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Abstract
The oldest units in the Latham Creek and Pallen Creek area are penetratively deformed meta-sedimentary and volcanic rocks and limestones 

of the Stikine assemblage (upper Paleozoic). These rocks are overlain (likely unconformably) by a volcano-sedimentary sequence informally 
referred to as the Tsaybahe group (Lower-Middle Triassic), which is succeeded by the Stuhini Group (Upper Triassic). We subdivide the Tsaybahe 
group into a sedimentary unit of fi ne-grained siliciclastic rocks and minor chert, and a volcanic unit of monomictic tuff breccia with plagioclase-
augite-phyric volcanic clasts. Tsaybahe volcanic rocks appear texturally similar to the overlying Stuhini Group, but are separated based on their 
stratigraphic position atop of the Stikine assemblage, rare Middle Triassic biostratigraphic ages, low magnetic susceptibility, and low response on 
regional aeromagnetic surveys. Stuhini Group volcanic rocks include massive monomictic tuff breccia and lapilli-tuff with augite-plagioclase-
phyric volcanic clasts, have a high magnetic susceptibility, and display a high and variable response on regional aeromagnetic surveys. Triassic 
and older stratifi ed rocks are cut by Late Triassic stocks and plutons ranging from ultramafi c to gabbro, hornblende-rich quartz diorite and 
hornblende quartz monzonite in composition. Triassic units generally lack penetrative tectonic fabrics and are deformed into map-scale open 
folds. An outlier of volcano-sedimentary rocks assigned to the upper part of the Hazelton Group is inferred to unconformably overlie the Triassic 
rocks. The succession (~500 m thick) includes two sedimentary units that are overlain by a maroon volcanic unit, which is capped by a felsic 
volcanic unit. Based on lithological and stratigraphic criteria, the sedimentary units are assigned to the Spatsizi Formation and the volcanic 
units to the Horn Mountain Formation. Three Middle Jurassic plutons are exposed in the area, ranging in composition from biotite-hornblende 
quartz diorite to biotite monzogranite. Developed within or adjacent to these plutons are zones of alteration and mineralization containing locally 
elevated copper, gold, silver and/or molybdenum in fractures, veins, skarns, and gossans.

Augite-phyric mafi c volcanic units in each of the Tsaybahe group, Stuhini Group, and Horn Mountain Formation, although temporally distinct, 
are texturally similar. Compared to widespread exposures of mafi c volcanic rocks of the Stuhini Group in northern Stikinia, occurrences of the 
Tsaybahe group and its correlatives are rare. However, owing to a lack of age constraints, we consider that Tsaybahe group exposures may have 
been included in the Stuhini Group and suggest that the unit is more extensive than currently recognized. The Tsaybahe group may represent 
nascent Middle Triassic arc volcanism before widespread Upper Triassic Stuhini arc activity. 

Keywords: Stikine assemblage, Tsaybahe group, Stuhini Group, Spatsizi Formation, Horn Mountain Formation, Hazelton Group, Latham Creek 
pluton, Cake Hill pluton, Three Sisters pluton, Pallen Creek pluton, Tanzilla pluton, Hotailuh batholith, Paleozoic, Permian, Triassic, Jurassic, 
Stikine terrane.

1. Introduction
Mapping near Dease Lake (Figs. 1, 2) has highlighted 

temporally distinct, but texturally similar augite-phyric mafi c 
volcanic units in each of the Tsaybahe group (Lower-Middle 
Triassic; Read, 1983; 1984), Stuhini Group (Upper Triassic; 
Logan et al., 2012a) and Horn Mountain Formation (Lower to 
Middle Jurassic; van Straaten and Nelson, 2016; van Straaten 
and Gibson, 2017; van Straaten and Bichlmaier, 2018a). 
Continuing as part of a multi-year program, two fi eld teams 
spent six weeks mapping at a 1:20,000 scale in the Latham 
Creek and Pallen Creek area, south of Dease Lake (Fig. 2; NTS 
104J/01 and parts of 104I/04, 05; 104J/08). Because access 

was limited by wildfi res, the geology of the south central and 
southwestern parts of the study area (Fig. 2) is interpreted from 
previous mapping by Read (1983; 1984) and Gabrielse (1998), 
and an aeromagnetic survey by Aeroquest Airborne (2012). 

Our study confi rms the presence of Read’s (1984) Tsaybahe 
group (Lower-Middle Triassic). It can be distinguished from 
younger units based on its stratigraphic position, presence 
of a lithologically characteristic sedimentary unit, presence 
of Lower-Middle Triassic microfossils (Read, 1983; 1984; 
Gabrielse, 1998; Golding et al., 2017), and low magnetic 
susceptibility values and a low response on Aeroquest 
Airborne’s (2012) aeromagnetic survey. We use these criteria to 
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reinterpret Triassic stratigraphic assignments in the study area 
and consider if the Tsaybahe group and its equivalents are more 
extensive in northern Stikinia than previously appreciated.

