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Abstract
The E&L magmatic Ni-Cu-PGE sulphide deposit is hosted by a small (~150 m wide near surface) stock with an apparent conduit geometry 

comprising varitextured gabbroic to wehrlitic rocks that crosscut the Nickel mountain gabbro and Middle Jurassic sedimentary rocks of the 
Hazelton Group. Sulphide mineralization occurs as disseminated, blebby, net-textured, and (semi-)massive sulphides. Several lines of textural 
evidence suggest that assimilation of sedimentary rocks likely played a role in the sulphide saturation history of the E&L magma including: 
1) mixtures of gabbroic rock and sedimentary rock in which the two have diffuse boundaries; 2) an association of carbonate with sulphides; and
3) an association of sulphides with felsic patches in mafic rock. Considering that the sedimentary country rocks also contain sulphides, direct
addition of S, either via bulk or selective assimilation, also likely played a role. Compound structures, which comprise segregated sulphide
blebs with rims of fine-grained hydrous silicates (interpreted as former vapour bubbles), are common in the E&L deposit and imply that: 1) the
E&L magma was volatile rich; 2) the magmas were emplaced at shallow crustal levels to permit volatile exsolution; and 3) sulphide liquid
was transported upwards through the intrusive plumbing system. The inferred volatility of the E&L magmas is consistent with the common
occurrence of orbicular textures in the gabbros. We interpret these orbicules to represent saturation of the E&L magma in H2O and exsolution of
a hydrous fluid phase, with the orbicules representing the melt and the interstitial material representing the immiscible fluid. After crystallization
of the stock and generation of the primary sulphide mineralization, it is likely that metals were remobilized by the circulation of hydrothermal
fluids. This inference is supported by: 1) the pervasive alteration of the rocks; 2) the replacement of chalcopyrite by pyrite; 3) the replacement
of olivine ±pyroxene by an assemblage of hydrous silicates and sulphides; 4) the replacement of magnetite in magnetite-ulvöspinel-ilmenite
intergrowths by an assemblage of hydrous silicates and sulphides; 5) the occurrence of sulphides in late-stage veins that crosscut the host rocks;
and 6) the replacement of sulphides by magnetite (i.e., S loss).

Keywords: E&L deposit, Ni-Cu-PGE, magmatic sulphide, metal remobilization, mineral textures

1. Introduction
Nickel, Cu, Co, and the platinum-group elements (PGE)

are considered critical metals because they are essential 
components of the batteries, electronics, and alloys that are 
needed for the transition to low-carbon emission economies. 
Intracontinental mafic-ultramafic intrusion-hosted magmatic 
sulphide deposits are the main global hosts of Ni and PGE 
resources (Mudd and Jowitt, 2014, 2022; Mudd et al., 2018) and 
are also significant hosts of Cu and Co. Although convergent-
margin mafic-ultramafic intrusions are known to contain 
significant concentrations of PGE in Alaskan-type deposits 
(e.g., Tulameen, Nixon et al., 2018; Polaris, Milidragovic 
et al., 2021, 2023), they have generally not been considered 
good targets for other critical metals like Ni. Yet, several arc-
related, mafic-ultramafic-hosted deposits exist globally that are 
base-metal enriched, including Giant Mascot and Turnagain 
in British Columbia (Scheel, 2004; Jackson-Brown et al., 
2014; Manor et al., 2014, 2016), the Huangshan camp (Gao 
et al., 2013; Mao et al., 2015; Wang et al., 2021), Halatumiao 
(Sun et al., 2021), and Taoke (Zhang et al., 2021) in China, 

Aguablanca in Spain (Pina et al., 2010), Duke Island in Alaska 
(Thakurta et al., 2008; Stifter et al., 2016), Ferguson Lake in 
Nunavut (Acosta-Góngora et al., 2018), and Portneuf-Mauricie 
in Quebec (Sappin et al., 2009). Although the fundamental 
mechanisms by which arc-related magmatic sulphide deposits 
form are the same as in intracontinental settings (i.e., mantle 
partial melting, sulphide saturation, enrichment of sulphide 
liquid in metal by sulphide liquid-silicate melt interaction, 
and concentration of sulphide liquid; Naldrett, 2010), several 
aspects of their genesis remain poorly constrained, including 
mantle source composition, sulphide saturation and metal 
enrichment mechanisms, and the nature of the critical mineral 
hosts (e.g., sulphide, chromite, platinum-group minerals, and 
alloys). These ambiguities reflect that, relative to deposits in 
intracontinental settings (e.g., Noril’sk, Naldrett, 1992; Duluth, 
Lee and Ripley, 1995; Jinchuan, Li et al., 2005; Eagle, Ding 
et al., 2011; Voisey’s Bay, Lightfoot et al., 2012; Marathon, 
Brzozowski et al., 2020), little research has been done on this 
subtype of the Ni-Cu-PGE sulphide system.

