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Abstract

Polymetallic mineralized quartz veins are hosted by quartz diorite to quartz monzodiorite near Surprise Mountain, western Iskut River area. The
intrusion is a homogeneous calc-alkaline, magnetite series granitoid that crosscuts an Early Jurassic thrust. New “°Ar/* Ar hornblende ages (178 +2
and 179 £2 Ma) from quartz diorite and a Re-Os molybdenite (180.2 +0.8 Ma) age from a mineralized quartz vein provide minimums for the time
of pluton emplacement. Both age and composition suggest affiliation with the Cone Mountain plutonic suite. Polymetallic quartz veins contain
pyrite, galena, and molybdenite; minor bismuthinite, covellite, chalcocite, chalcopyrite and pyrrhotite; and traces of sphalerite. Geochemical
analysis of veins reveals elevated Ag, Bi, Cu, Mo, Pb and Zn. Overall, the sporadic mineralization lacks clear horizontal metal zonation but
may be related to polymetallic Ag-Pb-ZntAu or CutAg quartz deposit types, or may be peripheral to skarn or porphyry mineralization. Weak
alteration, erratic and weak Au enrichment, and lack of metal zonation differentiates this occurrence from other Jurassic deposits in the area.

Keywords: Iskut River, Stikinia, Early Jurassic, Surprise Mountain, polymetallic vein, Cone Mountain plutonic suite

1. Introduction Herein we present field, petrographic, geochemical, and
Northern Stikinia (Fig. 1) has a rich and diverse metal *“Ar/*Ar and Re-Os geochronologic data from a polymetallic
endowment from a variety of mineral deposit types that quartz vein-bearing quartz diorite intrusion near Surprise
reflect the varied tectonic history of the Canadian Cordillera. ~ Mountain in the western Iskut River area (Fig. 4), and relate
Deposits in northwestern Stikinia range from Mississippian  the intrusion to the Cone Mountain suite. Our geochronologic
volcanogenic massive sulphides to Triassic-Jurassic Cu-Au  data also show that a thrust fault juxtaposing Permian to Late
porphyry and Eocene epithermal vein systems (e.g., Logan  Triassic marbles above Early Jurassic volcaniclastic rocks and
and Koyanagi, 1994; Logan and Mihalynuk, 2014; Nelson and  cut by the Surprise Mountain intrusion was active during the
Kyba, 2014). The Late Triassic to early Middle Jurassic is one  magmatic lull.
of the most important time intervals in the northern Cordillera,
and is recorded by regionally extensive volcano-sedimentary 2. Regional geology
rocks of the Hazelton Group (Tipper and Richards, 1976) and The Iskut River area is along the western margin of the
coeval plutons (Fig. 2). In the Iskut River region, the Hazelton  Stikine terrane in northwestern British Columbia (Figs. 1, 2).
Group exhibits a short but significant magmatic lull between  The oldest rocks in the area are part of the Stikine assemblage
~185 and 178.5 Ma and an unconformity (Fig. 3; Lewis, 2013;  (Monger, 1977), which consists of Carboniferous bimodal arc
Cutts et al., 2015). This magmatic lull marks the transition from  magmatic rocks and Permian sedimentary strata. The Stikine
porphyry and epithermal deposits formed during deposition assemblage is unconformably overlain by Triassic volcano-
of the lower part of the Hazelton Group and volcanogenic  sedimentary rocks of the Stuhini Group; both are cut by the
massive sulphide deposits in the upper part (e.g., Anderson  Stikine and Copper Mountain plutonic suites (e.g., Logan et al.,
and Thorkelson, 1990; Lewis, 2013; Nelson and Kyba, 2014;  2000; Mihalynuk et al., 2012). Above a regional unconformity
Kyba and Nelson, 2015). This magmatic lull is absent in the  bevelled into these rocks are volcanic and sedimentary strata of
Telegraph Creek area, where the Cone Mountain plutonic  the Hazelton Group (uppermost Triassic and Lower to Middle
suite was emplaced (Fig. 2; Brown et al., 1996). The duration  Jurassic), which are cut by the Texas Creek (Early Jurassic)
and aerial extent of this magmatic gap and the distribution of and Cone Mountain (late Early Jurassic) plutonic suites (Fig.
Jurassic plutonic suites are important considerations for mineral ~ 2; e.g., Evenchick et al., 2010; Gagnon et al., 2012; Nelson and
exploration and for unravelling the tectonic history of Stikinia. ~ Kyba, 2014; Cutts et al., 2015). The Hazelton Group represents
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Fig. 1. Geological map of the Canadian Cordillera (from Colpron and
Nelson, 2011). Study area (star) is in the Iskut River area of the Stikine
terrane.

the final stages of Stikine terrane magmatism before final
amalgamation of Stikine, Quesnel, and Cache Creek terranes
with North America and deposition of overlap Middle Jurassic
to Lower Cretaceous sedimentary rocks of the Bowser Lake
Group (Fig. 2; e.g., Evenchick et al., 2007, 2010). Stocks and
dikes of the Sloko-Hyder plutonic suite (Eocene) and related
volcanic rocks are common in the study area.

