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Abstract
Lithochemistry from modern drainages downstream of several known carbonatite and related alkaline-rock occurrences and a new calcite-

dolomite carbonatite near Revelstoke reveals elevated (up to 100 times average continental crust) levels of rare earth elements (REE), Nb, Ta, and 
other carbonatite pathfinders. Panned, heavy mineral concentrate (HMC) samples show 10 times stronger contrast relative to bulk stream-sediment 
samples. Molybdenite from the past-producing Mount Copeland alkali syenite (ca. 740 Ma) yielded a Re-Os model age of 55.94 ±0.23 Ma, 
which ties the mineralization to a Paleogene metamorphic overprint. New whole rock Sr-Pb-Nd isotopic data from Neoproterozoic, Cambrian, 
and late Paleozoic carbonatites of the Blue River and Frenchman Cap areas, and Mount Copeland syenite record the evolution of a widespread, 
relatively primitive mantle source that was tapped episodically by carbonatites worldwide, at least since ca. 3 Ga, and by present-day ocean 
island basalts. The stream-sediment prospectivity criteria and carbonatite whole rock data compliment and link the sources of mineralization 
with host rocks and evolution of Cordilleran terranes. Our preliminary results inform the provincial assessment of carbonatite- and related-rock-
hosted REE and rare metals through indicator minerals in archived Regional Geochemical Survey (RGS) samples.

Keywords: Carbonatite, alkaline rock, trace elements, Sr-Pb-Nd isotopes, Re-Os molybdenite, Mount Copeland, Blue River, stream sediment, 
heavy mineral concentrate (HMC), rare metals, rare earth elements (REE), mineral exploration

1. Introduction
Carbonatites, rare igneous rocks with at least 30%

primary carbonate minerals, have become increasingly 
important exploration targets because they are major 
sources of Nb, rare earth elements (REE), and other metals 
on the critical mineral lists of many political jurisdictions 
(e.g., Hickin et al., 2024). In British Columbia, a belt of 
carbonatites straddles the western flank of Ancestral North 
America, some of which host REE and Nb-Ta mineralization 
(e.g., Mäder, 1987; Chudy, 2013; Ya’acoby, 2014; 
Chakhmouradian et al., 2015; Dalsin et al., 2015; Kulla and 
Hardy, 2015; Trofanenko et al., 2016; Rukhlov et al., 2018). 
Since the 1950s, sampling of modern drainage sediment across 
the province as part of the Regional Geochemical Survey 
(RGS) program has led to the discovery of precious and base 
metal deposits (Lett and Rukhlov, 2017; Rukhlov et al., 2024). 

As part of a province-wide evaluation of carbonatite-hosted 
REE and rare-metals potential, this study presents preliminary 
lithochemical data from orientation sampling at several modern 
drainages downstream of known carbonatite and alkaline-rock 
occurrences in southeastern British Columbia (Fig. 1). The 
results from both panned, heavy-mineral concentrate (HMC) 
and bulk stream-sediment samples inform a regional assessment 
of carbonatite- and related rock-hosted mineralization through 
identifying carbonatite indicator minerals in archived samples 

(e.g., Belousova et al., 2002; Mackay and Simandl, 2015; 
Mao et al., 2016; Simandl et al., 2017). In addition, this 
study contributes to an ongoing British Columbia Geological 
Survey program that will generate hundreds of new whole rock 
radiogenic isotope (Sr-Pb-Nd-Hf) and trace-element analyses 
that will be reported in the future. Along with compiled analyses 
(Han et al., 2025), these data will help constrain the evolution 
of terranes and sources of mineralization and host rocks. We 
also contribute a new Re-Os model age on molybdenite from 
Mount Copeland historical mine and describe a previously 
unrecognized calcite-dolomite carbonatite occurrence at 
Boulder Mountain near Revelstoke.

2. British Columbia alkaline province
In British Columbia, carbonatites and silica-undersaturated

and alkaline silicate rocks were emplaced episodically at 
ca. 810-690 Ma, 500-400 Ma, and 370-320 Ma forming 
part of the Cordilleran alkaline province (e.g., Pell, 1994; 
Millonig and Groat, 2013). This is a long (at least 1000 km), 
narrow (~200 km), orogen-parallel belt along the western 
flank of Laurentia (e.g., Okulitch et al., 1981; White, 1982; 
Mäder, 1987; Höy, 1988; Parrish and Scammell, 1988; 
Pell, 1994; Rukhlov and Bell, 2010; Millonig et al., 2012; 
Rukhlov et al., 2018). 