2. Geological setting
The study area is in the Intermontane belt of the Canadian 

Cordillera, near the northeastern margin of the Stikine terrane 
(Stikinia; Fig. 1). Stikinia is a multi-episodic volcanic island 
arc terrane that accreted to ancestral North America during the 
Middle Jurassic (Nelson and Mihalynuk, 1993; Mihalynuk et 
al., 1994; Evenchick et al., 2007; Nelson et al., 2013). Volcanic 
and sedimentary rocks of the Stikine assemblage (Devonian 
to Permian), basement to Stikinia, are overlain by volcanic 
and related sedimentary rocks of the Stuhini Group (Triassic) 
and the Hazelton Group (Lower to Middle Jurassic; Tipper 
and Richards, 1976; Marsden and Thorkelson, 1992). Also 
in the Intermontane belt, the Quesnel terrane (Quesnellia) 
is a volcanic island arc with a similar Devonian to Early 
Jurassic history. The two volcanic arcs are separated by the 
Cache Creek terrane (Fig. 1), an accretionary complex of 
oceanic crustal rocks, primitive arc ophiolites, pelagic rocks, 
carbonate rocks, and blueschists. The northeastern margin 
of Stikinia and adjacent Cache Creek terrane are covered by 
Lower Jurassic siliciclastic rocks of the Whitehorse trough 
(Colpron et al., 2015). Accretion of Stikinia to the Cache Creek 
terrane, Quesnellia, and ancestral North America is recorded by 
deposition of Bowser Lake Group siliciclastic rocks (Middle 
Jurassic) in a foreland basin atop Stikinia (Evenchick et al., 
2007). Combined, Stikinia and Quesnellia host most of the 
porphyry copper deposits in the Canadian Cordillera (Logan 
and Mihalynuk, 2014). 

3. Lithostratigraphic units
In the study area, Paleozoic to Middle Jurassic 

lithostratigraphic units of Stikinia are overlain by Cretaceous 
and younger overlap units (Figs. 2, 3; Table 1). The oldest rocks 
are part of the Stikine assemblage (Devonian-Permian). These 
basement rocks are overlain by three temporally distinct, but 
texturally similar, augite-phyric mafi c volcanic and related 
sedimentary successions. The oldest succession, informally 
referred to as the Tsaybahe group by Read (1984), is Early-
Middle Triassic, and is recognized only locally in northern 
Stikinia. The second succession comprises Late Triassic mafi c 
volcanic and sedimentary rocks of the Stuhini Group. These 
rocks are widespread throughout northern Stikinia. In the 
northwestern part of the map area is an outlier of sedimentary 
and volcanic rocks of the Spatsizi and Horn Mountain 
formations (upper part of the Hazelton Group) as defi ned by 
van Straaten and Nelson (2016), van Straaten and Gibson 
(2017) and van Straaten and Bichlmaier (2018a).

Within the study area, low magnetic susceptibility values 
(Fig. 4) and a low response on Aeroquest Airborne’s (2012) 
aeromagnetic survey characterize all Triassic rocks lying 
immediately above the Stikine assemblage, all units containing 
accurately located Lower-Middle Triassic fossil collections 
(Read, 1983; Read, 1984; Gabrielse, 1998; Golding et al., 
2017) and all Triassic fi ne-grained sedimentary rock units. In 
contrast, high magnetic susceptibility values and a high and 
variable aeromagnetic response characterize stratigraphically 
higher Triassic strata that contain rare Upper Triassic conodonts 
(Read, 1984; Gabrielse, 1998; Logan et al., 2012b; Golding 
et al., 2017). We used this observation to reinterpret Triassic 
stratigraphic assignments east of the Plateau fault (Fig. 2).

In the following we use classifi cations for sedimentary rocks 
from Hallsworth and Knox, (1999) and for igneous rocks from 
Gillespie and Styles (1999).

3.1. Stikinia
3.1.1. Stikine assemblage (Devonian-Permian)

Stikine assemblage rocks are exposed in the northwestern 
and southeastern parts of the map area (Fig. 2); observations 
presented herein are based mainly on work in the northwestern 
part. We recognize a meta-sedimentary unit (DPSs), a volcanic 
unit (DPSv) and a limestone unit (DPSls; Table 1). These 
units are folded and generally show a well-developed phyllitic 
foliation. Although way-up indicators were not observed, 
the limestone unit seems to overlie the meta-sedimentary 
unit (see Section 5.1.). The volcanic unit forms a lens in the 
meta-sedimentary unit (Figs. 2, 3). Contacts between units 
are not exposed. Direct age constraints are only available for 
the limestone unit; it contains Early-Middle Permian fossils 
(Table 1). 

3.1.2. Tsaybahe group (Lower-Middle Triassic)
Based on mapping near the Stikine River that overlaps with 

our study area (Fig. 2b), Read (1984) introduced the Tsaybahe 
group as an informal name for a section of Lower-Middle 

Fig. 1. Location of study area, modifi ed after Nelson et al. (2013).
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Triassic sedimentary and mafi c volcanic rocks. He subdivided 
the group into four units (basal sedimentary, lower volcanic, 
middle sedimentary, upper volcanic), and interpreted that they 

underlie most of the current study area. Both sedimentary 
units yielded Middle (and rare Lower) Triassic conodonts 
(Read, 1983; 1984). The lower and upper volcanic units 
comprise texturally similar mafi c volcanic rocks (Read, 1983; 
1984). Based on the diffi culty of separating Read’s lower and 
upper volcanic units on a regional scale, particularly where 
intervening sedimentary rocks are not exposed, Gabrielse 
(1998) discontinued the use of Tsaybahe group. Instead 
Gabrielse (1998) assigned all of Read’s units to the Stuhini 
Group, which he mapped as undivided Triassic. In this study 
we retain the Tsaybahe group to include all Early to Middle 
Triassic volcano-sedimentary rocks, and subdivide it into a 
volcanic unit and a sedimentary unit (Table 1). Following 
Gabrielse (1998), we generally include Read’s (1983; 1984) 
upper volcanic unit in the Stuhini Group (Table 1), but based 
on studies throughout northern Stikinia (e.g., Souther, 1971; 
Logan and Koyanagi, 1994; Brown et al., 1996; Mihalynuk, 
1999) we consider that the Stuhini Group formed entirely in 
the Late Triassic. 

