Geochemical signals of carbonatite-related critical metals in provincial stream sediments

Alexei S. Rukhlov^{1, a}, Yao Cui¹, Quinn Cunningham¹, Gabe Fortin¹, and Cameron Anderson¹

¹British Columbia Geological Survey, Ministry of Energy, Mines and Low Carbon Innovation, Victoria, BC, V8W 9N3 ^a corresponding author: Alexei.Rukhlov@gov.bc.ca

Recommended citation: Rukhlov, A.S., Cui, Y., Cunningham, Q., Fortin, G., and Anderson, C., 2024. Geochemical signals of carbonatiterelated critical metals in provincial stream sediments. In: Geological Fieldwork 2023, British Columbia Ministry of Energy, Mines and Low Carbon Innovation, British Columbia Geological Survey Paper 2024-01, pp. 97-122.

Abstract

Consisting of at least 30% primary carbonate minerals, carbonatites are rare igneous rocks that have become increasingly important exploration targets, because they are major sources of Nb, rare earth elements (REE), and other critical minerals. Demand for these minerals has rapidly increased as the world transitions to low-carbon technologies. The British Columbia alkaline province, which defines a long (at least 1000 km), narrow (ca. 200 km) orogen-parallel belt along the western flank of Ancestral North America, contains numerous carbonatites and related silica-undersaturated and alkaline silicate rocks that host REE and rare-metal resources. Using multi-element stream-sediment geochemical data collected as part of the Regional Geochemical Survey (RGS) program since 1976, we define a multivariant 'critical mineral index' to assess prospectivity for carbonatite-hosted critical metals. Based on discriminant analysis of a training sub-set of the data downstream of known carbonatite occurrences (n=26), our carbonatite index, which is validated by a test sub-set of the data (n=27), highlights numerous areas prospective for REE in the alkaline province. Stream-sediment data showing carbonatite index scores greater than the 93rd percentile (n=50) reveal maximum contrast of REE, Nb, Ta, Ti, Zr, Hf, Th, U, P, K and other carbonatite indicators relative to the median (background) concentrations in stream sediments of the study area. Estimated predicted geochemical resources (in tonnes of metal per 1 m depth), based on productivities of metals in the stream basins, suggest significant potential for REE and other carbonatite-hosted critical metals. Based on data from known carbonatites, we propose a refined prospectivity approach to assess the critical metals potential of underexplored regions that includes detailed stream-sediment, panned heavy mineral concentrate, and soil lithochemical surveys and high-resolution airborne radiometric and magnetic data.

Keywords: Carbonatite, alkaline rocks, regional geochemical survey (RGS), stream sediments, heavy mineral concentrate (HMC), drainage geochemistry, critical minerals, rare earth elements (REE), rare metals, niobium, tantalum, Blue River, Upper Fir, Aley, multivariate statistics, discriminant analysis, carbonatite index, predicted geochemical resources

1. Introduction

Reconnaissance geochemical surveys have a long history of supporting mineral exploration in underexplored regions of British Columbia. Regional sampling of stream sediments and waters has been carried out by mining companies since 1950s and was later adopted by the Geological Survey of Canada, the British Columbia Geological Survey, and Geoscience BC as part of the Regional Geochemical Survey (RGS) programs (Lett and Rukhlov, 2017). Interpretation of these data has led to the discovery of precious and base metal deposits such as the Highland Valley Copper mine and the Galore Creek proposed mine (e.g., Brummer et al., 1987).

Consisting of at least 30% primary carbonate minerals, carbonatites are rare igneous rocks that have become increasingly important exploration targets, because they are major sources of Nb, rare earth elements (REE), and other critical minerals needed as the world transitions to low-carbon technologies (Hickin et al., 2024). Although lithogeochemistry of panned heavy mineral concentrate (HMC) and indicator minerals of stream sediments have become established techniques for rare-metal and REE prospecting (e.g., Rukhlov and Gorham, 2007;

Gorham, 2008; Gorham et al., 2009; Simandl et al., 2017) the application of regional geochemical surveys to carbonatite-hosted minerals has not been evaluated.

The British Columbia alkaline province, which defines a long (at least 1000 km), narrow (ca. 200 km) orogen-parallel belt along the western flank of Ancestral North America, contains numerous carbonatites and related silica-undersaturated and alkaline silicate rocks (Fig. 1). Some of these rocks host REE (e.g., Wicheeda; Dalsin et al., 2015; Trofanenko et al., 2016) and Ta-Nb (e.g., Aley; Mäder, 1987; Chakhmouradian et al., 2015; and Upper Fir; Rukhlov et al., 2018). This study evaluates multielement stream-sediment geochemical data collected as part of the RGS program in the Omineca and Foreland morphotectonic belts for prospectivity indicators of carbonatite-hosted critical metals. We also consider examples of detailed surveys near known carbonatite occurrences in the Blue River area and at the Aley deposit (Fig. 2) to discuss applications of panned heavymineral concentrate and soil lithogeochemistry, high-resolution airborne radiometrics and magnetics, and productivities of carbonatite indicators in stream basins. Using these data, we define a multivariant 'critical mineral index' that can be used to

Fig. 1. Carbonatite and related-rock occurrences along the British Columbia alkaline province (after Höy, 1988; Parrish and Scammell, 1988; Pell, 1994; Millonig and Groat, 2013; Rukhlov et al., 2018). Terranes after Colpron (2020).

highlight prospective areas in the alkaline province and regions elsewhere that warrant prospecting for carbonatite-hosted commodities.

2. British Columbia carbonatites and related rocks

In the Canadian Cordillera, carbonatite and related ultramafic, silica-undersaturated and alkaline silicate bodies were emplaced episodically at ca. 810-700 Ma (Mount Copeland, Perry River, Ren), 500-400 Ma (Blackfoot Creek, Bush River, Felix, HP, Kechika River, Little Chicago, Mons Creek, Swanson Peak), and 360-320 Ma (Aley, Howard Creek, Ice River, Lonnie, Mount Grace, Mud Lake, Ospika, Paradise Lake, Serpentine Creek, Three Valley Gap, Upper Fir, Trident Mountain, Vergil, Verity, Wicheeda); the Cross kimberlite is 245 Ma. Collectively, these rocks form part of the British Columbia alkaline province (Fig. 1; Höy, 1988; Parrish and Scammell, 1988; Pell and Höy, 1989; Pell, 1994; Rukhlov and Bell, 2010; Millonig et al., 2012; Millonig and Groat, 2013;

Fig. 2. Selected stream sediment samples in the study area (after Han and Rukhlov, 2017, 2020b). Carbonatite and related-rock occurrences after Höy (1988), Parrish and Scammell (1988), Pell (1994), Millonig and Groat (2013), and Rukhlov et al. (2018). Morphotectonic boundaries after Gabrielse et al. (1991). Geology from BC Digital Geology version 2021-12-19 (Cui et al., 2017).

Chakhmouradian et al., 2015; Mitchell et al., 2017; Rukhlov et al., 2018; McLeish and Johnston, 2019; McLeish et al., 2020; Burgess et al., 2023). The Neoproterozoic and early Paleozoic pulses of carbonatite and alkaline magmatism mark protracted breakup of the supercontinent Rodinia and subsequent passive margin development on the western flank of Laurentia (Li et al., 2008; Bond and Kominz, 1984; Ross, 1991; Colpron et al., 2002). The late Paleozoic carbonatite and alkaline complexes, which host Nb-Ta deposits (e.g., Upper Fir in the Blue River area and Aley) and REE deposits (e.g., Wicheeda), were injected near the continental margin while subduction was taking place to the west (Nelson et al., 2013).

Hosted by the parautochthonous rocks of the Omineca and Foreland belts (Fig. 2), carbonatites and related rocks range from intrusive complexes with a paucity of carbonatites (e.g., Trident Mountain, Mount Copeland) to carbonatite complexes with a paucity of silicate rocks (e.g., Aley, Blue River, Frenchman Cap). Both the carbonatites and host rocks experienced multiple episodes of deformation and metamorphism during Mesozoic and Cenozoic accretionary tectonics while outboard terranes welded to each other and to Laurentia (Scammell, 1987, 1993; Scammell and Brown, 1990; Pell, 1994; Millonig et al., 2013). Intrusive complexes made up of mainly silica-undersaturated and alkaline silicate rocks, such as the Ice River complex, form small (up to 29 km² at surface), compositionally zoned bodies that are circular to elongate to amoeboid in plan view (Dawson, 1886; Currie, 1975; Peterson and Currie, 1994). Associated ultramafic lamprophyres and REE-Sr-rich carbothermalite dikes are common, with the latter consisting of Mn-calcite, barytocalcite, and zeolite with minor strontianite, Nb-ilmenite, and REE-F-carbonates (Mumford, 2009; Brown, 2013). Carbonatites lacking associated contemporaneous silicate rocks typically form regional swarms of individual occurrences across areas of 1000 km² (e.g., Blue River; Pell, 1994; Mitchell et al., 2017; Rukhlov et al., 2018; Çimen et al., 2019).

3. Blue River area

In the Blue River area (Fig. 3), at least 18 carbonatite and two alkaline, silica-undersaturated-rock bodies are exposed, including at the Upper Fir deposit, one of the largest and best studied Nb-Ta occurrences in the Canadian Cordillera (Chudy, 2013; Rukhlov et al., 2018). Both Cambrian and late

Fig. 3. Carbonatite and related-rock occurrences of the Blue River area (after Pell, 1994; Rukhlov and Bell, 2010; Millonig et al., 2012, 2013; Millonig and Groat, 2013; Rukhlov et al., 2018). Geology and metamorphic isograds after Campbell (1968), Simony et al. (1980), Raeside and Simony (1983), Pell and Simony (1987), McDonough and Murphy (1990), McDonough et al. (1991a, b, 1992), Digel et al. (1998), and Murphy (2007).

UNCONSOLIDATED DEPOSITS Quaternary

Qs

Undifferentiated sand, silt, clay, gravel, till, and colluvium

INTRUSIVE ROCKS

Cretaceous to(?) Paleogene

Murtle pluton

KTM Quartz monzonite and muscovite-biotite granite

Weakly foliated muscovite ±biotite granite

Late Cretaceous

Blue River pluton

LKBR

METAMORPHIC ROCKS

Neoproterozoic

Neopro	terozoic
Winderm	nere Supergroup
Kaza Gr	oup
uРК	Undivided psammite, grit, pelitic schist, phyllite, slate, marble
	Thrust fault
	Normal fault
	Fault
_	Upright syncline
<u>_t</u>	Overturned syncline
-Ť	Overturned anticline
— ‡—	Hinge surface S ₁
₽ ^	Line of cross section (N-S)

Fig. 3. Continued. Legend.

Undivided basal Windermere Supergroup Grit, conglomerate or diamictite,

psammite, mylonitic quartzite at base, pellitic phyllite or schist, marble and calcsilicate rocks

Proterozoic and(?) Paleozoic

PPu Undivided metamorphic rocks of unknown, probably Proterozoic and possibly Paleozoic age

Upper division of Horsethief Creek Group (equivalent units of Mica Creek succession Upper clastic unit

PPuc Quartzofeldspathic psammite and grit, pelitic schist, minor amphibolite

Marble unit

PPm?

Conglomerate in PPsa (Cariboos) and Plp (Monashees) units

Conglomerate with clasts of marble, calc-silicate rock, guartzite and granite

REGIONAL METAMORPHISM

Mesozoic isograds

St-Ky-in	Staurolite and kyanite in
- St-out	Staurolite out
— - Sil-in	Sillimanite in
—Ky-out	Kyanite out
Ms-Qz-out	Muscovite and quartz out
Paleocene ov	erprint

Pod sillimanite

Semipelite-amphibolite unit

PPsa Quartzose and quartzofeldspathic psammite, grit, pelitic schist, concordant and discordant amphibolite, minor marble, locally marble at base

Proterozoic

Lower division of Horsethief Creek Group (equivalent units of Mica Creek succession

Lower pelite unit

Lower grit unit

Plg	Quartzofeldspathic psammite and grit, minor pelitic schist and amphibolite, locally prominent diamictite-bearing, conglomeratic horizon at base

Paleoproterozoic

Malton	Malton gneiss complex								
EPM	Undivided foliated granitic augen orthogneiss.								
	paragneiss								
Mount E	Blackman gneiss								
ЕРМВ	Amphibolitic mafic gneiss, granitic								
	gneiss								

Carbonatite and related-rock occurrence

0	Unknown age
0	ca. 360-330 Ma
•	ca. 500 Ma
<∧>	Nb-Ta deposit

Paleozoic carbonatites made up of dolomite and calcite are hosted by metamorphosed Neoproterozoic pelitic, arenaceous, and amphibolitic rocks of the Mica Creek assemblage. Metamorphosed to amphibolite grade during Mesozoic to Cenozoic orogeny, the carbonatites form isoclinally folded, sill-like tabular bodies up to 72 m thick and display diverse fabrics, including coarse-grained, granoblastic to fine-grained, foliated, and porphyroclastic varieties. They contain 10-15 vol.% fluorapatite, 5-10 vol.% amphiboles, and variable amounts of olivine, chondrodite, clinopyroxene, phlogopite, magnetite, ilmenite, pyrrhotite, pyrite, pyrochlore supergroup, ferrocolumbite, fersmite, nyoboaeschynite, zircon, baddeleyite, zirconolite, and monazite (Rukhlov et al., 2018). The Upper Fir carbonatite contains an NI 43-101-compliant resource of 48.4 million tonnes (Indicated) grading 1610 ppm Nb₂O₅ and 197 ppm Ta₂O₅ plus 5.4 million tonnes (Inferred) averaging 1760 ppm Nb₂O₅ and 191 ppm Ta₂O₅ (Kulla and Hardy, 2015). Pyrochlore and ferrocolumbite are the main hosts of Nb and Ta (Chudy, 2013; Rukhlov et al., 2018). Molybdenite occurs in some carbonatites and related rocks, including alkali-rich metasomatic rocks such as fenites and glimmerites at Fir, Perry River, Mount Grace, Wicheeda, and the Mount Copeland past producer (Currie, 1976; White, 1982; Höy, 1988; Trofanenko et al., 2016; Rukhlov et al., 2018).

4. Rock, soil, and drainage lithogeochemical data from the Blue River area

In addition to distinct physical and mineralogical characteristics, carbonatites are readily distinguished from sedimentary carbonate rocks (Table 1) by their extremely high concentrations (up to 1000 times the average upper continental crust) of REE, rare metals, F, P, Sr, Ba, Th, U, and other elements (Fig. 4). Data from both provincial, reconnaissancescale drainage surveys and detailed lithogeochemical drainage and soil surveys in the Blue River area (Table 2) highlight the geochemical response from known carbonatite and related rock occurrences (Figs. 5-7). Ratios of the maximum concentrations per element show enrichment of soil samples (residual anomaly) in Ba, Mo, and Th, and the <0.18 mm fraction of stream-sediment samples in Yb and Lu relative to carbonatites (primary anomaly; Table 3). In contrast, panned streamsediment (<2 mm fraction) heavy mineral concentrate (HMC) samples show up to 192 times enrichment of all carbonatite indicator elements, except Sr, relative to carbonatites, soils, and the <0.18 mm fraction of stream-sediment samples. Panned stream-sediment HMC samples enhance the contrast of carbonatite indicators such as Ta (Fig. 6) and thus are the preferred medium for drainage surveys targeting critical metals (Rukhlov et al., 2020a).