The Iskut River area is well known for its prolific
mineralization (Fig. 2) including the Eskay, KSM, Brucejack,
Snip and Johnny Mountain deposits (Jurassic) and the
Burgundy Ridge and Galore Creek deposits (Triassic; e.g.,
Macdonald et al., 1996). Much of the mineral endowment is
spatially associated with hypabyssal porphyritic intrusions
(Anderson, 1993) of diverse composition. These plutonic suites
include Forrest Kerr and More Creek (Devono-Mississipian),
Stikine (Late Triassic), Texas Creek (Early Jurassic), Cone
Mountain (late Early Jurassic), Three Sisters (Middle Jurassic)
and Sloko-Hyder (Eocene; e.g., Anderson, 1993; Logan and
Koyanagi, 1994; Logan et al., 2000; Mihalynuk et al., 2012;
Logan and Mihalynuk, 2014). Some members of the Copper
Mountain and Texas Creek plutonic suites are distinctive. The
Copper Mountain (Late Triassic to Early Jurassic) plutonic
suite is conspicuously quartz undersaturated, and includes
stocks of foid-bearing syenite, syenite, pyroxenite, gabbro,
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and monzodiorite compositions (210-195 Ma; Brown et al.,
1996; Zagorevski et al., 2015). The Texas Creek plutonic suite
consists of calc-alkaline and alkaline intrusions that vary from
granodiorite, to quartz monzonite, and quartz monzodiorite,
but includes distinctive crowded plagioclase-phyric diorite,
K-feldspar megacrystic monzogranite and syenite (195-189
Ma; Macdonald et al., 1996; Febbo et al., 2015).

3. Surprise Mountain

The Surprise Mountain area is underlain by Triassic to
Jurassic epiclastic rocks and marble that are cut by equigranular
hornblende quartz diorite (Fig. 4).

3.1. Country rocks

The contact between the epiclastic rocks and marbles is a
high-strain zone that includes isoclinal folds in the marble (Fig.
Sa) and is interpreted as a thrust fault (Mihalynuk et al., 2012).
Along strike to the west are limestones that yielded Permian to
Late Triassic conodont fauna (Orchard, 1993). Along the eastern
margin of the intrusion, the marble defines a garnet, diopside,
actinolite +wollastonite, quartz, carbonate and pyrite exoskarn
(Fig. 5b). Euhedral, zoned garnet has optically isotropic cores
and anisotropic rims, typical of skarn garnet that form along
the grossular-andradite garnet solid solution series (Deer et
al., 1997). Early Jurassic volcaniclastic sedimentary rocks
(Mihalynuk et al., 2012) structurally beneath the marble (Fig.
4) consist of buff to green weathering, medium bedded, graded
tuffaceous wacke. The tuffaceous component is represented by
angular plagioclase fragments and altered mafic minerals.

3.2. Hornblende quartz diorite intrusion

Unfoliated, medium- to coarse-grained equigranular
intrusion consists of quartz, plagioclase, K-feldspar, and
hornblende (Figs. 6a-c). Although the intrusion is relatively
homogeneous, the relative proportion of these minerals varies.
Hornblende prisms generally range from <l mm to 4 mm,
but are locally as large as 1 cm (Fig. 6b). Feldspars display
carlsbad, polysynthetic, and tartan twinning with discontinuous
and oscillatory zoning. Offsets of twin lamellae indicate some
deformation of the feldspar grains. Very fine myrmekite is
locally present between feldspar and quartz grains. Accessory
minerals include magnetite, hematite, pyrite, titanite, apatite,
and zircon. Magnetite, abundant in most samples, is partially
to extensively replaced by, and/or is intergrown with, high-
temperature hematite (Fig. 6d). Locally, zones of magnetite-
hematite exsolution are well developed. Pyrite disseminations
are common.

The intrusion contains angular to rounded diorite to gabbro
enclaves that range from decimetres to a metre in diameter
(Fig. 6a). These enclaves may represent cognate xenoliths and/
or disaggregated syn-magmatic sills, typical of Cordilleran
batholiths (Foster and Hyndman, 1990; Brown et al., 1996).
The intrusion is cut by rare mafic dikes, leucocratic dikes that
locally form subparallel and conjugate arrays, and a K-feldspar
and quartz porphyritic dike. Polymetallic mineralized quartz,
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Fig. 2. Simplified geological map of Iskut River — Telegraph Creek area highlighting Mesozoic plutonic suites. Black dashed line is approximate
location of the Eskay Rift.
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Fig. 3. Summary of Hazelton Group geochronologic and fossil data from the Iskut River area (modified after Cutts et al., 2015) shows a
prominent magmatic lull. Data compiled from Macdonald (1993), Childe (1994, 1996), Macdonald et al. (1996), Lewis et al. (2001), Evenchick
et al. (2010), Gagnon et al. (2012) and Cutts et al. (2015). Stage boundaries are from Cohen et al. (2013). Age range of the Cone Mountain

plutonic suite is from Brown et al. (1996).

and barren epidote and quartz-epidote veins are locally
abundant (see below).

