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Abstract
The Lay Range assemblage, the lowest exposed lithostratigraphic unit of north-central Quesnellia, is separated into lower sedimentary and 

upper mafi c tuff divisions. Fossil and fi eld evidence indicates deposition of the lower sedimentary division during the Late Mississippian to Middle 
Pennsylvanian and of the upper mafi c tuff division during the Middle Pennsylvanian to early Permian. A quartz sandstone and polymictic pebble 
conglomerate from the lower part of the lower sedimentary division yield detrital zircon U-Pb ages between 360 and 290 Ma (Carboniferous 
to early Permian), with a range of older detrital zircons from ca. 3600 to 890 Ma (Archean and Proterozoic). A small population of zircons 
ranges from 450 to 390 Ma (n=4; Ordovician to Devonian). The Carboniferous detrital zircons have mostly juvenile εHf(t), indicating that the 
parental magmas did not interact with older crust. Few zircons are more evolved and were derived from parental magmas that interacted with or 
melted from crust as old as middle Mesoproterozoic. The combined εHf(t) and trace element compositions of detrital zircon are consistent with 
formation in a juvenile arc during the Carboniferous. Comparison of Lay Range detrital zircon U-Pb, Hf, and trace element systematics indicate 
a similar timing of arc magmatism with eastern Stikinia and Wrangellia, but little relationship to ancient North America or Yukon-Tanana terrane. 
The older detrital zircons (Archean through Paleozoic) were sourced from a fringing landmass, possibly a continental oceanic plateau, that had 
little to no role in the petrogenesis of the Carboniferous magmas. The spread of ages in the Lay Range assemblage zircon distributions likely 
records multiple cycles of deposition, uplift, erosion, transport, and sedimentation. One possibility is that the fringing landmass was calved from 
the Neoproterozoic through Cambrian western North American passive margin. 

Keywords: Quesnel terrane, Lay Range assemblage, lower sedimentary division, detrital zircon U-Pb, detrital zircon Hf, detrital zircon trace 
elements

1. Introduction
The Cordilleran orogen of western North America is a type

example of an accretionary orogen, but the origin of many 
terranes (e.g., Quesnellia and Stikinia) remains enigmatic. 
Paired U-Pb and Lu-Hf isotopic data from detrital zircon provide 
otherwise inaccessible insights into the origin of source rocks, 
particularly those that are poorly preserved or unpreserved 
(e.g., Beranek et al., 2013; Malkowski and Hampton, 2014; 
Colpron et al., 2015; Pecha et al., 2016; Romero et al., 2020; 
Alberts et al., 2021; George et al., 2021; Ootes et al., in press). 
In many cases, detrital zircons from the lowest stratigraphic 
unit provide the only, and necessarily indirect, record of pre-
existing basement upon which a terrane developed (e.g., Ootes 
et al., in press).

Quesnellia is one of the easternmost terranes of the 
Cordilleran orogen, commonly juxtaposed directly against 
rocks of Ancestral North America (Fig. 1). It consists mainly 

of a Mesozoic arc complex, represented by Middle Triassic to 
Early Jurassic volcanic, sedimentary, and intrusive rocks, but 
locally includes Paleozoic rocks which, in southern British 
Columbia, are assigned to the arc-like Harper Ranch subterrane 
and the oceanic Okanagan subterrane (Monger et al., 1991). In 
north-central British Columbia, Carboniferous to early Permian 
sedimentary and volcanic rocks, which closely resemble the 
Harper Ranch subterrane in southern British Columbia, form 
the basal units of Quesnellia (Monger et al., 1991; Ferri, 1997; 
Beatty et al., 2006). Subdivided into ‘lower sedimentary’ and 
‘upper mafi c tuff’ divisions (e.g., Ferri, 1997), the Lay Range 
assemblage has sedimentary features and fossil assemblages 
that are consistent with a transition from Carboniferous mainly 
deep-marine sedimentation to early Permian deposition of 
volcanosedimentary rocks (Ferri, 1997; Ferri et al., 2001).

