Minister of Mines and Petroleum Resources

PROVINCE OF BRITISH COLUMBIA

ANNUAL REPORT

for the Year Ended December 31

1961

Printed by A. SUTTON, Printer to the Queen's Most Excellent Majesty in right of the Province of British Columbia. 1962

BRITISH COLUMBIA DEPARTMENT OF MINES AND PETROLEUM RESOURCES

VICTORIA, B.C.

HON. W. K. KIERNAN, Minister.

P. J. MULCAHY, Deputy Minister.

J. W. PECK, Chief Inspector of Mines.

S. METCALFE, Chief Analyst and Assayer.

HARTLEY SARGENT, Chief, Mineralogical Branch.

K. B. BLAKEY, Chief Gold Commissioner and Chief Commissioner, Petroleum and Natural Gas.

J. D. LINEHAM, Chief, Petroleum and Natural Gas Conservation Branch.

Major-General the Honourable GEORGE RANDOLPH PEARKES, V.C., P.C., C.B., D.S.O., M.C., Lieutenant-Governor of the Province of British Columbia.

MAY IT PLEASE YOUR HONOUR:

The Annual Report of the Mineral Industry of the Province for the year 1961 is herewith respectfully submitted.

W. K. KIERNAN, Minister of Mines and Petroleum Resources.

Minister of Mines and Petroleum Resources Office, March 31, 1962. Herbert Pearson, mining statistician from 1928 to 1961, died in Victoria on January 15, 1962. He was born in Cheshire, England, in 1896, and served in the Royal Navy from November, 1914, until he was invalided out in 1919. He joined the staff of the Department of Mines in 1921 and became mining statistician in 1928. In 1939 he was transferred to the Bureau of Economics and Statistics and remained the officer responsible for collecting and compiling British Columbia mineral statistics until his retirement on August 31, 1961. He was Acting Director of the Bureau of Economics and Statistics during 1942–43, and thereafter until 1955 was Office Manager.

In his capacity as mining statistician he had frequent contacts with many of the office men in mining companies, and with the staff of the Department of Mines.

From 1915 until hospitalized in 1918, Mr. Pearson served on H.M.S. "Collingwood" in the Atlantic and North Sea areas. That period included the Battle of Jutland. During the 1939 visit of the late King George VI and Queen Elizabeth, Mr. Pearson was presented to His Majesty, who was also on H.M.S. "Collingwood" at the Jutland action.

Mr. Pearson was active in the Canadian Legion, and was president of the Britannia Branch in 1942.

His death came suddenly, only five months after retirement. He is survived by his wife, one son, and four granddaughters.

CONTENTS

	Раде А 9
REVIEW OF THE MINERAL INDUSTRY	A 10
STATISTICS-	
Methods of Computing Production	A 13
Co-operation with Dominion Bureau of Statistics	
Table I.—Mineral Production—Total to Date, Latest Decade, and Latest Year	
Table II.—Total Value of Production, 1836–1961	
Table III.—Quantity and Value of Mineral Products for Years 1952 to 1961	A 18
Table IV (Graph).—Mineral Production Value, 1895–1961	
Table V (Graph).—Principal Lode-metals Production, 1911–1961	A 21
Table VI.—Production of Principal Metals, 1858–1961	A 22
Table VIIA.—Production, 1960 and 1961, and Total to Date, by Mining Divisions—Summary	A 24
Table VIIB.—Production, 1960 and 1961, and Total to Date, by Mining Divisions—Principal Lode Metals	A 26
Table VIIc.—Production, 1960 and 1961, and Total to Date, by Mining Divisions—Miscellaneous Metals	A 28
Table VIID.—Production, 1960 and 1961, and Total to Date, by Mining Divisions—Industrial Minerals	A 32
Table VIIE.—Production, 1960 and 1961, and Total to Date, by Mining Divisions—Structural Materials	A 34
Table VIIIA.—Quantity and Value of Coal per Year to Date	A 36
Table VIIIB.—Quantity and Value of Coal Sold and Used, 1951–61	A 37
Table IX.—Coke and By-products Production for Years 1895 to 1925 and 1926 to 1961	
Table X.—Dividends Paid by Mining Companies, 1897–1961	
Table XI.—Principal Items of Expenditure, Reported for Operations of All Classes	
Table XII.—Average Number Employed in the Mining Industry, 1901– 61	
Table XIII.—Lode-metal Mines—Tonnage, Number of Mines, Net and Gross Value, 1901–61	A 45
Table XIV.—Lode-metal Production in 1961	A 46
Table XV.—Lode-metal Mines Employing an Average of Ten or More Persons during 1961	A 51

- - -

- ----

- --

.

- - -

MINES AND PETROLEUM RESOURCES REPORT, 1961

DEPARTMENTAL WORK	PAG A 51
Administration Branch	
Central Records Offices (Victoria and Vancouver)	
List of Gold Commissioners and Mining Recorders in the Province	
Gold Commissioners' and Mining Recorders' Office Statistics, 1961	
Coal, Petroleum, and Natural Gas	
Analytical and Assay Branch	
Inspection Branch	
Mineralogical Branch	
Petroleum and Natural Gas Branch	
Grub-staking Prospectors	
Mining Roads and Trails	
Museums	
Rock and Mineral Specimens	
Publications	
Maps Showing Mineral Claims, Placer Claims, and Placer-mining Leases	
Joint Offices of the British Columbia Department of Mines and Petro- leum Resources and the Department of Mines and Technical Surveys, Canada	A 69
TOPOGRAPHIC MAPPING AND AIR PHOTOGRAPHY	A 70
DEPARTMENT OF MINES AND TECHNICAL SURVEYS	A 73
Geological Survey of Canada	A 7
Feld Work by the Geological Survey in British Columbia, 1961	
Publications of the Geological Survey	
Mines Branch	
Mineral Resources Division	A 7:
LODE METALS	
REPORTS ON GEOLOGICAL, GEOPHYSICAL, AND GEOCHEMICAL WORK	. 114
PLACER	_ 118
STRUCTURAL MATERIALS AND INDUSTRIAL MINERALS	. 138
Petroleum and Natural Gas	158
INSPECTION OF LODE MINES, PLACER MINES, AND QUARRIES	_ 23
COAL	_ 25
INSPECTION OF ELECTRICAL EQUIPMENT AND INSTALLATIONS	. 27
LODE-METAL DEPOSITS REFERRED TO IN THE 1960 ANNUAL REPORT	_ 28

A 6

CONTENTS

LIST OF ILLUSTRATIONS

Photographs

	PAGE
Kano Inlet, west coast of Graham Island	
Head of Tartu Inlet, west coast of Graham Island	16
Model of Craigmont orebodies, plan view	36
Model of Craigmont orebodies, looking eastward	36
Craigmont Mines Limited, preparation of open pit	44
Huestis Mining Corporation Limited, Skwaam Bay	44
Pillar recovery at Jersey mine, view of set-up	70
Pillar recovery at Jersey mine, drilling-platform	70
Nimpkish Iron Mines Ltd., open-pit operation	99
Noranda Mines Limited, Kennedy Lake Division, open-pit preparation	99
Jade boulders and diamond saw at E. Osterlund ranch, Yalakom River	122
Diamond saw in operation	122
Richfield et al Cape Ball, Graham Island	167
Geological field work in Hecate Strait	167
Gear box in Alicab raise machine after fatal accident at Sunro mine	234

DRAWINGS

1.	Geology of part of Tasu Sound, Moresby Island	12
2.	Geology of Harriet Harbour, Moresby Island	14
3.	Boss Mountain molybdenite showings	22
4.	Copper group, Poison Mountain, simplified geology	23
5.	Simplified geology of the Craigmont mine Facing	33
6.	Properties at Promontory Hills, near Merritt	38
7.	Tintihohtan Lake molybdenite showings	50
8.	Sands Creek molybdenite showings	52
9.	Skwaam Bay lead-zinc showings Facing	53
10.	Nighthawk Gold Mines Ltd., main pit	57
11.	Friday Mines Ltd., Sunrise showings	61
12.	Diamond-drill intersections on the Iron Mike property	92
13.	Nimpkish Iron Mines Ltd., simplified geology of pit	94
14.	Index map of Kennedy Lake-Toquart Bay area	105
15.	Geology of Kennedy Lake magnetite zone Facing	107

-

---- ____

_ _ _

A 8 MINES AND PETROLEUM RESOURCES REPORT, 1961

16.	Index map of southern British Columbia showing main areas of serpentinite	Расе 120
17.	Index map of northern British Columbia showing main areas of serpentinite	125
18.	Main workings on DRD claims, Williams Lake	1 40
19.	Limestone in the Vernon area	145
20.	Petroleum and natural-gas fields, 1961	171
21.	Oil and gas pipe-lines, existing and proposed	173
22.	Average dust counts obtained each year since 1937	244

ANNUAL REPORT OF THE MINISTER OF MINES AND PETROLEUM RESOURCES, 1961

Introduction

A Report of the Minister of Mines of the Province of British Columbia has been published each year from 1874 to 1959. Beginning in 1960, it is the Report of the Minister of Mines and Petroleum Resources.

The Annual Report records the salient facts in the progress of the mineral industry, also much detail about individual operations, including those undertaken in the search for, exploration of, and development of mineral deposits, as well as the actual winning of material from mineral deposits.

The Annual Report of the Minister of Mines and Petroleum Resources now contains introductory sections dealing with Statistics and Departmental Work, followed by sections dealing with Lode Metals; Placer; Structural Materials and Industrial Minerals; Petroleum and Natural Gas; Inspection of Lode Mines, Placer Mines, and Quarries; Coal; and Inspection of Electrical Equipment and Installations at Mines and Quarries, each with its own table of contents. A table listing the properties described, in geographic groupings, precedes the index.

An introductory review of the mineral industry and notes at the first of several of the main sections deal generally with the industry or its principal subdivisions. Notes in the various sections deal briefly with exploration or production operations during the year or describe a property in more complete detail, outlining the history of past work and the geological setting as well as describing the workings and the mineral deposits exposed in them. Some notes deal with areas rather than with a single property.

The work of the branches of the Department is outlined briefly in the section on Departmental Work. This section is followed by notes dealing briefly with the work of other British Columbia or Federal Government services of particular interest to the mineral industry of British Columbia. Information concerning mine operations and some of the activities of the Inspection Branch of the Department of Mines and Petroleum Resources is contained in the section on Inspection of Lode Mines, Placer Mines, and Quarries, early in the section on Coal, and in the section on Inspection of Electrical Equipment and Installations at Mines and Quarries.

The section on Statistics begins with an outline of current and past practice in arriving at quantities and calculating the value of the various products.

Review of the Mineral Industry*

Mineral products of British Columbia had a value of more than \$181,000,000 in 1961, only exceeded by the value of more than \$190,000,000 in 1956. Prices for copper, lead, and zinc were substantially higher in 1956 than in 1961. Greater production of gold, silver, copper, and zinc and materially higher prices for copper, lead, and zinc gave those five metals a combined value for 1956 nearly \$26,000,000 greater than their 1961 value. The 1956 production also included more than \$6,000,000 for tungsten, of which there was no production in 1961. In 1961 greater production of iron, asbestos, sulphur, and natural gas and the addition of nickel, petroleum, and liquid by-products of natural gas went a long way toward making up for the decreases in principal metals, tungsten, and coal.

The 1961 total value, \$181,079,785, compares favourably with the ten-year average, \$167,239,104, and represents a small gain over 1960, \$179,595,802. It should be noted that the 1960 figure includes the value of a considerable quantity of copper concentrates carried forward into that year because a strike affecting the Tacoma smelter prevented their shipment in 1959, and that the 1961 figure excludes the value of a considerable quantity of copper concentrates produced at the Craigmont mine, awaiting shipment on December 31st.

The metals gold, silver, copper, lead, and zinc account for 60.4 per cent of the total value of all products in 1961. Other metals, iron, nickel, and by-products of silver-lead-zinc ores, contributed 10.3 per cent; industrial minerals contributed 8.45 per cent; structural materials, 10.95 per cent; and fuels—coal, 3.6 per cent, and natural gas plus oil plus liquid by-products of natural gas, 6.2 per cent.

The United States dollar was at a discount in Canada in the first half of 1961 but was at a premium in the second half and averaged a premium of about 1.3 cents for the twelve months of 1961. This gave British Columbia producers of the principal metals, prices in Canadian funds that were above quotations in United States funds. The United States price for silver advanced sharply in the last six weeks of 1961. The United States price for copper ranged from 26.3 cents to 30 cents a pound; the average for the year in Canadian funds, 28.288 cents a pound, is lower than the 1960 or the ten-year average prices. United States prices for lead and zinc were relatively stable. Lead was steady at 11 cents a pound until the end of October, then fell, and at the end of 1961 was steady at 10.25 cents a pound. Zinc remained between 11.5 and 12 cents a pound. Converted into Canadian funds, the prices for lead and zinc are lower than in 1960 and well below the tenyear average.

Production of lead in 1961 was greater than for any year since 1943; however, the price was the lowest since 1947, and the value of lead produced has been exceeded in four years of the past decade. Increased output of lead came mainly from Fort Steele and Nelson Mining Divisions and from the fuming of current and reclaimed slags at the Trail smelter. Zinc output was below the ten-year average in both quantity and value. Compared with 1960, the zinc output of Fort Steele, Nelson, and Vancouver Mining Divisions decreased and that of Golden Mining Division increased. Copper increased materially in the Nicola Mining Division, but due mainly to stockpile differences the Nicola gain was less than the losses in other mining divisions.

^{*} By Hartley Sargent.

Gold output declined mainly in Lillooet and Osoyoos Mining Divisions because the Pioneer mine did not produce and the French mine was closed in May, 1961.

Developments of recent years indicate that the increased output of copper and iron now assured or partly in effect will result in a substantially increased value for metals in 1962 and a still greater value in 1963. The developments include bringing the Craigmont mine into production in the autumn of 1961, and provision for bringing the Kennedy Lake, Zeballos, and Jedway iron mines and the Sunro, Coast Copper, and Bethlehem copper mines into production in 1962.

The value of industrial minerals, structural materials, and fuels has increased notably in the last decade; their combined value in 1952 was \$23,509,504 and in 1961 was \$53,102,693. The greatest gain in that period was in industrial minerals, attributable mainly to asbestos and to sulphur. The substantial gain in structural materials is distributed through that group. In the fuels group, coal has declined since 1956, although the 1961 output exceeded that of 1958 and subsequent years. Production of natural gas, liquid by-products of natural gas, and crude petroleum all began during the decade. Since 1959 their combined value has exceeded that of coal, and in 1960 and 1961 the value of natural gas alone exceeded that of coal. The completion late in 1961 of the Western Pacific pipe-line from Taylor on the Peace River to a junction with the Trans-Mountain pipe-line at Kamloops provided for oil and liquid by-products of natural gas from northeastern British Columbia access to refineries serving most of the Province, assuring greatly increased production of oil.

The first commercial production of pig iron in British Columbia began in January, 1961, when the plant of The Consolidated Mining and Smelting Company of Canada, Limited, at Kimberley began producing. The plant operated for most of the year at its rated capacity of 100 tons of pig iron daily. The feed for the new plant is iron residue from part of the iron sulphides separated from the Sullivan ore in the concentrator, and used for making sulphuric acid. The residue is prepared by pelletizing and sintering, and fed to an electric furnace where it is reduced to metallic iron and cast as pig iron. The intention has been announced to expand the plant to produce 300 tons of pig iron a day. Along with this increase will go the doubling of capacity to produce sulphuric acid, and fertilizer made by its use. The production of pig iron does not add materially to the value shown for mineral production, as the credit taken is the value of comparable iron ore less the cost of preparing, the roasting-plant residue, for charging into the electric furnace. The industry thus created is a substantial employer of labour directly, and also provides a market for a substantial quantity of coke breeze from the Crowsnest Pass area and of some dolomite quarried near Bull River.

Developments in lode-mining in recent years have included much activity in the Merritt-Ashcroft area and on Vancouver and Queen Charlotte Islands, including exploration and the preparation of four copper mines and three iron mines for production. By far the greater part of the ore they will produce in the next few years will be mined in open pits. In 1961 the total of ore mined at lode-metal operations amounted to 8,392,161 tons. Of this quantity, more than 3,200,000 tons came from open-pit mines. The proportion from open-pit mines will be substantially greater by the end of 1962, and the total tonnage will also increase. However, it is apparent also that some of the iron mines will develop underground operations. Another change in mining practice is the use of a mixture of ammonium nitrate and fuel oil for blasting, both in underground and open-pit operations. This practice has developed rapidly in a very few years, and the use of conventional explosives has been greatly reduced.

A 12 MINES AND PETROLEUM RESOURCES REPORT, 1961

Exploration for lode-metal deposits was carried on vigorously in many parts of the Province. Exploration for iron was mainly on Vancouver Island, Moresby Island, and near Kitimat in the mainland coastal area. Exploration for copper was mainly in the Princeton-Kamloops area, on Vancouver Island, and in the area extending northwesterly from Portland Canal to the middle section of the Stikine River. It is apparent that large quantities of milling-grade ore exist in the latter area. During the year, milling-grade copper ore from Mount Washington on Vancouver Island, from Quadra Island, and from Pender Harbour have been taken to Britannia for custom milling. Interest in molybdenum continued, and work was done on properties at Boss Mountain, in the Smithers and Alice Arm areas, and in several other localities. The Noranda company is driving a long adit on the Boss Mountain property. Silver-lead-zinc exploration was concentrated mainly in the Kootenays, and included work west of the Columbia River, north of Revelstoke. This latter area has received little attention until the past few years. It may be thought of as a continuation of the belt that has been so productive of silver-lead-zinc ore south of Nelson and in the Kootenay Lake area.

Exploration for petroleum and natural gas was directed toward the Palæozoic rocks of the Fernie basin, the Devonian of the Fort Nelson area, the Mississippian of the Rocky Mountain foothills, the Tertiary and Cretaceous strata of the Nanaimo-Bellingham basin, and the Tertiary of Graham Island.

Seismic surveys in northeastern British Columbia were considerably increased compared with 1960, and a marine seismic survey was made near Point Roberts. Geological mapping was done by nine companies in northeastern British Columbia and two in the Fernie-Flathead area, and one company made an underwater geological survey off the east coast of Graham Island. Exploration in northeastern British Columbia included three structural test-holes.

Exploratory drilling included ninety-two wildcat wells in northeastern British Columbia, two in the Vancouver-Chilliwack area, and one on Graham Island. A further 142 holes were drilled as development or outpost wells, making a total of 237 wells drilled. The exploratory drilling in northeastern British Columbia resulted in three discoveries of oil and twenty-two of natural gas. The oil discoveries were in the Triassic Boundary Lake zone, indicating a southward extension of the Boundary Lake field and in the Triassic Halfway formation north of Beatton River. Discoveries of natural gas in Middle Devonian carbonate rocks were made west of the Clarke Lake field (one), north of the Kotcho Lake field (two), and west of Kotcho Lake (one). Discoveries were also made in the Upper Devonian, and in the Mississippian Rundle group in the Kotcho Lake area, and in the Permian Belloy formation west of Fort St. John. A total of eleven gas discoveries were made in Triassic rocks, six in the Halfway formation and five in the Upper Schooler Creek formation, north of Fort St. John, and four discoveries of gas were made in the Bullhead group, 25 to 50 miles north of Fort St. John.

The number of lode-mineral claims recorded in 1961 was 19,064, 7,316 more than in 1960; the number of certificates of work issued was 16,665, 3,508 more than in 1960.

Revenue to the Government from petroleum and natural gas amounted to \$15,690,202, including rentals, fees, and miscellaneous, \$6,545,301; sale of Crown reserves, \$7,641,891; royalties, \$1,479,193; and miscellaneous fees, \$23,817. Land held for petroleum and natural gas, under permits, leases, licences, and drilling reservations, amounted to 33,925,009 acres.

The average number employed through 1961 in placer, lode, coal, industrialmineral, and structural-material mining was 11,034. Major expenditures by those branches of the industry included: Salaries and wages, \$47,657,250; fuel and electricity, \$8,545,316; process supplies (inclusive of explosives, chemicals, drill-steel lubricants, etc.), \$16,268,411; Federal taxes, \$12,688,742; Provincial taxes, \$2,475,567; municipal and other taxes, \$2,334,795; levies for workmen's compensation (including silicosis), unemployment insurance, and other items, \$2,207,-376. Dividends amounted to \$20,720,239. The lode-mining industry spent \$30,304,050 in freight and treatment charges on ores and concentrates. Returns from some operators in the metal-mining and industrial-mineral sections of the industry indicate that they spent more than \$10,000,000* on roads, new construction, machinery, major repairs, and alterations.

Information supplied by the Canadian Petroleum Association indicates that, exclusive of expenditures for land acquisition and rentals, the petroleum and naturalgas industry spent \$59,400,000 in British Columbia. The number directly employed by fifty-two operating and development companies at December 31st was 824. The expenditure is broken down into: Exploration, \$41,900,000; development drilling, \$11,100,000; capital expenditures, field equipment, secondary recovery, pressuremaintenance projects, etc., \$3,100,000; operation of wells, flow-lines, etc., \$1,400,-000; taxes, royalties, and other expenses, \$1,900,000.

Statistics

The statistics of the mineral industry are collected and compiled and the statistical tables for this Report are prepared by the Bureau of Economics and Statistics, Department of Industrial Development, Trade, and Commerce.

The tabulated statistics are designed to cover mineral production in quantity and value, employment, principal expenditures of the mineral industry, and dividends paid. The data are arranged so as to facilitate comparison of the production records for the various mining divisions, and from year to year (1951, 1958).

In the 1960 Report, Tables I and II were given new forms, Table VIII has been amalgamated with Table VII, and subsequent tables were renumbered.

From time to time, revisions have been made to earlier figures as additional data became available or errors came to light.

METHODS OF COMPUTING PRODUCTION

The tables of statistics recording the mineral production of the Province for each year are compiled from certified returns made by the operators, augmented by some data obtained from the Royal Canadian Mint, from the operators of custom smelters, and from the records of the Petroleum and Natural Gas Branch of the Department of Mines and Petroleum Resources. The values are in Canadian funds. Weights are avoirdupois pounds and tons (2,000 lb.) and troy ounces.

^{*} This does not include expenditures at some of the properties being explored or prepared for production. † In these notes, references such as (1958) are to this section of the Report of the Minister of Mines for the year indicated, where additional information will be found.

METALS

Prior to 1925 the average prices for gold and copper are true average prices, but, as a means of correcting for losses in smelting and refining, the prices of other metals were taken at the following percentages of the year's average price for the metal: Silver, 95 per cent; lead, 90 per cent; and zinc, 85 per cent. For 1925 and subsequent years the value has been calculated using the true average price and the net metal contents, in accordance with the procedures adopted by the Dominion Bureau of Statistics and the Department of Mines and Petroleum Resources.

PLACER GOLD

The value of placer gold in dollars is obtained from returns received annually from the operators (1958). A fineness of $822\frac{1}{2}$ is taken as the average for crude placer gold (p. A 16).

LODE METALS, GROSS AND NET CONTENTS, AND CALCULATED VALUE

The gross contents are compiled from the returns made each year by the producers and for any metal are the total assay contents, obtained by multiplying the assay by the weight of ore, concentrates, or bullion.

The value for each principal metal is calculated by multiplying the quantity (gross for gold, net for silver, copper, lead, and zinc) by the average price for the year. The net contents are calculated by taking a percentage of the gross content: in lead ores and concentrates and zinc concentrates—silver, 98 per cent; lead, 95 per cent; zinc, 85* per cent of the total assay content; and in copper concentrates, 95 per cent of the silver and the total assay content of copper less 10 pounds per ton of concentrates.

Other metals, including by-product metals refined in British Columbia and iron, tin, and tungsten exported as ores and concentrates, are treated similarly, except that quantities and values for several are as reported by shippers for sales in the year. The value of by-product iron ore used in making pig iron at Kimberley has been computed from the value per ton of ore of comparable grade, at the point of export from British Columbia, less the cost of preparing the by-product ore for charging into the pig-iron furnace at Kimberley.

AVERAGE METAL PRICES

The methods of computing prices have varied because of changing conditions (1958). The prices are now arrived at by methods given in footnotes to the table of average prices on page A 16.

FUEL

Coal

All coal produced, including that used in making coke, is shown as primary mine production (1959, tables renumbered in 1960). Washery loss and changes in stocks, year by year, are shown in the table "Collieries of British Columbia, Production and Distribution by Collieries and by Districts" (p. 253).

^{*} For zinc concentrates shipped to foreign smelters the net contents are calculated as the assay content less eight units of zinc per ton of concentrate.

STATISTICS

Natural Gas*

Commercial production of natural gas began in 1954. The production shown in Tables I, III, and VIIA is the total dry and residue gas sold; that is, the quantity delivered to the main transmission-line. The quantity is net after deducting gas used on leases, metering difference, and gas used or lost in the cleaning plant. The gross well output is shown in Table 11, page 202. The quantity is reported as thousands of cubic feet at standard conditions (standard conditions—14.4 pounds per square inch pressure, 60° F. temperature up to and including the year 1960, and thereafter 14.65 pounds per square inch pressure, 60° F. temperature).

Natural-gas Liquid By-products*

This heading covers condensate removed from natural gas in preparation for transmission through the main gas pipe-line. The by-products consist of butane, propane, and natural gasoline.

Petroleum*

Production of petroleum began in 1955, and is shown in Tables I, III, and VIIA. The quantity is "net sales" (see Tables 10 and 17, pp. 200 and 221), reported in barrels (35 imperial gallons=1 barrel).

CO-OPERATION WITH DOMINION BUREAU OF STATISTICS

In the interests of uniformity and to avoid duplication of effort, beginning with the statistics for 1925, the Dominion Bureau of Statistics and the various Provincial Departments have co-operated in the collection and processing of mineral statistics.

Producers of metals, industrial minerals, structural materials, coal, and petroleum and natural gas are requested to submit returns in duplicate on forms prepared for use by the Province and by the Dominion Bureau of Statistics.

So far as possible both organizations follow the same practice in processing the data. The final compilation by the Dominion Bureau is usually published considerably later than the Report of the Minister of Mines and Petroleum Resources for British Columbia. Differences between the figures published by the two organizations arise mainly from the facts that the Dominion Bureau bases its quantities of lode metals on returns made by smelter operators, whereas the British Columbia mining statistician uses the returns covering shipments from individual mines in the same period, and the Dominion Bureau uses average prices for metals considered applicable to the total Canadian production, whereas the British Columbia mining statistician uses prices considered applicable to British Columbia production. Peat, included under the classification of fuel by the Dominion Bureau, has not been regarded as mineral or fuel, and accordingly has not been included in the British Columbia statistics of mineral production.

[•] For petroleum, natural gas, and liquid by-products, production figures are supplied by the Petroleum and Natural Gas Branch of the Department of Mines and Petroleum Resources and are compiled from the monthly disposition report, and Crown royalty statement filed with the Department by the producers.

.

