge section exposes a continuous stratigraphic
sequence from the Unuk River member to the Treaty Ridge,
John Peaks and Bruce Glacier members (Fig. 3b). Alkali
feldspar porphyritic felsic volcaniclastic rock from near
the base of the exposed section yielded a 187.1+1.9 Ma
crystallization age (Table 2) confirming Brucejack Lake
member epiclastic units, which may interfinger with andesites
of the Unuk River member. This age closely agrees with the ca.
188 Ma age from this section reported by Lewis et al. (2001).
Elsewhere, the Brucejack Lake and Unuk River members
and their hypabyssal equivalents yielded ca. 194 to 185 Ma

Table 3. Sample summary.

U-PDb zircon crystallization ages (Macdonald, 1993; Lewis et
al. 2001), indicating that magmatism spanned ca. 5 to 10 m.y.
(Fig. 3).

Theunderlying Jack Formation yielded Hettangian ammonites
(Lewis et al. 2001) consistent with ca. 194 to 185 Ma U-Pb
ages from the overlying Betty Creek Formation. However,
there appears to be a several m.y. hiatus prior to onset of Unuk
and Brucejack Lake member volcanism (Fig. 3). Pliensbachian
ammonites in the overlying Treaty Ridge Member (Fig. 3)
suggest either that Treaty Ridge sedimentation immediately
followed cessation of Sinemurian to Pliensbachian Betty
Creek Formation magmatism or that Treaty Ridge deposition
occurred in an area that was isolated from the products of Betty
Creek Formation volcanism.

4.2. Bruce Glacier Member

Bruce Glacier member felsic volcanic and epiclastic rocks
are exposed along the east limb of the Eskay anticline and
on both limbs of the McTagg anticlinorium (Fig. 2). Samples
from the type locality at Bruce Glacier yielded 178.5+1.8
Ma and 174.6+1.8 Ma ages (Table 2, Fig. 3a) indicating that
magmatism spanned ca. 1 to 7 m.y. Bruce Glacier member
volcanic and hypabyssal rocks in the Iron Cap, Treaty Glacier,
and Mt. Dilworth areas yielded ca. 175 to 173 Ma ages (Table 2;
Figures 3b,c). Older Bruce Glacier member felsic rocks appear
to be more commonly dacitic whereas younger rocks tend to
be rhyolitic. Previous samples of the Bruce Glacier member
volcanic and hypabyssal rocks equivalents have yielded ca. 178
to 173 Ma U-Pb zircon crystallization ages (Fig. 3; Macdonald,
1993; Lewis et al., 2001). Both our results and previous ages
indicate magmatism either spanned ca. 5 to 9 m.y. or occurred
in several discrete pulses.

Based on zircon inheritance and Sm-Nd isotopic data, Childe
(1996) suggested that underlying Mesozoic and Paleozoic arcs

Sample Lab UTM Unit Name Rock Description Interpreted Inherited
Number Number E N Age Ages
Bruce Glacier area
04-ATSK-106-L01 8335 415112 6273249 Bruce Glacier member Spherulitic rhyolite 178.5+ 1.8 Ma ca. 186 Ma
04-ATSL-042-L01 8337 411626 6263187 Bruce Glacier member Felsic volcaniclastic rock  174.6 + 1.8 Ma ca. 213 Ma
Iron Cap area
04-AT-1001-L01 8567 427059 6267454 Bruce Glacier member Felsic volcaniclastic rock  173.3 £ 1.8 Ma ca. 181 Ma
Treaty Glacier area
. Hypabyssal flowbanded
04-ATSK-026-L02 8391 431695 6272917 Bruce Glacier member rhyolite 1744+ 1.7 Ma
04-ATSK-020-L01 8457 432437 6274000 Brucejack Lake member  *Kall feldspar porphyritic oy g p
volcaniclastic rock

ca. 194 Ma,
04-ATSK-008-L0O1 8336 432873 6273418 Bruce Glacier member Feldspar-phyric rhyolite 1747+ 1.8 Ma ca. 200 Ma,

ca.217 Ma
Mt. Dilworth area
04-ATSK-004-L01 8392 435770 6230257 Bruce Glacier member  Felsic volcaniclastic rock ~ 173.6 + 1.7 Ma EZ izg ﬁz
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influenced petrogenesis of Bruce Glacier member rhyolites.
Data presented herein confirms Mesozoic inherited zircon in
Bruce Glacier member felsic volcanic rocks (Table 2). Circa
200-183 Ma xenocrystic zircons were likely derived from
the underlying Betty Creek Formation (Fig. 3) or related
Texas Creek plutonic suite rocks (e.g., Logan et al. 2000 and
references therein). Circa 218-213 Ma inheritance is consistent
with derivation from the underlying Stuhini Group and related
Stikine plutonic suite (ca. 225-210 Ma: Logan et al., 2000 and
references therein).

U-Pb ages from the Bruce Glacier member agree with limits
provided by the Aalenian radiolaria and Bajocian ammonites
and brachiopods in overlying strata (Lewis et al., 2001).
However, deposition of the Treaty Ridge member, which
is characterized by non-volcanic strata, appears to partially
overlap Bruce Glacier member volcanism. This suggests that
either the Treaty Ridge Formation was deposited in a coeval
basin that was somehow isolated from Betty Creek and Iskut
River formations volcanic products, or that Treaty Ridge
Formation needs to be re-examined in more detail (cf. Lewis
et al., 2001).

5. Conclusion

Rhyolitic rocks from the Eskay member are discriminated
from broadly coeval Bruce Glacier member volcanic rocks
(Fig. 3) on the basis of Al-Ti-Zr ratios (Childe, 1996; Roth
et al., 1999; Lewis, 2013). Previous studies in the Eskay
anticline demonstrated that the Eskay member is only exposed
on the western limb of the anticline, whereas the eastern
limb comprises Bruce Glacier member, which displays Al/
Ti ratios of <100. The samples that we dated have low Al/Ti
ratios (Anderson, unpublished data), suggesting that the Bruce
Glacier member is widespread in the MacTagg anticlinorium
(Fig. 2). Although definitive Eskay member rocks have not
been identified outside of the Eskay anticline, age-equivalent
submarine felsic volcanic rocks are aerially extensive and
locally voluminous in the MacTagg anticlinorium (Fig. 2;
Lewis, 2013) and adjacent areas (Evenchick et al., 2004;
Evenchick and McNicoll, 2002; Alldrick et al., 2005). Age-
equivalent rocks also host volcanogenic massive sulphide
deposits in the Anyox Pendant (Evenchick and McNicoll,
2002) and north of Eskay Creek mine (Alldrick et al., 2005).
The presence of known VMS mineralization outside of the
Eskay area indicates that much of the Upper Hazelton Group
remains prospective for mineralization.
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