Presented here are the fi rst detrital zircon U-Pb, Hf, and 
trace element results from the lower sedimentary division of 
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Fig. 1. Terranes of the Cordilleran orogen and location of study. 
Modifi ed after Colpron (2020).

the Lay Range assemblage in the Lay Range, which is in the 
traditional territory of the Tsay Keh Dene Band and Takla 
Lake First Nation. These results offer insights into the age 
and antiquity of the crust that Quesnellia developed on and 
allow direct comparison with similar zircon U-Pb and Hf data 
from Stikinia, Wrangellia, Yukon-Tanana, and cratonic North 
America. In its north-central segment, Quesnellia was built 
on an oceanic basement of juvenile volcanic arc rocks formed 
adjacent to a continental landmass, possibly a block calved 
during rifting of the western edge of North American crust 
covered by Neoproterozoic through Cambrian passive margin 
deposits.

2. Geology of the Lay Range area
The Lay Range assemblage includes Mississippian to Permian 

sections of predominantly sedimentary and predominantly 
volcanic rocks (Roots, 1954; Monger, 1973, 1977; Monger and 
Paterson, 1974; Ross and Monger, 1978). Ferri (1997, 2000) 
and Ferri et al. (2001) subdivided the Lay Range assemblage 
into a ‘lower sedimentary division’ and an ‘upper mafi c tuff 
division’ (Fig. 2). Relationships between the two divisions are 
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2.2. Upper mafi c tuff division
The most distinctive and widespread rocks of the Lay Range 

assemblage are green to light green and maroon, mafi c volcanic 
rocks of the upper mafi c tuff division (Figs. 2-4). The volcanic 
rocks include tuffs, fl ows, and volcanic breccias. Interbedded 
with the mafi c volcanic rocks are subordinate green to grey 
argillite, siltstone, volcanic wacke and conglomerate, felsic 
tuff, chert, limy siltstone, and limestone. Mafi c fl ows and 
large clasts commonly contain clinopyroxene and feldspar 
phenocrysts and amygdules. Whole rock geochemical data 
support the interpretation that the volcanic rocks were deposited 
as part of an arc sequence (Ferri, 1997).

2.3. Previous fossil and U-Pb zircon ages
Previous fossil collections and unpublished zircon U-Pb 

geochronology indicated that the Lay Range assemblage 
was deposited between the Late Mississippian and Permian 
(Fig. 2; Table 1). The lower sedimentary division contains 
Late Mississippian conodonts near the detrital zircon sample 
locations of this study (Fig. 2; Table 1). The upper limestone 
of the lower sedimentary division contains Lower to Middle 
Pennsylvanian (Bashkirian to Moscovian) fusulinids (Fig. 2; 
Table 1; Ross and Monger, 1978). Other fossils from the 
lower sedimentary division include corals, foraminifers and 
fusulinaceans that are Middle Pennsylvanian (Moscovian; 
Fig. 2; Table 1).

Radiolaria extracted from chert near the base of the upper 
mafi c tuff division indicate it is early Permian (late Asselian 
to Sakmarian; Fig. 2; Table 1). The chert occurs only a few m 
above a thin limestone unit that contains Middle Pennsylvanian 
fusulinids (late Moscovian; Table 1; Ross and Monger, 1978). 
The contact between the chert and limestone is abrupt but is 
otherwise unremarkable; given the early Permian age of the 
chert, it is likely that the underlying limestone is stratigraphically 
equivalent to the uppermost limestone of the lower sedimentary 
division. This requires that a reverse fault (possibly a steepened 
thrust) repeats the lower sedimentary division limestone in this 
area (Fig. 4). Initially, the abrupt contact between limestone 
and maroon and green chert was interpreted as an unconformity 
(Ferri, 1997). However, mapping in the northern Lay Range 
suggests a gradational contact between limestone and overlying 
tuffs (Ferri, 2000). This revised interpretation makes the upper 
mafi c tuff division as old as Middle Pennsylvanian. Conodonts 
are broadly Permian elsewhere in the upper mafi c tuff division. 
The biochronological data are consistent with a 275 ±2 Ma 
zircon U-Pb age of a felsic tuff unit within the upper mafi c tuff 
division in the Swannell Range (west of the study area; Ferri, 
unpublished data).