Year	Gold,1 Crude, Oz,	Gold, Fine, Oz.	Silver, Fine, Oz.	Copper, Lb.	Lead. Lb.	Zìnc, Lb.	Coal. Short Ton
	\$	\$	Cents	Cents	Cents	Cents	s
1901	17.00	20.67	56.002 N.Y.	16.11 N.Y.	2,577 N.Y.		2.679
1902			49.55 "	11.70 "	3.66 ,,		
1903	•	••••••	50.78 ,	13.24 "	3.81 "		•••••
1904	••••••	•••••	63.36 ,,	12.82 ,,	3.88 .,		•••••
1905 1906	••••••		51.33 "	15.59 "	4.24 ,,		•
1907			63.45 ,. 62.06	19.28 " 20.00 "	4.81 ,, 4.80 ,,		8.125
1908		••••••	F A AA	10.00	0.70		3.120
1909			48.93 "	13.20 ,,	3.18		
1910			50.812 "	12.738 "	4.00 ,	4.60 E. St. L.	
1911			50.64	12.38 "	3.98	4.90	
1912			57.79 "	16.341 "	4.024	5.90 ,	
1913		······	56.80 ,,	15.27	3.93 ,,	4.80 .,	
1914		••	52.10 ,,	13.60 "	3.50 "	4.40 ,,	
1915			47.20 ,,	17.28 .,	4.17 ,	11.25 ,,	
1916	••••••		62.38 ,,	27.202	6.172 "	10.88	·····
1917		•••	77.35	27.18 ,	7.91 "	7.566	
1918 1919			91.93 " 105.57 "	24.63 " 18.70 "	6.67 " 5.19 "	6.94 6.24	4.464
1920			DE PA	17.45	7 10	0 20 "	
1921	••••••		59.52	12.50	4.09	3.95 ,	
1922			64.14 ,,	13.38 "	5.16 "	4.86 ,,	
1923	*******		61.63 "	14.42 ,,	6.54 "	5.62 ,,	
1924			63.442 ,	13.02 ,,	7.287 "	5.39 ,,	
1925	•••••••		69.065 "	14.042 "	7.848 Lond.	7.892 Lond.	
1926	•••••	•••••	62.107	13.795 "	6.751 "	7.409	
1927		••••••	56.37 "	12.92	5.256	6.194 "	
1928	••••••		58.176 "	14.570 "	4.575	5.493 ,	••••
1929	••••••		52.993	18.107 12.982	5.050 "	5.385 "	
1930 1931			38.154 " 28.700 "	8.116	3.927 " 2.710 "	3.599 ,, 2.554 ,,	4.018
1932	19.30	23.47	28.700 ,, 31.671 ,,	6.380 Lond.	2.113 "	2.554	3.795
1933	23.02	28.60	37.832	7.454	2.391 "	3.210	0.100
1934	28.37	84.50	47.461	7.419	2.436	3.044	
1935	28.94	85.19	64.790 .,	7.795 "	8.133 "	3.099 "	
1936	28.81	85.08	45.127 ,	9.477 "	3.913 ,,	3.315 ,,	
1937	28.77	34.99	44.881 "	13.078 "	5.110 "	4.902 "	
1988	28.93	35.18	43.477 ,	9.972 "	3.344 ,,	3.073 ,	
1939	29.72	86.14	40.488 ,,	10.092 "	3.169 ,,	8.069 ,	
1940	31.66	38.50	38.249 "	10.086 ,,	3.362 ,	3.411	•••••
1941 1942	$31.66 \\ 31.66$	38.50 38.50	38.261 41.166	10.086 ,, 10.086 ,,	3.362 " 3.362 "	3.411 " 3.411 "	•••••
1942	31.66	38.50			0 774	1 1 0 0 0	
1943	31.66	38.50	45.254	11.75	3.704 ,, 4.500 ,,	4.800 ,	
1945	31.66	\$8.50	47.000 ,	12.550 ,,	5.000	6.440 ,,	
1946	30.22	36.75	83.650 ,.	12.80 "	6.750 "	7.810 ,,	4.68
1947	28.78	35.00	72.000	20.39 "	13.670 "	11.280 ,,	5,12
1948	28.78	35.00	75.000 Mont.	22.35 U.S.	18.040 ,	13.930 ,	6.09
1949	29.60	36.00	74.250 U.S.	19.973 "	15.800 U.S.	13.247 U.S.	6.51
1950	31.29	38.05	80.635	23.428 "	14.454 ,,	15.075 "	6.43
1951	80.30	36.85	94.55 ,,	27.70 ,	18.4 "	19.9	6.46
1952	28.18	34.27	83.157 ,	31.079 "	16.121 ,,	15.874	6.94
1953 1954	$28.31 \\ 27.52$	34.42	83.774	30.333 " 29.112 "	13.265 ,, 13.680 ,,	10.675 ,, 10.417 ,,	6.88 7.00
1954	27.52	34.52	82.982 ,	20 074	13.680 ,	10.417 ,, 12.127 ,,	8.74
1956	28.32	34.44	89.373	39.787	15.756 "	13.278 ,,	6.59
1957	27.59	33.55	87.057	26.031 "	14.051	11.175 "	6.76
1958	27.94	33.98	86.448	23.419	11.755 "	10.009 "	7.45
1959	27.61	83.57	87.469 "	27.708 ,	11.670 "	10.978 "	7.93
1960	27.92	33.95	88.633 ,,	28.985 "	11.589 "	12.557 "	6.64
1961	29.24	35.46	93.696 ,,	28.288 ,	11.011 ,,	11.695	6.80

AVERAGE PRICES USED IN VALUING PROVINCIAL PRODUCTION OF GOLD, SILVER, COPPER, LEAD, ZINC, AND COAL

¹ Unrefined placer gold, average price per ounce, is taken as \$17 divided by \$20.67 times the price of an ounce of fine gold. Prices for fine gold are the Canadian Mint buying prices. Prices for other metals are those of the markets indicated, converted into Canadian funds. The abbreviations are: Mont.=Montreal; N.Y.=New York; Lond.=London; E. St. L.=East St. Louis; and U.S.=United States. Prior to 1925 the prices for gold and copper are true average prices, but the prices of other metals were taken at the following percentages of the year's average price for the metal: Silver, 95 per cent; lead, 90 per cent; and zinc 85 per cent; lead, 90 per cent; such zinc 85 per cent; lead, 90 per c

A 16

cent; and zinc, 85 per cent.

TABLE IMINERAL PRODUCTION: TOTAL TO DATE	E. LATEST DECADE. AND LATEST YEAR
--	-----------------------------------

	Total Quantity to Date	Totai Value to Date	Total Quantity, 1952–61	Total Value, 1952–61	Quantity, 1961	Value, 1961
Principal Metals		s		\$		s
Gold-placercrude oz.	5,220,779	96,529,305	75,433	2,119,153	3,416 159,821	99,884 5,667,253 6,908,738 8,965,149 42,313,569
Silver fode fine oz.	15,870,009	460,281,415	2,153,858	73,678,269 69,031,818	7 174 469	5,00/,233 6 009 739
Conner	3.012.370.068	503,240,551	353,901,695	110,890,409	31,692,412	8,965,149
Copper 1b. Lead 1b. Zinc 1b.	431,160,086 3,012,370,068 13,582,977,263	265,076,396 503,240,551 1,025,568,809	3,082,837,362	110,890,409 409,477,253	31,692,412 384,284,524	42,313,569
Zinc lb.	11,453,071,945	956,923,509	75,435 2,153,858 79,491,998 353,901,695 3,082,837,362 4,037,321,654	479,428,074	0011001100	40,570,691
Totals		3,307,619,985		1,144,624,976	***************************************	109,325,484
Miscellaneous Metals						
Antimonylb.	40,760,499	10,474,104	16,209,012	5,827,480 3,692,690	1,331,297 283,363 907,432	469,948 637 ,567 1,451,891
Bismuth Ib.	5,410,349	9,209,919	1,734,298 13,479,206	21,636,076	283,303	1 451 801
Bismuth lb. Cadmiumlb. Chromitetons Cobaltlb,	27,437,159 796	9,209,919 39,410,710 32,295	13,479,200	21,030,010	241,434	1,421,071
Cobalt 15.	1.730	420			A4244.57732 ++ property	
	7,909,076	56,971,285	7,720,764	55,936,557	1,315,188	11,494,260
Magnesiumlb.	204,632	88,184				
Manganese	1,724	32,668 10,409,609	75	250	······	
Magnesiumlb, Manganeselb, Molybdenite (MoS2)lb, Nickellb, Palladiumoz,	4,163,662 52,171	46,198	9.023	9,500 7,579,531	**************************************	
Nickel]b.	10,712,030	7,667,255	10,430,577	7,579,531	4,180,677	3,194,037
PalladiumOz.	749	30,462				
Platinum Oz. Selenium Ib. Tin Ib. Tungsten (WO ₃)Ib.	1,400	134,483	10	844		
Tin 15.	731 13,818,533	10,694,786	7,033,140	5,120,750	1,119,350	727,578
Tungsten (WOs)	16,019,324	38.663.751	12,567,014	35,204,550	*****	
Other		1,389 10,694,786 38,663,751 3,941,542		35,204,550 3.970,605		676,327
Totais		187,809,060		138,928,833		18,651,608
Industrial Minerals						
Arsenious oxide	22,019,420	273,201		ART		
Ashestos tons	230.800	64,863,967	230,800	64,863,967	45,113 17,722	11,129,704 178,316
Ratite Inns	189,860 791	2,363.886	131,018	2,128,341	17,722	178,316
Bentonite tons Diatomite tons Fluorspar tons	1,803	16,858 45,082	476	14,607	214	8.817
Fluorspor tone	35,341	784,964	410	14,007		0,017
Fillizes tong	3,660,654	5,967,386	856,256	2,381,413	53,335	190,500
Granules tons	161,030	2.154.645	856,256 125,913	1,663,453	53,335 17,463 131,000	253,015
Granules tons Gypsum and gypsite tons Hydro-magnesite tons	2,124,372	8,787,802 27,536	1,150,069	3,186,170	131,000	392,000
Iron oxide and ochre. tons	2,253 18,108	155.050		***********************		
Magnesium sulphatetons	13,894	254,352				
Mica lb.	12,822,050	185.818	2,459,300	36,037	250,000	8,025
Natro-alunite tons	522 1,112	9,398	1,112	11,120		
Perlite tons Phosphate rock tons	3,842	11,120 16,894	1,112	11,120	**********	************************
Sodium carbonate	10,492	118,983				
Sulphur tons	4,518,783	47,713,998	2,182,781	25,645,613	242,377	3,207,284
Tale tons	1,805	34,871				
Totals	Mitcher / 2000 No.4000 France / 2000	133,785,811		99,930.721		15,367,661
Structural Materials						
Clay products		43,752,952		18,737,836		2,366,464
rement		106,680,051		59,858,273		7,118,379
Lime and limestone	N. CHEMINKY COMENCIAL DESIGNATION AND A	30,742,637 (28,426,741)		14,837,895		1,864,315
Sand and gravel	·····	101,219,600		16,123,283 67,826,902		7,439,710
Stone		8,621,435		1,389,526		70,300
Stone Not assigned	_	7,010,452				
Totals		326,453,868		178,773,715		19,875,254
Fuels		1		1		
Coal2tons	135,342,692	\$63,108,381	11,124,699	76,985,561	919,142	6,247,594
Natural gas-			, .		-	
To pipe-line M s.c.f. Liquid by-products ³ bbl.	306,191,359	23,689,398 2,379,900	306,191,359	23,689,398	95,967,110	8,818,891
Petroleum crudebbl.	3,801,400 3,697,821	7,077,840	3,801,400 3,697,821	2,379,900	1,287,672 997,260	892,892 1,900,401
Totals	5,077,021	596,255,519		110,132,799	997,200	17.859,778
Grand totals		ו עוכיבביית בני		· 10,132,779		11,003,110

Rubble, riprap, and crushed stone.
 Quantity from 1836 to 1909 is gross thine output and includes material lost in picking and washing. For 1910 and subsequent years the quantity is that sold and used.
 Includes propane, butane, and natural-gasoline shipments.
 Does not include 68,834 tons of peat moss valued at \$3,534,751.

TABLE II.-TOTAL VALUE OF PRODUCTION, 1836-1961

1836-1900	\$153,077,874		1955	\$174.711.086
1901-10	221,928,930		1956	190,067,465
1911-20	331,995,328		1957	172,895,401
1921-30	532,582,031		1958	146,757,699
1931-40	522,040,932		1959	149,501,696
1941-50	941,577,899		1960	179,595,802
1951	176,330,205		1961	181,079,785
1952	171,309,429			
1953	153,188,210		Total	\$4,551,924,243
1954	153,284,471			
		A 17		

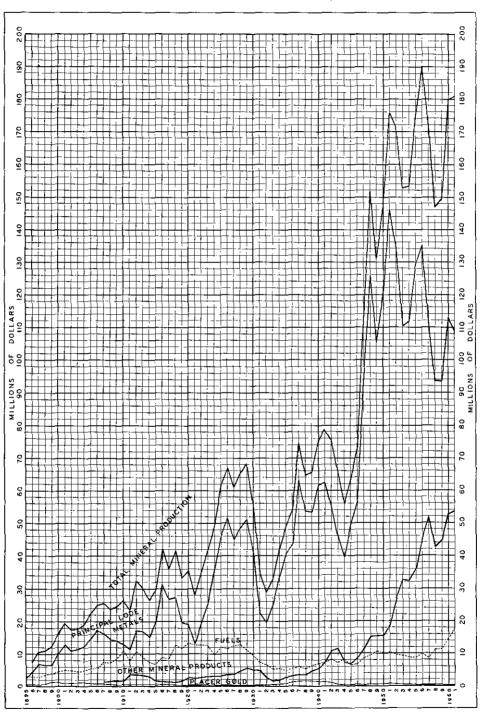
Description		19	52	19	53	1954		1955		1956	
		Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
Principal Metals					s		ė		*		*
		17.554	494,756	14 748		6 504	200 0.07	7000	217,614	3 868	109.450
Gold-placer, crude	0Z.	1/,224	494,750	14,245	403,230	8,684	238,967	7,665	21/,014	3,865	
il lode, fine		251,393	8,615,238	253,553	8,727,294	258,388	8,803,279	242,477	8,370,306	191,743	6,603,628
üver	07.	8,796,720	7,315,088	8,376,953	7,017,709	9,825,153	8,153,108	7,902,145	6,942,113	8,404,600	7,511,443
lopper	16	42.005.512	13.054.893	49,021,013	14,869,544	50,150,087	14.599.693	44,328,031	16,932,549	43.360.575	17,251,872
and the second se	115	284,949,396	45,936,692	297,634,712	39,481,244	332.474,456	45.482,505	302,557,640	45,161,245	283,718.073	44,702,619
And a second		372,871,717	20 100 280	382,300,862				429.198.565	52,048,909		
ínc			59,189,656	362,300,884	40,810,618	334,124,560	34,805,755			443,853,004	58,934,801
Totals			134,606,323		111,309,639		112.083,307		129,672,736		135,113,813
Miscellaneous Metals						1					
Infimony	B.	2.333.239	1,028,025	1.551.043	570,474	1,302,333	382.104	2,021,721	667,776	2,140,432	768,843
lismun	1h	142.246	312.941	71,298	157.569	225,351	493,519	160.767	356,903	156,753	346,424
Cadmium		726,172	1,561,270	787,158	1,550,701	680,734	1,123,211	1,593,591	2,677,233	1,937,927	3,236,338
ndium		404	889	6,752	9,588	477	1,278	104,774	232,389	363,192	795,390
ron concentrates		900,481	5,474,924	991,248	6.763.105	535,746	3,733,891	610,930	3,228,756	369,955	2,190,847
fercury		1	1			l		75	250		
latinom		1	176			A.	408		فالنبغ		[
		1 010 100	250.293	1 000 000	EDIAL	#07 #30	280,437	101 000	711	HEE DA4	637.792
)p		212,113		1,092,228	581,746	587,528		391,228	311,613	756,934	
ungsten (WO ₃)		1,434,640	4,565,024	2,168,977	5,950,323	2,172,163	5,752,172	1,914,000	5,460,967	2,264,775	6,351,376
Totals			13,193,542		15.583.506		11,767,020		12,935,897	1	14.327.010
Industrial Minerals	4		j			4					
sbestos	tons	20	23,000	3,102	988,716	8,599	2,920,751	17,187	4.265.971	20,356	6,620,060
arite	tons	848	13,408	3,560	52,845	5,056	115,337	9,465	238,825	11,436	287,626
liatomite		12	240	}	,		1	14	280	4 0	800
luxes (quartz, limestone)		55.588	141,478	37,358	110,698	39,897	40,804	111.759	208,198	176.311	392.429
			141,470						200,198		173,214
rapules (quartz, limestone, granite)	tous	1,610	21,026	4,620	59,321	4,541	65,507	6,355	73,858	13,220	
ypsum and products	tons	91,112	235,453	172,665	387,655	175,480	421,734	149,719	383,934	72,973	391,919
lica	ib.	314,000	3.001	604,000	11.338	284,000	5,326	505,300	2,861	200,000	1,100
erlite	5:355			1.112	11,129				-,	· · · ·	(
ulphur		182,607	1.745.258	151,954	1,590,055	219,999	2,308,422	216,520	2,624,171	212,885	2,523,190
Totals		104,001	2.182.864	1.11,504	3,211,748		5,877,881		7,798,098		10,390,338
			1 K1102,000		3,211,740				1,170,035		1
Structural Materials				4 000 404		1 700 021		1000 010			[
rick-common	No.	830,815	28,248	1,382,883	51,381	1,289,911	35,550	4,853,940	232,139	2,248,447	75,767
" face, paving, sewer	NO.	2,566,540	121,254	4,307,894	226,459	5,651,262	316,676	3,901,866	248,913	6.913,682	485,176
" firebrick, blocks		B.D., PRVB	435,681		426,783		372,528	*****	578,578		600,753
Jays	tons	11,483	51.797	5,226	31,990	6,609	36,425	8.033	46,757	7,985	30,263
tructural tile, hollow blocks			60.273		123,469		122,903		114,460		129.257
rain-tile, sewer-pipe, flue-linings		······································	468,110		627,097		753,297		801.019		696.385
A GAMMENTO, SUMPROVIDANC, DECOMPANYES		H-CHIPMEN ED	400,110		20,071	· · · · · · · · · · · · · · · · · · ·		1000 1000 to reason and 2005			
ottery-glazed or unglazed			6,536		30,012	19.45.4 100.010	31,081		38,035	·····	38,385
ther clay products			11,296		19,267		32,697		55,514		69,659
ement			3,603,273		5,071,260		4,935,298		5,474,875		6,339,071
ime and limestone	tons	321,710	1.552.772	338,005	1,357,958	317.976	1.555.002	318.152	1.711.348	396.012	1.220,792
ubble, riprap, crushed rock	tone	739,504	982 792	770,415	1,122,516	920,707	1,253,856	890,613	962,272	2,028,143	2,210,315
				110,410	4.388.594	120,100	4.850.469	0205010	4,886,890	40 sugar	8.535.348
and and gravel	······	104 405	3,839,965			n		A	+,000,890	A + + 7 - 7	
900		122,308	434,964	2,611	78,252	3,055	99,392	26,079	148,454	35,266	139,130
Totals		Anha - H Land - A Land Markery	11,596,961		13,555,038		14,395,174		15,299,254	B 41- 474-44	20,570,321
Fuel											
		1 400 047	0 000 000	1 304 130	0 500 040	1 200 004	0 10	1 3 3 4 4 4 4	0.005 -04	1 410 000	0.944.000
[0a1 ⁴		1,402,347	9,729,739	1,384,138	9,528,279	1,308,284	9,154,544	1,332,874	8,986,501	1,417,209	9,346,518
latural gas	_M s.c.f.		A	**************************************	¥4	60,883	6,545	168,651	18,130	187,846	20,145
etroleum, crude	bbi.							582	480	148,454	299.322
		h.h					9,161,089		9,005,111		A Real Property and the second s
Totals		······································			· · · · · · · · · · · · · · · · · · ·			······································			9,665,983
Provincial totals					153,188,210		153,284,471		174,711.086		190.067.465

TABLE III.-QUANTITY AND VALUE OF MINERAL PRODUCTS FOR YEARS 1952 TO 1961

ł

	19	57	19	58	19	59	19	60	1961	
Description	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value
Principal Metals		\$		5		5		5		s
Gold-placer, crude02. Jode, fine02.	2,936	80,990	5,650	157,871	7,370	208,973	3,847	107,418	3,416	\$99,884
u lode, fine Oz.	223,403	7,495,170	194,354	6,604,149	173,146 6,197,159	5,812,511	205,580	6,979,441	159,821	5.667.253
bilver	8,129,047	7,076,904	7,040,416	6,086,299	6,197,159	5,420,593	7,446,237	6,599,823	7,373,568	6,908,738
.opper	1 31,38,441	8,170,465	12,658,649	2,964,529	16,233,546	4,497,991	33,064,429	9,583,724	31,692,412	8,965,149
.eadlb,	281,603,346	39,568,086	294,573,159	34,627,075	287,423,357	33,542,306	333,608,699	38,661,912	384,284,524	42,313,56
Linelb.	449,276,797	50,206,681	432,002,790	43,234,839	402,342,850	44,169,198	403,399,319	50,656,726	387,951,190	45,370,89
Totals		112,598,296	#1990-0	93,674,762	Newscam a descurrent title too a 1990	93,651,572	<u></u>	112,589,044		109,325,484
Miscellaneous Metals		ł		ł		ļ				
Antimony Ib.	1,360,731	577,344	858,633	284,208	1,657,797	540,276	1,651,786	538,482	1,331,297	469,94
Bismuth Ib.	145.634	314,569	154,034	308,068	181,843	345,502	213,009	419,628	283,363	637,56
LadmiumIb.	1,946,397	3,172,627	1,425,108	2,166,164	1,695,821	2,170,651	1,778,866	2,525,990	907,432	1,451,89
ndiumOz.	384,360	693,770	75,434	117,677		H				
ron concentratestons	357,342	2,200,637	630,271	4,193,442	849,248	6,363,848	1,160,355	10,292,847	1,315,188	11,494,26
lolybdenite (MoS2) 1b.	L		1,408,490	996,507	1,061,532	743,072	9,023 3,779,878	9,500 2,645,915	4,180,677	3,194.03
latinomoz.	709,102	555,936	4 795,496	260 625,260	747,443	627,852	621,718	522,243	1,119,350	
in1b. fungsten (WO3)1b.		5,240,479	690.976	1,884,209	t va a freedo	04/1032	021,110	J.4.2.4.4.5	1,119,550	727,57
Where	1,721,402		0.0,0,0	2,001,207	·····	632,933		760.364		676.32
Totals		12.755,362		10,575,795		1 11,424,134		17,714,969	1	18,651.60
LOCALS		1 14,779,000		1 10,010,10,100		1		47274792932	<u> </u>	10,001,00
industrial Minerals tons	31.714	9,245,800	30,078	8,203,384	33,883	9,742,504	40,748	11,724,077		11 100 54
arite tons	20,072	433,200	16,144	341,700	23,142	187,368	23,573	279,716	45,113	11,129,70
Hatomite	120	2,400	27	540	5	100	44	1.430	214	8,81
luxes (quartz, limestone) tons	137.433	442,204	90,635	311.630*	70.57Ö	248.913	83,370	294,559	53.335	190.50
tranules (quartz limestone, gradite)tons	17,295	221,864	22,674	284,330	19.072	254,251	19,063	257 067	17,463	253,01
Gypsum and products tons	66,499	142.751	70,498	211,494	112,223	282,030	107,900	337,200	131,000	392.00
fica	180,000	1,200					122,000	3.186	250,000	8.02
ulphur	228,882	2,887,465	211,300	2,410,395	251,552	3,253,677	264,765	3,095,696	242.377	3,207.28
Totals		13,376,884		11,763,473		13,968,843		15,992,931		15,367,66
Structural Materials										
rick-commonNo.	663,828	24,345	427.550	15,125	385,810	11.954	2,262,653	187,673	744 432	14.80
loca noving segur No	4 660 231	345,081	4,871,562	344.133	5,412,822	428,100	1,775,591	145,091	244,532 3,728,779	326.34
, firebrick, blocks		658,873		405,485 12,579		538,566		621,865		584,96
lays toos	3,849	29,495	4,105	12,579	6,250	17,001	8,003	22.671	7,908	28,39
tructural tile, hollow blocks		200,216		122,877		149,383		83,842		45.75
rain-tile, sewer-pipe, flue-linings		697,611		639,173	Au	680,702		616,858		686,99
ottery-glazed or unglazed		47,612		68,387		46,902		48,825		11,89
ther clay products		38,868		32,416	******	80,910		346,883		667,30
ement		7,078,108	0.00.0.00	6,755,619	210 E00	7,049,638	ECE DIE	6,432,752	·	7,118.37
ime and limestone 1008	334,303 2,364,301	1,494,578 4,272,768	269,747	997,819	519,580	1,481,292	565,945	1,602,019	758,882	1,864,31
ubble, riprap, crushed rock tons	2,304,301	10.503.274	1,866,950	8,442,676	1,169,854	7,342,698	1,148,305	1,075,373 7,597,278	1,539,640	1,016.08
and and gravelions	2,403	236,110	2,141	64,335	13,710	69,710	4,328	48,859	5,400	7,439,71
Totals	2,700	25.626.939	2, 3. 7 X	19,999,576	23,710	19.025.209		18,829,989	3,400	19,875,25
					**************************************]			1
Fuels tops	1,085,657	7,340,339	796,413	5.937.860	690.011	5,472,064	788.658	5 242 222	919,142	6,247,59
tons tons to pipe-line Ms.c.f.	7 126 346	433,830	58.039.491	1 3,727,000	K4 475 K22	3,921,583	80,115,399	5,242,223 7,101,949	95,967,110	8,818,89
Jahmal aar liquid barraductes hit	7,126,346 27,964	425,050	489,458	3,368,327 428,297	64,525,633 816,905	465,063	1,179,401	593,648	1,287,672	892,89
Vatural gas liquid by-products ³ bbl. etroleum, crudebbl.	345,320	763,751	506,414	1,009,609	861,165	1,573,228	838,626	1,531,049	997,260	1,900,40
USE WRITERING IN STREET		8.537.920		10,744,093		11,431,938		14,468,869	771,200	17,859,77
				1 111 144 1144		1 1 4 4 1 9 4 8		1 1 14.4005.7054		1 12.7079.11
Totals Provincial totals		172.895.401	And the second second	146,757.699		149,501,696		179,595,802		181.079.78

⁴ The quantity of coal is that sold and used.


* Includes 32 tops of fluorspar mined in 1958.

58. * Butane, propane, natural gasoline.