In British Columbia, Ni and the PGE are almost exclusively 
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Fig. 1. Location of the E&L property in Stikine terrane. Terranes modified from Colpron (2020).

hosted by mafic-ultramafic intrusions, many of which are Cu-
bearing. Nickel-Cu-PGE deposits in British Columbia are 
principally hosted by Alaskan-type and other mafic-ultramafic 
intrusions in the Quesnel and Stikine terranes (Fig. 1; Nixon et 
al., 2020). These deposits exhibit a range of sulphide contents 
and host a variety of metals; some are endowed in the PGE, but 
have limited sulphide (e.g., Tulameen, Polaris), whereas others 
are endowed in base metals and are sulphide rich (e.g., Giant 
Mascot, Turnagain, E&L). The cause of this mineralogical 
and geochemical diversity remains poorly understood because 

the mechanisms leading to the formation of many of these 
deposits have not been well studied. To address this deficiency 
and improve our understanding of convergent margin-related 
magmatic Ni-Cu-PGE sulphide deposits, we initiated a multi-
year project of the E&L property in northwestern British 
Columbia (Fig. 1) in the traditional lands of the Tahltan First 
Nation. In collaboration with Garibaldi Resources Corp., the 
goals of this project are to: 1) determine the age of the E&L 
stock; 2) establish the magmatic source(s) of the E&L pluton; 
3) assess the genetic relationship between the mineralized E&L 
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pluton and the barren country rocks of the Nickel mountain 
gabbro that it was emplaced into; 4) consider sulphide saturation 
and metal enrichment mechanisms and the possible role of 
Hazelton Group country rock assimilation; and 5) determine the 
hosts to the critical metals. In this initial report, we summarize 
the geometry of the E&L deposit based on drilling by Garibaldi 
Resources Corp., document the lithological, mineralogical, and 
textural variations observed throughout the E&L deposit based 
on examination of drill core samples, and provide preliminary 
interpretations into what these variations may indicate about 
the processes that generated the deposit.

2. Regional setting
The E&L property is in northern Stikinia, the northwest-

trending terrane extending for about 1000 km along the 
length of the Canadian Cordillera and containing prominent 
Carboniferous to Middle Jurassic island arc-related volcano-
sedimentary successions and allied intrusive rocks (Fig.  1; 
Nelson et al., 2013, 2022). The property is in the ‘Golden 
Triangle’, the popular name for a loosely defined area 
remarkably well-endowed with economic metals, with more 
than 150 deposits that have been mined since the end of the 19th 

century, many proposed mines, numerous advanced exploration 
projects, and two current mines (Red Chris, Brucejack, Fig. 2; 
British Columbia Geological Survey, 2023). The main rock 
units in the region include the Stikine assemblage (lower 
Paleozoic), Stuhini Group (Upper Triassic), and the Hazelton 
Group (Upper Triassic to Middle Jurassic), and the alkalic to 
calc-alkaline intrusive rocks spatially and temporally related to 
these units. These units are covered by the Bowser Lake Group 
(Middle Jurassic) and cut by Cretaceous to Eocene rocks of the 
Coast Plutonic complex (Fig. 2). 

3. Local geology
In the study area, the geology comprises mudstone, 

siltstone, and carbonate-rich rocks of the Spatsizi Formation 
(for Hazelton Group stratigraphy see Nelson et al., 2018) that 
were intruded by four 100-m wide plugs and one 800-m wide 
stock (Hancock, 1990), which Garibaldi Resources Corp. 
refer collectively to as the ‘Nickel mountain gabbro complex’. 
These plugs and stocks comprise equigranular Fe-Ti oxide-
bearing gabbro and minor norite that intruded Hazelton Group 
volcano-sedimentary rocks at ca. 180 Ma (Fig. 3; Hancock, 
1990; Chamberlain, unpublished zircon CA-TIMS U-Pb data, 

Fig. 2. Generalized geology of the Iskut River region showing the location of the E&L magmatic sulphide deposit, producing mines (Red Chris, 
Brucejack), and past-producing base metal deposits. Modified after Nelson et al. (2018). Outline of Eskay rift from Gagnon et al. (2012).
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Fig. 3. Schematic cross-section of the E&L deposit illustrating the conduit-like geometry of the E&L pluton and its relationship to older gabbros 
and sedimentary rocks of the Hazelton Group, and the locations of massive sulphide orebodies. Modified after Hanson et al. (2022).

cited in Vandenburg, 2020). The E&L stock is a relatively small 
base- and precious-metal-mineralized deposit which, based on 
drilling data, appears to have a conduit geometry (~150 m wide 
near surface, ~250 m wide at depth) and to have intruded the 
Nickel mountain gabbro and sedimentary rocks (mudstones, 
siltstones, and carbonate-rich rocks) of the Spatsizi Formation 
(Fig. 3) on the southwestern flank of Nickel mountain. The 
stock outcrops at the top of Nickel mountain at ~1900 m 
asl and extends to a depth of at least 1200 m asl (Fig. 3). It 
comprises orbicular to varitextured Fe-Ti oxide-bearing olivine 
melagabbro, gabbronorite, and gabbro, with lesser wehrlite 
(Vandenburg, 2020). Rocks of the Nickel mountain gabbro 
and the E&L stock contain propylitic and potassic alteration 
assemblages and were metamorphosed to greenschist facies 
during regional ca. 110 Ma deformation (Alldrick et al., 
1987; Hancock, 1990). The rocks lack macroscopic textural 
evidence for deformation. Of the gabbroic rocks in the area, 
only those of the E&L stock host significant magmatic Ni-
Cu-PGE mineralization in the form of disseminated, net-
textured, and semi-massive to massive pyrrhotite, pentlandite, 

and chalcopyrite (Vandenburg, 2020). Based on whole-rock 
primitive mantle-normalized trace-element patterns, Nb-Ta 
depletion, and decoupled large ion lithophile and high field 
strength element signatures, Vandenburg (2020) suggested 
that the rocks of the Nickel mountain gabbro and E&L stock 
crystallized from subduction-derived magmas that originated 
from distinct mantle sources. For the E&L gabbros, Vandenburg 
(2020) suggested that the elevated forsterite contents of olivine 
(Fo78-84) and low Ni-Co contents indicated they crystallized 
from a high-Mg parent magma, and that sulphide saturation 
likely occurred before olivine crystallization. 