3. Methods
The samples for this study (Table 2) were collected during 

bedrock mapping (Ferri, 1997; Ferri et al., 2001) and retrieved 
from the British Columbia Geological Survey archive in 2021. 
They include a fi st-sized quartz-rich sandstone (FFE92-44-7) 
and a fi st-sized polymictic pebble conglomerate (FFE92-44-9; 

best preserved in a northeasterly overturned anticline in the 
Lay Range mountains (Figs. 3, 4). The core of this southeast-
plunging anticline, exposed across a width of about 1 km, 
contains the lowest rocks of the lower sedimentary division. 
These include chert, tuff, and siliciclastic and carbonate rocks 
that are tightly folded and display a strong cleavage. At the top 
of this succession is a fossiliferous limestone (Lower to Middle 
Pennsylvanian) that is overlain and underlain by a distinctive 
unit of maroon argillite and chert (Figs. 2, 3). This marker can 
be traced along much of the northeastern limb of the anticline 
and around its hinge zone. On the southwest limb the marker 
is repeated by a reverse fault but cut off by northwest-trending 
(strike-slip?) faults (Fig. 4).

The upper mafi c tuff division overlies the maroon marker and 
consists of >2500 m of tuff, volcanic breccia, and volcanic fl ows 
(Figs. 2-4). Although radiolarians (fossil locality F21, Fig. 3) 
from the base of this division are early Permian (Table 1), 
contact relationships with distinctive cherts in the underlying 
lower sedimentary division indicate continuous deposition, 
suggesting that the base of the upper mafi c tuff division is 
Middle Pennsylvanian (Ferri, 2000; see below). Fossil and U-Pb 
geochronology from elsewhere in the unit imply that most of 
the volcanism defi ned by this unit is Permian. Southwest of the 
anticline, the upper mafi c tuff division is only exposed across 
strike for 1-2 km because it is truncated by the Lay Range 
fault (Fig. 4). The northeast limb of the anticline consists of a 
4 km-wide panel of overturned upper mafi c tuff division rocks, 
bounded by an overturned syncline that includes the western 
margin of the Polaris intrusion (Fig. 3).

2.1. Lower sedimentary division
The lower sedimentary division (Figs. 2-4) consists mainly 

of black and grey argillite and siltstone (Fig. 5), bedded grey 
chert, thin-bedded arkose and quartz arenite, and chert-pebble 
conglomerate and breccia. The conglomerates are polymictic 
(Fig. 5), containing granules to cobbles of varicoloured 
chert, quartz, argillite, quartzite, carbonate, green tuff, and 
clinopyroxene-phyric volcanic rock. Less common rocks 
include fi ne- to medium-grained white quartz arenite, rhyolitic 
tuff, shaly or thin-bedded grey limestone, fossiliferous 
limestone, limy argillite, and green-grey tuffaceous rocks and 
volcanic sandstones. Minor, small felsic or dioritic intrusions 
and a narrow serpentinite body are locally in the division.

The top of the division is typically limestone that is up to 
75 m thick (Figs. 2, 3). It consists of grey to white, massive 
to thinly bedded, bioclastic limestone, locally rich in colonial 
and solitary horn corals, echinoderm, and sponge material, 
and fusulinaceans and foraminifera (Table 1; F1 to F5, F8 to 
F11, F13 to F15, F17 to F19 in Figure 3). The limestone is locally 
dolomitic and contains green tuffaceous layers and nodular 
masses of red or grey chert. At several localities, the limestone 
is gradationally underlain and overlain by distinctive packages 
up to 50 m thick of maroon, cream, and grey, thinly bedded 
argillite, siltstone, and chert (Figs. 2, 3). 
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Table 2) from the lower sedimentary division (Figs. 2, 4); full 
analytical techniques, zircon images, and results are provided 
in supplementary datafi les (Ootes et al., 2022).

