
Critical minerals and mineral systems in British Columbia

Adrian S. Hickin1, Luke Ootes1, Evan A. Orovan1, Matthew J. Brzozowski1,
Bruce K. Northcote1, Alexei S. Rukhlov1, and Wyatt M. Bain1

1 British Columbia Geological Survey, Ministry of Energy, Mines and Low Carbon Innovation, Victoria, BC, V8W 9N3
a corresponding author: Adrian.hickin@gov.bc.ca

Recommended citation: Hickin, A.S., Ootes, L., Orovan, E.A., Brzozowski, M.J., Northcote, B.K., Rukhlov, A.S., and Bain, W.M., 2024. 
Critical minerals and mineral systems in British Columbia. In: Geological Fieldwork 2023, British Columbia Ministry of Energy, Mines and 
Low Carbon Innovation, British Columbia Geological Survey Paper 2024-01, pp. 13-51.

Abstract
Mining is essential to produce the commodities needed to combat climate change. Low-carbon technologies need critical minerals to produce 

electric vehicles, mobile phones, solar panels, wind turbines, electrical transmission lines, batteries, and medical devices, and to manufacture 
products for national defense. Because of global demands, many of these critical minerals are predicted to see shortages, and British Columbia 
is faced with a generational opportunity for mining that will not only contribute to a low-carbon future but generate significant economic and 
societal benefits. Already mining critical minerals, British Columbia is Canada’s largest producer of Cu, only producer of Mo, mines Mg, and 
recovers Zn, Ag, and Pb. Adopting a mineral systems approach, the British Columbia Geological Survey is engaging in field, laboratory, and 
mineral potential modelling studies to evaluate the critical mineral endowment of the province, clarify by- and co-production possibilities of 
critical minerals not being recovered from current base and precious metal mines, and serve the provincial Critical Minerals Strategy. Six mineral 
systems are of particular importance: porphyry; volcanogenic massive sulphide; deep-water basin and platformal base-metal; magmatic mafic 
to ultramafic; carbonatite, and iron skarn. Providing foundational geoscience data and developing novel exploration techniques will encourage 
discoveries and enhance exploration for underexplored mineral systems. By increasing awareness of critical mineral opportunities for the 
exploration and mining industries, and by enhancing the critical mineral knowledge base, the province seeks to encourage investment that could 
lead to new discoveries, expand existing resources, and make British Columbia a significant supplier of the raw materials necessary to address 
the climate crisis. 

Keywords: Critical minerals, critical minerals strategy, mineral criticality, mineral systems, mineral potential modelling, porphyry, volcanogenic 
massive sulphide, SEDEX, MVT, magmatic mafic to ultramafic, carbonatite, iron skarn

1. Introduction
Critical minerals are essential for low-carbon technologies.

These minerals are required for electric vehicles, mobile phones, 
solar panels, wind turbines, electrical transmission lines, 
batteries, and medical devices, and to manufacture products for 
national defense. As society places more value on the transition 
to low-carbon-based energy, demand for minerals important 
for energy generation, storage, and transmission will increase. 
Consequently, jurisdictions around the world are developing 
strategies to ensure critical mineral supply chains are robust 
and resilient. In 2021, the Government of Canada released a 
national critical minerals list (Fig. 1) and the Canadian Critical 
Minerals Strategy (NRCan, 2022) to encourage investment in 
critical minerals and strengthen economies while combating 
climate change. British Columbia, the other provinces, and the 
territories are also pursuing strategies to take advantage of the 
global interest in stable and responsible mining jurisdictions.

Mining and mineral exploration contribute greatly to 
the economy of British Columbia. Employing more than 
35,000  people, these industries are particularly important 
to rural communities. In the last five years, the total value 
of mining production was $63.4 billion and the mineral 
exploration expenditure was $2.8 billion (Clarke et al., 2020, 
2021, 2022, 2023, 2024). 

In this paper we first consider how critical minerals are defined, 
the jurisdictional dependence and transient nature of critical 
mineral lists and introduce British Columbia’s critical minerals 
atlas. We then describe how the British Columbia Geological 
Survey has moved away from historical mineral deposit 
profiles to a more encompassing ‘mineral systems’ approach, 
how this approach is applied to modern mineral potential 
modelling and summarize six mineral systems of importance to 
critical minerals in British Columbia: porphyry, volcanogenic 
massive sulphide, deep-water basin and platformal base-metal, 
magmatic mafic to ultramafic, carbonatite, and iron skarn.

2. Critical minerals and criticality
Although some critical mineral lists do include a small number 

of minerals or groups of minerals, the term ‘critical mineral’ 
is a misnomer because it commonly refers to elements rather 
than actual minerals. The criticality of minerals is defined by 
different groups, for different purposes, in different ways, but 
two criteria are commonly used. First, a mineral may be deemed 
critical if it serves an essential purpose (e.g., national security or 
economic health) and second, if it is at risk of supply disruption 
(e.g., National Research Council, 2008; Graedel et al., 2012; 
Gunn, 2014; Hayes and McCullough, 2018). Critical mineral 
lists are neither universal nor static (e.g., Jowitt et al., 2018). 
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Fig. 1. The 31 critical minerals on the Canadian list and some of their uses. After NRCan (2022).

Based on specific demands and supply vulnerabilities, different 
countries have different critical minerals lists (e.g., Table 1). 
Each jurisdiction has variations reflecting supply chain access, 
geography, and geopolitical circumstance. Critical mineral lists 
also change with time as demand shifts and technology evolves 
(e.g., Fortier et al., 2022). Nonetheless, the lists from different 
jurisdictions have many items in common. From Table 1, 
more than ten lists include Sb, Bi, Cr, Co, Ga, graphite, In, Li, 
Mg, Mn, Ni, Nb, platinum group elements (PGE), rare earth 
elements (REE), Ta, Sn, Ti, W, and V. Five to ten jurisdictions 
list Al, barite, Be, Cs, Cu, fluorspar, Ge, Hf, He, Mo, P, potash, 
Rh, Sc, Si, Sr, Te, U, Zn, and Zr. Fewer jurisdictions (less than 
five) share As, B, Cd, metallurgical coal (coking coal), feldspar, 
Au, Fe, Pb, Rb, Se, and Ag.

In the last two decades, many organizations have adopted 
a variation of the United States National Research Council 
(2008) framework for evaluating the criticality of a material 
(e.g., Blengini et al., 2020). In general, the criticality 
framework has two dimensions, one quantifying supply risk, 
the other economic importance (Fig. 2). For each mineral, risk 
and economic importance are estimated using proxy indices for 
different parameters (e.g., Blengini et al., 2020; Nassar et al., 
2020). A mineral is deemed critical only if it overcomes user-
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Fig. 2. Two-dimensional criticality framework. Jurisdictions calculate 
supply risk and economic importance for a mineral then define 
acceptable thresholds. Minerals with minimal supply risk will not 
be critical even if of great economic importance. Similarly, minerals 
of low economic importance will not be critical even if supply risk 
is high. A combination of both increasing supply risk and economic 
importance yields increasing criticality. From Hickin et al. (2023).
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North America Asia and Australia Europe South America

Minerals USA CAN AB ON QC SK YK Japan South 
Korea India AUS EU UK Brazil Chile

Aluminum/bauxite x x x x x x x
Antimony x x x x x x x x x x x
Arsenic x x x x
Barite/barium x x x x x x
Beryllium x x x x x x
Bismuth x x x x x x x x x x x x
Borate/boron x x
Cadmium x x
Cesium x x x x x
Chromium/chromite x x x x x x x x x
Cobalt x x x x x x x x x x x x x x x
Copper x x x x x x x x x x
Feldspar x
Fluorspar/fluorine x x x x x x x x
Gallium x x x x x x x x x x x x x
Germanium x x x x x x x x x
Gold x
Graphite/carbon x x x x x x x x x x x x x
Hafnium x x x x x x
Helium x x x x
Indium x x x x x x x x x x
Iron x
Lead x
Lithium x x x x x x x x x x x x x x x
Magnesium x x x x x x x x x x x x
Manganese x x x x x x x x x x x x
Metallurgical coal x
Molybdenum x x x x x x x x x x
Nickel x x x x x x x x x x x x
Niobium x x x x x x x x x x x x x x
PGE x x x x x x x x x x x x x x x
Phosphate/phosphorous x x x x x
Potash x x x x x
REE x x x x x x x x x x x x x x x
Rhenium x x x x
Rubidium x x
Scandium x x x x x x x x x
Selenium x x x x x
Silica/silicon x x x x x x x
Silver
Strontium x x x x
Tantalum x x x x x x x x x x x x x x
Tellurium x x x x x x x x x
Tin x x x x x x x x x x x
Titanium x x x x x x x x x x x x x x
Tungsten x x x x x x x x x x x x x
Uranium x x x x x x x
Vanadium x x x x x x x x x x x x x x
Zinc x x x x x x x x x
Zirconium x x x x x x x

Table 1. Canadian and key global partner critical mineral lists. Coloured boxes indicate relevance to British Columbia: green are 
significant; yellow require further evaluation; red are unlikely to be produced. After Hickin et al. (2023).
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defined thresholds in supply risk and economic importance. 
The Government of Canada has taken a criteria-based approach 
in developing the national critical mineral list (Gadd et al., 
2022a). The criteria, which were established in consultation 
with the provinces, territories, and industry representatives, 
specify that the critical mineral must be: 1) essential to Canada’s 
economic security; 2) required for Canada’s transition to a low-
carbon economy; and/or 3) a sustainable source for partner 
nations. The current list (Fig. 1) consists of 31 critical minerals 
including 27 elements, two groups of elements (platinum group 
elements and rare earth elements), and two minerals (fluorspar, 
potash).

3. British Columbia’s critical mineral atlas
British Columbia is developing its own Critical Minerals 

Strategy and BCGS has compiled a critical minerals atlas as 
the initial step in evaluating the critical mineral endowment 
of the province and in building awareness of critical mineral 
opportunities for the exploration and mining industries (Hickin 
et al., 2023). The atlas is not British Columbia’s official critical 
mineral list. Instead, it represents an inventory of commodities 
in the province that appear on the Canadian list or on those of 
key trading partners (Table 1). Acknowledging that many are 
unlikely to appear on the final critical minerals list for British 
Columbia, 41 elements/minerals are detailed. Each is presented 
on a data sheet that provides descriptions, mineral properties, 
uses and importance, global production, modes of occurrence, 
and overviews of occurrences in British Columbia. A map is 
included with each data sheet depicting the distribution of 
known occurrences in British Columbia and shows the status 
of each occurrence (current producer, past producer, developed 
prospect, prospect, showing). Where available, current, past 
production, and mineral resource data are tabulated. 

4. From mineral deposit profiles to mineral systems
The British Columbia Geological Survey has mapped and 

inventoried the mineral deposits of the province for more than 
130 years (Sutherland Brown, 1998). More than 30 years ago, 
the Survey initiated a study to assess the mineral potential of 
the entire province. This pioneering work combined known 
mineral occurrences, what was then understood about which 
rocks favour mineral deposition, and the geology of a given 
area to develop a relative ranking of mineral potential (Kilby, 
1995, 2004; Grunsky, 1997; MacIntyre and Kilby, 2009). 
Emphasizing the differences between deposit types, mineral 
potential assessments focused on deposit profiles that classified 
occurrences into about 120 deposit types based mainly on genetic 
models (e.g., Lefebure and Jones, 2022). The profiles included 
descriptions of geological characteristics, mineral exploration 
techniques, resource data, age of mineralization, tectonic 
setting, and concepts about deposit origins. The approach 
used built on work by the United States Geological Survey 
(Brew, 1992; Singer, 1993) but modified for British Columbia 
(Kilby, 2004). Tracts of land of similar geological character 
were defined and experts from government, industry, and 

academia assessed all available data to determine probabilistic 
estimates for the expected number of undiscovered deposits. 
The ranking of the land base for metallic deposits was based 
on the gross in-place value of the commodities for both known 
and estimated undiscovered deposits. The dollar value of each 
tract was determined using expert input, commodity prices, 
and a Monte Carlo simulation to determine probable tonnage 
and grade information for each deposit type. Importantly, the 
dollar scores were intended as a ranking tool and not intended 
to imply a particular dollar value to the ground being ranked. 
These mineral potential data remain a valuable contribution for 
land use assessment, but do not provide commodity-specific 
information. 