3.3. Alteration of the hornblende quartz diorite intrusion
Alteration of quartz diorite is neither pervasive nor intense and
generally forms cm- to mm- scale haloes around mineralized
quartz veins (Figs. 7a-c). Alteration only partially replaces the
primary mineralogy, and consists of sericite, saussurite, epidote,
chlorite, carbonate, and Fe-oxide. Alteration intensity varies
throughout the intrusion. Some parts contain mainly sericite
and saussurite, with minor epidote and no chlorite. Elsewhere,
epidote, saussurite, and sericite alteration is predominant,
and chlorite is abundant. Alteration of plagioclase to sericite,
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saussurite, and epidote is particularly obvious in zoned
plagioclase crystals where only cores are altered. Hornblende
ranges from pristine to completely replaced by chlorite and
minor epidote. Carbonate, Fe-oxide, and clay minerals occur
along fractures and in-fill brecciated zones. Pyrite is consistently
rimmed by iron hydroxides. Alteration of the quartz diorite is
particularly intense near quartz veins as narrow selvages of
sericite-saussurite. Overall, the quartz diorite body exhibits
a macroscopic bleaching towards the most intensely veined
part of the intrusion, probably due to a combination of lower
modal hornblende abundance, replacement of hornblende by
light-weathering chlorite, and increased sericite and saussurite
alteration of feldspar.
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Fig. 4. a) Simplified geological map of the Surprise Mountain area (modified from Mihalynuk et al., 2012). b) Schematic cross-section of quartz
diorite and host sedimentary rocks. Approximate sample positions indicated by coloured triangles.

81
Geological Fieldwork 2015, British Columbia Ministry of Energy and Mines, British Columbia Geological Survey Paper 2016-1



Martin, Zagorevski, Mihalynuk, Joyce, and Creaser

o BT _ & I o

Fig. 5. Permian-Triassic marble, Surprise Mountain area. a) Folded (in part isoclinal) layering in immediate hanging wall of thrust fault.
Compositional layering in the marble consists of alternating silica and calcite-rich bands. b) Marble pod (light toned) in contact with quartz
diorite and enveloped by exoskarn.

-

Fig. 6. Hornblende quartz diorite. a) Enclaves of diorite in quartz diorite. b) Equigranular hornblende quartz diorite (sample ZE573) with
sparse hornblende phenocrysts. ¢) Cross-polarized transmitted light view of partially altered quartz diorite. d) Polarized reflected light view of
magnetite (mag) and hematite (hem), locally exhibiting exsolution texture.
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Fig. 7. Quartz veins in quartz diorite intrusion. a) Subparallel quartz veins cutting quartz diorite. b) Equigranular hornblende quartz diorite cut
by thin (4 mm) mineralized quartz veins with narrow alteration haloes (sample KO10B). ¢) Bleached granodiorite cut by weakly developed thin
quartz vein stockwork, with pyrite (py) and galena (gn) (sample KO12A). d) Molybdenite (mo) and pyrite (py) mineralization in a 10 cm thick
quartz vein (sample KO12B).

3.4. Polymetallic veins in the hornblende quartz diorite ilmenite, and sphalerite. Pyrrhotite, commonly intergrown
intrusion with chalcopyrite, forms blebs in pyrite (Fig. 8a). Pyrrhotite

Millimetre- to decimetre- scale quartz veins generally form  blebs locally contain sphalerite and bismuthinite. Covellite
parallel sets, but also crosscut and form weakly developed and chalcocite occur as rims on galena, and inclusions in
stockworks (Figs. 7a, b). The veins trend predominantly pyrite (Figs. 8b, c), suggesting replacement of chalcopyrite.
ENE-WSW, display moderate to steep dips (~55-70°), and  Bismuthinite inclusions within pyrite may display zonation
are subparallel to minor ductile shear zones and deformed from bismuthinite, to native bismuth, with rare zones of Bi-
dikes in the intrusion. Polymetallic sulphides in the quartz  Pb-sulphides (Fig. 8d). Pyrite overprints all minerals except
veins (Figs. 7¢, d) tend to form clots and commonly weather  molybdenite and Fe-oxides, which replace pyrite along
recessively. Mineralized quartz veins tend to be massive and  fractures (Figs. 8e, f). Overprinting of pyrite seems to increase
locally fractured and altered by Fe-oxide and hydroxides. towards the middle of the intrusion where galena, bismuthinite,
Microstructures observable in quartz include deformation and molybdenite abundance increases with intensity of
lamellae, bulging subgrains and subgrain rotation indicating  pyrite overprint. Replacement of chalcopyrite by covellite
elevated temperature during deformation (e.g., Passchier and  and chalcocite, and replacement of pyrite by Fe-oxide and
Trouw, 1998). hydroxide is interpreted as late stage alteration.