STATISTICS

1

<u> 1</u>9

TABLE IV.—MINERAL PRODUCTION VALUE, 1895-1961

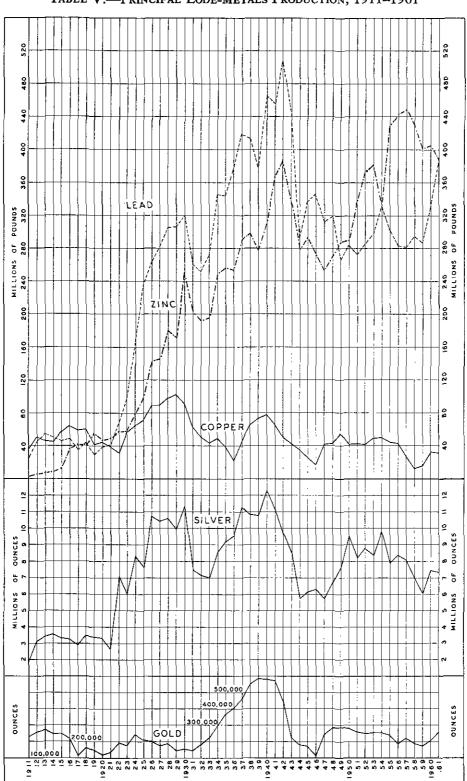


TABLE V.—PRINCIPAL LODE-METALS PRODUCTION, 1911-1961

Year				old	Silve		Copr		Lead	-	Zinca		Total
/	Quantity ¹	Value	Quantity ²	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Value
	Oz.	\$	Oz.	\$	Oz.	\$	Lb.	\$	Lb.	\$	Lb.	\$	\$
58-86, inclusive	3,105,775	52,798,364											52,798,364
87	40,810	693,709			17,690	17,331			204,800	9,216			720,256
	36,280	616.731		}	79,780	75,000			674,500	29,813	·		721,544
89	34,640	588,923			53,192	47,873			165,100	6,498			643,294
90 00	29,080	494,436			70,427	73,948			,	-,		[568,384
91	25,280	429,811			4,500	4,000							433,811
92	23,500	399,526			77,160	66,935			808,420	33,064			499,525
93	20,950	356,131	1,170	23,404	227,000	195,000			2,135,023	78,996			653,531
94	23,850	405,516	6,252	125,014	746,379	470,219	324,680	16,234	5,662,523	169,875			1,186,858
95	28,330	481,683	39,270	785,400	1,496,522	977,229	952,840	47,642	16,475,464	532,255			2,824,209
96	32,000	544,026	62,259	1,244,180	3,135,343	2,100,689	3,818,556	190,926	24,199,977	721,384		1	4,801,205
97	30,210	513,520	106,141	2,122,820	5,472,971		5,325,180	266,258	38,841,135	1,390,517			7,565,951
98	37,840	643,346	110,061	2,201,217		3,272,836	7,271,678						7,172,766
99	79,110		138,315	2,857,573	4,292,401	2,375,841	7,722,591	874,781	31,693,559	1,077,581 878,870		··	8,096,504
00		1,344,900				1,663,708		1,351,453	21,862,436				11,348,481
	75,220 57,060	1,278,724	167,153 210,384	3,453,381	3,958,175	2,309,200	9,997,080	1,615,289	63,358,621	2,691,887			
01		970,100		4,348,605	4,396,447	2,462,008	27,603,746	4,446,963	51,582,906	2,010,260			14,237,936
02	63,130	1,073,140	236,491	4,888,269	3,917,917	1,941,328	29,636,057	3,446,673	22,536,381	824,832			12,174,242
03	62,380	1,060,420	232,831	4,812,616	2,996,204	1,521,472	34,359,921	4,547,535	18,089,283	689,744			12,631,787
04	65,610	1,115,300	222,042	4,589,608	3,222,481	1,719,516	35,710,128	4,578,037	36,646,244	1,421,874	/		13,424,335
05	57,020	969,300	238,660	4,933,102	3,439,417	1,971,818	37,692,251	5,876,222	56,580,703	2,399,022		139,200	16,288,664
06	55,790	948,400	224,027	4,630,639	2,990,262	1,897,320	42,990,488	8,288,565	52,408,217	2,667,578		17,100	18,449,602
07	48,710	828,000	196,179	4,055,020	2,745,448	1,703,825	40,832,720	8,166,544	47,738,703	2,291,458		46,100	17,090,947
	38,060	647,000	255,582	5,282,880	2,631,389	1,321,483	47,274,614	6,240,249	43,195,733	1,632,799		99,296	15,223,707
09	28,060	477,000	238,224	4,924,090	2,532,742	1,239,270	45,597,245	5,918,522	44,396,346	1,709,259	8,500,000	400,000	14,668,141
10	31,760	540,000	267,701	5,533,380	2,450,241	1,245,016	38,243,934]	4,871,512	34,658,746	1,386,350	4,184,192	192,473	13,768,731
11	25,060	426,000	228,617	4,725,513	1,892,364	958,293	36,927,656	4,571,644	26,872,397	1,069,521	2,634,544	129,092	11,880,063
12	32,680	555,500	257,496	5,322,442	3,132,108	1,810,045	51,456,537	8,408,513	44,871,454	1,805,627	5,358,280	316,139	18,218,266
13	30,000	510,000	272,254	5,627,490	3,465,856	1,968,606	46,460,305	7,094,489	55,364,677	2,175,832	6,758,768	324,421	17,700,838
14	33,240	565,000	247,170	5,109,004	3,602,180	1,876,736	45,009,699	6,121,319	50,625,048	1,771,877	7,866,467	346,125	15,790,061
15	45,290	770,000	250,021	5,167,934	3,366,506	1,588,991	56,918,405	9,835,500	46,503,590	1,939,200	12,982,440	1,460,524	20,762,149
16	34,150	580,500	221,932	4,587,334	3,301,923	2,059,739	65,379,364	17,784,494	48,727,516	3,007,462	37,168,980	4,043,985	32,063,514
17	29,180	496,000		2,367,190	2,929,216	2,265,749	59,007,565	16,038,256	37,307,465	2,951,020	41,848,513	3,166,259	27,284,474
18	18,820	320,000		3,403,812	3,498,172	3,215,870	61,483,754	15,143,449	43,899,661	2,928,107	41,772,916	2,899,040	27,910,278
19	16,850	286,500		3,150,645	3,403,119	3,592,673	42,459,339	7,939,896	29,475,968	1,526,855	56,737,651	3,540,429	20,036,998
20	13,040	221,600	120,048	2,481,392	3,377,849	3,235,980	44,887,676	7,832,899	39,331,218	2,816,115	47,208,268	3,077,979	19,665,965
21	13,720	233,200		2,481,392	2,673,389	1,591,201	39,036,993	4,879,624	41,402,288	1,693,354	49,419,372	1,952,065	13,153,598
22	21,690	368,800	197,855	4,089,684	7,101,311	4,554,781	32,359,896	4,329,754	67,447,985	3,480,316	57,146,548	2,777,322	19,600,657
23	21,690	420,000		4,089,084 3,704,994	6,032,986	4,554,781	57,720,290	8,323,266	96,663,152	6,321,770	58,343,462	3,278,903	25,767,062

TABLE VI.--PRODUCTION OF PRINCIPAL METALS, 1858-1961

۶ 22

	1	r — 1				1	· · · · · ·						
	Oz.	5	Oz,	\$	Oz.	\$	Lb.	\$	Lb.	\$	Lb.	\$	\$
1924	24,750	420,750	247,716	5,120,535	8,341,768	5,292,184	64,845,393	8,442,870	170,384,481	12,415,917	79,130,970	4,266,741	35,958,997
1925			209,719	4.335.269	7.654.844	5,286,818	72,306,432	10,153,269	237,899,199	18,670,329	98,257,099	7,754,450	46,480,227
1926		355,503	201,427	4,163,859	10,748,556	6,675,606	89,339,768	12,324,421	263,023,937	17,757,535	142,876,947	10,586,610	51,863,534
1927	9,191	156,247	178,001	3,679,601	10,470,185	5.902,043	89,202,871	11,525,011	282,996,423	14,874,292	145,225,443	8,996,135	45,133,329
1928 1929	8,284	143,208	188,087	3,888,097	10,627,167	6,182,461	97,908,316	14.265.242	305,140,792	13,961,412	181,763,147	9,984,613	48,425,033
1929	6,983	118,711	145,387	3,005,411	9,960,172	5,278,194	102,793,669	18,612,850	307,999,153	15,555,189	172,096,841	9.268,792	51.839.147
1930	8,955	152,235	160,853	3,325,126	11,328,263	4,322,185	92,362,240	11,990,466	321,803,725	12,638,198	250,479,310	9,017,005	41,445,215
1931	17.176	291,992	146,133	3.020.837	7,550,331	2,254,979	64,134,746	5,365,690	261,902,236	7,097,812	202,071,702	5,160,911	23, 192, 221
1932	20,400		181,651	4,263,349	7,150,655	2,264,729	50,608,036	3,228,892	252,007,574	5,326,432	192,120,091	4,621,641	20,100,585
1933	23.928	562,787	223,589		7,021,754	2,656,526	43,149,460	3,216,701	271,689,217	6,497,719	195,963,751	6,291,416	25,619,794
1934		714,431	297,216		8,613,977	4,088,280	49,651,733	3,683,662	347,366,967	8,461,859	249,152,403	7,584,199	34,786,383
1935	30,929	895,058	365,343		9,269,944	6,005,996	39,428,208	3,073,428	344,268,444	10,785,930	256,239,446	7.940.860	41,557,691
1936	43.389		404,578		9,547,124	4.308,330	21,671,711	2,053,828	377,971,618	14,790,029	254,581,393	8,439,373	45,013,867
1937	54,153		460,781		11,308,685	5.075.451	46.057.584	6.023,411	419,118,371	21,416,949	291,192,278	14.274.245	64,471,028
1938	57,759		557.522		10,861,578	4,722,288	65,769,906	6,558,575	412,979,182	13,810,024	298,497,295	9,172,822	55,548,348
1939	49.746			21.226.957	10,821,393	4,381,365	73,254,679	7,392,862	378,743,763	12,002,390	278,409,102	8,544,375	55,026,441
1940	39,067			22,461,516	12,327,944	4,715,315	77,980,223	7,865,085	466,849,112	15.695.467	312,020,671	10,643,025	62,617,336
1941			571,026		12,175,700	4,658,545	66,435,583	6,700,693	456,840,454	15,358,976	367,869,579	12,548,031	62,636,708
1942		1,041,772	444,518	17,113,943	9,677,881	4,080,775	50,097,716	5,052,856	507,199,704	17,052,054	387,236,469	13,208,636	57,550,036
1943	14,600		224,403	8,639,516	8,526,310	3,858,496	42,307,510	4,971,132	439,155,635	16,485,902	336,150,455	13,446,018	47,863,334
1944	11.433	361,977	186,632	7,185,332	5,705,334	2,453,293	36,300,589	4,356,070	292,922,888	13,181,530	278,063,373	11,956,725	39,494,927
1945 1946 1947	12,589	398.591	175,373	6,751,860	6,157,307	2,893,934	25,852,366	3,244,472	336,976,468	16,848,823	294,791,635	18,984,581	49.122.261
1946	15,729	475,361	117,612	4,322,241	6,365,761	5.324.959	17,500,538	2.240.070	345,862,680	23,345,731	274,269,956	21,420,484	57,128,846
1947	6,969	200,585	243,282	8,514,870	5,707,691	4,109,538	41,783,921	8,519,741	313,733,089	42,887,313	253,006,168	28,412,593	92,644,640
1948	20,332	585,200	286,230	10,018,050	6,718,122	5,038,592	43,025,388	9,616,174	320,037,525	57,734,770	270,310,195	37,654,210	120,646,996
1949	17,886	529,524	288,396		7,636,053	5,669,769	54.856.808	10,956,550	265,378,899	41,929,866	288,188,620	38,176,346	107,644,311
1950	19,134	598,717	283,983		9,507,225	7,666,151	42,212,133	9,889,458	284,024,522	41,052,905	290,344,227	43,769,392	113,782,176
1951	23,691	717,911	261,274	9,627,947	8,215,884	7,768,118	43,249,658	11,980,155	273,456,604	50,316,015	337,511,324	67.164.754	147,574,900
1952	17,554	494,756	251,393	8,615,238	8,796,720	7,315,088	42,005,512		284,949,396	45,936,692	372,871,717	59,189,656	134,606,323
1953	14,245	403,230	253,553	8,727,294	8,376,953	7,017,709	49,021,013	14,869,344	297,634,712)	39,481,244	382,300,862	40,810,618	111,309,639
1954	8,684	238,967	258,388	8,803,279	9,825,153	8,153,108	50,150,087	14,599,693	332,474,456	45,482,505	334,124,560		112,083,307
1955	7.666	217,614	242,477	8,370,306	7,902,145	6,942,113	44,238,031	16,932,549	302,567,640	45,161,245	429,198,565	52,048,909	129,672,736
1956	3.865	109,450	191,743	6,603,628	8,404,600	7,511,443	43,360,575	17,251,872	283,718,073	44,702,619	443,853,004	58,934,801	135,113,813
1957	2,936		223,403	7,495,170	8,129,047	7,076,904	31,387,441	8,170,465	281,603,346	39,568,086	449,276,797	50,206,681	112,598,296
1958			194,354	6,604,149	7,040,416	6,086,299	12,658,649	2,964,529	294,573,159	34,627,075	432,002,790	43,234,839	93,674,762
1959	7,570	208,973	173,146	5,812,511	6,197,159	5,420,593	16,233,546	4,497,991	287,423,357	33,542,306	402,342,850	44,169,198	93.651.572
1960			205,580		7,446,237	6,599,823	33,064,429	9,583,724		38,661,912	403,399,319	50,656,726	112,589,044
1961	3,416		159,821	5,667,253	7,373,568	6,908,738	31,692,412	8,965,149	384,284,524	42,313,569	387,951,190	45,370,891	
		96,529,305			431.160.086	265.076.396	3,012,370,068				11,453,071,945		
10(415	0,020,119	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	10,010,009	100,401,410		,010,070	2,-14,0,0,000	555,270,551	لالالكواء وموطون فبوخد	1,0-0,000,000	**************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5,507,012,765

¹ Ounces of crude gold. ² Ounces of fine gold.

Conces of line gold.
 Revisions have been made in 1958 to some yearly totals for lead and zinc to bring them into agreement with the best records of recoveries of lead and zinc from slags treated at the Trail smelter.
 For 1905-08, inclusive, records show shipments of a combined total of 18,847 tops of zinc ore and zinc concentrates of unstated zinc content.

`⊳ 23

STATISTICS

Division	Period	Place	r Gold	Principal	Miscella-	Industrial	Structural
Division	Ferioa	Quantity ¹	Value	Lode Metals	neous Metals	Minerals	Materials
Alberni	1960	Oz.	\$	\$ 511	\$	\$	\$ 84,361
	1961 Te date	4 1,617		5,095			85.676
Atlin	1960	1,959	54,700	1,156			22,481
	1961 To date	2,271	66,404 17,344,720	37,483,344	562,122	20,325	16,050 291,719
Cariboo	1960	1,634	45,625	666,212		4,616	785,135
	1961 To date	645 2 602 922	18,860 53,944,751	720,827 39,626,641		16,842 188,262	
Clinton	1960		(
	1961 To date	48		847,454	900	162.427	
Fort Steele	1960	1 6	168	59,647,970	522,243	643,145	249,941
	1961 To date	20,487		56,145,948 1,601,2 32 ,180	837,578 10,896,793	610,950 5,542,597	249,246 4,908,614
Golden	1960			3,098,048	43,181	616,916	81,596
	1961 To date	469		3,557,809 44,801,748	59,539 526,647	570,316 4,512,896	114,986 1,592,211
Greenwood	1960	1		3,842,662	8,823		36,885
	1961 To date	18 5,074		3,592,712 124,701,692	8,822 97,236	2,323,897	33,876 839,320
Kamloops	1960	5	139		35,968		495,977
	1961 To date	27,556	29 603,620	3.044.836	101,646	6,528,308	637,651 8,569,889
Liard	1960			·····		12,306,732	203,145
	1961 To date	50,154		6,312	79	12,223,362 67,189,218	
Lillooet	1960	30	838	4,815,524			140,967
	1961 To date	91,891		3,787,608 126,694,031		5.129	132,255 1,455,157
Nanaimo	1960	1		624,206	10,256,879		1,555,579
	1961 To date	866	19,300	577,450 7,796,247	11,384,260 56,757,509	19,445 745,783	1,907,459
Nelson	1960			12,419,532	712,603		106,553
	1961 To date	3,585		15,505,864 180,283,288	909,050 41,428,922	64,126	183,675 2,932.999
New Westminster	1960	11	307	392,131	2,645,915	120,441	4,716,804
	1961 To date	11,608		417,194 1,285,293	3,194,037 7,667,255	114,437 787,371	5,086,910 69,582,745
Nicola	1960			1,589			22,529
	1961 To date	234	4,764	1,855,744 2,428,461		10,050	37,031 495,140
Omineca	1960	1 210	1,000	33,916	941	•••••	299,196
	1961 To date	52.932	8,129 1,402,660	34,002 17,379,510	1,542 15,633,718	11.460	346,610 3,556,792
Osoyoos	1960		,	237,680		$\frac{11,460}{407,823}$	684
·	1961 To date	208		119,560	1.020	309,573 3,734,802	
Revelstoke	1960	1		278,186	1,020 12,069		45,630
	1961 To date	7,582		11.058.917	185,244	······	
Similkameen	1960	1 3	84	23.549			71,260
	1961 To date	12,148		120.061.655	128,661	18,558	73,175 2,332,327
Skeena	1960			467,671			181,166
	1961 To date	4,603	105,569	210,645,048	337,504	1,240,215	183,562 7,104,665
Siocan	1960	1	,	6,910,292	151,792		109,665
	1961 To date	366	9,897	5,970,229 184,719,885	167,459 3,048,364		
Trail Creek	1960	1 2	90	55,803			66,474
	1961 To date	851	24,260	82.871,278	35,774	•••••	1.837.883
Vancouver	1960			6,903,597	46,952	56,206	5,018,309
	1961 To date	182	5,806	4,634,683 208,476,451	968,758	101,426 6,371,700	
Vernon	1960	18	503	34	9,500		144,814
	1961 To date	2,705	292 72,282	188,845	9,500	3,978	48,131 2,652.402
Victoria	1960			772,520		60	4,390,838
	1961 To date	628	15,680	8,775,561	35,437	60 188,246	4,969,058 114,277,401
Not assigned ⁴	1960			11,288,837	3,268,603	1,813,690	
	1961 To date	1.677.661	18,176,708	11,870,155 133,988,804	2,089,821 49,313,891	1,401,260 34,127,565	
		1 3,847	107,418	112,481,626	17,714,969	15,992,931	
Totals	1960	1 10.041	1012470	109,225,600			

TABLE VIIA.—PRODUCTION, 1960 AND 1961, AND

¹ Crude gold—equivalent in fine gold: 1960, 3,164 oz.; 1961, 2,817 oz. The year of first recorded production for the major placer-producing mining divisions was: Atlin, 1898; Cariboo, 1858; Lillooet, 1874; Quesnel, 1858. ² Quantity from 1836 to 1909 is gross mine output and includes material lost in picking and washing. For 1910 and subsequent years the quantity is that sold and used. Year of first production by mining divisions: Cariboo, 1942; Fort Steele, 1898; Kamloops, 1893; Liard, 1923; Nanaimo, 1836; Nicola, 1907; Omineca, 1918; Osoyoos, 1926; Similkameen, 1909; Skeena, 1912.

A 24

TOTAL.	то	DATE.	BY	MINING	DIVISIONS-	-SUMMARY
TO THE	10	D A1D,	р.	TATTATIO	D141210102	JOHIMANI

		·			Fue			
Divisio Total	products ³	Liquid By-	al Gas Pipe-line)		oleum	Petro	al	Co
	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity ²
\$	\$	Bbl.	\$	M S.C.F.	\$	Bbl.	\$	Tons
8· 91						••••••••••••		
12,88								
71								
8		·····						
55,70			••••••		•			
1,50		**	•		*******			
1,49			••••		•		1 100	290
99,290		•	••••••				1,100	290
1,363								
65,681	[•			•		4,618,360	674,042
93,269			·····	•••••••	•••••		5,425,265	\$34,718
1,853,541	**********		••••••	********		,	230,500,591	53,198,320
3,831 4,30 2				••••	•••••	•	•••••••	
51,44			******					
3,881		******						
8,631								
128,073					•••••••			
532		•		•••••••	•			
18 0.05		******		••••••		•••••••	KO TOF	15 097
18,908 21,758	593,648	1,179,401	7,101,949	80,115,399	1,531,049	838,626	59,765 21,526	15,087 2,293
24,071	892,892	1,287,672	8,818,891	95,967,110	1,900,401	887,260	17,000	2,062
104,021		3,801,400	23,689,398	306,191,359	7,077,840	3,697,821	675,856	96,848
4,957								
3,920					••••••		·····	
130,096	••••••		••••••	*******	·····	•••••••		107 100
12,990	••••			••••••	••••••		530,154	105,499
14,625 397,281			•	*	•		736,814 298,518,486	76,009 74.051.039
18,238			••••••				200,010,200	1,001,000
16,598								
224,798								
7,875	••••••				·····		•••••••	·
8,813	•••••	{	•					·····
79,516		•	••••••	•	••••••		0 1 9 9	213
26 1,894		*****	•	*	*******		2,183 1,717	159
14,017			••••••				11,078,801	2,929,632
890							60.448	5,417
454							64,024	6,850
40,699	(····			2,714,933	427,001
646								
48(••••••	•••••	•		•••••		F 000	1 1 90
55,821 335			•••••	••••••			5,008	1,122
36								
12,698								
104							9.552	1,194
76	(2,774	346
142,383							19,553,725	4,623,317
648 525		••			•••••			
219,433							116	37
7,171							110	
8,199								
188,705								
122								
202	•••••							
84,769 12,025	•••••		•••••		•••••••			
9,289								
263,872								
154								
48								
2,926								
5,163	}	•••••••					}	{
4,969							••••••	•••••
123,292				•••]
16,371	•••••			••••		••••••		
15,360 246,871)]
179,595	598,648	1,179,401	7,101,949	80,115,8991	1,531,049	838,626	5,242,223	788,658
	892,892	1,287,672	8,818,891	95,967,110	1,900,401	997,260	6,247,594	919,142
181,079					1,000,001			

³ Includes propane, butane, and natural gasoline. ⁴ Re "not assigned," see footnotes under Tables VIIB and VIIc. Note.—For individual metals, industrial minerals, and structural materials, see Tables VIIB, VIIc, VIID, and VIIE.

-

		Lođe	Gold	Silv	er	Copp	er	Lea	d	Zinc	:	Division
Division	Period	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Total
		Oz.	\$	Oz.	\$	Lb.	\$	Lb.	\$	Lb.	\$	\$ 511
Alberni	1960 1961 To date	15 139 301,243	509 4,929 11,270,553	2 98 162,523	2 91 78,086	2,290,699		690	75		i	511 5,095 11,697,294
Atlin	1960	34	1,154	3	2							1,156
	1961 To date	344,197	12,126,732	3,375,333	2,893,942	24,777,661	8,160,266	23,765,211	3,437,907	91,067,749	10,864,497	37,483,344
Cariboo	1960 1961 To date	19,552 20,243 1.101,178		2,732 3,213 126,824	2,421 3,010 82,673		·····	24,560				666,212 720,827 39,626,641
Clinton	1960		50,054,000		-			24,000		308		
	1961 To date											
Fort Steele	1960 1961	362 367	12,290 13,014	5,177,507 5,199,531	4,588,980 4,871,753	28,592		259,357,600 281,169,600 11,546,216,601	30,056,952 30,959,585	199,010,500 173,592,100 8,314,996,600	20,301,596	56,145,948
Golden	To date 1960	5,281	151,078	208,066,428 194,659	120,904,084 172.532	28,592 147,739	0,193 42,822		841,212,936 1.049,326	8,314,996,600		3,098,048
Solden	1961 To date	169		283,669	265,787 2,635,908	40,590 1,09 4, 088	11,482 342,943	9.435,501	1,038 943 21,182,385	19,167,112 248,754,975	2,241,594	3,557,806 44,801,748
Greenwood	1960 1961 To date	18,861 17,207 1,176,673		957,789 943,009 33,903,657	848,917 883,562 20,809,954	7,307,427 6,744,419 458,306,147		782,690	101,707 86,182 1,330,423	1,064,340 897,363 17,617,130	133,649 104,947 1,334,492	3,842,662 3, 592,712 124,701,692
Kamloops	1960											
	1961 To date	47,868	1,608,328	304,512	181,984	6,411,583	1,179,668	538,097	45,030	438,023	29,826	3,044,836
liard	1960 1961										1	
	To date	114						10,102	1,724			6,312
Lillooet	1960 1961	141,087 106,226	3,766,774	28,907 22,236	25,621 20,834							4,815,524 3,787,608
	To date		126,135,458	880,704	555,982	400		0-,010	· · · ·		-	126,694,031
Nanaimo	1960 1961 To date	1,517 1,269 89,128	44,999	31,522 32,351 669,619	27,939 30,312 425,315	1,879,478 1,775,097 28,198,826	502,139				- <i></i>	624,206 577,450 7,796,247
Nelson	1960 1961 To date	274 565 1 329,986	9,302 20,035 41,593,017	122,762 185,788 8,224,085	108,808 174,076 5,021,897	4,615 14,802,985			2,344,120 4,404,106 38,765,842	79,281,898 93,256,453 760,915,513	10,906,342	12,419,532 15,505,864 180,283,288

TABLE VIIB.—PRODUCTION, 1960 AND 1961, AND TOTAL TO DATE, BY MINING DIVISIONS—PRINCIPAL LODE METALS

New Westminster	1960	Oz.	\$	Oz.	\$	Lb. 1,352,874		Lb.	\$	Lb.	\$	\$ 392.13
	1961			49	46	1,474,646	417,148					417,19
	To date	4,449	113,528	14,203	6,662	4,033,551	1,113,503	28,425	1,119	12,755	481	1,235,29
Vicola	1960			17	15	5,430						1,58
	1961 To date	16 8,541	567 235,481	8,063 275,499	7,555 134,158	6,528,767 7,089,909		3,696 2,239,124	407 90,923	3,052 323,735	357 10,954	1,855,74 2,428,46
Omineca	1960	22		13,977	12,388			97,985	11,355	75,062	9,426	33,91
	1961 To date	15 25,090	532 774,426	11,352 9,557,879	10,636 7,594,030	6,750,202	1,545,334	111,115 28,019,982	12,235 3,553,069	90,632 31,603,719	10,599 3,912,651	34,00 17,379,51
soyoos	1960 1961	6,435 3,832	218,468 118,153	1,811 1,233	1,605 1,165	59,650		1,802 1,227	209 135	864 1,003	108. 117	237,68 119.56
	To date	1,647,920		592,518		2,843,616			5,798	9,420	694	51,051,40
evelstoke	1960 1961	8	272	2,950	2,615			92,889	10,765	2,106,665	264,534	278,18
	To date	37,300	1,069,260	4,107,618	2,766,476			36,343,774	3,853,894	27,194,200	8,313,250	11,053,91
imilkameen	1960 1961	538	18,265	223	198	17,548	5,086		••••••			23,54
	To date	184,012	6,327,260	4,219,439	2,582,266	601,187,921	111,134,861	382,544	13,304	72,275	3,964	120,061,65
skeena	1960	7,548 6,471	256,255	199,498 110,593	176,821 103,621			112,695 53,109	13,060	171,494 49,154	21,535	467,67
	1961 To date	2,407,874	229,462 60,739,375		43.937,433		98,025,648		5,848 5,426,103	17,028,222	5,749 2,516,489	344,68 210,645,04
Slocan	1960 1961	123 133	4,176 4,716	521,900 450,278	462,576 421,892			26,303,094 22,684,869	3,048,266 2,497,776	27,038,893 26,043,994	3,395,274 3,045,845	6,910,29 5,970,22
	To date	15,788	455,724	70,341,972		229,696		876,282,964	71,825,379	693,060,075		184,719,88
rail Creek	1960 1961	395 518	13,410 18,368	1,020 1,359	904 1,273	148,095 234,73 4		57	7	51	6	55,80 86.0 4
	To date		62,617,907	3,624,266			18,158,785		11,004	119,621	14,365	82,871,27
ancouver	1960	8,590	291,631	74,091	65,669	17,911,128	5,191,540	209,794	24,313	10,595,285	1,330,444	6,903,59
	1961 To date	3,213 455,806	113,933 14,550,604	53,718 4,886,187	50,332 3,007,370	13,466,438 960,466,782	3,809,386 161,546,792	59,194 18,153,821	6,518 1,829,920	5,596,531 213,382,130	654,514 27,541,765	4,634,68 208,476,45
/ernon	1960 1961	1	34			•••••						8
	To date	5,224	176,082	12,823	8,084	654	100	24,913	2,933	10,816	1,146	188,34
ictoria	1960 1961			14,062	12,464	2,622,243	760,056					772,52
	To date	37,663	812,730	876,220	506,255	36,028,550	7,152,805	210,097	19,848	3,568,709	283,923	8,775,5€
lot assigned1	1960	218		100,805		1,817,822			2,001,832	69,453,948	8,721,332	11,288,85
	1961 To date	107 50,761		67,028 4,759,909	62,803 3,296,872	1, 423,106 46,930, 44 3		29,986,001 425,129,613	3,301,759 32,948,352	69,253,796 1,032,895,758	8,099,231 87,061,014	11,870,15 133,988,80
Totals	1960	205,580		7,446.237		33,064,429	9,583,724	333,608,699	38,661,912	403,399,319		112,481,62
	1961 To date	15 870 009	5,667,253	7,373,568 431 160 086	6,908,738 265 076 396	31,692,412 3 012 370 068	8,965,149	884,284,524 13,582,977,263	42,313,569	387,951,190	45,370,891	109,225,60

¹ Gold, silver, copper, and some lead "not assigned" were recovered at the Tacoma smelter from dross shipped from the Trail smelter. The zinc and most of the lead were recovered at the Trail smelter by fuming current and reclaimed slag.

