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Abstract

Scanning electron microscopy-mineral liberation analysis (SEM-MLA) on seven samples from the Berg and Huckleberry porphyry Cu-Mo
deposits reveal a range of minerals containing elements that are on the 2024 Canadian critical mineral list. Both deposits are primary sources
of copper (chalcopyrite) and molybdenum (molybdenite). In late veins, zinc (sphalerite), copper, and antimony (tetrahedrite) are predominant.
These veins include minor concentrations of minerals containing bismuth, tellurium, palladium, manganese, and tungsten, elements that could

conceivably be byproducts of primary commodity mining.
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1. Introduction

Critical minerals are essential for low-carbon technologies,
including electric vehicles, renewable energy systems,
batteries, and medical devices (e.g., Kreiner et al., 2023;
NRCan, 2024a). As global energy systems transition to
low-carbon alternatives, the demand for these minerals is
increasing, making diversification of supply a priority (IEA,
2024; WEF, 2024). Of the nine metal mines that operated
in British Columbia in 2024, seven are porphyry deposits
(Clarke et al., 2025). The province typically accounts for
close to half of the annual national copper production and is
the only producer of molybdenum (Clarke et al., 2025), both
elements on the 2024 version of the Canadian critical minerals
list (NRCan, 2024b). Many porphyry systems also contain a
variety of minor ‘companion metals’ (Mudd et al., 2014, 2017;
Nassar et al., 2015) on the critical minerals lists of different
jurisdictions (Hickin et al., 2023, 2024) that could conceivably
be byproducts of primary commodity production (e.g., John
and Taylor, 2016; IGF, 2023) such as platinum group elements
(PGE), Re, Te, W, Zn, Bi, and rare earth elements (REE).
The diversity of porphyry deposits across British Columbia,
driven by variations in magma sources, tectonic settings, and
hydrothermal environments, results in distinct mineralogical
and geochemical characteristics at each deposit (Ledoux
and Hart, 2021). Maximizing the potential of these deposits
requires an inventory of critical minerals in these different
porphyry systems. Scanning electron microscopy-mineral
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liberation analysis (SEM-MLA) is a tool to start building such
an inventory by providing detailed mineralogical and textural
data to establish where elements considered critical reside.
This paper presents the results of SEM-MLA work on seven
samples from the Huckleberry Cu-Mo deposit (Cretaceous)
and the Berg Cu-Mo deposit (Eocene) in northwestern British
Columbia (Fig. 1) in an area that includes the territories of many
Indigenous Nations. Despite being only 22 km apart, these
deposits differ significantly in age, host intrusion compositions,
and hydrothermal alteration styles. Herein we document the
mineralogy and possible paragenesis of primary commodity
(Cu and Mo) and potential companion elements in these
deposits, contributing to a better understanding of how critical
minerals might be distributed in other porphyry deposits.

2. Geologic setting

The Huckleberry and Berg deposits are in Stikine terrane,
near its western boundary with the Coast Plutonic complex
(Fig. 1). Stikine terrane was accreted to the western margin of
Ancestral North America in the Middle Jurassic (e.g., Nelson
and van Straaten, 2020; George et al., 2021; Nelson et al., 2022).
The Coast Plutonic complex consists of granitic rocks that
were emplaced during the Jurassic to Paleogene (Gehrels et al.,
2009; Brown, 2020).

In the study area (Fig. 2), Hazelton Group rocks including
Lower Jurassic submarine and subaerial volcanic rocks of the
Telkwa Formation (Maclntyre et al., 1989; Barresi et al., 2015)
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Fig. 1. Location of the Berg and Huckleberry Cu-Mo porphyry
deposits, western Stikine terrane. Terranes modified from Colpron
(2020).