The Tsaybahe group sedimentary unit we mapped (lmTrTs, 
Table 1) comprises fi ne-grained siliciclastic rocks (Fig. 5) and 
minor chert. It includes Read’s (1983; 1984) basal sedimentary 
unit and most exposures of his middle sedimentary unit. It can 
generally be distinguished from Stuhini Group sedimentary 
rocks (Table 1) based on the presence of minor chert and 
a greater abundance of argillite, siltstone, and fi ne-grained 
sandstone relative to medium- to coarse-grained volcaniclastic 
sandstone. The Tsaybahe group volcanic unit (lmTrTvm, Table 
1) contains massive monomictic tuff breccia with plagioclase-
augite-phyric volcanic clasts. It appears texturally similar to 
Stuhini Group volcanic rocks, but has magnetic susceptibility 
values that are more than one order of magnitude lower (Fig. 4). 
It includes occurrences of Read’s (1983; 1984) lower and upper 
volcanic unit displaying a low magnetic susceptibility and a 
low response on aeromagnetic surveys. 

Contacts between the Tsaybahe group and underlying Stikine 
assemblage are not exposed, but the lack of widespread tight, 
north-northeast trending folds and accompanying phyllitic 
foliation in Triassic and younger rocks (see Section 5.2.), bedding 
in basal Tsaybahe units that dips away from Stikine assemblage 
exposures (Fig. 2; Read, 1983; 1984; Logan et al., 2012b; this 
study) and an apparent ca. 20 m.y. gap in biostratigraphic 
ages (Fig. 3) suggest an unconformable relationship. We note 
signifi cant lateral variation in the character of basal Tsaybahe 
strata; Stikine assemblage rocks in the west of the map area 
are overlain by Tsaybahe volcanic rocks, whereas in the east 
they are overlain by Tsaybahe sedimentary rocks (Fig. 2; 
Read, 1983; 1984; Logan et al., 2012b; this study). The contact 
between the Tsaybahe sedimentary and volcanic unit is exposed 
immediately south of Thenatlodi Mountain, where interbedded 
siliceous argillite and fi ne sandstone are conformably overlain 
by lapillistone with plagioclase-augite-phyric volcanic and 
minor chert clasts. 

Fig. 3. Schematic stratigraphic and plutonic relationships for Permian 
to Jurassic rocks in the map area. References for geochronological 
and biostratigraphic age constraints listed in Tables 1 and 2. 
Chronostratigraphic ages from Cohen et al. (2013, updated August 
2018).
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3.1.3. Stuhini Group (Upper Triassic)
The Stuhini Group crops out in the southwestern, central 

and northwestern parts of the map area (Fig. 2) and comprises 

volcanic and minor sedimentary rocks. The volcanic unit 
contains massive monomictic tuff breccia and lapilli-tuff 
with augite-plagioclase-phyric volcanic clasts (uTrSTvm, 
Table 1; Fig. 6). It locally includes signifi cant proportions of 
augite-plagioclase-phyric coherent rocks that may represent 
subvolcanic intrusions or fl ows. The unit has high magnetic 
susceptibility values (Fig. 4) and returned one early Carnian 
conodont collection (Read, 1984; Gabrielse, 1998; revised 
by Golding et al., 2017). A sedimentary unit, mostly fi ne- to 
medium-grained volcaniclastic feldspathic arenite (uTrSTsv, 
Table 1), forms <140 m-thick intervals within the Stuhini 
volcanic unit in the centre of the map area. Due to a lack of 
exposures we were unable to observe the contact between the 
Tsaybahe and Stuhini groups.

3.1.4. Upper part of the Hazelton Group (Lower-Middle 
Jurassic)

Peak 1979 m and the surrounding high ground expose 
maroon volcanic and felsic volcanic rocks that are distinct 
from surrounding Triassic rocks (Fig. 2). Read (1984) 
assigned the sequence to the Toodoggone volcanics (Lower 
Jurassic), whereas Gabrielse (1998) interpreted them as an 
undifferentiated Triassic-Jurassic volcanic unit. We recognize 
two lower sedimentary and two upper volcanic units, and 
expand the areal extent of Jurassic rocks. We assign the 
sedimentary units to the Spatsizi Formation and the volcanic 
units to the Horn Mountain Formation (both late Early to Middle 
Jurassic and in the upper part of the Hazelton Group), based 

Fig. 4. Box and whisker plots showing magnetic susceptibility values for stratifi ed and intrusive units, ordered from old (left) to young (right). 
Each magnetic susceptibility value represents the average of ten measurements at one fi eld station. Where less than fi ve data points per unit, 
individual measurements are shown.

Fig. 5. Tsaybahe Group sedimentary unit (lmTrTs). Interstratifi ed fi ne-
grained sandstone and siliceous argillite.
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(2016), van Straaten and Gibson (2017) and van Straaten and 
Bichlmaier (2018a). 

About 1-2 km west of Peak 1979 m is a unit of medium-
grained volcaniclastic feldspathic arenite (lmJSPsv, Table 
1; Fig. 2) that was previously interpreted as Middle Triassic 
(Read, 1984). We reinterpret these rocks as Spatsizi Formation 
because: 1) they resemble Spatsizi Formation rocks on the 
northern margin of the Hotailuh batholith, 2) they appear 
to grade upward into maroon volcanic rocks interpreted as 
Horn Mountain Formation, and 3) they contain limestone 
beds that are similar to those within Horn Mountain middle 
maroon volcanic rocks, and both limestone beds failed to yield 
conodonts (Read, 1984). Two sandstone samples from this unit 
were processed for U-Pb geochronology but yielded no zircons 
(Iverson et al., 2012).