4. Deposit geology
Based on drilling data (Fig. 3), the E&L deposit appears 

to represent a conduit-type magmatic Ni-Cu-PGE sulphide 
system. The deposit has been informally subdivided by 
Garibaldi Resources Corp. into: 1) the E&L zone, which is 
exposed on Nickel mountain and extends to a depth of ~1700 m 
asl; 2) the Eastern Extensional zone, which extends to depths 
greater than at least 1500 m asl; and 3) the Second zone, which 
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connects these zones and has a thin (~50-100 m wide), pipe-like 
morphology (Fig. 3). Mineralization occurs within orbicular 
and taxitic gabbros of the E&L stock and comprises a textural 
spectrum of sulphides ranging from disseminated and blebby 
to net-textured to massive sulphide (pyrrhotite>chalcopyrite>
pentlandite ±sphalerite, pyrite, violarite; Vandenburg, 2020). 
Disseminated and blebby sulphide mineralization contains 
1-25  vol.% sulphide, with higher abundances in olivine-rich 
gabbros that have well-developed orbicules. Texturally, the 
sulphides may be interstitial to silicate and oxide minerals or 
occur as blebs. Net-textured sulphide (5-20 vol.%) represents a 
(semi-)continuous matrix of sulphide in a framework of olivine, 
clinopyroxene, and plagioclase. Semi-massive sulphide (20-
90 vol.%) is at the boundaries of massive sulphide orebodies 
and commonly contains inclusions of recrystallized Hazelton 
Group country rock. Several massive sulphide (>90 vol.%) 
orebodies have been identified: Upper Discovery zone, Lower 
Discovery zone (largest), Northwest zone, and Northeast 
zone (Fig. 3). Many of the massive sulphide orebodies have 
been deformed, which may have remobilized some of the 
chalcopyrite. In terms of metal tenors, Cu, Pt, Pd, and Au 
concentrations are typically greatest at the tops of the massive 
sulphide orebodies, Rh concentrations are typically greatest in 
the central portion of the orebodies, and Ni concentrations are 
generally uniform (Lightfoot, pers. comm., 2023). Platinum-
group minerals are uncommon, occurring primarily as tellurides 
(<1 vol.%; Vandenburg, 2020).

5. Sample descriptions
We collected five outcrop samples and 309 core samples 

from nine holes drilled by Garibaldi Resources Corp. between 
2017 and 2020 at Nickel mountain. Representative samples 
were selected for thin section examination, and for future 
geochemical and isotopic analyses. 

5.1. Hand samples
5.1.1. E&L stock

Variably mineralized samples of leucogabbro, melagabbro, 
olivine gabbro, varitextured gabbro, wehrlite, and mixtures 
of these rocks with sedimentary rock were collected from the 
E&L stock, including samples from the E&L zone (n=58), the 
Second zone (n=18), and the Eastern Extension zone (n=40). 
These samples largely consist of variable proportions of 
medium- to coarse-grained olivine, pyroxene, and plagioclase. 
Mineralization comprises disseminated (Fig. 4a), blebby 
(Fig.  4b), semi-massive, (Fig. 4c), and massive sulphide 
(Fig.  4d), mainly pyrrhotite, pentlandite, and chalcopyrite. 
Blebby sulphides are typically segregated into pyrrhotite-
pentlandite-rich and chalcopyrite-rich portions, the latter 
with rims of fine-grained hydrous silicates (Fig. 4b). Some 
disseminated and blebby sulphides display rims of pyroxene 
(Fig. 4e). Many samples contain cm-scale orbicules with 
variable proportions of plagioclase, olivine, and clinopyroxene, 
an assemblage similar to the interstitial rock (Fig. 4f). Some 
of these orbicules exhibit crude zoning defined by modal 

variations in the proportions of olivine+pyroxene versus 
plagioclase, with a mafic core and plagioclase-rich rim (Fig. 4f), 
and some have coarse centres surrounded by finer grained rims 
(Fig. 4f). A smaller variety of these orbicules is also common 
in many samples; these circular features also typically display 
a core of mafic minerals and a rim of plagioclase (Fig. 4g). The 
regions interstitial to the orbicules appear to be more mafic in 
composition and coarser grained; sulphides seem to largely be 
restricted to regions interstitial to the orbicules, but fine-grained 
sulphides also occur within them (Figs. 4f, g). Where orbicules 
touch one another, contacts are deformed, the finer grained 
cores are preserved, and the orbicules retain their individual 
identities rather than merging into a single body (Fig. 4g). 
Although most of the samples are mafic, comprising variably 
altered plagioclase, pyroxene, and olivine, a few samples 
contain felsic patches (Figs. 4c, h). The diffuse boundaries 
between Hazelton Group material and gabbro (Fig. 4i), and 
possibly these felsic patches, indicate interaction between 
mafic magma and sedimentary country rock. An additional 12 
samples of what is potentially E&L gabbro were obtained from 
an exploratory hole drilled below glacial ice. These samples 
lack orbicules and significant sulphides, most of which are fine 
disseminations (Fig. 4j).

