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Abstract
Isotopic tracer ratios are powerful tools to map terrane boundaries, evaluate terrane evolution, and establish magmatic sources, and have 

become increasingly important in predictive mineral exploration. As part of province-wide geochemical re-analysis efforts, the British Columbia 
Geological Survey is generating hundreds of new whole rock radiogenic isotope data (Sr-Nd-Hf-Pb) from archived igneous rocks. The first 
iteration of a province-wide radiogenic isotope compilation includes previously published results from 1465 samples and will serve as 
a framework for ongoing analytical work. Isotope development and correlation diagrams (εNd(T), εHf(T), initial 87Sr/86Sr, initial 206Pb/204Pb, 
207Pb/204Pb, 208Pb/204Pb) from the Cordillera provide insights into the evolution of the western margin of Laurentia and the accreted terranes to the 
west. These data highlight the location of terrane boundaries both today and through time, and provide diagnostic evidence of terrane evolution 
and magmatic sources. 
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1. Introduction
Radiogenic isotope systematics (Rb-Sr, Sm-Nd, Lu-Hf,

Th-Pb, and U-Pb) constrain absolute ages of rocks and 
minerals, fingerprint sources of mineralization and host rocks, 
and provide insights into evolution of terrestrial reservoirs 
(e.g., Amelin et al., 1999; Dhuime et al., 2015). In contrast 
to stable isotopes (86Sr, 144Nd, 177Hf, and 204Pb), the relative 
abundances of radiogenic or ‘daughter’ isotopes (87Sr, 143Nd, 
176Hf, 206Pb, 207Pb, and 208Pb) change due to the decay of ‘parent’ 
isotopes (87Rb, 147Sm, 176Lu, 238U, 235U, and 232Th). As such, 
radiogenic isotope ratios represent time-integrated proxies 
of the parent-daughter (Rb/Sr, Sm/Nd, Lu/Hf, Th/Pb, and U/
Pb). In contrast to elemental ratios that reflect partitioning 
of trace elements during magma evolution, closed system 
radiogenic isotopic ratios describe the source of a melt when 
it formed. Therefore, isotopic tracer ratios are powerful tools 
to map terranes and refine terrane history and have become 
increasingly important in predictive mineral exploration. 

Since early application of initial 87Sr/86Sr ratios (e.g., Beddoe-
Stephens and Lambert, 1981; Armstrong, 1988) and 
compilation of galena Pb isotopic data (Godwin et al., 1988), 
numerous studies have reported radiogenic isotopic data from 
the Canadian Cordillera (e.g., Ghosh and Lambert, 1989; 
Mihalynuk et al., 1992; Ghosh, 1995; Smith et al., 1995; Smith and 
Thorkelson, 2002; Sack et al., 2020) and neighbouring crustal 
reservoirs such as the Canadian Shield (Mitchell et al., 2010) 
and Siletz oceanic plateau (Phillips et al., 2017). Hundreds of 
new radiogenic isotopic data are currently being determined 
from historical samples as part of an ongoing province-wide 
project to re-analyze samples stored in the British Columbia 

Geological Survey rock archive using modern methods. As the 
first step in generating a comprehensive modern compilation 
for the entire province, Han et al. (2025) assembled previously 
published whole rock and mineral Sr-Nd-Hf-Pb and galena 
Pb isotopic data to serve as a framework for ongoing re-
analysis work. This first iteration includes currently available 
data from 1465 samples (Fig. 1). Herein we describe how the 
compilation is being constructed and how it can be applied to 
address terrane boundaries and magma sources in the Canadian 
Cordillera. 

2. Construction of the radiogenic isotope database
The BCGS data products are generated as tabular data files,

where each row corresponds to a sample and each column holds 
attribute values (Fig. 2; Han et al., 2020). The data model is the 
basis of metadata capture with the use of in-house dictionary 
guides; the data model is used to produce a simplified data 
product (e.g., Han et al., 2020). Considering the similarities 
between the radiogenic isotope and geochronological data, 
instead of building a separate database, we extended the 
existing database for geochronology (Han et al., 2020) to 
house the compiled radiogenic isotope data. The extension was 
made by adding metadata attributes to the related identities 
without changing any between-identity relationships. We also 
added a new entity: code_geol, to record the names of the 
geologists who collected the samples. This addition allows the 
data model to be consistent with other data models designed 
for rock geochemistry and Regional Geochemical Survey. 
All the metadata are compatible with BC Digital Geology 
(Cui et al., 2017). Storing the geochronology and radiogenic 
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isotope data in the same database saves effort in future data 
management, eliminates duplications, and ensures data updates 
are synchronized. In the data model, measured isotopic ratios are 
captured from the source publication (e.g., Smith et al., 1995), 
whereas calculated values such as 87Rb/86Sr, initial 87Sr/86Sr,, 
εNd(T), are generated on-the-fly if required in the output data 
products. 