3.1.4.2. Horn Mountain Formation
We subdivide the Jurassic volcanic rocks near Peak 1979 m 

into a maroon volcanic unit and an overlying felsic volcanic 
unit (Fig. 2). The fi rst unit includes crudely stratifi ed maroon 
volcanic breccia, fl ows, tuff breccia, lapillistone, lapilli-tuff and 
tuff; coherent rocks and volcanic clasts are augite-plagioclase-
phyric (lmJHMMv, Table 1; Fig. 8). The unit is similar to an 80 
km-long belt of Horn Mountain maroon volcanic rocks along 
the northern to eastern margin of the Hotailuh batholith. 

The second volcanic unit comprises felsic tuff, lapilli-
tuff, and minor tuff breccia with light-coloured, aphanitic 
to plagioclase-phyric volcanic clasts (lmJHMMvf, Table 1; 
Fig. 9). Although we correlate this unit with felsic rocks in 

Fig. 6. Stuhini Group volcanic unit (uTrSTvm). a) Volcanic breccia 
with clast-supported subangular augite-plagioclase-phyric volcanic 
clasts. b) Close-up of volcanic clast with platy plagioclase and augite 
phenocrysts.

on similarities to rocks on the northern to eastern margin of 
the Hotailuh batholith as described by van Straaten and Nelson 
(2016), van Straaten and Gibson (2017) and van Straaten and 
Bichlmaier (2018a). The change in character of sedimentary 
rocks from west to east, and absence of one of the volcanic 
units in a stratigraphic section in the northeast may be related to 
syn-depositional north-trending faults (Section 5.3.). Based on 
mapping north and east of the Hotailuh batholith, we assume 
that the Stuhini Group and Hazelton Group in the map area 
are separated by an unconformity. Locally, the contact between 
these rocks is cut by the Three Sisters pluton (Middle Jurassic, 
see Section 4.4.). 

3.1.4.1. Spatsizi Formation
We recognize two Spatsizi Formation sedimentary units. 

Exposed in the cirque east of Peak 1979 m (Fig. 2) is a unit 
of interstratifi ed siltstone and very fi ne- to medium-grained 
sandstone (lmJSPs, Table 1). It grades conformably up to Horn 
Mountain Formation felsic volcanic rocks (Fig. 7). It is similar 
to a discontinuous 48 km-long belt of Spatsizi Formation 
sedimentary rocks along the northern to northeastern margin 
of the Hotailuh batholith described by van Straaten and Nelson 

Fig. 7. Hazelton Group volcano-sedimentary rocks. Stratifi ed rusty 
weathering Spatsizi Formation sedimentary rocks (lmJSPs) overlain 
by Horn Mountain Formation middle felsic volcanic unit (lmJHMMvf); 
both units are cut by mafi c intrusive (EMJm). Megascopic drag fold 
suggests east-side-down normal movement along north-trending fault. 
View to west. 
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Fig. 8. Horn Mountain Formation middle maroon volcanic unit 
(lmJHMMv). Interstratifi ed cream coarse crystal tuff and maroon tuff.

the Horn Mountain middle maroon volcanic unit (late Early to 
Middle Jurassic) exposed east of the Hotailuh batholith (van 
Straaten and Bichlmaier, 2018a), it could also be equivalent 
to the Horn Mountain upper felsic volcanic unit (Middle 
Jurassic) of van Straaten and Nelson (2016), van Straaten and 
Gibson (2017) and van Straaten and Bichlmaier (2018a). West 
and south of Peak 1979 m, maroon volcanic rocks appear to 
be stratigraphically overlain by felsic volcanic rocks (Fig. 2). 
In the cirque east of Peak 1979, the sedimentary unit of the 
Spatsizi Formation grades directly to the felsic volcanic unit 
of the Horn Mountain Formation without intervening maroon 
volcanic rocks (Fig. 7).

The Hazelton Group in the present map area differs from 
exposures along the northern to eastern margin of the Hotailuh 
batholith. First, the exposed stratigraphic thickness (<0.5 km) 
is signifi cantly less than farther east, where the section is up 
to 6.4 km thick. Second, units display abrupt lateral facies and 
thickness changes in contrast to farther east where units display 
signifi cant lateral continuity. Third, the lower volcanic unit of 
the Horn Mountain Formation is absent in the present map area.

3.2. Overlap units
3.2.1. Sustut Group (Cretaceous)

Sedimentary rocks of the Sustut Group (Cretaceous) 
unconformably overlie Stikinia rocks along the Stikine 
River (Fig. 2). The Sustut Group includes feldspathic and 
lithic sandstone (locally muscovite-bearing), siltstone, shale, 
carbonaceous shale, chert clast-bearing pebble to lesser cobble 
conglomerate and thin zeolitized tuff beds (Read, 1983; 1984).

3.2.2. Tuya Formation (Miocene-Pleistocene)
Several 0.2-1.7 km-wide olivine basalt volcanic centres were 

mapped by Read (1983; 1984) and Gabrielse (1998) in the 
southeastern part of the study area. 

4. Intrusive units
Plutonic rocks in the map area can be grouped with the 

Stikine plutonic suite (Late Triassic) and Three Sisters plutonic 
suite (Middle Jurassic). We recognize two subvolcanic 
intrusive units, one related to Tsaybahe group volcanic rocks 
(Early-Middle Triassic) and another related to Horn Mountain 
volcanic rocks (Early-Middle Jurassic; Fig. 3; Table 2).

4.1. Early-Middle Triassic subvolcanic intrusions
Plagioclase-augite- to augite-phyric sills, dikes, and 

subvolcanic intrusive complexes (EMTrm, Table 2; Fig. 10) 
up to 1-3 km2 in size are exposed in the eastern part of the 
map area (Fig. 2). Mafi c intrusions cut, and include xenoliths 
of, Tsaybahe group sedimentary rocks (lmTrTs, Table 1). The 
intrusions have low magnetic susceptibility values (Fig. 4) 
and are texturally and mineralogically similar to clasts in the 
Tsaybahe volcanic unit (lmTrTvm). Thus we consider them as 
feeder dikes. 