Hosted by the parautochthonous rocks of the western 
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Fig. 1. Carbonatite localities and sampling sites, southeastern British Columbia. Terranes modified from Colpron (2020).

margin of Laurentia, carbonatites and related rocks range from 
intrusive complexes with a paucity of carbonatites (e.g., Trident 
Mountain, Mount Copeland) to carbonatite complexes with a 
paucity of silicate rocks (e.g., Blue River, Frenchman Cap). 
Both the carbonatites and host rocks experienced multiple 
episodes of deformation and metamorphism during Mesozoic 
and Cenozoic accretionary tectonics while outboard terranes 
welded to each other and to Laurentia (Scammell, 1987, 1993; 
Scammell and Brown, 1990; Pell, 1994; Millonig et al., 2013; 
Nelson et al., 2013). Some of these rocks host significant REE 
(e.g., Wicheeda; Dalsin et al., 2015; Trofanenko et al., 2016) and 
Ta-Nb (e.g., Aley; Mäder, 1987; Chakhmouradian et al., 2015; 
and Upper Fir; Chudy, 2013; Kulla and Hardy, 2015; 
Rukhlov et al., 2018).

 
3. Samples

This study contributes to province-wide geochemical re-
analysis, including whole rock radiogenic isotope (Sr-Pb-Nd-
Hf) and trace-element data from igneous rocks. We contribute 

new whole rock data from carbonatites and related alkaline 
rocks (7 localities, total 11 samples, including duplicates), 
and stream-sediment data (9 drainage sites, total 40 samples, 
including duplicates) downstream of known carbonatite or 
related-rock occurrences, or related geochemical anomalies 
(Fig. 1; Rukhlov et al., 2024). Rukhlov et al. (2025) provide 
complete analytical data sets and details of samples and 
methods used in this study. 

3.1. Carbonatites and alkaline rocks 
We sampled outcrops of ca. 500 Ma carbonatites (Felix 

and Little Chicago) in the Blue River area, east-central 
British Columbia (Figs. 2, 3), and both ca. 700 Ma (Ren or 
Ratchford Creek) and ca. 360 Ma (assumed emplacement age 
after Millonig et al., 2012; Three Valley Gap) carbonatites 
of the Monashee complex, southeastern British Columbia 
(e.g., Thompson et al., 2006). Detailed descriptions of the 
carbonatites can be found in Pell (1994), Millonig et al. (2012), 
Millonig and Groat (2013), and Rukhlov et al. (2018). 
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Metamorphosed to amphibolite grade during Mesozoic 
to Cenozoic orogeny, carbonatites in the study area form 
isoclinally folded bodies with transposed layers that are 
rarely more than a few m thick (Fig. 2). These layers display 
diverse fabrics, including coarse-grained, granoblastic to fine-
grained, foliated, and porphyroclastic varieties. Commonly 
heterogeneous on a cm-scale, they are made up of variable 
proportions of calcite, dolomite, fluorapatite, amphiboles, 
olivine, phlogopite, clinopyroxene, magnetite, ilmenite, 
and pyrrhotite (Figs. 4, 5). Accessory minerals include 
chondrodite, pyrite, molybdenite, pyrochlore supergroup, 
ferrocolumbite, fersmite, nyoboaeschynite, zircon, baddeleyite, 
zirconolite, and monazite (Millonig et al., 2012; Chudy, 2013; 
Rukhlov et al., 2018). Metasomatic glimmerites and calcite-
clinopyroxene-amphibole-phlogopite rocks (i.e., fenites) 
mantle intrusive carbonatite bodies hosted by metamorphosed 
pelitic, arenaceous, calcareous, and amphibolitic rocks of 
the Mica Creek assemblage (Neoproterozoic) or Monashee 
complex (Proterozoic to Paleozoic). 

Fig. 2. Tectonically layered, light-toned dolomite-calcite carbonatite 
and dark-toned clinopyroxene-amphibole-phlogopite rock (fenite) 
crosscut by light-toned calcite veins; Little Chicago occurrence, 
Blue River area.

Fig. 3. Recrystallized carbonatite with layered, dark-toned 
porphyroclasts of magnetite and olivine set in a recrystallized 
dolomite-apatite-calcite matrix; Little Chicago occurrence, Blue River 
area.

Ol

Ap

Phl
Dol+Cal

Fig. 4. Photomicrograph of recrystallized dolomite-calcite carbonatite 
in cross-polarized transmitted light with aligned, rounded apatite (Ap), 
fresh olivine (Ol), and phlogopite (Phl) set in a polygonal dolomite-
calcite matrix with minor magnetite and pyrrhotite; Felix carbonatite, 
Blue River area.