and fossiliferous sedimentary rocks of the Smithers Formation
(Tipper and Richards, 1976; Gagnon et al., 2012) are
unconformably overlain by volcanic and sedimentary rocks of
the Skeena Group (Early Cretaceous; Palsgrove and Bustin,
1991), which are in turn unconformably overlain by hornblende-
bearing andesites of the Kasalka Group (Late Cretaceous;
Maclntyre, 1976; Kim, 2020). The Bulkley intrusive suite (84-
70 Ma; Carter, 1971, 1981), an age equivalent of the Kasalka
Group, hosts numerous mineral occurrences, including
Huckleberry, Whiting Creek, Bergette, Ox, and Seel (Fig. 2;
Friedman and Jordan, 1997; Lepitre et al., 1998; Petersen,
2014; Ebert, 2020; Ogryzlo, 2020). The Bulkley intrusives have
a calc-alkaline affinity suggesting magmatism was arc-related
(Maclntyre, 1985; Petersen, 2014). The Nanika intrusive suite
(58-45 Ma; Deyell et al., 2000; Diakow, 2006), consisting of
granite, quartz monzonite, and granodiorite plutons and dikes,
outcrop around the Berg deposit and are the youngest intrusions
associated with known mineralization in the map area.

3. Deposit geology
3.1. Huckleberry calc-alkaline porphyry Cu-Mo deposit
Mining operations at Huckleberry ceased in August 2016,
and the site is currently on care and maintenance status. The
remaining combined historical and NI 43-101 compliant
reserves and resources are estimated at 181.5 Mt at 0.32% Cu.
Historical extraction from the deposit was 122.7 Mt,
which yielded 0.498 Mt Cu, 3629 t Mo, 0.11 Moz Au, and
4.5 Moz Ag (Ogryzlo, 2020). The deposit consists of two
primary mineralized areas (Main zone, East zone) which
are spatially related to porphyritic granodiorite stocks of the
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Bulkley intrusive suite (Ogryzlo, 2020). Zircons from these
stocks yielded U-Pb ages of 83.5 +0.3/-0.4 Ma (Main zone)
and 83.5 £0.3 Ma (East zone; Friedman and Jordan, 1997).
The granodiorite stocks were emplaced into Lower Jurassic
volcanic rocks of the Telkwa Formation (Fig. 2). In the
Huckleberry area, these volcanic rocks are primarily lapilli tuffs
and boulder conglomerates, which have undergone alteration to
black biotite-magnetite hornfels, obscuring original fragmental
textures (Ogryzlo, 2020). Further details on the geology,
geochronology, hydrothermal alteration, mineralization, and
structure of the Huckleberry deposit are available in studies by
James (1976), Maclntyre (1976, 1985), Carter (1981), Jackson
and Illerbrun (1995), Friedman and Jordan (1997), Ferbey and
Levson (2001), Christensen and Connaughton (2016), and
Ogryzlo (2020).

3.2. Berg calc-alkaline porphyry Cu-Mo deposit

The Berg deposit can be divided into an extensive supergene
enrichment blanket and hypogene zone, both of which have
been included in the NI 43-101 compliant Measured and
Indicated resource of 1009 Mt at 0.23% Cu, 0.03% Mo,
4.62 g/t Ag, and 0.02 g/t Au (Ausenco Engineering Canada
Inc., 2023). The deposit is centred on a composite porphyritic
quartz monzonite stock (‘Berg stock’) of the Nanika intrusive
suite, which was subdivided by Panteleyev (1976) into multiple
textural phases, including porphyritic quartz monzonite (QMP),
coarse-grained plagioclase-biotite-quartz porphyry (PBQP),
medium-grained quartz-plagioclase porphyry (QPP), and
late- to post-mineralization quartz-feldspar porphyry (QFP).
Biotite from the Berg stock and whole-rock samples from the
surrounding biotite hornfels were dated using K-Ar methods,
yielding a mean age of 49.0 +2.4 Ma (Carter, 1974). More
detailed accounts of the geology, geochronology, hydrothermal
alteration, mineralization, and structural features of the Berg
deposit are provided by Panteleyev (1976, 1981), Heberlein
and Godwin (1984), and Heberlein (1995).

4. Scanning electron microscopy-mineral liberation analysis
(SEM-MLA)
4.1. SEM-MLA methods

Thin sections from seven representative rock samples
(Table 1) were analyzed using an FEI Quanta 650F scanning
electron microscope (SEM) equipped with MLA software
(version 3) at the Scanning Electron Microscopy Laboratory,
Micro Analysis Facility, CREAIT Network, Memorial
University. Analyses were performed with an accelerating
voltage of 25 kV and a beam current of 10 nA. The GXMAP
(grain X-ray mapping) software mode was employed to
generate mineral maps for each thin section. These maps
were created by stitching together 1.5 by 1.5 mm frames, each
with a resolution of 500 by 500 pixels (3 um/pixel). Energy-
dispersive X-ray spectroscopy (EDX) data was collected for
each frame on a grid with 10-pixel (30 um) spacing and a dwell
time of 12 ms. The collected EDX spectra were compared to a
reference library of mineral spectra to identify mineral phases
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Fig. 2. Regional geology of the Berg and Huckleberry deposits (parts of NTS map sheets 93E/11, 14) and other mineral occurrences in the region.