Mineralization in the quartz veins consists mainly of
pyrrhotite, chalcopyrite, and pyrite with subordinate galena, 4. Geochronology
molybdenite, bismuthinite, covellite, chalcocite, magnetite, We analyzed hornblende from two quartz diorite samples
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Fig. 8. Mineralization in polymetallic veins. a) Polarized reflected light view of chalcopyrite (cpy) and pyrrhotite (po) in pyrite (py). b) Polarized
reflected light view of covellite (cv) and chalcocite (cc) replacing chalcopyrite (cpy) in pyrite (py). ¢) Polarized reflected light view of pyrite (py)
enclosing galena (gn) with late(?) covellite (cv). d) Polarized reflected light view of bismuthinite (bis) and bismuth (bi) included in tarnished
pyrite (py). e) Partly uncrossed polarized reflected light view of molybdenite (mo) replacing py along fractures; pinkish blebs in pyrite are
pyrrhotite (po). f) Crossed polarized reflected light view of molybdenite (mo) in gangue.
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of the Surprise Mountain intrusion using laser “Ar/*Ar step-
heating and molybdenite from one sample of a crosscutting
quartz vein that contains disseminated sulphides using Re-Os
isotopes.

4.1. “Ar/*Ar methods

Samples 14ZEK009 and 11ZE573 were processed for
“0A1/*Ar analysis by standard preparation techniques, including
hand-picking of fresh unaltered grains of hornblende in the
size range 0.25 to 1.0 mm. Individual hornblende separates
were loaded into aluminum foil packets along with grains of
Fish Canyon Tuff Sanidine (FCT-SAN) to act as flux monitor
(apparent age = 28.201 £0.023 Ma; 1o, Kuiper et al., 2008).
The sample packets were arranged radially inside two separate
aluminum canisters; sample 14ZEK009 was included in sample
batch GSC #69 and sample 11ZE573 was included in sample
batch GSC #70. Both sample batches were submitted for 160
MWh irradiations (Cd-shielded) in the medium flux position
8B at the research reactor of McMaster University in Hamilton,
Ontario, Canada.

Laser “Ar/*Ar step-heating analysis was carried out at the
Geological Survey of Canada Noble Gas laboratory in Ottawa,
Ontario. Upon return from the reactor, samples were split into
one or more aliquots each and loaded into individual 1.5 mm-
diameter holes in a copper planchet. The planchet was then
placed in the extraction line and the system evacuated. Heating
of individual sample aliquots in steps of increasing temperature
was achieved using a Photon Machines, Inc. Fusions 10.6 S5W
CO, laser equipped with an optical beam-flattening homogenizer
lens. The released Ar gas was cleaned in the extraction line
over two hot SAES™ NP-10 getters of St 707 alloy (Zr-V-Fe)
held at ~400°C (to remove nitrogen, oxygen, hydrocarbons,
water and other active gases) and a room-temperature getter
containing HY-STOR® 201 calcium-nickel alloy pellets (to
remove hydrogen), and then analyzed isotopically using a
Nu Instruments multicollector Noblesse mass spectrometer,
equipped with a Faraday detector and three ion counters. The
analyses were run in ion counter multicollection mode (‘MC-
Y’ mode; additional analytical details provided in Kellett and
Joyce, 2014). Blank measurements were made throughout the
analytical sessions, the values for which are included in the
footnotes of Table 1. Mass fractionation and detector efficiencies
were determined from repeated measurements of air aliquots
carried out throughout the analytical sessions, whereby “Ar
and *Ar signals were measured on all collectors. “Ar/*°Ar
ratios were then determined for each collector individually, and
for each combination of collectors. Detector inter-calibration
methods are described in further detail in Kellett and Joyce
(2014). Data reduction and age calculations were performed
using Mass Spec software version 7.93; details regarding data
reduction, error propagation and age calculation are outlined
in Deino (2001). The software applies and propagates errors
for all corrections, including detector inter-calibration factors.

Corrected argon isotopic data are listed in Table 1, and
presented in Figure 9 as spectra of gas release or on inverse-
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isochron plots. For gas release spectra, both the apparent ages
and plateau ages calculated from the step-heating analyses rely
on the assumption that atmospheric argon has a *°Ar/**Ar ratio
0f 298.56 (Lee et al., 2006; Mark et al., 2011). For this report,
a plateau age is defined as an age derived from three or more
consecutive heating steps that are statistically equivalent at
95% confidence level, and comprise greater than 50% of the
total *?Ar released. In cases where excess “’Ar is suspected in
a sample, data are plotted on the inverse isochron diagram,
where Ar/*Ar is plotted against **Ar/*Ar for each analysis
(after correction for irradiation-produced interfering isotopes
and mass spectrometer discrimination; Roddick, 1988).