AmAp

Phl

Dol+Cal

Fig. 5. Photomicrograph of phlogopite- and amphibole-rich, calcite-
dolomite carbonatite in plane-polarized transmitted light with olive-
brown phlogopite (Phl) and strongly pleochroic, light- to dark-toned 
greenish-grey amphibole (Am) set in recrystallized apatite (Ap)-calcite 
(Cal)-dolomite (Dol) matrix; Ren (Ratchford Creek) carbonatite, 
Frenchman Cap.
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Based on new whole rock lithochemistry (Fig. 6), we have re-
classified Mount Hunter ‘extrusive carbonatite’ in the Monashee 
complex (documented on Fig. 6 in Thompson et al., 2006) 
as marble (Rukhlov et al., 2025). In contrast, a ~1 m thick 
carbonate layer, traced for ~200 m along strike at Boulder 
Mountain in the Monashee complex near Revelstoke is a new 
carbonatite occurrence (Fig. 7). Hosted by grey marble and 
fenitized calc-silicate gneiss of the Monashee complex, the 
carbonatite is made up of coarse-grained dolomite and calcite, 
subordinate apatite, phlogopite, amphibole, and minor ilmenite 
and magnetite, and contains ~10% of fenitized feldspathic 
xenoliths (Fig. 8). Compositionally, the rock is within the range 
of carbonatites elsewhere in British Columbia (Fig. 6). Based 
on whole-rock Sr-Pb-Nd isotopic data discussed below, here 
we adopt an average age of ca. 360 Ma for most carbonatites in 
British Columbia (Millonig et al., 2012).

In addition, three samples of alkali syenite from Mount 
Copeland were retrieved from the BCGS rock archive for 
both whole rock analysis (samples 6550-E-1 and 6550-E-
4) and Re-Os dating of molybdenite (sample 6550-E-3-
2; Rukhlov et al., 2025). The molybdenite represents ore 
mineralization from the past-producing mine (Currie, 1976; 
Höy, 1988; Pell, 1994).

3.2. Drainage geochemical survey 
We sampled modern drainage sediment downstream of 

several known carbonatite and alkaline-rock occurrences and 
related geochemical anomalies in the Blue River and Monashee 
complex areas (Figs. 9-15; Rukhlov et al., 2024). The area 
of the sampled catchment basins varies from ~0.5 km2 to 
~97 km2. Both bulk stream-sediment and panned heavy mineral 
concentrate, sieved <0.18 mm and 0.18 to 1.0 mm fractions 
each, were analyzed for 65 analytes (Rukhlov et al., 2025). 
The lithochemical orientation survey informs the utility of 
indicator-mineral approach applied to archived, provincial 
drainage samples (Rukhlov et al., 2023). Mackay and 
Simandl (2015) and Simandl et al. (2017) developed a direct 
indicator approach based on identifying detrital Nb-Ta and REE 
ore minerals derived from carbonatites in stream sediments 
using an automated mineralogical analysis. However, many 
of these minerals are highly soluble and unlikely to survive 
fluvial transport. In contrast, both zircon and apatite are more 
chemically resistant and physically durable than some of the 
REE ore minerals (e.g., REE-F-carbonates). Thus, we also 
consider an indirect indicator mineral approach that uses 
chemical compositions of common detrital minerals such as 
zircon and apatite, which occur across the range of igneous 
and hydrothermal lithologies, as proxies of source rock type 
(e.g., Belousova et al., 2002; Mao et al., 2016). Below we 
summarize stream-sediment lithochemical results in terms of 
ranked element contrast relative to the average continental 
crust values of Rudnick and Gao (2014).

Felix, Little Chicago, Ren, and Three Valley Gap carbonatites (n = 4)

Mount Copeland syenite (n = 2)

Mount Hunter marble

British Columbia carbonatites (25th to 75th percentile range; n = 599)

British Columbia sedimentary carbonate rocks (25th to 75th percentile range; n = 35)

Ocean island basalts (25th to 75th percentile range; n = 14,398)

Average fresh, mid-ocean ridge basalt
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Fig. 6. Compositions of carbonatites, alkaline rocks, and sedimentary carbonate rocks in British Columbia normalized to the bulk continental 
crust values of Rudnick and Gao (2014); after Rukhlov et al. (2024, 2025). Average mid-ocean ridge basalt (MORB) after Kelemen et al. (2014). 
Compositional range for ocean island basalts (OIB) from GEOROC compilation (DIGIS Team, 2023).
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Fig. 7. Traced outcrop of ~1 m thick carbonatite layer at Boulder 
Mountain, Frenchman Cap complex, south-eastern British Columbia 
(82M/01). Geology after Rice and Jones (1960), Höy and 
Brown (1980), Johnson (1990), Logan (2002), and Cui et al. (2017).

Fig. 8. Calcite-dolomite carbonatite (oxidized brown) with dark-toned 
phlogopite and amphibole and light-toned feldspathic xenoliths in 
fenite layer; Boulder Mountain, southeastern British Columbia.