To support current land-use decisions and evaluate critical 
mineral opportunities, the Survey is now reviving provincial 
mineral potential assessment (Wearmouth et al., 2024). In 
contrast to previous approaches, which emphasized the 
differences between deposits split into about 120 types, the 
current assessment adopts a mineral system approach, which 
emphasizes similarities between deposits and uses a large-scale 
view of all the factors that control generating and preserving 
deposits (e.g., Knox-Robinson and Wyborn, 1997; Hronsky 
and Groves, 2008; McCuaig et al., 2010; Ford et al., 2019; 
Groves et al., 2022). Originally proposed by Wyborn et al. 
(1994) and drawing on ideas from the petroleum industry 
(e.g., Magoon and Dow, 1994), each mineral system includes 
an ore source and driving force, a transport mechanism and 
pathway, and a physical or chemical trap (Knox-Robinson and 
Wyborn, 1997). The approach recognizes that the ore deposit, 
which is relatively small (<1 km in plan view), is the central 
feature of a larger system that may be detectable at a regional 
scale (>10 km in plan view). Being process-based, the mineral 
systems approach is neither restricted to a geological setting 
nor limited to a specific ore deposit type. The mineral systems 
approach focuses on processes that are common across mineral 
systems, which enables the simultaneous assessment of many 
deposit types at a variety of scales (McCuaig et al., 2010).

5. Six important mineral systems in British Columbia
Gadd et al. (2022a) highlighted important mineral systems 

in Canada of significance for precious and base metals and 
critical minerals. Following a similar approach, below we 
summarize selected mineral systems that are important to 
British Columbia and the ongoing Survey research directed 
at better understanding mineral potential and critical mineral 
opportunities.

The mineral endowment of British Columbia and the tectonic 
evolution of the Canadian Cordillera are intimately linked. 
The Canadian Cordillera records a history of supercontinent 
rifting and a succession of island arc volcanosedimentary 
and intrusive assemblages (terranes) developed outboard of 
Ancestral North America and accreted to each other and to the 
proto-continental margin with final amalgamation produced 
by collisions driven by the westward motion of the North 
American continental plate. The amalgamated Cordillera then 
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became the site of Cretaceous and Cenozoic arc and post-arc 
magmatism. Terrane evolution continues today as the Juan 
de Fuca plate slides beneath Vancouver Island (Fig. 3). As 
reviewed by Nelson et al. (2013a), Hickin et al. (2017) and 
Colpron and Nelson (2021), the diverse tectonic processes, 
from supercontinent breakup through development of long-
lived arc terranes, to terrane accretion and post-accretion 
magmatism, metamorphism, deformation, and sedimentation, 
have generated diverse mineral systems across the province.

present-day Cascadia subduction zone and Queen Charlotte 
fault. Modern-day volcanic complexes related to Cascadia 
subduction are distributed along the length of the western 
Cordillera, and many of the terranes are partially covered 
by sedimentary rocks that were deposited during terrane 
accretion and collision, when older rocks were deformed, 
uplifted, eroded, and redeposited in newly created sedimentary 
basins. The variety of tectonic settings and paleogeographic 
environments recorded by these terranes and superterranes 
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West of Ancestral North America, Cordilleran terranes are 
commonly grouped into superterranes and terranes (Fig. 3). 
Ancestral North America consists of predominantly sedimentary 
rocks that were deposited on cratonic basement during the 
Paleoproterozoic and Mesoproterozoic and during and after 
the Neoproterozoic to Cambrian breakup of the supercontinent 
Rodinia, which created the western margin of Laurentia, the 
nucleus of what is now North America. The Intermontane 
superterrane consists of a diverse group of Late Paleozoic 
to Mesozoic volcano-sedimentary assemblages and kindred 
intrusive bodies that formed mainly in and adjacent to island 
arcs outboard of Ancestral North America in the proto-Pacific 
Ocean. The Insular superterrane consists of similar island 
arc terranes; the Intermontane-Insular terrane boundary lies 
within the syn- to post-accretionary Coast Plutonic complex, 
a linear arc-axial belt that extends the length of the Cordillera. 
The Outboard terranes are mostly late Mesozoic to Cenozoic 
forearc siliciclastic assemblages, bounded to the west by the 

since the Mesoproterozoic generated conditions favourable for 
a variety of mineral systems.

5.1. Porphyry systems
Porphyry deposits are the world’s largest source of Cu and Mo 

and individually can contain 100s of millions to billions of metric 
tons of ore. These deposits typically form above subduction 
zones at convergent plate margins associated with calc-alkaline 
volcano-plutonic arcs but can also form from alkaline magmas 
in post-subduction settings, such has been inferred in British 
Columbia, particularly in Quesnel and Stikine terranes (Fig. 4; 
Nelson et al., 2013a; Logan and Mihalynuk, 2014; Hickin et 
al., 2017; Colpron and Nelson, 2021). Of the eleven mines 
that operated in British Columbia in 2023, seven are porphyry 
deposits. The province is the largest Canadian producer of 
copper (typically 40-50%) and only producer of molybdenum 
(Clarke et al., 2024), both of which are on the national critical 
minerals list (NRCan, 2022). Porphyry deposits have numerous 

Fig. 3. Superterranes, terranes, and modern tectonic elements of the Canadian Cordillera in British Columbia. Modified after Colpron (2020).

Geological Fieldwork 2023, British Columbia Ministry of Energy, Mines and Low Carbon Innovation, British Columbia Geological Survey Paper 2024-01
17

Hickin, Ootes, Orovan, Brzozowski, Northcote, Rukhlov, and Bain



(
(
(
(

(

(
(

(
(

(

(
(

(
(

(
(

(
(

(

(
(

(

(

(

(
(

(

(
(

(

(
(

(

(

(

BRBRBR

CC

CC

AT

CR

OK
CD

JdF

WR

CG

AX

YA

KS

AX

ST

NAp

NAc

NAc

CA

CA

CA

OC SH

SH

SH

BR

NAb

NAb

SM

SM

SM

QN

QN

QN

MT

MT

CPC

CPC

CPC

SJ
CK

HA

YT

YT

YTYT
YT

Kitsault
Mo-Ag

Logtung Mo-W

Highland Valley Cu-Mo

Granisle
Cu-Au

Copper Mountain Cu-Au

New Afton
Cu-Au

Lorraine
Cu-Au

Mount Polley Cu-Au

Galore
Creek Cu-Au

Mount Milligan
Cu-Au

Huckleberry
Cu-Mo-Au

Woodjam Cu-Au-Mo

KSM
Cu-Au-Ag-Mo

( megathrust 
transform 
ridge 
strike-slip 

( thrust 

0 200 400
km

OutboardOutboard
OC Olympic
YA Yakutat
CG Chugach
PR Pacific Rim
CR Crescent

InsularInsular

CPC Coast plutonic
complex

KS Kluane, Windy
WR Wrangellia
AX Alexander

IntermontaneIntermontane
SH Shuksan
BR Bridge River
CC Cache Creek
AT Atlin
CD Cadwallader
SJ San Juan
CK Chilliwack
HA Harrison
MT Methow
OK Okanagan
ST Stikinia
QN Quesnellia
YT Yukon-Tanana

SM Slide
Mountain

Ancestral N AmericaAncestral N America
CA Cassiar

NAb Laurentia
(offshelf)

NAp Laurentia
(shelf)

NAc Laurentia
(craton/cover)

USA

USA

Al
be

rta
Br

iti
sh

 C
ol

um
bi

a

12
0°

W

Yukon

50°N

60°N

55°N

12
5°

W

13
0°

W

13
5°

W

11
5°

W

12
5°

W

Alkalic porphyry

Calc-alkaline porphyry

Fig. 4. Selected porphyry deposits in British Columbia. Terranes after Colpron (2020).

subtypes grouped under the broad class referred to as ‘porphyry 
(D)’ by Lefebure and Jones (2022), and porphyry systems may 
also include other types such as skarn, carbonate replacement, 
and high- and intermediate-sulphidation epithermal deposits 
(Fig. 5; e.g., Sillitoe, 2010; Orovan and Hollings, 2020). 
In porphyry systems, hydrothermal fluids interact with 
surrounding rocks creating characteristic and predictable 
alteration assemblages (Fig. 5). In the green rock environment, 
an extensive and zoned alteration halo surrounds the potassic 
(K-feldspar-biotite-chalcopyrite) core centered on a porphyritic 
intrusive complex (Sillitoe, 2010; Orovan and Hollings, 2020). 
Immediately outwards from the potassic core is the inner 
propylitic subzone (or actinolite subzone), which is defined by 
the occurrence of actinolite. Other minerals in this assemblage 
may include combinations of albite, epidote, chlorite, calcite, 
hematite, magnetite, and pyrite. The medial propylitic zone is 
the epidote subzone; it has a similar mineral assemblage but 
lacks actinolite. The outermost propylitic zone is the chlorite 
subzone, which lacks actinolite, epidote, and commonly 
magnetite. This alteration zonation reflects the decreasing fluid 
temperature outward from a central heat source, providing a 
distinctive and observable guide to potential mineralization 
(Cooke et al., 2014; Orovan et al., 2018; Pacey et al., 2020; 
Orovan and Hollings, 2020). The green rock alteration 
domains may be subjacent to or overprinted by a lithocap, its 
feeder structures, or other late-stage upward-flaring alteration 

features, which may include advanced argillic (quartz-
alunite-clay), silicic (quartz), argillic (clay), phyllic/sericitic 
(quartz-sericite-pyrite), and intermediate argillic (sericite-
clay-chlorite) alteration zones. High-sulphidation epithermal 
mineralization may be embedded in the lithocap environment, 
containing a combination of pyrite, enargite, covellite-
digenite, chalcopyrite and tetrahedrite/tennantite. Sodic-calcic 
alteration (albite-epidote-chlorite±actinolite) may be present 
in a deep or medial position with respect to the mineralizing 
porphyritic intrusive complex, where it overprints potassic and/
or propylitic alteration. Where reactive host-rock horizons are 
present, skarn alteration assemblages and mineralization may 
develop, consisting of Cu-rich minerals close to the intrusion, 
and more Zn-Pb-rich mineralization farther out. Within zones 
of high-angle normal faults or breccias that are medial to distal 
to the porphyritic intrusive complex, intermediate-sulphidation 
mineralization may form consisting of base metal sulphides, 
including silver-bearing tetrahedrite, electrum, chalcopyrite, 
barite, galena, and sphalerite. This mineralization typically 
occurs with quartz-adularia-illite-pyrite alteration.

The main commodity of economic interest in porphyry 
deposits is Cu, with Mo and Au common co-products and Ag 
the most common by-product. Porphyry Mo deposits typically 
lack co-products, although W or Ag have been reported 
(e.g., Kitsault Mo-Ag, Fig. 4; Steininger, 1985). The most noted 
by-products recovered from porphyry deposits include Ag, As, 
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PGE, Re, Se, Te, W, Sn, U, Zn, monazite, silica, and sulphuric 
acid (Sillitoe, 1983; John and Taylor, 2016). Additionally, Be 
and Bi can be enriched in porphyry Mo deposits (e.g., 1 cm-long 
beryl crystals and bismuthinite at the Logtung porphyry Mo-W 
deposit, (Fig. 4; Noble et al., 1995; Mihalynuk and Heaman, 
2002). Other metals that may be enriched include Nb, In, Cs, 
F, Li, Rb, Ta, Co and REE but rarely in concentrations that are 
of economic interest (John and Taylor, 2016; Velasquez et al., 
2020). Gold and Ag are the major commodities in porphyry-

related epithermal deposits; Pb, Zn and Hg are common co-
products in intermediate-sulphidation deposits, whereas Cu is 
the most common co-product in high-sulphidation deposits.