3. Methods
3.1. Isotopic ratios

Corrected for mass-fractionation to canonical values of 
stable or invariant isotopic ratios (e.g., 86Sr/88Sr=0.1194, 
146Nd/144Nd=0.7219), radiogenic isotope ratios represent time-
integrated proxies of the parent/daughter ratios such as Rb/Sr, 
Sm/Nd, Lu/Hf, Th/Pb, and U/Pb. In addition to geochronology 
and other metadata of related provincial data sets, the 
radiogenic isotopic compilation captures measured 87Sr/86Sr, 
143Nd/144Nd, 176Hf/177Hf, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb 
ratios (Figs. 2-4), along with their instrumental or within-
run uncertainties, type of sample (i.e., whole-rock or mineral 
fractions), ratio-specific analytical method, laboratory, and 

other details (Han et al., 2025). These metadata are captured 
from original publications.

Laboratory measured radiogenic isotope ratios 
(e.g., 143Nd/144Nd) are typically back-corrected for time since 
formation, e.g., the crystallization age of an igneous intrusion, 
and this represents the initial ratio. Initial 87Sr/86Sr ratios were 
calculated using a decay constant of 87Rb of 1.3968∙10-11 a-1 
(Rotenberg et al., 2012). Initial 143Nd/144Nd ratios were recast 
as εNd(T) notation (Fig. 3), which is the relative difference in 
parts per 104 (epsilon, ε) between a sample and a reference 
such as the chondritic uniform reservoir (CHUR; Jacobsen and 
Wasserburg, 1980; Hamilton et al., 1983). Hence, positive εNd(T) 
values (e.g., in mantle-derived rocks) are referred to as ‘super-
chondritic’ and negative ones such as in continental crust are 
‘sub-chondritic’.    Initial   143Nd/144Nd    ratios    and   εNd(T) 
values were calculated using a decay constant of 147Sm of 
6.539∙10-12 a-1 (Lugmair and Marti, 1978) and the CHUR 
(Jacobsen and Wasserburg, 1980; Hamilton et al., 1983). Initial 
206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb ratios were calculated 
using   decay   constants  of 235U  of  9.8485∙10-10 a-1  and  238U
of  1.55125∙10-10 a-1  (Jaffey   et  al.,  1971)   and   232Th   of 
4.9475∙10-11 a-1 (Le Roux and Glendenin, 1963). 

Fig. 1. Distribution of the radiogenic tracer isotope samples in Han et al. (2025). Terranes modified from Colpron (2020).
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Fig. 3. Initial 143Nd/144Nd values in terms of εNd(T) notations in whole-rock and various mineral fractions (n=1047); εNd(T)=[(143Nd/144Ndsample/
143

Nd/144NdCHUR) – 1]∙104, where 143Nd/144Ndsample is the initial ratio in the sample and 143Nd/144NdCHUR is the ratio in the chondritic uniform reservoir 
(CHUR; after Jacobsen and Wasserburg, 1980; Hamilton et al., 1983) at that time. Terranes as in Figure 1.

3.2. Terrane assignments
Terrane assignments (Figs. 5-8) were derived from geographic 

sample locations (Fig. 1). By this method, samples from post-
accretionary rocks, generally accepted as <175 Ma, were also 
assigned to the older terrane (e.g., Quesnel) that underly the 
sample location. Locally, this is subjective and could change 
with new geological information that could require modification 
of terrane boundaries. As such, this information is not captured 
in the data compilation and users are encouraged to make their 
own decisions from knowledge of the Cordilleran orogen and 
the data itself. 

4. Utility of radiogenic isotope compilation
Isotopic tracer ratios such as 87Sr/86Sr, 143Nd/144Nd, 

176Hf/177Hf, 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb are 
powerful tools to map terranes and refine terrane history 
(e.g., Godwin and Sinclair, 1982; Mitchell et al., 2010; 

Blanchet, 2019; Sack et al., 2020; Ootes et al., 2022; Curtis 
and Thiel, 2021; Dickin, 2023; Jones et al., 2023). These ratios 
have also become increasingly important in predictive mineral 
exploration (e.g., Gulson, 1986; Godwin et al., 1988; Bell and 
Franklin, 1993; Bell and Murton, 1995; Simonetti et al., 1996; 
Hussein et al., 2003; Rukhlov and Ferbey, 2015; 
Rukhlov et al., 2020; Sack et al., 2020; Osei et al., 2021; 
Lu et al., 2022). Below we highlight how the initial compilation 
(Han et al., 2025) can be used to identify terrane boundaries, 
consider terrane evolution, and examine the sources of post-
Triassic magmatism in the Canadian Cordillera.