4. Dispersion of rare earth elements and rare metals in 
modern drainages 

Based on the training of the RGS data using multivariate 
discriminant analysis, Rukhlov et al. (2024) ranked carbonatite-
related geochemical signatures in terms of a ‘carbonatite index’ 
in bulk stream-sediment, <0.18 mm fraction, which is typically 
used in regional drainage geochemical surveys (Lett and 
Rukhlov, 2017). Normalized to continental crust values after 
Rudnick and Gao (2014) and arranged in order of contrast, the 
new stream-sediment data downstream of known carbonatite 
occurrences (Howard Creek, Gum Creek, Mount Cheadle, 
Ren, and Switch Creek) reveal up to two orders of magnitude 
contrast, including up to 3.70 wt% P, 1.61 wt.% ∑REE (i.e., 
La + Ce + Pr + Nd + Sm + Eu + Gd + Tb + Dy + Ho + Er 
+ Tm + Yb + Lu), 0.40 wt.% Nb, 940 ppm Th, 229 ppm U, 
and 190 ppm Ta (Figs. 10-12, 14; Rukhlov et al., 2025). 
The response from the Trident Mountain alkaline complex 
(ca. 359 Ma. Millonig et al., 2012), which hosts both REE and 
rare-metal mineralization (Brown, 2012), is indistinguishable 
from that of carbonatites (Fig. 9). Resampling of high-ranked, 
carbonatite-related drainage anomalies at both Perry River 
and Cranberry Creek (Rukhlov et al., 2024), confirms the 
multi-element carbonatite or related-rock signal from these 
catchment basins, thereby underscoring their prospectivity for 
REE mineralization (Figs. 13, 15).

Because REE, Nb, Ta and other carbonatite indicator elements 
are mainly concentrated in relatively high-density minerals 
such as pyrochlore supergroup, ferrocolumbite, fersmite, 
nyoboaeschynite, Nb-ilmenite, zirconolite, euxenite, allanite, 
monazite, apatite, and REE-F-carbonates (Chudy, 2013; 
Chakhmouradian et al., 2015; Mackay and Simandl, 2015; 
Rukhlov et al., 2018; Gammons et al., 2024), panned heavy 
mineral concentrates invariably show much stronger contrast 
relative to bulk stream sediment and thus is the preferred 
sample medium in REE-Nb prospecting (Rukhlov et al., 2024). 
In contrast, although generally at background levels, Ba, Cs, 
K, and Rb abundances are higher in bulk stream sediment 
relative to heavy mineral concentrates, perhaps reflecting low-
density hosts such as mica and feldspar. Based on compiled 
data from Blue River area (Rukhlov et al., 2024), background 
concentrations of carbonatite pathfinders such as rare metals 
and REE in panned heavy mineral concentrate samples from 
carbonatite-free catchments are generally at the level of those 
in bulk stream-sediment (RGS) samples. Strontium, which 
is typically at least 10 times more abundant in carbonatites 
relative to the crust (Fig. 6), is at background levels in stream 
sediments (Figs. 9-15), which suggests mainly non-mechanical 
dispersion due to readily weathered carbonate hosts (Fig. 8). 
Differences in relative abundances of certain elements between 
the fine (<0.18 mm) and coarse (0.18 to 1.0 mm) fractions 
reflect both the mineralization (i.e. fine- versus coarse-grained) 
and distance of transport in the dispersion stream.
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Fig. 9. a) Sampling site and catchment basin (area=34.21 km2) at Bigmouth Creek, downstream of the Trident Mountain alkaline complex 
(082M/16; Pell et al., 1994). Trident Mountain alkaline complex footprint after Brown (2012). Geology after Wheeler and Fox (1964), 
Logan (2002), and Cui et al. (2017). b) Bulk stream-sediment and panned, heavy mineral concentrate (HMC) data normalized to bulk continental 
crust values of Rudnick and Gao (2014).
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Fig. 10. a) Sampling site and catchment basin (area=3.17 km2) at Switch Creek, downstream of Switch Creek carbonatite, Blue River area 
(83D/06). Carbonatite occurrences after Rukhlov et al. (2018). Geology after Campbell (1968), Simony et al. (1980), Raeside and Simony (1983), 
Pell and Simony (1987), McDonough et al. (1991, 1992), Murphy (2007), and Cui et al. (2017). b) Bulk stream-sediment and panned, heavy 
mineral concentrate (HMC) data normalized to bulk continental crust values of Rudnick and Gao (2014).
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(83D/07). Carbonatite occurrences after Rukhlov et al. (2018). Geology after Campbell (1968), Simony et al. (1980), Raeside and Simony (1983), 
Pell and Simony (1987), McDonough et al. (1991, 1992), Murphy (2007), and Cui et al., (2017). b) Bulk stream-sediment and panned, heavy 
mineral concentrate (HMC) data normalized to bulk continental crust values of Rudnick and Gao (2014).
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5. Re-Os molybdenite model age
Molybdenite occurs sporadically in carbonatites and 