4

A 27

		Antii	mony	Bism	nuth	Cadm	ium	Chro	omite	Iron Con	centrates	Mang	anese	Mer	cury
Division	Period	Quantity	Value	Quantity	Value	Quantity	Value	Quan- tity	Value	Quantity	Value	Quan- tity	Value	Quantity	Value
Atlin	1960	Lb.	\$	Lb.	\$	Lb.	\$	Tons	\$	Tons	\$	Tons	\$	Lb.	\$
Ath th:	1961	•••••		·····				·····				••••••	•••••		
Cariboo	To date 1960			·····		319,212	561,762	•••••			•••••	•••••			
Jan 1000	1961														
Clinton	To date 1960			·····											
	1961							100							·····
Fort Steele	To date 1960						·····	126	900			·····			
· • •	1961		- -			1 097	3,823	·		51,171	110,000			•••••	
Golden	To date 1960			·····		1,837 30,409	43,181			51,171	110,000				
	1961 To date	40,062	14,906	·····		37,212 310,455	59,539 511,741					•			
Greenwood	1960	40,002	14,800			5,861	8,323								••••••
	1961 To date			·····	1	5,514 39,241	8,822 65,841		31.395						
Kamloops	1960									4,058	35,968				
	1961 To date						•••••			21,167	95.851			10.987	5,790
Liard	1960						·····	·····							
	1961 To date						·····								
Lillooet	1960 1961							· · · · · · · · · · · · · · · · · · ·							
	To date	13,466	4,321				·····							1,783	8,550
Nanaimo	1960 1961						·····		·····		10,256,879 11,384,260				•••••
	To date						••••••				56,757,509				
Nelson	1960 1961					501,833 568,156	712,603 909,050	•••••					•••••		
	To date					4,446,178									
New Westminster_	1960 1961								! !						
	To date														
Omineca	1960 1961					663 964	941 1,542					••••	·····		
	To date	104,489	15,217			262,114	518,118							4,150,892	10,400,25
Osoyoos	1960 1961														
Laughteira	To date 1960		····				12,069					161		····	
Revelstoke	1960														
	To date	9,394	3,455			103,612	176,102	···· ··· ···						- 	

TABLE VIIC.—PRODUCTION, 1960 AND 1961, AND TOTAL TO DATE, BY MINING DIVISIONS—MISCELLANEOUS METALS

A 28

MINES AND PETROLEUM RESOURCES REPORT, 1961

•#** R *		Lb.	8	Lb.	\$	Lb.	\$	Tous	\$	Tons	\$	Tons	*	Lb.	\$
imilkameeo	1960				*****	*****		*********	[
	1961		**********							*****				****	
	To date	*****	*****	······				*** * * * * * * * * * *			*******		******		
keena	1960		***************	******************	*****		1					1	*******		
	1961 To date		**************************************	}	······································	147 000		{		1.200	A AAA				******
1	1960	1				100 000			······		0,000	:	1		
locan	1981		****************			104,662						**********		**************************************	*****
1 day	To date	31.865			•	1.699.057						541			
rail Creek	1960				\$		h								
	1061			************						*******					
	To date		******			115				550	1,925				
ancouver	1960				**********	33,065	46,952			****			*******		
	1961		******	************					·····	***	*****		********		
	To date		**********		***************	1		•		34,7778874888866			******		
/ernon	1960 1961	*****************	********	******		=++		******			****		*********	~~~~**********************************	
	To date	·····		*****				**********	1		***************************************				******
/ictoria	1960						1				******		********		
550310	1961														
	To date					7,000						1,167	24,508		
ot assigned 2 3 4	1960	1,651,786		213,009		1.091,649			******			********			
	1961	1,391,297	489,948	283,363				•••••					····		
ŧ	To date	40,561,223	10,428,072	5,410,849	9,209,919	[25,734,368		#*******						******
Totals	1960	1,651.786		218,009			2,525,990]		10,292,847				
	1961	1,331,297			837,567		1,461,891				11,494,260				
1	To date	40,760,499	10,474,104	5,410,849	9,209,919	27,437,159	\$9,410,710	796	32,295	7,909,076	56,971.285	1,724	[32, 868]	4,163,662	110,409,

.

ŧ

¹ Estimated manganese content of about 40 tons of ore shipped for testing purposes by Olalla Mines Ltd. in 1956. ² Antimony assigned to individual mining divisions is the reported content of concentrates exported to foreign smelters. Antimony "not assigned" is the antimony content of antimonial lead or of other antimony products at the Trail smelter. ³ Cadmium assigned to individual mining divisions is the reported content of custom shipments to the Trail smelter and to foreign smelters. Cadmium "not assigned" is the antimony "not assigned" is the antimony "is the remainder of the reported estimated recovery at the Trail smelter from British Columbia concentrates. ⁴ Bismuth and indium recovered at the Trail smelter are not assigned to mining divisions and may include some metal from sources outside British Columbia. Principal productive periods: Antimony, 1930-61; bismuth, 1929-61; cadmium, 1928-61; ciromite, 1918 and 1929; indium, 1942-61; iron concentrates, 1951-61; manganese, 1918-20; mercury, 1940-44; molybdenite, 1914-18; nickel, 1958-61; palladium, 1928: platinum, 1887-1951; tin, 1941-61; tungsten, 1937-58.

STATISTICS

Division	Period	Moiyt (Mo	denite S_2)	Nick	el	Palla	dium	Plat	inum	Т	in	Tungsten	(WO ₃)	Other	Division
		Quan- tity	Value	Quantity	Value	Quan- tity	Value	Quan- tity	Value	Quantity	Value	Quantity	Value	Value	Totals
		Lb.	8	Lb.	\$	Oz,	\$	Oz.	\$	Lb.	\$	Lb.	\$	\$	\$
Atlin							·····							·····	
	1961					••••••						292	360	••••••	562.12
Cariboo	To date 1960	••••••				•••••	ļ				••••••	292	500		002,12
2411000	1961														
	To date							59	2,299			27,698	21,431	····	23,73
linton		i													
	1961		1						•••••]· · · · · · · · · · · · · · · · · · ·				
ant Eta-la	To date				·····			·····	••••••	601 710	522.243				$90 \\ 522,24$
ort Steele	1960 1961					·····				621,718 1.119.350				·····	837,57
	To date										10,694,786			88,1845	
olden	1960									-0,0-0,000					43,18
	1961]									· · · · · · · · · · · · · · · · · · ·			59,53
	To date										• • • • • • • • • • • • • • • • • • • •				526,64
Freenwood										· ••••	••••••				8,32
	1961 To date										· · · · · · · · · · · · · · · · · · ·			•••••	8,82 97,23
Camloops	1960		••••••								····				35,96
Calificops	1961														
	To date														101,64
iard	1960				Į										
	1961				[--						•••••		· · · · · · · · · · · · · · · · · · ·		
-	To date							2	79	•••••			-	•••••	7
lillooet	1960 1961				[·····		••••••					·····	••••••		
	To date	2,448	2,440						113			32,353	37,921		48,35
Vanaimo		2,110	4,710					J	110			02,000	01,041		10.256.87
·ununno	1961										1				11,384,26
	To date	i													56,757,50
lelson					[·]				712,60
	1961							·····							909,05
T 387	To date	25,058	18,378	0 770 070	0.045.015				· · · · · · · · · · · · · · · · · · ·]		13,739,939	33,900,311		41,428,92 2,645,91
lew Westminster	1960 1961			3,779,878 4.180,677											3.194.03
	To date						l								7.667.25
)mineca									1						.,001,20
	1961										•••••				1,54
	To date	1,608	1,840		[3	154			2,210,892	4,697,710	4206	15,633,71
)soyoos														[
	1961	1 090	1 000			· · · · · · · · · · · · · · · · · · ·	·			•••••	••••				1 00
Revelstoke	To date	1,020	1,020						•••••	•••••	•			••••	$1,02 \\ 12,06$
Cevelstoke	1960														12,00
	To date											7.784	5,687		185.24
	1 - 5 4470	1	1		1		1	1	1			,,,,,,,,	1 0,000		_00,_1

TABLE VIIC .--- PRODUCTION, 1960 AND 1961, AND TOTAL TO DATE, BY MINING DIVISIONS-MISCELLANEOUS METALS-Continued

A 30

MINES AND PETROLEUM RESOURCES REPORT, 1961

	1 960	Ľħ.	\$	L.b.	*÷	02.	543	ő	**	Тр.	**	QTI .	W	5 6	\$\$
VIEINANNYA	1961 Todate							1,280 128,66	28,661						128,661
Sketna.															11
Slocan		13,022	18,020		-						· · · · · · · · · · · · · · · · · · ·	360	5	1,8897	
	To date	1		_			Ì								167,459 3.048 364
Trail Creek	1966 1966														
1.7 arts rest (200	To date				A	749	749 30,462	63	3,177						35.774
· · · · · · · · · · · · · · · · · · ·	1961			· · · · · · · · · · · · · · · · · · ·											
Vernon	10 date	9.023	9,500												9,800
	1961 To date	9,023	9,500								*****				9,000
Victoria	1961													*************************	
9	To date				,	**					******				00,437
Not assigned	1961		1											676,327	2,089,921
						2			V V				****	3,941,542	49,313,891
Totals		9,028	9,500	3.779,878,2,645,015	2,645,015					621,718	522,243	· · · · · · · · · · · · · · · · · · ·		760.364	17,714,969
	To date	52.171	46,198	4,180,877 3,194,030 10,712,030 7,667,250	2,667,255 7,667,2555	749	149 30,463	1,400 134,48	34,483	1,119,350	10		16,019,324 38,603,751	678,327 4,031,535	18,651,608
, ₂															

*

....-· . .<u>..</u>

.....

² Magnesium, 204,632 lb., 1941 and 1942. 6 Cobalt, 1,730 lb., 1928. 7 Selenium, 731 lb., 1931.

STATISTICS

MINES AND PETROLEUM RESOURCES REPORT, 1961

Division	Period	As	bestos	Bi	arite	Diate	omite	Fluxes and Lin	(Quartz testone)	Limest	s (Quartz, one, and mite)
		Quan- tity	Value1	Quan- tity	Value	Quan- tity	Value	Quantity	Value	Quan- tity	Value
Alberni	1960	Tons	\$	Tons	\$	Tons	\$	Tons	\$	Tons	\$
Atlin	1961 To date 1960	*********	********************	***********	**************************************			• • • • • • • • • • • • • • • • • • •		*******	·····
The Schutch of the second s	1981 To date							******	·····		**************
Cariboo	1960 1961 To date	*******	*****	****		44 214 1,808	1,430 8,817 44,782	**************************************	· · · · · · · · · · · · · · · · · · ·	48	168
Clinton	1960 1961		······································			1,506	***************	····	·····	1.0 	100
Fort Steele	To data 1960 1961	*******								~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	•
Golden	To date 1960			8 23,573	279.716	······································		********	*******	*****	··········
Greenwood	1961 To date 1960		· · · · · · · · · · · · · · · · · · ·	17,722 189,852		****	****	***************	**************************************		••••••••••••••••••••••••••••••••••••••
GICCRW000	1960 1981 To date	********						1,790,502	1,540,319	* *********************	**************************************
Kamloops	1900 1 961 To date		 	E > e 1 p = = = = = = = = = = = = = = = = = =			**************	**************	*****************	**************************************	
Liard	1960 1961	45,113	11,724,077 11,129,704	**********			A	**************	******	• • • • • • • • • • • • • • • • • • •	
Lillooet	To date 1960 1961	230,800	64,863,987	*************				**********		******	······
Nanaimo	To date 1960			*********			*****	18,629	23,302		· · · · · · · · · · · · · · · · · · ·
Nelson	1961 To date 1960	*******			**************************************		****	12,45 9 687,438	19,445 745,783	******	· • • · · · · · · · · · · · · · · · · ·
	1991 To date			**********			************	7,601	8,174	2	51
New Westminster.	1960 1961 To date		AL 23 34 23 34 79 3 7 4 79 1	***********	****	*****	*****			8,869 8,004 62,875	120,441 114,437 787,371
Nicola	1960 1961						*****	****************	**************		
Omineca	To date 1960 1961	*******					*****	·····	*****	· · · · · · · · · · · · · · · · · · ·	**************************************
Osoyoos	To date 1960							64,735	271,197	10,194	136,626
Similkameen	1961 To date 1960						********	40,869 574,030	170,995 2,821,448	9,459 58,808	138,378 791,369
	1961 To date			-***		********			**************************************	250	1,700
Skeena	1960 1961 To date		**************************************					601,019	1,050,722		
Vancouver	1960 1961		[- # h + % . / / # + + + + + + + + + + + + + + + + +			*****	*******		29,692	418,606
Vernon	To date 1960 1961			····		****	**********		······································	23,932	*10,979
Victoria	To date 1960 1981								00 60	******	***************
Not assigned	To date 1960				·····	****		69		9,605	157,080
	1961 To date							·····		·····	
Totals	1960 1961 To date	45,113	11,724,077 11,129,704 64,863,967	28,678 17,722 189,860	178 318	44 214 1,803	8.817	53,370 59,335 3,660,654	294,559 190,500 5,987,886	19,062 17,463 161,030	253.015

TABLE VIID,-PRODUCTION, 1960 AND 1961, AND TOTAL

¹ Does not include value of containers. ² Includes 51 tons of residue from Trail smelter and no value assigned. 8 Arsenious oxide: Omineca, 1928, 16,997 lb., \$340; Osoyoos, 1917-30 and 1942, 22,002,423 lb., \$272,861. 4 Bentonite: 1926-44, 791 tons, 5 Fluorspar: Greenwood, 1918-29 and 1942, 35,309 tons, \$783,578; Osoyoos, 1958, 32 tons, \$1,386. 6 Hydromagnesite: Atlin, 1915-16, 1,450 tons, \$20,325; Clinton, 1921, 803 tons, \$7,211. 7 Iron oxide and ochre: Golden, 1927-39, 27 tons, \$920; Nelson, 1948-50, 7,292 tons, \$55,901; Vancouver, 1918-50, 10,669 tons, \$97,359; Victoria, 1923, 120 tons, \$840. 8 Magnesium sulphate: Clinton, 1918-20, 1,923 tons, \$39,085; Kamloops, 1918-42, 8,742 tons, \$193,967; Osoyoos, 1915-19, 3,229 tons, \$21,300.

A 32

STATISTICS

TO DATE, BY MINING DIVISIONS-INDUSTRIAL MINERALS

.

Gypsur Gyps		Mica	a	Sulj	phur	Other Value	Division Totals	Period	Division
Quantity	Value	Quantity	Value	Quantity	Value	Value	Iotais		
Tons	\$	Lb,	\$	Tons	\$	\$	\$	1960	Alberni,
								1961	1100-111
•••••••						9,3989	9,398	To date	
••••••								1960 1961	Atlin.
						20,3256	20,325	To date	
		122,000	3,186				4,616	1960	Cariboo.
		250,000	8,025			30014	18,842 188,262	1961 To date	
		10,013,800		•••••		20013	100,202	1960	Clinton,
						****		1961	
873	6,236	•••••••				156,1916 8 12	162,427	To date	T. 101.0
				40,577 40,730	643,145 610,950		643,145 610,950	1960 1961	Fort Steele.
112,878	298,824			288.605	5.226.799	16.89411	5,542,597	To date	
107,9002	337,200						616,916	1960	Golden.
181,000 761,046	392,000		••••••			1.2767 13	570,318	1961 To date	1
101,040	2,147,814					1,210113	4,512,896	1960	Greenwood.
								1961	
		••••••					2,323,897	To date	Trusters
••••••		••••••		•••••		1		1960 1961	Kamloops.
,246,918	6,323,178	424,700	2,075			203,0558 12	6 528,308	To date	
				\$7,958	582,655	·····	6,528,308 12,306,732	1960	Liard.
••••••				52,681	1,093,658 2,825,251	•••••	12,223,362 67,189,218	1961 To date	
				100,401			01,100,210	1960	Lillooet.
					1		•••••••••••••••••	1961	
					[5,12913	$5,129 \\ 23,302$	To date 1960	Nanaimo.
							19,445	1961	Hanaimo,
							745,783	To date	
				••••••				1960 1961	Nelson.
							64,126	To date	
· · · · · · · · · · · · · · · · · · ·							120.441	1960	New Westminst
••••••							114,437 787,371	1961 To date	
	·····················						101,011	1960	Nicola.
								1961	
2,407	10,050						10,050	To date 1960	Omineca.
•••••								1960	Offineca,
							11,460	To date	1
							407,823	1960	Osoyoos.
		1,588,800				295,5478 5 8	309,573 3,734,302	1961 To date	
							0,104,002	1960	Similkameen.
								1961 To data	
••••••							18,558	To date 1960	Skeena.
								1961	1
		634,250		41,624	178,678		1,240,215	To date 1960	Vancouver.
		•••••		4,801 8,841	101.420		56,206 101,426	1960 1961	vancouver.
				627,397	5,855,705	97,3897	6,371,700	To date	
								1960	Vernon.
		160,500	3,978				3,978	1961 To date	
		100,000					60	1960	Victoria.
							60	1961	1
				181 369	1,813,690	30,2267 13	$188,246 \\ 1,813,690$	To date 1960	Not assigned.
				140,125	1,401,250		1,401,250	1961	
				3,427,726	34,127,565		34,127,565	To date	<u></u>
107,9002 131,000	837,200 892,000	122,000 250,000	8,186 8,025		8,095,696 8,207,284		15,992,931 15,367,661	1960 1961	Totals.

⁹ Natro-alunite: 1912-27, 522 tons.
¹⁰ Perlite: 1953, 1,112 tons, \$11,120.
¹¹ Phosphate rock: 1927-33, 3,842 tons.
¹² Sodium carbonate: Clinton, 1921-49, 9,524 tons, \$109,895; Kamloops, 1931-35, 968 tons, \$9,088.
¹³ Talc: Golden, 1927, 5 tons, \$356; Lillocet, 1916-36, 296 tons, \$5,129; Victoria, 1919-35, 1,504 tons, \$29,386.
¹⁴ Volcanic ash: Cariboo, 30 tons.
First production: Arsenious oxide, 1917; asbestos, 1952; barite, 1940; bentonite, 1926; diatomite, 1928; fluorspar, 1918; flux, 1911; granules, 1930; gypsum and gypsite, 1911; hydromagnesite, 1904; iron oxide and ochre, 1918; magnesium sulphate, 1915; mica, 1932; natro-alunite, 1912; perlite, 1953; phosphate rock, 1927; sodium carbonate, 1921; sulphur, 1916; talc, 1916.

Division	Period	Cement	Lime and Limestone	Building- stone	Rubble, Riprap, and Crushed Rock	Sand and Gravel	Brick (Com- mon)	Face, Paving, and Sewer Brick	Fire- bricks, Blocks	Clays	Struc- tural Tile (Hollow Blocks), Roof-tile, Floor- tile	Drain-tile and Sewer- pipe	Pottery (Glazed or Un- glazed)	Other Clay Products	Unclassi- fied Material	Division Totals
Alberni	1960 1961	\$	\$	\$	\$ 1,608 830	\$ 82,753 84.746	\$		\$	\$		\$	\$	\$	\$	\$ 84,36 85,57
Atlin	To date			·····	55,642 6,000	1,089,303 16,481 16,050										1,144,94 22,48 16,05
Cariboo	To date 1960 1961	 			97,478 253,232 1,056	193,133 531,903 730,814	-•									291,71 785,13 733.87
Clinton	To date 1960 1961		7,500		959,899	730,814 4,505,892				15,807				11,242		5,506,30
Fort Steele	To date 1960 1961				1,606 62,948 140,499	109,322 178,875 108,747								8,118		110,92 249,94 249,24
Golden	To date 1960 1961			71,941		3,641,456 66,282 94,683	7,800							8,118 12,154		4,908,6 81,5 114,9
Greenwood	To date 1960 1961			24,000	$110,339 \\ 2,546$	1,443,218 34,339 33.876							•••••	13,654		1,592,2 36,8 39.8
Kamloops	To date 1960 1961	 	102,442	30,500	168,319 386,129 250,291	416,776 109,848 387,360	114,361			6,922			•••••			839,3 495,9 637,6
Liard	To date 1960 1961			18,000		3,892,892 200,045 214.590	72,379								·	8,569,8 203,1 216.9
Lillooet	To date 1960				32,665 10,849 9,276	1,722,747 130,118 122,979										1,755,4 140,9 182,2
Nanaimo	1961 To date 1960		100 1,375,485	$2,000 \\ 4,275$	311,438 6,528 97,580	1,141,619 169,291 197,965	······									1,455,1 1,555,5 1,907,4
Nelson	1961 To date 1960	 	26,513,904	10,450 3,199,257	$172,150 \\ 1,846$	2,386,152 104,707	1,104,295	38,939		35,758						33,450,4 106,5 183,6
New	1961 To date 1960	 		356,679	60,728 346,240 183,448	122,947 2,173,563 2,553,613	19,110 183,936	$2,864 \\ 122,800$	583,103	22,671	83,842	559,809	48,825			2,932.9 4,716.8
Westminster Nicola	1961 To date 1960		209,175 1,359,390	9,310	351,375 8,606,089 10,660	11,869			536,902 11,463,096		2,810,730	10,834,903			•••••	5,086,9 69,582,7 22,5
Omineca	1961 To date 1960			8,000	7,350 115,716 1,745	29,681 371,424 297,451										37,0 495,1 299,1
	1961 To date		3,077		33,226	313,384 2,954,726										346,6 3,556,7

TABLE VIIE.—PRODUCTION, 1960 AND 1961, AND TOTAL TO DATE, BY MINING DIVISIONS—STRUCTURAL MATERIALS

		\$	\$	\$	\$	\$	\$	8	\$	\$	\$	\$	\$	\$	\$	\$
Jeoyoos	1960		A# KAH 322			684	*****		***********			*************			************	
	1981	*******				51,450	* ** * *					~F*······	****	*		. 6
	To date		32,070	14,850	145,657	882,179		1	**********			·····			H *****	
levelstoke	1960 1961		*****		2,774	42,856 32,670					, # h W# = H h# - , +	*********	*********		·····	4
1	To date	***	1,000	5.575	325,520	958.054	**********		******			*************		·······		1,2
imilkameen	1980			. ,		71.260					~ +4 F = + 4 + + + + +	72++++++++++++++++++++++++++++++++++++				
uuuxatucen	1981	******	*********************		175	73.000	**************									
	To date		11.571	24.000	511,219	1.772.182				1.363				11.992		2.88
keena	1960		50.725		44,478	85 965				-,						18
**************************************	1961		39,954		38,484	105,124										11
	To date	10,500	1,433,635	144.000	1,230,104	4,273,171				4,925		*******	****	8,324		į 7,10
locan	1960	*********			24,250	\$5,415						*****				[11
}	1961		*****	*****	9,814	55,161	*********					**************		·····	. · · · · · · · · · · · · · · · · · · ·	
	To date		1,000		101,078	710,311						#*********	····			91
rail Creek	1960		****	5,584		60,890										
	1961	*****		8,500	500	107,386					## 6#>#64 +4#	*******				41
	To date		28,000	75,734	212,642	1,521,607	······ =		·····			· · · · · · · · · · · · · · · · · · ·		********	·····	1,88
ancouver	1960	2,922,279	*********	89,000	48,988	1,970,169		22,291 10,015	15,582 22,959			••••	**********			5,01
	1961	3.142,150 10.607.387	40.885	81,350 3.936,376	T P/0 070	24.228.313.	10,014 142,208	241.216	580,778	12.724	· · • F + + P / * ^ · · · • • • • * *		23.362	88.304		4,88
	To date 1960	10,601,381		3,880,310	7.648,356	136,610	19.2,200		202,110	1	~~~ ~ ****	**********		00,004		1.2.2.05 1.1.1
ernon	1981		*******	*****************	2,747	45.384		*****	***************	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		***************				4
	To date		46,499	81.052	194,169	2.169.428	131,467	6,202	1.011		18.224	4.325	**********	20		2.6
lctoria	1960	8,510,473	18,491	01,000	728	855,854	3.787		23,180	~		57.049		126.326		4.39
1010320	1961	3,976,229	13,722		1.360	604,763	8,475		25,108			67,602	6,799	270,000		4.90
	To data	26,062,164	792.065		455,878	12,743,689	1,814,647	23,052	95,930	1,050	705,821	1.030.346	134.504			114.21
lot assigned	1960															
	1961		*******				******		*********************			***********		******		1
	To date		315,498	505.018	282,455	· · ····			****			******		3,150,8281	7,010,4522	11.26
Totals.	1980	6.482.752	1.602.019	48.859	1.075.373	7.597.278	187.673	145,091	621,865	22.671	83,842	616.858	48.825	346.883		118.82
- COMP.	1961	7.118.379	1,864,315	70,300	1,016,086	7,489,710	14,809	328,346	584,989	28,396	45 753	686,998		687,803		19,87
-	To date	108 680 051	80.742.687	8.621 435	28.428.741	101,219,600	5.025.333	5.128.864	12.145.466	929.006	3.534.775	11.869.574		4,632,878		828.40

1

¹ Includes \$3,150,828 of unclassified clay products, 1886-1910. ² Includes a value of \$7,010,452 that cannot be allotted to a particular class of structural material.

Year	Tons (2,000 Lb.)	Value	Year	Tons (2,000 Lb.)	Value	
836–59	41,871	\$149,548	1912	3,172.015	\$10,786,812	
860		56,988	1913		9,197,46	
861		55,096	1914		7,745,84	
862		72,472	1915		7,114,17	
863	- 23,906	85,380	1916	2,542,524	8,900,67	
364		115,528	1917	2,429,818	8,484,34	
365	- 36,757	131,276	1918		12,833,99	
366		100,460	1919		11,975,67	
367		124,956	1920	2,852,535	13,450,16	
368		176,020	1921		12,836,013	
		143,208	1922		12,880,06	
70		119,372	1923		12,678,54	
371		164,612	1924		9,911,93	
372		164,612	1925		12,168,90	
373		164,612	1926		11,650,18	
374		244,641	1927		12,269,13	
875		330,435	1928		12,633,51	
37 6		417,576	1929		11,256,26	
377		462,156	1930		9,435,65	
378		522,538	1931		7,684,15	
i79		723,903	1932		6,523,64	
		802,785	1933		5,375,17	
		685,171	1934		5,725,13	
82		846,417	1935		5,048,86	
	238,895	639,897	1936		5,722,50	
384		1,182,210	1937		6,139,92	
385		1,096,788	1938		5,565,06	
386		979,908	1939		6,280,95	
387		1,240,080	1940		7,088,26	
88		1,467,903	1941		7,660,00	
		1,739,490	1942		8,237,17	
390		2,034,420	1943		7,742,03	
391		3,087,291	1944		8,217,96	
		2,479,005	1945		6,454,36	
		2,934,882	1946		6,732,47	
394		3,038,859	1947		8,680,44	
95		2,824,687	1948		9,765,39	
96		2,693,961	1949		10,549,92	
97		2,734,522	1950		10,119,30	
	1,263,272	3,582,595	1951		10,169,61	
399	1,435,314	4,126,803	1952		9,729,73	
00		4,744,530	1953		9,528,27	
01	- 1,894,544	5,016,398	1954		9,154,54	
02		4,832,257	1955		8,986,50	
03		4,332,297	1956		9,346,51	
		4,953,024	1957			
X05		5,511,861	1958	796,413	5,937,86	
906	2,126,965	5,548,044	1959		5,472,06	
907		7,637,713	1960		5,242,22	
908		7,356,866	1961	919,142	6,247,59	
909		8,574,884	Tetala	115 240 600	2562 100 20	
910		11,108,335	Totals	135,342,692	\$563,108,38	
911	2,540,022	8,071,747	11	ļ		

TABLE VIIIA.—QUANTITY¹ AND VALUE OF COAL PER YEAR TO DATE

¹ Quantity from 1836 to 1909 is gross mine output and includes material tost in picking and washing. For 1910 and subsequent years the quantity is that sold and used. ² A combined total for 1871, 1872, and 1873 has previously been noted in Annual Reports and the above breakdown is estimated.