Neutron flux gradients throughout the sample canister were
evaluated by analyzing the FCT-SAN sanidine flux monitors
included with each sample packet and interpolating a linear
fit against calculated J-factor and sample position. The error
on individual J-factor values is conservatively estimated at
+0.6% (20). Because the error associated with the J-factor is
systematic and not related to individual analyses, correction
for this uncertainty is not applied until calculation of dates
from isotopic correlation diagrams (Roddick, 1988). Errors
in the plateau and inverse isochron ages do not include the
errors of decay constants. Nucleogenic interference corrections
were (YAr/PAr), = 0.025 £.005, (*Ar/*Ar), = 0.011 £0.010,
(“Ar/7Ar) = 0.002 £0.002, (°Ar/*’Ar) , = 0.00068 £0.00004,
(*Ar/7Ar), = 0.00003 +0.00003, (°Ar/’Ar). = 0.00028
+0.00016. The decay constant used was *KA_  =5.463 £0.214
x 10%a (20) from Min et al. (2000). All errors are quoted at
the 26 level of uncertainty. The ‘MSWD’ is defined as the mean
square of weighted deviates.

4.2. “Ar/*Ar results
4.2.1. Sample 14ZEKO009; hornblende quartz diorite
Hornblende from this sample is clean, fresh, and dark brown
to black. One aliquot was analyzed, yielding a flat four-step
plateau, giving an age of 178 £2 Ma (Fig. 9a; MSWD = 1.14,
96.8% of total *Ar). This age overlaps within error with the
inverse isochron hornblende age of sample 11ZE573 and Re-
Os age (see below).

4.2.2. Sample 11ZE573; equigranular hornblende quartz
diorite

Hornblende grains from this sample are clean, fresh, and
dark brown. The degassing behaviour of the hornblende was
unpredictable and inconsistent from one aliquot to the next,
with most of the gas commonly being released in one or two
heating steps. Four aliquots were analyzed, each with slightly
different heating schedules, with hopes of achieving more
evenly-distributed gas releases. An evenly-distributed pattern
was not obtained, and three of four aliquots yielded downward-
stepping spectra, best exhibited in Aliquot #1 (Fig. 9b, inset
1). Aliquots #2 and #4 gave plateau and pseudo-plateau ages
of 183 and 182 Ma, respectively. However, when plotted
on the inverse isochron diagram, most data points from all
four aliquots fall below the atmospheric line, confirming the
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Fig. 9. a) Gas-release spectrum for hornblende from sample 14ZEK009. The integrated age is the total-gas age, calculated by weighting the
individual steps by the fraction of *°Ar released. b) Inverse isochron plot for hornblende from diorite sample 11ZE573. Colours of ellipses
correspond to colours of the aliquots shown in the inset. Filled ellipses are the data points used to calculate the inverse isochron age. Unfilled
ellipses were not included in the age calculation. Errors are shown at 2. Note that the regression line is heavily controlled by the first heating
steps of Aliquots #2 and #3. Inset: Gas-release spectra for Aliquots #1 through #4. The filled boxes are the heating steps that are included in the
inverse isochron age calculation. Only the steps comprising greater than 1% of the *’Ar are plotted.

presence of excess “°Ar in the sample (Fig. 9b). The scatter of
the 38 data points is likely due to degassing of multiple argon
reservoirs of different **Ar/**Ar composition, such as mineral
and/or fluid inclusions. Heterogeneity within the grains is
further evidenced by the variable Ca/K measured throughout
the analyses; Ca/K values range between ~5 and 22 (Table 1).
Using the York (1969) linear least squares regression procedure
(invoking the Students’ t-test), the inverse isochron age obtained
for 23 nearly collinear data points is 179 £2 Ma (MSWD = 3.2),
corresponding to a trapped Ar composition of “Ar/**Ar = 510
+20. The regression slope is heavily controlled by only two data
points (the first heating steps of Aliquots #2 and #3), whereas
the other 21 points are clustered near the x-axis. A more robust
inverse isochron age is obtained when the data are spread more
evenly along the regression line; however the 179 £2 Ma age
is considered the best approximation of the hornblende cooling
age for this sample.