Simplified after Diakow (2006). Coordinates are UTM Zone 9N.

and quantify the mineralogical composition of each sample.
For minerals referred to in this paper, mineral names, mineral
formulae, main critical and precious metals, and mineral group
are provided in Table 2.

To further process the MLA mineral maps and enable custom
mineral groupings, a Python script was developed. This script
decomposes mineral maps by segmenting and analyzing their
colour composition. Each map was divided into smaller tiles,
and unique colours within each tile were identified based
on a predefined tolerance for colour similarity. For each

identified colour, a binary mask was generated to highlight
the corresponding regions, which were saved as transparent
RGBA images. The processed tiles were then reassembled
into full-resolution images, preserving the spatial arrangement
of the original mineral map. This automated script facilitates
the generation of stitched colour-separated layers, where each
colour represents a unique mineral phase. These individual
layers can be combined to create customized mineral groupings,
providing an adaptable tool for robust mineralogical analyses.
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Table 1. Samples referred to in text and figures. Coordinates are drill collar locations.

ID Sample ID Drill hole Depth (m)  Lat. Long. Deposit
D23EOR-1-36 D23EOR-1-36 H20E-416 504 53.677060 -127.163354 Huckleberry
D23EOR-3-6 D23EOR-3-6 H20E-418 574 53.676418 -127.164570 Huckleberry
D23EOR-14-5 D23EOR-14-5 H20E-417 347 53.674476 -127.178911 Huckleberry
D23EOR-14-2 D23EOR-14-2 H20E-417 332 53.674476 -127.178911 Huckleberry
D23EOR-16-11 D23EOR-16-11 BRG23-244 365 53.798712 -127.428614 Berg
D23EOR-16-15B D23EOR-16-15 BRG23-244 278 53.798712 -127.428614 Berg
D23EOR-18-1A D23EOR-18-1 BRG23-245 304 53.803994 -127.440018 Berg

Table 2. Minerals, mineral formulae, and metals discussed in text and figures.
Mineral group Mineral Mineral formula il:tt;::l (and other) }(I)lll’:le{;‘e\’;gr?; Obs;g.;d at
Carbonate Mn ankerite CaMn(CO,), Mn X
Carbonate Mn calcite MnCO, Mn X
Sulpharsenide Arsenopyrite FeAsS As X
Sulpharsenide Enargite Cu,AsS, Cu, As X
Sulphosalt Cosalite Pb,Bi,S; Bi X X
Sulphosalt Pyrargyrite Ag,SbS, Ag, Sb X
Sulphosalt Tetrahedrite (Cu,Fe) ,Sb,S . Cu, Sb X X
Sulphide Acanthite AgS Ag X
Sulphide Bismuthinite Bi,S, Bi X X
Sulphide Bornite Cu,FeS, Cu X X
Sulphide Chalcocite Cu,S Cu X
Sulphide Chalcopyrite CuFeS, Cu X X
Sulphide Molybdenite MoS, Mo X X
Sulphide Sphalerite ZnS Zn X X
Telluride Altaite PbTe Te X
Telluride Hessite Ag Te Ag, Te X
Telluride Michenerite PdBiTe Pd, Bi, Te X
Telluride Tellurobismuthinite ~ Bi,Te, Bi, Te X
Tungstate Scheelite CaWo, w X
Tungstate Wolframite (Fe,Mn)WO, W X

4.2. SEM-MLA results
4.2.1. Huckleberry Cu-Mo porphyry deposit

Examination of four Huckleberry deposit vein samples
indicates a possible paragenetic sequence. What appears to
be an early banded quartz-anhydrite vein contains epitaxial
molybdenite as the sole sulphide phase (Figs. 3a, c, d).
Chalcopyrite, pyrite, and minor amounts of galena and pyrrhotite
are observed as disseminations in the adjacent wall rock, but
with no clear genetic relationship with the vein (Figs. 3a, c, d).
A thin halo of plagioclase (<5 mm thick) surrounds the quartz-
anhydrite-molybdenite-vein, highlighting localized alteration.