related rocks of the Cordilleran alkaline province, including 
the Mount Copeland historical molybdenum producer, 
and alkali-rich, metasomatic fenites and glimmerites that 
mantle carbonatite bodies (Currie, 1976; White, 1982; 
Höy, 1988; Trofanenko et al., 2016; Rukhlov et al., 2018; 
Gammons et al., 2024). In contrast, carbonatites in typical 
anorogenic settings are generally poor in Mo (average 
12 ppm) and lack molybdenite (Woolley and Kempe, 1989). 
With Mo production from a unique carbonatite-hosted 
deposit at Huanglongpu in central China (Quinling orogenic 
belt), evidence is growing that carbonatite magmatism in 
atypical tectonic settings such as cratonic margins or orogenic 
belts can generate economic Mo deposits (Xu et al., 2010; 
Song et al., 2016).

To constrain the timing of Mo mineralization, we analyzed 
molybdenite from the Mount Copeland alkaline complex for Re-
Os (see Rukhlov et al., 2025 for details). The sample (6550-E-3-
2) represents ore from the past-producing mine (Currie, 1976; 
Höy, 1988; Pell, 1994) and was retrieved from the BCGS 
rock archive. The molybdenite returned a Re-Os model age of 
55.94 ±0.23 (2σ) Ma, broadly consistent with the U-Pb dates 
of 59 ±1 Ma on metamorphic zircons (Okulitch et al., 1981; 
Parrish and Scammell, 1988). The imprecise U-Pb zircon 
date of 740 ±36 Ma, interpreted as crystallization age of the 
host syenite at Mount Copeland (Okulitch et al., 1981; Parrish 
and Scammell, 1988), agrees with more precise LA-ICP-
MS U-Pb zircon dates of 793.5 ±7.6 Ma and 797.5 ±6.5 Ma 
from other alkaline syenites in the Frenchman Cap area 
(Millonig et al., 2012). Therefore, our Re-Os molybdenite 
model age of ca. 56 Ma constrains the Mo mineralization at 
Mount Copeland to coincide with a Paleogene metamorphic 
overprint (Parrish, 1995; Crowley and Parrish, 1999; 
Millonig et al., 2012, 2013). Rukhlov et al. (2018) reported Re-
Os model age of 175.3 ±0.8 (2σ) Ma for coarse (up to 1.7 cm 
long) molybdenite from the Upper Fir carbonatite (ca. 330 Ma) 
in the Blue River area (Fig. 12a). The molybdenite has 
22.75 ±0.07 (2σ) ppm total Re, 14.30 ±0.04 (2σ) ppm 187Re, 
and 41.81 ±0.03 (2σ) ppb 187Os, and lacks common Os 
above blank level. Because replicate analysis of the same 
molybdenite mineral separate yielded a distinct Re-Os model 
age of 198.5 ±0.9 (2σ) Ma, the molybdenite is strongly 
decoupled with respect to Re and Os, suggesting a Jurassic 
metamorphic overprint (Rukhlov et al., 2018), also documented 
by Millonig et al. (2012) in U-Pb zircon results from the Little 
Chicago carbonatite.

6. Trace-element and Sr-Pb-Nd isotopic constraints on the 
source of carbonatite-hosted rare metals

Carbonatite whole rock data provide the link between stream-
sediment data and the sources of mineralization and provide 
information on host rocks and terrane evolution. In addition 
to distinct physical and mineralogical characteristics, which 
can be difficult to recognize in the field, most carbonatites are 

readily distinguished from recrystallized sedimentary carbonate 
rocks by their extremely high concentrations (up to 100 times 
that of the average continental crust) of Ta, Nb, P, Sr, REE, Ba, 
and other elements (Fig. 6; Woolley and Kempe, 1989). Mount 
Copeland alkali syenites show similar levels of Ba, Nb, Ta, Th, 
and U, but much higher Ga, Hf, K, Rb, and Zr, and lower P, 
Sr, and REE abundances relative to the carbonatites (Fig. 6). 
The unusual geochemical characteristics of carbonatites are 
generally attributed to their origin as low-degree partial melts 
of carbonate-bearing mantle below 75 km, or as products of 
immiscible separation or fractional crystallization of parental 
carbonated silicate magmas (see reviews in Bell, 1989; 
Bell et al., 1998; Bell and Rukhlov, 2004; Yaxley et al., 2021; 
Schmidt et al., 2024). Buffered from crustal contamination by 
the extreme Sr and Nd concentrations, 87Sr/86Sr and 143Nd/144Nd 
ratios in carbonatites provide robust insights into the sub-
continental mantle. Below we summarize the new Sr-Pb-Nd 
data and those compiled in Han et al. (2025) from British 
Columbia carbonatites and related rocks in the framework of 
data from globally distributed carbonatites, which span ages 
from ca. 3.0 Ga to the present (Figs. 16-18; Rukhlov et al., 2015 
and references therein).