A 36

TABLE VIIIB QUANTITY	AND	VALUE (of Coai	. Sold	AND	Used ² ,	1951–61
----------------------	-----	---------	---------	--------	-----	---------------------	---------

Year	District and Mining Division	Total Sales ²	Used under Com- panies' Boilers ²	Used in Making Coke ²	Total Sold and Used ^a			Totals, 961
	Vancouver Island	Tons	Tons	Tons	Tons	\$	Tons 76,009	\$ 736,814
1951	Nanaimo	391,687	8,425		395,112	3,486,615	•	
1952 1953	ı, ı,	267,346 204,931	2,986		270,332 206,729	2,749,206 2,059,828		
1954	ji	181,534	536		182,070	2,029,099		
1955	· · · · · · · · · · · · · · · · · · ·	173,861	465		174,326	1,769,682		
$1956 \\ 1957$,	$172,140 \\ 163,574$	389 439		172,529 164,013	1,629,168		
1958		153,892	404		154,296	1,615,470		
1959 1960	,,	$136.879 \\ 105.231$	361 268		$137,240 \\ 105,499$	1,415,971 530,154		
1961		76,009			76,009	736,814		
1051	Nicola-Princeton.]]			505	4,491
$1951 \\ 1952 $	Nicola	$899 \\ 1,139$			899 1,139	8,640 11,493		
1953	,,	1,040			1,040	10,400		
1954	•, ••	1,256		••••••	1,256	12,769		
1955 1956	¥4 ······	$1,259 \\ 1,170$			1,259 1,170	12,904 12,092		
1957		1,081			1,081	11,615		
1958 1959	y,	543		********	543	5,919 3,710		
1960		213		•••••	213	2,183		1
1961 1951	Similkameen	159 3,941			159 3,941	1,717 28,094		
1952	,,	6,306			6,306	48,760		
1953	,,	7,047	}		7,047	51,012		
1954 1955	,	$29,713 \\73,475$			$29.713 \\ 73.475$	138,080 379,511		
1956		72,102			72,102	366,820		
1957	21 ·····	17,696 146			17.696	92,748 1,122		
$1958 \\ 1959$,,	1,161			146 1,161	8,527		
1960	,	1,194	}		1,194	9,552		
1961	Northern	346			346	2,774	7,912	81,024
1951	Liard	3,199			3,199	26,095	7,512	81,024
1952	·· ······	3.854			3,854	42,606		
1953 1954	,	$4,815 \\ 4,359$	20		4,835	50,895 33,079		
1955		3,650			3,650	32,850		
1956 1957	» ·····	$4,642 \\ 2,758$		*******	4,642 2,758	$38,211 \\ 28,421$		
1958	»»	3,194			3,194	28,738		
1959	,,	$3.319 \\ 2,293$	·		3,319 2,293	$ \begin{array}{r} 31,040 \\ 21,526 \end{array} $		
1960 1961	a	2,062		••••••••••	2,062	17,000		
1951	Omineca	27.904			27,904	206,799		
1952 1953		$37.270 \\ 42.079$	·····		37,270 42,079	285,732 324,986		
1954	,,	36,572			36,572	292,862		
1955	,	30,015 8,553			$ \begin{array}{r} 30.015 \\ 8.553 \end{array} $	$227.010 \\ 71,284$		
1957		4,991			4,991	47,414		
1958 1959	**	4,677 5,453])	4,677	44,972 55,318		
1959 1960	, ,	5,417		••••••	5,417	60,448		1
1961	East Kootenay	5,850	(5,850	64,024	00/ 740	E 405 005
1951	Fort Steele	889,669	15,977	236,871	1,142,517	6,413,374	834,716	5,425,265
1952	.,	822.071	15.813	245,528	1,083,412	6,591,942		
1953 1954		878,865 820,081	12,729 15,310	230,814 218,923	1,122,408	7,031,158 6,648,655		
1955	,,	803,125	16,560	230,464	1,050,149	6,564,544		
1956	,	890,100	19,518	248,595	1,158,213	7,228,993		
1957 1958	۶٫ •••••• ۶٫ •••••	$677,534 \\ 401,875$	17,830 7,274	199,754	895,118 633,557	5,310,835 4,241,619		
1959	} ,,	358,682	10,813	172,927	633,557 542,422	3,957,498		
1960 1961	,, 1,	472,782 619,828	13,800 14,698	187,460	674,042 834,716	4,618,360 5,425,265		
1951	Provincial totals	1,317,299	19,402	236,871	1,573,572	10,169,617		
1952		1,137.986 1,138.777	18,799	245,528	1,402,313	9,729,739		
1953 1954		1,073,515	14,547	230,814	1,384,138	9,528,279 9,154,544		
1955	,,	1,085,385	17,025	230,464	1,332,874	8,986,501		
1956 1957	»» ······	1,148.707 867.634	19,907 18,269	248,595 199,754	1,417,209	9,346,518		
1958	· , ,	564.327	7,678	224,408	796,413	5,937,860		
1959]],	505,910	11,174	172,927	690,011 788,658	5,472,064 5,242,223		
1960	,,	587,130	[14,068	187,460				

¹ For differences between gross mine output and coal sold refer to table "Production and Distribution by Collieries and by Districts" in section headed "Coal" or "Coal-mining" in this and succeeding Annual Reports. ² The totals "sold and used" include:— Sales to retail and wholesale dealers, industrial users, and company employees. Coal used in company boilers, including steam locomotives. Coal used in making coke.

Year		in Making ke		Vade in te Ovens		Made in act Ovens		Made in Plants	Total Co	ke Made	Gas Sold	Tar	Other By-	Total Production Value of
	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	Quantity	Value	and Used	Produced	products ¹	Coke Industry
	Tons	\$	Tons	\$	Tons	\$	Tons	\$	Tons	\$	\$	\$	\$	\$
895–1925		25,673,600	4,920,457	25,673,600		·			4,920,457	25,673,600				25,673,600
926		1,338,565	105,227	795,841	42,209	244,469	42,468	221,600	189,904	1,261,910	1,009,613	50,035	45,772	2,367,330
927		1,290,760	95,281	595,504	35,900	327,215	39,464	178,682	170,645	1,101,401	1,222.379	44,402	18,080	2,386,262
928	210,207	940,668	68,734	429,590	32,322	263,781	41,711	187,882	142,767	881,253	1,313,407	45,313	14,036	2,254,009
929	226,363	950,243	75,426	574,279	33,339	308,867	46,573	214,732	155,338	1,097,878	1,461,445	61,084	39,203	2,659,610
930		1,002,684	73,708	558,801	31,904	298,004	45,751	232,917	151,363	1,089,722	1,547,092	65,770	11,935	2,714,519
931		924,279	73,248	548,550	27,717	236,537	41,836	210,470	142,801	995,557	1,541,454	66,506	32,603	2,636,120
932	151,750	710,432	33,090	247,615	25,436	217,221	44,645	237,174	103,171	702,010	1,589,656	54,771	14,109	2,360,546
933 934	107,400	554,152	6,097	44,813	24,263	213,750	34,156	214,454	64,516	473,017	1,473,433	45,610	3,666	1,995,726
	141,384	571,167	24,840	154,105	23,512	213,653	51,184	198,217	99,536	565,975	1,439,287	43,939	4,756	2,053,957
935 936	127,776	494,492	27,066	160,565	14,911	109,684	46,111	160,694	88,088	430,943	1,430,057	44,876	3,081	1,908,957
937	125,810 166,124	436,595	34,009 48,393	191,843 277,726			48,859	138,787	82,868	330,630	1,422,783	38,872		1,792,285
938	176.877	570,250	54,602				59,141	330,821	107,534	608,547	1,746,047	46,698	(2,401,292
939		623,649	50,153	315,294 286,491	7.196	17 015	58,643	345,790	113,245	661,084	1,770,839	44,324	i	2,476,247
	171,242 184,160	569,945	37.845	230,491		37,015 151,931	55,395	325,435	112,744 127,695	648,941	1,768,977	44,108	3.060	2,462,026
		577,706	64.707	392,473	29,124		60,726	303,421		675,563	1,810,083	54,379		2,543,085
941 942	235,809 255,862	717,584		439.464	86,656	467,440	8,378	43,758	159,741	903,671	1,925,270	63,569	1,716	2,894,226
942	243,802	866,795	66,824 42,766	291.843	96,428	608,521	6,528	54,307	169,780	1,102,292	2,165,888	86,113	22,028	3,376,321
944	260,334 212,883	983,910 1,439,891	42,766	301,201	43,895 47,401	274,402 347,245	93,714	647,482 565,393	180,375	1,213,727	2,453,592	96,249	18,321	3,781,889
945	230,868			117,369		347,245 434,876	88,430			1,213,839	2,562,610	56,476	19,046	3,851,971
	251,954	1,211,584 1,441,415	13,464 20,542	178,556	59,098 53,525	434,876	91,682	577,479	164,244	1,129,724	2,721,690	83,828	20,756 53,097	3,955,998
946 947	284.049	1,441,415	44,517	427,330	59,638	423,025	101,094	648,297 579,635	175,161 195,910	1,249,878	3,079,009	88,947	25,780	4,470,931
948	235,297	1,082,002	44,517	427,330 559,735	59,638	630.390	91,755	455.096	195,910	1,538,079	3,390,713	124,885	19,489	5,079,457
949	323,899	1,979,138	66,407	690,045	89,268	1,018,288	57,678 67,449	496,933	223,124	1,645,221 2,205,266	4,520,886	153,130	27.406	6,338,726
950	333,955	2,027,470	23,703	269,728	127,477	997,200	92,704	686,871	243,884	1,953,799	4,146,124	277,138	27,400	6,575,524
951	332,416	1,949,117	32,598	387,796	138.051	1,552,764	72,215	571,161	243,884	2.511.721	4,298,161	277,786	22,132	7,075,393
952	323,922	1,972,918	35,110	440,756	142,156	1,729,924	64,906	525,384	242,604	2,511,721	4,203,734	252.070	25,639	7.599.520
953	310,431	2,005,551		-	177,790	2,090,147	60,407	525,411	238,197	2,615,558	4.857,116	232,070	23,035	7,732,491
954	302,052	2,003,551			168,982	2,032,902	67,108	566,660	236,090	2,599,562	5,113,334	226,824	20,586	7,960,306
955	314,994	2,122,303			177,031	2,032,902	70,387	594,482	230,090	2,774,998	5,407,842	292,984	18,369	8,494,193
56	328,805	2,122,303			180,263	2,180,510	78,185	738,292	258.448	3.008.459	5.145.851	292,964	20,961	8,494,193
57	199,654	1,284,833			153,493	2,005,570		1	153,493	2,005,570	14.600	121,849	20,901	2,142,019
958	224,158	1,420,328			173,920	2,003,370			173,920	2,005,570	14,600	97,803		2,142,019
959	173,227	1,135,222			134,134	1,789,906	1		134,134	1.789,906	14,600	76,891	í	1,881,397
960	186,960	1,133,222		·	134,134	1,769,900		·	134,134	1,789,900	14,000	108,360		2,056,730
961	200,190	1,201,140		/	160,703	2,240,236			160,703	2,240,236		115,291		2,056,750
Totals		69,566,206		35,571,124		30,448,232		111,777,717				4.071.816		165.692.545

TABLE IX.—COKE AND BY-PRODUCTS PRODUCTION FOR YEARS 1895 TO 1925 AND 1926 TO 1961

A 38

MINES AND PETROLEUM RESOURCES REPORT, 1961

¹ "Other by-products" total includes ammonium sulphate, \$52,492; ammonia liquor, \$103,850; light olls, \$16,571; motor fuel, \$7,009; naphthalene, \$4,077; creosote, \$34; benzol (thinning), \$312; solvent naphtha, \$644; cinders, \$344,682; pitch, \$5,131; sulphuric acid, \$6,658; tar-paint, \$2,330; and miscellaneous, \$10,827.

STATISTICS

TABLE X.—DIVIDENDS PAID BY MINING COMPANIES, 1897–1961

	1960	1961
Bralorne Pioneer Mines Ltd.	\$638,940	\$642,040
Cassiar Asbestos Corporation Ltd.	2,376,000	2,376,000
Consolidated Mining and Smelting Co. of		
Canada, Ltd.	16,380,344	16,380,368
Crow's Nest Pass Coal Co. Ltd.	372,708	489,326
Highland-Bell Ltd.	156,986	160,750
Reeves MacDonald Mines Ltd.	467,600	467,600
Sheep Creek Mines Ltd.	150,000	187,500
Others	53,365	16,655
Totals	\$20,595,943	\$20,720,239

Dividends Paid during 1960 and 1961

Dividends Paid Yearly, 1917 to 1961, Inclusive

Year	Amount Paid	Year	Amount Paid
1917	\$3,269,494	1941	\$16,598,110
1918	2,704,469	1942	13,627,104
1919	2,494,283	1943	11,860,159
1920	1,870,296	1944	11,367,732
1921	736,629	1945	10,487,395
1922	3,174,756	1946	15,566,047
1923	2,983,570	1947	27,940,213
1924	2,977,276	1948	37,672,319
1925	5,853,419	1949	33,651,096
1926	8,011,137	1950	34,399,330
1927	8,816,681	1951	40,921,238
1928	9,572,536	1952	32,603,956
1929	11,263,118	1953	, -, -
1930	10,543,500	1954	25,368,262
1931	4,650,857	1955	35,071,583
1932	2,786,958	1956	36,262,682
1933	2,471,735	1957	24,247,420
1934	4,745,905	1958	14,996,123
1935	7,386,070	1959	16,444,281
1936	10,513,705	1960	20,595,943
1937	15,085,293	1961	20,720,239
1938	12,068,875		<u> </u>
1939	11,865,698	Total	\$663,166,111
1940	14,595,530		

_

-- -

TABLE X.-DIVIDENDS PAID BY MINING COMPANIES, 1897-1961-Continued

Company or Mine	Locality	Class	Amount Paid
Ariington	Erie	Gold	. \$94,872
Athabasca	Neison	Gold	25,000
Bayome	Tye Siding	Gold	25,000
Bralorne Mines Ltd. ²	Bridge River	Gold	17,759,500
Bralorne Pioneer Mines Ltd.2	Bridge River	Gold	1,884,885
Belmont-Surf Inlet	Princess Royal Island	Gold	. 1,437,500
Cariboo Gold Quartz Mining Co. Ltd.	Wells	Gold	. 1,679,976
Carlboo-McKinney Con. M. & M. Co	Camp McKinney	Gold	. 565,588
Canadian Pacific Exploration (Porto Rico)	Nelson	Gold	. 37,500
Centre Star	Rossiand	Gold-copper	. 472,255
Fairview Amaigamated	Oliver	Gold	. 5,254
Fern Gold Mining & Milling Co. Ltd.	Nelson	Gold	
Gold Belt Mining Co. Ltd.	Sheep Creek] Gold	. 668,595
Goodenough (leasers)	Ymir	Gold	. 13,731
Hedley Mascot Gold Mines Ltd.	Hedley	Gold	. 1,290,553
Island Mountain Mines Ltd.	Wells	Gold	. 2,491,236
IXL	Rossland	Gold	. 134,025
Jewel-Denero	Greenwood	Gold	11,751
Kelowna Exploration Co. Ltd. (Nickel Plate)	Hedley	Gold	2,040,000
Kelowna Mines Hedley Ltd.	Hedley	Gold	
Kootenay Belle Gold Mines Ltd.	Sheep Creek	Gold	. 357,856
Le Roi Mining Co.	Rossland	Gold-copper	1,475,000
Le Roi No. 2 Ltd.	Rossland	Gold-copper	1,574,640
Lorne (later Bralorne)	Bridge River	Gold	. 20,450
Motherlode	Sheep Creek	Gold	. 163,500
Mount Zeballos Gold Mines Ltd.	Zeballos	Gold	. 165,000
Nickel Plate (Hedley Gold Mining Co. Ltd.)	Hedley	Gold	3,423,191
Pioneer Gold Mines of B.C. Ltd.2	Bridge River	Gold	
Poorman	Nelson	Gold	25,000
Premier Gold Mining Co. Ltd.	Premier	Gold	18,858,075
Privateer Mine Ltd.	Zeballos	Gold	1,914,183
Queen (prior to Sheep Creek Gold Mines Ltd.)_	Sheep Creek		. 98,674
Relief Arlington Mines Ltd. (Second Relief)	Erie	Gold	
Reno Gold Mines Ltd.	Sheep Creek	Gold	1,433,640
Sheep Creek Gold Mines Ltd.7	Sheep Creek	Gold	3,796,875
Silbak Premier Mines Ltd.	Premier		2,425,000
Spud Valley Gold Mines Ltd.	Zeballos	Gold	
Sonset No. 2	Rossland	Gold-copper	[115,007
Surf Inlet Consolidated Gold Mines Ltd.	Surf Inlet	Gold	
War Eagle	Rossland	Gold-copper	. 1,245,250
Ymir Gold	Ymir	Gold	300,000
Ymir Yankee Girl	Ymir	Gold	
Miscellaneous mines		Gold	. 108,623
Total, lode-gold mines			\$79,986,755

Lode-gold Mines¹

¹ The gold-copper properties of Rossiand are included in this table. ² Early in 1959 Bralome Mines Ltd. and Pioneer Gold Mines of B.C. Ltd. were merged under the name of Bralome Pioneer Mines Ltd., and dividend payments for 1959 and subsequent years are entered under the new

are given above. ⁶ In several years, preceding 1953, company revenue included profits from operations of the Lucky Jim zinc-

lead mine. 7 Since March, 1956, company name is Sheep Creek Mines Ltd.