Chalcopyrite-pyrite-calcite-anhydrite veins (Figs. 3e-g)
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crosscut the early quartz-anhydrite-molybdenite veins and
exhibit selvages of anhydrite-magnetite-quartz and vein halos
of quartz-Mg-chlorite (Figs. 3e-f). Trace amounts of pyrrhotite,
galena, sphalerite, and tetrahedrite occur throughout these
veins, although their relationship to the main mineralizing
event remains ambiguous.

Pyrite-quartz-calcite-ankerite veins feature halos of quartz-
muscovite-pyrite alteration (Fig. 4). These veins are apparently
sporadic throughout the Huckleberry East zone and have been
observed to crosscut earlier formed chalcopyrite-pyrite veins.
The pyrite in these veins contains inclusions of chalcopyrite,
galena, scheelite, bismuthinite, cosalite, bornite, tetrahedrite,
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altaite, and michenerite, suggesting a more complex
mineralizing environment compared with the older veins with
predominantly chalcopyrite and molybdenite. Late anhydrite-
sphalerite veins (Fig. 5) are observed to crosscut veins with
predominantly pyrite. Sphalerite within these veins contains
inclusions of galena, chalcopyrite, cosalite, and altaite and
some of these minerals are interpreted to infill fractures in
earlier-formed pyrite (Fig. 5c).

73.26 | Anhydrite

Gypsum
Calcite
lllite
Quartz
Ankerite

- Pyrite (Fe)
Sphalerite (Zn)
Galena (Pb)
Chalcopyrite (Cu)
Pyrrhotite (Fe)
Cosalite (Pb, Bi)
FR001 Attaite (Pb, Te)
Fig. 5. Scan of a thin section billet and customized SEM-MLA maps of
sample D23EOR-14-2 from the Huckleberry deposit of an anhydrite-
sphalerite vein. a) Thin-section billet. b) SEM-MLA false colour map
overlayed on a black background. ¢) SEM-MLA false colour map
overlayed on a white background. Area% of minerals within the SEM-
MLA field is indicated in the appropriate colour box in the legend.

Cosalite and altaite occur as inclusions within sphalerite, but they are
too sparse and small to show.
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4.2.2. Berg porphyry Cu-Mo deposit

The SEM-MLA maps of three samples from the Berg Cu-
Mo deposit also indicate early to late stages of mineralization
(Figs. 6-8). Early banded quartz-molybdenite-anhydrite veins
lack other sulphide phases and are surrounded by a muscovite-
orthoclase halo (Fig. 6). These veins are crosscut by pyrite-
anhydrite-ankerite-illite veins (Fig. 6). The pyrite within
these crosscutting veins contains inclusions of chalcopyrite,
sphalerite, galena, and cosalite (Fig. 6d); the associated ankerite
exhibits Mn-rich carbonate zoning (Fig. 6b).

A late hydrothermal vein shows distinct symmetrical banding.
The outer layers consist of euhedral quartz walls transitioning
inward to zoned ankerite, followed by colloform sphalerite-
pyrite bands (Fig. 7). The sphalerite is mantled by chalcopyrite,
galena, enargite, and tetrahedrite (Figs. 7c, e). Toward the
vein’s core, carbonate layers transition into anhydrite-barite-
celestine (Figs. 7c, d), the final phases in this vein generation.
Trace amounts of hessite, arsenopyrite, bismuthinite,
tellurobismuthinite, wolframite, and acanthite are distributed
throughout the vein (Fig. 7). The youngest vein stage identified
at Berg in this study comprises intergrown tetrahedrite,
pyrite, enargite, chalcopyrite, galena, and sphalerite, with
trace occurrences of cosalite, bornite, molybdenite, hessite,
pyrargyrite, arsenopyrite, acanthite, tellurobismuthinite,
bismuthinite, wolframite, and chalcocite (Fig. 8).

5. Discussion
5.1. Critical minerals at Huckleberry

The Huckleberry deposit displays the mineralogical
traits typical of calc-alkaline Cu-Mo porphyry systems as
described elsewhere (e.g., Seedorff et al., 2005; Sillitoe,
2010). Chalcopyrite and molybdenite are predominant in the
early and main stages and host Cu and Mo, both on the 2024
version of the Canadian critical minerals list (NRCan, 2024b).
Because incorporation of Re in molybdenite is common in
other porphyry deposits (Reich et al., 2013; John and Taylor,
2016) we speculate that Re may be a companion element at
Huckleberry.