4.2. Late Triassic plutonic rocks
We recognize four Late Triassic plutonic units in the map 

area: the Gnat Lakes ultramafi te, an unnamed gabbro unit, 

Fig. 9. Horn Mountain Formation middle felsic volcanic unit 
(lmJHMMvf); lapilli-tuff with angular cream-coloured plagioclase-
phyric to aphyric felsic clasts.

Fig. 10. Subvolcanic Tsaybahe mafi c intrusive (EMTrm) with euhedral 
augite and dispersed fi ne stubby plagioclase; striae are saw cut marks.
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the Latham Creek pluton, and the Cake Hill pluton. The Gnat 
Lakes ultramafi te is a 4.7 km2 body exposed along Highway 37 
(Fig. 2). It has been described as an Alaskan-type intrusion based 
on the presence of hornblende clinopyroxenite, hornblendite 
and gabbro, minor zoning, and distinctive whole-rock and 
mineral chemistry data (LTrGLum, Table 2; Nixon et al., 1989; 
1997). An Ar-Ar hornblende analysis returned a 223.3 ±2.0 Ma 
cooling age (A. Zagorevski, unpublished data). The adjacent 
Tsaybahe group sedimentary unit (lmTrTs) and mafi c intrusive 
unit (EMTrm) are strongly silicifi ed and contain common 
disseminated pyrite as a result of contact metamorphism.

Small (<4 km2) mafi c-rich gabbro bodies are exposed in 
the eastern, northeastern, and northwestern parts of the map 
area (LTrgb, Table 2; Fig. 2). In the northeast, a 1.3 km2 
compositionally zoned gabbro body displays a central zone 
containing up to 80% clinopyroxene and a marginal zone to 
the north with 25-30% clinopyroxene. A signifi cantly larger 
gabbroic pluton is exposed west of the map area (Caribou 
Meadows pluton; Read, 1983).

The Latham Creek pluton forms three separate bodies (up to 
44 km2 in size) in the southeastern part of the map area (Fig. 2) 
and consists of hornblende-rich quartz diorite that is commonly 
foliated (LTrLCqd, Table 2; Fig. 11).

The Cake Hill pluton is exposed in the eastern part of the map 
area (Fig. 2). It consists mainly of hornblende quartz monzonite 
and lacks xenoliths (LTrCHqm, Table 2). Decimetre-scale dikes 
of Cake Hill composition cut Stuhini Group augite-phyric 
coherent rocks (uTrSTvm) along the pluton’s western margin. 
A sample from the adjacent map area to the east returned a 
U-Pb zircon age of 221 ±3 Ma (Anderson and Bevier, 1992).

4.3. Early-Middle Jurassic subvolcanic intrusions
Augite-plagioclase-phyric and plagioclase-phyric coherent 

rocks (EMJm, Table 2; Fig. 12) form relatively small (<1.5 km2) 
bodies in the eastern part of the map area. The intrusions are 
texturally and mineralogically similar to volcanic clasts within 
the Horn Mountain middle maroon volcanic unit (lmJHMMv); 
they likely represent feeder dikes. Rare augite- and coarse platy 
plagioclase-phyric dikes (EMJm.po, Table 2) cut Early-Middle 
Triassic mafi c intrusive rocks and Tsaybahe sedimentary rocks 

in the eastern part of the map area. These dikes are texturally 
similar to platy plagioclase-phyric intrusions that are cogenetic 
with Horn Mountain volcanism in the adjacent map area to the 
northwest (e.g., van Straaten and Gibson, 2017).

4.4. Middle Jurassic plutonic rocks
We mapped three Middle Jurassic plutonic bodies in the 

fi eld area, the Three Sisters, Pallen Creek, and Tanzilla plutons 
(Fig. 2, Table 2). The Three Sisters pluton is exposed in the 
eastern part of the map area. The pluton is subdivided into a 
mafi c phase (MJTSqd), a felsic phase (MJTSqm), and a potassic 
phase (MJTSgr). Several small (<1 km) mafi c to mafi c-rich 
quartz diorite bodies of the mafi c phase are enclosed within the 
felsic phase in the northeastern part of the map area. A 3.5 km2 
coarse platy plagioclase porphyritic diorite body of a mafi c 
subphase (MJTSqd.po; Fig. 13) is exposed in the northeastern 
part of the study area. It is texturally and compositionally 
similar to a hornblende-clinopyroxene diorite body with platy 
plagioclase described by van Straaten and Bichlmaier (2018a) 
on the eastern margin of the Three Sisters pluton. The felsic 

Fig. 11. Latham Creek pluton (LTrLCqd). Foliated hornblende-rich 
quartz diorite.

Fig. 12. Subvolcanic Horn Mountain mafi c intrusive (EMJm) with 
hexagonal chloritized and epidote-altered augite and plagioclase. 

Fig. 13. Three Sisters pluton plagioclase porphyritic mafi c subphase 
(MJTSqm.po). Mafi c-rich diorite with coarse platy plagioclase set in a 
fi ne-crystalline plagioclase-rich groundmass. 
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phase, exposed in the northeastern part of the map area, consists 
of hornblende-biotite quartz monzodiorite. The potassic phase 
extends along the eastern side of the map area, and consists of 
biotite-hornblende quartz monzonite to biotite monzogranite. A 
sample of the potassic phase returned a U-Pb zircon age of 171 
±1 Ma (Anderson and Bevier, 1992).