Table 1. Provincial innogeochemical data from carbonattles and carbonate sedimentary rock	Table	1.	. Pro	vinc	ial	li	thogeoc	hemical	data	from	carbonati	ites and	l carl	oonate	sediment	ary roc	ks.
--	-------	----	-------	------	-----	----	---------	---------	------	------	-----------	----------	--------	--------	----------	---------	-----

		Sedimen	itary carbonat	te rocks		Carbon	atites		
Element	Unit	Count	Minimum	Maximum	Mean	Count	Minimum	Maximum	Mean
SiO ₂	wt%	32	0.27	67.44	15.62	600	0.09	35.72	5.33
TiO	wt%	34	< 0.02	1.42	0.15	594	< 0.01	5.96	0.19
AlaOa	wt%	34	0.06	10.03	1.97	600	< 0.01	12.64	0.68
$Fe_2O_2(T)$	wt%	35	0.06	9.00	1 37	600	0.51	83.28	8 56
MnO	wt/0	35	< 0.00	0.35	0.07	500	0.15	4 11	0.50
MIO	W170	35	<0.01	20.80	4.17	599	0.15	4.11	12.62
MgO	W170	33	0.13	20.80	4.17	600	0.20	20.02	12.05
CaO	wt%	35	/.//	60.60	40.80	600	3.66	54.50	31.44
Na_2O	wt%	35	< 0.01	1.82	0.23	600	< 0.01	6.84	0.43
K_2O	wt%	35	< 0.01	1.65	0.38	600	< 0.01	4.79	0.38
P_2O_5	wt%	35	< 0.01	0.18	0.07	600	< 0.01	14.87	3.15
LOI	wt%	31	9.10	44.30	34.91	598	2.30	43.90	34.92
C(T)	wt%	25	2.03	12.26	9.67	516	0.01	12.90	10.35
S(T)	wt%	27	< 0.01	0.48	0.06	515	< 0.01	3.97	0.30
F	wt%	1	na	na	0.01	14	< 0.01	1.45	0.27
Ag	ppm	22	0.03	0.40	0.09	197	< 0.1	5.7	0.54
As	ppm	28	< 0.5	17	2.2	192	< 0.5	77	3.0
Au	ppb	20	<2	8	1.2	110	< 0.5	426	6.7
Ba	ppm	29	<5	2379	275	610	15.1	288595	1825
Be	ppm	15	0.06	1.0	0.67	512	<1	11	0.91
Bi	ppm	16	< 0.02	0.2	0.09	192	< 0.1	3.1	0.24
Br	ppm	4	< 0.5	<1	na	1	na	na	2.8
Cd	ppm	21	< 0.2	6.9	0.46	110	< 0.1	1.5	0.33
Ce	nnm	28	0.8	51	14.7	611	7.1	53200	1169
Co	nnm	30	<1	50	5.1	586	<1	73	15.5
Cr	nnm	30	34	506	38.0	556	<0.1	2230	60.8
Cs	nnm	28	<0.5	2.0	0.48	535	<0.1	114	1 73
Cu	nnm	20	0.4	2.0	6.1	584	<0.1	308	11.75
Dv	ppm	17	0.28	3 3	1 32	606	0.37	106	11.2
Dy Er	ppin	17	0.20	1.9	0.76	606	0.15	17.8	3 54
En	ppin	28	0.15	1.7	0.70	607	0.15	17.0	10.4
Ca	ppin	17	0.04	1.1 8.4	2 01	506	<0.5	175	6.1
Gd	ppin	17	0.1	3.5	1.76	604	0.53	120	25.2
Gu	ppm	2	<0.1	5.5	0.22	004	0.53	404	23.2
Ge	ррш	2	<0.1	0.4	0.25	01 504	<0.1	52	2.1
	ppm	28	0.03	4.4	0.95	384	<0.1	110	1.90
пд	рро	13	<10	0.62	0.260	110	<10	100	0
ПО	ррш	17	<0.02	0.03	0.200	000	0.00	10.8	1.00
In L	ррш	20	< 0.02	<0.04	па 7 4	01	<0.2	<0.5	па 724
La	ppm	30	<0.3	24	/.4	611	5.2	40300	/34
Lu	ppm	28	0.017	0.3	0.097	607	0.03	2.0	0.326
Mo	ppm	29	0.04	3.0	0.470	4/8	<0.1	125	3.24
Nb	ppm	27	0.12	22	5.25	609	2.8	6532	576
Nd	ppm	28	1.21	23	7.17	610	3.7	11900	347
N1	ppm	30	0.98	209	15.9	536	<0.1	1237	38.1
Pb	ppm	23	0.54	19	6.56	586	0.5	643	16.2
Pr	ppm	17	0.23	5.94	2.205	606	0.86	4300	90.0
Rb	ppm	28	0.2	59	12.3	594	< 0.1	327	12.7
Sb	ppm	28	<0.1	1.1	0.14	191	< 0.1	4.7	0.10
Sc	ppm	27	0.20	26	3.84	207	0.24	62	16.7
Se	ppm	19	0.01	0.5	0.23	110	< 0.5	7.3	0.56
Sm	ppm	28	0.23	4.2	1.40	607	0.68	947	42.0
Sn	ppm	17	< 0.02	2	0.74	344	<1	25	1.6
Sr	ppm	30	47	3882	914	611	360	>50000	4401
Та	ppm	28	< 0.1	1.4	0.24	599	< 0.01	646	101
Tb	ppm	28	0.046	0.64	0.176	607	0.07	36.3	2.77
Th	ppm	30	0.06	7.1	1.64	611	< 0.1	>10000	71.6
Tl	ppm	15	0.05	1.3	0.16	197	< 0.1	1.3	0.10
Tm	ppm	17	0.02	0.31	0.117	606	0.03	2.17	0.433
U	ppm	28	0.2	2.6	0.79	609	< 0.1	379	40.0
V	ppm	23	1	139	26.7	585	<5	2713	49.6
W	ppm	28	0.2	1.4	0.34	350	< 0.1	22.5	0.89
Y	ppm	28	1.5	22.3	8.43	611	1.7	323	43.0
Yb	ppm	28	< 0.2	1.86	0.636	607	0.19	14.1	2.44
Zn	ppm	29	<1	173	24.4	307	2	1949	77.3
Zr	ppm	28	1	173	38.8	610	< 0.1	2978	104.8

Data from Chakhmouradian et al. (2015), Chudy (2013), Dalsin et al. (2015), Gorham (2008), Han et al. (2016), Han and Rukhlov (2020a), Locock (1994), Mäder (1987), Mumford (2009), Rukhlov and Gorham (2007), Simandl et al. (2013), Trofanenko (2014), Trofanenko et al. (2016), and Ya'acoby (2014). **na** - not analyzed.

	VBIAT IIIN	T IIIIII	Iean Mc	etnou cu	unt Mini	imum Ma	ximum	Mean N	Iethod	Count 1	Minimum	Maximur	n Mean I	Method	Count N	Minimum	Maximum	Mean
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5.	.96 0	143	na n	1a L	ла	na	na	Ь	208	0.02	1.63	0.252	Ч	24	0.06	0.43	0.184
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12	2.64 (.374	na r	na r	18	na	na	<u>م</u> و	208 208	0.77	4.85	2.748	<u>م</u> ۴	24	0.91	4.33	1.721
	× -	2.28 N	. /43 603	na r	19	Ja -	na	na		807	67.7	5C.21	0.440		γ	0.00	18.42	12.005
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	- ⁻	5.02 1.	3.204	na r na n	1a 1 1a 1	la la	na na	na na	പപ	208 208	<0.22	0.10 3.56	1.188	고 으	24 74	0.05 0.36	0.30 1.41	0.100 0.694
	52	2.87 3	1.759	na n	1a L	за	na	na	Ь	208	0.11	6.28	0.807	Ч	24	0.14	4.18	0.733
	പ്	.63 (.364	na r	na r	Ja	na	na	μr	208	0.62	3.10	1.972	(- c	∞ ?	0.67	2.70	1.923
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 7	1.87 3	.287	na r na	1a 1 1a 1	19	na na	na	<u>م</u> ب	208	0.09	2.27	0.640 0.310	<u>م</u> ب	24 24	0.08	0./U 2.34	0.274
	, ci	.38 0	1.293	nan	1a 1	la	na	na	. d	208	<0.01	1.56	0.091		24	<0.01	0.08	0.017
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	009	124	P 8(J82 <1	001	3100	108	Ь	208	9	631	47	Ь	626	\Diamond	3400	80
	4) 4	5.3	0.93	P 8()82 \	0.5	4932 824	1.5	Т, Р	208	0.1	7.8	0.93	<u>م</u> م	626	0.1	2511	26
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	τŶ	823	7.18 218	т 784 784	10% <	C.D.	8267 8267	588 588	¥ (-	208 208	20.7 85	1300 1300	503 503	ч (-	610 610	4.7	21601	172
$ \begin{bmatrix} 1 & 0.10 & P & 802 & -0.1 & 51 & 0.26 & P & 208 & 0.04 & 1.8 & 0.03 & P & 0.56 & -0.1 & 578 & 80 \\ 318 & 1 & 822 & -0.1 & 341 & -0.04 & 1 & 208 & -5 & -01 & 578 & 80 \\ 3230 & 665 & 1m & 1$	5	11	2.10	T 81	165 <	; 7	32	2.0		na	na	na	na	- (586	- 7	37	1.2
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1.1	0.10	P 80	J82 <(0.1	51	0.26	Ъ	208	0.04	1.8	0.33	Ъ	626	<0.1	578	8.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	1.5	0.34	P 80	J82 <(0.1	84	0.14	Ь	208	0.01	0.51	0.08	Ь	626	<0.1	5479	31
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	418	318	T 84	428 <(0.1	1477	100	Ε	208	62	1010	260	Ε	615	70	28419	2737
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. (73	16	T 84	428 ⊲(0.2	272	12	(- I	208	γ3	116	18	(- I	615	3.9	492	29
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7	230	C.00	na T	1a 1	18	na	na ,	- E	208	78	3/0	601	- E	× č	123	411	212
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• 6	84 80	c.1 0	1 C	12 × ≤	1.0	25	4 c 0 c		807	<u>√</u> ¢	156 12	4.5		C10	- 1.02	1.C	دە.U
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	υ .	00 C C	0.0 0	г 84 84	102 201 201	50.	33	4 8 V	고 다	007 017	ς αμ	100	40 4 6	<u>ب</u> (-	070	7 K	C611 PCC1	70 110
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		17	1. c		0/ 07	cn.	<u>, </u>	9 t t c	па	IId	IId	IIa	IIG	- F	217	0.0	4771	615
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		4 5	5.2	1 F 8 2 7 8	07 874 126	50.0	1 ک ک	/.7	па	na 180	na 0 0	na 8 A	12 2 1 2	- F	519 519	0.7 7	180	/0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		78	0.0	- T 7 7 7 7	128 </td <td>20.0</td> <td>1 7 C</td> <td>1.1</td> <td>- 4</td> <td>100 208</td> <td>0.9 16</td> <td>t</td> <td>CI.C</td> <td>- [-</td> <td>CT0</td> <td>- c 1 8</td> <td>107 83</td> <td>16</td>	20.0	1 7 C	1.1	- 4	100 208	0.9 16	t	CI.C	- [-	CT0	- c 1 8	107 83	16
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 4	52	17	- T	12.8 <0	05	100	29	1 1	007 Na	na na	1 T	U.U.	- [-	615	0.2	1430	149
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 41	53	1.5	T 84	128 128	0.1	49	6.3	ΗL	208	4.0	87	15	- (615	4.6 1 4:	670	42
	. –	10	7.1	P 75	> 926	10	380	41	Ч	208	ŝ	73	14	Ч	610	\$	160	7.6
	4	4.9	1.4	T 84	428 <0	.02	5.5	0.94	na	na	na	na	na	Г	615	0.77	844	32
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	695	149	T 84	428 <(0.1	1269	51	Ĺ	208	28	509	139	F	615	32	13647	1353
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	(1)	2.0	0.30	T 84	428 <0	.01	1.5	0.40	H	208	<0.2	3.9	1.09	H	615	0.33	96	=
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		21	0.46	Ч Е) 20 10 10)82 280		85	2.3	4	208	0.11	3.8	0.99	en f	626	0.2	738	8.6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6	232	610 141	- F	× ×		1000	5 5 1	na	na 190	na 77	na UCV	na 101	- F	619 213	11.2	16890	202
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05	010	141 43	107 107	180	 	400 1075	1 4 -	- 0	100 208	17	137	701 201	- 0	919 919	1 ر 0 ر	2654	1090 46
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	106	4.5	P 80)82 1	i œ	547	6.8		208	1.93	15	0.00		070 626	0.0	934	e
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$. 6	10	36	T 84	128 <0	02	124	11	na	na	na	na	na	. H	615	8.2	2813	296
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	.49	5.3	T 84	428 <(0.1	274	83	L	208	28	220	93	F	615	1.3	94	14
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	0.2 (056	P 8()82 <(0.1	42	0.075	Ъ	208	<0.02	0.2	0.029	Ч	626	<0.1	7442	57
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		34	10	na r	1a I	1a 	na	na	(m	208	6.4	35	17	(- I	~ ¦	19 	46	31
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		0.1 07	0.47	Ч – Г	9/6 9/6	0.5 20	12.6	0.19	<u>م</u> (208	0.1	7.7	/.0.0	ب (1.65	ç.0 ¢. {	35.7	1.1
$ \begin{bmatrix} 1559 & 175 & 178 & 2828 & < 5 & 420 & 203 & 55 & 186 & 30 & 7 & 615 & 31 & 452 & 600 \\ 646 & 123 & T & 8428 & < 0.1 & 405 & 223 & T & 208 & 5.5 & 186 & 30 & T & 615 & 1.2 & 2475 & 43 \\ 655 & 2.1 & T & 8428 & < 0.01 & 6.7 & 0.89 & T & 208 & 0.60 & 9.2 & 2.8 & T & 615 & 1.2 & 2475 & 43 \\ 0.3 & 0.60 & P & 8120 & < 0.1 & 14 & 0.18 & P & 208 & < 0.02 & 0.72 & 0.26 & P & 213 & 223 \\ 2.1 & 0.41 & T & 8428 & < 0.01 & 1.6 & 0.42 & na & na & na & na & T & 615 & 1.7 & 4080 & 459 \\ 347 & 44 & T & 8428 & < 0.01 & 1.6 & 0.42 & na & na & na & na & 17 & 615 & 1.7 & 2136 & 107 \\ 347 & 44 & T & 8428 & < 0.01 & 1.6 & 0.42 & na & na & na & na & 17 & 615 & 1.7 & 2136 & 107 \\ 2.713 & 44 & T & 8428 & < 0.1 & 1.97 & 3.9 & T & 208 & 2.2 & 33 & 11 & T & 615 & 1.7 & 2136 & 107 \\ 7.71 & 44 & T & 8428 & < 0.1 & 1.97 & 3.9 & T & 208 & 2.2 & 33 & 11 & T & 615 & 1.7 & 2136 & 107 \\ 7.71 & 44 & T & 8428 & < 0.1 & 1.48 & 2.7 & na & na & na & na & 17 & 615 & 1.7 & 2136 & 107 \\ 7.71 & 34 & T & 8428 & < 0.1 & 148 & 2.7 & na & na & na & na & 17 & 615 & 1.3 & 310 \\ 7.73 & 38 & T & 8428 & < 0.1 & 148 & 2.7 & na & na & na & na & 7 & 615 & 2.3 & 6438 & 683 \\ 135 & 33 & T & 8428 & < 0.1 & 148 & 2.7 & na & na & na & na & 7 & 615 & 2.3 & 6438 & 683 \\ 135 & 33 & T & 8428 & < 0.5 & 106 & 2.7 & T & 208 & < 2 & 26 & 7.3 & T & 615 & 2.3 & 6438 & 683 \\ 2288 & 85 & T & 8082 & 5 & 1978 & 220 & T & 208 & 16 & 220 & 5 & 163 & 2.7 \\ 238 & 85 & T & 8428 & 9.5 & 1978 & 220 & 17 & 28 & < 200 & 2300 & 621 & T & 615 & 11 & 31442 & 1707 \\ 2988 & 35 & P & 8428 & 9.5 & 1978 & 220 & 17 & 280 & 230 & 621 & T & 615 & 113 & 4142 & 1707 \\ 2000 & 201 & 200 & 621 & T & 615 & 113 & 4142 & 1707 \\ 2000 & 201 & 2300 & 621 & T & 615 & 113 & 4142 & 1707 \\ 2000 & 200 & 200 & 621 & T & 615 & 114 & 1107 \\ 2000 & 201 & 200 & 621 & T & 615 & 110 & 207 & 207 \\ 2000 & 200 & 200 & 621 & T & 615 & 110 & 207 & 207 \\ 2000 & 200 & 200 & 621 & T & 615 & 110 & 207 & 207 & 207 & 207 & 208 & 207 & 208 & 207 & 208 & 207 & 208 & 207 & 208 & 208 & 208 & 208 & 208 & 208 & 208 & 208 & 208 & 208 & 208 & $, c	0/0	77 77	10 10 10	128 20	c0.1	35	0.0	I u	007 017	0	4 4	17	- F	CT0	7 7	0/CI	7/1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10	1550 4	1170	- T	128 <(15	1001	203	p II	208	5 5	186 1	30	- (-	615 615	7	4528	0.0
6.5 2.1 Γ 84.8 < 0.01 6.7 0.89 Γ 208 0.60 9.2 2.8 Γ 615 7.4 4080 459 0.3 0.060 P 8120 < 0.1 14 0.18 P 208 8.0 162 41 T 615 7.4 4080 459 0.3 0.060 P 8120 < 0.11 14 0.18 P 208 8.0 162 41 T 615 7.4 4080 459 2713 44 T 8428 < 0.01 1.6 0.42 na na na 11 2.9 0.029 2.35 104 11 2713 44 T 8428 < 0.01 1.6 0.42 na na na 11 11 2.9 0.029 310 107 310 107 310 310 310 107 310 310 310 310 310 <td< td=""><td>e ve</td><td>46</td><td>123</td><td>- T</td><td>128</td><td></td><td>405</td><td>507 C C</td><td>- (-</td><td>208</td><td><u>5</u> –</td><td>201</td><td>) (8</td><td>- (-</td><td>615</td><td>1.7</td><td>7475</td><td>43</td></td<>	e ve	46	123	- T	128		405	507 C C	- (-	208	<u>5</u> –	201) (8	- (-	615	1.7	7475	43
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$, v	5.5	2.1	T 84	128 <0	101	6.7	0.89	Ē	208	0.60	9.2	2.8	Ē	615	0.68	213	22
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1	74	6.7	T 84	428 <(9.2	484	15	L	208	8.9	162	41	Г	615	7.4	4080	459
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$).3 (C	090.	P 81	120 <(0.1	14	0.18	Ч	208	<0.02	0.72	0.26	Ч	626	< 0.1	2.9	0.029
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. 1 (2.1	0.41	Т Е	428 00	101	1.6	0.42	na	na	na	na	na	⊢ E	615	0.35	104	= ;
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	n f	14/	44	- E	× ×	0.1	197	9.5	- e	208	7.7	5 F 5 F	12	- E	615		2136	107
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	113	44 201	- F 2 0 2 0	× × 874	8	499 176	8 C 0 C	<u>ب</u> (-	202	7 م	4 o	ς υ τ	⊣ E	519 519	4 t 1 t	30U5 2715	510 52
13 2.3 T 8428 <0.05		35	38	- T	128	 1 (1/0	2.7	1 13	102	1 64	r Bu	C7 E.H	- (-	615 615		0176 6438	689
288 35 P 802 5 935 43 P 208 16 20 53 P 626 5 163 27 2978 86 T 8428 9.5 1978 220 T 28 <200 2300 621 T 615 113 41442 1707		<u>;</u> , ,) ((- T	128 <0	.05	10	- C	¦⊢	208	¶ (>	26 26	73	• (-	615	10	636	15
2978 86 T 8428 9.5 1978 220 T 28 <200 2300 621 T 615 113 41442 1707	2	88	35	- A	382	5	935	43		208	19	201	53	- 6	626	j vo	163	27
	12	978	86	- F	128 9		1978		+ E			0000	55	+ E	615	, :	4140	1707