Porphyry deposits are typically found in hydrous, oxidized, 
shallow-level intrusive rocks formed above subduction zones 
(Fig. 6), but can also occur in post-subduction and post-collision 
or extensional back-arc settings. Most magmatic rocks in these 
settings lack porphyry deposits, suggesting that a particular 
sequence of ore-forming conditions must be met (e.g., Park et 
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Fig. 5. Diagram of typical alteration zonation patterns and overprinting relationships in the porphyry environment. The green rock environment 
includes three subfacies of propylitic alteration that are zoned about an intrusive complex and proximal associated potassic alteration. The 
propylitic alteration passes outward from an inner high-temperature subzone characterized by the presence of actinolite to an intermediate- 
temperature subzone containing epidote to an outer low-temperature subzone with predominantly chlorite. Upward-flaring zones of phyllic 
(sericitic) and/or intermediate argillic (sericite-clay-chlorite) alteration may overprint the upper portions of the porphyry system and may 
transition into a lithocap (including silicic, advanced argillic, and argillic alteration) at shallow levels. The lithocap can host high-sulphidation 
epithermal mineralization. At deeper levels (or medial to the mineralizing intrusions) sodic-calcic alteration may overprint the potassic core and/
or propylitic halo. Where reactive host-rock horizons are present, skarn alteration assemblages and mineralization may develop. Medial to distal 
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al., 2021). Several processes contribute to creating porphyry 
deposits, although workers may disagree on their relative 
importance (Fig. 6). First, fluids and hydrous melts are liberated 
from a subducting slab. Second, the mantle wedge is hydrated 
causing flux melting of mantle peridotite and the production 
of oxidized, hydrous basaltic arc magma, which ascends and 
pools in deep reservoirs in the mid to lower crust (∼30-70 km 
depth; Richards, 2011). Magma in these deep reservoirs then 
differentiates by fractional crystallization, crustal assimilation, 
recharge, and mixing (Lee and Tang, 2020). This evolved 
magma then rises to the upper crust (∼5-15 km depth) becoming 
fluid-saturated due to fractional crystallization and low H2O 
solubility at low pressure (Chiaradia and Caricchi, 2017). 
Finally, the fluid-saturated melt intrudes into the shallow crust 
at depths of 1-7 km, forming pencil-shaped plugs, stocks, and 
dikes that exsolve fluids forming a hydrothermal circulation 
system precipitating metal-rich sulphide minerals (Sillitoe, 
2010).

Although there are Late Neogene and Jurassic examples in 
Wrangell terrane on Vancouver Island (Nixon et al., 2020a), 
most porphyry deposits are in the interior of the province, 
in Triassic to Jurassic volcanoplutonic rocks of Quesnel and 
Stikine terranes (Fig. 4; e.g., Logan and Mihalynuk, 2014). 

These deposits can be subdivided geochemically and by their 
metal endowment. Calc-alkaline porphyry deposits, the most 
common variety, include Cu, Mo, Cu-Mo, and Cu-Au systems 
(e.g., Highland Valley, KSM, Woodjam). Alkalic porphyry 
deposits are restricted to Cu-Au systems and are Late Triassic to 
Early Jurassic, and locally contain PGE (e.g., Copper Mountain, 
New Afton, Lorraine). The alkalic porphyry Cu-Au deposits 
can be associated with breccia complexes (e.g., Mt. Polley), 
silica-undersaturated alkalic intrusions (e.g., Galore Creek), or 
silica-saturated alkalic intrusions (e.g., Mount Milligan). The 
plutons that host Quesnel terrane deposits conform, in part, to 
a pattern defined by parallel belts of calc-alkaline and alkalic 
plutons that become progressively younger from west to east 
(Logan and Mihalynuk, 2014; Schiarizza, 2014). Logan and 
Mihalynuk (2014) emphasized that a narrow 15-m.y. time 
interval spanning the Jurassic-Triassic boundary, particularly 
a 6 m.y. pulse centred at 205 Ma, was a particularly prolific 
episode during which most of the mineralization took place. 
However, significant porphyry deposits also formed in Stikine 
terrane during the Cretaceous (e.g., Huckleberry) and Eocene 
(e.g., Granisle, Kitsault).

Because of their importance to the economy of British 
Columbia, porphyry deposits have been studied by Survey 
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Fig. 6. Tectonic and magmatic conditions to form porphyry deposits. 1) In a subduction zone, an oceanic plate consisting of hydrated sediments 
and altered oceanic crust is dragged downward toward the mantle. Fluids and hydrous melts are released from this subducting slab causing 
hydration of the overlying mantle wedge. 2) Hydration of the mantle wedge results in flux melting of mantle peridotite, producing oxidized, 
hydrous basaltic arc magma reservoirs in the mid to lower crust (∼30-70 km depth). 3) The arc magma differentiates by fractional crystallization, 
crustal assimilation, recharge and mixing. 4) The evolved magma rises to form an upper crustal magma chamber (∼5-15 km depth). 5) The melt 
intrudes into the shallow crust at depths of 1-7 km, forming porphyritic intrusions that exsolve Cu-rich ore fluids that form porphyry deposits. 
Modified after Park et al. (2021).
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geologists for many decades, a tradition that continues today. 
In the last ten years, integrated field and laboratory studies have 
been dedicated toward unravelling the tectonic and metallogenic 
evolution of the main porphyry-bearing terranes of Stikinia 
(e.g., Nelson and Kyba, 2014; Barresi et al., 2015; Mihalynuk 
et al., 2016; van Straaten and Nelson, 2016; van Straaten and 
Gibson, 2017; Febbo et al., 2019; Ootes et al., 2020; Stanley 
and Nelson, 2022; van der Vlugt, 2022; van Straaten et al., 
2022, 2023; Jones et al., 2023; Norris et al., 2023; van Straaten, 
2024) and Quesnellia (e.g., Logan and Mihalynuk, 2013, 2014; 
Mihalynuk and Logan, 2013a, b; Logan and Schiarizza, 2014; 
Schiarizza, 2015; Mihalynuk and Diakow, 2020; Schiarizza and 
Friedman, 2021). Recent publications by Logan et al. (2020), 
Nelson and van Straaten (2020), Colpron and Nelson (2021), 
and Nelson et al. (2022) synthesize some of this work, and 
recent dedicated volumes edited by Sharman et al. (2020) and 
Plouffe and Schetselaar (2021) provide additional province-
wide and detailed studies. Particularly important has been the 
development of new tectonic models about the transition from 
the Stuhini arc to the Hazelton arc in Stikinia, a transition of arc 
reorganization with major metallogenic significance (Nelson et 
al., 2022) and the important role that long-lived, deep-level 
structural corridors have for generating porphyry deposits 
in Stikinia and perhaps elsewhere (Nelson and van Straaten, 
2020).

Given the thick and extensive drift cover across many areas, 
considerable attention has also been devoted to examining 
the down-ice dispersal of material derived from hidden 
porphyry deposits using samples from subglacial tills, which 
typically represent the first derivative from bedrock. These 
studies include province-wide ice-flow compilations (Arnold 
and Ferbey, 2020), basal till potential maps (e.g. Ferbey, 
2014), examinations of porphyry deposit indicator minerals 
(e.g.,  Ferbey et al., 2016, 2018; Canil et al., 2017; Lian and 
Hickin, 2017; Plouffe and Ferbey, 2017, 2019; Mao et al., 2017; 
Bustard et al., 2019; Lee et al., 2021; Plouffe et al., 2021), and 
using remotely piloted aircraft systems (drones) to collect lidar, 
radiometric, and magnetic data (e.g., Ferbey and Elia, 2021; 
Elia et al., 2023, 2024; Ferbey et al., 2024). Current work 
includes characterizing the petrogenesis and critical mineral 
deportment across alteration assemblages and delineating 
co- and by-products across the spectrum of porphyry deposit 
subtypes in the province, starting with the historical Kitsault 
Mo-Ag mine (Orovan et al., 2024).

5.2. Volcanogenic massive sulphide systems (VMS)
Volcanogenic massive sulphide (VMS) deposits are 

accumulations of sulphide minerals precipitated at sites of 
rift-related submarine volcanism on the floors of modern and 
ancient seas. The deposits form where hot metal-rich magmatic 
fluids rise, discharge, and mix with seawater (e.g., Lydon,1984, 
1988; Franklin et al., 2005; Galley et al., 2007; Cousens and 
Piercey, 2008; Hannington et al., 2011; Piercey, 2011; Ross 
and Mercier-Langevin, 2014). Based on volcanic rock type(s) 
typically related to tectonic setting, VMS deposits have been 

subdivided into numerous categories named after type localities 
included in the “marine volcanic association” of Lefebure and 
Jones (2022; see Northcote, 2022 for review). The primary 
metals in VMS systems are Cu and Zn, with secondary Pb. 
More rarely, VMS systems contain Co (e.g., Windy-Craggy, in 
British Columbia; Fig. 7; Peter and Scott, 1999; Leybourne et 
al., 2022), or are rich in Au and Ag (Eskay Creek in British 
Columbia; Sherlock et al., 1999; Mercier-Langevin et al., 2011). 
By-products from VMS production may include Au and Ag, 
and some deposits have a host of other critical metals (e.g., Bi, 
Co, Ga, Ge, In, Sb, Sn, Te, Tl; Paradis, 2015; Leybourne et al., 
2022).

Volcanogenic massive sulphide deposits form in extensional 
tectonic settings where new sea floor is being created, such as 
at mid-oceanic ridges (MOR), rifting-arcs, and back-arc basins 
(Fig. 8; Lentz, 1998; Franklin et al., 2005; Galley et al., 2007; 
Cousens and Piercey, 2008; Piercey, 2011). Although many 
modern mid-ocean ridge examples have been documented, 
ancient examples are rare because thin, juvenile oceanic crust 
is easily subducted. Rifting arcs and back-arc basins have a 
higher preservation potential and are the tectonic settings most 
represented in the rock record. 

Observations of modern seafloor processes have provided 
direct information on the origin of VMS, making this deposit 
class one of the best studied and understood mineralizing 
systems (Fig. 9; e.g., Lydon, 1984, 1988; Franklin et al., 2005; 
Galley et al., 2007). Driven by magmatic heat, oceanic water 
circulates through seafloor volcanic and sedimentary deposits 
as hydrothermal fluids. These fluids scavenge metals and are 
focused and discharged through hydrothermal vents called 
black smokers, precipitating the metals as sulphide complexes 
within vents and adjacent aprons (Franklin et al., 2005; Galley 
et al., 2007). In some deposits, syn-volcanic intrusions are 
the source of metals (e.g., Leybourne et al., 2022), and some 
deposits form during sub-seafloor replacement processes 
(Doyle and Allen, 2003; Piercey, 2015). Intervals of volcanic 
quiescence are required to establish significant massive sulphide 
accumulations undiluted by large volumes of volcanic rock. 
Ancient deposits are likely deformed and/or metamorphosed. 
Although the genetic model for VMS formation generally 
applies, the geometry of the mineralization, alteration envelope, 
and host-rocks may be significantly and unpredictably modified, 
and the search for potential VMS deposits in deformed terranes 
requires a combination of detailed structural and lithofacies 
mapping (e.g., Lafrance et al., 2020).

Key features of VMS deposits (Fig. 9) include: 1) occurrence 
in seafloor volcanic and sedimentary rocks; 2) spatial 
relationship to syn-volcanic caldera complexes, which are 
recognized by lateral facies changes, such as transitions away 
from plateau flows to escarpments to escarpment-related 
breccia aprons; 3) proximity to syn-volcanic intrusions, 
which act as heat pumps for circulating hydrothermal fluids; 
4) textural preservation of primary volcanic rock-forming 
minerals albeit altered by interactions with hydrothermal 
fluids; 5) accumulations of sulphide minerals, typically 
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Fig. 8. Tectonic settings of volcanogenic massive sulphide (VMS) deposits (red circles).

chalcopyrite and sphalerite (±galena), pyrite, and pyrrhotite, 
in hydrothermal vent complexes; 6) additional replacement 
mineralization in vent and apron environments; and 7) lateral 
transitions to exhalative deposits such as those similar to 
banded iron formations that may have elevated Zn, Mn, or Ba. 
Key starting points for recognizing environments with potential 
for VMS mineralization include deep-water volcanic rocks 
with abrupt facies changes, alteration of primary compositions 
(e.g.,  bleaching, epidote-rich cores to pillowed basalts), and 
potential syn-volcanic intrusions (Campbell et al., 1981; 
Hannington et al., 2003; Franklin et al., 2005; Galley et al., 
2007; Cousens and Piercey, 2008; Piercey, 2011). 

VMS and vent-proximal SEDEX deposits (see section 5.3.) 
form in similar ways, but there are a few key differences. First, 
VMS deposits are mainly hosted by volcanic rocks, whereas 
SEDEX deposits are hosted by deep-water sedimentary 
rocks with only sparse volcanic rocks. Second, syn-volcanic 
intrusions are common in VMS deposits but not in SEDEX 
deposits. Third, alteration of host-rocks near VMS deposits 
is extensive and can be used as an exploration tool, whereas 
alteration in SEDEX host rocks is not significant. Fourth, VMS 
mineralization is predominantly Cu-Zn (±Pb, Au, Ag), whereas 
SEDEX deposits contain Zn-Pb (±Ba) with little to no Cu.