The Pallen Creek pluton forms a 30 km2 body in the 
northwestern part of the map area. We identify a marginal 
phase (MJPdr) and a central phase (MJPqm; Table 2), 
corroborating previous work by Downing (1980). The marginal 
phase comprises biotite-hornblende quartz diorite, is locally 
foliated and contains minor fi ne-grained dioritic xenoliths 
(Fig. 14). The central phase of the Pallen Creek pluton consists 
of (hornblende-) biotite quartz monzonite to monzodiorite. A 
sample from the adjacent map sheet to the north returned a 
U-Pb zircon age of 172 ±1 Ma (Logan et al., 2012b).

The Tanzilla pluton forms a 15 km2 body in the western 
part of the map area. It consists mainly of biotite-hornblende 
quartz monzodiorite to granodiorite (MJTgd, Table 2; Fig. 15). 
Although K-Ar biotite and hornblende analyses returned Early 
to Middle Jurassic cooling ages (Stevens et al., 1982), textural 
and mineralogical similarity to the Three Sisters and Pallen 
Creek plutons suggests it is most likely part of the Middle 
Jurassic plutonic suite. 

5. Structure
Within the fi eld area, penetrative deformation is limited to 

Stikine assemblage rocks. Triassic and Jurassic rocks generally 
lack penetrative fabrics.

5.1. Devonian-Permian rocks
Kilometre-scale tight folds are outlined by Stikine assemblage 

rocks in the northwestern part of the map area (Fig. 2). Rocks 
generally display a penetrative northwest-dipping phyllitic 
foliation and the folds display subhorizontal to gently northeast 
to southwest plunging axes (Fig. 16a). Bedding is commonly 

Fig. 14. Marginal phase of the Pallen Creek pluton (MJPdr). Biotite-
hornblende quartz diorite with hornblende-rich microdiorite xenoliths. 

Fig. 15. Tanzilla pluton (MJTgd). Massive, biotite-hornblende quartz 
monzodiorite. 

Fig. 16. Equal area lower hemisphere stereonet projections of structural data for a) Stikine assemblage (Devonian-Permian) rocks and b) 
Tsaybahe group and Stuhini Group (Triassic) rocks. In a), lineations include a bedding/cleavage intersection and a stretching lineation. Structural 
data from Logan et al., (2012a; b) and this study.
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parallel to foliation (Fig. 16a). Although way-up indicators are 
lacking we infer the folds have one overturned limb. On the 
limb of the easternmost antiform along Itsillitu Creek, both 
bedding and foliation dip to the northwest, but bedding dips 
more shallowly, indicating that the limb is right-way-up and 
that the limestone unit overlies the meta-sedimentary unit. 

The absence of penetrative deformation in unconformably 
overlying Tsaybahe and Stuhini groups suggests deformation 
postdates Stikine assemblage limestone formation (Early 
Permian) and predates Tsaybahe group deposition (Early 
Triassic). It correlates with the Tahltanian orogeny recognized 
throughout most of the Intermontane terranes (e.g., Wheeler, 
1967; Logan and Koyanagi, 1994).

5.2. Triassic rocks
Triassic Tsaybahe and Stuhini Group rocks are only rarely 

foliated, and no outcrop-scale folds were observed. Bedding 
in basal Tsaybahe group generally dips away from Stikine 
assemblage basement (Fig. 2). Stereonet analysis of bedding 
variations within the Tsaybahe and Stuhini groups suggest they 
are folded about gently northerly plunging fold axes (Fig. 16b). 
The reinterpreted distribution of Tsaybahe and Stuhini units, 
particularly within 6 km north of the Stikine River (Fig. 2), 
could be most easily explained by gently southerly plunging 
map-scale folds. Inferred fold axes in the map area appear 
continuous with map-scale north-plunging folds noted by 
Logan et al. (2012a; b) in the adjacent map area to the north. 
The absence of north-south trending folds in late Early-Middle 
Jurassic strata (e.g., van Straaten and Gibson, 2017) may suggest 
deformation occurred in the latest Triassic to Early Jurassic. 
The change in fold plunge may be explained by north-south 
shortening during mid-Jurassic terrane accretion. Structures 
resulting from south-vergent fold and thrust belt development 
are widespread north of the King Salmon fault and moderately 
developed in footwall Whitehorse trough strata (e.g., Logan et 
al., 2012a; b; van Straaten and Gibson, 2017).

Northerly trending structures including the Gnat Pass shear 
zone (see van Straaten et al., 2012) and shear zones west of the 
Gnat Lakes ultramafi te (Fig. 2) display a well-developed shear 
zone-parallel phyllitic foliation. 

Read (1983; 1984) mapped the low-angle folded ‘Z-fault’ 
along Stikine River (Fig. 2). Erosion of the fault along the 
Stikine River exposes two windows of Tsaybahe sedimentary 
rocks containing Early to Middle Triassic fossils, cut by a 
hornblendite to gabbro body (Fig. 2). Read (1983; 1984) 
interpreted the structure as a gently dipping detachment fault 
along which Tsaybahe and Stuhini rocks in the hanging wall 
moved north to northeast. The fault was subsequently folded 
about a northeasterly axis; faulting and folding predates 
deposition of the Sustut Group (Cretaceous, Read, 1983; 1984).

5.3. Jurassic rocks
Bedding in the Hazelton Group mainly dips moderately to the 

southwest. Several northerly trending lineaments and faults cut 
the succession, with adjacent fault blocks showing moderate 

differences in bedding attitude, character of sedimentary rocks, 
and stratigraphic superposition. The change in character of 
sedimentary rocks from west to east, and absence of one of the 
volcanic units in a stratigraphic section in the northeast may 
be related to syn-depositional fault movement. Megascopic 
drag folding on the east wall of the easternmost fault (Fig. 7) 
suggests an east-side-down normal movement.