Initial 87Sr/86Sr (0.703108 to 0.705076) and initial 143Nd/144Nd 
(0.511749 to 0.512433; Rukhlov et al., 2025) are recast as 
εSr(T) and εNd(T) notations, respectively (Fig. 16), which are 
the relative differences in parts per 104 (ε, epsilon) between 
a sample and a reference such as bulk Earth for Sr (DePaolo 
and Wasserburg, 1976; DePaolo, 1988) and chondritic uniform 
reservoir (CHUR) for Nd (Jacobsen and Wasserburg, 1980; 
Hamilton et al., 1983). Isotope development diagrams 
(Fig. 16) in terms of time versus εSr(T) and εNd(T) for ca. 0.80-
0.69 Ga, ca. 0.50 Ga, and ca. 0.37-0.32 Ga carbonatites in 
British Columbia reveal evolution of a heterogeneous, generally 
depleted (i.e. super-chondritic and sub-bulk Earth) mantle 
source consistent with that tapped by carbonatites elsewhere 
for the last 3 billion years (Rukhlov et al., 2015).

Whole-rock initial 206Pb/204Pb (14.07-24.95), initial 
207Pb/204Pb (15.21-15.96), and initial 208Pb/204Pb (36.94-40.51) 
ratios (Rukhlov et al., 2025) partly overlap Pb compositions 
from Cordilleran carbonatites and related rocks and those from 
ca. 0.37 Ga Kola alkaline province (Fig. 17; Rukhlov et al., 2015; 
Han et al., 2025; and references therein). The Pb isotopic 
compositions of whole-rock and mineral fractions (including 
galena) from carbonatites generally record evolution of a lower 
238U/204Pb and higher 232Th/204Pb source than the second-stage 
Pb growth curve of Stacey and Kramers (1975), but more 
radiogenic relative to depleted mantle model using present-day 
206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of Rehkämper and 
Hofmann (1997) (Fig. 17). Whole rock data from Little Chicago 
and Three Valley Gap carbonatites (Rukhlov et al., 2025), 
and some carbonate, apatite, and molybdenite fractions from 
carbonatites of the Blue River and Frenchman Cap areas have 
extremely radiogenic (high) initial Pb isotopic ratios (Fig. 17 
insets; Rukhlov et al., 2018; Han et al., 2025 and references 
therein). In contrast, the whole rock initial 206Pb/204Pb and initial 
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Fig. 12. a) Sampling sites and catchment basins downstream of carbonatites in the Blue River area (083D/06): Mount Cheadle (24ARU-2003b; 
catchment area=1.33 km2), Gum Creek (24ARU-2004; catchment area=25.28 km2), and Upper Fir (24ARU-2005; catchment area=0.52 km2). 
Carbonatite occurrences after Rukhlov et al. (2018). Geology after Campbell (1968), Simony et al. (1980), Raeside and Simony (1983), Pell and 
Simony (1987), McDonough et al. (1991, 1992), Murphy (2007), and Cui et al. (2017). b) Bulk stream-sediment and panned, heavy mineral 
concentrate (HMC) data for 24ARU-2003b, normalized to bulk continental crust values of Rudnick and Gao (2014).
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Fig. 12. Continued. c) Bulk stream-sediment and panned, heavy mineral concentrate (HMC) data for 24ARU-2004, normalized to bulk 
continental crust values of Rudnick and Gao (2014). d) Bulk stream-sediment and panned, heavy mineral concentrate (HMC) data for 24ARU-
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207Pb/204Pb ratios from ca. 740 Ga Mount Copeland are too 
low (Fig. 17a; Rukhlov et al., 2025), probably reflecting U-Pb 
disturbance due to the Paleogene overprint as indicated by the 
ca. 56 Ma Re-Os model age on molybdenite. The disturbed 
U-Pb data from Mount Copeland are excluded from the 
following discussion. On the other hand, the initial 208Pb/204Pb 
ratios from Mount Copeland are consistent with those from 
carbonatites and related rocks in British Columbia (Fig. 17b; 
Han et al., 2025 and references therein). This suggests that the 
Th-Pb was relatively unaffected by the overprint that disturbed 
U-Pb at Mount Copeland.