Most VMS occurrences in British Columbia are rifting arc-
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Fig. 9. a) Schematic diagram of a modern hydrothermal chimney complex discharging metal-rich hydrothermal fluids on the seafloor. Modified 
after Galley et al. (2007) and references therein. b) Black smoker venting metal-rich hydrothermal fluids and precipitating fine-grained sulphide 
minerals on the seafloor (United States National Oceanic and Atmospheric Administration). c) Lower temperature white smoker venting 
carbonate- and sulphate-rich minerals on the sea floor (United States National Oceanic and Atmospheric Administration).

related Zn-Pb-Cu-Ag-Au deposits including the currently 
producing Myra Falls mine and past-producing Britannia and 
Tulsequah Chief mines (Fig. 7). However, precious metals-
enriched rifting-arc VMS and epithermal hybrid deposits 
are also high priority targets. The high-grade Eskay Creek 
deposit, in volcanic and sedimentary rocks filling the narrow 
north-trending, fault-bounded Eskay rift, exemplifies this 

type. East of the Eskay rift but with a slightly older inferred 
time of deposition, mineralization at the Dolly Varden and 
Homestake deposits also has characteristics of both VMS and 
epithermal vein and open-space filling styles (Hunter et al., 
2022; Turner and Hough, 2023). The combined Homestake 
and Dolly Varden deposits contain a 4.153 Mt Indicated 
resource of 34.731 Moz Ag, 166.0 koz Au, 2.87 Mlb Cu, and 
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1.25 Mlb  Pb and an additional 6.831 Mt Inferred resource 
containing 29.3 Moz Ag and 817 koz Au (Turner and Hough, 
2023). The Kutcho Creek rifting arc deposits are hosted by 
primitive arc volcanic and volcaniclastic rocks of the Kutcho 
assemblage (Permian-Triassic; Schiarizza, 2012). Orebodies 
are in a sequence of lapilli, crystal-lithic, and quartz-feldspar 
crystal tuffs. The feasibility stage project has a combined 
Measured and Indicated 22.8 Mt grading 1.52% Cu, 2.18% Zn, 
28.1 g/t Ag, and 0.39 g/t Au. The Inferred resource is 12.9 Mt 
grading 1.10% Cu, 1.58% Zn, 20.0 g/t Ag, and 0.25 g/t Au 
(CSA Global Mining Industry Consultants Canada Limited, 
2021). The feasibility-stage Yellowhead deposit is also a 
rifting arc VMS (Höy, 1997), hosted in metavolcanic and 
metasedimentary rocks of the Upper Eagle Bay assemblage 
(Devonian-Lower Mississippian). The deposit is remobilized 
but remains generally conformable with host rock stratigraphy. 
Total potentially bulk mineable resources are estimated 
at 1292 Mt grading 0.25% Cu, 0.028 g/t Au, and 1.2 g/t Ag 
Measured and Indicated and 109 Mt grading 0.21% Cu, 
0.024 g/t Au, and 1.2 g/t Ag Inferred (Taseko Mines Limited, 
2020). Back-arc basin and mid-oceanic ridge VMS (Besshi and 
Cyprus) types are less common although there are important 
examples of both (e.g., back-arc Windy Craggy, Granduc, and 
Goldstream; mid-ocean ridge in the Anyox camp). Chu Chua 
is an exploration-stage mid-oceanic ridge deposit in the Fennel 
Formation (Mississippian to Permian). An updated resource 
estimate has an Inferred 2.29 Mt resource grading 2.11% Cu, 
0.30% Zn, 9.99 g/t Ag, and 0.50 g/t Au. Cobalt values of 310-
475 ppm were noted historically in the ore zone (Raffle et al., 
2021). 

In the last decade, the stratigraphy, volcanology, 
sedimentology, structural geology, geochronology, and isotopic 
evolution of VMS-bearing rocks and allied intrusions in 
northwestern British Columbia have been intensively studied 
(e.g., Nelson and Kyba, 2014; Cutts et al., 2015; van Straaten 
and Nelson, 2016; Nelson, 2017; Nelson et al., 2013b, 2018) 
and recently synthesized (Nelson and van Straaten, 2020; 
Colpron and Nelson, 2021; Nelson et al., 2022; van Straaten et 
al., 2022). Recent mapping in the Kitsault River area (Hunter 
and van Straaten, 2020; Hunter et al., 2022; Miller et al., 2023) 
indicates that precious metals-enriched VMS mineralization 
is slightly older than in what is traditionally considered the 
bounds of the Eskay rift to the west. Mihalynuk et al. (2019) 
presented U-Pb zircon data consistent with VMS mineralization 
at the Granduc and Rock and Roll deposits being Late Triassic. 
In northern British Columbia, Mihalynuk et al. (2024) are 
examining ophiolitic rocks near Atlin for ultramafic-associated 
massive sulphide mineralization, and in southeastern British 
Columbia, the Survey is currently examining ultramafic-
associated Ni- and Co-enriched VMS mineralization in the 
Lardeau Group.

5.3. Deep-water basin and platformal base-metal systems
Sedimentary exhalative (SEDEX) and Mississippi Valley-

type (MVT) deposits are the most significant hosts of base-

metals genetically related to the deposition and diagenesis of 
sedimentary rocks in British Columbia. Potential exists for 
other types in which sedimentary processes play a predominant 
role. These two deposit types (SEDEX and MVT) are included 
in the broad class referred to as ‘sediment-hosted (D)’ by 
Lefebure and Jones (2022). 

SEDEX deposits, such as the historic Pb-Zn-Ag Sullivan 
mine (Fig. 10), typically form in deep-water, off-shelf settings 
coeval with background sedimentation of fine-grained 
argillaceous material (Fig. 11). In ‘vent-proximal’ deposits, 
sulphide minerals grow near hydrothermal seafloor vents 
surrounded by fine-grained sediments. ‘Vent-distal’ deposits 
lack an apparent relationship to hydrothermal vents entirely 
and display a stratiform geometry with alternating sulphide-
rich and fine-grained interlayers (e.g., Goodfellow and Lydon, 
2007; Sangster, 2018). Both represent the syndepositional 
accumulation of sulphide minerals derived from waters that 
have circulated through underlying basement rocks and the 
sedimentary pile and ascended to the sediment-water interface 
or close to it. The primary metals in SEDEX deposits are Pb 
and Zn (±Ag, Ge, In); some have a spatial association with 
stratiform barite deposits. Historical records indicate the 
Sullivan mine contained Sn, Cu, Au, Fe, Sb, Cd, Bi, In, and W. 

In contrast to the typical deep-water setting of SEDEX 
deposits, Mississippi Valley-type (MVT) deposits are hosted 
by relatively shallow-water platformal carbonate successions 
(Fig. 11) in which both penecontemporaneous dolomitization 
of original calcium carbonate sediment and karst processes 
create void spaces for the precipitation of base-metal sulphides 
from low-temperature hydrothermal fluids to form stratabound 
epigenetic deposits (e.g., Sangster, 1990; Paradis et al., 2007). 
Lead and Zn are the primary metals, but MVT-like deposits 
have potential to contain Mg, Ga, Ge, In, REE, and F (e.g., Mt. 
Brussilof mine where Mg is now being produced, Fig. 10). 
Barite is a potential primary commodity, and at least one REE 
(F, Ba)-bearing deposit (Rock Canyon Creek) has similarities 
in tectonic and stratigraphic setting to Mississippi Valley-type 
Zn-Pb deposits in the same district (Simandl et al., 2019). 

Other deep-water basin and platform-hosted mineralization 
types in the Cordillera include ‘hyper-enriched black shales’ 
and ‘sediment-hosted Cu’ (‘red-bed’, or Kupferschiefer-
type’). Hyper-enriched black shales deposited off-shelf of the 
Laurentian margin (Kechika trough) in the Middle Devonian 
(Gadd et al., 2020, 2022b), can contain concentrations of Zn, Ni, 
Cu, Mo, Se, U, V, Cr, Co, Ag, Au, Re, PGE and REE, and Gadd 
et al. (2022b) described an example below younger SEDEX 
mineralization at the Akie deposit. Redbed copper deposits in 
marginal marine evaporites and related rocks of the Coates Lake 
Group (Neoproterozoic, Mackenzie Mountains, NT) display 
both syngenetic and epigenetic styles (e.g., Ootes et al., 2013; 
Brown et al., 2014) and there may be potential for this type 
of mineralization in Neoproterozoic units in northern British 
Columbia. Sedimentary or volcanic-hosted Cu mineralization 
also occurs in the Takla and Hazelton groups (Late Triassic to 
Early Jurassic) in eastern Stikine terrane (e.g., Sustut copper 
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(2020).

deposit; Church, 1975; Legun, 2001, Fig.  10), although the 
timing of mineralization remains unknown.

Consistent with the global distribution of such base metal 
deposits (Hoggard et al., 2020; Huston et al., 2023), SEDEX 
and MVT deposits in British Columbia formed in extensional 
tectonic settings, particularly related to the development of 
cratonic margins (e.g., Emsbo, 2009; Fig. 11). The famous 
Sullivan deposit (Figs. 10, 12) formed in the deeper parts of the 
Belt-Purcell basin in an intracratonic sag generated by stretching 
of the Laurentian continental nucleus about 1.45 billion years 
ago (e.g., Lydon et al., 2000; Lydon, 2007). Early Paleozoic 
SEDEX and MVT deposits formed contemporaneously on the 
western flank of Ancestral North America during the breakup 
of the supercontinent Rodinia, suggesting a broad genetic 
relationship with regional platform to off-shelf fluid flow 
(Fig. 2; e.g., Nelson et al., 2002, 2013a; Ootes et al., 2013). 

Lead isotope studies suggest crustal sources of mineralization 
in MVT and SEDEX deposits (Godwin and Sinclair, 1982; 
Nelson et al., 2002; Leach et al., 2005; Ootes et al., 2013). 
Siliciclastic debris derived from continental basement and 
carbonate deposits are potential sources (Fig. 2b; Goodfellow 
and Lydon, 2007; Paradis et al., 2007; Emsbo et al., 2016; Leach 
et al., 2010). Leach et al. (2005) suggested that mineralization 
is related to the circulation of large volumes of saline brines, 
concentrated by the evaporation of seawater, or in the case of 
MVT, possibly evaporite dissolution (Fig. 11). SEDEX fluids 

range from low to high temperature, 70-300°C, and salinities of 
10-30 wt.% total dissolved solids, like oilfield brines (Emsbo, 
2016 and references therein), whereas MVT are somewhat 
lower temperature, 75-200°C and up to 30 wt.% equivalent 
NaCl±CaCl (e.g., Paradis et al., 2007; Kontak et al., 2022). 
The mechanisms of heating and circulation remain conjectural 
and may reflect high regional geothermal gradients (with 
possible magmatic underplating), or deep circulation of brines 
(Fig. 11b). Proposed mechanisms driving fluid flow include 
sediment compaction and discharge, heat-driven buoyancy 
convection, topography-driven flow, and density-driven flow 
of evaporatively concentrated brines (Emsbo et al., 2016; 
Wilkinson, 2014; Sangster, 2020). 

Syndepositional faults are the foci of mineralizing fluids in 
SEDEX models (Figs. 11 b, c). In the case of MVT, faults, 
fractures, breccias and karst features all may supply permissive 
permeability and porosity (Fig. 11 d). Confluences of physical 
and chemical conditions that focus and alter mineralizing fluids 
include changing lithology, changing pressure-temperature, 
and fluid mixing. In the Cordillera, long-lived basement 
structures transverse to the structural grain may have exerted 
controls (Lund, 2008; McMechan, 2012; Hayward and Paradis, 
2021). Precipitation of sulphides requires reduced sulphur. A 
trap involves a change from limestone to dolomite, a permeable 
organic rich near-seafloor layer, exhalation into euxinic seafloor 
conditions, or other mixing of fluids with contrasting properties 
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Fig. 12. Folded bands of massive sulphides interlayered with fine-
grained siliciclastic deposits from the historical Sullivan SEDEX 
mine, southeastern British Columbia.

(e.g., Goodfellow and Lydon, 2007; Leach et al., 2010; Magnall 
et al., 2020; Kontak et al., 2022).