A 40

STATISTICS

TABLE X.—DIVIDENDS PAID BY MINING COMPANIES, 1897–1961—Continued

Company of Mine Locality Class Paid Antoine Rambler Silver-lead-zinc \$10, Base Metals Mining Corporation Ltd. (Mon- arch and Kicking Horse) Beaverdell Silver-lead-zinc \$76, Beaver Silver Mines Ltd. Greenwood Silver-lead-zinc \$76, \$76, Beaver Silver Mines Ltd. Beaverdell Silver-lead-zinc \$77, \$76, Canadian Exploration Ltd. Salmo Silver-lead-zinc \$51, \$76, Consolidated Mining and Smetting Co. of Car- ada, Ltd. Silver-lead-zinc \$51, \$60, \$51, Converaprete Field Silver-lead-zinc \$51, \$60, \$51, Goodemough Cody Silver-lead-zinc \$51, \$60, \$51, Goodemough Cody Silver-lead-zinc \$51, \$61, \$51, Highland-Beil Ltd. Beaverdell Silver-lead-zinc \$61, \$14, \$61, \$61, \$61, \$61, \$61, \$61, \$61, \$61, \$61, \$61, \$61, \$61, <th></th> <th>1</th> <th> </th> <th></th>		1		
Base Metals Mining Corporation Ltd. (Mon- arch and Kicking Horse) Field Silver-lead-zinc. 556, Silver-lead-zinc. 556, Silver-lead-zinc. 556, Silver-lead-zinc. 556, Silver-lead-zinc. 556, Silver-lead-zinc. 556, Silver-lead-zinc. 558, Silver-lead-zinc. 55	Company or Mine	Locality	Class	Amount Paid
arch and Kicking Horse) Field Silver-lead-zinc 586 Beaverdell Wellington Beaverdell Silver-lead-zinc 77 Beaverdell Kiver-lead-zinc 388 388 388 Bosun (Rosebery-Surprise) New Denver Silver-lead-zinc 25 Canadian Exploration Ltd. Salmoo Silver-lead-zinc 51 Canadian Exploration Ltd. Salmoo Silver-lead-zinc 514,661 Consolidated Mining and Smelting Co. of Can- ada, Ltd. Trail Silver-lead-zinc 514,661 Couverapee Field Silver-lead-zinc 514,661 Goodenough Cody- Silver-lead-zinc 514,661 Goodenough Cody- Silver-lead-zinc 50,90 Highland Lass Ltd. Beaverdell Silver-lead-zinc 190,90 Goodenough Cody- Silver-lead-zinc 190,90 Itan Ascot Mines Ltd. Beaverdell Silver-lead-zinc 190,90 Itan Associ Mines Ltd. Beaverdell Silver-lead-zinc 190,90 Itan Mascot Mines Ltd. Beaverdell Silver-lead-zinc 190,90 Itan Mascot Mines Ltd. Bea	Antoine	Rambler	Silver-lead-zinc	\$10,000
Beaverdell-Wellington Beaverdell Silver-lead-zinc 97. Beaver Silver Mines Ltd. Greenwood Silver-lead-zinc 48. Bell Beaver Silver Head-zinc 25. Canadian Exploration Ltd. Salmo Silver-lead-zinc 11.175. Consolidated Mining and Smelting Co. of Candian Exploration Ltd. Trail Silver-lead-zinc 514,6661. Couverapee Field Silver-lead-zinc 514,6661. 50. Florence Silver Ainsworth Silver-lead-zinc 73. Goodenough Cody Silver-lead-zinc 74. Goodenough Cody Silver-lead-zinc 73. Goodenough Cody Silver-lead-zinc 74. Highland Lass Ltd. Beaverdell Silver-lead-zinc 79. Goodenough Silver-lead-zinc 8. 70. Horn Silver Silver-lead-zinc 75. Goodenough Silver-lead-zinc 70. Horn Silver Silver-lead-zinc 70. Jackson Silver-lead-zinc 70.	Base Metals Mining Corporation Ltd. (Mon-			
Beaver Silver Mines Ltd. Greenwood. Silver-lead-zinc. 48, Bell Bell Bell Verver. Silver-lead-zinc. 388, Bosun (Rosebery-Surprise). New Denver. Silver-lead-zinc. 25, Canadian Exploration Ltd. Salmo Silver-lead-zinc. 514,661, Consolidated Mining and Smelting Co. Clar ada, Ltd. Trail Silver-lead-zinc. 514,661, Couverapee Field Silver-lead-zinc. 30, Groenword Silver-lead-zinc. 30, Groenword Silver-lead-zinc. 30, Forence Silver. Anisworth Silver-lead-zinc. 30, Groenword Silver-lead-zinc. 31, Highland Lass Ltd. Beaverdell Silver-lead-zinc. 45, Hall Mining Co. Hall Creek Silver-lead-zinc. 1950, Horn Silver- Groenword Silver-lead-zinc. 1950, Horn Silver-lead-zinc. 1950, Groenword Silver-lead-zinc. 1950, Silver-lead-zinc. 1950, Silver-lead-zinc. 20, Sandon Silver-lead-zinc. 20, Jackson Silver-lead-zinc. 20, Jackson Silver-lead-zinc. 20, Jackson Silver-lead-zinc. 20, Sandon Silver-lead-zinc. 20, Jackson Silver-lead-zinc. 20, Sandon Silver-lead-zinc. 20, Silver-lead-zinc. 20, Silver-lead-zinc. 20, Silver-lead-zinc. 20, Silver-lead-zinc. 30, Silver-lead-zinc. 31, Silver-lead-zinc. 31, Silver-lead-zinc. 31, Silver-lead-zinc. 31, Silver-le				586,143
Bell Reverdell Silver-lead-zinc 388, Bosun (Rosebery-Surprise) New Denver Silver-lead-zinc 11,175, Canadian Exploration Ltd. Salmo Silver-lead-zinc 11,175, Consolidated Mining and Smelting Co. of Canada, Ltd. Silver-lead-zinc 51, defat. 51, defat. Converapce Trail Silver-lead-zinc 51, defat. 51, defat. Converapce Silver-lead-zinc 51, defat. 51, defat. 55, defat. Goodenough Cody Silver-lead-zinc. 122, defat. 132, defat. 132, defat. Goodenough Cody Silver-lead-zinc. 132, defat. 132, defat. <td></td> <td></td> <td></td> <td>97,200</td>				97,200
Bosun (Rosebery-Surprise)New DenverSilver-lead-zinc25.Canadian Exploration LtdSalmoSilver-lead-zinc11,175.CapellaNew DenverSilver-lead-zinc514,661.Consolidated Mining and Smelting Co. of CanTrailSilver-lead-zinc514,661.Consolidated Mining and Smelting Co.TrailSilver-lead-zinc50.Duthie Mines Ltd.SmithersSilver-lead-zinc50.CouverapeeSilver-lead-zinc50.GoodenoughCodySilver-lead-zinc13.HB. Mining Co.Hall CreekSilver-lead-zinc13.GoodenoughCodySilver-lead-zinc13.Highland-Bell Ltd.BeaverdellSilver-lead-zinc13.Hon SilverSinmikameenSilver-lead-zinc10.JocksonSalmoSilver-lead-zinc20.Iron Mountain (Emerald)SalmoSilver-lead-zinc20.JacksonRetallackSilver-lead-zinc20.Luck y JimThree ForksSilver-lead-zinc50.Luck y JimThree ForksSilver-lead-zinc50.MercurySandonSilver-lead-zinc50.Monitor and AjaxThree ForksSilver-lead-zinc60.MercurySandonSilver-lead-zinc70.Montain ConCodySilver-lead-zinc70.Montain ConCodySilver-lead-zinc70.Noth StarCodySilver-lead-zinc70.Noth StarSilver-lead-zinc71. </td <td></td> <td></td> <td></td> <td>48,000</td>				48,000
Canadian Exploration Ltd. Salmo Silver-lead-zinc. 11,175. Consolidated Mining and Smelting Co. of Can- rada, Ltd. Trail Silver-lead-zinc. 51,4661. Couverapee Field Silver-lead-zinc. 51,4661. Duthio Mines Ltd. Smithers. Silver-lead-zinc. 50,466. Goodenough Cody Silver-lead-zinc. 139, Goodenough 130,700. Goodenough Cody Silver-lead-zinc. 18, Mining Co. Highland Lass Ltd. Beaverdell. Silver-lead-zinc. 19, Silver-lead-zinc. Highland Lass Ltd. Beaverdell. Silver-lead-zinc. 19, Silver-lead-zinc. 19, Silver-lead-zinc. 19, Silver-lead-zinc. 19, Silver-lead-zinc. 20, Jackson. Galato-Alamo Silver-lead-zinc. Silver-lead-zinc. 20, Jackson. Silver-lead-zinc. 20, Jackson. 20, Jackson. 20, Jackson. 20, Jackson. Silver-lead-zinc. 80, Minot. 20, Jackson. 20, Jackson. 20, Silver-lead-zinc. 80, Minot. 20, Jackson. 20, Jacks		Beaverdell		388,297
CapellaNew DenverSilver-lead-zinc5,Consolidated Mining and Smelting Co. of Can ada, Ltd.TrailSilver-lead-zinc5,Juthie Mines Ltd.Silver-lead-zincSilver-lead-zinc5,Duthie Mines Ltd.Silver-lead-zincSilver-lead-zinc13,GoodenoughCodySilver-lead-zinc14,H.B. Mining Co.Hall CreekSilver-lead-zinc14,Highland Lass Ltd.BeaverdellSilver-lead-zinc13,Hen SilverSilver-lead-zinc13,14,Horn SilverSilver-lead-zinc14,Horn SilverSilver-lead-zinc6,Iron Mountain (Emerald)SalmoSilver-lead-zinc20,Iron Mountain (Emerald)SalmoSilver-lead-zinc20,LacksonSilver-lead-zinc20,Silver-lead-zinc10,Lone BachelorSandonSilver-lead-zinc10,10,Lucky JimThree ForksSilver-lead-zinc10,MercurySandonSilver-lead-zinc10,10,Monitor and AjaxThree ForksSilver-lead-zinc10,Monitor and AjaxThree ForksSilver-lead-zinc11,No OneSandonSilver-lead-zinc11,No. OneSandonSilver-lead-zinc11,Noth StarKimberleySilver-lead-zinc11,No NoneSilver-lead-zinc11,11,No NontaraCodySilver-lead-zinc11,No NoneSilver-lead-zinc11,<	Bosun (Kosedery-Surprise)	Salma		25,000
Consolidated Mining and Smelting Co. of Canada, Ltd.TrailSilver-lead-zinc.514,661,CouverapeeFieldSilver-lead-zinc.50,Duthie Mines Ltd.Smithers.Silver-lead-zinc.50,Forence SilverSilver-lead-zinc.35,Goodenougho.Cody.Silver-lead-zinc.45,H.B. Mining Co.Hall Creek.Silver-lead-zinc.132,Highland Lass Ltd.Beaverdell.Silver-lead-zinc.132,Highland Lass Ltd.Beaverdell.Silver-lead-zinc.132,Highland Lass Ltd.Beaverdell.Silver-lead-zinc.20,JacksonSilver-lead-zinc.20,20,JacksonSilver-lead-zinc.20,JacksonSilver-lead-zinc.20,JacksonSilver-lead-zinc.20,JacksonSilver-lead-zinc.20,MeteorSandonSilver-lead-zinc.20,MeteorSilver-lead-zinc.20,MeteorSilver-lead-zinc.20,MeteorSilver-lead-zinc.20,MeteorSilver-lead-zinc.20,Monitor and AjaxThree Forks.Silver-lead-zinc.Monitor and AjaxThree Forks.Silver-lead-zinc.Nothe FiveCody.Silver-lead-zinc.70,NothardSilver-lead-zinc.70,Monitor and AjaxThree Forks.Silver-lead-zinc.71,NothardSilver-lead-zinc.71,NothardSilver-lead-zinc.72,NothardSilver-lead-				
ada, Ltd. Trail Silver-lead-zinc. 514,661. Duthie Mines Ltd. Smithers. Silver-lead-zinc. 5.5. Giant Mascot Mines Ltd. Spillimacheen. Silver-lead-zinc. 35. Goodenough Cody. Silver-lead-zinc. 45. Highland Lass Ltd. Beaverdell. Silver-lead-zinc. 45. Highland Lass Ltd. Beaverdell. Silver-lead-zinc. 45. Highland Lass Ltd. Beaverdell. Silver-lead-zinc. 400. Iron Mountain (Emerald) Salmon. Silver-lead-zinc. 20. Iron Mountain (Emerald) Salmon. Silver-lead-zinc. 20. Iackson Retruited. Silver-lead-zinc. 20. Lack Jim Three Forks. Silver-lead-zinc. 20. Mercury. Sandon Silver-lead-zinc. 6. Mercury. Sandon Silver-lead-zinc. 70. Monitor and Ajax Three Forks. Silver-lead-zinc. 70. Monitor and Ajax Three Forks. Silver-lead-zinc. 70. Nothe Five Cody. Silver-lead-zinc. 71. <		New Denver	Suver-lead-zitte	5,500
CouverapeeFieldSilver-lead-zincS.Duthie Mines Ltd.Silver-lead-zincSilver-lead-zincSOFlorence SilverSilver-lead-zincSOGiant Mascot Mines Ltd.SpillimacheenSilver-lead-zinc45GoodenoughCodySilver-lead-zinc45H.B. Mining Co.Hall CreekSilver-lead-zinc132Highland Lass Ltd.BeaverdellSilver-lead-zinc132Highland Lass Ltd.BeaverdellSilver-lead-zinc6Horn SilverSilver-lead-zinc200Icon Mountain (Emerald)SalmoSilver-lead-zinc200JacksonSilver-lead-zinc200JacksonSilver-lead-zinc200JacksonSilver-lead-zinc200MeteorSandonSilver-lead-zinc200MeteorSandonSilver-lead-zinc200MeteorSandonSilver-lead-zinc80MeteorSocan CitySilver-lead-zinc80MeteorSilver-lead-zinc10Monitor and AjaxThree ForksSilver-lead-zinc70Montain ConCodySilver-lead-zinc71No CheSandonSilver-lead-zinc72No CheSandonSilver-lead-zinc72No CheSandonSilver-lead-zinc72No CheSandonSilver-lead-zinc72No CheSandonSilver-lead-zinc72No CheSandonSilver-lead-zinc72No Che<		Trail	Silver lead-zinc	514 661 351
Duthie Mines Ltd. Smithers Silver-lead-zinc 50 Giant Mascot Mines Ltd. Spillimacheen Silver-lead-zinc 35 Giant Mascot Mines Ltd. Spillimacheen Silver-lead-zinc 45 Goodenough Cody Silver-lead-zinc 45 Highland Lass Ltd. Beaverdell Silver-lead-zinc 132 Hand Case Ltd. Beaverdell Silver-lead-zinc 60 Horn Silver Sandon Silver-lead-zinc 60 Icaho Alamo Sandon Silver-lead-zinc 200 Icaho Alamo Sandon Silver-lead-zinc 200 Jackson Retailack Silver-lead-zinc 200 Jackson Sandon Silver-lead-zinc 80 Mercury Sandon Silver-lead-zinc 80 Metcor Slocan City Silver-lead-zinc 70 Monitor and Ajax Three Forks Silver-lead-zinc 70 Monitor and Ajax Three Forks Silver-lead-zinc 71 Mohitor and Ajax Three Forks				5,203
Florence Silver Ainsworth. Silver-lead-zinc. 35. Giant Mascot Mines Ltd. Spillimacheen Silver-lead-zinc. 179. Goodenough Cody. Silver-lead-zinc. 8. H.B. Mining Co. Hall Creek Silver-lead-zinc. 8. Highland Las Ltd. Beaverdell Silver-lead-zinc. 19. Highland-Beil Ltd. Beaverdell. Silver-lead-zinc. 10. Iron Mountain (Emerald) Sandon Silver-lead-zinc. 20. Jackson Silver-lead-zinc. 20. Jackson Silver-lead-zinc. 20. Lore Bachelor Sandon Silver-lead-zinc. 20. Jackson Silver-lead-zinc. 30. Mercury. Sandon Silver-lead-zinc. 30. Jackson Silver-lead-zinc. 30. Mercury. Sandon Silver-lead-zinc. 10. Monitor and Ajax Three Forks. Silver-lead-zinc. 10. Monitor and Ajax Three Forks. Silver-lead-zinc. 71. 72. Noble Five. Cody. Silver-lead-zinc. 72. 73. Nothor fistar Sando				50,000
Giant Mascot Mines Ltd. Spillimacheen Silver-lead-zinc. 179 Goodenough Cody Silver-lead-zinc. 45, H.B. Mining Co. Hall Creek. Silver-lead-zinc. 18, Highland Lass Ltd. Beaverdell. Silver-lead-zinc. 1920 Highland Lass Ltd. Beaverdell. Silver-lead-zinc. 1930, Horn Silver Sandon Silver-lead-zinc. 20, Icaho Alamo Sandon Silver-lead-zinc. 20, Jackson Retallack. Silver-lead-zinc. 20, Lone Bachelor Sandon Silver-lead-zinc. 10, Lone Bachelor Sandon Silver-lead-zinc. 10, Mercury. Sandon Silver-lead-zinc. 10, Monitor and Ajax Three Forks. Silver-lead-zinc. 10, Monitor and Ajax Three Forks. Silver-lead-zinc. 10, Montain Con. Cody Silver-lead-zinc. 10, Montain Con. Cody Silver-lead-zinc. 10, Montain Con. Cody Silver-lead-zinc. 10, Noth Sive <t< td=""><td></td><td>Ainsworth</td><td></td><td>35,393</td></t<>		Ainsworth		35,393
GoodenoughCodySilver-lead-zinc.45.H.B. Mining Co.Hall CreekSilver-lead-zinc.18.Highland Lass Ltd.Beaverdell.Silver-lead-zinc.13.Highland Lass Ltd.Beaverdell.Silver-lead-zinc.1.950.Highland-Beil Ltd.Beaverdell.Silver-lead-zinc.1.950.Idaho-AlamoSandonSilver-lead-zinc.200.Icon Mountain (Emerald)SalmoSilver-lead-zinc.200.JacksonRetallackSilver-lead-zinc.200.Last ChanceThree ForksSilver-lead-zinc.500.Lucky Jin.Three ForksSilver-lead-zinc.60.Mercury.SandonSilver-lead-zinc.60.MetcorSocan CitySilver-lead-zinc.70.Monitor and AjaxThree ForksSilver-lead-zinc.70.Mountain Con.CodySilver-lead-zinc.71.McAlisterThree ForksSilver-lead-zinc.72.Noth FiveSocan CitySilver-lead-zinc.72.Noth StarSandonSilver-lead-zinc.74.No. OneSandonSilver-lead-zinc.72.Noth StarSandonSilver-lead-zinc.143.PayneSandonSilver-lead-zinc.143.ProvidenceGreenwoodSilver-lead-zinc.143.PayneSandonSilver-lead-zinc.23.Rother PayneSandonSilver-lead-zinc.24.Silver-lead-zincCodySilver-lead-zinc.24.				179,263
H.B. Mining Co. Hall Creek Silver-lead-zinc. 8 Highland Lass Ltd. Beaverdell Silver-lead-zinc. 132, Highland-Beil Ltd. Beaverdell Silver-lead-zinc. 132, Horn Silver Silver-lead-zinc. 102, 102, Horn Silver Silver-lead-zinc. 200, Silver-lead-zinc. 200, Jackson Retallack. Silver-lead-zinc. 201, Last Chance. 201, Lock Jim. Three Forks Silver-lead-zinc. 201, Silver-lead-zinc. 201, Metcor Sandon Silver-lead-zinc. 80, Silver-lead-zinc. 80, Mountain Con. Cody Silver-lead-zinc. 80, Silver-lead-zinc. 80, Mountain Con. Cody Silver-lead-zinc. 10, Mountain Con. 70, Mountain Con. Cody Silver-lead-zinc. 71, 72, No The Eorks. Silver-lead-zinc. 72, No One Sandon Silver-lead-zinc. 72, 72, No The Silver. 497, No. One Sandon Silver-lead-zinc. 1445, <t< td=""><td></td><td></td><td></td><td>45,668</td></t<>				45,668
Highland Lass Ltd. Beaverdell Silver-lead-zinc. 132, Highland-Beil Ltd. Beaverdell Silver-lead-zinc. 1,950, Idaho-Alamo Sandon Silver-lead-zinc. 20, Idaho-Alamo Sandon Silver-lead-zinc. 20, Jackson Retallack Silver-lead-zinc. 20, Last Chance Three Forks Silver-lead-zinc. 20, Lucky Jim. Three Forks Silver-lead-zinc. 50, Mercury. Sandon Silver-lead-zinc. 50, Mercury. Sandon Silver-lead-zinc. 70, Monitor and Ajax Three Forks Silver-lead-zinc. 70, Monitor and Ajax Three Forks Silver-lead-zinc. 71, McAllister Three Forks Silver-lead-zinc. 71, Noth Star Sandon Silver-lead-zinc. 72, Noth Star Sandon Silver-lead-zinc. 74, North Star Sindon Silver-lead-zinc. 74, Povidence Greenwood Silver-lead-zinc. 74, Queen Bess Alamo			Silver-lead-zinc	8,904
Highland-Bell Ltd.BeaverdellSilver-lead-zinc.1,950,Idaho-AlamoSimilkameenSilver-lead-zinc.400,Idaho-AlamoSalmoSilver-lead-zinc.20,Iron Mountain (Emerald)SaSalmoSilver-lead-zinc.20,JacksonRetailackSilver-lead-zinc.20,Lone BachelorSandonSilver-lead-zinc.20,Lone BachelorSandonSilver-lead-zinc.50,Lucky JimThree ForksSilver-lead-zinc.80,MercurySandonSilver-lead-zinc.10,Mointain ConCodySilver-lead-zinc.10,Mointain ConCodySilver-lead-zinc.70,Mointain ConCodySilver-lead-zinc.71,McAllisterThree ForksSilver-lead-zinc.72,Noth FiveCodySilver-lead-zinc.72,North Star.Silver-lead-zinc.45,No. OneSandonSilver-lead-zinc.1497,No. OneSandonSilver-lead-zinc.142,Queen BessAlamoSilver-lead-zinc.142,Queen BessAlamoSilver-lead-zinc.142,Queen BessAlamoSilver-lead-zinc.142,Silver-lead-zinc.Silver-lead-zinc.143,Silver-lead-zinc.Silver-lead-zinc.142,Silver-lead-zinc.Silver-lead-zinc.142,Silver-lead-zinc.Silver-lead-zinc.142,Silver-lead-zinc.Silver-lead-zinc.142,Sil				132,464
Horn SilverSilver-lead-zinc6,Idaho-AlamoSandonSilver-lead-zinc400,Iron Mountain (Emerald)SalmoSilver-lead-zinc20,JacksonRetallackSilver-lead-zinc20,JacksonRetallackSilver-lead-zinc20,Last ChanceThree ForksSilver-lead-zinc20,Jucky JimThree ForksSilver-lead-zinc50,Uucky JimThree ForksSilver-lead-zinc50,MercurySandonSilver-lead-zinc6,MetrorySocan CitySilver-lead-zinc70,Monitor and AjaxThree ForksSilver-lead-zinc70,Mountain ConCodySilver-lead-zinc71,Moth StarSilver-lead-zinc72,Noble FiveCodySilver-lead-zinc72,Noth StarSandonSilver-lead-zinc71,No OneSandonSilver-lead-zinc71,OtawaSlocan CitySilver-lead-zinc142,PayneSandonSilver-lead-zinc142,Queen BessAlamoSilver-lead-zinc246,RecoGreenwoodSilver-lead-zinc246,Silver-lead-zincSilver-lead-zinc142,Queen BessAlamoSilver-lead-zinc246,RetoRamblerSilver-lead-zinc246,Silver-lead-zincSilver-lead-zinc125,Stege Creek Mines Ltd.RemacSilver-lead-zinc125,Stege Creek Mines Ltd.Bardon <td< td=""><td></td><td></td><td>Silver-lead-zinc</td><td>1,950,640</td></td<>			Silver-lead-zinc	1,950,640
Idaho-Alamo Sandon Silver-lead-zinc 400 Iron Mountain (Emerald) Salmo Silver-lead-zinc 20, Jackson Retailack Silver-lead-zinc 20, Last Chance Three Forks Silver-lead-zinc 50, Lone Bachelor Sandon Silver-lead-zinc 50, Lucky Jim Three Forks Silver-lead-zinc 50, Meteor Sandon Silver-lead-zinc 10, Mointain Con. Cody Silver-lead-zinc 497, No Th Star Kimberley Silver-lead-zinc 497, No, One Sandon Silver-lead-zinc 140, Payne Sandon Silver-lead-zinc 142, Queen Bees Alamo Silver-lead-zinc 142, Queen Bees Alamo Silver-lead-zinc 3565, Reco Cody Silver-lead-zinc 125,		Similkameen	Silver-lead-zinc	6.000
JacksonRetallackSilver-lead-zinc20,Last ChanceThree ForksSilver-lead-zinc213,Lone BachelorSandonSilver-lead-zinc50,Lucky JimThree ForksSilver-lead-zinc80,Mercury.SiloandonSilver-lead-zinc10,Mointain ConCodySilver-lead-zinc70,Mointain ConCodySilver-lead-zinc70,Montain ConCodySilver-lead-zinc70,Mortain ConCodySilver-lead-zinc70,Nothe FiveCodySilver-lead-zinc6,Nothe SilveSandonSilver-lead-zinc6,North StarSilver-lead-zinc6,72,No, OneSandonSilver-lead-zinc6,OttawaSilver-lead-zinc6,110,PayneSandonSilver-lead-zinc142,Queen BessRamblerSilver-lead-zinc25,RecoCodySilver-lead-zinc3,565,RecoCodySilver-lead-zinc3,565,RecoCodySilver-lead-zinc124,Silversemit and Sicoan Star4SandonSilver-lead-zinc124,Silver Standard Mines Ltd.InvermereSilver-lead-zinc126,Silver Standard Mines Ltd.SilvertonSilver-lead-zinc142,Substen Ladeand Mines Ltd.Silver-lead-zinc142,Substen Cons Silver Lead-zincSilver-lead-zinc126,Silver Standard Mines Ltd.Silver-lead-zinc126,			Silver-lead-zinc	400,000
JacksonRetallackSilver-lead-zinc20,Last ChanceThree ForksSilver-lead-zinc213,Lone BachelorSandonSilver-lead-zinc50,Lucky JimThree ForksSilver-lead-zinc80,MercurySocan CitySilver-lead-zinc70,Monitor and AjaxThree ForksSilver-lead-zinc70,Monitor and AjaxThree ForksSilver-lead-zinc70,Monitar ConCodySilver-lead-zinc70,Moltain ConCodySilver-lead-zinc72,Nobie FiveCodySilver-lead-zinc6,Nobie FiveSandonSilver-lead-zinc6,Noth StarKimberleySilver-lead-zinc6,No. OneSandonSilver-lead-zinc6,Queen BessAlamoSilver-lead-zinc142,ProvidenceGreenwoodSilver-lead-zinc25,Rambler CaribooRamblerSilver-lead-zinc25,Reves MacDonald Mines Ltd.RemacSilver-lead-zinc26,Silver SandonSilver-lead-zinc26,26,Silver Lead-zincSandonSilver-lead-zinc26,Silver Ead-zincSandonSilver-lead-zinc26,Silver SandonSilver-lead-zinc26,26,Silver Lead-zincSandonSilver-lead-zinc26,Silver Lead-zincSandonSilver-lead-zinc26,Silver Lead-zincSandonSilver-lead-zinc26,Silver Lead-zincSand	Iron Mountain (Emerald)	Salmo	Silver-lead-zinc	20,000
Last ChanceThree ForksSilver-lead-zinc213Lone BachelorSandonSilver-lead-zinc50,Lucky JimThree ForksSilver-lead-zinc80,MercurySandonSilver-lead-zinc60,Monitor and AjaxThree ForksSilver-lead-zinc70,Monitor and AjaxThree ForksSilver-lead-zinc70,Mountain ConCodySilver-lead-zinc71,Mountain ConCodySilver-lead-zinc71,Mountain ConCodySilver-lead-zinc72,North StarKimberleySilver-lead-zinc72,North StarSandonSilver-lead-zinc66,OttawaSilver-lead-zinc72,North StarSilver-lead-zinc71,PayneSandonSilver-lead-zinc71,PayneSandonSilver-lead-zinc142,Queen BessAlamoSilver-lead-zinc25,Rambler-CaribooRamblerSilver-lead-zinc334,Reeves MacDonald Mines Ltd.RemacSilver-lead-zinc35,StergeneSandonSilver-lead-zinc26,Sheep Creek Mines Ltd.InvermereSilver-lead-zinc26,Silver Standard Mines Ltd.RetallackSilver-lead-zinc26,Silver Standard Mines Ltd.HazeltonSilver-lead-zinc26,Silver Standard Mines Ltd.Silver-lead-zinc27,34,Sunshine Lardeau Mines Ltd.Silver-lead-zinc36,Silver-lead-zincSilver	Jackson		Silver-lead-zinc	20,000
Lone BachelorSandonSilver-lead-zinc50,Lucky JimThree ForksSilver-lead-zinc80,MercurySandonSilver-lead-zinc80,MercurySandonSilver-lead-zinc10,Monitor and AjaxThree ForksSilver-lead-zinc71,Monitor and AjaxThree ForksSilver-lead-zinc71,Mother and AjaxThree ForksSilver-lead-zinc71,Mother and AjaxThree ForksSilver-lead-zinc71,Mother FiveCodySilver-lead-zinc72,Nothe FiveCodySilver-lead-zinc74,Noth StarKimberleySilver-lead-zinc74,No. OneSandonSilver-lead-zinc110,PayneSandonSilver-lead-zinc142,ProvidenceGreenwoodSilver-lead-zinc142,Queen BessAlamoSilver-lead-zinc25,Rambler CaribooRamblerSilver-lead-zinc346,Reves MacDonald Mines LtdRemacSilver-lead-zinc356,St. EugeneMoyieSilver-lead-zinc125,St. EugeneMoyieSilver-lead-zinc243,Silver Standard Mines Ltd.HazeltonSilver-lead-zinc142,Spokane-TrinketSilver-lead-zinc144,Sunshine Lardeau Mines Ltd.Silver-lead-zinc143,Silver Standard Silver LeadSilver-lead-zinc144,Sunshine Lardeau Mines Ltd.Silver-lead-zinc144,Sunshine Lardeau Mines Ltd. <td>Last Chance</td> <td></td> <td>Silver-lead-zinc</td> <td>213,000</td>	Last Chance		Silver-lead-zinc	213,000
Mercury.SandonSilver-lead-zinc.6MetcorSlocan City.Silver-lead-zinc.10Monitor and Ajax.Three Forks.Silver-lead-zinc.70Mountain Con.Cody.Silver-lead-zinc.71McAllisterThree Forks.Silver-lead-zinc.72Noble FiveCody.Silver-lead-zinc.45Noble FiveCody.Silver-lead-zinc.47Noth StarKimberley.Silver-lead-zinc.497No. OneSandon.Silver-lead-zinc.10PayneSandon.Silver-lead-zinc.110PayneSandon.Silver-lead-zinc.142Queen BessAlamoSilver-lead-zinc.25Rambler CaribooRambler.Silver-lead-zinc.344Reco.Cody.Silver-lead-zinc.354Silver Silver-lead-zinc.125Moyie.Silver-lead-zinc.Silver Silver Silver Silver Silver-lead-zinc.24334Silver Silver	Lone Bachelor		Silver-lead-zinc	50,000
MeteorSilocan CitySilver-lead-zinc10,Monitor and AjaxThree ForksSilver-lead-zinc70,Mountain ConCodySilver-lead-zinc71,McAllisterThree ForksSilver-lead-zinc74,Noth StarCodySilver-lead-zinc72,North StarKimberleySilver-lead-zinc66,OtawaSilver-lead-zinc110,PayneSandonSilver-lead-zinc142,Queen BessGreenwoodSilver-lead-zinc142,Queen BessGreenwoodSilver-lead-zinc467,Reeves MacDonald Mines Ltd.RemacSilver-lead-zinc334,Ruth Mines Ltd.RemacSilver-lead-zinc125,Silver Standard Mines Ltd.RemacSilver-lead-zinc126,Silver Standard Mines Ltd.RemacSilver-lead-zinc126,Silver Standard Mines Ltd.HazeltonSilver-lead-zinc126,Silver Standard Mines Ltd.SandonSilver-lead-zinc126,Silver Standard Mines Ltd.HazeltonSilver-lead-zinc1,715,Syckane-TrinketAinsworthSilver-lead-zinc10,Silver LeadSilvertonSilver-lead-zinc164,Torbrit Silver Mines Ltd.BeatonSilver-lead-zinc164,Torbrit Silver Mines Ltd.BeatonSilver-lead-zinc164,Mines Ltd.SilvertonSilver-lead-zinc164,Sunset and Trade DollarRetallackSilver-lead-zinc164,Subar-lead	Lucky Jim	Three Forks		80,000
Monitor and AjaxThree ForksSilver-lead-zinc70Mountain ConCodySilver-lead-zinc71Mountain ConCodySilver-lead-zinc71MothisterThree ForksSilver-lead-zinc72Noble FiveCodySilver-lead-zinc497Noth StarSilver-lead-zinc497No. OneSandonSilver-lead-zinc110PayneSandonSilver-lead-zinc142Queen BessGreenwoodSilver-lead-zinc142Queen BessAlamoSilver-lead-zinc467Reves MacDonald Mines LtdRemacSilver-lead-zinc3565RecoCodySilver-lead-zinc125Silver Statian Mines LtdRemacSilver-lead-zinc126Silver Standard Mines LtdSandonSilver-lead-zinc126Silver Standard Mines LtdSandonSilver-lead-zinc126Silver Standard Mines LtdSandonSilver-lead-zinc126Silver Standard Mines LtdSandonSilver-lead-zinc1267Syskane-TrinketSilver CadSilver Cad-zinc1267Syskane-TrinketSilver CadSilver-lead-zinc1267Silver Standard Mines LtdBeatonSilver-lead-zinc1273Silver Statiandard Mines LtdBeatonSilver-lead-zinc164Silver Lead-zincSilver-lead-zinc390310Silver StatianSilver-lead-zinc390310Silver StatianSilver-lead-zinc390310 </td <td>Mercury.</td> <td>Sandon</td> <td>Silver-lead-zinc</td> <td>6,000</td>	Mercury.	Sandon	Silver-lead-zinc	6,000
Mountain Con Cody Silver-lead-zinc 71, McAllister Three Forks Silver-lead-zinc 45, Noble Five Cody Silver-lead-zinc 47, Noth Star Kimberley Silver-lead-zinc 67, North Star Sandon Silver-lead-zinc 110, Payne Sandon Silver-lead-zinc 143, Providence Greenwood Silver-lead-zinc 142, Queen Bess Alamo Silver-lead-zinc 35, Reves MacDonald Mines Ltd. Remac Silver-lead-zinc 36, Reves MacDonald Mines Ltd. Remac Silver-lead-zinc 36, Silvers Standard Mines Ltd. Sandon Silver-lead-zinc 36, Silvers Standard Mines Ltd. Sandon Silver-lead-zinc 25, St. Eugene Moyie Silver-lead-zinc 125, 125, Silvers Standard Mines Ltd. Sandon Silver-lead-zinc 126, Silver Standard Mines Ltd. Silvertint and Silver Lead-zinc 126, 126, Silver Standard Mines Ltd. Silver-lead-zinc 126, 126,				10,257
McAllister Three Forks Silver-lead-zinc 45, Noble Five Cody Silver-lead-zinc 72, North Star Kimberley Silver-lead-zinc 66, Otawa Silver-lead-zinc 110, Payne Sandon Silver-lead-zinc 1438, Providence Greenwood Silver-lead-zinc 1447, Queen Bess Alamo Silver-lead-zinc 25, Rambler-Cariboo Rambler Silver-lead-zinc 3,667, Reco Silver-lead-zinc 3,667, Reco 3,667, St. Eugene Moyie Silver-lead-zinc 142, 3,667, Silversmith and Slocan Star ⁴ Sandon Silver-lead-zinc 1,267, Silversmith and Slocan Star ⁴ Sandon Silver-lead-zinc 1,267, Sylversmith and Slocan Star ⁴ Sandon Silver-lead-zinc 1				70,500
Noble FiveCodySilver-lead-zinc72,North StarKimberleySilver-lead-zinc497,No. OneSandonSilver-lead-zinc110,PayneSandonSilver-lead-zinc1,438,ProvidenceGreenwoodSilver-lead-zinc1,443,Queen BessAlamoSilver-lead-zinc1,42,Queen BessRamblerSilver-lead-zinc1,42,Reeves MacDonald Mines Ltd.RemacSilver-lead-zinc3,565,Reco.CodySilver-lead-zinc1,25,St. EugeneMoyleSilver-lead-zinc1,266,St. EugeneMoyleSilver-lead-zinc1,267,Silver Standard Mines Ltd.InvermereSilver-lead-zinc1,267,Silver Standard Mines Ltd.InvermereSilver-lead-zinc1,267,Silver Standard Mines Ltd.SandonSilver-lead-zinc1,267,Silver Standard Mines Ltd.HazeltonSilver-lead-zinc1,267,Silver Standard Mines Ltd.Silver-lead-zinc1,267,1,115,Spokane-TrinketAinsworthSilver-lead-zinc1,267,Sunshine Lardeau Mines Ltd.BeatonSilver-lead-zinc1,267,Sunshine Lardeau Mines Ltd.BeatonSilver-lead-zinc1,64,Violamac Mines (B.C.) Ltd.KasloSilver-lead-zinc164,Walace Mines Ltd.BeaverlellSilver-lead-zinc390,UticaKasloSilver-lead-zinc155,WashingtonRemetlel StationSilver-lead-zinc <td< td=""><td></td><td>Cody</td><td></td><td>71,387</td></td<>		Cody		71,387
North StarKimberleySilver-lead-zinc497,No. OneSandonSilver-lead-zinc6,OttawaSlocan CitySilver-lead-zinc110,PayneSandonSilver-lead-zinc1,438,ProvidenceGreenwoodSilver-lead-zinc1,432,Queen BessAlamoSilver-lead-zinc25,Rambler-CaribooRamblerSilver-lead-zinc3,565,RecoCodySilver-lead-zinc334,St. EugeneKononSilver-lead-zinc243,Silver Standard Mines LtdSandonSilver-lead-zinc243,Silver Standard Mines LtdSandonSilver-lead-zinc243,Silver Standard Mines LtdSandonSilver-lead-zinc1,267,Silver Standard Mines LtdSandonSilver-lead-zinc1,267,Silver Standard Mines LtdSandonSilver-lead-zinc1,267,Silver Standard Mines LtdSilver-lead-zinc1,267,1,267,Silver LeadSilver-lead-zinc1,267,1,267,Substine Lardeau Mines LtdSilver-lead-zinc10,2,734,Sunset and Trade DollarRetallackSilver-lead-zinc390,UticaKasloSilver-lead-zinc135,Wallace Mines (Ltd.)BeaverdellSilver-lead-zinc390,UticaKasloSilver-lead-zinc135,Wallace Mines (Ltd.)BeaverdellSilver-lead-zinc390,UticaKasloSilver-lead-zinc350,Wallace Mines (Ltd.) <t< td=""><td></td><td>Three Forks</td><td></td><td>45,088</td></t<>		Three Forks		45,088
No. OneSandonSilver-lead-zinc6,OttawaSlocan CitySilver-lead-zinc110,PayneSandonSilver-lead-zinc142,Queen BessGreenwoodSilver-lead-zinc25,Rambler-CaribooRamblerSilver-lead-zinc3,565,RecoCodySilver-lead-zinc334,StilverseitaSandonSilver-lead-zinc334,Ruth Mines Ltd.SandonSilver-lead-zinc334,St. EugeneMoyieSilver-lead-zinc243,Silversmith and Slocan Star4SandonSilver-lead-zinc1,267,Spokane-TrinketAinsworthSilver-lead-zinc1,267,Sunshine Lardeau Mines Ltd.HazeltonSilver-lead-zinc1,267,Standard Silver LeadSilver-lead-zinc1,267,1,267,Sunshine Lardeau Mines Ltd.HazeltonSilver-lead-zinc1,267,Sunshine Lardeau Mines Ltd.HazeltonSilver-lead-zinc1,267,Sunshine Lardeau Mines Ltd.AinsworthSilver-lead-zinc1,713,Sunshine Lardeau Mines Ltd.HazeltonSilver-lead-zinc1,90,Viciamac Mines Ltd.Ainse Arm.Silver-lead-zinc1,80,Wallace Mines Ltd.New DenverSilver-lead-zinc1,90,Wallace Mines Ltd.Silver-lead-zinc1,90,1,90,Wallace Mines Ltd.Silver-lead-zinc1,90,1,90,Wallace Mines Ltd.Silver-lead-zinc1,90,1,90,Silver-lead-zincSilver-lead-zinc1				72,859
OttawaSilverSilver-lead-zinc110,PayneSandonSilver-lead-zinc1,438,ProvidenceGreenwoodSilver-lead-zinc1,42,Queen BessAlamoSilver-lead-zinc25,Rambler-CaribooRamblerSilver-lead-zinc3,565,RecoCodySilver-lead-zinc3,565,RecoCodySilver-lead-zinc1,25,St. EugeneMoyleSilver-lead-zinc1,265,Sheep Creek Mines Ltd.InvermereSilver-lead-zinc1,265,Silver Standard Mines Ltd.InvermereSilver-lead-zinc1,267,Silver Standard Mines Ltd.HazeltonSilver-lead-zinc1,267,Silver Standard Mines Ltd.HazeltonSilver-lead-zinc1,267,Silver Standard Mines Ltd.HazeltonSilver-lead-zinc1,267,Supest and Trade Dollar.SilvertonSilver-lead-zinc2,734,Sunset and Trade Dollar.BeatonSilver-lead-zinc164,Victamer Mines Ltd.Alice ArmSilver-lead-zinc390,UticaWalace Mines (B.C.) Ltd.New DenverSilver-lead-zinc850,WashingtonRambler StationSilver-lead-zinc135,WashingtonRambler StationSilver-lead-zinc30,WhitewaterSilvertonSilver-lead-zinc30,Yale Lead and Zinc Mines Ltd.SilvertonSilver-lead-zinc390,WashingtonRambler StationSilver-lead-zinc392,WashingtonRambler Stati				497,901
PayneSandonSilver-lead-zinc1,438,ProvidenceGreenwoodSilver-lead-zinc142,Queen BessAlamoSilver-lead-zinc25,Rambler-CaribooRamblerSilver-lead-zinc34,Neeves MacDonald Mines LtdRemacSilver-lead-zinc334,RecoCodySilver-lead-zinc334,Ruth Mines LtdSandonSilver-lead-zinc125,St. EugeneSandonSilver-lead-zinc34,Silversmith and Slocan Star4SandonSilver-lead-zinc124,Silver Standard Mines LtdHazeltonSilver-lead-zinc1,267,Silver Standard Mines LtdHazeltonSilver-lead-zinc1,267,Silver Standard Mines LtdSilver-lead-zinc10,1,175,Spokane-TrinketAinsworthSilver-lead-zinc10,Sunshine Lardeau Mines LtdBeatonSilver-lead-zinc88,Sunshine Lardeau Mines LtdAlice ArmSilver-lead-zinc390,UticaKasloSilver-lead-zinc390,30,UticaKasloSilver-lead-zinc350,30,Wallace Mines (B.C.) Ltd.New DenverSilver-lead-zinc35,WashingtonRember StationSilver-lead-zinc30,Western Exploration Co. Ltd.SilvertonSilver-lead-zinc30,WitewaterRetallackSilver-lead-zinc30,Walace Mines Ltd.Silver-lead-zinc30,30,WashingtonRetallackSilver-lead-zinc3				6,754
Providence Greenwood Silver-lead-zinc 142, Queen Bess Alamo Silver-lead-zinc 25, Rambler-Cariboo Rambler Silver-lead-zinc 3,565, Reco Gody Silver-lead-zinc 34, Kuth Mines Ltd. Sandon Silver-lead-zinc 334, St. Eugene Moyie Silver-lead-zinc 25, St. Eugene Moyie Silver-lead-zinc 243, Silversmith and Slocan Star4 Sandon Silver-lead-zinc 1,267, Spokane-Trinket Ainsworth Silver-lead-zinc 1,715, Spokane-Trinket Ainsworth Silver-lead-zinc 1,715, Sunset and Trade Dollar Retallack Silver-lead-zinc 1,713, Sunshine Lardeau Mines Ltd. Hazelton Silver-lead-zinc 1,744, Yorbrit Silver Mines Ltd. Beaton Silver-lead-zinc 1,744, Yoidamac Mines (B.C.) Ltd. New Denver Silver-lead-zinc 164, Viciaau Mines (B.C.) Ltd. Beaverdell Silver-lead-zinc 135, Wallace Mines (Ltd. (Sally) Beaverdell Silver-lead-zinc				110,429
Queen BessAlamoSilver-lead-zinc25,Rambler-CaribooRamblerSilver-lead-zinc467,Reeves MacDonald Mines Ltd.RemacSilver-lead-zinc3,565,RecoCodySilver-lead-zinc334,Ruth Mines Ltd.SandonSilver-lead-zinc125,St. EugeneMoyieSilver-lead-zinc125,Shcep Creek Mines Ltd.InvermereSilver-lead-zinc1,267,Silver Standard Mines Ltd.HazeltonSilver-lead-zinc1,267,Spokane-TrinketAinsworthSilver-lead-zinc1,715,Surset and Trade DollarRetallackSilver-lead-zinc2,734,Sunshine Lardeau Mines Ltd.BeatonSilver-lead-zinc164,ViciaaMines (B.C.) Ltd.New DenverSilver-lead-zinc390,Wallace Mines (B.C.) Ltd.BeaverdellSilver-lead-zinc25,WashingtonRetallockSilver-lead-zinc243,WashingtonRambler CarlingSilver-lead-zinc390,WashingtonRetallockSilver-lead-zinc390,WashingtonRambler CarlingSilver-lead-zinc390,WasterRatlackSilver-lead-zinc392,Yale Lead and Zinc Mines Ltd.SilvertonSilver-lead-zinc392,WhitewaterRatlackSilver-lead-zinc392,Yale Lead and Zinc Mines Ltd.SilvertonSilver-lead-zinc392,Yale Lead and Zinc Mines Ltd.SilvertonSilver-lead-zinc392,Yale Lead and Zi				
Rambler-Cariboo Rambler Silver-lead-zinc 467, Reeves MacDonald Mines Ltd. Remac Silver-lead-zinc 3,565, Reco Cody Silver-lead-zinc 334, Ruth Mines Ltd. Sandon Silver-lead-zinc 123, St. Eugene Moyle Silver-lead-zinc 124, Sheep Creek Mines Ltd. Invermere Silver-lead-zinc 124, Silver Standard Mines Ltd. Hazelton Silver-lead-zinc 12, Spokane-Trinket Ainsworth Silver-lead-zinc 10, Standard Silver Lead Silver-lead-zinc 10, 17, Synkane-Trinket Ainsworth Silver-lead-zinc 10, Standard Silver Lead Silver-lead-zinc 10, 2, 734, Sunset and Trade Dollar. Retallack Silver-lead-zinc 164, 10, Sunset and Trade Dollar. Aitice Arm Silver-lead-zinc 164, Yolamac Mines (B.C.) Ltd. Aitice Arm Silver-lead-zinc 164, Violamac Mines (B.C.) Ltd. New Denver Silver-lead-zinc 135, Washington Rambler Statio				142,238
Reeves MacDonald Mines Ltd.RemacSilver-lead-zinc.3,565,Reco.CodySilver-lead-zinc.334,Ruth Mines Ltd.Sandon.Silver-lead-zinc.125,St. Eugene.Moyie.Silver-lead-zinc.126,Silver Standard Mines Ltd.InvermereSilver-lead-zinc.1,267,Silver Standard Mines Ltd.HazeltonSilver-lead-zinc.1,715,Standard Mines Ltd.HazeltonSilver-lead-zinc.1,716,Silver Standard Mines Ltd.HazeltonSilver-lead-zinc.1,716,Syckane-TrinketAinsworthSilver-lead-zinc.1,734,Sunset and Trade Dollar.Retallack.Silver-lead-zinc.164,Sunshine Lardeau Mines Ltd.Alice Arm.Silver-lead-zinc.390,UticaKasloSilver-lead-zinc.135,Wallace Mines (B.C.) Ltd.New Denver.Silver-lead-zinc.850,Wallace Mines (Ltd. (Sally)Beaverdell.Silver-lead-zinc.135,WashingtonRetblackSilver-lead-zinc.135,Waster Exploration Co. Ltd.SilvertonSilver-lead-zinc.30,Whitewater.RetallackSilver-lead-zinc.30,Yale Lead and Zinc Mines Ltd.AinsworthSilver-lead-zinc.30,Waitewater.RetallackSilver-lead-zinc.30,WashingtonSilver-lead-zinc.70,30,Whitewater.Silver-lead-zinc.70,Yale Lead and Zinc Mines Ltd.AinsworthSilver-lead-zinc.70, <td< td=""><td></td><td></td><td></td><td>25,000</td></td<>				25,000
Reco	Reeves MacDonald Mines I td			
Ruth Mines Ltd. Sandon Silver-lead-zinc. 125, St. Eugene Moyie Silver-lead-zinc. 566, Shcep Creck Mines Ltd. Invermere Silver-lead-zinc. 1243, Silver Standard Mines Ltd. Sandon Silver-lead-zinc. 1243, Silver Standard Mines Ltd. Hazelton Silver-lead-zinc. 1267, Standard Silver Lead Silver-lead-zinc. 1,715, Synokane-Trinket Ainsworth Silver-lead-zinc. 10, Standard Silver Lead Silver-lead-zinc. 2,734, Sunshine Lardeau Mines Ltd. Retallack. Silver-lead-zinc. 88, Sunshine Lardeau Mines Ltd. Beaton Silver-lead-zinc. 164, Viciamac Mines (B.C.) Ltd. New Denver Silver-lead-zinc. 850, Wallace Mines Ltd. (Sally) Beaverdell Silver-lead-zinc. 850, Western Exploration Co. Ltd. Silverton Silver-lead-zinc. 300, Whitewater Retallack Silver-lead-zinc. 30, Yale Lead and Zinc Mines Ltd. Ainsworth Silver-lead-zinc. 30, Westelaneous mines Yine-lead-zinc.<				334,992
St. Eugene Moyie Silver-lead-zinc 566, Sheep Creek Mines Ltd Invermere Silver-lead-zinc 243, Silver Standard Mines Ltd Hazelton Silver-lead-zinc 1,267, Silver Standard Mines Ltd Hazelton Silver-lead-zinc 1,267, System Standard Mines Ltd Hazelton Silver-lead-zinc 1,715, System Standard Mines Ltd Ainsworth Silver-lead-zinc 1,715, System Standard Silver Lead Silverton Silver-lead-zinc 2,734, Sunset and Trade Dollar Retallack Silver-lead-zinc 164, Torbrit Silver Mines Ltd Beaton Silver-lead-zinc 64, Viciamac Mines (B.C.) Ltd Beaverdell Silver-lead-zinc 850, Wallace Mines (Ltd. (Sally) Beaverdell Silver-lead-zinc 850, Washington Rambler Station Silver-lead-zinc 30, Western Exploration Co. Ltd Silverton Silver-lead-zinc 30, Whitewater Retallack Silver-lead-zinc 30, Waitewater Silverton Silver-lead-zinc 30, Washington				125,490
Sheep Creek Mines Ltd. Invermere Silver-lead-zinc. 243, Silversmith and Slocan Star4. Sandon Silver-lead-zinc. 1,267, Silver Standard Mines Ltd. Hazelton Silver-lead-zinc. 1,267, Syokane-Trinket Ainsworth Silver-lead-zinc. 1,715, Sunshine Lardeau Mines Ltd. Beaton Silver-lead-zinc. 2,734, Sunshine Lardeau Mines Ltd. Beaton Silver-lead-zinc. 88, Sunshine Lardeau Mines Ltd. Beaton Silver-lead-zinc. 390, Utica Kaslo Silver-lead-zinc. 390, Violamac Mines (B.C.) Ltd. New Denver Silver-lead-zinc. 850, Wallace Mines Ltd. (Sally) Beaverdell Silver-lead-zinc. 850, Wallace Mines Ltd. (Sally) Beaverdell Silver-lead-zinc. 850, Washington Silverton Silver-lead-zinc. 20, Whitewater Retallack. Silver-lead-zinc. 30, Whitewater Silver-lead-zinc. 30, Yale Lead and Zinc Mines Ltd. Ainsworth Silver-lead-zinc. 30, Whitewater Retallack. <td></td> <td></td> <td></td> <td>566,000</td>				566,000
Silversmith and Slocan Star4				243,750
Silver Standard Mines Ltd. Hazelton Silver-lead-zinc 1,715, Spokane-Trinket Ainsworth Silver-lead-zinc 10, Standard Silver Lead Silverton Silver-lead-zinc 10, Sunset and Trade Dollar Retallack Silver-lead-zinc 2,734, Sunstine Lardeau Mines Ltd. Beaton Silver-lead-zinc 164, Atice Arm. Silver-lead-zinc 390, Utica Kaslo Silver-lead-zinc 64, Violamac Mines (B.C.) Ltd. New Denver Silver-lead-zinc 850, Wallace Mines Ltd. (Sally) Beaverdell Silver-lead-zinc 300, Western Exploration Co. Ltd. Silverton Silver-lead-zinc 300, Whitewater Retallack Silver-lead-zinc 300, Yale Lead and Zinc Mines Ltd. Ainsworth Silver-lead-zinc 300, Whitewater Retallack Silver-lead-zinc 300, Yale Lead and Zinc Mines Ltd. Ainsworth Silver-lead-zinc 300, Wiscellaneous mines 70, Tead-zinc 70,				1,267,600
Spokane-Trinket Ainsworth Silver-lead-zinc 10, Standard Silver Lead Silverton Silver-lead-zinc 2,734, Sunset and Trade Dollar Retallack Silver-lead-zinc 88, Sunshine Lardeau Mines Ltd. Beaton Silver-lead-zinc 164, Torbrit Silver Mines Ltd. Beaton Silver-lead-zinc 64, Viciamac Mines (B.C.) Ltd. New Denver Silver-lead-zinc 64, Wallace Mines (Ltd. (Sally) Beaverdell Silver-lead-zinc 850, Washington Rambler Station Silver-lead-zinc 30, Western Exploration Co. Ltd. Silverton Silver-lead-zinc 30, Whitewater Retallack Silver-lead-zinc 30, Yale Lead and Zinc Mines Ltd. Ainsworth Silver-lead-zinc 70, Miscellaneous mines Totobase Ltd. Silver-lead-zinc 70,	Silver Standard Mines Ltd.			1,715,333
Standard Silver Lead Silverton Silver-lead-zinc 2,734, Sunshine Lardeau Mines Ltd Beaton Silver-lead-zinc 88, Sunshine Lardeau Mines Ltd Alice Arm Silver-lead-zinc 86, Utica Kaslo Silver-lead-zinc 64, Violamac Mines (B.C.) Ltd New Denver Silver-lead-zinc 86, Wallace Mines Ltd. (Sally) Beaverdell Silver-lead-zinc 820, Washington Rambler Station Silver-lead-zinc 30, Wethewater Silverton Silver-lead-zinc 850, Yietname Silver-lead-zinc 84, 82, Washington Rambler Station Silver-lead-zinc 30, Whittewater Silver-lead-zinc 30, 31, Yale Lead and Zinc Mines Ltd. Ainsworth Silver-lead-zinc 30, Miscellaneous mines 70, 70, 70,	Spokane-Trinket	Ainsworth	Silver-lead-zinc	10,365
Sunsair and Trade Dollar Retallack Silver-lead-zinc 88 Sunshine Lardeau Mines Ltd. Beaton Silver-lead-zinc 164 Torbrit Silver Mines Ltd. Alice Arm Silver-lead-zinc 390 Utica Kaslo Silver-lead-zinc 390 Violamac Mines (B.C.) Ltd. New Denver Silver-lead-zinc 850 Wallace Mines Ltd. (Sally) Beaverdell Silver-lead-zinc 20 Western Exploration Co. Ltd. Silverton Silver-lead-zinc 390 Whitewater Retallack Silver-lead-zinc 20 Yale Lead and Zinc Mines Ltd. Ainsworth Silver-lead-zinc 390 Miscellaneous mines 70 70			Silver-lead-zinc	2,734,688
Torbrit Silver Mines Ltd. Alice Arm. Silver-lead-zinc. 390, Utica Kaslo Silver-lead-zinc. 64, Violamac Mines (B.C.) Ltd. New Denver Silver-lead-zinc. 850, Wallace Mines Ltd. (Sally) Beaverdell. Silver-lead-zinc. 850, Washington Rambler Station. Silver-lead-zinc. 20, Wetron Silver-lead-zinc. 30, Whitewater Retallack. Silver-lead-zinc. 30, Yale Lead and Zinc Mines Ltd. Ainsworth Silver-lead-zinc. 70, Miscellaneous mines 70, 70, 70,		Retallack	Silver-lead-zinc	88,000
Torbrit Silver Mines Ltd. Alice Arm. Silver-lead-zinc. 390, Utica Kaslo Silver-lead-zinc. 64, Violamac Mines (B.C.) Ltd. New Denver. Silver-lead-zinc. 850, Wallace Mines Ltd. (Sally) Beaverdell. Silver-lead-zinc. 820, Washington Rambler Station. Silver-lead-zinc. 20, Western Exploration Co. Ltd. Silverton Silver-lead-zinc. 30, Yale Lead and Zinc Mines Ltd. Ainsworth Silver-lead-zinc. 70,		Beaton		164,000
Utica Kaslo Silver-lead-zinc 64, Violamac Mines (B.C.) Ltd. New Denver Silver-lead-zinc 850, Wallace Mines Ltd. (Sally) Beaverdell Silver-lead-zinc 135, Washington Rambler Station Silver-lead-zinc 20, Wetretr Silverton Silver-lead-zinc 30, Yale Lead and Zinc Mines Ltd. Ainsworth Silver-lead-zinc 30, Miscellaneous mines 70, 70, 70,		Alice Arm.		390,000
Wallace Mines Ltd. (Sally) Beaverdell Silver-lead-zinc 135, Washington Rambler Station Silver-lead-zinc 20, Western Exploration Co. Ltd. Silverton Silver-lead-zinc 30, Whitewater Reallack Silver-lead-zinc 592, Yale Lead and Zinc Mines Ltd. Ainsworth Silver-lead-zinc 278, Miscellaneous mines 70, 70,				64,000
Washington Rambler Station Silver-lead-zinc 20, Western Exploration Co. Ltd. Silverton Silver-lead-zinc 30, Whitewater Retallack Silver-lead-zinc 592, Yale Lead and Zinc Mines Ltd. Ainsworth Silver-lead-zinc 278, Miscellaneous mines 70,				850,000
Western Exploration Co. Ltd. Silverton Silver-lead-zinc. 30, Whitewater Retallack Silver-lead-zinc. 592, Yale Lead and Zinc Mines Ltd. Ainsworth Silver-lead-zinc. 278, Miscellaneous mines 70,		Beaverdell		135,000
Whitewater Retallack Silver-lead-zinc 592, Yale Lead and Zinc Mines Ltd. Ainsworth Silver-lead-zinc 278, Miscellaneous mines 70,	wasnington			20,000
Yale Lead and Zinc Mines Ltd. Ainsworth Silver-lead-zinc 278, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70				30,867
Miscellaneous mines 70,	Whitewater			592,515
			Silver-lead-zinc	278,620
I otal, silver-lead-zinc mines]		70,239
,	Total, silver-lead-zinc mines			\$546,403,998