Detrital zircon U-Pb/Hf and trace element analyses were 
acquired at the Pacifi c Centre for Isotopic and Geochemical 
Research at the University of British Columbia. Sample 
FFE92-44-7 yielded a minor amount of zircon (17) whereas 
sample FFE92-44-9 yielded a large number (>200) of relatively 
large zircon crystals (>75 mm) from conventional density 
and magnetic mineral separation methods. The entire zircon 
separate was placed in a muffl e furnace at 900°C for 60 hours 
in quartz beakers to anneal minor radiation damage. Annealing 
enhances cathodoluminescence (CL) emission (Nasdala et 
al., 2002) and promotes more reproducible inter-element 
fractionation during laser ablation inductively coupled plasma 
mass spectrometry (LA-ICPMS; Allen and Campbell, 2012). 
Following annealing, individual grains were hand-picked 
and mounted, polished, and imaged by cathodoluminescence 
(CL) on a scanning electron microscope. From these compiled 
images, grains with consistent and clear CL patterns were 
selected for further isotopic analysis.

Analyses were conducted using a Resonetics RESOlution 
M-50-LR, which contains a Class I laser device equipped 
with a UV excimer laser source (Coherent COMPex Pro 110, 
193 nm, pulse width of 4 ns) and a two-volume cell designed 
and developed by Laurin Technic Pty. Ltd. (Australia). The 
laser cell was connected via a Tefl on squid to an Agilent 7700x 
quadrupole ICP-MS. A pre-ablation shot was used to ensure 
that the spot area on grain surface was free of contamination. 
Samples and reference materials were analyzed for 36 
isotopes: 7Li, 29Si, 31P, 43Ca, 45Sc, 49Ti, Fe (56Fe, 57Fe), 89Y, 91Zr, 
93Nb, Mo (95Mo, 98Mo), 139La, 140Ce, 141Pr, 146Nd, 147Sm, 153Eu, 
157Gd, 159Tb, 163Dy, 165Ho, 166Er, 169Tm, 172Lu, 177Hf, 181Ta, 202Hg, 
Pb (204Pb, 206Pb, 207Pb, 208Pb), 232Th, and U (235U, 238U) with a 
dwell time of 0.02 seconds for each isotope. Pb/U and Pb/
Pb ratios were determined on the same spots along with trace 
element concentration determinations. The settings included a 

spot size of 34 μm with a total ablation time of 30 seconds, 
frequency of 5 Hz, fl uence of 5 J/cm2, power of 7.8 mJ after 
attenuation, pit depths of approximately 15 μm, He fl ow rate of 
800 mL/min, N2 fl ow rate of 2 mL/min., and a carrier gas (Ar) 
fl ow rate of 0.57 L/min.

Data were reduced using Iolite 4 software using the 
UPb_Geochronology and TraceElements_IS data reduction 
schemes (Paton et al., 2011). After detrital zircon U-Pb and 
trace element analyses, zircon grains were analyzed for Lu-Hf 
isotopic composition. Lutetium-Hafnium isotope analyses were 
completed on 32 of the zircons at PCIGR using a New Wave 
Research, 193nm laser ablation and a Nu Plasma (NP021) MC-
ICP-MS on similar CL zones as the U-Pb and trace element 
analyses. Data were reduced using Iolite 4 software (Paton et al., 
2011) using the Hf_Isotopes data reduction scheme (Woodhead 
et al., 2004). Uncertainties on initial Hf ratios were propagated 
through Iolite and epsilon Hf values were calculated using full 
error propagation, outlined by Ickert (2013).