The transitional vein stage, interpreted as phyllic based on
quartz-muscovite-pyrite alteration halos (cf. Harris and Golding,
2002; Sillitoe, 2010), contains critical metal-bearing sulphides
(sphalerite, bornite), sulphosalts (tetrahedrite, bismuthinite,
cosalite), tungstates (scheelite), and tellurides (altaite,
michenerite) underscoring the mineralogical complexity of
the deposit. These minerals contain trace quantities of metals
commonly on critical mineral lists (W, Bi, Zn, Cu, Sb, Te, and
Pd).

In the youngest ore-bearing vein stage, sphalerite is the
primary critical metal-bearing mineral with trace cosalite and
altaite inclusions. Although rare, these veins host Zn, Bi, and
Te. Previous studies establish that sphalerite from porphyry
deposits may contain significant quantities of In, Ga, Ge, W,
Cu, Ag, and Cd (Beaucamp et al., 2024).
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Tetrahedrite (Cu, Sb, Ag) Molybdenite (Mo)
W24 Pyrite (Fe) Hessite (Ag, Te)
- Enargite (Cu, As) Pyrargyrite (Ag, Sb)
Chalcopyrite (Cu) G Arsenopyrite (Fe, As)
Galena (Pb) Acanthite (Ag)
Sphalerite (Zn) [R001 Te-bismuthinite (Bi, Te)
Cosalite (Pb, Bi) Bismuthinite (Bi)
Bornite (Cu) Wolframite (W)
Pyrrhotite (Fe) E Chalcocite (Cu)

Fig. 8. Scan of a thin section billet and customized SEM-MLA maps
of sample D23EOR-18-1A from the Berg deposit from a late-stage
tetrahedrite-pyrite-carbonate vein. a) Thin-section billet. b) SEM-
MLA false colour map overlayed on a black background. Area% of
minerals within the SEM-MLA field is indicated in the appropriate
colour box in the legend.

5.2. Critical minerals at Berg

Panteleyev (1981) identified five hypogene vein stages
at the Berg deposit. We recognized three representative
vein types, encompassing the middle stages specified by
Panteleyev (1981). Early quartz-molybdenite-anhydrite veins
contain predominantly molybdenite. The transitional pyrite-
anhydrite-carbonate vein crosscuts earlier veins and hosts
minor chalcopyrite, sphalerite, galena, and cosalite, with Zn,
Cu, and Bi. Similar to Huckleberry, late veins display more
complex mineralogy, with colloform banded sphalerite veins
showing zoning of Mn-rich carbonate minerals (Fig. 7).
Sulphides include sphalerite, chalcopyrite, enargite, bornite,
and molybdenite with trace amounts of associated sulphosalts
(tetrahedrite, cosalite), tellurides (hessite, tellurobismuthinite),
tungstates (wolframite), and sulpharsenides (arsenopyrite),
incorporate Zn, Cu, As, Sb, Mo, Te, Bi, and W. These late
veins also contain tetrahedrite, enargite, minor chalcopyrite
and sphalerite, and trace amounts sulphosalts and tellurides,
hosting an array of elements, including Cu, Sb, As, Zn, Bi, Mo,
Te, and W (Table 2).

6. Conclusion

The Berg and Huckleberry deposits display the mineralogical
complexity of calc-alkaline porphyry Cu-Mo systems.
Chalcopyrite and molybdenite are the primary ore minerals in
both deposits. The SEM-MLA results reveal a transition from
early veins with predominantly chalcopyrite and molybdenite
to later veins with sphalerite and galena (containing Zn).
These late veins contain a variety of minor and trace phases
with metals that are on the 2024 Canadian critical minerals list
(NRCan, 2024b), including Te, As, Bi, Mn, Sb, Pd, and W.

Future studies should incorporate bulk rock geochemistry
and micro-analytical techniques, such as electron probe micro-
analysis (EPMA) and laser ablation inductively coupled plasma
mass spectrometry (LA-ICP-MS), to quantify trace critical
metals in sulphides and other minerals.
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