British Columbia is home to numerous SEDEX deposits. 
The Ruddock Creek deposit is in isoclinally folded amphibolite 
facies metasedimentary rocks (Höy, 2001, 2002) in the hanging 
wall of a crustal-scale ductile shear (Monashee decollement). 
Based on sulphide lead isotope ages, mineralization formed 
between Neoproterozoic deposition (ca. 663 Ma) and 
ca. 535 ±30 Ma (Theny et al., 2015; Theny, 2016). The resource 
stands at 6.25 Mt grading 6.50% Zn, 1.33% Pb Measured and 
Indicated and 6.68 Mt grading 6.33% Zn, 1.20% Pb Inferred, 
based on a 2013 estimate (Imperial Metals Corporation, 2023) 
that does not include more recent drill results. SEDEX deposits 
in offshelf rocks of the northern Rocky Mountain Laurentian 
margin are Late Devonian, hosted by carbonaceous shale of 
the Gunsteel Formation (Upper Devonian), Earn Group, and 
include vent-proximal and, more commonly, vent-distal types 
(Goodfellow, 2007). Cirque, a vent-distal deposit, currently has 
the largest (historical) resource estimate with 38 Mt of 8% Zn, 
2.2% Pb, and 47.2 g/t Ag for the main Cirque, and 15.5  Mt 
of 6.9% Zn, 1.4% Pb, and 32 g/t Ag for the south Cirque 
(MacIntyre, 1992). The Akie project includes the Cardiac 
Creek vent-proximal deposit, which has an Indicated resource 
of 22.7  Mt of 8.32%  Zn, 11.61% Pb, and 14.1 g/t Ag, and 
an Inferred resource of 7.5 Mt of 7.04% Zn, 1.24% Pb, and 
12.0 g/t Ag (JDS Energy & Mining Inc., 2018). 

Most MVT and related deposits in British Columbia are in 
early stages of modern exploration, (e.g., Robb Lake, Duncan 
Lake) or have been mined out (e.g., Monarch, Kicking Horse). 
However, the Revel Ridge project is a more advanced project 
with a zone of carbonate-hosted Ag-Zn-Pb mineralization 
variously described as metamorphic complex lead-zinc 
type (like Ruddock Creek) or MVT as favoured in a recent 
compilation by Stone et al. (2021). The total resource estimate 

across all zones, including veins, is 6.7 Mt of 1.93% Pb, 
3.68% Zn, 50 g/t Ag, and 3.69 g/t Au Measured and Indicated 
and 6 Mt of 1.19% Pb, 2.20% Zn, 39 g/t Ag, and 4.70 g/t Au 
Inferred. Although Late Devonian SEDEX mineralization in 
the Earn Group prompted exploration at the Silvertip deposit, 
the primary target is currently considered to be related to an 
enigmatic Cretaceous intrusion and represent a carbonate 
replacement manto (Nelson and Bradford, 1993; Cullen, 2010.) 

Decades of foundational mapping and deposit studies in 
British Columbia that followed the pioneering work of Fyles 
and Eastwood (1962), Fyles (1964), Höy (1983), among others 
continues today with focus on comparing different carbonate-
hosted deposits. Paradis et al. (2022) reviewed carbonate-
hosted deposits of the southeastern Canadian Cordillera, 
including paragenetic and isotopic data and concluded that 
most formed in high-porosity dolostones at the margins 
of carbonate platform and that mineralization occurred 
predominantly in two main episodes: Middle to Late Cambrian 
and Late Devonian to Middle Carboniferous. Simandl et al. 
(2020, 2022) compared the REE contents of carbonate minerals 
in Pb-Zn deposits, finding general evidence of re-equilibration 
with diagenetic, hydrothermal, or metamorphic fluids. Kontak 
et al. (2022) compared petrographic, fluid inclusion, and 
stable isotope data of MVT deposits in British Columbia and 
Alberta suggesting that mixing of sulphur-poor metalliferous 
and sulphide bearing metal-poor fluids generally plays a role in 
mineralization. Paradis and Simandl (2017, 2018) considered 
genetic links between MVT and SEDEX types and between 
carbonate hosted barite-Zn and magnesite. Green et al. (2017) 
and Simandl et al. (2019) noted the similar setting of the 
Rock Canyon Creek deposit, which includes REE-bearing 
fluorocarbonates, phosphates, and fluorite (Hoshino et al., 
2017), and MVT deposits of southeastern British Columbia.

5.4. Magmatic mafic to ultramafic systems
Magmatic sulphide deposits in mafic-ultramafic intrusions 

are the main hosts of Ni and platinum-group elements (PGE) 
globally and in British Columbia (Mudd and Jowitt, 2014; 
Mudd et al., 2018). These deposits form where sulphide 
liquid can segregate from a silicate magma, interact with this 
magma to become enriched in metals, and accumulate in small 
volumes of mafic-ultramafic rock in accessible portions of 
the crust (Naldrett, 1999; Barnes et al., 2015; Lawley et al., 
2021). In the BCGS deposit profile classification (Lefebure and 
Jones, 2022), the general ‘mafic/ultramafic’ (M) category of 
this mineralizing system includes the ‘flood basalt-associated 
Ni-Cu’ (M01), ‘gabbroid stocks Ni-Cu’ (M02), ‘Alaskan-
type Pt±Os±Rh±Ir’ (M05), and ‘Giant Mascot-type Ni-
Cu±Co  (M09)’ subcategories. The main metals of economic 
interest are Ni, Cu, Co, and the PGE (Pt and Pd > Os, Ir, Rh, 
and Ru; Mudd and Jowitt, 2014; Mudd et al., 2018). However, 
these deposits can also contain significant concentrations 
of V, Ti, and Cr, which are hosted primarily by chromitites 
and Fe-Ti-V oxide ores (Cawthorn et al., 2005; Mondal and 
Mathez, 2007; Pang et al., 2008) and Sc, which is concentrated 
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principally in clinopyroxene and amphibole (Wang et al., 
2021b). Metalloids (e.g., Bi, As, Te, and Pb) that may be 
associated with platinum-group minerals (PGM) are rarely 
present in economic concentrations.

Magmatic Ni-Cu-PGE sulphide deposits can be hosted by 
layered mafic plutons, such as the Bushveld Complex in South 
Africa (e.g., Maier et al., 2023) and Duluth Complex in USA 
(e.g., Thériault et al., 2000), or volumetrically smaller conduit-
type plutons, such as the Current (Brzozowski et al., 2023), 
E&L (Hancock, 1990; Brzozowski and Zaborniak, 2024), and 
Voisey’s Bay (Lightfoot et al., 2012) deposits in Canada. It 
is generally agreed that most of these deposits formed from 
parental magmas generated by high degrees of partial melting 
of mantle plumes beneath craton boundaries (Fig. 13a; Begg 
et al., 2010), forming Large Igneous Provinces (Ernst and 
Jowitt, 2013). Subduction zones have not traditionally been 
considered prospective targets for magmatic sulphide deposits 
because of the paucity of mafic-ultramafic intrusions containing 
economic concentrations of Ni (Ripley, 2010). This view is 
rapidly changing as increasingly more Ni-Cu-PGE deposits 
are identified at convergent margins (Fig. 13b) around the 
world such as in Spain (e.g., Aguablanca, Piña et al., 2010) and 
China (e.g., Huangshandong, Huangshanxi, and Kalatongke, 
Song and Li, 2009; Mao et al., 2014; Wang et al., 2021a). In 
British Columbia (Fig. 14), such deposits include Giant Mascot 
(Manor et al., 2016), Turnagain (Scheel et al., 2005; Jackson-
Brown et al., 2014; Nixon et al., 2019), E&L (Brzozowski and 
Zaborniak, 2024), Tulameen (Spence et al., 2022), and Polaris 

(Nixon et al., 1990; Nott et al., 2020; Milidragovic et al., 2021, 
2023).

Regardless of tectonic setting, the mechanisms by which 
magmatic sulphide deposits form are largely the same (Fig. 15). 
These include: 1) generation of a mafic-ultramafic magma by 
high degrees of mantle partial melting; 2) segregation of an 
immiscible sulphide liquid from the magma; 3) migration of this 
sulphide- and crystal-laden magma upwards through the crust; 
and 4) enrichment of the sulphide liquid in metals (Naldrett, 
2010). A high degree of mantle partial melting is critical 
to generating these deposits because it allows for complete 
melting of sulphides in the mantle source, which releases 
metals to the resulting magma (Arndt et al., 2005; Naldrett, 
2010). Despite the importance of generating an immiscible 
sulphide liquid, this process is challenged because most 
magmas arriving near the Earth’s surface are undersaturated 
in sulphide; this is particularly true for the oxidized magmas 
that form at convergent margins (Mavrogenes and O’Neill, 
1999; Jugo, 2009). Some additional mechanism is, therefore, 
required to cause a magma to become saturated in sulphide, the 
most common of which being addition of external S, although 
addition of Si, magma mixing, and crystal fractionation 
can also lead to sulphide saturation (Ripley and Li, 2013). 
Transport of the crystal- and sulphide-laden magma from the 
mantle to the upper portion of the crust is driven by buoyancy 
and dike propagation, with sulphide transport possibly being 
assisted by flotation on vapor bubbles (Barnes et al., 2015; Yao 
and Mungall, 2020). Craton boundaries serve as ideal structural 
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Fig. 13. Schematic diagrams illustrating the generation of magmas and associated mafic-ultramafic intrusions in a) an intracontinental setting 
associated with a mantle plume and b) a convergent margin (modified after Jiang et al., 2019). Most mafic-ultramafic plutons in British Columbia 
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corridors for magma transport because Moho-penetrating faults 
can be reactivated, allowing magmatism to be concentrated 
(Barnes et al., 2015). Smaller-scale migration and emplacement 
occurs where these deep faults interact with local crustal 
anisotropies, such as faults, fractures, and foliation (Barnes 
et al., 2015). During magma transport and emplacement, the 
immiscible sulphide liquid becomes progressively enriched 
in metals by selectively concentrating dispersed metals in the 
magma via sulphide liquid-silicate melt interaction (Mungall et 
al., 2020). This metal enrichment process, which is quantified 
as ‘R factor’ (Campbell and Naldrett, 1979), operates most 
effectively in dynamic magma systems where small volumes of 
sulphide liquid can interact with large volumes of silicate melt 
(e.g.,  conduit-type intrusions, Barnes and Lightfoot, 2005). 
Finally, the metal-rich sulphide liquid needs to be concentrated 
in traps via mechanical processes related to silicate melt-
sulphide liquid density differences and changes in magma 
flow regime (Barnes et al., 2015). These traps largely occur 
where the morphology of conduits change, causing a change 
in magma dynamics and, hence, sulphide carrying capacity 
(e.g.,  embayments, changes in conduit orientation; Evans-
Lamswood et al., 2000; Barnes et al., 2015). 

Nickel-Cu-PGE sulphide deposits in British Columbia 
(Fig. 14) are almost exclusively hosted by Alaskan-type and 
other mafic-ultramafic intrusions in Quesnel and Stikine 
terranes. The intrusion-hosted deposits are mineralogically 
and metallogenically distinct; some are endowed in PGE, but 
have limited sulphide (e.g., Tulameen, Polaris), whereas others 
are endowed in base metals and are sulphide rich (e.g., Giant 
Mascot, Turnagain, E&L). The Giant Mascot deposit, which 
is hosted by dunite, peridotite, and olivine-bearing pyroxenite 
that intruded the Settler schist and Spuzzum pluton (Coast 
Plutonic complex), is the only previously mined Ni-Cu-
PGE deposit in British Columbia. It contains disseminated, 
net-textured, and (semi-) massive orebodies comprising 
chalcopyrite, pyrrhotite, and pentlandite (Nixon, 2003; Manor 
et al., 2016). At Turnagain, Ni-Cu-PGE mineralization in the 
form of disseminated to semi-massive pyrrhotite, pentlandite, 
and lesser chalcopyrite occurs predominantly in the dunite-
wehrlite core of an otherwise typically zoned Alaskan-type 
pluton that intruded greenschist-facies volcano-sedimentary 
strata (Nixon, 1998; Scheel et al., 2005; Jackson-Brown et al., 
2014; Nixon et al., 2020b). The Polaris Alaskan-type intrusion 
was emplaced into metasedimentary and metavolcanic rocks of 
the Lay Range assemblage in Quesnel terrane. It contains Ir-
rich mineralization in chromite-bearing dunite and Cu-Pt-Pd-
Au-rich magmatic sulphide in clinopyroxenite (Nixon et al., 
1997; Nott et al., 2020; Milidragovic et al., 2021, 2023). The 
Tulameen intrusion, in the southern part of Quesnel terrane, is a 
zoned, sill-like Alaskan-type body emplaced into metavolcanic 
and metasedimentary rocks of the Nicola Group. It contains 
sulphide-poor, PGE-rich mineralization in chomitites in the 
dunite core and sulphide-rich, Cu-PGE mineralization in 
clinopyroxenites in a peripheral zone. At the E&L deposit, 
which is hosted by a tholeiitic gabbro stock that cuts Lower 

Jurassic Hazelton Group rocks in Stikine terrane, sulphide-rich 
Ni-Cu-PGE mineralization consists of chalcopyrite, pyrrhotite, 
and pentlandite mainly in varitextured gabbro and wehrlite 
(Vandenburg, 2020; Brzozowski and Zaborniak, 2024). 
Although not as common, Ni mineralization also occurs in 
serpentinized ophiolites. These deposits are genetically distinct 
from magmatic sulphide deposits and form, in part, by the 
release of Ni from olivine because of hydrothermal alteration. 
An example of such a deposit in British Columbia is Baptiste, 
in the Mount Sidney Williams ultramafic-ophiolite complex 
of Cache Creek terrane. Mineralization is in the peridotite 
as disseminated awaruite (Ni-Fe alloy) that resulted from 
serpentinization of Ni-rich olivine (Britten, 2017).