4. Results
Full analytical results upon which the following is 

summarized are provided as supplementary datafi les (Ootes 
et al., 2022). Sixteen detrital zircons from the quartz-rich 
sandstone sample (FFE92-44-7) were analyzed. Fourteen 
zircons yield Carboniferous dates (ca. 343 to 308 Ma) with 
a peak distribution at ca. 330 Ma (Figs. 6a, b). The youngest 
single zircon has a 206Pb/238U date of 306.4 ±10.8 Ma. The 
youngest statistical population (Coutts et al., 2019; Harriott 
et al., 2019) has a weighted mean of 325.1 ±4.2 Ma (n=5; 
MSWD=0.63), interpreted as the maximum deposition age 
of the sample. Two zircons have concordia ages of 1660 Ma 
and 1145 Ma. The Carboniferous zircons have a range of 
εHf(t) from -1.5 to +20.5 (±3.5; error reported as 2σ; Fig. 5a). 
The single Precambrian zircon analyzed for Lu-Hf isotopic 
composition has εHf(t) +6.85. 

One hundred and nine detrital zircons from the polymictic 
pebble conglomerate sample (FFE92-44-9) were analyzed. 

a) b)

Fig. 5. a) Lay Range assemblage, lower sedimentary division. At bottom of photo, sharp-based Bouma-like fi ning upward sequences of graded 
siltstones to dark grey argillites. b) Lay Range assemblage lower sedimentary division. Polymictic conglomerate with subangular to subrounded 
chert and volcanic clasts.
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After data reduction, P and Ti concentrations in zircon were 
used to qualitatively screen the data. Eight analyses were 
removed from the dataset because they have anomalous trace 
element values (Figs. 7a-c). One hundred and one analyses 
remained after trace element screening, indicating that ~7% 
of laser ablation analyses intersected mineral inclusions of 
apatite, titanite, or other minerals during analysis. This method 
independently identifi ed analyses that have REE not typical of 
zircon (Fig. 7d). 

Zircon grains from sample FFE92-44-9 yielded a spectrum 
of U-Pb ages from 3600 to 290 Ma (Fig. 6c). Forty-two zircons 
have 206Pb/238U dates between 360 and 290 Ma (Carboniferous 
to early Permian; Fig. 6d). The youngest single zircon has a 
206Pb/238U date of 293.8 ±12.8 Ma and the youngest statistical 
population (Coutts et al., 2019; Harriott et al., 2019) has a 
weighted mean of 309.4 ±2.7 Ma (n=16; MSWD=0.98). This 
is interpreted as the maximum deposition age of the sample. 
Four of the zircons have unique (non-overlapping) 206Pb/238U 
dates from 450 to 390 Ma (Paleozoic; Fig. 6e). Fifty-fi ve of the 
zircons have ages that range from 3600 to 890 Ma (Precambrian; 
Fig. 6f). The Carboniferous zircons have a range of εHf(t) from 
-6.1 to +21.9 (Fig. 8). The four Paleozoic and the Precambrian
zircons have εHf(t) that range from -12.3 to +13.1 and -30 to
+14, respectively.

5. Discussion
5.1. Age of the lower sedimentary division, Lay Range
assemblage

Fossils preserved in the lower sedimentary division of the 
Lay Range assemblage are interpreted to be mostly Middle 
Pennsylvanian (Moscovian; 315 to 307 Ma; Table 1), but locally 
are as old as Late Mississippian (Serpukhovian, 331 to 323 Ma). 
The detrital zircon results are consistent with this interpretation, 
indicating maximum deposition ages between 310 to 325 Ma 
(Fig. 6). Nearly half (48%) of the detrital zircons from the lower 
sedimentary division have Carboniferous ages. A comparison 
of these ages with those from a quartz arenite sample from 
the Asitka Group, eastern Stikinia (ca. 290 Ma; Ootes et al., 
in press), shows strong similarities with central peaks at ca. 
320 to 325 Ma (Fig. 9). Two-component fi nite unmixing yields 
nearly identical results with age peaks at ca. 315 Ma and 335-
340 Ma (Fig. 9). The distribution of Carboniferous U-Pb results 
is broadly comparable to results reported by Mortensen et 
al. (2017) from the Okanagan subterrane in southern Quenesllia, 
British Columbia and Washington State, particularly from 
the Independence-Bradshaw assemblage, the Oregon claims 
formation, Ashnola River greywacke, the Barslow assemblage, 
the Attwood conglomerate, and the Anarchist gneiss; a more 
detailed statistical comparison cannot be carried out because 
raw data were not presented. 