4.3. Re-Os methods

Re-Os age geochronology of molybdenite was conducted at
the University of Alberta, Edmonton, Alberta. A molybdenite
mineral separate was made for the sample through metal-free
crushing, followed by gravity and magnetic concentration
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methods, which are described in detail by Selby and Creaser
(2004). The "Re and '®’0Os concentrations in the molybdenite
separate were determined through isotope dilution mass
spectrometry using Carius-tube, solvent extraction, anion
chromatography, and negative thermal ionization mass
spectrometry techniques. During this process, a mixed double
spike containing known amounts of isotopically enriched
185Re, 1°0Os, and '"¥0s analysis was used (Markey et al.,
2007). Isotopic analysis used a ThermoScientific Triton mass
spectrometer by Faraday collector. Total blanks for Re and
Os are less than <3 picograms and 2 picograms, respectively,
which are insignificant for the Re and Os concentrations in
molybdenite. The molybdenite powder HLP-5 (Markey et al.,
1998) was analyzed as a standard, and over a period of two years
an average Re-Os date of 221.56 +£0.40 Ma (1SD uncertainty,
n = 10) was obtained. This Re-Os age date is identical to that
reported by Markey et al. (1998) of 221.0 £1.0 Ma.

4.3.1. Re-Os results

Sample 142EK-012B is from a massive quartz vein containing
minor disseminated sulphides that cuts rocks of the Surprise
Mountain intrusion. Some quartz grains have deformation
lamellae and display undulose extinction. Bands of small
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subgrains define minor shear zones in the quartz vein. Pyrrhotite
and chalcopyrite occur as inclusions in pyrite. Molybdenite
replaces pyrite along fractures and forms aggregates >400p.
The molybdenite mineral separate yielded a Re-Os model age
of 180.2 0.8 Ma (Table 2). The age uncertainty is quoted at
26 (95% confidence) level of precision, and includes all known
analytical uncertainty (all sources of error), including the
uncertainty in the decay constant of '’Re. Because molybdenite
overprints other sulphides, mineralization was before 180.2
+0.8 Ma, as was emplacement of the host quartz diorite.

5. Geochemistry of the Surprise Mountain intrusion

Major and trace element geochemical analysis of samples
from the Surprise Mountain intrusion (Table 3) followed sample
preparation to remove zones of weathering and alteration using
a diamond saw. Samples were analyzed by ICP-ES and ICP-MS
following lithium metaborate/tetraborate fusion and nitric acid
or Aqua Regia digestion at ACME Laboratories (Vancouver,
BC; analytical packages 4A4B and 1DX) and Activation
Laboratories (Ancaster, ON; analytical package 4Lithores).
The accuracy is typically 5 to 20% if the analyte is at least 10
times the stated detection limit.

Calculated modal mineral contents indicate that the
composition of the intrusion varies broadly from granodiorite,
quartz diorite to quartz monzodiorite (Fig. 8a; Whalen and Frost,
2013), consistent with modal mineral variations observed in
samples. All samples plot along the calc-alkalic magmatic trend
(Fig. 10a). Calculated Fe,0,/FeO ratios (Irvine and Baragar,
1971) for all samples exceed 0.5, indicative of magnetite-series
granitic rocks (Ishihara 1977, 1981). This is consistent with the
common presence of magnetite and high-temperature hematite,
and relatively high magnetic susceptibility (average 15.8 x 1073
SI).

On normalized extended trace element plots (Fig. 10) samples
yield similar trace element profiles. Samples normalized to
primitive mantle (Fig. 10b) show an overall enrichment of
large ion lithophile elements (LILE), and an enrichment of
light rare earth elements (LREE) relative to heavy rare earth
elements (HREE). The samples also display depletion of high
field strength elements Nb, Ta, and Ti. Samples normalized
to petrographically least altered sample K004, yield very
similar trace element profiles, indicating only small differences
between samples (Fig. 10c). The largest differences are in Cs,
Rb Nb, K and Pb. The homogeneity in major and trace element
contents displayed by samples from the Surprise Mountain
intrusion suggests limited assimilation, fractionation, and
alteration.

6. Geochemistry of mineralization

We analyzed 12 mineralized samples from the Surprise
Mountain intrusion (Table 4). Samples were cut using a
diamond saw to retain representative slabs of mineralized
zones for petrographic analysis and a split was submitted for
geochemistry. Major and trace elements were analyzed using
ICP-ES and ICP-MS following lithium metaborate/tetraborate
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Fig. 10. Geochemical characteristics of quartz diorite. a) Normative
quartz-feldspar discrimination diagram (Whalen and Frost, 2013).
b) Primitive mantle-normalized extended trace element plot (values
from Sun and McDonough, 1989). ¢) K004-normalized extended trace
element plot.

fusion and Aqua Regia digestion at ACME Laboratories
(Vancouver, BC; analytical package 1DX) and Activation
Laboratories (Ancaster, ON; analytical package AQ251 EXT).
Accuracy is typically in the 1-3% range as long as the analyte
is present at 20 times the detection limit.

Analytical result show wide variability of all elements, with
the exception of Ag, which is consistently elevated in all samples
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Table 2. Re-Os istotopic data and ages.