In the last several decades, British Columbia Geological 
Survey programs have undertaken research characterizing 
the petrogenesis of magmatic sulphide deposits and their host 
mafic-ultramafic plutons, particularly those in the accretionary 
terranes (e.g., Hancock, 1990; Nixon et al., 1990, 1997; Nixon, 
1998, 2003). Recent work has built upon these foundational 
studies to continue expanding our understanding of these 
economically significant deposits. Manor et al. (2014) and 
Jackson-Brown et al. (2014) provided the first published 
details of the mineralogy of sulphides and platinum-group 
minerals in the Giant Mascot and Turnagain sulphide-rich 
deposits, respectively. Milidragovic et al. (2017) developed 
a magma mixing model to explain unusually Fe-rich rocks 
of the Mount Hickman intrusive system, contributing to our 
understanding of barren versus fertile Alaskan-type plutons. 
Nott et al. (2020) refined the lithological units of the Polaris 
pluton that were originally defined by Nixon et al. (1997), 
identified lithological characteristics indicating remobilization 
of ultramafic cumulates triggered by magma recharge, and 
described the spatial variability of sulphide-rich and sulphide-
poor PGE mineralization. Milidragovic et al. (2023) presented 
sulphur isotopic data indicating that seawater sulphate was 
added to the sub-arc source of the Polaris magmas. Spence et 
al. (2022) mapped the textural relationships between ultramafic 
cumulates of the Tulameen pluton, and identified zones of 
intermingled ultramafic cumulates that were interpreted as 
evidence for magma recharge and remobilization of crystal 
mushes. Steinthorsdottir et al. (2020) described the alteration 
and protoliths of a dismembered ophiolite containing the 
Baptiste deposit and highlighted the potential importance of 
the degree of serpentinization to the distribution, abundance, 
and grain size of brucite and awaruite.

As part of the current critical minerals program at the Survey, 
ongoing research to further our understanding of the spectrum 
of magmatic sulphide deposits in the province was initiated at 
the E&L deposit (Brzozowski and Zaborniak, 2024). 

5.5. Carbonatite and related systems
Carbonatites are rare igneous rocks that contain abundant 

primary carbonate minerals, at least 30% (Mitchell, 2005) or 
50% (Le Maitre, 2002). As the exclusive source of critical 
metals such as Nb and REE, these rare rocks have become 
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important exploration targets. Most carbonatites are spatially 
and temporally associated with much larger volumes of silicate 
rocks such as ultramafic, melilitic, ijolite-series, and syenitic 
rocks, suggesting genetic relationships between the carbonate 
and the silica-undersaturated and alkaline silicate magmas 
(Woolley, 2003; Mitchell, 2005; Woolley and Kjarsgaard, 
2008). The deposit profile scheme of Lefebure and Jones 
(2022) refers to carbonatite deposits as ‘carbonatite-associated 
deposits: magmatic, replacement, and residual (N01); and 
to related rock deposits as “nepheline syenites” (R13)’. 
Carbonatite- or related rock-hosted deposits also produce 
fluorspar, phosphate, Fe, Al, Ti, Zr, V, Cu, Ni, Au, PGE, Ta, 
Mo, Ba, Sr, Th, U, lime, olivine, phlogopite, and vermiculite 
as the main commodities or bi/co-products (Mariano, 1989). 
Mitchell and Gittins (2022) distinguished the high-temperature 
magmatic carbonatites from the low-temperature, deuteric, 
residual ‘carbothermalites’ resulting from fluids enriched 
with CO2 and/or carbonate anions. Both carbonatites and 
carbothermalites are important sources of critical metals such 
as Nb and REE, but carbothermalites can derive from different 
magmas found in a wider range of tectonic settings than 
carbonatites. Thus, identifying the hosts is important for critical 
mineral exploration. Major global examples of carbonatite-
hosted deposits include REE producers such as Bayan Obo in 
China (Kynicky et al., 2012) and Mountain Pass in the USA 
(Castor, 2008) and Nb producers such as Araxá in Brazil 
(Biondi, 2005) and St. Honoré in Canada (Néron et al., 2018). 
Elsewhere, Mo production at Huanglongpu in central China 
is an example of an economic carbothermalite-hosted Nb-U-
REE-Mo deposit within an orogenic belt (Xu et al., 2010; Song 
et al., 2016). Pegmatite-hosted rare-metal deposits include Nb-
Y-F (e.g., Strange Lake, Québec) related to peralkaline granites 
or syenites and Li-Cs-Ta (e.g., Greenbushes, Australia) related 
to peraluminous S-type granites (e.g., Černý and Ercit, 2005; 
Goodenough et al., 2019).

Globally, carbonatites are typically restricted to intracratonic 
settings as part of crustal-scale doming and extensional 
systems (e.g., Bell, 1989). However, the origin and ultimate 
source of carbonatite-hosted critical metals on the one hand 
and peralkaline granite and syenite-hosted Nb, Ta, and REE 
on the other remains controversial. Both the lower mantle 
and recycled materials have been suggested as sources for 
carbonatite magmas (Rukhlov et al., 2015, 2018, 2019; Çimen 
et al., 2019), whereas peralkaline granitic and syenitic hosts 
might have formed by partial melting of a metasomatized 
lower crust (Martin, 2012). Carbonatite magmas can be the 
products of immiscible separation or fractional crystallization 
of parental carbonated silicate magmas, or the products of low-
degree partial melting of a carbonate-bearing mantle (Bell, 
1989; Bell and Rukhlov, 2004; Berkesi et al., 2023; Gittins 
and Mitchell, 2023). Ubiquitous fluoride and oxyfluoride 
complexes in the Nb-Y-F pegmatites suggest an important role 
of F for Nb transport and enrichment in these systems (Mitchell, 
2015). The magmatic evolution of rare-metal pegmatites 
is characterized by progressive Ta enrichment and roughly 

concentric zoning due mainly to in-situ differentiation (Černý 
et al., 1986). These systems derive from volatile-rich, highly 
evolved, felsic magmas (Černý and Ercit, 2005). Crustal-scale 
faults control pathways of both mantle- and crust-derived melts 
and fluids that concentrate, transport and precipitate Nb, Ta, 
and REE. Based on experimental evidence, Anenburg et al. 
(2020) concluded that complexing with alkalis, in addition to 
halogens and carbonate anions, are required for transport and 
trapping of economic-grade, carbonatite-hosted REE deposits 
(Trofanenko et al., 2016).

In the Canadian Cordillera, carbonatite and related igneous 
bodies (Fig. 16) were emplaced episodically at ca. 810-700 Ma 
(Mount Copeland, Perry River, Ren), 500-400 Ma (Blackfoot 
Creek, Bush River, Felix, HP, Kechika River, Little Chicago, 
Mons Creek, Swanson Peak), and 360-320 Ma (Aley, Howard 
Creek, Ice River, Lonnie, Mount Grace, Mud Lake, Ospika, 
Paradise Lake, Serpentine Creek, Three Valley Gap, Upper 
Fir, Trident Mountain, Vergil, Verity, Wicheeda); the Cross 
kimberlite is 245 Ma. Collectively, these rocks form part of 
the British Columbia alkaline province, which defines a long 
(at least 1000 km), narrow (ca. 200 km) orogen-parallel belt 
along the western flank of Ancestral North America (Scammell 
and Brown, 1990; Rukhlov and Bell, 2010; Millonig et al., 
2012; Millonig and Groat, 2013; Chakhmouradian et al., 
2015; Rukhlov et al., 2018). Similar to the intracratonic 
tectonic setting of carbonatites globally, the Neoproterozoic 
and Cambrian carbonatites were injected during the protracted 
breakup of the supercontinent Rodinia and subsequent passive 
margin development on the western flank of Laurentia 
(Figs. 17 a, b; Bond and Kominz, 1984; Ross, 1991; Colpron 
et al., 2002; Li et al., 2008). Both the Neoproterozoic and 
Cambrian pulses of carbonatite magmatism were accompanied 
by the emplacement of the large igneous provinces (LIP) such 
as Gunbarrel, Franklin-Thule, Gataga-Edwardsburg, Hamill-
Gog, and Wichita (Ernst and Bleeker, 2010). In contrast, the 
more numerous late Paleozoic carbonatites, which host Nb-Ta 
deposits (e.g., Upper Fir in the Blue River area and Aley) and 
REE deposits (e.g., Wicheeda) are unusual relative to typical 
global occurrences (Bell, 1989) because they were emplaced 
near the continental margin while subduction was taking place 
to the west rather than in the cratonic interior during continental 
breakup (Fig. 17 c; Nelson et al., 2013a).

Hosted by the parautochthonous rocks of the Omineca and 
Foreland belts, carbonatites and related ultramafic, silica-
undersaturated and alkaline silicate rocks in British Columbia 
range from intrusive complexes with a paucity of carbonatites 
(e.g., Trident Mountain, Mount Copeland) to carbonatite 
complexes with a paucity of silicate rocks (e.g., Aley, Blue 
River, Frenchman Cap). Both the carbonatites and host 
rocks experienced multiple episodes of deformation and 
metamorphism during Mesozoic and Cenozoic accretionary 
tectonics while outboard terranes welded to each other and to 
Laurentia (Scammell, 1987, 1993; Scammell and Brown, 1990; 
Pell, 1994; Millonig et al., 2013). Intrusive complexes made up 
of mainly silica-undersaturated and alkaline silicate rocks, such 
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Fig. 16. Carbonatite and related rock occurrences along the British Columbia alkaline province (after Parrish and Scammell, 1988; Pell, 1994; 
Rukhlov and Bell, 2010; Millonig and Groat, 2013; Rukhlov et al., 2018). Terranes after Colpron (2020).

as the Ice River complex, form small (up to 29 km2 at surface), 
compositionally zoned bodies that are circular to elongate to 
amoeboid in plan view (Dawson, 1886; Currie, 1975; Peterson 
and Currie, 1994). Associated REE-Sr-rich carbothermalite 
dikes, made up of Mn-calcite, barytocalcite, and zeolite with 
minor strontianite, Nb-ilmenite, and REE-F-carbonates, and 
ultramafic lamprophyres are common (Mumford, 2009; Brown, 
2013). Carbonatites lacking associated contemporaneous 
silicate rocks typically form regional swarms of individual 
occurrences across areas of 1000 km2 (e.g., Blue River; Pell, 
1994; Mitchell et al., 2017; Rukhlov et al., 2018; Çimen et al., 
2019). In the Blue River area (Fig. 16), at least 18 carbonatite 
and two alkaline, silica-undersaturated-rock bodies are 
exposed, including at the Upper Fir deposit, one of the 
largest and best studied Nb-Ta occurrences in the Canadian 
Cordillera (Chudy, 2013; Kulla and Hardy, 2015; Rukhlov et 
al., 2018). The carbonatites contain 5-10 vol.% amphiboles, 
10-15  vol.%  fluorapatite, and variable amounts of Ni-rich 
pyrrhotite, Nb-Zr-REE-Ti oxide phases, zircon, Fe2+-Na-rich 
phlogopite, Ti-rich magnetite, olivine, Fe3+-rich ilmenite, and 
monazite (Fig. 18). Coarse molybdenite (up to 1.7 cm long) 
occurs sporadically in both carbonatites and metasomatic 
glimmerites (carbonate-amphibole-phlogopite rocks) and 
fenites (calcite-clinopyroxene-amphibole rocks; Rukhlov et 
al., 2018) that mantle carbonatite sills. Molybdenite has been 

observed in other carbonatite and related-rock occurrences 
in British Columbia, including Perry River, Mount Grace, 
Wicheeda, and the Mount Copeland past producer (Currie, 
1976; White, 1982; Höy, 1988; Trofanenko et al., 2016). 