Element	<u>S</u> Р	Db P	Db S	Dc P	Dc S	Dc Db
Sr	0.4	0.02	0.04	0.4	1.1	24
Ba	1.4	0.2	0.2	3.7	2.6	17
Mo	4.0	0.2	0.05	35	8.7	192
Nb	0.8	na	na	2.6	3.1	na
Та	0.6	0.02	0.03	3.8	6.1	190
La	0.7	0.3	0.4	8.1	11	27
Ce	0.6	0.4	0.7	11.8	19	28
Eu	1.1	0.4	0.4	9.2	8.7	25
Yb	0.8	2.0	2.6	48	63	24
Lu	0.8	2.0	2.5	48	62	24
Y	1.1	na	na	48	43	na
Th	2.8	0.9	0.3	23	8.4	25
U	0.6	0.1	0.2	6.2	11	65

Table 3. Blue River area relative enrichment of selected carbonatite indicator elements in different sample media.

Enrichment factors calculated as ratios of maximum element concentrations in different sample media (Table 2). **Db** – the <0.18 mm sieved fraction of bulk stream sediment (RGS sample medium), **Dc** – panned heavy mineral concentrate (HMC) of the <2 mm sieved fraction of stream sediment, **P** – rock (carbonatite), and **S** – soil. Values >1 indicate enrichment of the numerator medium relative to the denominator and vice versa. **na** - not analyzed.

Fig. 4. Compositional ranges and mean compositions (solid lines) of carbonatites and sedimentary carbonate rocks in British Columbia, normalized to the upper continental crust of Rudnick and Gao (2005). Data from Mäder (1987), Locock (1994), Rukhlov and Gorham (2007), Gorham (2008), Mumford (2009), Chudy (2013), Simandl et al. (2013), Trofanenko (2014), Ya'acoby (2014), Chakhmouradian et al. (2015), Dalsin et al. (2015), Han et al. (2016), Trofanenko et al. (2016), and Han and Rukhlov (2020a).

5. Regional geochemical survey data

Collected as part of the Regional Geochemical Survey (RGS) program since 1976, the data for this study (Table 4) include the multi-element determinations for a total of 11502 streamsediment (<0.18 mm fraction) and water samples at an average sampling density of about 1 site per 10 km² (Han and Rukhlov,

Fig. 5. Blue River area, tantalum-themed catchment basins of regional geochemical survey stream-sediment samples (<0.18 mm fraction; after Han and Rukhlov, 2017, 2020a). Carbonatite occurrences after Rukhlov and Gorham (2007), Gorham (2008), Gorham et al., 2009, 2011a, 2011b, 2013), Millonig and Groat (2013), and Rukhlov et al. (2018).

2017; 2020b; Lett and Rukhlov, 2017). Considering the emplacement ages of carbonatites and related rocks (>320 Ma), the selected stream sediment samples have catchment basins (Cui et al., 2009) that are underlain by the >320 Ma rocks in the study area (Fig. 2). The determinations by aqua-regia digestion with atomic absorption spectrometry (AAS) or a combination of inductively coupled plasma atomic emission spectroscopy (ICP-AES) and inductively coupled plasma mass spectrometry (ICP-MS) are underestimated for elements hosted by silicate and oxide minerals because of only partial dissolution in HCl-HNO₂ acid mixtures. In contrast, instrumental neutron activation analysis (INAA) provides total determinations. Elevated concentrations of carbonatite indicator elements such as La (Fig. 8), Ta (Fig. 9), U (Fig. 10), and P (Fig. 11) in the stream sediments reflect local background variations, including at known carbonatite and related rock occurrences.

6. Discriminant analysis method

Below we evaluate the multi-element drainage geochemical data to identify the carbonatite signature (Fig. 12). To construct

Table 4. Regional geochemical survey (RGS) lithogeochemical data from stream-sediment samples.

Variable	Method	Unit	Count	<mdl<sup>1</mdl<sup>	Mean	Minimum	Median	Percentiles 87th	93rd	98th	- Maximum	Skewness	DPA ²
Area ³		km ²	11502		9.9	0.008	5.5	18	28	54	193	4	
Ag	AAS, ICP-MS	ppb	11073	0.13	122	<2	57	184	278	587	>100000	87	
Al	ICP-AES	wt%	11002	0.00	1.2	0.02	1.07	1.75	2.03	2.53	5.86	1	
As	AAS, ICP-MS	ppm	11467	0.68	9.2	< 0.1	4.5	14	21	42	5370	68	
Au	ICP-MS	ppb	11263	11	14	< 0.2	1.2	7.6	13	47	40630.4	78	
Ba	ICP-MS	ppm	10102	0.00	136	2.2	(02	230	361	856	2769	5	V
Da Bi	INAA AAS ICP-MS	ppm	11117	0.48	0.20	<0.02	0.10	0.40	0.51	1.0	37000	61	I
Ca	ICP-AES	wt%	11002	0.01	2.5	<0.02	0.62	5.87	10.22	18.79	40.00	3	Y
Cd	AAS, ICP-MS	ppm	11298	2.0	0.53	< 0.01	0.13	0.5	0.93	3	644.53	83	•
Ce	INAA	ppm	10107	0.33	129	<3	100	210	270	430	1450	4	Y
Со	ICP-MS	ppm	11002	0.00	12	0.3	11	18	22	31	173	5	
Со	INAA	ppm	10107	5.4	15	<1	14	24	29	41	217	4	
Cr	ICP-MS	ppm	11002	0.00	27	0.7	21	43	55	90	1051	12	
Cr	INAA	ppm	10107	0.63	115	<5	81	170	230	390	8750	19	
Cs Cu	INAA	ppm	10106	2.6	3.8	<0.5	3.1	6.0	/.0	12	1200	5 14	
Cu Fu	AAS, ICF-MS	ppm	1851	5.0	$\frac{27}{20}$	<0.71	1.8	3 2	4.0	57	20	3	
F	ISE	nnm	4259	0.00	485	50	430	750	890	1189	2040	1	
Fe	ICP-AES	wt%	11002	0.00	2.4	0.04	2.25	3.51	3.95	4.75	26.0	2	Y
Fe	INAA	wt%	10107	0.12	3.6	< 0.2	3.5	5.1	5.8	7.3	26.3	1	
Ga	ICP-MS	ppm	11002	0.08	3.5	< 0.2	3.3	5.4	6.3	8.2	17	1	
Hf	INAA	ppm	10107	2.3	9.5	<1	8	15	20	31	308	8	
Hg	AAS, ICP-MS	ppb	11000	5.8	40	<5	26	66	92	166	4480	29	
K	ICP-AES	wt%	11002	0.32	0.13	< 0.01	0.07	0.25	0.36	0.64	1.46	3	Y
La	ICP-MS	ppm	10102	0.06	20	<0.5	16	29	37	62	1146	19	X7
	INAA ICD MS	ppm	5742	0.48	21	<2	22	28	150	242	121	5	Ŷ
Lu	ICF-IVIS IN A A	ppm	10107	28	0.48	<0.5	0.40	0.87	11	17	21	9	
Mg	ICP-AES	wt%	11002	0.00	0.96	0.03	0.64	1.48	2.18	4.96	21.79	5	Y
Mn	AAS, ICP-AES	ppm	11497	0.00	522	15	402	770	984	1765	>30000	21	Ŷ
Мо	ICP-MS	ppm	11002	0.00	1.1	0.02	0.53	1.6	2.7	6.6	113	17	Y
Na	ICP-AES	wt%	11002	5.4	0.012	< 0.001	0.006	0.022	0.032	0.06	1.76	30	
Na	INAA	wt%	10102	1.2	1.1	< 0.1	1.0	1.9	2.2	2.7	10.3	1	
Nb	ICP-MS	ppm	5743	3.5	0.51	< 0.02	0.27	1.1	1.4	2.3	8.3	4	
Nd	INAA	ppm	1462	0.21	70	<5	59	120	140	207	638	3	X7
NI D	ICP-MS	ppm	11002	0.00	33	0.3	25	49	62	0.224	2369	22	Y
r Dh	AAS ICD MS	W170	11/02	0.00	17	0.007	10	21	27	0.234	>20000	08	I V
Rh	INAA	ppm	10107	0.00	87	<5	84	121	140	170	20000	1	1
S	ICP-AES	wt%	11002	20	0.059	< 0.01	0.03	0.10	0.14	0.31	6.77	21	
Sb	ICP-MS	ppm	11002	3.3	0.39	< 0.02	0.15	0.58	0.98	2.3	297	81	
Sb	INAA	ppm	10106	25	0.88	< 0.1	0.4	1.4	2.2	4.9	566	82	
Sc	ICP-MS	ppm	11002	0.00	2.6	0.1	2.3	4.0	5.0	7.4	20	2	
Sc	INAA	ppm	10107	0.04	12	< 0.5	11	17	20	26	107	2	Y
Se	ICP-MS	ppm	11002	7.0	0.70	<0.1	0.4	1.2	1.7	3.2	58	19	X 7
Sm Sw	INAA ICD MS	ppm	10107	0.19	10	<0.1	8.2	16	21	34 257	165	5	Y
or Ta	ICF-IVIS IN A A	ppm	10107	13	1 7	<0.5	15	2.8	3.4	57	70	12	I
Th	INAA	ppm	10107	14	13	<0.5	1.5	2.0	27	4.2	25	6	
Te	ICP-MS	ppm	11002	59	0.02	< 0.01	< 0.01	0.04	0.05	0.09	10	92	
Th	ICP-MS	ppm	11002	0.16	5.4	< 0.1	4.4	9.5	12	16	363	28	
Th	INAA	ppm	10107	0.12	19	< 0.2	14	30	41	75	488	7	Y
Ti	ICP-AES	wt%	11002	0.63	0.051	< 0.001	0.029	0.112	0.144	0.216	0.990	4	Y
TI	ICP-MS	ppm	11002	9.7	0.12	< 0.02	0.08	0.23	0.31	0.46	3.3	7	
U	ICP-MS	ppm	10102	0.06	2.7	<0.1	1.3	4.1	6.8	15	244	18	X7
U	INAA	ppm	10105	0.25	6.7	<0.2	4.7	11	15	26	228	10	Y
v W	ICP-MS	ppm	11002	58	0.40	<0.05	<0.05	0.5	12	97	101	3	ľ
w	INAA	ppm	10106	50 78	17	<0.05	~0.05	2	1.2 A	4.5 Q	101	44 92	
Ÿ	ICP-MS	ppm	5743	0.00	9.6	0.27	7.4	13	17	31	647	23	
Yb	INAA	ppm	10107	32	2.8	<0.2	3.0	5.0	6.3	9.5	59	3	
Zn	AAS, ICP-MS	ppm	11497	0.00	99	2.8	59	102	140	360	88000	89	Y
Zr	ICP-MS	ppm	5743	1.9	1.6	< 0.1	1.2	2.9	3.7	5.7	103	25	
Zr	INAA	ppm	7035	28	394	<200	330	640	830	1400	15000	10	

¹ Percentage of values less than the minimum detection limit (MDL).