5.1.2. Nickel mountain gabbro and country rock
Samples from the Nickel mountain gabbro (n=80) include 

leucogabbro, melagabbro, and olivine gabbro. These gabbroic 
rocks are equigranular assemblages of variably altered 
plagioclase, pyroxene, olivine, and magnetite, with plagioclase-
rich (Fig. 4k) and plagioclase-poor variants (Fig. 4l). In general, 
the subhedral-euhedral plagioclase ±magnetite and common 
interstitial pyroxene suggest that plagioclase and magnetite 
crystallized before pyroxene. Although not significantly 
mineralized, a few samples contain sparse fine-grained sulphide 
and, rarely, semi-massive sulphide (Fig. 4m). The most notable 
feature of the siltstone and mudstone samples from the Spatsizi 
Formation (n=42), is the presence of sulphides, typically pyrite 
(Figs. 4n, o). 

5.2. Thin section descriptions
The gabbroic rocks of both the E&L stock and Nickel mountain 

gabbro consist mainly of olivine, pyroxene, and plagioclase that 
display an ophitic texture, with pyroxene interstitial to euhedral 
laths of plagioclase and rounded olivine crystals. The inferred 
order of crystallization is olivine, plagioclase, and pyroxene. 
All of the rocks are extremely altered, with primary silicates 
in some samples completely replaced by hydrous silicates. 
In general, olivine is the most intensely altered, commonly 
appearing as hydrous silicate aggregate pseudomorphs. 
Plagioclase and pyroxene are variably altered. The olivine has 
been serpentinized and replaced by sulphides, plagioclase has 
been sericitized and chloritized, and pyroxene was chloritized 
or uralitized and replaced by sulphides.

Mineralization in the E&L stock occurs as disseminated, 
blebby, net-textured, and semi-massive sulphides comprising 
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Fig. 4. See opposite page for caption.
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Fig. 4. Continued. Images of representative drill core samples of (a-j) E&L gabbro and sulphide mineralization, (k-m) Nickel mountain gabbro, 
and (n-o) Hazelton Group (Spatsizi Formation) sedimentary rock. a) Disseminated sulphide mineralization in E&L gabbro. b) Blebby sulphide 
mineralization in E&L gabbro. Note the segregation of the sulphide bleb into Fe-rich and Cu-rich portions, the latter of which is surrounded by 
a fine-grained assemblage of hydrous minerals. c) Semi-massive sulphide mineralization with felsic patches. d) Massive sulphide mineralization 
showing loop texture (rounded aggregates of pyrrhotite surrounded by pentlandite and chalcopyrite). e) Blebby sulphide mineralization in E&L 
gabbro; the sulphide bleb is surrounded by pyroxene. f) Varitextured gabbro with well-defined orbicules (outlined by green dashed lines). The 
sulphides are largely interstitial to the orbicules. g) Varitextured gabbro with small-scale orbicular features; two are highlighted by green dashed 
lines. Sulphides are interstitial to the orbicular features. h) Semi-massive sulphide mineralization in rock comprising a mixture of mafic material 
with more silicic material. Sulphides are associated with the more felsic-rich domains. i) Disseminated sulphide mineralization in a sample of 
E&L gabbro in contact with sedimentary country rock. j) Disseminated sulphide mineralization in gabbroic rock from the exploratory drill hole 
under the glacier on top of Nickel mountain. k) Plagioclase-rich Nickel mountain gabbro. l) Plagioclase-poor Nickel mountain gabbro. m) Nickel 
mountain gabbro hosting semi-massive sulphide mineralization. n) Siltstone of the Spatsizi Formation containing fine-grained, disseminated 
pyrite. o) Mudstone of the Spatsizi Formation containing blebby sulphides (highlighted by purple dashed circle). The teal dashed lines delineate 
features interpreted as former vapour bubbles, the white dashed lines highlight felsic patches, and the green dashed lines are orbicules.

pyrrhotite, chalcopyrite, pentlandite, and pyrite; cubanite, 
violarite, and troilite are rare. Where pyrite is absent, the order 
of sulphide abundance is generally pyrrhotite>chalcopyrite 
≥pentlandite (Fig. 5a). However, pyrite may make up a 
significant portion of the sulphide assemblage, with some 
samples containing predominantly pyrite (Fig. 5b). Given that 
pyrite is rarely a primary sulphide in magmatic deposits because 
sulphide liquids typically do not achieve high enough S/metal 
ratios (Naldrett et al., 1967; Kellerud et al., 1969; Craig, 1973; 
Piña et al., 2016), it is likely that pyrite is hydrothermal in 
origin, as described by Brzozowski et al. (2023) for the Current 
deposit in the Midcontinent Rift. The sulphide assemblage at 
E&L may, therefore, be broadly grouped into two categories: 
primary, lacking abundant pyrite, and secondary, with abundant 
pyrite. There appears to be no systematic variation in sulphide 
mineralogy across different parts of the deposit.

The primary sulphide assemblage comprises pyrrhotite, 
chalcopyrite, and pentlandite that exhibit sharp, rounded 
inter-grain boundaries (Fig. 5a), a mineralogical and textural 
assemblage typical of sulphides that crystallized from a 
sulphide liquid. Generally, pyrrhotite is the predominant 
sulphide, with chalcopyrite occurring along its periphery 
(although locally as streaks within pyrrhotite). Pentlandite 
occurs as aggregates near contacts between pyrrhotite and 
chalcopyrite, as grains within pyrrhotite (Fig. 5a), and locally 
as flames in pyrrhotite. The secondary sulphide assemblage 
comprises pyrite ±pyrrhotite, chalcopyrite, and pentlandite. 
Pyrite typically occurs as porous aggregates of fine-grained 
crystals spatially associated with mineralogically variable 
assemblages of pyrrhotite-chalcopyrite-pentlandite (Fig. 5b) 
or as isolated clusters (Fig.  5c). Where spatially associated 
with other sulphides, pyrite typically appears to have replaced 
pyrrhotite (Fig. 5b).