The Upper Fir carbonatite contains an NI 43-101-compliant 
resource of 48.4 Mt (Indicated) grading 1610 ppm Nb2O5 and 
197 ppm Ta2O5 plus 5.4 Mt (Inferred) averaging 1760 ppm Nb2O5 
and 191 ppm Ta2O5 (Kulla and Hardy, 2015). The main ore 
minerals include the Ta±U-rich pyrochlore supergroup and 
ferrocolumbite, with minor fersmite and nyoboaeschynite 
(Chudy, 2013; Rukhlov et al., 2018). Ferrocolumbite is the main 
Nb host in the ferriwinchite (transitional to actinolite)-dolomite 
carbonatite. In contrast, the ferrikatophorite (transitional to 
richterite and magnesio-arfvedsonite)-dolomite carbonatite 
contains predominantly U-Ta±Ti-rich pyrochlore. 

Peralkaline granite- or syenite-related Nb-Y-F occurrences 
such as Mount Bisson and Coryell syenite contain Nb-Ta-Ti-
REE minerals. In contrast, peraluminous S-type granite-related 
Li-Cs-Ta occurrences such as pegmatites in the Shuswap 
metamorphic complex in the Revelstoke area contain Sn-W-
Ti-Ta minerals such as cassiterite, Nb-rutile, qitianlingite, 
bismutotantalite, hübnerite, and columbite-tantalite group 
(Dixon et al., 2014). Elsewhere, Li-Cs-Ta deposits are important 
sources of Li (e.g., Jiajika, China; Greenbushes, Australia; 
Tanco, Canada; e.g., Goodenough et al., 2019).
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Fig. 17. Pulses of carbonatite magmatism in the Canadian Cordillera 
and origin of carbonatite-hosted critical metals (after Rukhlov et al., 
2019). Parental magmas of Cordilleran carbonatites and related rocks 
were derived from an extensive, long-lived, deep-level equatorial 
mantle reservoir (low shear wave velocity zone) at the core-mantle 
boundary that was tapped episodically since the Neoproterozoic. 
a)  ca. 810 to 700 Ma; protracted breakup of the supercontinent 
Rodinia. b) ca. 500 Ma; passive margin development on the western 
flank of Laurentia. c) ca. 360 to 320 Ma; subduction along the western 
flank of Laurentia and opening of the Slide Mountain ocean as a back-
arc basin sourced by MORB magmas. Deep mantle components as 
follows: FOZO (FOcus ZOne); HIMU (high- ²³8U/²04Pb or μ); EM1 
(enriched mantle 1).

Fig. 18. Dolomite carbonatite with aligned light-toned fluorapatite 
megacrysts and dark-toned ferrikatophorite prisms set in a 
recrystallized ferroan dolomite matrix that readily oxidizes brown-
red; Upper Fir deposit.

Rukhlov et al. (2018, 2019) examined the petrogenesis of 
the Blue River carbonatites and other examples from British 
Columbia using petrographic, whole-rock geochemistry, 
mineral chemistry, and both stable (C, O, and S) and radiogenic 
(Sr, Pb, and Nd) isotopic data. Isotopic systematics provide key 
constraints on magmatic evolution and source of the carbonatite-
hosted critical metals. Despite metamorphism and deformation, 
most carbonatites in British Columbia, except the late Paleozoic 
Nb-Ta and REE carbothermal rocks, retain primary mantle 
carbon and oxygen isotopic signatures (Rukhlov et al., 2018, 
2019; Çimen et al., 2019). The oxygen isotope equilibrium 
temperatures for dolomite, magnetite, ilmenite, zircon, and 
amphiboles coexisting with calcite in Blue River carbonatites 
yield values between 689-1079°C, which are much higher 
than the regional metamorphic temperatures (up to ~700°C) 
and hence reflect crystallization temperatures of relatively hot, 
oxidized (ΔQFM or quartz-fayalite-magnetite buffer=-0.5 to 
+5) magmas (Rukhlov et al., 2018). Furthermore, the Sr-Pb-Nd 
isotopic data indicate a heterogeneous, sub-lithospheric source 
of the British Columbia carbonatites involving mixing of 
isotopically distinct mantle end members such as FOZO (FOcus 
ZOne), HIMU (high- ²38U/204PB or μ), and EM1 (enriched 
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mantle 1; Rukhlov et al., 2019). These mantle end members 
are found in the sources of ocean-island basalts or ‘hot spots’, 
young (<200 Ma) carbonatites worldwide, and the mantle 
plume-related Kola alkaline province (ca. 370 Ma; Rukhlov et 
al., 2015). The significance of high- ³He/4He FOZO component 
implies a relatively un-degassed deep-seated source (e.g., van 
Keken et al., 2002). Notably, the depleted, mid-ocean ridge 
mantle (DMM) end member, which represents the upper mantle, 
is excluded from the mixing trends defined by the carbonatite 
data from British Columbia and elsewhere (Rukhlov et al., 
2015, 2018, 2019). Paleogeographic reconstructions place the 
western margin of Laurentia (Fig. 19; Li et al., 2008; Nelson et 
al., 2013a) and hence the 810-320 Ma British Columbia alkaline 
province, above the equatorial large low shear wave velocity 
province marked by a long-lived and extensive (continent-
scale) reservoir at the core-mantle boundary (plume-generation 
zone; Burke, 2011) consisting of FOZO, HIMU, and EM1 
components. Parental magmas of Cordilleran carbonatites and 
related silica-undersaturated and alkaline silicate rocks were 
likely derived from this reservoir that was tapped episodically 
as multiple plumes at different times since the Neoproterozoic 
(Fig. 17). Emplacement was probably aided by long-lived 
orogen parallel and orogen transverse lithospheric structures 
that were reactivated by regional tectonic processes during 
intracontinental rifting (Neoproterozoic, breakup of Rodinia), 
rifting of Ancestral North America (early Paleozoic, Cordilleran 
passive margin), and back-arc extension (late Paleozoic; during 
opening of Slide Mountain ocean as a back-arc basin west of 
the continental margin). 

Simandl et al. (2017) used automated mineralogical analysis 
to evaluate carbonatite indicator minerals in stream sediments 
(Mackay and Simandl, 2015). To refine prospecting criteria 
for carbonatite-hosted critical metals and identify new 
potential targets, Rukhlov et al. (2024) are currently evaluating 
provincial drainage geochemistry collected as part of the 
Regional Geochemical Survey program.

5.6. Iron skarn, iron oxide-apatite (IOA), and iron oxide-
copper-gold (IOCG) systems

British Columbia is not known for Fe skarn, iron oxide-
apatite (IOA), and iron oxide-copper-gold (IOCG) deposits. 
Although these deposits have been explored for in the past, 
possible examples are not well understood, and the systems 
are underexplored in the modern context. The systems can host 
Co and In as well as Cu, REEs, Bi, Ni, and Zn but whether 
they represent a viable critical mineral opportunity in British 
Columbia remains largely untested. 

Iron skarn, iron oxide-apatite (IOA), and iron oxide-
copper-gold (IOCG) deposits typically share close spatial 
relationships with one another in regional mineral systems 
(e.g., Skirrow, 2022; Corriveau et al., 2022, and references 
therein) and commonly show spatial continuity with other 
deposit types such as copper skarns and alkalic porphyry Au 
deposits. Although with distinctive textural modes, these iron-
rich deposits also share unusual characteristics including: 
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1) massive structurally controlled actinolite-rich magnetite ore 
bodies that are typically low in Ti and V (Hitzman et al., 1992); 
2) regional-scale Na- and Na-Ca alteration and variable deposit-
scale Fe-Ca-K alteration; 3) little to no hydrothermal quartz; 
4) variable sulphide mineralization consisting mostly of pyrite-
chalcopyrite-pyrrhotite (e.g., Sillitoe, 2003; Barton, 2013); and 
5) enrichment in a similar spectrum of metals. These shared 
features make iron skarns, IOA, and IOCG deposits difficult 
to clearly classify and differentiate from one another and from 
other deposit types (Sillitoe, 2003; Skirrow, 2022). As a result, 
the deposit profiles identified by Lefebure and Jones (2022) 
classify examples of all three deposit types interchangeably in 
the ‘Fe-Skarn (K03)’ and ‘iron oxide Cu±Au±P±REE (D07)’ 
groups. 

All skarns have abundant garnet-rich calcsilicate alteration 
and typically develop along contacts between intrusions and 
carbonate strata (e.g., Meinert et al., 2005). However, iron 
skarns have distinctive features that set them apart including: 
1) mineralization in the form of massive podiform magnetite 
orebodies (Ray, 2013); 2) abundant sodic-calcic and calcsilicate 
alteration that mainly replaces Si-rich igneous photoliths rather 
than carbonate sedimentary rocks (e.g., Golmohammadi et al., 
2015; Cui et al., 2022; Mikaeili et al., 2023); and 3) a near 
complete lack of hydrothermal quartz (Meinert et al., 2005). 
Along with Fe, iron skarns produce notable quantities of Cu, Co, 
and Au from pyrrhotite, chalcopyrite, bornite, and arsenopyrite 
(Meinert et al., 2005) that occurs either as disseminated crystals 
in massive magnetite or as discrete massive sulphide pods. 
In addition, In and Ge mineralization have been identified 
in sphalerite-bearing iron skarns in the American southwest 
(e.g.,  the West Desert deposit, USA; Dyer et al., 2014) and 
elsewhere.

Iron oxide-apatite deposits commonly consist of tabular dike-
like or, more rarely, massive orebodies with volcanic or plutonic 
textures. These orebodies commonly have sharp contacts with 
host rocks and resemble volcanic flows, layered tuff deposits, 
(e.g., Laco Norte, Chile, Tornos et al., 2016), podiform masses 
within silicate plutons (e.g., Great Bear Magmatic zone, 
Canada, Hildebrand, 1986), and pegmatite veins with well-
developed epitaxial growth textures (e.g., Pasos Blancos, Chile, 
Tornos et al., 2016; Iron Springs, USA, Bain et al., 2020). 
These igneous textures and abundant euhedral magnetite, 
apatite, and actinolite are key distinguishing features (Sillitoe 
and Burrows, 2002; Tornos et al., 2023). Most IOA ore bodies 
are sulphide poor and primarily developed for Fe and minor 
amounts of chalcopyrite- and arsenopyrite-hosted Cu-Au-Co 
mineralization. However, recent discoveries of economic light 
REE mineralization derived from recrystallized primary apatite 
(e.g., Per Geijer, Sweden, Martinsson et al., 2016) highlight 
their potential for other critical minerals.

Relative to IOA systems, massive magnetite orebodies in 
IOCG deposits are more sulphide-rich and tend to consist 
of structurally controlled replacement zones suggestive of 
metasomatic processes (Groves, 2010). Alteration in IOCG 
systems consists primarily of broad regional-scale aureoles of 

pervasive Na-Ca alteration (abltie-scapolite-actinolite±garnet; 
Barton, 2013) that are overprinted by K-Fe-Ca alteration in and 
around individual deposits. These deposits can form in any host 
rock and, although typically found in volcanic and sedimentary 
successions crosscut by a range of intrusive rocks, commonly 
lack a clear genetic relationship to magmatism of a particular 
composition (Skirrow, 2022). Most IOCG deposits are mined 
for Cu and Au in pyrrhotite, pyrite, chalcopyrite, and bornite 
disseminated in massive magnetite ores. However, these 
deposits can be enriched in a wide range of elements including 
Ag, Co, Ni, Bi, Se, Te, In, U, and Mo (Corriveau et al., 2022). 
Notably, several IOCG deposits feature enrichment in Co-Bi-
Au (NICO deposit, NWT, Canada, Burgess et al., 2014; Acosta-
Góngora et al., 2015) and U (Olympic Dam, Australia, Reeves 
et al., 1990; Ehrig et al., 2012).