Ī

Includes \$466,143 " return of capital " distribution prior to 1949.
 Earnings of several company mines, and custom smelter at Trail.
 Includes \$10,504 paid in 1944 but not included in the yearly figure.
 These two properties were amalgamated as Silversmith Mines Limited in August, 1939.

· ____

_

TABLE X.—DIVIDENDS PAID BY MINING COMPANIES, 1897–1961—Continued

Company or Mine	Locality	Class	Amount Paid
Britannia M. & S. Co. ¹ Canada Copper Corporation Cornell	Greenwood Texada Island	Copper	\$18,803,772 615,399 8,500
Granby Cons. M.S. & P. Co. ² Marble Bay Hall Mines	Texada Island	Copper Copper Copper	29,873,226 175,000 233,280
Miscellaneous mines Total, copper mines		Copper	261,470 \$49,970,647

Copper Mines

¹ The Britannia Mining and Smelting Co. Limited, a wholly owned subsidiary of the Howe Sound Company (Maine), paid the dividends shown to its parent company. On June 30, 1958, consolidation between the Howe Sound Company (Maine) and Haile Mines Inc. became effective, bringing into existence Howe Sound Company (Delaware). The Britannia mine became a division of the new Howe Sound Company, and in August Britannia

Mining and Smelting Co. was liquidated voluntarily. ² The Granby Consolidated Mining Smelting and Power Company dividends commenced in 1904 and cover all company activities in British Columbia to date. The figure includes all dividends, capital distributions, and interim liquidating payments, the latter being \$4,500,000, paid, in 1936, prior to reorganization.

Coal Mines

Company or Mine	Locality	Class	Amount Paid
Wellington Collieries Ltd. Bulkley Valley Collieries Ltd. Crow's Nest Pass Coal Co. Ltd. Canadian Collieries Resources Ltd. Total, coal mines	Nanaimo Telkwa Fernie Nanaimo	Coal Coal Coal	\$16,000,000 24,000 17,953,940 828,271 \$34,806,211

Aggregate of All Classes

Total	\$725,604,799
Miscellaneous, structural, and placer gold	14,437,188
Coal-mining	34,806,211
Copper-mining	49,970,647
Silver-lead-zinc mining and smelting	546,403,998
Lode-gold mining	\$79,986,755

NOTE .- The term "miscellaneous" noted in each class of dividend covers all payments of \$5,000 and under, together with payments made by companies or individuals requesting that the item be not disclosed. In compiling the foregoing table of dividends paid, the Department wishes to acknowledge the kind assistance given by companies, individuals, and trade journals in giving information on the subject.

A 42

STATISTICS

Class	Salaries and Wages	Fuel and Electricity	Process Supplies
Lode-mining	\$33,257,369	\$4,694,429	\$11,998,998
Placer-mining	74,233	21,411	3,385
Fuel—coal, coke and gas plant	3,437,044	290,184	642,781
,, petroleum and natural gas		361,7181	1,518,716
Miscellaneous metals and industrial minerals		1,422,080	1,916,014
structural materials industry	4,047,658	2,117,212	1,707,283
Totals, 1961	\$50,887,275	\$8,907,034	\$17,787,127
Totals, 1960	52,694,818	7,834,728	21,496,912
1959		7.677.321	17,371,638
1958		8,080,989	15,053,036
1957		8,937,567	24,257,177
1956	57,266,026	9,762,777	22,036,839
1955		9.144.034	21,131,572
1954	48,702,746	7,128,669	19,654,724
1953	55,543,490	8,668,099	20,979,411
1952	62,256,631	8,557,845	27,024,500
1951	52,607,171	7,283,051	24,724,101
1950	42,738,035	6,775,998	17,500,663
1949	41,023,786	7,206,637	17,884,408
1948	38,813,506	6,139,470	11,532,121
1947	32,160,338	5,319,470	13,068,948
1946	26,190,200	5,427,458	8,367,705
1945	22,620,975	7,239,726	5,756,628
1944	23,131,874	5,788,671	6,138,084
1943	26,051,467	7,432,585	6.572.317
1942		7,066,109	6,863,398
1941	26,050,491	3,776,747	7,260,441
1940	23,391,330	3,474,721	6,962,162
1939	22,357,035	3,266,000	6,714,347
1938	22,765,711	3,396,106	6,544,500
1937		3,066,311	6,845,330
1936	17.887.619	2,724,144	4,434,501
1935	16,753,367	2,619,639	4,552,730
Grand totals, 1935–61.	1	\$172,701,604	\$368,515,320

TABLE XI.—PRINCIPAL ITEMS OF EXPENDITURE, REPORTED FOR **OPERATIONS OF ALL CLASSES**

¹ These figures for the petroleum and natural-gas industry are from returns made on Dominion Bureau of Statistics forms by thirty-one operators. The sum of the expenditures reported for salaries and wages, fuel and electricity, and process supplies is \$5,110,459. The Canadian Petroleum Association supplied figures indicating expenditures by fifty-two companies in British Columbia in 1961, amounting to \$59,400,000, which includes \$5,592,000 for salaries and wages; expenditures for fuel and electricity and process supplies are not reported by the Canadian Petroleum Association. The items reported are given in the last paragraph of the Review on page A 13. Note.—"Process Supplies" include explosives, chemicals, driil-steel, lubricants, etc.

	8u	Lo	de-min	ing	ators		Co	al-min	ing	Struc Mate		pu si	
Year	Placer-mining	Under	Above	Total	In Concentrators	In Smelters	Under	Above	Total	Quarries and Pits	Plants	Industrial and Miscellaneous	Total ²
901		2,786	1,212	3.948			3.041	931	3,974				7,9
902		2,219	1,126	3,945			3,101		4,011				7,8
908			1,088										
904			$1,168 \\ 1,240$										7,7
906			1,303										
807			1,239										
908		2,567	1,127	3,694							••••		9,7
909			1,070								*		
910		2,472	1,237	3,709									11,4
911 912		2,450	$1,159 \\ 1,364$	8,094									
918			1,505										
914		2,741	1,483	4,174									
915		2,709	1,435	4,144							••••••		9,1
916		3,357	2,036	5,393									
917			2,198			•••••				••••••		•	10,6
918			1,764 1,746									•••••	9,6
919 920			1,605								······		
921			975										
922			1,289										
923		2,102	1,516	8,618									
924			1,680								••••••		
B25			2,840										
926 927			1,785 1,916			2,461 2.842				493	824 138	$124 \\ 122$	
928			2.469			2,748				412			
829			2,052			2,948				492	544	268	
930	425	2,316	1,260	3,576		8,197				843		170	14.0
931			834			3,157				460		880	
932		1,855		2,255		2,036			3,608	536		844	
933 934			$1,335 \\ 1,729$			2,436 2,890			3,094 2,893	376 377		408 360	
985			1,497			2,771			2,971	536			
986			1,840			2,678			2,814	931		825	
937			1,818			3,027			3,153	724	327	938	
938			2,266			3,158			2,962	900		369	
939			2,050			3,187			2,976	652			
940 941			2,104			2,944			2,874	827 766		$647 \\ 422$	
941			1,823			3,072 3,555			2,723 2,360	842		262	
343			1,699			2,835			2,851	673			
944			1,825			2,981			2,839	690			
945			1,750			2,834			2,430	921			
946			1,817			2,813		532	2,305	827			
947 948			2,238			3,461			2,425 2,466	977 1,591	585 656		
949			2,724			3.884			2,306	2,120			
950			2,415			3.759			2,261	1,916	616	660	
951			3,695		1,307	4,044	1,462	463	1,925	1,783	628		
952			8,923			4,120			1,681	1,530			
058			2,589			3,901			1,550			634	
954 955			2,520			3,119			1,434	1,861			
956			2,553 2,827			3,304 3.339			1,478 1,866	1,646 1,598			
957			2,447			3,338			1,380	1,098 1,705			
958			1,809			3,081			1,086	1,483			
959	99	1,937	1,761	8,698	618	3,008	765	291	1,056	1,357	484	459	10,1
960			1,959			3,034	894		1,182	1,704		589	11,
961	74	1,785	1,582	3,367	626	3,118	705	287	942	1,828	508	671	11,

TABLE XII.—AVERAGE NUMBER EMPLOYED IN THE MINING INDUSTRY,¹ 1901–61

¹ Mining industry includes all branches of the mineral industry except petroleum and natural gas. ² The average number employed in the industry is the sum of the averages for individual companies. The average for each company is obtained by taking the sum of the numbers employed each month and dividing by 12, regardless of the number of months worked.