Çimen et al. (2019) suggested a widespread, extremely 
radiogenic Pb mantle reservoir for the source of carbonatites 
from Blue River, Fen (Norway), Shaxiongdong, and Miaoya 
(China). However, Fen is the only anorogenic example in their 
comparison, and the data are not initial isotopic ratios (Andersen 
and Taylor, 1988). Carbonatites from anorogenic settings lack 

such extremely high initial Pb isotopic compositions (Fig. 17; 
Rukhlov et al., 2015 and references therein). The examples 
from China and British Columbia are metacarbonatites within 
orogenic belts (Chen et al., 2018; Çimen et al., 2018, 2019; 
Rukhlov et al., 2018; Han et al., 2025) and Rukhlov et al. (2018) 
attributed the signatures in Blue River to Pb-loss from U-rich 
pyrochlore, and its concurrent sequestering into co-existing 
minerals such as apatite, carbonates, and molybdenite during 
metamorphism. Data from these minerals define a linear array 
in the initial 206Pb/204Pb vs. initial 207Pb/204Pb diagram (Fig. 17a 
inset; Han et al., 2025), yielding a Pb-Pb isochron date (using 
robust regression) of 324 ±40 Ma (95% confidence) consistent 
with the emplacement ages of most carbonatites in the Blue 
River area (Rukhlov et al., 2018). British Columbia carbonatites 
with the least radiogenic Pb compositions are consistent with 
those from typical anorogenic examples, including Kola 
alkaline province (Fig. 17). 
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Fig. 13. a) Sampling site and catchment basin (area=3.66 km2) at the Regional Geochemical Survey (RGS) rare-metal anomaly 27 
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crust values of Rudnick and Gao (2014).
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Fig. 16. Sr and Nd evolution diagrams for carbonatites and related rocks in British Columbia (including data in Han et al., 2025); the range of 
initial 87Sr/86Sr and initial 143Nd/144Nd values from ca. 0.37 Ga Kola alkaline province (shaded rectangle) after Rukhlov et al. (2015); the range 
of present-day 87Sr/86Sr and 143Nd/144Nd values in mid-ocean ridge and ocean island basalts (open rectangle) after Stracke (2012); grayscale 
heat maps corresponding to the density of the global carbonatite data (n = 589/500) after Rukhlov et al. (2015); ‘FOcus ZOne’ (FOZO) mantle 
component after Hart et al. (1992), Stracke et al. (2005), and Stracke (2012).  a)  Time  (billions of years) versus εSr(T); εSr(T) = [(87Sr/86Srsample/
87Sr/86Srbulk Earth) – 1]∙104, where 87Sr/86Srsample is the initial ratio in the sample and 87Sr/86Srbulk Earth is the ratio in the bulk Earth (solid line; after 
DePaolo and Wasserburg, 1976; DePaolo, 1988) at that time; closed-system, depleted carbonatite source (dashed line) after Rukhlov et al. (2015); 
εSr(T) value  of  131 in whole   rock   eudialyte   syenite   from   Ice   River   (Locock,   1994).   b)   Time   (billions   of   years)   versus εNd(T) =   
(143Nd/144Ndsample/

143Nd/144NdCHUR) – 1]∙104, where 143Nd/144Ndsample is the initial ratio in the sample and 143Nd/144NdCHUR is the ratio in the chondritic 
uniform reservoir (CHUR, solid line; after Jacobsen and Wasserburg, 1980; Hamilton et al., 1983) at that time; depleted mantle model (dashed 
line) after Rehkämper and Hofmann (1997).
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Fig. 17. Pb-Pb isotope correlation diagrams for ca. 0.80 to 0.32 Ga carbonatites and related alkaline rocks in British Columbia (including data in 
Han et al., 2025); grayscale heat maps corresponding to the density of the data from ca. 3 to 0 Ga carbonatites worldwide (n = 282), including the 
ca. 0.37 Ga Kola alkaline province after Rukhlov et al. (2015); Mahalanobis distance at χ2 = 0.99 (ellipse) using robust multivariate estimation 
(Cambell, 1980). a) Initial 206Pb/204Pb versus initial 207Pb/204Pb. b) Initial 206Pb/204Pb versus initial 208Pb/204Pb. Second-stage growth curve (S-K) 
for terrestrial lead isotopic evolution (solid line) after Stacey and Kramers (1975). Depleted mantle evolution (dashed line) assuming initial 
Earth 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios taken from Canyon Diablo troilite values (Tatsumoto et al., 1973), 238U/204Pb = 0.7 at 4.57 Ga 
(after Allègre et al., 1995) and closed-system evolution from 4.43 Ga (Doe and Stacey, 1974; Wood et al., 2008; Maltese and Mezger, 2020) to 
present-day values of Rehkämper and Hofmann (1997). Present-day depleted, mid-ocean ridge mantle (DMM), enriched mantle 1 and 2 (EM-
1 and EM-2), ‘FOcus ZOne’ (FOZO), and high-238U/204Pb or μ (HIMU) mantle components after Hart et al. (1992), Stracke et al. (2005), and 
Stracke (2012). Extremely radiogenic initial 206Pb/204Pb (up to 238.6), 207Pb/204Pb (up to 24.4), and 208Pb/204Pb (up to 114.2) in apatite, carbonate, 
and molybdenite fractions from British Columbia carbonatites (Rukhlov et al., 2018; Han et al., 2025).
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Fig. 18. Sr-Pb-Nd isotope correlation diagrams for ca. 0.80 to 0.32 Ga carbonatites and related alkaline rocks in British Columbia (including 
data in Han et al., 2025); grayscale heat maps corresponding to the density of the data from ca. 3 to 0 Ga carbonatites worldwide (n = 490/224), 
including the ca. 0.37 Ga Kola alkaline province after Rukhlov et al. (2015); Mahalanobis distance at χ2 = 0.99 (ellipse) using robust multivariate 
estimation (Cambell, 1980). a) εSr(T) versus εNd(T); εSr(T) = [(87Sr/86Srsample/