Regardless of whether primary or secondary, the sulphides 
are almost always spatially associated with hydrous silicates 
reflecting the pervasive alteration of the rocks; in some 
assemblages, the hydrous silicates also protrude into the 
sulphides. Where sulphides are associated with what we 
interpret as vapour bubbles (e.g., Fig. 4b), the vapour bubble 
now comprises an assemblage of hydrous silicates (Fig.  5d). 
Although not as common, some sulphide assemblages may also 

contain carbonate, either within the assemblage or along its 
periphery (Fig. 5e). Additionally, pyrrhotite in both assemblage 
types can exhibit undulose extinction in cross-polarized 
reflected light, with some pyrrhotite grains displaying distinct 
flaser texture (Fig. 5f) or 120° dihedral angles (Fig. 5g). In most 
samples, fine-grained specks of sulphide occur throughout the 
alteration assemblages. A specific example of this sulphide-
alteration association are the intensively altered olivine grains 
that commonly contain variable amounts of fine-grained 
pyrrhotite (±chalcopyrite and pentlandite), with some of the 
olivine grains being almost completely pseudomorphed by 
sulphide (Fig. 5h). Although less common, an assemblage of 
hydrous silicates+chalcopyrite has also been observed as partial 
pseudomorphs of altered primary silicates (Fig. 5i). Similarly, 
where Fe-Ti oxide minerals (i.e., magnetite-ulvöspinel-ilmenite 
intergrowths) have been altered, the magnetite interstitial 
to relics of the lamellae has been replaced by hydrous 
silicates+sulphides (Fig. 5j). Although uncommon, some 
sulphides occur within veinlets (Fig. 5k). Similarly uncommon, 
some sulphide assemblages are rimmed by magnetite (Fig. 5l).

6. Discussion
6.1. Sulphide saturation via contamination?

Magmas emplaced at crustal levels are typically undersaturated 
in sulphide because the sulphur content at sulphide saturation 
increases as pressure decreases (Mavrogenes and O’Neill, 
1999). The formation of magmatic sulphide deposits, therefore, 
requires some additional process(es) to cause the parental 
magmas to become saturated in sulphide and segregate a 
sulphide liquid, which then scavenges and concentrates 
base and precious metals. Achieving sulphide saturation is 
problematic in subduction zones because the magmas are 
oxidized and sulphur may be present as sulphate (      ) rather 
than sulphide (
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Fig. 5. Photomicrographs of representative sulphide textures in the E&L deposit; (a-d) and (h-l) are in reflected light, e) is in cross-polarized 
transmitted light, and (f-g) are in cross-polarized reflected light. a) A magmatic sulphide assemblage comprising pyrrhotite-pentlandite-
chalcopyrite. b) An altered sulphide assemblage comprising pyrrhotite-pentlandite-chalcopyrite-pyrite, with pyrite forming aggregates. c) An 
aggregate of pyrite grains isolated from other sulphides. d) A magmatic sulphide assemblage comprising pyrrhotite-pentlandite-chalcopyrite 
adjacent to a rounded hydrous silicate assemblage that is interpreted as a former vapour bubble. e) Carbonate and hydrous silicates adjacent to 
sulphides. f) Pyrrhotite with flaser texture. g) A magmatic assemblage of pyrrhotite-pentlandite-chalcopyrite in which the pyrrhotite occurs as 
an aggregate of grains that exhibit dihedral angles. h) Olivine that has been partially to completely replaced by hydrous silicates and pyrrhotite. 
i) Pyroxene(?) replaced by an assemblage of hydrous silicates and chalcopyrite. j) A grain of Fe-Ti oxide (magnetite+ilmenite) in which the 
magnetite has been replaced by an assemblage of hydrous silicates and sulphides. k) A late-stage vein containing pyrrhotite, pentlandite, and 
chalcopyrite. l) A magmatic sulphide assemblage of pyrrhotite, pentlandite, and chalcopyrite rimmed by magnetite.
Abbreviations: Po – pyrrhotite, Pn – pentlandite, Ccp – chalcopyrite, Py – pyrite, Vio – violarite, Ilm – ilmenite, Ol – olivine, Mag – magnetite.
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sulphide liquid to form economic Ni-Cu-PGE deposits. 
Below we make a preliminarily assessment of the saturation 
mechanisms that may have operated in the E&L deposit using 
textural observations. 