4.1. Identification of terrane boundaries
The εNd(T) decrease (Fig. 3) and initial 87Sr/86Sr ratios 

increase (Fig. 4) eastward, are attributed to the distance 
from the modern subduction zone, the nature of underlying 
terranes, and the thickness of lithosphere (Armstrong, 1988; 
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Fig. 4. Initial 87Sr/86Sr values in whole-rock and various mineral fractions (n=720). Terrane as in Figure 1.

Ghosh, 1995). The εNd(T) record from Mesoproterozoic to 
Triassic sedimentary rocks indicates at least two distinct 
sources of Archean and Proterozoic crustal residence age 
(Ghosh and Lambert, 1989). Igneous rocks record a change 
from juvenile character (i.e., super-chondritic 143Nd/144Nd and 
low 87Sr/86Sr ratios of <0.7045) during the Late Triassic-Early 
Jurassic to more craton-influenced by the Middle Jurassic 
(i.e., sub-chondritic 143Nd/144Nd and 87Sr/86Sr ratios >0.7041; 
Figs. 3-6). Ghosh (1995) interpreted that eastern Quesnel 
terrane marked the western boundary of the North American 
basement from the Middle Jurassic to Cenozoic (Figs. 3, 4). 
Similarly, Mihalynuk et al. (1992) ruled out North American 
basement for both the Cache Creek and Stikine terranes 
based on Sr isotopic evidence, a finding that was recently 
corroborated by Hf isotopic data in zircon for eastern Stikine 
(e.g., Ootes et al., 2022) and north-central Quesnel terranes 
(Jones et al., 2023).

4.2. Terrane evolution
Isotope development diagrams (time versus εNd(T) and 

initial 87Sr/86Sr; Figs. 5, 6) for igneous rocks from the 
northern Cordillera provide insights into the evolution of the 
western margin of Ancestral North America and the accreted 
terranes to the west (Figs. 1, 3, 4). The isotopic data reveal 
generally juvenile sources for volcanic arcs that are older than 
200 Ma, including the Intermontane and Insular terranes. The 
convergence of the data arrays defined by the Intermontane 
terranes with the depleted (upper) mantle model after 
Rehkämper and Hofmann (1997) is consistent with models 
that suggest a juvenile origin for these terranes as intra-oceanic 
volcanic arcs formed in late Paleozoic to early Mesozoic 
(e.g., Mihalynuk et al., 1992; Smith et al., 1995). Recently 
reported isotopic data on detrital and igneous zircons confirm 
that both the Intermontane and Insular terranes evolved from 
similar sources, formed on ocean floor during the late Paleozoic, 
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extremely radiogenic initial 87Sr/86Sr values up to 0.76961 and low εNd(T) values (i.e., sub-chondritic initial 143Nd/144Nd) to -24.3 in metamorphic 
rocks of the Cassiar batholith (ca. 0.1 Ga) of western Laurentia (Driver et al., 2000). b) Initial 206Pb/204Pb versus εNd(T); n=40; present-day 
206Pb/204Pb value for bulk silicate Earth (BSE) of 18.34 after Allègre and Lewin (1989). 
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Fig. 8. Initial 206Pb/204Pb versus initial 207Pb/204Pb for whole-rock and mineral fractions (N=112) of carbonatites and related alkaline rocks, and 
other igneous rocks, and galena compositions (N=181, outlined by dotted line) attributed to terranes; false-colour heat maps correspond to the 
density of data from global mid-ocean ridge and ocean island basalts (n=4475) after Stracke (2012). Extremely radiogenic initial 206Pb/204Pb 
values up to 238.6 and initial 207Pb/204Pb up to 24.4 in apatite, carbonate, and molybdenite fractions from carbonatites of the Blue River area in 
east-central British Columbia after Rukhlov et al. (2018). Second-stage growth curve (S-K) for terrestrial lead isotopic evolution after Stacey 
and Kramers (1975). Depleted, mid-ocean ridge mantle (DMM), enriched mantle 1 and 2 (EM-1 and EM-2), ‘FOcus ZOne’ (FOZO), and high-
238U/204Pb or μ (HIMU) mantle components after Hart et al. (1992), Stracke et al. (2005), and Stracke (2012).