6. Mineral occurrences
A number of intrusion-related mineral occurrences lie within 

the fi eld area. One is hosted in Late Triassic plutonic rocks, 
and fi ve are likely related to Middle Jurassic intrusions. Several 
additional mineral occurrences near Highway 37 (e.g., Gnat 
Pass, Moss, Dalvenie and BCR; Fig. 2) are described in van 
Straaten et al. (2012) and van Straaten and Gibson (2016).

6.1. Late Triassic intrusion-hosted mineral occurrences
Hotai is a donut-shaped aeromagnetic anomaly in the Latham 

Creek pluton (Fig. 2). A soil geochemical survey indicated no 
anomalous metal values, an induced polarization survey showed 
a chargeability high coincident with part of the aeromagnetic 
high, and a grab sample from a bornite vein in weakly chlorite-
altered hornblende diorite returned 0.56% Cu (sample 966971, 
Andrzjewski and Bui, 2012).

6.2. Middle Jurassic intrusion-related mineral occurrences
Geochemical sampling in the 1970s discovered molybdenum 

in the Pallen Creek pluton (Downing, 1980). We observed 
1-3 vol.% fractures (1-3 mm wide) with pyrite and minor 
chalcopyrite with or without molybdenite in small pits at 
the Disco and Stikine showings (MINFILE 104J 019, 46); 
plutonic host rocks appear unaltered. At the Stikine Moly 
showing (MINFILE 104J 034) up to 4-6% disseminated and 
fracture-hosted pyrite is accompanied by minor molybdenite 
and chalcopyrite. A 1.5 m chip sample from Disco returned 
0.30% Cu and 0.8 ppm Mo (sample 975162, Andrzjewski and 
Bui, 2012). Exploration by Quartz Mountain Resources Ltd. in 
2012 did not generate signifi cant soil geochemistry anomalies 
that correlate with induced polarization chargeability highs 
(Andrzjewski and Bui, 2012).

The Crown copper showing (MINFILE 104I 046) is 3.5 km 
northwest of Peak 1979 m (Fig. 2). A pyritic gossan and 
disseminated and vein-hosted chalcopyrite with K-feldspar and 
skarn alteration is hosted in Triassic volcanic rocks adjacent 
to a granodiorite to monzonite intrusion (BC Department of 
Mines and Petroleum Resources, 1972, p. 44; 1973, p. 538). 
Geophysical surveys, geochemical sampling, and two diamond 
drill holes were completed in the 1970s, but only geophysical 
results were reported (Fominoff and Adamson, 1971). We 
mapped nearby plutonic rocks as the felsic phase of the Three 
Sisters pluton. Work carried out by West Cirque Resources 
Ltd. in 2011 and 2012 identifi ed an induced polarization 
chargeability and copper in soil anomalies (Luckman and 
Kuttai, 2012; Luckman, 2013).

The Kay 49 showing (MINFILE 104I 026) is in the 
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northwestern part of the map area (Fig. 2). Exploration 
activities by Tanzilla Explorations Ltd. in the late 1960s and 
early 1970s identifi ed a 27 m-wide altered and mineralized 
meta-volcanic outcrop that returned 0.04% Cu and 1.37 g/t Ag. 
The meta-volcanic rocks are bordered by extensive outcrops of 
unmineralized intrusive rocks to the southeast (Scott, 1970). 
The showing is in the felsic phase of the Three Sisters pluton, 
and possibly in a Stuhini Group pendant. At the nearby Kay 
19 showing (MINFILE 104I 037) three drill holes intersected 
up to 0.09% Cu and 3.4 g/t Ag over 1 m, and a grab sample of 
nearby exposures returned 0.25% Cu (Aikins, 1971).

The Lode occurrence is in the cirque immediately east 
of Peak 1979 m. Anomalous silver in a stream-sediment 
sample (Andrzjewski et al., 2012) led to prospecting and soil 
geochemistry and induced polarization surveys (Andrzjewski 
and Bui, 2012). The surveys showed a moderate chargeability 
feature and coincident multi-element soil geochemical 
anomaly. We observed rusty weathering and strongly silicifi ed 
Spatsizi Formation sedimentary rocks (Fig. 7) containing 
abundant disseminated pyrite and local arsenopyrite. Locally, 
calcareous sedimentary rocks contain garnet-diopside-epidote 
skarn assemblages. Alteration and mineralization are likely 
related to intrusion of the adjacent potassic phase of the Three 
Sisters pluton (Fig. 2). Signifi cant copper and elevated gold and 
silver values were reported in several rock samples, including 
two grab samples that returned 1.05% Cu, 68 ppb Au, 5.9 g/t 
Ag (sample 975215), 13.0% Cu and 1012 ppb Au and 70.2 ppb 
Ag (sample 975233, Andrzjewski and Bui, 2012). 

7. Discussion
7.1. Regional extent and signifi cance of Tsaybahe group 

Although the Triassic history of northern Stikinia is recorded 
mainly by Upper Triassic volcanic and related sedimentary 
rocks of the Stuhini Group (British Columbia) and Lewes River 
Group (Yukon), local remnants of Lower to Middle Triassic 
sedimentary and volcanic rocks are scattered across the region.