Saturation of the E&L magma via closed-system fractional 
crystallization of the stock seems unlikely for two reasons. 
First, the geometry of the E&L deposit appears to define an 
open, conduit-like system, and so the cumulate rocks likely 
crystallized from multiple batches of magma rather than from 
a single, evolving magma. This interpretation is consistent 
with what appears to be two magma chambers in the E&L 
intrusive system that are interpreted to be connected by a 
pipe-like body (Fig. 3) similar to, for example, the Voisey’s 
Bay (Evans-Lamswood et al., 2000; Ripley and Li, 2011), 
Noril’sk (Barnes et al., 2015), and Eagle (Ripley and Li, 
2011) deposits. Furthermore, the elevated metal contents of 
the E&L deposit, and other volumetrically small sulphide 
deposits, require larger volumes of magma than represented by 
the stock itself (Campbell and Naldrett, 1979; Naldrett, 1989, 
1992, 1999; Arndt et al., 2005). Second, sulphide saturation 
via crystallization generates small volumes of sulphide liquid 
late in the crystallization history of a magma (after up to 40% 
crystallization, Ripley and Li, 2013; Mungall, 2014). Such 
late saturation is inconsistent with the net-textured and (semi-)
massive sulphide orebodies (Figs. 3, 4c, d, m) at E&L, which 
would have required relatively early saturation to prevent 
sulphide liquid from being completely trapped in the cumulate 
pile. The high volumes of sulphide at E&L are inconsistent with 
magma mixing, which generally produces only small amounts 
of sulphide (Ripley and Li, 2013), and textural evidence of 
mixing is lacking. Decreasing the fO2 of a magma, although not 
necessarily important to the saturation history of intracratonic 
magmatic systems where fO2 values are lower than fayalite-
magnetite-quartz (FMQ) buffer (Mavrogenes and O’Neill, 
1999; O’Neill and Mavrogenes, 2002), may be important to 
the saturation histories of arc-related magmas where both 
sulphide and sulphate can coexist (FMQ to FMQ+2; Jugo, 
2009). Changes in magma fO2 may be associated with changes 
in either H2O or CO2 (Lehmann et al., 2007; Ripley and Li, 
2013). For example, one way that CO2 is added to magmas is 
through assimilation of carbonate material, where the principal 
mechanism is carbonate dissociation via the simplified reaction: 
CO2+2FeO⇄CO+Fe2O3 (Xue et al., 2023). Although the 
importance of changes to magma fO2 on sulphide saturation at 
E&L cannot be currently assessed, textural evidence for mafic 
magma-carbonate interaction (Fig. 4i) suggests that carbonate-
bearing material was likely assimilated by the magma and that 
contamination may have played a role in sulphide saturation. 
Although the carbonate that occurs interstitial to primary 
silicates and commonly with sulphides may be hydrothermal 
in origin, it is also possible that this carbonate crystallized from 
the magma as a result of assimilation of carbonate-rich country 
rock (Fig. 5e). 

The simplest and most efficient way of triggering sulphide 
saturation in a magma is by the direct addition of sulphur, 

either by bulk assimilation of S-rich country rocks or selective 
assimilation of country-rock sulphides (Barnes and Robertson, 
2019), with the former also contributing SiO2, which serves to 
lower the sulphur content at sulphide saturation. Although the 
scale at which these processes operated at E&L is currently 
unknown, addition of S from country rocks is likely because: 
1) the S-rich nature of the siltstones and mudstones of the 
Spatsizi Formation (Figs. 4n, o); 2) the occurrence of (semi-)
massive sulphide orebodies near contacts with, and hosted in, 
sedimentary rocks of the Hazelton Group (Fig. 3); and 3) the 
close spatial association of semi-massive sulphides with felsic 
patches (Figs. 4c, h) that are consistent with localized silica 
addition.

6.2. Vapour-assisted transport of sulphide liquid?
Considering that assimilation of Hazelton Group sedimentary 

rocks may have contributed to the formation of sulphides, the 
occurrence of sulphides in shallow and deep portions of the 
E&L deposit (e.g., wehrlite from the Eastern Extensional zone; 
Fig. 4j), and the presence of Hazelton Group sedimentary rocks 
at depth (Fig. 3), some sulphide liquid may have been carried 
upwards through the intrusive plumbing system. Although 
upward transport of dense (4-5 g/cm3; Mungall and Su, 2005), 
low viscosity (0.01-0.1 Pa·s; Dobson et al., 2000) sulphide 
liquid is possible in mafic magmas, the notably lower density 
and fluidity of these magmas (2.7-2.9 g/cm3, 1-100  Pa·s; 
Williams et al., 1998) generally hinders efficient upward 
transport of all but the finest dispersions of sulphide liquid 
(Lesher, 2019). Based on experimental observations (Mungall 
et al., 2015), natural observations (Barnes et al., 2019, 2023; 
Brzozowski et al., 2023), and numerical simulations (Yao 
and Mungall, 2020), it has been demonstrated that upward 
transport of sulphide liquid can be facilitated by vapour 
bubbles attached to sulphide droplets (i.e., compound droplets). 
These compound droplets, which have been identified in other 
magmatic sulphide systems globally, including Norilsk (Barnes 
et al., 2019, 2023) and Current (Brzozowski et al., 2023), 
generally comprise a sulphide assemblage that has segregated 
into an Fe-rich portion (pyrrhotite+pentlandite) and a Cu-rich 
portion (chalcopyrite ±cubanite), with the latter portion being 
rimmed by an assemblage of silicate minerals that is finer 
grained than the host rock. A texturally similar style of blebby 
sulphide is common at E&L (Figs. 4b, 5a, d), implying that: 
1) the fertile E&L magma(s) contained sufficient volatiles 
to become saturated, potentially because of assimilation of 
sedimentary country rock (e.g., Iacono-Marziano et al., 2012, 
2017); 2) the magma(s) were emplaced at relatively shallow 
depths (low confining pressures) where volatiles could exsolve; 
and 3) some amount of upward transport of sulphide liquid 
may have occurred. If our interpretation of vapour bubbles 
illustrated in Figure 4b is correct, it would imply significant 
tilting of the E&L deposit after it formed because the core was 
taken from a relatively steep drill hole and the bubbles indicate 
tops perpendicular to the long axis of the core.
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6.3. Metal remobilization?
The rocks that host the E&L deposit are pervasively altered, 