87Sr/86Srbulk Earth) – 1]∙104, where 87Sr/86Srsample is the initial ratio in the 
sample and 87Sr/86Srbulk Earth is the ratio in the bulk Earth (after DePaolo and Wasserburg, 1976; DePaolo, 1988) at that time; εSr(T) value of 131 
in whole rock eudialyte syenite from Ice River (Locock, 1994); εNd(T) = [(143Nd/144Ndsample/

143Nd/144NdCHUR) – 1]∙104, where 143Nd/144Ndsample is 
the initial ratio in the sample and 143Nd/144NdCHUR is the ratio in the chondritic uniform reservoir (CHUR; after Jacobsen and Wasserburg, 1980; 
Hamilton et al., 1983) at that time. b) εSr(T) versus initial 206Pb/204Pb; bulk silicate Earth (BSE) parameters after Allègre and Lewin (1989); 
extremely radiogenic initial 206Pb/204Pb values up to 122 in apatite and carbonate fractions from British Columbia carbonatites (Han et al., 2025). 
Present-day depleted, mid-ocean ridge mantle (DMM), enriched mantle 1 and 2 (EM-1 and EM-2), ‘FOcus ZOne’ (FOZO), and high-238U/204Pb 
or μ (HIMU) mantle components after Hart et al. (1992), Stracke et al. (2005), and Stracke (2012). Depleted mantle evolution model curve after 
Rehkämper and Hofmann (1997).
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In the Sr-Pb-Nd isotopic correlation diagrams (Fig. 18) 
excluding the extremely high initial 206Pb/204Pb values as 
discussed above, the British Columbia carbonatites and related 
rocks partly overlap the data from ca. 0.37 Ga Kola alkaline 
province (Rukhlov et al., 2015) and the oceanic signatures 
(Hart et al., 1992; Stracke et al., 2005; Stracke, 2012). The 
depleted mid-ocean ridge mantle end-member (Fig. 18) 
represents shallow asthenospheric mantle, but it appears to have 
played little, if any, role in the mantle source of carbonatites, 
including the British Columbia examples. Rather, the Sr-Pb-Nd 
data suggest a heterogeneous mantle source with mixing arrays 
involving the ‘FOcus ZOne’ (FOZO) mantle end-member 
(Figs. 16-18) found in hot spots and the plume-related Kola 
alkaline province (ca. 0.37 Ga; for an overview, see Bell and 
Rukhlov, 2004; Rukhlov et al., 2015 and references therein) and 
considered to be relatively primitive and of deep mantle origin 
(Hart et al., 1992; Hauri et al., 1994; Bell and Tilton, 2002; 
Campbell and O’Neill, 2012). Thus, despite protracted 
deformation and upper amphibolite-facies metamorphism, the 
British Columbia examples are isotopically indistinguishable 
from worldwide carbonatites generated by deep-mantle plumes 
(Rukhlov et al., 2018, 2019).

7. Conclusions
Stream-sediment lithochemical orientation downstream 

of known carbonatites and related rocks reveals multi-
element dispersion haloes of REE, Nb, Ta and other indicator 
elements. Panned heavy mineral concentrates (HMC) show 
up to 100 times background (average continental crust) 
contrast and is thus the preferred sample medium for REE 
and rare-metal prospecting. The new Re-Os model age of 
55.94 ±0.23 (2σ) Ma on molybdenite from past-producing 
Mount Copeland molybdenum mine links mineralization 
to Paleogene metamorphic overprint of a body that initially 
crystallized at ca. 740 Ma. The Sr-Pb-Nd isotopic data from 
ca. 800-690 Ma, 500 Ma, and ca. 370-320 Ma carbonatites 
and related rocks in British Columbia follow the trend defined 
by carbonatites worldwide. These rocks record the evolution 
of a primitive mantle source that has behaved as a relatively 
closed-system, at least during the last 3 Ga of Earth history, 
with the present-day, isotopic attributes similar to FOZO that 
may represent the relatively primitive, deep mantle. 
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