² Variables having value of 'Y' (shaded rows) used in discriminant projection analysis (DPA).

³ Area of catchment basin in square kilometres.

Analytical method abbreviations: AAS – aqua regia digestion and atomic absorption spectrometry, ICP-AES – aqua regia digestion and inductively coupled plasma atomic emission spectroscopy, ICP-MS – aqua regia digestion and inductively coupled plasma mass spectrometry, INAA – instrumental neutron activation analysis, ISE – Na₂CO₃+KNO₃ fusion followed by H₂O leach and ion selective electrode. Data from Han and Rukhlov (2017; 2020b).

Fig. 6. Blue River area, tantalum-themed, percentile-ranked catchment basins of panned, stream-sediment (<2 mm fraction), heavy mineral concentrate (HMC) samples. Data and carbonatite occurrences from Dahrouge and Reeder (2001), Reeder and Dahrouge (2002), Smith and Dahrouge (2003), Dahrouge and Wolbaum (2004), Rukhlov and Gorham (2007), Gorham (2008), Gorham et al. (2009, 2011a, 2011b, 2013).

the best criteria for discriminating between carbonatite and other signals using multi-element stream-sediment data, we performed a discriminant projection analysis (DPA) on a sub-set of stream-sediment data taken from the regional geochemical survey area (Fig. 13) in ioGAS[™] software. DPA is a supervised multivariate statistical technique that determines an optimum projection of multivariate data into a lower dimensional (e.g., bivariate) space to achieve the best separation between user-defined groups (Flury, 1997). The DPA uses an a priori knowledge of the group memberships to define discriminant parameters (DP1, DP2, DPn) that maximize the ratio of the within-groups sum of squares (W) to between-groups sum of squares (B) matrices (W/B). The between-groups matrix is effectively the covariance of the group means and the withingroups matrix is the weighted covariance matrix for the groups. Our group 1 includes stream-sediment data that are downstream of known carbonatite or related rock occurrences (n=53); group 2 consists of stream sediments derived mainly from carbonate sedimentary rocks (n=90); and group 3 is a random

Fig. 7. Blue River area, percentile-gridded, Ta concentrations (ppm) in soil samples (after Reeder and Dahrouge, 2002; Smith and Dahrouge, 2003; Dahrouge and Wolbaum, 2004; Rukhlov and Gorham, 2007; Gorham, 2008; Gorham et al., 2009, 2011a, 2011b). Upper Fir carbonatite-hosted Ta-Nb deposit footprint after Kraft (2011) and Gorham et al. (2013).

20% sub-sample of all stream-sediment data in the study area (n=1943; Fig. 13). A ranked element contrast (REC) plot for the average Group 1 stream sediment relative to the median stream sediment in the study area (Fig. 14a) reveals maximum contrast of the carbonatite and related-rock association (Th-K-REE-W-U-Ti-Ta-Hf-Mo-P-Sr). In contrast, the average of a random sub-set of stream sediment samples (Group 3) shows maximum contrast of precious and base metals, along with other pathfinders of hydrothermal ore deposits (Fig. 14b); the ranked element contrast profile for group 2 is similar to that of group 3. Based on the ranked element contrast associations, we selected 20 elements that have <1% of values below the minimum detection limit for the discriminant projection analysis (Table 4). We performed the discriminant projection analysis on a random 50% training sub-set of the group 1 to 3 data (Fig. 12). The constructed discriminant parameters (DP1 and DP2) are linear combinations of the log10-transformed element concentrations that optimally separate the data of groups 1 to 3 (Table 5) as summarized in Equations 1 and 2.

 $DP1 = 0.5125 \cdot Ba - 0.1132 \cdot Ca + 0.019 \cdot K - 0.3508 \cdot Mg - 0.7108 \cdot Mn - 0.7341 \cdot Mo - 0.8466 \cdot Ni - 0.8647 \cdot P + 0.8483 \cdot Pb + 1.108 \cdot Sc - 0.8466 \cdot Ni - 0.8466 \cdot Ni - 0.8466 \cdot Ni - 0.8483 \cdot Pb + 1.108 \cdot Sc - 0.8466 \cdot Ni - 0.8466 \cdot Ni - 0.8466 \cdot Ni - 0.8483 \cdot Pb + 1.108 \cdot Sc - 0.8466 \cdot Ni - 0.8466 \cdot Ni - 0.8466 \cdot Ni - 0.8483 \cdot Pb + 1.108 \cdot Sc - 0.8466 \cdot Ni - 0$ $-0.8055\cdot Sm - 0.1415\cdot Sr - 2.78\cdot Th - 0.1456\cdot Ti + 0.2234\cdot U - 0.2579\cdot V + 0.9749\cdot Zn - 2.181\cdot La + 2.225\cdot Fe + 1.957\cdot Ce + 0.038113\cdot Ce + 0.038113 + 0.038114 + 0.038114 + 0.038114 + 0.038114 + 0.038114 + 0.038114 + 0.038114 + 0.038114 + 0.$ (Eqn. 1)

 $DP2 = 1.008 \cdot Ba - 0.6432 \cdot Ca - 0.834 \cdot K + 2.034 \cdot Mg - 0.1111 \cdot Mn - 0.2682 \cdot Mo - 0.5129 \cdot Ni - 0.2222 \cdot P + 0.3704 \cdot Pb + 0.01757 \cdot Sc - 0.001757 \cdot Sc$ $-0.02553\cdot Sm - 0.7922\cdot Sr - 1.464\cdot Th + 1.035\cdot Ti + 2.46\cdot U - 0.8935\cdot V + 0.2481\cdot Zn + 0.2286\cdot La + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.2282\cdot La + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.2481\cdot Zn + 0.228\cdot La + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.2481\cdot Zn + 0.228\cdot La + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.2481\cdot Zn + 0.228\cdot La + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.2481\cdot Zn + 0.228\cdot La + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.2481\cdot Zn + 0.228\cdot La + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.5293\cdot Fe - 0.7624\cdot Ce + 1.6581\cdot Zn + 0.5293\cdot Fe - 0.7624\cdot Ce + 0.5293\cdot Fe - 0.7624\cdot Fe + 0.5293\cdot Fe + 0.5293\cdot Fe - 0.7624\cdot Fe + 0.5293\cdot Fe + 0.5292\cdot Fe +$ (Eqn. 2)

Calculated contours of constant Mahalanobis distance at $\chi^2 = 0.975$, using robust multivariate estimation (Campbell, 1980), outline most of the data in each group (Fig. 15a). Projecting a random 50% test sub-set of the group 1 to 3 data, which were not used in the discriminant projection analysis, into the DP1 versus DP2 space validates separation of most of the data in each group (Fig. 15c). The DP1 contributes 73% in discriminating the stream-sediment data downstream of known carbonatites and other stream-sediment data, with the calculated Pearson correlation coefficients of the DP1 variables showing significant contributions of Th, La, Sm, Ce, U, K, P, and Ti (Table 5).

We then used the training sub-set of the group 1 to 3 data to construct the DP1 versus DP2 discrimination diagram with a boundary separating most of the data from stream sediments downstream of known carbonatite or related-rock occurrences and other stream-sediment data (combined groups 2 and 3) using the Auto-Domain Classification Diagram tool in ioGAS[™], based on the lowest Mahalanobis distance (Fig. 15b). The final discrimination diagram DP1 versus DP2 with the statistically defined boundary separating carbonatite or related rock sources and other rock sources is validated by the test sub-set of the stream-sediment data (Fig. 15d).

Ta (ppm) in stream

sediment samples

<0.5 to 2.7 (87%)</p>

2.8 to 3.3 (93%)

3.4 to 5.6 (98%)

5.7 to 70 (100%)

(n = 10107):

Fig. 8. Regional geochemical survey area, lanthanum-themed, percentile-ranked catchment basins of stream-sediment samples (<0.18 mm fraction; after Han and Rukhlov, 2017, 2020b). Carbonatite and related-rock occurrences after Höy (1988), Parrish and Scammell (1988), Pell (1994), Millonig and Groat (2013), and Rukhlov et al. (2018). The post-320 Ma intrusive rocks from BC Digital Geology version 2021-12-19 (Cui et al., 2017).

Fig. 9. Regional geochemical survey area, tantalum-themed, percentile-ranked catchment basins of stream-sediment samples (<0.18 mm fraction; after Han and Rukhlov, 2017, 2020b). Carbonatite and related-rock occurrences after Höy (1988), Parrish and Scammell (1988), Pell (1994), Millonig and Groat (2013), and Rukhlov et al. (2018). The post-320 Ma intrusive rocks from BC Digital Geology version 2021-12-19 (Cui et al., 2017).

Fig. 10. Regional geochemical survey area, uranium-themed, percentile-ranked catchment basins of stream-sediment samples (<0.18 mm fraction; after Han and Rukhlov, 2017, 2020b). Carbonatite and related-rock occurrences after Höy (1988), Parrish and Scammell (1988), Pell (1994), Millonig and Groat (2013), and Rukhlov et al. (2018). The post-320 Ma intrusive rocks from BC Digital Geology version 2021-12-19 (Cui et al., 2017).

7. Discriminant analysis results

7.1. A 'carbonatite index'

Applied to all the regional geochemical survey streamsediment data in the study area, the DP1 versus DP2 discrimination diagram identified a total of 721 stream sediment samples (6.3% of all the data) showing a multivariate carbonatite or related rock signal (Fig. 16). Herein we refer to this signal, which is recast as the DP1 value multiplied by minus one, as the 'carbonatite index'. The percentile-ranked index highlights prospective stream basins for carbonatite- and related rock-hosted critical metals (Fig. 17). Stream-sediment data showing carbonatite index scores greater than the 93rd percentile (n=50) reveal elevated concentrations of carbonatite indicator elements such as REE, Nb, Ta, Ti, Zr, Hf, Th, U, P, K, and Na, along with indicators of other mineralization-types (e.g., granitoid-related rare metals, precious and base metals), relative to the median (background) concentrations in stream sediments of the study area (Table 6). These geochemical anomalies conspicuously follow a trend of known carbonatite

Fig. 11. Regional geochemical survey area, phosphorous-themed, percentile-ranked catchment basins of stream-sediment samples (<0.18 mm fraction; after Han and Rukhlov, 2017, 2020b). Carbonatite and related-rock occurrences after Höy (1988), Parrish and Scammell (1988), Pell (1994), Millonig and Groat (2013), and Rukhlov et al. (2018). The post-320 Ma intrusive rocks from BC Digital Geology version 2021-12-19 (Cui et al., 2017).

occurrences in the Blue River and Frenchman Cap areas, extending it both to the northwest and southeast (Fig. 18).

7.2. Measure of geochemical anomaly

The quantity of metal above background (or predicted geochemical resources) based on productivity of an element in a dispersion stream is a parametric and thus an objective measure of a geochemical anomaly, which is the basis of evaluating prospective areas (Rukhlov et al., 2020a, b). The productivity of an element in an ideal dispersion stream, P_x (in m²%) is given in Equation 3.

$$P_x = (1/k) \cdot S_x \cdot (C_x - C_b)$$
 (Eqn. 3)

where

k < > 1 is the local proportionality coefficient between the productivity of an element in the dispersion stream and productivity of an element in the secondary or residual dispersion halo (soil anomaly), which depends on hydrography and individual properties of elements resulting in their supergene enrichment or leaching.

Fig. 12. Workflow used in this study.

Fig. 13. Selected stream-sediment data from regional geochemical survey area used in training and validating discriminant analysis (after Han and Rukhlov, 2017, 2020b). Carbonatite and related-rock occurrences after Höy (1988), Parrish and Scammell (1988), Pell (1994), Millonig and Groat (2013), and Rukhlov et al. (2018). Morphotectonic boundaries after Gabrielse et al. (1991).

Fig. 14. Ranked element contrast plots relative to the median regional geochemical survey stream-sediment data (Table 4; after Han and Rukhlov, 2017, 2020b). **a)** The average stream-sediment data downstream of known carbonatite or related-rock occurrences. **b)** The average random 20% sub-sample of stream-sediment data.

Table 5. Coefficients for	or discr	riminant	parameters.
---------------------------	----------	----------	-------------

X7 · 11	D	P1	D	P2
Variable	Projection ¹	Correlation ²	Projection ¹	Correlation ²
log (Ba ppm)	0.5125122	-0.023	1.0080582	0.369
log (Ca wt%)	-0.1132357	0.213	-0.6432403	-0.602
log (K wt%)	0.0190009	-0.458	-0.8340383	0.250
log (Mg wt%)	-0.3508289	0.167	2.0342928	-0.024
log (Mn ppm)	-0.7107679	0.159	-0.1111433	0.119
log (Mo ppm)	-0.7341133	-0.104	-0.2681685	0.191
log (Ni ppm)	-0.8465542	0.004	-0.5128953	0.209
log (P wt%)	-0.8646799	-0.434	-0.2221829	0.034
log (Pb ppm)	0.8482791	0.251	0.3704230	0.073
log (Sc ppm)	1.1082783	-0.233	0.0175719	0.362
log (Sm ppm)	-0.8054578	-0.722	-0.0255307	0.228
log (Sr ppm)	-0.1415442	0.113	-0.7922373	-0.636
log (Th ppm)	-2.7800825	-0.792	-1.4640319	0.140
log (Ti wt%)	-0.1456117	-0.383	1.0353020	0.505
log (U ppm)	0.2233847	-0.648	2.4597713	0.497
log (V ppm)	-0.2578595	-0.102	-0.8935080	0.217
log (Zn ppm)	0.9749035	0.171	0.2481454	0.192
log (La ppm)	-2.1814112	-0.740	0.2285954	0.156
log (Fe wt%)	2.2246271	-0.027	0.5292998	0.188
log (Ce ppm)	1.9567853	-0.718	-0.7624135	0.128
Constant	0.0381130		1.6581413	
Eigenvalue ³	0.286 (73%)		0.103 (27%)	

¹ Scaled eigenvectors or projection coefficients.

² Pearson correlation coefficients between the input data and the projected data indicating contributions of each element in discriminating between groups of samples.

³ Relative significance of discriminant parameter in terms of eigenvalues of the within-groups sum of squares to betweengroups sum of squares ratio matrix and their percentage values (in parentheses).

 S_x is the catchment area of stream basin at the sampling site (in m²).

 C_x is the concentration of an element in the stream sediment sample (in wt.%).

 C_{b} is the background concentration of an element (in wt.%).

We estimate local background as the geometric mean or median concentration of an element in stream sediment samples (n=20 to 170) that are close to a geochemical anomaly. Downstream of a metal source (secondary dispersion halo), P_x is constant in an ideal dispersion stream, which may not be true for the second- or higher-order drainages (Rukhlov et al., 2020b).

Assuming k=1, the quantity of metal above background or predicted geochemical resources of an element in the stream basin, q (in tonnes per 1 m depth), is calculated as

$$q = H \cdot P_{x} / 40 = P_{x} / 40$$
 (Eqn. 4)

where

H=1 is the calculation depth (in m).

 P_x is the productivity of an element in dispersion stream (in m²%). The denominator '40' converts m²% into tonnes. We set the calculation depth, which refers to a probable depth of a mineralized zone, to a constant value of 1 m to simplify

Fig. 15. Discrimination diagram DP1 versus DP2 for regional geochemical survey stream-sediment data. The discriminant-parameter (DP) variables are log10-equivalents of element concentrations in parts per million (ppm) for all elements, except Ca, K, Mg, P, Ti, and Fe which are in weight per cent (wt.%; Table 5). a) DP1 versus DP2 for the training data set. b) DP1 versus DP2 for the training data set. c) DP1 versus DP2 for the test data set (not used in the discriminant analysis). d) DP1 versus DP2 for the test data set (not used in the discriminant analysis).