5.2. Detrital zircon εHf(t) and trace elements, lower 
sedimentary division

Most εHf(t) values from Carboniferous detrital zircons of 
the Lay Range assemblage indicate that the parental magmas 

were derived from a juvenile source and lacked interaction with 
ancient crust (Fig. 8a). A subpopulation of the Carboniferous 
zircon (n=6) and three of the older Paleozoic zircons have 
slightly more evolved εHf(t) (Fig. 8), indicating parental 
magmas with an enriched (crustal) component as old as middle 
Mesoproterozoic to Neoproterozoic; there is little evidence that 
the magmas yielding the Carboniferous zircons interacted with 
crust older than Mesoproterozoic (Fig. 8b). 

Grimes et al. (2015) used igneous zircon trace elements 
from a number of tectonic environments to defi ne end-member 
arc, mid-ocean ridge, and ocean island discrimination fi elds. 
Using one of these examples (Nb/Yb vs. U/Yb; Fig. 10), the 
Lay Range assemblage and Asitka Group (eastern Stikinia) 
Carboniferous detrital zircons overlap the magmatic arc array 
and mid-ocean ridge basalt (MORB) fi elds, but consistently 
plot above the mantle zircon array defi ned by MORB and ocean 
islands (Fig. 10; Grimes et al., 2015). Combined, the trace 
elements and juvenile εHf(t) indicate the zircons crystallized in 
primitive ocean arc-like magmas. 

5.3. Comparison to Yukon-Tanana terrane, eastern Stikinia, 
and Wrangellia

The Carboniferous detrital zircon population from the Lay 
Range assemblage is distinct from that of the Yukon-Tan ana 
terrane (Alaska), which has abundant juvenile to highly evolved 
detrital zircons of Ordovician to Devonian age (Figs. 8b, c; 
Pecha et al., 2016). In contrast, the U-Pb and Hf systematics of 
Carboniferous detrital zircons from the Lay Range assemblage 
overlap those from eastern Stikinia (Asitka Group; Ootes et al., 
in press) and Wrangellia (Figs. 8c, 11). 

5.4. Provenance of detrital zircons in the lower sedimentary 
division, Lay Range assemblage, and Carboniferous 
paleogeography

With maximum depositional ages of 325-310 Ma, the 
lower sedimentary division of the Lay Range assemblage 
accumulated mainly in a deep-marine depocentre after the 
start of juvenile arc magmatism. By ca. 300 Ma (the maximum 
depositional age of the upper mafi c tuff division) volcanic 
tuffs and fl ows from juvenile arc magmatism overwhelmed 
background sedimentation. However, although the Lay Range 
deposits contain mainly Carboniferous detrital zircons, they 
also contain a high proportion of Precambrian grains (Figs. 6, 
8, 11). These grains indicate that erosion of a signifi cantly older 
crustal landmass also supplied sediment. In addition, although 
fi rst-cycle quartz sands can be produced by intense tropical 
weathering of diverse source rocks (e.g., Johnsson et al., 1991), 
compositionally mature sandstones in the lower sedimentary 
subdivision are consistent with a continental landmass (Ferri, 
1997, 2000). How then can an oceanic arc, with magma sources 
showing evidence of minimal crustal contribution contain 
zircons eroded from continental crust?