Sample Reppm +2c 'Reppb +20

'¥70s ppb +20 Model Age (Ma) + 20 (Ma)

142EK-012B 55.55 0.16 34.92 0.1

105 0.1 180.2 0.8

relative to the host intrusion, in which Ag is consistently below
the detection limit (<0.5 ppm). Some samples are eclevated
in Bi, Pb, Mo, and W relative to host intrusion where these
elements are below or at the detection limit (0.1, 5, 2, 0.5 ppm
respectively). Au is consistently near the limits of detection in
all samples.

7. Discussion

7.1. Relationship between the Surprise Mountain intrusion
and the Cone Mountain plutonic suite and timing of
thrusting, intrusion, and mineralization

The “Ar/*Ar (178 £2 and 179 +2 Ma) cooling and Re-
Os mineralization (180.2 +0.8 Ma) ages and the lithological
characteristics described above suggest that the Surprise
Mountain pluton is part of the Cone Mountain plutonic suite
(187-180 Ma), and part of a north-trending belt from the
Iskut River to Telegraph Creek (Fig. 2). Brown et al. (1996)
noted that the Cone Mountain suite characteristically contains
abundant angular diorite enclaves, as is seen in the Surprise
Mountain quartz diorite, and a common feature in calc-alkaline
granitic rocks (Foster and Hyndman, 1990).

Quartz diorite cuts isoclinaly folded Triassic marble and cuts
across the thrust contact between this marble and structurally
underlying volcano-sedimentary rocks (Fig. 4). Thus thrusting
must have been before ~180 Ma (age of the late syn-intrusive
mineralization) and after deposition of the footwall volcano-
sedimentary rocks that are intercalated with ~187 Ma dacitic
tuff breccia to the northeast (Zagorevski et al. unpublished
data). This is similar to the relationship observed to the north,
where Pliensbachian volcanic rocks (185 +7/-2 Ma: Brown et
al., 1996) unconformably overlie folds and thrusts developed
in the Stuhini Group. Emplacement of the quartz diorite
broadly coincides with the volcanic Iull at the transition from
the subaerial and marine arc-related Betty Creek formation to
rift related submarine magmatism of the Iskut River Formation
in the Eskay rift (Fig. 2; Gagnon et al., 2012; Lewis et al.,
2013). These stratigraphic relationships are well displayed
on the flanks of the McTagg anticlinorium to the east (Fig. 2;
Cutts et al., 2015 and references therein). This fundamental
tectonic shift was accompanied by a change from porphyry-
epithermal styles to volcanogenic massive sulphide styles of
mineralization (e.g., Macdonald et al., 1996).

7.2. Polymetallic vein mineralization

Sheeted, subparallel mineralized quartz veins (Fig.
11) suggest emplacement in a dilatational brittle regime.
Textural relationships between mineral phases suggest three
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mineralizing events: 1) early polymetallic mineralization, with
mainly pyrite; 2) an overprinting molybdenum-rich event; and
3) a late, more oxidized event leading to Cu remobilization
and deposition of chalcocite and covellite. It is unclear if
the different compositions recorded by these events resulted
from continuous fluid evolution or from distinct fluid pulses
overprinting earlier assemblages.

Despite the apparent lack of Au in the polymetallic veins
(<15 ppb), the occurrence displays high concentrations of Au
indicator elements including Bi (>2000 ppm) and W (>100
ppm) (Robb, 2005). Strong enrichment of Ag (up to 17 ppm)
may be correlated with Au elsewhere within the system (e.g.,
Robb, 2005). Lack of elevated Au in all 12 samples analyzed
suggests that the analyzed Au contents are representative of the
sheeted veins in this area. The principal hydrothermal fluids
appear to have been lacking Au in this part of the system.

The nature of the mineralization, including association with
vein arrays, sulphide mineral assemblage, Ag enrichment, and
lack of alteration are most consistent with polymetallic Ag-Pb-
Zn+Au or CutAg quartz deposit types (Lefebure and Church,
1996). These deposits typically display limited alteration and an
association with calc-alkaline granititic rocks and are contained
by steeply dipping, narrow, tabular or splayed subparallel vein
sets. These deposits may be peripheral to skarn or porphyry
mineralization (Lefebure and Church, 1996) as is observed at
Surprise Mountain, where mineralization is close to a garnet,
diopside, actinolite £wollastonite, quartz, carbonate and pyrite
exoskarn. The true nature and full regional extent of the alteration
and mineralization remains unclear, as pathfinder metals such
as Biand W were not traced outside of the study area, and skarn
was not investigated for potential mineralization. However,
quartz-carbonate veins with dissseminated galena, sphalerite,
tetrahedrite, and arsenopyrite were previously reported on the
northeastern margin on this intrusion (MINFILE 104B 130).
These yielded assays of up to 1698 grams per tonne silver and
up to 12.75 grams per tonne gold (Holbek, 1983).