Fig. 16. Discrimination diagram DP1 versus DP2 for all regional geochemical survey stream-sediment data in the study area (after Han and Rukhlov, 2017, 2020b), showing boundary between carbonatite or related-rock sources and other rock sources in the upstream basins. Stream-sediment data downstream of known carbonatite and related-rock occurrences shown separately (green symbols).

Fig. 17. Carbonatite index-themed, percentile-ranked catchment basins of regional geochemical survey stream-sediment samples (<0.18 mm fraction; after Han and Rukhlov, 2017, 2020b). Carbonatite and related-rock occurrences after Höy (1988), Parrish and Scammell (1988), Pell (1994), Millonig and Groat (2013), and Rukhlov et al. (2018). The post-320 Ma intrusive rocks from BC Digital Geology version 2021-12-19 (Cui et al., 2017).

equation 4 for a regional evaluation of geochemical anomalies (see Rukhlov et al., 2020a, b for details about predicted geochemical resources). The estimated predicted geochemical resources (in tonnes of metal per 1 m depth) suggest significant potential for REE and other carbonatite-hosted critical metals in the identified stream basins (Table 6).

7.3. Application to Aley carbonatite complex

Here we use an example of detailed stream-sediment lithogeochemical data downstream of the Aley carbonatite (Mackay and Simandl, 2014) to evaluate the mechanical dispersion of carbonatite indicators and ultimately the utility of the estimated predicted geochemical resources assuming an ideal dispersion (Table 6). Hosted by siliciclastic and carbonate rocks of the Kechika Group (Cambrian to Ordovician), the Aley carbonatite complex (ca. 370 Ma; Fig. 19) contains an NI 43-101-compliant resource of 286 million tonnes (Measured+Indicated) grading 0.37% Nb₂O₅ plus 144 million tonnes (Inferred) grading 0.32% Nb₂O₅ (Jones et al., 2017), making it the largest Nb deposit of the Cordilleran alkaline

Fig. 18. Stream-sediment geochemical anomalies showing carbonatite index score greater than the 93rd percentile (see Table 6 for locations and other details). Carbonatite and related-rock occurrences after Höy (1988), Parrish and Scammell (1988), Pell (1994), Millonig and Groat (2013), Rukhlov et al. (2018). Terranes after Colpron (2020).

province (Pride, 1983; Mäder, 1987; McLeish, 2013; Chakhmouradian et al., 2015; McLeish and Johnston, 2019; McLeish et al., 2020). Based on determinations using a portable X-ray fluorescence analyzer (Mackay and Simandl, 2014), concentrations of carbonatite indicator elements such as Nb, La, Y, and Sr in the 0.125 to 0.250 mm fraction of stream sediment decrease exponentially downstream of the carbonatite (Fig. 20). Calculated using equation 3 above, productivities of Nb and Y obey an ideal dispersion law (i.e. P₂≈constant downstream of the anomaly) even in the second- and higherorder drainage system (Fig. 19). In contrast, productivity of La decreases and productivity of Sr increases downstream of the Aley carbonatite (Fig. 20). The main hosts of Nb and Y at Aley are the pyrochlore supergroup, ferrocolumbite, and other Nbminerals, including euxenite (Chakhmouradian et al., 2015). These minerals are more resistant relative to monazite and REE \pm F-carbonate minerals, which are the main hosts of REE at Aley (Mäder, 1987; Mackay and Simandl, 2014; Simandl et al., 2017). The increasing productivity of Sr (Fig. 20d) probably reflects contribution from the carbonate country rocks of the Kechika and Road River groups and the Skoki Formation downstream of the Aley carbonatite complex (Fig. 19). More detailed surveys are needed to evaluate dispersion of critical metals downstream of other known carbonatite and relatedrock occurrences, but the data from Aley indicate that resistant critical minerals generally obey an ideal dispersion law even in the high-order streams, thereby validating the estimated predicted geochemical resources (Table 6).

Ŧ	
0	
9	
\smile	
8	
്	
Ē	
2	
Š	
ö	
ŗ	
al	
ö	
٠Ē	
E	
e	
ų.	
Š	
8	
ഞ	
_	
.0	
Ĕ	
. <u>ല</u>	
q	
e	
5	
_	
p	
н	
<u> </u>	
Ξ	
Ξ	
e	
\mathbf{c}	
5	
ă	
Ľ	
ŝ	
6	
\wedge	
\mathbf{S}	
e.	
Ξ	
5	
õ	
8	
6	
ф	
n	
<u> </u>	
÷Ξ	
B	
na	
ona	
bona	
arbona	
carbona	
g carbona	
ng carbona	s.
ing carbona	ns.
wing carbona	sins.
owing carbona	asins.
howing carbona	basins.
showing carbona	n basins.
a showing carbona	m basins.
ata showing carbona	am basins.
data showing carbona	ream basins.
t data showing carbona	stream basins.
nt data showing carbona	stream basins.
ient data showing carbona	in stream basins.
ment data showing carbona) in stream basins.
liment data showing carbona	h) in stream basins.
ediment data showing carbona	oth) in stream basins.
sediment data showing carbona	epth) in stream basins.
n-sediment data showing carbona	depth) in stream basins.
m-sediment data showing carbona	i depth) in stream basins.
am-sediment data showing carbona	m depth) in stream basins.
ream-sediment data showing carbona	m depth) in stream basins.
tream-sediment data showing carbona	1 m depth) in stream basins.
stream-sediment data showing carbona	er 1 m depth) in stream basins.
y stream-sediment data showing carbona	oer 1 m depth) in stream basins.
/ey stream-sediment data showing carbona	to ber 1 m depth) in stream basins.
rvey stream-sediment data showing carbona	es per 1 m depth) in stream basins.
urvey stream-sediment data showing carbona	nes per 1 m depth) in stream basins.
survey stream-sediment data showing carbona	nnes per 1 m depth) in stream basins.
il survey stream-sediment data showing carbona	connes per 1 m depth) in stream basins.
cal survey stream-sediment data showing carbona	tonnes per 1 m depth) in stream basins.
nical survey stream-sediment data showing carbona	in tonnes per 1 m depth) in stream basins.
mical survey stream-sediment data showing carbona	(in tonnes per 1 m depth) in stream basins.
emical survey stream-sediment data showing carbona	s (in tonnes per 1 m depth) in stream basins.
hemical survey stream-sediment data showing carbona	als (in tonnes per 1 m depth) in stream basins.
chemical survey stream-sediment data showing carbona	tals (in tonnes per 1 m depth) in stream basins.
ochemical survey stream-sediment data showing carbona	netals (in tonnes per 1 m depth) in stream basins.
seochemical survey stream-sediment data showing carbona	metals (in tonnes per 1 m depth) in stream basins.
geochemical survey stream-sediment data showing carbona	1 metals (in tonnes per 1 m depth) in stream basins.
al geochemical survey stream-sediment data showing carbona	ed metals (in tonnes per 1 m depth) in stream basins.
nal geochemical survey stream-sediment data showing carbona	ted metals (in tonnes per 1 m depth) in stream basins.
onal geochemical survey stream-sediment data showing carbona	osted metals (in tonnes per 1 m depth) in stream basins.
zional geochemical survey stream-sediment data showing carbona	hosted metals (in tonnes per 1 m depth) in stream basins.
sgional geochemical survey stream-sediment data showing carbona	-hosted metals (in tonnes per 1 m depth) in stream basins.
Regional geochemical survey stream-sediment data showing carbona	te-hosted metals (in tonnes per 1 m depth) in stream basins.
Regional geochemical survey stream-sediment data showing carbona	tite-hosted metals (in tonnes per 1 m depth) in stream basins.
6. Regional geochemical survey stream-sediment data showing carbona	atite-hosted metals (in tonnes per 1 m depth) in stream basins.
6. Regional geochemical survey stream-sediment data showing carbona	natite-hosted metals (in tonnes per 1 m depth) in stream basins.
le 6. Regional geochemical survey stream-sediment data showing carbona	onatite-hosted metals (in tonnes per 1 m depth) in stream basins.
ble 6. Regional geochemical survey stream-sediment data showing carbona	bonatite-hosted metals (in tonnes per 1 m depth) in stream basins.
able 6. Regional geochemical survey stream-sediment data showing carbona	arbonatite-hosted metals (in tonnes per 1 m depth) in stream basins.

Call	יטוומווטר	אררע וווענע	a m) en		3	t t ill acpuij ill suvall	10m	.611														
Z	RCS sample	X ²	\mathbf{V}^2	S.	Ę	4 Ranked element contrast	Predi	cted g	eochemi	cal resoure	ces (in to	onnes pe	r 1 m	deptl	1) ⁶							- Dredominant host rock
-		V	-	מ	5	leaders ⁵	q	Та	La	Ce	ΡN	Sm	Eu	Πb	Yb	Lu	Y	Sc	Mo	Th	D	
	082F775336	-117.623	49.883	25	3.7	 W-41, Nb-14, Au-12, U- 11, Th-9, Mo-8, La-7, (Ce, Cd)-5, (Sm, Se, Na, Ti, Tl)-3, (K, Te)-2 	0	16	13709	19844	na	551	na	16	0	0	0	0	158	4897	983	metamorphic rocks (Harper Ranch assemblage; Carboniferous to Permian)
7	082F775345	-117.670	49.804	ω	3.5	 Nb-17, Mo-9, K-8, Th-6, (P, La, Ti, Tl)-5, Ce-4, (Y, Hf, Te, W, Sm, U, Cd)-3, (Zr, Ba, V)-2 	2.5	0	1019	1528	na	48	na	0.51	0	0	119	0	27	324	na	metamorphic rocks (Harper Ranch assemblage; Carboniferous to Permian)
ŝ	082J901240	-115.162	50.223	7	3.5	 Ca-21, Au-14, (Ba, Mo)- 13, Sb-11, Mg-10, La-9, (Te, Cd)-8, Tl-7, (Sb, Sr, W)-6, Th-5 	2.6	0	936	1749	na	66	па	3.5	0	2.3	86	0	37	185	2.2	limestone, slate, siltstone, argillite (Banff and Exshaw formations; Mississippian)
4	082K775330	-116.879	50.820	19	4.0	 Bi-147, Th-82, U-48, Ta- 47, Te-29, La-23, Nb-22, W-19, (Hf, V, Zr, Tb)-6, Ce-5, (Fe, Na, Y)-3 	280	3257	24198	16529	na	712	na	219	0	0	682	0	17	22111	10485	 coarse siliciclastic rocks (Horsethief Creek Group; Neoproterozoic)
Ś	082K777088	-116.445	50.639	13	3.(W-158, Nb-22, U-17, Ta- 11, Th-9, La-7, U*-6, Mo- 5, F*-4, (Ce, P, Y, Na)-3, (Bi, Rb, Cs)-2 	192	502	3531	4663	na	55	па	3.3	0	0	447	0	67	1785	1916	quartzite, quartz arenite (Purcell Supergroup, Mount Nelson and Dutch Creek formations; Mesoproterozoic)
9	082L763159	-118.876	50.589	15	3.5	 Th-13, Ce-8, (Sm, Hf, Zr, Lu, La, Tb)-6, U-5, (W, Na)-4, (Cr, Ti)-3, (Ta, K, Sc, P, S, Yb)-2 	na	54	7931	19105	na	1261	na	144	37	59	na	218	0	4979	553	limestone, marble, calcareous sedimentary rocks (Shuswap assemblage, Proterozoic to Paleozoic)
5	082L763165	-118.855	50.674	23	3.6	 (Au, Th)-11, Lu-8, Sm-7, (Ce, La, W)-6, (Tb, Hf, U, Na)-5, (Zt, Ti)-4, (Cr, K, Yb, Sc, Ta)-3 	na	125	14252	23051	na	2071	na	205	289	139	na	771	0	6184	757	limestone, marble, calcareous sedimentary rocks (Shuswap assemblage; Proterozoic to Paleozoic)
×	082L763168	-118.759	50.688	69	5.(Au-56, W-54, Th-23, Lu- 19, Sm-13, La-12, (U, Tb)- 11, (Cc, Hf)-9, Zr-8, (Na, Yb)-4, (Ta, Cr)-3 	na	562	96127	106998	na	14985	na	1690	1202	1185	па	1743	0	47411	7265	limestone, marble, calcareous sedimentary rocks (Shuswap assemblage; Proterozoic to Paleozoic)
6	082L763198	-118.717	50.535	20	5.1	Au-50, Th-25, Lu-22, La- 17, (Sm, Ce)-15, U-14, Tb- 12, (Hf, Zr)-11, W-7, Na-6, Cr-5, Yb-4	na	135	38930	58564	na	4990	na	529	439	381	na	583	0	15229	2753	quartzite, quartz arenite (Shuswap assemblage; Proterozoic to Paleozoic)
10	082L765210	-118.973	50.742	14	3.8	† Th-9, Zr-8, (Hf, Ce, La, Sm)-6, Lu-5, (U, Tb, Na)- 4, (K, Ti, Cr)-3, (Na, P, Ba, Yb, Sc, Tl)-2	na	0	6794	11991	na	941	na	86	34	34	na	52	0	2663	384	metamorphic rocks (Shuswap assemblage; Proterozoic to Paleozoic)
Ξ	082L765223	-118.372	50.778	46	3.6	 W-34, Th-10, (Zr, Ce, La)- Sm-7, (Hf, Lu, Na)-6, (U, Tb, Ti, K)-5, (Cr, Yb)- 3, (Sc, P, T1)-2 	na	129	30216	49718	na	3647	na	229	228	114	na	1197	25	9061	976	limestone, marble, calcareous sedimentary rocks (Shuswap assemblage; Proterozoic to Paleozoic)
¹ An ² Loi ³ Aré ⁴ Cai	iomaly numbe ngitude (X) ar 2a of catchmen rbonatite indey	r as shown nd latitude (nt basin (in ¢ (CI) score	in Fig. 1 (Y) coort km ²).	8. dinat CI =	es (in -DP	decimal degrees) of region 1 (Table 5).	al gec	chem	ical sur	vey (RGS) stream	ı sedim	ent sa	mple								

⁵ Ranked element overtast (REC) leaders are sorted (maximum to minimum) element concentrations normalized to the median values of regional geochemical survey stream-sediment data (Table 4). REC leaders reveal associations of elements showing the maximum contrast to background and the magnitude of the contrast (geochemical anomaly), which identify mineralization in the stream basin. Anomalies 1 to 37 and 50 lack Nd and Eu determinations; anomalies 6 to 50 lack Nb and Y determinations. F* and U* are fluorine and uranium determinations in stream water. **na** = not analyzed. ⁶ Predicted geochemical resources in the stream basin (in tonnes of metal per 1 m depth); see text for details.