Approximately 100 km west-southwest of our study area 
and north of the Chutine River, Brown et al. (1996) mapped 
chert, ribbon chert, siliceous siltstone and tuff containing Early 
Permian and Middle Triassic radiolaria and conodonts. Contact 
relationships with underlying Lower Permian limestones are 
equivocal, and the succession that contains Middle Triassic 
conodonts “appears to grade abruptly upward into tuffaceous 
wacke of the Stuhini Group” (Brown et al., 1996). In the same 
area, Brown et al. (1996) documented a limestone block with 
Early Triassic conodonts in Upper Triassic volcaniclastic 
sandstone. About 55 kilometres farther southwest, at the toe 
of the Scud Glacier, Late Permian limestone, maroon tuff, 
and chert (Stikine assemblage) is either conformably or 
paraconformably overlain by an undated tuffaceous wacke 
and tuff unit correlated with either the Tsaybahe or Stuhini 
Group (Brown et al., 1996). Approximately 130 km to the 
southwest of the study area, and north and east of the Galore 
Creek Cu-Au porphyry deposit, Souther (1972) and Logan 
and Koyanagi (1994) described a Lower to Middle Triassic 

siliceous siltstone, limy siltstone and carbonaceous silty shale 
unit that paraconformably overlies Lower Permian limestone. 
Volcanic-bearing successions of Early to Middle Triassic age 
are even rarer than purely sedimentary units. Approximately 
165 km to the south-southwest of the study area and near the 
lower Iskut River, Read et al (1989) mapped a Middle Triassic 
sedimentary unit containing sedimentary and volcanic breccia, 
sandstone, and argillite that interfi ngers with mafi c volcanic 
breccia and tuff; he noted that the volcanic rocks are similar to 
extensive Middle Triassic augite-phyric volcanic rocks found 
near the Stikine River. 

We suggest that the scattered occurrences summarized 
above, and coeval sedimentary rocks within the study area, 
may represent the rare remnants of an Early-Middle Triassic 
marine basin. Based on textural and compositional similarity 
between Tsaybahe and Stuhini volcanic rocks and a volcanic 
arc geochemical signature for both successions (Logan 
and Iverson, 2013) we further suggest that Middle Triassic 
volcanism may represent the onset of arc volcanism before the 
Late Triassic Stuhini-Lewes River arc was fully established. 
The onset of Tsaybahe group volcanism appears to coincide 
with the end of Permo-Triassic mafi c and bimodal primitive 
intra-oceanic arc volcanism in the northern Cache Creek terrane 
(ca. 261-242 Ma, Childe and Thompson, 1997; Childe et al., 
1998, Mihalynuk et al., 2003; English et al., 2010; Schiarizza, 
2011; 2012a; b; Bickerton, 2014; Zagorevski et al., 2015; 
2016; McGoldrick et al., 2018; Bordet, in press; Bordet et al., 
in press). It may indicate an inboard jump of the subduction 
zone resulting in termination of subduction below intra-oceanic 
volcanic arc segments within the Cache Creek terrane and 
initiation of subduction below Stikinia.

Lacking biostratigraphic and geochronologic constraints, 
Paleozoic, Jurassic and Eocene augite-phyric volcanic rocks 
throughout northwest British Columbia have inadvertently 
been included in the Stuhini Group (e.g., Mihalynuk et al., 
1995; Mihalynuk, 1999; van Straaten and Nelson, 2016). Given 
its remarkable similarity to the Stuhini Group, we conclude that 
the Tsaybahe group is probably more extensive than currently 
recognized.

7.2. Criteria to distinguish Triassic-Jurassic volcano-
sedimentary successions

Mapping by the British Columbia Geological Survey in the 
Dease Lake area during the last decade has largely focussed 
on separating three temporally distinct, but texturally similar, 
mafi c volcanic successions: the Tsaybahe group (Lower-Middle 
Triassic), the Stuhini Group (Upper Triassic), and the upper part 
of the Hazelton Group (Lower to Middle Jurassic). In Table 3 
we summarize key criteria that can be used to distinguish these 
three successions.

8. Conclusions
New 1:20,000-scale mapping in the Latham and Pallen 

Creek area, part of a multi-year project devoted to examining 
the geologic history and metallogeny of Stikine terrane near 
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Dease Lake, focussed on separating three temporally distinct, 
but texturally similar, mafi c volcanic successions: the Tsaybahe 
group (Early-Middle Triassic), the Stuhini Group (Late Triassic) 
and the upper part of the Hazelton Group (late Early to Middle 
Jurassic). We separate Tsaybahe volcanic rocks from those of 
the Stuhini Group, based on their stratigraphic position atop 
the Stikine assemblage (upper Paleozoic), rare Middle Triassic 
biostratigraphic ages, low magnetic susceptibility and low 
response on regional aeromagnetic surveys. In contrast, Stuhini 
Group rocks have a high magnetic susceptibility and display a 
high and variable response on regional aeromagnetic surveys.

The Tsaybahe group is unusual in northern Stikinia 
because it is older than most Triassic volcanic successions. 
Throughout northern Stikinia, augite-phyric mafi c volcanic 
rocks have largely been assigned to the Stuhini Group where 
sparse biostratigraphic data suggest a mostly Late Triassic 
age. However, large tracts mapped as Stuhini Group lack 
age constraints. Rare documented Early-Middle Triassic 
exposures throughout northern Stikinia contain mainly fi ne-
grained siliciclastic rocks which, in the Dease Lake area, are 
overlain by signifi cant accumulations of Middle Triassic mafi c 
volcanic rocks. These scattered occurrences of sedimentary 
rocks may represent rare remnants of an Early-Middle Triassic 
marine basin, followed by localized, or perhaps largely 

unrecognized, Middle Triassic volcanism representing the 
onset of arc volcanism before widespread Upper Triassic 
Stuhini arc activity. The onset of Tsaybahe group volcanism 
appears to coincide with the end of mafi c and bimodal intra-
oceanic arc volcanism in the Cache Creek terrane, and may 
suggest initiation of subduction below Stikinia resulting from 
an inboard jump of the subduction zone.
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