and evolved separately from Yukon-Tanana terrane and 
western Laurentia (Ootes et al., 2022; Jones et al., 2023). Much 
higher initial 87Sr/86Sr and extremely negative εNd(T) values 
of post-accretionary arcs reflect both terrane obduction over 
Ancestral North America (e.g., Smith et al., 1995) and perhaps 
contributions from subduction-modified upper mantle (Smith 
and Thorkelson, 2002). One of the important implications of 
the isotopic evidence is the lack of North American ancestry 
for some parts currently assigned to Ancestral North America 
(Figs. 3, 4). Such data can lead to new questions and potentially 
refine tectonic models. Below we discuss isotopic compositions 
of young (<200 Ma) igneous rocks from the northern 
Cordillera, because they can be directly compared with the 
oceanic signatures (Hart et al., 1992; Stracke et al., 2005; 
Stracke, 2012).

4.3. Identifying sources of post-Triassic magmatism in the 
Canadian Cordillera

Below we compare radiogenic isotopic data from <200 Ma 
igneous rocks with the mantle reference frame (Figs. 7, 8). 

We recognize that a fully rigorous assessment would exclude 
rocks that might have derived from continental crust, which 
evolved through multistep processes and are thus not directly 
comparable to mid-ocean ridge and ocean island basalts. 
Nonetheless, as a first approximation, we use all igneous rocks 
in the current compilation, limiting the time frame to <200 Ma, 
the age of the oldest preserved oceanic crust. The Sr-Nd-Pb 
isotopic data from <200 Ma igneous rocks partly overlap 
the mid-ocean ridge and ocean island basalts array (Fig. 7; 
Stracke, 2012). Post-accretionary igneous rocks (<175 Ma) 
emplaced into North American basement have values as low 
as εNd(T) -24.3 and extremely high 87Sr/86Sr (up to 0.76961; 
Fig. 7). Whole-rock and mineral fractions Pb, including 
Cordilleran carbonatites (Locock, 1994; Rukhlov et al., 2018; 
Çimen et al., 2019), partly overlap galena Pb compositions 
(Fig. 8). Again, juvenile compositions plot along the mantle 
array defined by the oceanic data (Fig. 8). Galena compositions 
from metallic mineral deposits along the western margin of 
Laurentia plot along or above the second-stage Pb growth 
curve of Stacey and Kramers (1975) (Fig. 8). These have 
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cratonic Pb isotopic signatures, characterized by the higher 
207Pb/204Pb ratios at a given 206Pb/204Pb ratio than those of more 
juvenile compositions. Some data from carbonatites of the Blue 
River area, including molybdenite, have extremely radiogenic 
(high) initial Pb isotopic ratios (Rukhlov et al., 2018). 
Çimen et al. (2019) suggested a widespread, extremely 
radiogenic Pb mantle reservoir for the source of carbonatites 
from Blue River, Fen (Norway), and Shaxiongdong and 
Miaoya (China). However, Fen is the only anorogenic example 
in their comparison, and the data are not initial isotopic 
ratios (Andersen and Taylor, 1988). Global carbonatites from 
anorogenic settings lack such extremely high initial Pb isotopic 
compositions (e.g., Rukhlov et al., 2015). The examples from 
China and Blue River are metacarbonatites in orogenic belts 
(Chudy, 2013; Chen et al., 2018; Çimen et al., 2018) and 
Rukhlov et al. (2018) attributed the signatures in Blue River to 
Pb-loss from U-rich pyrochlore, and its concurrent sequestering 
into co-existing minerals such as apatite, carbonates, and 
molybdenite during metamorphism. 

The depleted mid-ocean ridge mantle end-member (Fig. 8) 
represents shallow asthenospheric mantle, but it appears to 
have played a minimal role in the mantle source of the juvenile 
Cordilleran igneous rocks, including basalts of the Crescent-
Siletz ocean plateau (Phillips et al., 2017). In contrast, the Sr-
Pb-Nd data suggest a heterogeneous mantle source with mixing 
arrays involving the ‘FOcus ZOne’ (FOZO) mantle end-
member (Figs. 7, 8) found in hot spots and considered to be 
relatively primitive and of deep mantle origin (Hart et al., 1992; 
Hauri et al., 1994; Bell and Tilton, 2002; Campbell and 
O’Neill, 2012). 
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