113

ž	DCS comple	V2	27	S	5	4 Ranked element contrast	Predi	cted g	eochemic	al resource	es (in to	nnes pe	r 1 m	deptł	9 ⁽¹							- Dradominant hast rook
5	NGO Sampre	<	-	2	3	leaders ⁵	qN	Та	La	Ce	Nd	Sm	Eu	$^{\mathrm{Tb}}$	Yb	Lu	Y	Sc	M_0	$\mathbf{T}\mathbf{h}$	n	
12	082L765268	-118.616	50.985	ξ	3.6	 (Th, W) -12, Lu-10, (U*, La, Ce)-8, Sm-7, (U, Tb)- Yb-5, (Hf, F*, Zr)-4, (Ta, W, Na, Ti)-3 	na	20	2006	3606	na	236	na	26	68	24	na	57	0	841	115	coarse siliciclastic rocks (Horsethief Creek Group; Neoproterozoic)
13	082L769008	-118.239	50.566	6	3.((K, Th)-10, (W, Lu)-9, (Na, Ce)-7, (Ti, La, Tb, Zr, Sm, U, T1)-6, Hf-5, Cr-4, (Yb, Sc, P)-3, Ga-2 	na	27	4072	6882	na	538	na	76	87	50	na	155	8.0	1600	282	quartzite, quartz arenite (Monashee complex; Proterozoic to Early Paleozoic)
14	082L769010	-118.210	50.602	16	ŝ	5 W-18, Th-8, Lu-7, (Ce, U, Tb, Sm, La)-5, (Yb, Au, K, Zr)4, (Na, Ti, Hf)-3, (Tl, P, Cr, Na)-2	na	21	4561	8113	na	649	na	101	282	52	na	121	0	2198	394	quartzite, quartz arenite (Monashee complex; Proterozoic to early Paleozoic)
15	082L769070	-118.252	50.674	2	4.	I (Lu, Th)-16, W-14, U-12, Tb-11, Sm-10, (Ce, La)-9, Yb-7, Au-6, (K, Zr)-5, (Hf, Na)-4, Ti-3	na	9.3	6323	10626	na	934	na	153	263	91	na	35	0	2871	726	quartzite, quartz arenite (Monashee complex; Proterozoic to early Paleozoic)
16	082L769071	-118.290	50.707	ξ	4.	1 Lu-24, Th-22, U-16, Tb- 15, (La, Sm, Ce)-13, Yb- 10, Zr-7, (W, Hf)-6, K-5, (Cr, Ti)-4, Na-3	na	12	4920	7943	na	690	na	111	209	71	na	64	0	2103	540	quartzite, quartz arenite (Monashee complex; Proterozoic to early Paleozoic)
17	082L769075	-118.319	50.738	4	3.0	 W-23, Th-17, Tb-12, (Lu, U)-11, Sm-10, (La, Ce)-9, Ti-7, (Zr, Yb)-6, Hf-5, (Au, Rb, Ba)-4 	na	30	3495	5656	na	581	na	66	122	33	na	82	7.3	1788	379	quartzite, quartz arenite (Monashee complex; Proterozoic to early Paleozoic)
18	082L769153	-118.135	50.570	L		 W-30, Lu-17, Yb-12, (Th, U)-11, Tb-9, (U, Ce)-8, (Sm, Na, La)-7, (Zr, Hf)-5, (Ti, K, P)-3 	na	5.5	3583	7419	na	530	na	113	488	89	na	153	0	1539	376	orthogneiss (Paleoproterozoic)
19	082L769158	-118.160	50.690	Ś		 (Th, Lu)-13, W-12, (Tb, Ce)-9, (Sm, La)-8, U-7, (Yb, Au)-6, Hf-5, (Zr, K, Na)-4, (Cr, Ti, Tl)-2 	na	2.7	3294	6338	na	524	na	80	155	47	па	36	0	1497	198	paragneiss (Paleoproterozoic)
20	082L769159	-118.102	50.766	57	4.0	 W-19, Th-15, Lu-13, Sm- 9, (Tb, Ce, La)-8, U-7, Yb- 6, Hf-5, Zr-4, (Na, Ba, Rb, Au)-2 	na	61	37810	66635	na	7103	na	857	1569	542	na	0	0	21751	2447	quartzite, quartz aremite (Monashee complex; Proterozoic to early Paleozoic)
21	082L769160	-118.110	50.771	37	4.0	7 Th-20, Lu-16, (Tb, W)-14, Sm-12, U-10, (La, Ce)-9, Yb-7, (Zr, S)-5, Hf-4, (Na, K, As)-3	na	143	34167	52331	na	6785	na	1096	1404	477	па	0	0	20635	2963	Paragneiss (Paleoproterozoic)
22	082L769169	-118.220	50.813	10	4.0	 Lu-21, Th-20, (La, Sm)-13, (Ce, Hf, Tb)-12, (U, K)-11, Zr-10, Yb-7, Ti-6, Tl-5, Cr-4, (Na, Sc)-3 	na	0	13707	22151	na	1944	na	241	372	174	na	171	8.7	5251	933	quartzite, quartz aremite (Monashee complex; Proterozoic to early Paleozoic)
23	082L769171	-118.174	50.851	34		7 Th-6, (Zr, Hf)-5, (Lu, Sm, Tb, Ce)-4, (U, La, K, Na)- 3, (W, Ti, P, Yb, Ta)-2	na	46	1126	1048	na	653	na	70	0	26	na	0	0	2303	83	calc-silicate metamorphic rocks (Monashee complex; Proterozoic to early Paleozoic)
24	. 082L769172	-118.174	50.851	34	3.6	 W-27, Th-6, (Zr, Hf)-5, (Ce, Lu, Sm)-4, (La, Tb, U, Na)-3, (K, Yb, P, Ti)-2 	na	28	1985	7064	na	464	na	27	0	17	na	0	0	2157	0	calc-silicate metamorphic rocks (Monashee complex; Proterozoic to early Paleozoic)
25	082M763128	-118.457	51.098	4	3.(Mo-159, Na-11, W-8, (K, Ti)-7, (La, F*, Au, U, Zr)- 6, (Hf, Ta, Ce, Sr, Th)-4, (P Ga, T1)-3 	na	4	1083	1748	na	38	na	6.5	20	4.0	na	0	837	48	65	calc-silicate metamorphic rocks (Monashee complex; Proterozoic to early Paleozoic)

Tab	le 6. Contir	nued.																				
Z	RGS sample	\mathbf{X}^2	Y^2	ŝ	IJ	A Ranked element contrast	Predi	cted go	eochemic	al resourc	es (in to	nnes pe	r1m	deptl)(I			č		Ē	;	 Predominant host rock
26	082M763135	-118.351	51.086	41	3.6	9 W-45, Mo-18, Zr-11, Hf-8, (Na, Th, La, Ce)-6, (Ta, U)-5, (Lu, F*, Sm, K, Ti, Th)-4 Sr-3	na	1a 531	La 19006	Се 32392	na	Sm 1504	к и па	147 147	405 405	111	Y na	0	861 861	4263	983	calc-silicate metamorphic rocks (Monashee complex; Proterozoic to early Paleozoic)
27	082M767025	-118.703	51.065	4	4.0	6 Th-15, La-12, Ce-9, Sm-7, (Hf, P)-6, (Tb, Zr)-5, (U, Ti)-4, (Na, K)-3, (Cr, W, Ca Ga Ba Ta-2	na	1.3	4724	5753	na	351	na	31	0	0	na	0	0	1616	80	coarse siliciclastic rocks (Horsethief Creek Group; Neoproterozoic)
28	082M767028	-118.692	51.089	14	3	 9 Th-9, W-8, La, P.2 9 Th-9, W-8, (La, Ti, Zr)-7, Ce-6, Sm. F, (Au, Ti, Zr)-4, (Tb, Hf, K, S, U)-3, (P, Sc, Sr, Mol-2) 	na	0	9233	12010	na	671	na	49	0	0	na	120	0	3079	54	cale-silicate metamorphic rocks (Monashee complex; Proterozoic to early Paleozoic)
29	082M769045	-118.823	51.234	59		5 W-24, Na-9, (Th, Sm, Tb)- 5, (K, Zr, Ti, La, Ce)-4, (Hf, Ta, U, Lu)-3, (Cr, P, Tl, Yh, Mo, Au)-2	na	150	12964	20801	na	3031	na	339	0	67	na	201	0	5753	223	calc-silicate metamorphic rocks (Monashee complex; Proterozoic to early Paleozoic)
30	082M775247	-118.797	51.898	22		6 W-198, Na-12, (Lu, Th)- 10, (Tb, Ce)-9, Sm-8, (La, U)-7, (Ta, Yb)-5, (Bi, Au, Cr. Ti, Zr)-4	na	282	13883	32403	па	2392	na	376	485	172	na	386	0	5005	1093	limestone, marble, calcareous sedimentary rocks (Horsethief Creek Group; Neoproterozoic)
31	082M775249	-118.772	51.876	30		7 Lu-13, Th-12, Th-10, (Sm, Ce)-9, (W, La)-8, (Na, U)- 7, (Zr, Yb)-5, Hf-4, (Ti, Ta, K)-3, Cr-2	na	146	21534	49050	na	4092	na	603	832	318	na	414	0	9598	1542	limestone, marble, calcareous sedimentary rocks (Horsethief Creek Group; Neoproterozoic)
32	082M775264	-118.687	51.958	×	ŝ	7 Th-9, (Tb, Sm, W)-8, (Zr, Lu)-7, (Na, U, La)-6, (Ce, Hf)-5, (Ta, Yb, K, Tf)-4, (Cr. Au Sc. P)-2	na	78	3439	4349	па	845	na	125	162	34	na	161	0	1619	304	limestone, marble, calcareous sedimentary rocks (Horsethief Creek Group; Neoproterozoic)
33	082M775405	-118.786	51.746	4		7 W-12, (Th, Na)-8, Au-6, (Sm, Tb)-5, (La, Ti, Ce)-4, (K, Ta, U, Mo)-3, (Cr, Hf, Zr, Se, P)-2	na	15	917	1358	na	167	na	20	0	0	na	28	6.4	590	19	limestone, marble, calcareous sedimentary rocks (Horsethief Creek Group; Neoproterozoic)
34	082M775408	-118.779	51.692	15		 Th-8, (Na, La, Zr, Sm)-6, (Hf, Ce, Tb, K)-5, (Ti, U, Cr, Lu)-4, Ta-3, (Yb, P, W, T1 Sc, 2 	na	85	7017	9210	na	915	na	87	73	22	na	109	0	2632	293	limestone, marble, calcareous sedimentary rocks (Horsethief Creek Group; Neoproterozoic)
35	082M775413	-118.887	51.692	20		 A. 1.5. J. A. 1.4. Th-10, Zr-8, (Sm, Hf, Tb, Lu)-7, (La, Na, Ce)-6, (W, U)-5, (K, Yb)- 4. Ti-3, (Cr. Ta)-2 	na	26	10734	14754	па	1855	na	210	294	83	na	308	0	4952	540	limestone, marble, calcareous sedimentary rocks (Horsethief Creek Group; Neoproterozoic)
36	082M775470	-118.916	51.538	ŝ	4	1 W-15, Th-12, (La, Ce, Sm)-8, Tb-7, Lu-6, (Ti, U)- 5, (Na, K, Ta)-4, (Cr, Hf, Zr, Yh, Au)-3	na	31	3671	6367	па	501	na	57	35	19	na	35	0	1406	129	coarse siliciclastic rocks (Horsethief Creek Group; Neoproterozoic)
37	082M775479	-119.007	51.463	18		 8 (Th, Lu)-8, W-7, (Sm, Tb)- 6, (La, Ce, Zr, Hf)-5, (U, Na)-4, (Yb, S, Cr)-3, (Ti, K Ta).2 	na	0	7286	11239	na	1152	na	149	220	92	na	43	0	3205	352	coarse siliciclastic rocks (Horsethief Creek Group; Neoproterozoic)
38	083D051004	-119.499	52.949	0.3	3	5 S-17, Th-6, (La, K)-5, (Ta, Hf Sm, Ce, Eu)-4, (Cu, U, Lu, Tl)-3, (Yb, Na, Ti, P, Bi, Tb, Te)-2	na	1.2	61	68	0	6.4	1.9	0	0.21	0.07	na	na	0.08	21	2.7	dolomitic carbonate rocks (Rocky Mountain assemblage; middle Cambrian)
39	083D051005	-119.484	52.904	7	3.(6 Th-8, Ta-7, (La, Ce, K, Sm)-6, (Lu, Yb, U)-5, (Hf, Nd, Tb)-4, (Tl, P, Eu, Ti, W, F*, Na, Sc)-3	na	89	2892	5332	2006	352	32	26	135	17	na	195	4.2	973	184	mudstone, siltstone, shale (Kaza Group, lower division; Neoproterozoic)

	- Predominant host rock	mudstone, siltstone, shale (Kaza Group, lower division; Neoproterozoic)	coarse siliciclastic rocks (Kaza Group; Neoproterozoic)	mudstone, siltstone, shale (Horsethief Creek Group, lower pelite unit; Neoproterozoic)	mudstone, siltstone, shale (Kaza Group, lower division; Neoproterozoic)	mudstone, siltstone, shale (Kaza Group, lower division; Neoproterozoic)	mudstone, siltstone, shale (Kaza Group, lower division; Neoproterozoic)	metamorphic rocks (Mica Creek succession; Neoproterozoic)	quartzite, quartz arenite (Neoproterozoic)	metamorphic rocks (Mica Creek succession; Neoproterozoic)	mudstone, siltstone, shale (Kaza Group, lower division; Neoproterozoic)	argillite, greywacke, wacke, conglomerate (Ingenika Group, Swannell Formation; Neoproterozoic)
	n	1261	80	13	39	155	63	187	949	101	763	118
	Тh	5211	561	74	267	096	266	1180	4870	692	4202	1911
	Mo	26	0	3.4	2.9	0	0	12	0	0	0	0
	Sc	59	130	8.5	0	183	0	15	580	45	572	0
	γ	na	na	na	na	na	na	na	na	na	na	na
	Lu	35	13	0.43	na	9.9	0	9.2	50	7.7	38	50
۹) ⁶	Yb	280	97	5.1	1.0	72	0	85	285	53	271	33
n dentl	τp	211	25	4.9	11	32	11	33	193	29	139	52
er 1 n	Eu	276	23	14	21	36	6.2	58	161	29	145	na
nnes n	Sm	2083	215	40	66	364	108	476	1996	307	1718	624
es (in to	PN	10643	1132	43	196	563	455	1248	12285	1718	9914	па
al resourc	Ce	27435	2936	399	1183	3646	1392	6940	28871	4410	25279	6842
ochemic	La	14860	1631	510	1163	2928	062	5528	13570	2225	12849	3805
Predicted ge	Ta	136	24	13	17	54	0	6.0	181	0	185	20
	q	na	na	na	na	na	na	na	na	na	na	na
Ranked element contrast	leaders ⁵	Ti-34, (Hf, Th)-13, (Ce, La, K, Sm)-10, (Au, U)-9, S-8, Tb-7, (Nd, Eu)-6, (Ta, Cu, Lu, Yb)-5	Th-10, (La, Ce)-8, (Lu, Yb, Sm, K)-7, (Tb, Ta)-6, (U, Nd)-5, (Eu, Te, Tl, Hf, Ti)- 4, (Sc, Fe)-3	K-10, (La, Ti, Ta, Th)-5, (Sm, Ce, Eu, P, Tl)-4, (Tb, Na, U, Cu, Yb, Mo)-3, (Hf, Ba, Cr, Nd)-2	Au-35, Th-6, La-5, (Ce, Sm, K, Ta)-4, (Tb, Eu, U, Ti, Hf, Tl, W)-3, (Lu, Yb, Se, Nd, Te, Na)-2	Th-8, (K, La)-7, (Sm, Ce, Ta)-6, U-5, (Tb, Ti, Lu, Yb, Hf, Eu)-4, (Tl, Te, Sc, Na, Co, Nd)-3	Th-7, (La, Ce)-6, (Sm, U)- 5, (K, Tb, Hf)-4, (Nd, Tl, Eu, Ta, Ti, Lu)-3, (Bi, F*, Yb, Te, Na, Fe)-2	K-12, (La, Th)-8, (Ti, Ce)- 7, Sm-6, (Tb, U)-5, (Yb, Lu, Tl, Hf, Na, Te, Mo, Eu)-4, (S, Cr)-3	Th-10, (Ce, La, Bi)-8, Sm- 7, (U, K, Nd, Tb)-6, (Ta, Lu)-5, (Hf, S, Yb, Eu)-4, (W, Tl, Ti, Sc)-3	Th-12, Ce-10, (La, Sm)-9, (Na, Tb, Nd, Hf)-7, (U, Lu)-6, (K, Eu, Yb)-5, Ti-4, W-3, (P, Sc)-2	Th-11, Ce-10, (La, Sm)-9, U-7, (Ta, Nd, Tb, K, W)-6, (Hf, Lu, Yb)-5, (Eu, Ti)-4, (Tl, Sc, Fe)-3	P-13, Th-9, (Lu, Ce)-6, (Sm, Au, La, U, Na)-5, (Zr, Tb)-4, (Hf, K)-3, (Ti, Te, Tl, Ta, Yb, Cr)-2
	C [‡]	4.4	3.5	3.8	3.7	3.7	3.7	3.9	3.5	3.9	3.5	3.8
5	ŝ	16	ς	7	4	9	7	∞	22	7	15	13
5	Y'	52.872	52.903	52.723	52.729	52.735	52.579	52.193	52.848	52.022	52.712	55.812
ſ	X ²	-119.630	-119.569	-119.525	-119.522	-119.363	-119.206	-119.131	-119.436	-118.683	-119.270	-124.151
	RGS sample	083D051070	083D051077	083D051144	083D051145	083D051157	083D051371	083D051424	083D052034	083D052128	083D053028	093N831597
3	Z	40	41	42	43	44	45	46	47	48	49	50

Table 6. Continued.