We suggest that the Lay Range assemblage was deposited 
peripheral to a continental oceanic plateau (see Ben-Avraham 
and Nur, 1983) that was isolated in an oceanic setting after 
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being calved from a continental landmass, although we cannot 
rule out the possibility that the Lay Range arc developed 
immediately beyond the edge of a continental substrate 
(e.g., Ferri, 1997). If this landmass was a fragment of an 
older Paleozoic arc (e.g., Yukon-Tanana terrane; cf., Ferri, 
1997), or a fragment of the Precambrian Shield of the North 
America, the Lay Range assemblage would contain diagnostic 
pre-Carboniferous detrital zircon population peaks, which 
it does not (Figs. 6f, 8a, b). Multi-cyclic reworking of older 
sedimentary deposits, such as described for example from the 
Mackenzie Mountains and Shaler supergroups (Rainbird et 
al., 2017) is an explanation for the range of non-overlapping 
Precambrian detrital zircons. We suggest that the peripheral 
landmass contained older sedimentary deposits that were 
reworked to generate second-cycle (or higher order) zircons 
found in the Lay Range assemblage.

Although the Mackenzie Mountains and Shaler supergroups 
(Meso- to Neoproterozoic) were deposited in northwest 
Laurentia, the characteristic Mesoproterozoic detrital zircons 
in these rocks (Fig. 12) were foreign to western Laurentian at 
the time of deposition. Grenville-aged zircons (1.5-1.0 Ga) in 
the Mackenzie Mountains Supergroup record a pan-continental 
drainage system that transported detritus eroded from the 
Grenville orogen more than 5000 km to the southeast (Rainbird 
et al., 2017). Similar population peaks in Cambrian sandstones 
of the Paleozoic passive margin refl ect recycling of zircons that 
were liberated by erosion of Mackenzie Mountains Supergroup 
rocks (Cambrian Type II of Hadlari et al., 2012; Fig. 12). 

Similar recycling, with multiple episodes of deposition, uplift, 
erosion, and transport, likely accounts for the broad range of 
Precambrian detrital zircons in the Lay Range assemblage. 

Possibly, Neoproterozoic through Cambrian passive margin 
deposits on the western margin of North America were the 
source of the detrital zircons. Importantly, the data (U-Pb 
and Hf systematics) do not support that erosion of the Yukon-
Tanana terrane or Precambrian Shield provided sediment to this 
part of Quesnellia during the Carboniferous (cf., Ferri, 1997).
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6. Conclusions
This study reports the biochronology and fi rst detrital zircon

U-Pb and Hf results from the Lay Range assemblage, the lowest 
stratigraphic unit exposed in north-central Quesnellia. Fossil
evidence indicates deposition of the lower sedimentary division 
during the Late Mississippian to Middle Pennsylvanian and
the upper mafi c tuff division during the Middle Pennsylvanian
to Permian. A quartz sandstone and a polymictic pebble
conglomerate from the lower part of the lower sedimentary
division yield detrital zircon U-Pb dates between 360 and
290 Ma (Carboniferous to early Permian), a range of older
detrital zircons from 3600 to 890 Ma (Archean and Proterozoic) 
and a small population (n=4) from 450 to 390 Ma (Ordovician
to Devonian). The εHf(t) and trace element compositions of
Carboniferous detrital zircons are consistent with the parental
magma having formed in a juvenile arc. Lay Range zircon
U-Pb, εHf(t), and trace elements are comparable to those of
the Asitka Group (eastern Stikinia) and Wrangellia but have
little similarity to those of ancient North America or the Yukon-
Tanana terrane. The older detrital zircons (Archean through
Paleozoic) may have been sourced from a nearby continental
oceanic plateau calved from a larger landmass that had little or
no role in the genesis of the Carboniferous magmas. Recycling
of zircons temporarily stored in older sedimentary deposits
accounts for the large age spread of Precambrian detrital
zircons in the Lay Range assemblage. Possibly, the postulated
continental oceanic plateau may have rifted from western North 
American crust covered by Neoproterozoic through Cambrian
passive margin deposits.
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