Iron skarns tend to occur in broad metallogenetic belts along 
convergent margins (Fig. 20; e.g., Yangtze River metallogenic 
belt, China, Duan et al., 2021; Khaf-Kashmar-Bardaskan 
volcano-plutonic metallogenic belt, Iran, Golmohammadi et 
al., 2015) and form alongside gabbroic intrusions in oceanic 
island arc or back-arc settings (Meinert et al., 2005; Ray, 
2013). Most genetic models for iron skarns mirror those of 
Cu-Au skarn systems. These models involve the exsolution of 
metal-rich saline fluids from crystallizing magmas at depth, the 
formation of calcsilicates in carbonate rocks via CO3

2- - SiO2 
exchange, and the precipitation of base-metal mineralization 
via a decrease in temperature and a shift in fluid pH (Meinert et 
al., 2005).  However, current research suggests that carbonic-
sulphate fluids rather than aqueous chloride solutions might 
play a more important role in iron skarn formation by driving Fe 
mobility and controlling redox conditions on the deposit scale 
(e.g., Duan et al., 2021). Similar processes are also inferred in 
IOA and IOCG deposits.

Iron oxide-apatite deposits typically form in continental arc 
environments in extensional or transtensional settings (Skirrow, 
2022). The characteristic magmatic textures of IOA ores provide 
clear evidence for an orthomagmatic genetic model in which 
mineralization represents crystallized Fe-P liquids formed 
via silicate melt immiscibility driven by the assimilation of 
sulphate-bearing carbonate rock (Tornos et al., 2023). Evidence 
for this model includes the common crosscutting relationship 
between mafic intrusions and evaporite-bearing carbonate 
strata in many IOA systems and abundant carbonate-sulphate 
melt inclusions in IOA ores (Bain et al., 2020, 2021). However, 
IOA systems commonly contain abundant Na-Ca and acid-
sulphate alteration, dissolution-reprecipitation textures, and 
display a mixed sedimentary and magmatic-hydrothermal 
isotopic signature (e.g., Johnson et al., 2016). These features 
have led others to invoke contrasting metasomatic (Barton and 
Johnson, 1996) and magmatic-hydrothermal models (Sillitoe 
and Burrows, 2002; Reich et al., 2022). 

Iron oxide-copper-gold deposits can form in diverse 
geodynamic contexts but are mainly found in: 1) orogenic 
settings in previously extended terrains with coeval felsic 
magmatism (Cloncurry Province, Australia, Williams and 
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Fig. 20. a) Arc setting for iron skarns (‘1’), IOA deposits ( ‘2’), and IOCG deposits (‘3’). 1) Andesite volcanic complex hosting massive IOA 
ore bodies showing volcanic- and pegmatitic dike-like morphologies. Note the assimilation of evaporite-bearing carbonate sediments by silicate 
magma at depth and the formation of Fe-P melt via melt immiscibility. This is a representation of the orthomagmatic model for IOA deposits. 
Other models invoke metasomatic processes particularly when the ore bodies are more like that shown in panel ‘3’. 2) Sulphide-rich iron skarn 
with calc-silicate alteration in the Si-rich volcanic and intrusive host rocks and an envelope of crystalline calcite and recrystallized carbonate rock 
surrounding the massive magnetite ore. Sulphides are denoted by yellow squares. 3) Sulphide-rich breccia-hosted IOCG ore body surrounded by 
a replacement-style ore body and an aureole of Ca-Na alteration. Mineralization is focused along a fault and the distribution of the replacement 
ore and alteration follows lithologic contacts.

Pollard, 2001; Carajas Province, Brazil, Monteiro et al., 
2008); 2) extended post-orogenic settings with bimodal, 
predominantly felsic, magmatism (Gawler Craton, Australia, 
Johnson and Cross, 1995), and 3) arc settings where a switch 
from compression to extension coincides with intermediate 
magmatism (Great Bear magmatic zone, Canada, Ootes et al., 
2017; Andean Province, Chile and Peru, del Real et al., 2018). 
A range of genetic models exist for IOCG systems. Many 
recent studies invoke magmatic-hydrothermal processes as the 
key mechanisms and propose porphyry-like models involving 
the exsolution of saline, Fe-rich magmatic-hydrothermal 
fluids from magmas crystallizing at depth and magnetite 
precipitation via extensive fluid-rock reactions (e.g., del Real 
et al., 2020; Melfou et al., 2023). The analogy to porphyry-
like hydrothermal processes goes further in some models 
invoking a continuum between IOCG and porphyry deposits, 
with IOCG mineralization representing the basal expression of 
regional hydrothermal systems (Mumin et al., 2010; Richards 

and Mumin, 2013). These models are supported by the textures 
and the geochemical and stable isotope (S, O, C, Fe) signatures 
of ore and alteration minerology. However, these data sets 
also consistently reflect inputs from carbonate and evaporitic 
sedimentary sources. This has led others to attribute IOCG 
formation to the circulation of fluids of sedimentary or near-
surface origin and extensive leaching of Fe from mafic host 
rocks by (e.g., Johnson and Barton, 1996).

Iron skarns are distributed in a northwest-trending belt 
extending from Vancouver Island and Texada Island to Haida 
Gwaii (Fig. 21; Ray, 2013) and are currently being investigated 
as part of the critical minerals program at the Survey (Fig. 22). 
Clear examples of IOA deposits in British Columbia are rare 
with two possibilities including the apatite-rich magnetite veins 
that crosscut the Heffley Creek Alaskan-type mafic-ultramafic 
pluton (Glen Iron and Magnet deposits, described by Ray 
and Webster, 2000) and the base of the New Afton porphyry 
Cu-Au deposit (described by Logan and Mihalynuk, 2005; 
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Fig. 22. a) Massive magnetite ore body along the southern wall of the Merry Widow mine, Vancouver Island. Not the sharp contacts between the 
ore and the host rocks. b) Erythrite-bearing (?), garnet-rich, podiform magnetite mineralization from northern Texada Island.
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Hall and May, 2013; Thomas, 2021). The one possible IOCG 
example in the province would be replacement-style magnetite 
clusters along the Iron Range fault zone in Belt-Purcell basin 
(Mesoproterozoic) of south-central British Columbia (Stinson 
and Brown, 1995; Galicki et al., 2012). However, IOCG- and 
IOA-like mineralization commonly overprints or is spatially 
associated with the deep and peripheral areas of alkalic 
porphyries and base-metal skarns and could host additional Co- 
Bi- and REE-bearing mineralization, an idea that is currently 
being evaluated.

6. Discussion 
British Columbia is already an important critical mineral 

producer. British Columbia is Canada’s largest producer of Cu, 
only producer of Mo, mines Mg, and recovers Zn, Ag, and Pb. 
In addition to Pb and Zn, British Columbia smelters process 
metals not mined in the province: Al at the Rio Tinto smelter 
in Kitimat; and Ge, Cd, and In at the Teck Resources facility 
in Trail (Fig.  23). Several mine development and proposed 
mine projects in British Columbia could produce elements on 
Canada’s critical minerals list as well as Ag, a metal that is 
typically classified as precious but with important applications 
in renewable energy such as for solar cells (Fig. 24). These 
proposed mines include Aley (Nb), Bull River (Cu, Ag), Galore 
Creek (Cu, Ag), Kemess Underground (Cu, Ag), Kemess East 
(Cu, Ag), Kitsault (Mo, Ag), KSM (Cu, Ag, Mo), Kutcho 
(Cu, Zn, Ag), Record Ridge (Mg), and Ruddock Creek (Zn). 

The province also has many advanced projects with National 
Instrument 43-101 (NI 43-101)-compliant defined resources 
that include critical mineral elements (Fig. 24). Advanced 
projects include Akie (Zn, Pb, Ag), Berg (Cu, Mo, Ag), Chu 
Chua (Cu, Zn, Ag), Decar Nickel District (Ni, Co), Fox 
Tungsten (W), Yellowhead (Cu, Ag), Jersey-Emerald (W, Mo), 
Kitsault Valley-Dolly Varden (Ag), Kitsault Valley-Homestake 
Ridge (Ag, Cu), Kwanika (Cu, Ag) , Lac La Hache (Cu, Ag), 
North Island (Cu, Mo, Re), Ootsa (Cu, Mo, Ag), Poplar (Cu, 
Ag, Mo), Revel Ridge (Zn, Ag), Ruby Creek (Mo), Schaft 
Creek (Cu, Mo), Silver Queen (Ag, Zn, Cu), Silvertip, (Ag, Zn, 
Pb), Stardust (Cu, Ag), Tatogga (Cu, Ag), Turnagain (Ni, Co), 
Wicheeda (REE), and Woodjam (Cu). 

As British Columbia develops its Critical Mineral Strategy, 
new geoscience will be the foundation for establishing new 
opportunities. Ongoing geoscience research by the Survey 
is methodically assessing mineral systems to understand 
the spatial and temporal distribution of critical minerals at 
regional and deposit scales. In the short-term, clarifying by- 
and co-production possibilities of critical minerals not being 
recovered from current base and precious metal mines will 
likely be important. In the long-term, providing foundational 
geoscience data and developing novel exploration techniques 
will encourage discoveries and enhance exploration for 
underexplored mineral systems.

The digitization (direct analog-to-digital conversion of 
data and documents) and digitalization (enabling these data 

Fig. 23. Operating metal, coal, and industrial mineral (Fireside, Moberly, Mt. Brussilof) mines and smelters in British Columbia, 2022. From 
Hickin et al. (2023).
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Fig. 24. Mine development and proposed mine projects and advanced projects in British Columbia, 2023, with critical minerals indicated in 
parentheses. From Hickin et al. (2023).

to be compatible and usable across information systems) 
of geoscience information is another essential activity for 
capitalizing on the global investment in critical minerals. 
Advances in computational power and sophistication have 
enabled innovative analysis of new and existing geochemical, 
geophysical, and geological data that has accelerated the 
recognition of patterns, trends, and the understanding of mineral 
systems. The expansion of digital data and the improvement 
of data-driven analytics is enabling the next generation of 
mineral potential modelling in British Columbia. Establishing 
the essential metal sources, transport pathways, and chemical 
and physical traps for a mineral deposit that can be mapped 
or detected, provides the foundation on which to evaluate 
British Columbia’s mineral potential. The ability to digitally, 
statistically, spatially, and temporally interrogate provincial 
geoscience data allows probability models to be constructed that 
highlight potential mineral districts. These models are essential 
to ensure that decisions made by governments, rightsholders, 
stakeholders, and investors are appropriately informed so that 
the choices maximize the benefit to society.

7. Conclusion
 A long and multifaceted tectonic history has endowed 

British Columbia with a host of mineral systems. Each of these 
systems form in different ways and have specific critical mineral 
endowments. Porphyry systems, an immediate consequence 
of magmatic arc evolution, provide the most significant 

critical mineral resources in British Columbia. The principal 
commodity in most porphyry deposits is Cu, and porphyries 
are the only deposit type to contain significant Mo. Porphyry 
deposits in British Columbia may also contain appreciable Au 
and Ag and, to a lesser extent, the PGE, Re, Se, and Te. In the 
more Mo-rich porphyry deposits, Li, Nb, REE, Rb, Ta, and Sn 
may be present in recoverable quantities. Volcanogenic massive 
sulphide deposits represent another important system because 
they contain most of the Co and Zn in the province. Deep-water 
basin sedimentary exhalative systems are significant hosts to 
Pb, Zn, and Ag, could conceivably supply Bi, Ge, In, Sn, and 
W. Similarly, platformal Mississippi Valley systems supply 
Pb, Zn, and Mg, but have the potential to contain Ba, Ga, Ge, 
In, REE, and F. Magmatic sulphides represent a significant 
system that may host economic concentrations of Ni, PGE and 
Co. Carbonatites are also important because they are the only 
hosts to significant Nb and Ta in British Columbia and are the 
primary global source of REEs. IOA and related deposits may 
represent under-recognized potential in British Columbia for 
critical minerals, a hypothesis that continues to be tested.

Many greenhouse gas-reducing strategies require critical 
minerals that must be mined. British Columbia is presented 
with a generational opportunity to supply some mine products 
that can contribute to addressing the climate crisis while, at the 
same time, benefitting the provincial economy. With abundant 
hydroelectric power and the potential to use this power to 
produce critical minerals, British Columbia may be able to 
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provide materials with a substantially lower carbon footprint 
than jurisdictions that rely on fossil fuels. 

 The British Columbia Geological Survey is refining mineral 
systems models that may host critical minerals and developing 
exploration techniques that could lead to new discoveries 
and expand existing resources. By increasing awareness of 
critical mineral opportunities for the exploration and mining 
industries, and by enhancing the critical mineral knowledge 
base, the province seeks to encourage investment that could 
lead to British Columbia being a significant supplier of the raw 
materials necessary to support a low-carbon future.
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