Rukhlov, Cui, Cunningham, Fortin, and Anderson

116

Fig. 19. Sampling sites and catchment basins at Aley carbonatite complex. Sampling sites after Mackay and Simandl (2014). Geology after Pride (1983), Mäder (1987), McLeish (2013), and BC Digital Geology version 2021-12-19 (Cui et al., 2017).

Fig. 20. Aley carbonatite complex, drainage area (km²) versus concentration, C_x (wt.% or ppm; open symbols; model dashed line), and productivity, P_x (m²%; solid symbols, model solid line), of selected elements for the 0.125 to 0.250 mm fraction of stream-sediment samples. Original concentrations from Mackay and Simandl (2014). **a)** Drainage area (km²) versus C_{Nb} (wt.%) and P_{Nb} ·10⁵ (m²%). **b)** Drainage area (km²) versus C_{La} (wt.%) and P_{La} ·10⁴ (m²%). **c)** Drainage area (km²) versus C_{Y} (ppm) and P_{Y} ·10³ (m²%). **d)** Drainage area (km²) versus C_{Sr} (wt.%) and P_{Sr} ·10⁴ (m²%).

8. Discussion

Based on data from known carbonatites, an integrated approach to assess the critical metals potential of underexplored regions might combine detailed stream-sediment sampling and application of the critical mineral index as defined herein, highresolution airborne radiometric and magnetic data, and panned heavy mineral concentrate and soil lithochemical surveys.

8.1. Geophysical response from carbonatites of the Blue River area

Both airborne radiometric and magnetic surveys are effective prospecting tools for carbonatite-hosted critical minerals (e.g., Simandl and Paradis, 2018), many of which contain U and Th and are associated with abundant magnetic minerals such as magnetite or pyrrhotite and K-rich metasomatic rocks such as glimmerites (carbonate-amphibole-phlogopite rocks). Highresolution, airborne gamma-ray uranium (Fig. 21) and total magnetic intensity (Fig. 22) highs highlight numerous known carbonatite occurrences in the Blue River area, which illustrate the effectiveness of geophysics for critical minerals prospecting, especially in vegetated, low-elevation areas (Gorham, 2008; Shives, 2009). However, difficulty in maintaining constant ground clearance in rugged terrain results in gamma counts and total magnetic intensities that reflect topography, with generally stronger responses from ridges and peaks relative to low-elevation areas (Gorham, 2008).

8.2. Stream-sediment, panned heavy mineral concentrate and soil lithochemical surveys

Concentrations of carbonatite indicator elements such as Ba, Mo, Nb, Ta, REE, Th, and U in stream-sediment heavy mineral concentrate (HMC) samples are up to two orders of magnitude higher relative to those in carbonatites and soil samples, and

Fig. 21. Blue River area gridded airborne gamma-ray uranium response (total counts). After Gorham (2008) and Shives (2009). Grid cell size is 40 m. Carbonatite occurrences after Rukhlov and Gorham (2007), Gorham (2008), Gorham et al., 2009, 2011a, 2011b, 2013), Millonig and Groat (2013), and Rukhlov et al. (2018).

up to 192 times higher relative to the bulk stream-sediment <0.18 mm fraction (Table 3). Recovered by panning in the field or by laboratory techniques (Lett and Rukhlov, 2017), HMC lithogeochemistry enhances the contrast of stream-sediment anomalies compared to the conventional, bulk <0.18 mm fraction used in the RGS drainage programs (Rukhlov et al., 2020a, b). Panned, stream-sediment HMC samples in the Blue River area (n=626), containing 1.2 to 2475 ppm Ta determined by lithium-fusion ICP-MS (Fig. 6), highlight the known carbonatites in the area, including at the Upper Fir and Verity Ta-Nb deposits (Dahrouge and Reeder, 2001; Reeder and Dahrouge, 2002; Smith and Dahrouge, 2003; Dahrouge and Wolbaum, 2004; Rukhlov and Gorham, 2007; Gorham, 2008; Gorham et al., 2009, 2011a, 2011b). In contrast, the RGS stream-sediment data in the area (n=208) show only <1to 13 ppm Ta by INAA (Fig. 5). In addition, HMC are routinely evaluated for indicator minerals (e.g., Tyson, 2009; Mackay and Simandl, 2014; Mao et al., 2016; Simandl et al., 2017).

As follow-ups to regional stream-sediment and airborne geophysical surveys, grid soil lithogeochemical surveys (Fig. 7), coupled with ground (in situ) gamma-ray and magnetic surveys, effectively delineate secondary (residual) dispersion haloes of carbonatite-related critical metals (Reeder and Dahrouge, 2002; Smith and Dahrouge, 2003; Dahrouge and Wolbaum, 2004; Rukhlov and Gorham, 2007; Gorham, 2008; Gorham et al., 2009, 2011a, 2011b).

9. Conclusion

Carbonatites and related rocks have a very distinct geochemical signature, characterized by extreme concentrations of critical metals such as REE, Nb, Ta and other elements. Because most carbonatites in British Columbia form small sills and dikes, the task of detecting their signal using the

Fig. 22. Blue River area gridded airborne total magnetic intensity response (nT). After Gorham (2008) and Shives (2009). Grid cell size is 40 m. Carbonatite occurrences after Rukhlov and Gorham (2007), Gorham (2008), Gorham et al., 2009, 2011a, 2011b, 2013), Millonig and Groat (2013), and Rukhlov et al. (2018).

multi-element regional geochemical survey stream data with sample catchment areas of up to 193 km² (average 10 km²) is akin to looking for a needle in a haystack. Univariate data reflect background variations, including at known carbonatite and related-rock occurrences. In contrast, our multivariate carbonatite index identifies numerous stream basins that are prospective for carbonatite-related critical minerals. The top 50 anomalies (>93rd percentile) show maximum contrast of carbonatite indicator elements relative to the background in the study area. Estimated predicted geochemical resources suggest significant potential for REE and other carbonatite-related critical metals. We propose a refined prospectivity approach to assess the critical metals potential of underexplored regions that includes stream-sediment, panned heavy mineral concentrate lithochemical and indicator mineral surveys, coupled with high-resolution airborne radiometrics and magnetics, followed up by soil lithochemical and in situ (ground) radiometric and magnetic surveys.

Acknowledgments

We thank Purple Rock Inc. for capturing digital data from the provincial ARIS and Kaitlyn McLaren (British Columbia Geological Survey) for GIS support and data management. We also thank Christopher H. Gammons (Montana Tech of The University of Montana), Kathryn E. Watts (United States Geological Survey), and Lawrence B. Aspler (British Columbia Geological Survey) for thorough reviews and comments.

References cited

- Bond, G.C., and Kominz, M.A., 1984. Construction of tectonic subsidence curves for the early Paleozoic miogeocline, Southern Canadian Rocky Mountains: Implications for subsidence mechanisms, age of breakup and crustal thinning: Geological Society of America Bulletin, 95, 155-173.
- Burgess, S.D., Heaman, L.M., and Bowring, S.A., 2023. Highprecision ID-TIMS U-Pb geochronology of perovskite (CaTiO₃) from the Ice River Complex, Southeastern British Columbia. Chemical Geology, 616, article 121187. <https://doi.org/10.1016/j.chemgeo.2022.121187>
- Brown, J.A., 2013. Waterloo Resources Ltd. 2012 field activities at the Ice River property, Waterloo Prospect area. British Columbia Ministry of Energy, Mines and Natural Gas, British Columbia Geological Survey, Assessment Report 33565, 39 p.
- Brummer, J.J., Gleeson, C.F., and Hansuld, J.A., 1987. A historical prospective of exploration geochemistry in Canada. Journal of Geochemical Exploration, 28, 1-39.
- Campbell, N.A., 1980. Robust procedures in multivariate analysis.I: Robust covariance estimation. Journal of the Royal Statistical Society, Series C: Applied Statistics, 29, 231-237.
- Campbell, R.B., 1968. Geology, Canoe River, British Columbia. Geological Survey of Canada, Preliminary Map 15-1967, 1:253,400 scale.
- Chakhmouradian, A.R., Reguir, E.P., Kressall, R.D., Crozier, J., Pisiak, L.K., Sidhu, R., and Yang, P., 2015. Carbonatite-hosted niobium deposit at Aley, northern British Columbia (Canada): Mineralogy, geochemistry and petrogenesis. Ore Geology Reviews, 64, 642-666.
- Chudy, T.C., 2013. The petrogenesis of the Ta-bearing Fir carbonatite system, east-central British Columbia, Canada. Unpublished Ph.D. thesis, University of British Columbia, Canada, 316 p.

- Çimen, O., Kuebler, C., Simonetti, S.S., Corcoran, L., Mitchell, R.H., and Simonetti, A., 2019. Combined boron, radiogenic (Nd, Pb, Sr), stable (C, O) isotopic and geochemical investigations of carbonatites from the Blue River Region, British Columbia (Canada): Implications for mantle sources and recycling of crustal carbon. Chemical Geology, 529, article 119240. <https://doi.org/10.1016/j.chemgeo.2019.07.015>
- Colpron, M., 2020. Yukon terranes A digital atlas of terranes for the northern Cordillera. Yukon Geological Survey. <https://data.geology.gov.yk.ca/Compilation/2#InfoTab>
- Colpron, M., Logan, J., and Mortensen, J.K., 2002. U-Pb age constraint for late Neoproterozoic rifting and initiation of the lower Paleozoic passive margin of western Laurentia. Canadian Journal of Earth Sciences, 39, 133-143.
- Cui, Y., Eckstrand, H., and Lett, R.E., 2009. Regional geochemical survey: delineation of catchment basins for sample sites in British Columbia. In: Geological Fieldwork 2008, Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey Paper 2009-01, pp. 231-238.
- Cui, Y., Miller, D., Schiarizza, P., and Diakow, L.J., 2017. British Columbia digital geology. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey Open File 2017-8, 9p. Data version 2021-12-19.
- Currie, K.L. 1975. The geology and petrology of the Ice River Alkaline Complex, British Columbia. Geological Survey of Canada, Bulletin 245, 68 p.
- Currie, K.L., 1976. The alkaline rocks of Canada. Geological Survey of Canada, Bulletin 239, 228 p.
- Dahrouge, J. and Reeder, J., 2001. Commerce Resources Corp. 2001 geologic mapping, sampling and geophysical surveys on the Mara property, north of Blue River, British Columbia. British Columbia Ministry of Energy and Mines, British Columbia Geological Survey, Assessment Report 26733, 19 p.
- Dahrouge, J. and Wolbaum, R., 2004. Commerce Resources Corp. 2003 exploration at the Blue River property, north of Blue River, British Columbia. British Columbia Ministry of Energy and Mines, British Columbia Geological Survey, Assessment Report 27412, 16 p.
- Dalsin, M.L., Groat, L.A., Creighton, S., and Evans, R.J., 2015. The mineralogy and geochemistry of the Wicheeda Carbonatite Complex, British Columbia, Canada. Ore Geology Reviews, 64, 523-542.
- Dawson, G.M. 1886. Geological and Natural History Survey of Canada, Annual Report 1, 122B-124B.
- Digel, S.G., Ghent, E.D., Carr, S.D., and Simony, P.S., 1998. Early Cretaceous kyanite-sillimanite metamorphism and Paleocene sillimanite overprint near Mount Cheadle, southeastern British Columbia: geometry, geochronology, and metamorphic implications. Canadian Journal of Earth Sciences, 35, 1070-1087.
- Flury, B., 1997. A first course in multivariate statistics. New York, Springer-Verlag, 715 p.
- Gabrielse, H., Monger, J.W.H., Wheeler, J.O., and Yorath, C.J., 1991. Morphogeological belts, tectonic assemblages, and terranes. In: Gabrielse, H. and Yorath, C.J., (Eds.), Geology of the Cordilleran Orogen in Canada. Geological Survey of Canada, Geology of Canada, vol. 4, pp. 15-59 (also Geological Society of America, The Geology of North America, v. G-2).
- Gorham, J., 2008. Commerce Resources Corp. 2007 diamond drilling and exploration at the Blue River Property, north of Blue River, British Columbia. British Columbia Ministry of Energy, Mines and Natural Gas, British Columbia Geological Survey, Assessment Report 30011, 48 p.
- Gorham, J., Ulry, B., and Brown, J., 2009. Commerce Resources Corp. 2008 diamond drilling and exploration at the Blue River property, north of Blue River, British Columbia. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey, Assessment Report 31174, 149 p.

Gorham, J., Ulry, B., and Brown, J., 2011a. Commerce Resources Corp. 2010 diamond drilling and exploration at the Blue River Property, north of Blue River, British Columbia. British Columbia Ministry of Energy and Mines, British Columbia Geological Survey, Assessment Report 32424, 55 p.

Gorham, J., Ulry, B., Brown, J., and Carter, M., 2011b. Commerce Resources Corp. 2009 diamond drilling and exploration at the Blue River property, north of Blue River, British Columbia. British Columbia Ministry of Energy and Mines, British Columbia Geological Survey, Assessment Report 31948, 62 p.

Gorham, J., Ulry, B., and Brown, J., 2013. Commerce Resources Corp. 2012 exploration at the Blue River Property, north of Blue River, British Columbia. British Columbia Ministry of Energy, Mines and Natural Gas, British Columbia Geological Survey, Assessment Report 33906, 37 p.

Han, T. and Rukhlov, A.S., 2017. Regional Geochemical Survey (RGS) data update and release using the newly developed RGS database. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey GeoFile 2017-11, 7 p.

Han, T. and Rukhlov, A.S. 2020a. Update of rock geochemical database at the British Columbia Geological Survey. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey GeoFile 2020-02, 4 p.

Han, T. and Rukhlov, A.S. 2020b. Update of the provincial Regional Geochemical Survey (RGS) database at the British Columbia Geological Survey. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey GeoFile 2020-08, 3 p.