indicating that fluids fluxed through the mineralizing system 
after it had solidified. Alongside the primary silicates that 
were replaced by hydrous silicates, the oxides and sulphides 
were also altered. Several lines of textural evidence indicate 
that this hydrothermal activity likely remobilized metals, an 
understanding of which is vital given that such remobilization 
can have beneficial (e.g., Roby zone of Lac des Iles; Watkinson 
and Dunning, 1979; Hinchey and Hattori, 2005) or detrimental 
effects on the economic value of deposits (Holwell et al., 
2017). Several factors support metal remobilization in the 
E&L deposit. First, given that pyrrhotite appears to have been 
partially to completely replaced by pyrite (Fig. 5b), as is typical 
of sulphide assemblages containing pyrite in these mineralizing 
systems (Djon and Barnes, 2012; Duran et al., 2015; Holwell 
et  al., 2017; Brzozowski et al., 2023), Fe must have been 
released to the fluid and remobilized because pyrrhotite 
has a higher Fe content than pyrite (~62 wt.% vs. 47 wt.%). 
Second, the partial to complete replacement of olivine and 
pyroxene by sulphides (Figs. 5h, i) is strong evidence for metal 
remobilization. Although the Fe in this secondary sulphide 
assemblage could have been sourced from the primary 
silicates, the fact that some of these assemblages also contain 
chalcopyrite (Figs.  5i) and pentlandite implies that at least 
some of the metals were provided by the fluid that interacted 
with olivine and pyroxene. Third, the replacement of magnetite 
interstitial to ilmenite lamellae with a hydrous silicate-sulphide 
assemblage (Fig. 5j) indicates that metals precipitated from a 
hydrothermal fluid. This is because oxy-exsolution of ilmenite 
is a post-cumulus process that occurs at temperatures below 
which sulphide liquids crystallize (Buddington and Lindsley, 
1964; Brzozowski et al., 2021), indicating that any sulphides 
present in the replacement assemblage must be hydrothermal. 
Fourth, some sulphides are rimmed by magnetite (Fig. 5l), 
which indicates S loss. Given that magnetite is unable to contain 
all the Cu and Ni (as well as other metals) in chalcopyrite and 
pentlandite (ppm vs. wt.%), respectively, these metals must 
have been remobilized. Finally, the occurrence of chalcopyrite, 
pyrrhotite, and pentlandite in late-stage veins that crosscut the 
E&L host rocks (Fig. 5k) implies that at least Cu, Fe, Ni, and 
S were remobilized by hydrothermal fluids, with other mobile 
trace metals likely being remobilized as well.

Given that the E&L deposit was metamorphosed at greenschist 
facies and that deformation is locally recorded in the sulphides 
(Figs. 5f, g), it is possible that sulphides were mechanically 
remobilized. A single sample of semi-massive sulphide exhibits 
textural evidence of sulphide flow, and segregation of Fe-rich 
and Cu-rich sulphides (Fig. 4m), indicating that some degree of 
mechanical remobilization could have occurred. Additionally, 
Vandenburg (2020) reported folded loop textures, which 
indicate ductile deformation. Deformation of sulphides is most 
prominently recorded as undulose extinction of pyrrhotite 
(Figs.  5g, h) and, rarely, as pyrite aggregates with flow 
textures in pyrrhotite-pentlandite-chalcopyrite assemblages. 

Nonetheless, sulphide grains overall retain magmatic textures 
and do not appear to be severely deformed (Fig. 5g), suggesting 
minimal deformation-induced remobilization. 

Taken together, it is evident that metals were remobilized by 
hydrothermal fluids in the E&L deposit. However, the metals 
that were remobilized (apart from Fe-Ni-Cu), the extent of this 
remobilization, and the nature of the hydrothermal fluids that 
caused the remobilization (e.g., deuteric vs. meteoric) remain 
unknown. These will be assessed in future research using bulk-
rock geochemistry, in situ trace-element chemistry of sulphides, 
and Cu-Fe-O isotopes.

6.4. Origin of orbicular textures?
Gabbroic rocks of the E&L deposit exhibit conspicuous 

orbicular textures that are generally more plagioclase rich 
compared to the interstitial material (Figs. 4e-g). Orbicular 
textures have been described in a variety of rock types ranging 
from gabbros to granites and in a diversity of tectonic settings 
(Leveson, 1966). Nonetheless, the mechanism(s) by which 
orbicules form remains unresolved. Numerous models have 
been proposed, almost exclusively for those in granitic rocks, 
including: 1) fractional crystallization of small blebs of melt 
in a host magma; 2) nucleation on xenoliths; 3) mingling of 
compositionally distinct magmas; 4) metasomatism; and 
5) liquid immiscibility (Moore and Lockwood, 1973; Sylvester, 
2011; Smillie and Turnbull, 2014; Ballhaus et al., 2015; 
McCarthy et al., 2016; McCarthy and Müntener, 2017). Most 
of these models can be ruled out as having played a significant 
role in generating the orbicular textures at E&L. Fractional 
crystallization of small melt bodies can be ruled out because, 
although some orbicules exhibit mineralogical zonation, 
this is not pervasive even at the scale of a hand sample, and 
repetitive concentric zoning, which would be expected if each 
orbicule fractionally crystallized in a relatively closed system, 
is not observed nor was a more evolved mineral assemblage 
(e.g.,  alkali feldspar, quartz). Nucleation on xenoliths is 
untenable because the E&L orbicules lack xenolithic cores 
(Figs. 4e-g) and orbicular rocks are not restricted to the margins 
of the intrusion. Magma mingling can also be ruled out because 
the mineralogy of the orbicules at E&L is the same as that of the 
interstitial material, albeit the mineral abundances are different 
(Figs. 4e-g). Although formation of conduit-type Ni-Cu-PGE 
deposits generally requires input of multiple pulses of magma, 
these pulses are typically of similar chemical and physical 
composition (e.g., Shahabi Far et al., 2019), and thus will not 
possess sufficient contrast in physical properties (e.g., viscosity) 
to generate orbicules. Metasomatic reaction between magma 
and xenoliths can be ruled out because xenoliths of country 
rock material are rare at E&L and the cores of the orbicules are 
not xenoliths (Smillie and Turnbull, 2014).