7.3. Comparison to other Jurassic deposits in the Iskut
River area

Significant deposits near the Surprise Mountain body include
Red Bluff, Snip, and Johnny Mountain, all of which are older
(Fig. 2). The Red Bluff intrusion (195 +1 Ma; Macdonald et
al.,, 1996) consists of K-feldspar megacrystic, plagioclase
porphyritic quartz diorite to quartz monzonite (Burgoyne and
Giroux, 2007). In contrast to the Surprise Mountain body, the
Red Bluff intrusion is moderately to intensely hydrothermally
altered by K-feldspar-biotite-magnetite and later sericite-
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Intrusion carapace;
medium grained equigranular

Intrusion; coarse grained

Aplite dykes Marble

Mineralized quartz veins

a)

Contact Exoskarn

Ag-Mo-W-Cu

Mo-W-Cu-Au?

Cu-W-Au?

b)

Fig. 11. Schematic model for polymetallic vein mineralization near Surprise Mountain in plan view a) and vertical cross-section b). Present
erosion level may expose only the shallow, low-temperature part of the mineralizing system.

quartz-pyrite-albite assemblages (Macdonald et al., 1996;
Burgoyne and Giroux, 2007). Mineralization comprises quartz-
magnetite-hematite stockwork veins, disseminated pyrite-
chalcopyrite, quartz-Fe-oxide stockwork, and quartz-pyrite-
chalcopyrite veins and veinlets (Burgoyne and Giroux, 2007).
The related Snip (Au-Cu-Mo) and Johnny Mountain (Au-
Ag-Pb-Zn) deposits are precious metal-rich veins hosted by
Triassic and Jurassic sedimentary rocks, and are spatially and
genetically related to the Red Bluff porphyry deposit (Burgoyne
and Giroux, 2007). At Snip, syn-tectonic quartz and sulphide
veins (pyrite-pyrrhotite) were emplaced in a southwest-dipping
brittle-ductile fault zone (Macdonald et al., 1996). At Johnny
Mountain, auriferous quartz-pyrite veins commonly contain
pyrrhotite, chalcopyrite, sphalerite, magnetite, pyrargyrite,
and galena (Macdonald et al., 1996). Veins are typically 0.5 to
2 m thick and are surrounded by potassium feldspar alteration
envelopes that are up to several times the vein width (Macdonald
et al., 1996). The intensity and character of alteration and the
potassic character of the host intrusion distinguishes the Red
Bluff, Snip, and Johnny Mountain deposits from the Surprise
Mountain occurrence, where the alteration is limited to narrow
haloes around veins, and the host pluton is a calc-alkalic quartz
diorite. Calc-alkalic members of the Cone Mountain plutonic
suite at the Strata Glacier pluton (Fig. 2) are associated with
polymetallic vein systems (Brown et al., 1996) suggesting that
these may be more prospective than previously known.

8. Conclusions

The Surprise Mountain intrusion is a calc-alkaline, I-type,
magnetite-series, medium- to coarse-grained, equigranular
hornblende quartz diorite. The intrusion cuts a northeast-
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vergent thrust fault that stacked Permian to Late Triassic
marbles above Early Jurassic (<187 Ma) volcaniclastic rocks.
Samples from the intrusion yielded “°Ar/*’Ar hornblende
cooling ages of 178 +£2 and 179 +2 Ma. An Upper-Lower
Jurassic molybdenite Re-Os age of 180.2 +0.8 Ma defines
the minimum age of mineralization, and the minimum age of
the host intrusion, implying that thrusting was between ~187
and 180 Ma. Lithological variation and enclave abundance,
in conjunction with the minimum 180.2 £0.8 Ma age, suggest
that the intrusion is part of the Cone Mountain plutonic suite
(187-180 Ma). Polymetallic mineralization displays high
concentrations of indicator elements including Bi (>2000 ppm)
and W (>100 ppm), consistent enrichment of Ag (<17 ppm),
significant Pb (>2000 ppm) and Mo (>700 ppm), and trace
amounts of Au (<14.8 ppb). Low Au contents, weak alteration,
and lack of metal zonation differentiates this occurrence from
nearby porphyry-related vein deposits like Snip and Johnny
Mountain, 20 km to the east-southeast. Sheeted quartz veins
in the Surprise Mountain quartz diorite are part of a weakly-
developed intrusion-hosted polymetallic vein system. This
system displays an Ag-Bi-Pb-Mo-Cu elemental association
that is not well known in the Iskut River area. Despite the lack
of analyzed Au, persistently elevated Ag and other pathfinder
elements, especially W and Bi, suggest that the sheeted vein
system warrants further investigation. Additionally, strong
skarn development in marble in the hanging wall of a thrust
fault should be evaluated, especially considering that Au-
bearing skarns are documented around other Cone Mountain
plutonic suite intrusive rocks (Brown et al., 1996). Further work
is necessary to determine the spatial extent of mineralization in
the Surprise Mountain intrusion, and to better determine the
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relationship between Cone Mountain plutonic suite bodies
and polymetallic vein mineralization in northwestern British
Columbia.
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