Han, T., Rukhlov, A.S., Naziri, M., and Moy, A., 2016. New British Columbia lithogeochemical database: Development and preliminary data release. British Columbia Ministry of Energy and Mines, British Columbia Geological Survey GeoFile 2016-4, 6 p.

Hickin, A.S., Ootes, L., Brzozowski, M.J., Northcote, B., Rukhlov, A.S., Bain, W.M., and Orovan, E.A., 2024. Critical minerals and mineral systems in British Columbia. In: Geological Fieldwork 2023, Ministry of Energy, Mines and Low Carbon Innovation, British Columbia Geological Survey Paper 2024-01, pp. 13-51.

Höy, T., 1988. Geology of the Cottonbelt lead-zinc-magnetite layer, carbonatites and alkaline rocks in the Mount Grace area, Frenchman Cap dome, southeastern British Columbia. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey, Bulletin 80, 99 p.

Jones, S., Merriam, K., Yelland, G., Rotzinger, R., and Simpson, R.G., 2017. Technical report on mineral reserves at the Aley project, British Columbia, Canada. NI 43-101 Technical Report, 293 p.

<https://www.sedarplus.ca/csa-party/records/document.html?id=5 05ac95c2aec63a87de95b61ab789d033eb8a64a937cf34a97506960 da658bbb>

Kraft, J.L., 2011. Structural geology of the Upper Fir carbonatite deposit, Blue River, British Columbia: Report and addendum for Dahrouge Geological Consulting Ltd. and Commerce Resources Corp. In: Gorham, J., Ulry, B., and Brown, J. (compilers), Commerce Resources Corp. 2010 Diamond Drilling and Exploration at the Blue River Property, British Columbia Ministry of Forests, Mines and Lands, British Columbia Geological Survey, Assessment Report 32424, pp. 3225-3258.

Kulla, G., and Hardy, J., 2015. Commerce Resources Corp. Blue River tantalum–niobium project, British Columbia, Canada, project update report. NI 43-101 Technical Report, 138 p. <https://www.sedarplus.ca/csa-party/records/document.html?id=7 7f946b8c242fc385f6d2b9dcee4b25648a80c7bb0fb1f6b09dc8d91 05a8f213>

Lett, R., and Rukhlov, A.S., 2017. A review of analytical methods for regional geochemical survey (RGS) programs in the Canadian Cordillera. In: Ferbey, T., Plouffe, A., and Hickin, A.S., (Eds.), Indicator Minerals in Till and Stream Sediments of the Canadian Cordillera. Geological Association of Canada Special Paper Volume 50, and Mineralogical Association of Canada Topics in Mineral Sciences Volume 47, pp. 53-108.

Li, Z.-X., Bogdanova, S.V., Collins, A.S., Davidson, A., De Waele, B., Ernst, R.E., Fitzsimons, I.C.W., Fuck, R.A., Gladkochub, D.P., Jacobs, J., Karlstrom, K.E., Lu, S., Natapov, L.M., Pease, V., Pisarevsky, S.A., Thrane, K., and Vernikovsky, V., 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis: Precambrian Research, 160, pp. 179-210.

Locock, A.J., 1994. Aspects of the geochemistry and mineralogy of the Ice River alkaline intrusive complex, Yoho National Park, British Columbia. Unpublished M.Sc. thesis, University of Alberta, Canada, 163 p.

Mackay, D.A.R., and Simandl, G.J., 2014. Portable X-ray fluorescence to optimize stream sediment chemistry and indicator mineral surveys, case 1: Carbonatite-hosted Nb deposits, Aley carbonatite, British Columbia, Canada. In: Geological Fieldwork 2013, British Columbia Ministry of Energy and Mines, British Columbia Geological Survey Paper 2014-1, pp. 183-194.

Mao, M., Rukhlov, A.S., Rowins, S.M., Spence, J., and Coogan, L.A., 2016. Apatite trace element compositions: A robust new tool for mineral exploration. Economic Geology, 111, 1187-1222.

Mäder, U.K., 1987. The Aley carbonatite complex, northern Rocky Mountains, British Columbia (94B/5). In: Geological Fieldwork 1986, British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey Paper 1987-1, pp. 283-288.

McDonough, M.R. and Murphy, D.C., 1990. Geology, Valemount (830/14) map area, British Columbia. Geological Survey of Canada, Open File 2259, 1:50,000 scale.

McDonough, M.R., Morrison, M.L., Currie, L.D., Walker, R.T., Pell, J., and Murphy, D.C., 1991a. Canoe Mountain, British Columbia; Geological Survey of Canada, Open File 2511, 1:50,000 scale.

McDonough, M.R., Simony, P.S., Morrison, M.L., Oke, C., Sevigny, J.H., Robbins, D.B., Seigel, S.G., and Grasby, S.E., 1991b. Howard Creek, British Columbia; Geological Survey of Canada, Open File 2411, 1:50,000 scale.

McDonough, M.R., Simony, P.S., Sevigny, J.H., Robbins, D.B., Raeside, R., Doucet, P., Pell, J., and Dechesne, R.G., 1992. Geology of Nagle Creek and Blue River, British Columbia (83d/2 and 83d/3). Geological Survey of Canada, Open File 2512, 1:50,000 scale.

McLeish, D.F., 2013. Structure, stratigraphy, and U-Pb zircon-titanite geochronology of the Aley carbonatite complex, Northeast British Columbia: Evidence for Antler-aged orogenesis in the foreland belt of the Canadian Cordillera. Unpublished M.Sc. thesis, University of Victoria, 131 p.

McLeish, D.F. and Johnston, S.T., 2019. The Upper Devonian Aley carbonatite, NE British Columbia: a product of Antler orogenesis in the western Foreland Belt of the Canadian Cordillera. Journal of the Geological Society of London, 176, 620-628.

McLeish, D., Johnston, S., Friedman, R., and Mortensen, J., 2020. Stratigraphy and U-Pb zircon-titanite geochronology of the Aley carbonatite complex, northeastern British Columbia: evidence for Antler-aged orogenesis in the Foreland belt of the Canadian Cordillera. Geoscience Canada, 47, 171-186.

Millonig, L.J., Gerdes, A., and Groat, L.A., 2012. U-Th-Pb geochronology of meta-carbonatites and meta-alkaline rocks in the southern Canadian Cordillera: a geodynamic perspective. Lithos, 152, 202-217.

Millonig, L.J., and Groat, L.A., 2013. Carbonatites in western North America-occurrences and metallogeny. In: Colpron, M., Bissig, T., Rusk, B.G., and Thompson, F.H., (Eds.), Tectonics, Metallogeny, and Discovery: The North American Cordillera and Similar Accretionary Settings. Society of Economic Geologists, Special Publication 17, pp. 245-264. Millonig, L.J., Gerdes, A., and Groat, L.A., 2013. The effect of amphibolite facies metamorphism on the U-Th-Pb geochronology of accessory minerals from meta-carbonatites and associated metaalkaline rocks. Chemical Geology, 353, 199-209.

Mitchell, R., Chudy, T., McFarlane, C.R.M., and Wu, F.-Y., 2017. Trace element and isotopic composition of apatite in carbonatites from the Blue River area (British Columbia, Canada) and mineralogy of associated silicate rocks. Lithos, 286-287, 75-91.

Mumford, T., 2009. Dykes of the Moose Creek Valley, Ice River alkaline complex, southeastern BC. Unpublished M.Sc. thesis, The University of New Brunswick, Canada, 230 p.

Murphy, D.C., compiler, 2007. Geology, Canoe River, British Columbia-Alberta. Geological Survey of Canada, Map 2110A, 1:250,000 scale.

Nelson, J.L., Colpron, M., and Israel, S., 2013. The Cordillera of British Columbia, Yukon and Alaska: tectonics and metallogeny. In: Colpron, M., Bissig, T., Rusk, B.G., and Thompson, F.H., (Eds.), Tectonics, Metallogeny, and Discovery: The North American Cordillera and Similar Accretionary Settings. Society of Economic Geologists, Inc. Special Publication 17, pp. 53-109.

Parrish, R.R. and Scammell, R.J., 1988. The age of the Mount Copeland syenite gneiss and its metamorphic zircons, Monashee complex, southeastern British Columbia. In: Radiogenic Age and Isotopic Studies: Report 2, Geological Survey of Canada, Paper 88-2, pp. 21-28.

Pell, J., 1994. Carbonatites, nepheline syenites, kimberlites and related rocks in B.C. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey, Bulletin 88, 136 p.

Pell, J. and Höy, T., 1989. Carbonatites in a continental margin environment-the Canadian Cordillera. In: Bell, K. (Ed.), Carbonatites: Genesis and Evolution. Unwin Hyman, London, United Kingdom, pp. 200-220.

Pell, J. and Simony, P.S., 1987. New correlations of Hadrynian strata, south-central British Columbia. Canadian Journal of Earth Sciences, 24, 302-313.

Peterson, T.D., and Currie, K.L. 1994. The Ice River Complex, British Columbia. In: Current Research, Part A. Geological Survey of Canada, Paper 1994-A, pp. 185-192.

Pride, K.R., 1983. Geological Survey on the Aley Claims. British Columbia Ministry of Energy, Mines, and Petroleum Resources, Assessment Report 12018, 16 p.

Raeside, R.P. and Simony, P.S., 1983. Stratigraphy and deformational history of the Scrip Nappe, Monashee Mountains, British Columbia. Canadian Journal of Earth Sciences, 20, 639-650.

Reeder, J. and Dahrouge, J., 2002. Commerce Resources Corp. 2001 geologic mapping, sampling, and geophysical surveys on the Fir property, north of Blue River, British Columbia. British Columbia Ministry of Energy and Mines, British Columbia Geological Survey, Assessment Report 26781, 13 p.

Ross, G.M., 1991. Tectonic setting of the Windermere Supergroup revisited. Geology, 19, 1125-1128.

Rudnick, R.L., and Gao, S., 2005. Composition of the continental crust. In: Heinrich, D.H., Rudnick, R.L., and Turekian, K.K., (Eds.), The Crust, Treatise on Geochemistry, Volume 3, Elsievier, Amsterdam, pp. 1-64.

Rukhlov, A.S. and Bell, K., 2010. Geochronology of carbonatites from the Canadian and Baltic Shields, and the Canadian Cordillera: clues to mantle evolution. Mineralogy and Petrology, 98, 11-54.

Rukhlov, A.S., and Gorham, J., 2007. Commerce Resources Corp. 2006 diamond drilling and exploration at the Blue River Property, north of Blue River, British Columbia. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey, Assessment Report 29024, 41 p.

Rukhlov, A.S., Chudy, T.C., Arnold, H., and Miller, D., 2018. Field trip guidebook to the Upper Fir carbonatite-hosted Ta-Nb deposit, Blue River area, east-central British Columbia. British Columbia Ministry of Energy, Mines and Petroleum Resources, Geological Survey GeoFile 2018-6, 67 p.

Rukhlov, A.S., Fortin, G., Kaplenkov, G.N., Lett, R.E., Lai, V. W.-M., and Weis, D., 2020a. Multi-media geochemical and Pb isotopic evaluation of modern drainages on Vancouver Island. In: Geological Fieldwork 2019, British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey Paper 2020-01, pp. 133-167.

Rukhlov, A.S., Fortin, G., Kaplenkov, G.N., Lett, R.E., Lai, V. W.-M., and Weis, D., 2020b. Catching the tail of a golden dragon plus 60 elements in British Columbia. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey GeoFile 2020-04 (poster).

Scammell, R.J., 1987. Stratigraphy, structure and metamorphism of the north flank of the Monashee complex, southeastern British Columbia: a record of Proterozoic extension and Phanerozoic crustal thickening. Unpublished M.Sc. thesis, Carleton University, Ottawa, Canada, 205 p.

Scammell, R.J., 1993. Mid-Cretaceous to Tertiary thermotectonic history of former mid-crustal rocks, southern Omineca belt, Canadian Cordillera. Unpublished Ph.D. thesis, Queens University, Kingston, Ontario, 576 p.

Scammell, R.J. and Brown, R.L., 1990. Cover gneisses of the Monashee terrane: a record of synsedimentary rifting in the North American Cordillera. Canadian Journal of Earth Sciences, 27, 712-726.

Shives, R.B.K., 2009. 2007 Helicopter borne magnetic gradiometer and gamma ray spectrometer survey, Blue River Area, British Columbia, Canada. In: Gorham, J., Ulry, B., and Brown, J., (compilers), Commerce Resources Corp. 2008 diamond drilling and exploration at the Blue River property, north of Blue River, British Columbia. Appendix 17. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey, Assessment Report 31174D, pp. 19-142.

Simandl, G.J. and Paradis, S., 2018. Carbonatites: related ore deposits, resources, footprint, and exploration methods. Applied Earth Science (Transactions of the Institutions of Mining and Metallurgy), 127, 123-152.

Simandl, G.J., Mackay, D.A.R., Ma, X., Luck, P., Gravel, J., and Akam, C., 2017. The direct indicator mineral concept and QEMSCAN® applied to exploration for carbonatite and carbonatite-related ore deposits. In: Ferbey, T., Plouffe, A. and Hickin, A.S., (Eds.), Indicator Minerals in Till and Stream Sediments of the Canadian Cordillera. Geological Association of Canada Special Paper Volume 50 and Mineralogical Association of Canada Topics in Mineral Sciences Volume 47, pp. 175-190.

Simandl, G.J., Reid, H.M., and Ferri, F., 2013. Geological setting of the Lonnie niobium deposit, British Columbia, Canada. In: Geological Fieldwork 2012, British Columbia Ministry of Energy, Mines and Natural Gas, British Columbia Geological Survey Paper 2013-1, pp. 127-138.

Simony, P.S., Ghent, E.D., Craw, D., and Mitchell, W., 1980.
Structural and metamorphic evolution of the northeast flank of the Shuswap complex, southern Canoe River area, British Columbia.
In: Crittenden, M.D., Coney, P.J., and Davis, G.H. (Eds.),
Cordilleran Metamorphic Core Complexes. Geological Society of America Memoir 153, pp. 445-461.

Smith, M. and Dahrouge, J., 2003. Commerce Resources Corp. 2002 diamond drilling and exploration on the Blue River property, north of Blue River, British Columbia. British Columbia Ministry of Energy and Mines, British Columbia Geological Survey, Assessment Report 27131, 31 p.

Trofanenko, J., 2014. The nature and origin of the REE mineralization in the Wicheeda Carbonatite, British Columbia, Canada. Unpublished M.Sc. thesis, McGill University, Canada, 173 p.

- Trofanenko, J., Williams-Jones, A.E., Simandl, G.J., and Migdisov, A.A., 2016. The nature and origin of the REE mineralization in the Wicheeda carbonatite, British Columbia, Canada. Economic Geology, 111, 199-223.
- Tyson, R., 2009. Mineralogy of the 2008 stream sediment survey. In: Gorham, J., Ulry, B., and Brown, J., (compilers), Commerce Resources Corp. 2008 diamond drilling and exploration at the Blue River property, north of Blue River, British Columbia. Appendix 19. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey, Assessment Report 31174D, pp. 172-257.
- White, G.P.E., 1982. Notes on carbonatites in central British Columbia. In: Geological Fieldwork 1981. British Columbia Ministry of Energy, Mines and Petroleum Resources, British Columbia Geological Survey, Paper 1982-1, pp. 68-69.
- Ya'acoby, A., 2014. The petrology and petrogenesis of the Ren carbonatite sill and fenites, southeastern British Columbia, Canada. Unpublished M.Sc. thesis, The University of British Columbia, Canada, 463 p.