Fluid-melt immiscibility is one of the only models of 
orbicule formation that has been applied to mafic-ultramafic 
rocks (Ballhaus et al., 2015). This model considers that 
all immiscible systems behave the same way and generate 
spheroidal textures upon exsolution, and that co-existing melts 

Geological Fieldwork 2023, British Columbia Ministry of Energy, Mines and Low Carbon Innovation, British Columbia Geological Survey Paper 2024-01
74

Brzozowski and Zaborniak



and fluids at equilibrium are saturated in the same crystalline 
phases and phase compositions, and thus will crystallize to the 
same anhydrous minerals, but with variable proportions and 
grain size. Ballhaus et al. (2015) attributed the mineralogic 
variability to the wettability and degree of polymerization 
of different minerals, with neosilicates (e.g., olivine), chain 
silicates (e.g., pyroxene and amphibole), and oxides being 
transferred preferentially from melt to fluid, such that the fluid 
becomes more mafic, and grain size variability to faster growth 
rates in depolymerized fluids, such that the fluid becomes 
coarser grained than the melt.

The orbicules observed at E&L are similar to an immiscibility 
texture described by Ballhaus et al. (2015) who considered 
its formation to be a result of exsolution of limited amounts 
of water from melts during crystallization, with the two 
phases having a significant viscosity contrast. Accordingly, 
the orbicules represent the melt and the interstitial material 
represents the exsolved fluid (Ballhaus et al., 2015). Applied 
to the present example, the E&L orbicules should be relatively 
more felsic (e.g., contain more plagioclase) and finer grained, 
and the interstitial material should be relatively more mafic 
(e.g., contain more olivine and pyroxene) and coarser grained. 
This is what is observed (Figs. 4e-g). Additionally, because the 
orbicules that are in contact with one another along deformed 
boundaries retain their individual character rather than merging 
into a single entity (Figs. 4f, g) supports the interpretation that 
they represent melt rather than exsolved fluid (Ballhaus et al., 
2015). 

Although mineralogical and grain size zonation of orbicules, 
and distribution of sulphides was not described by Ballhaus 
et al. (2015), some E&L orbicules display a crude zonation 
and sulphides are generally concentrated in the interstitial 
material (Figs. 4e-g). If the orbicules represent melt, then the 
coarser grained mafic cores and finer grained felsic rims likely 
represent heterogeneous transfer of mafic minerals from melt 
to fluid (Ballhaus et al., 2015). This heterogenous transfer 
may have occurred for two reasons. First, mafic minerals at 
the rims of orbicules would have been more easily wetted 
by the exsolved fluid than the minerals in the cores and thus 
would have been more readily transferred from melt to fluid. 
Second, the physical movement of coarser grained minerals 
in the cores would have been impeded by the crystal mush, 
preventing transfer. With respect to the sulphides, because they 
are generally concentrated in the interstitial material implies 
that sulphide liquid, which exsolved from the silicate melt, 
was preferentially transferred to the exsolved fluid, consistent 
with the low degree of polymerization of sulphide liquids. The 
occurrence of small volumes of sulphide within the cores of 
orbicules (Fig. 4f) may be attributed to the impeded movement 
of mafic minerals described above.

In summary, we conclude that the magmas from which the 
E&L deposit crystallized may have contained sufficient H2O 
to become saturated and exsolve a hydrous fluid at depth. The 
lack of these orbicular textures in the barren Nickel mountain 
gabbro may indicate that the fertile magmas from which the 

mineralized E&L stock crystallized were more hydrous. 
However, it remains unclear if such possible fluid-rich magmas 
played a role in generating the mineralization and in altering 
the host rocks (i.e., auto-hydrothermal alteration).

7. Conclusion
The mafic-ultramafic rocks of the E&L Ni-Cu-PGE sulphide 

deposit that intruded sedimentary rocks of the Spatsizi 
Formation and the Nickel mountain gabbro exhibit a variety 
of macro- and micro-scale textures that provide insights into 
potential mechanisms that may have formed and modified 
the deposit. The spatial association of carbonates with 
sulphides and the occurrence of sulphides in felsic patches 
in the mafic host rock suggest that assimilation of country 
rock material contributed to the sulphide saturation history 
of the E&L magma. The occurrence of compound droplets 
(sulphide+hydrous silicates/vapour bubbles) is inferred to 
represent vapour saturation in the magma, which likely assisted 
in the upward transport of sulphide liquid. The widespread 
mineralogical and textural evidence indicative of sulphide 
remobilization (pyrite after pyrrhotite, sulphides after olivine, 
pyroxene, and magnetite, sulphides in veins, magnetite after 
sulphides) indicates that metals were remobilized throughout 
the E&L deposit, although the extent of remobilization 
remains unclear. Although sulphides are deformed, they retain 
magmatic textures, suggesting minimal deformation-induced 
remobilization. The occurrence of orbicules in many of the E&L 
gabbros may indicate H2O saturation of the magma and fluid 
immiscibility, with the orbicules representing the silicate melt 
and the interstitial material representing the exsolved hydrous 
fluid. Planned future work will use bulk-rock geochemistry, 
Sr-Nd-S-C-O ±Cu-Fe isotopes, and sulphide trace-element 
chemistry to more fully document the processes that formed 
and modified the E&L deposit.
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