STATISTICS

Year	Tonnage ¹	Number of Shipping Mines	Number of Mines Shipping over 100 Tons	Gross Value as Reported by Shipper ²	Freight and Treatment ²	Net Value to Shipper ³	Gross Value of Lode Metals Produced ⁴
1901	926,162	119	78				\$13,287,947
1902	1,009,016	124	75			••••••••	11,136,162
1903	1,288,466	125	74		*******		11,579,382
1904	1,461,609	142	76			•••••	12,309,035
1905	1,706,679	146	79			•••••	15,180,164
1906 1907	1,963,872	154	77			•••••	17,484,102
1908	1,805,614 2,083,606	147 108	72 59				16,222,097
1909	2,057,713	89	52				14,477,411 14,191,141
1910	2,216,428	83	50				13,228,781
1911	1,770,755	80	45				11,454,063
1912	2,688,532	86	51				17,662,766
1913	2,663,809	110	58	•••••			17,190,838
1914	2,175,971	98	56		······	••••••	15,225,061
1915 1916	2,720,669	182	59				19,992,149
1917	3,229,942 2,797,368	169 193	81			•••••	31,483,014
1918	2,912,516	175	87				26,788,474 27,595,278
1919	2,146,920	144	74			******	19,756,648
1920	2,215,445	121	60				19,451,725
1921	1,586,428	80	35			•	12,925,448
1922	1,592,163	98	33	•••••		•	19,228,257
1923	2,447,672	77	28			••••••	25,348,399
1924	3,413,912	86	37				35,538,247
1925 1926	3,849,269	102	40		••••••	ADG FF0 010	46,200,185
1927	4,775,327 5,416,411	138 182	55		•	\$38,558,613 27,750,364	51,508,031
1928	6.241,672	110	49			29,070,075	44,977,082 48,281,825
1929	6,977,903	106	48		******	84,713,887	51,720,436
1930	6,804,276	68	82			21,977,688	41,292,980
1931	5,549,622	44	22			10,518,931	22,900,229
1932	4,354,904	75	29			7,075,893	19,705,043
1933	4,063,775	109	47	••••••		13,976,858	25,057,007
1934	5,141.744	145	69			20,248,278	34,071,955
1935 1936	4,927,204	177	72	••••••	•••••	25,407,914	40,662,633
1937	4,381,173 6,145,244	168 185	70	\$48,617,920	\$4,663,843	80,051,207	
1938	7.377.117	211	118	40,222,237	4.943,754	43,954,077 35,278,483	62,950,586 53,878,098
1939	7,212,171	217	99	45,133,788	4,416,919	40,716,869	53,554,092
1940	7,949,786	216	92	50,004,909	6,884,611	43,670,298	61,735,604
1941	8.007,937	200	96	52,354,870	5,673,048	46,681,822	62,607,882
1942	6,894,844	126	76	50,494,041	5,294,637	45,199,404	59,694,192
1943	5,786,864	48	82	37,234,070	3,940,867	83,293,703	52,651,868
1944	4,879,851	51	81	29,327,114	2,877,706	26,449,408	39,369,788
1945 1946	4,377,722	36	27	34,154,917	2,771,292	31,883,625	48,724,001
1947	3,705,594 5,011,271	1 50 7 7 7	82 88	48,920,971 81,033,098	2,904,1 30 4,722,010	46,016,841	
1948	5,762,821	97	51	118,713,859	18,585,183	76,811,087	93,124,847
1949	6,125,460	118	51	99,426,678	19,613,185	79,814,604	107,775,413
1950	6,802,482	112	58	108,864,792	22,113,431	86,751,361	118,464,619
1951	6,972,400	119	64	142,590,427	25,096,743	117,493,684	147,646,989
1952	n,174,617	95	58	140,070,389	30,444,575	106,601,451	144,151,515
1953	9,660,281	80	48	94,555,069	27,815,152	66,789,892	123,619,837
1954	8,513,865	63	40	106,223,833	29,135,673	77,088,160	120,829,789
1955	9,126,902 8,827,037	53	84	119,039,285	30,696,044	88,343,241	
1958	8,827,037 7,282,436	70	40	125,043,590		93,110,262	
1958	6,402,198	57	28	95,644,930 83,023,111	80,273,900 28,068,396	65,370,185	119,409,764 100,591,049
1959	6,990,985	60	44	92,287,277	23,003,330	54,955,069 65,208,728	100,591,049
1960	8,242,703	67	31	114,852,061	29,505,158	85,846,903	125,674,531
1961	8,392,161	59	89	112,488,918	30,304,050	82,184,868	123,913,897

TABLE XIII.—LODE-METAL MINES—TONNAGE, NUMBER OF MINES, NET AND GROSS VALUE, 4 1901–61

¹ Includes ores of iron, mercury, nickel, tungsten, and silica (flux).
 ² Data not collected before 1937.
 ³ Previous to 1937 the shipper reported "Net Value at Shipping Point," no indication being given as to how the net value was computed. From 1937 on, the shipper has reported "Gross Value," from which deduction of freight and treatment gives "Net Value."
 ⁴ Gross value calculated by valuing gold, silver, copper, lead, zinc, mercury (1938-44, 1955), and nickel (1936-37, 1958-60) at yearly average prices, and iron (1901-03, 1907, 1918-23, 1928, 1948-60) and tungsten (1939-45, 1947-58) at values given by operators.

Property or	Location		Ore			Gross Metal Contents						
Operator	of Mine	Owner or Agent	Shipped or Treated	Product Shipped	Gold	Silver	Copper	Lead	Zinc	Cad- míum		
Northern British Columbia Atlin Mining Division			Tons		Oz.	Oz.	Lb.	Lb.	Lb.	Lb.		
Nil Liard Mining Division						1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -		•990-2011 - 000 -	4189-6.0-5.0-0.00 910-9.0-5.0-5.0-5.0-5.0-5.0-5.0-5.0-5.0-5.0-5	речиние он ¹ · · · · · · · · · · · · · · · · · · ·		
CENTRAL BRITISH COLUMBIA Cariboo Mining Division Cariboo Gold Quartz and Aurum Clinton Mining Division Nil	Wells	The Cariboo Gold Quartz Min- Co. Ltd., Vancouver	37,944	Bullion	20,243	3,213	** **********		alan ang ang ang ang ang ang ang ang ang a			
Omíneca Mining Division Cronin Babline Coast and Islands	Smithers	 P. Kindrat, Smithers, lessee from New Croain Babine Mines Ltd., Vancouver S. Piskulski, Tetrace 	1,2121 2	Lead concentrates, 80 tons; zinc concentrates, 93 tons Crude ore	14 1	11,572 ⁻ 11	a constantination generation	116,673 291	106,542 83	1,377		
Alberni Mining Division Musketcer Nanaimo Mining Division Copper Road Metry Widow and King-	Quadra Island	Copper Town Mines, Vancouver R. I. Bennett, Heriot Bay Empire Development Co. Ltd.,	339 87 535,833	Concentraies, 14 tons	139	103	98 13,433	1,380				

TABLE XIV.-LODE-METAL PRODUCTION IN 1961

Mount Washington	Courtenay	Mt. Washington Copper Co. Ltd., Courtenay	Tons 5,305	Crude ore	Oz. 77	Oz. 8,050	L.b. 230,276	Lb.	1.b.	Lb,
Nimpkish	Beaver Cove	Nimpkish Iron Mines Ltd., Vancouver	666,361	Iron concentrates, 423,826 tons				·	,	
Prescott, Paxton, Yellow Kid, Yellow Jacket	Texada Island	Texada Mines Lid., Vancouver	893,892	Iron concentrates, 475,419 tons; copper concentrates, 7,352 tons	1,192	25,726	1,622,896		*	
New Westminster										
Mining Division Pride of Emory	Choste	Giant Mascot Mines Ltd., Van-	260,583	Nickel concentrates, 21,293 tons			1,734,123			
Valley View and Blue Bell.	Agassiz	couver Steve Romaniuk and Mike Ro-	50	Crude ore		50	1,141	•		
		maniuk, Harrison Hot Springs, lessees from George Dietrich, Agassiz					• • •			
Skeena Mining Division										
Silbak Premier.	Premier	Silbak Premier Mines Ltd.,	831	Crude ore, 831 tons; tailings, 22	6,471	112,850	• ••••••••••••••••	55,993	57,828	
Vancouver Mining Division		Vancouver		tons		2				
Britannia	Britannia Beach	Howe Sound Co. (Britannia Division), Britannia Beach	461,601	Copper concentrates and precipi- tates, 22,064 tons; zinc con-	3,211	55,397	13,637,206	118,388	6,452,851	
				centrates, 5,352 tons; tailings, 7,876 tons						
Cambrian Chieftain	Pender Harbour.	Colonial Mines, Vancouver	389	Crude ore	2	1,130	53,764			
Victoria Mining Division										
Nif		and the constraint of the second s	warmed the second second	·····	*****	4 8 4 0 m m m m m m m M H	h 4.4 47 a who?	sound not may a una bit		t
South Central British Columbia			I							
Greenwood Mining										
Division Bounty Fraction	Beaverdell	Sheritt Lee Mines Ltd., Van-	13	Crude ore	**********	1,543	an Yn wrait y ru y bwraiter	1,404	2,657	
Cariboo-Amelia	Rock Creek	McKinney Gold Mines Ltd., Vancouver	5,0 86	Siliceous ore	5,432	6,024	****************	11,307	81,297	
Highland-Beil	Beaverdell	Mastodon-Highland Bell Mines Ltd., Vancouver	18,954	Lead concentrates, 1,641 tons; zinc concentrates, 827 tons; jig concentrates, 250 tons	590	892,153	*******	754,375	971,485	7,87
Mother Lode	Greenwood	Consolidated Woodgreen Mines	201,123	Copper concentrates, 4,163 tons	3,811	15,049	1,890.000			
Phoenix	Greenwood	Ltd., Vancouver Phoenix Copper Co. Ltd.,	420,372	Copper concentrates, 9,909 ions	7,371	48,009	4,995,139	** ** ** ** *****		
Providence	Greenwood	Grand Forks S. J. Kleman, Greenwood	5	Crude ore	3	729		294	284	

.

Property or	Location	M	Ore				Gross Met	al Contents		
Operator	of Mine	Owner or Agent	Shipped or Treated	Product Shipped	Gold	Silver	Copper	Lead	Zinc	Cad- mium
SOUTH CENTRAL BRITISH COLUMBIA-Continued			Tons		Oz.	Oz.	Lb.	Lb.	I.b.	Lb,
Kamloops Mining Division Nil	\$ ANX80	PROFILES VARCEN					·		###*****	
Lillooet Mining Division										
Bralorne	Bridge River	Braiorne Pioneer Mines Ltd., Vancouver	154,040	Builion; gold concentrates, 2,336	105,510	22,578	······································		17 1. 7 17 17 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18	*****
Pioneer	Bridge River	Bralorne Pioneer Mines Ltd., Vancouver		Mill residue, 61 tons	716				. We manage an an annana	
Division	1 F 1	and a server with the								
Craigmont		Craigmont Mines Ltd., Van- couver	484,073	Copper concentrates, 11,672 tons (13,184 tons stockpiled)		7,797	6,645,487			
Stump Lake	Nicola	D. C. McWilliams and H. Ries- terer, Vancouver	37	Clean-up	16	670		3,890	3,591	{
Osoyoos Mining Division										
Pairview	Oliyer	The Consolidated Mining & Smelting Co. of Canada, Ltd., Trail	15,038	Silica flux	A AND UNKAMING		979 - Koolinin I. Horanii A.	A.S	In a survey be obtained from	34636C
French Nickel Plate			5,366	Buillon; siag, 6 tons Mill clean-up; bullion; gold con-	1,927 785	313 57	P-07-4			
		Bros. & Associates Ltd., Vancouver		centrates, 23 tons			-			
Norex	Oliver	Norex Mines Ltd., Oliver	590	Crude ore	620	886		1,292	1,180	
Similkameen Mining Division Nil										•
Vernon Mining Division Nil										

TABLE XIV.---LODE-METAL PRODUCTION IN 1961---Continued

Fort Steele Mining Division			Tons		Oz.	Oz.	Lb,	Lb.	Lb.	Lb.
Sullivan	Kimberley	The Consolidated Mining & Smelting Co. of Canada, Ltd., Trail	2,461,695	Lead concentrates, 206,966 tons; zinc concentrates, 199,177 tons; tin concentrates, 607 tons	367	5,305,644	824,200	295,968,000	204,226,000	
Golden Mining Division							:			
Lucky Jim	Law Creek	R. J. Coffey, San Antonio, Texas	5	Crude ore		223		5,130	160	
Mineral King	Toby Creek	Sheep Creek Mines Ltd., Nelson	211,010	Lead concentrates, 7,227 tons; zinc concentrates, 19,247 tons		289,236	47,753	9,926,976	22,246,496	53,16
Nelson Mining Division										
Gold Belt	Salmo	A. Endersby, Fruitvale	117	Crude ore	43	32		346	470	
H.B	Salmo	The Consolidated Mining & Smelting Co. of Canada, Ltd., Trail	472,731	Lead concentrates, 4,857 tons; zinc concentrates, 39,494 tons		72,651		7,306,800	44,177,400	372,07
Jersey	Salmo		374,032	Lead concentrates, 13,325 tons; zinc concentrates, 26,755 tons		61,672		21,187,155	31,852,526	247,231
Kenville (White Lease)	Nelson	D. H. Norcross, Nelson	74	Crude ore	64	28		148	148	
Kootenay Belle			7,703	Crude ore	317	808		15,669	16,204]
Lucky Strike	Nelson	L. C. de Kock, Nelson	1	Crude ore	2	23	<u> </u>	49	8	
New Arlington		G. D. Fox, Trail	161	Crude ore	114	320		6,110	6,194	
Oueen	Salmo	A. Endersby, Fruitvale	50	Crude ore	19	16		157	257	
Queen Victoria			60	Crude ore		80	5,215			
Reeves MacDonald		Vancouver	420,508	Lead concentrates, 12,043 tons; zinc concentrates, 30,380 tons		53,875		13,584,522	33,490,749	192,340
Waterbed	Ymir	M. M. Arishenkoff, Shoreacres.	9	Crude ore	6	79		1,497	1,077	
Revelstoke Mining Division										
Nil										
Slocan Mining Division							ł			ļ
Bess	Silverton	M. Tarnowski, Silverton	4	Crude ore		629		5.656	98	i
Black Fox	Kaslo		781			288	<i>-</i>	2,623	11,281	9
Bluebell	Riondel	The Consolidated Mining & Smelting Co. of Canada, Ltd., Trail	252,821	Lead concentrates, 15,057 tons; zinc concentrates, 28,687 tons		318,159	320,600	22,428,228	29,146,290	140,270
Caledonia	New Denver	Northwest Mining Partnership, Kellogg, Idaho	1,079	Lead concentrates, 112 tons; zinc concentrates, 172 tons	15	11,259		153,779	209,384	77:
Galena Farm	Silverton	F. Mills, Silverton	394 ²	Lead concentrates, 12 tons; zinc concentrates, 79 tons	1	1,911		16,186	94,341	68:

1 Estimated. 2 Includes 350 tons stockpiled since 1959.

Т

ł

1

Property or	Location		Ore	Ben dana di imma d			Gross Met	al Contents		
Operator	of Mine Owner or Agent		Shipped or Product Shipped		Gold	Silver	Copper	Lead	Zinc	Cad miu
SOUTH CENTRAL BRITISH COLUMBIA—Continued										
Slocan Mining Division—Continued			Tons		02,	Oz.	Lb.	Lb.	Lb.	Lb.
Giant Western	Slocan	Giant Western Mines Ltd., Slo- can	7	Crude ore		32	4 · ···············	13	13	
Hewitt	New Denver	F. Pho and J. Heichert, New Denver	282	Lend concentrates, 24 tons; zinc concentrates, 40 tons	1	9,123		27,853	48,861	34
Highlander	Ainsworth	T. G. Laughton, lessee from Yale Lead & Zinc Mines Ltd., Toronto	510	Lead concentrates, 47 tons; zinc concentrates, 16 tons		1,021	*** -===	66,031	20,091	5
Lone Bachelor	Sandon	E. Perepołkiu, Hills	182	Lead concentrates, 34 tons; zinc concentrates, 34 tons; crude ore, 36 tons	2	8,213	ana da da ana ana a si	96,370	50,301	2
Mammoth	Silverton	Loma Minerals Ltd., Calgary, lessee from Western Explora- tion Co, Ltd., Silverton	3,401	Lead concentrates, 208 tons; zinc concentrates, 310 tons	5	23,167	ALEXANDA NAMADON V VILLEN	291,768	355,685	2,5
Ottawa	Slocan	Otiawa Silver Mines Ltd., Spo- kane, Wash.	90	Crude ore	1	10,905		698	333	
Richmond-Eureka	Sandon	Perepolkin, Fried, and De Rosa, c/o E. Perepolkin, Hills	575	Lead concentrates, 42 tons; zinc concentrates, 78 tons	3	6,645		49,613	90,088	5
Slocan Prince	Slocan	J. K. Pearson, Calgary	2	Crude ore		22	·····	20	70	
Utica	Kaslo	Standard Berylliam Corpora- tion, Kaslo	900	Lead concentrates, 14 tons; zinc concentrates, 33 tons	2	6,008	•	10,919	35,059	2
Victor	Sandon	Violamac Mines Ltd., New Denver	3,174	Lead concentrates, 413 tons; zinc concentrates, 422 tons	101	60,219	***************	613,485	504,252	3,3
Yale Trail Creek Mining Division	Ainsworth	Yale Lead & Zinc Mines Ltd., Ainsworth	8091	Mill clean-up: lead concentrates, 83 tons; zinc concentrates, 64 tons	I	1,865		115,042	73.835	3
Velvet	Rossland	Mid-West Copper & Uranium Mines Ltd., Vancouver; Vel- vet Leasers, Rossiand, lessers	8,153	Concentrates, 457 tons	518	1,431	239,313	V		

.

TABLE XIV.—LODE-METAL PRODUCTION IN 1961—Continued

STATISTICS

Name of Mine or Operator Shipping Mines	Míne	Mill	Mined	Milled	10.00	
	1		1		Mine	Mill
	1					
luebell (Cons. M. & S. Co. of Canada Ltd.)	254	354	252,821	252.821	272	19
ralorne Pioneer Mines Ltd. (Bralorne Division)		365	154.040	154.040	336	20
ariboo Gold Quartz Mining Co. Ltd.		365	37,944	37.944	97	Ĩĝ
raigmont Mines Ltd.		107	484.073	484,073	218	11
impire Development Co. Ltd. and Mannix Co. Ltd.		10.	101,010	101,010		1
(Iron Production Division)	170	140	535.833	535,833	68	8
Hant Mascot Mines Ltd.		365	260.583	260,583	143	22
I.B. (Cons. M. & S. Co. of Canada Ltd.)		365	472,731	472,731	105	12
Iowe Sound Co. (Britannia Division)		279	461.601	461.601	310	27
ersey (Canadian Exploration Ltd.)	365	365	374.032	374,032	152	11
fastodon-Highland Bell Mines Ltd.		272	18,954	18.954	33	6
Ickinney Gold Mines Ltd.		<u> </u>	5,086	101/04	19	
lineral King (Sheep Creek Mines Ltd.)		359	211,010	211.010	85	11
fother Lode (Consolidated Woodgreen Mines Ltd.).		357	201.123	201.123	16	10
limpkish Iron Mines Ltd.		306	666,361	666,361	39	35
hoenix Copper Co. Ltd.		365	420.372	420.372	48	19
Leeves MacDonald Mines Ltd.	252	349	420,508	420,508	87	22
ullivan (Cons. M. & S. Co. of Canada Ltd.)	247	247	2.461.695	2.461.695	888	320
exads Mines Ltd		355	894.621	893,892	159	38
/eivet Leasers	252	276	8,153	8,153	19	i i
/ictor (Violamac Mines Ltd.)			3,174		13	(
Non-shipping Mines						
Canam Copper Co. Ltd.			1		22	
Coast Copper (Cons. M. & S. Co. of Canada Ltd.)					21	1
lewmont Mining Corporation of Canada Ltd.					26	

TABLE XV.—LODE-METAL MINES EMPLOYING AN AVERAGE OF TEN OR MORE PERSONS DURING 1961¹

1 The average number employed includes wage-earners and salaried employees. The average is obtained by adding the monthly figures and dividing by 12, irrespective of the number of months worked.

Departmental Work

ADMINISTRATION BRANCH

The Administration Branch is responsible for the administration of the Provincial laws regarding the acquisition of rights to mineral and to coal, petroleum and natural gas, and deals with other departments of the Provincial service for the Department or for any branch.

Gold Commissioners, Mining Recorders, and Sub-Mining Recorders, whose duties are laid down in the Mineral Act and the Placer-mining Act, administer these Acts and other Acts relating to mining. Mining Recorders, in addition to their own functions, may also exercise the powers conferred upon Gold Commissioners with regard to mineral claims within the mining division for which they have been appointed. Similar duties may be performed by Mining Recorders with regard to placer claims but not in respect of placer-mining leases. Recording of location and of work upon a mineral claim as required by the Mineral Act and upon a placer claim or a placer-mining lease as required by the *Placer-mining Act* must be made at the office of the Mining Recorder for the mining division in which the claim or lease is located. Information concerning claims and leases and concerning the ownership and standing of claims and leases in any mining division may be obtained from the Mining Recorder for the mining division in which the property is situated or from the Department's offices at Victoria, and Room 101, 739 West Hastings Street, Vancouver. Officials in the offices of the Gold Commissioner at Victoria and the Gold Commissioner at Vancouver act as Sub-Mining Recorders for all mining divisions. Sub-Mining Recorders, who act as forwarding agents, are appointed at various places throughout the Province. They are authorized to accept documents and fees, and forward them to the office of the Mining Recorder for the correct mining division. Officials and their offices in various parts of the Province are listed in the table on page A 53.

CENTRAL RECORDS OFFICES (VICTORIA AND VANCOUVER)

Transcripts of all recordings in Mining Recorders' offices throughout the Province are sent to the office of the Chief Gold Commissioner in Victoria twice each month, and include the names of lessees of reverted surveyed mineral claims. These records and maps showing the approximate positions of mineral claims held by record and of placer-mining leases may be consulted by the public during office hours at Victoria and at the office of the Gold Commissioner at Vancouver, Room 101, 739 West Hastings Street. The maps conform in geographical detail, size, and number to the reference and mineral reference maps issued by the Legal Surveys Branch of the Department of Lands and Forests, and the approximate positions of mineral claims held by record and of placer-mining leases are plotted from details supplied by the locators. Provision has been made to supply the general public, on request to the office of the Chief Gold Commissioner, with copies of the maps. The charge for these maps is \$1 plus 5 per cent tax for each sheet.

Mining Division	Location of Office	Gold Commissioner	Mining Recorder
Alberni	Alberni	T. G. O'Neill	T, G. O'Neill,
Atlin	Atlin		T, R, McKinnon.
Cariboo			F. E. P. Hughes.
Clinton			
Fort Steele			E. L. Hedley.
Folden	Golden	R. E. Manson	R. E. Manson.
Freenwood			
Camloops	Kamloops	D. Dalgleish	D. Dalgleish.
iard			···· •
.illooet	Lillooet	E, B. Offin	E, B. Offin.
Vanaimo	Nanaimo	W. H. Cochrane	W. H. Cochrane,
Nelson	Nelson	K. D. McRae	K. D. McRae.
New Westminster	New Westminster	J. F. McDonald	G, C. Kimberley.
Nicola	Merritt	T. S. Dobson	T. S. Dobson,
Omineca			G. H. Beley.
Dsoyoos	Penticton		
Revelstoke	Revelstoke	W. T. McGruder	W. T. McGruder.
imilkameen			_ B. Kennelly,
keena	Prince Rupert		
locan			W. E. McLean.
Trail Creek			
/ancouver			
/ernon			
/ictoria			

LIST OF GOLD COMMISSIONERS AND MINING RECORDERS IN THE PROVINCE

GOLD COMMISSIONERS' AND MINING RECORDERS' OFFICE STATISTICS, 1961

	Free M Certifi				Lode-minin	g			Placer-mining Revenue							
Mining Division	Individual	Company	Mineral Claims Recorded	Certificates of Work	Cash in Lieu	Certificates of Improvements	Bills of Sale, etc.	Mineral Leases	Placer Claims Recorded	Placer Leases Granted	Certificates of Work	Cash in Lieu	Bills of Sale, etc.	Free Miners' Certificates	Mining Receipts	Total
Iberni Alin Cariboo Linton Ort Steele Bolden Freenwood Camloops Jaraimo Janaimo Janaimo Jelson Few Westminster Nicola Soyoos tevelstoke milkameen keetta Jocan rail Creek 'ancouver. 'ernon 'ictoria	132 127 1,068 38 205 111 114 401 269 223 130 341 417 103 341 417 103 365 191 88 209 139 132 209 139 132 209 139 1352 1,852 1,852 1,852	$ \begin{array}{c} 1 \\ 2 \\ 12 \\ 2 \\ 2 \\ 3 \\ 1 \\ 9 \\ 6 \\ 1 \\ 3 \\ 1 \\ 206 \\ 39 \\ \end{array} $	1,202 616 2,171 214 305 131 3,690 483 3,600 459 3,042 1,018 282 123 532 734 310 532 734 316 71 592 209 271	959 181 319 210 525 279 591 2,032 1,269 725 99 99 99 97 518 2,655 461 191 173 518 2,279 795 311 230 84 170	\$4,400,00 900.00 1,300.00 1,200,00 2,300.00 2,300.00 4,700.00 4,700.00 4,700.00 6,840.00 1,200.00 6,600.00 900.00 2,000,60 6,000.00 2,700.03 1,700.00 3,900.00 1,200.00 4,500.00 200.00		94 38 60 4 322 24 50 244 50 244 76 61 54 159 176 58 255 16 33 164 53 31 10	$ \begin{array}{c} 7 \\ 6 \\ -8 \\ 5 \\ 14 \\ 4 \\ -3 \\ 16 \\ 3 \\ -14 \\ 15 \\ 26 \\ 7 \\ 3 \\ 4 \\ -7 \\ 3 \\ 4 \\ -7 \\ 3 \\ -7 \\ 3 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7 \\ -7$	2 8 11 	23 147 16 22 4 5 8 12 26 1 5 21 12 25 2 7 7 2	4 82 358 6 35 4 7 4 21 34 8 11 12 57 59 3 	\$3,850.00 1,250.00 500.00 250.00 1,250.00 250.00 250.00 1,060.00 500.00	13 152 7 11 26 5 25 15	\$756.00 835.00 6,816.00 1,90,00 7,40.00 7,76.00 2,455.00 1,415.00 7,00.00 2,406.00 2,516.00 5,15.00 1,255.00 7,40.00 7,11.00 1,295.00 9,95.00 5,10.00 2,7,801.00 9,45.00 5,727.00	\$11,675.25 11,812.000 31,463.00 2,935.000 7,885.37 3,716.00 7,621.25 19,323.500 15,317.25 7,743.75 10,870.500 4,972.000 11,602.500 13,637.360 2,968.200 7,511.500 6,813.75 12,047.25 5,850.75 1,215.500 9,604.25 1,985.25 4,972.000 1,551.500 1,550.75 1,215.500 1,550.75 1,255.500 1,550.75 1,255.500 1,550.75 1,255.25 1,985.25 1,9	\$12,431,25 12,647.00 38,279.00 3,125.00 9,110.37 4,456.00 8,397,25 21,778.50 16,867.25 9,158.75 11,570.50 7,378.00 14,018.60 19,026.00 15,244.36 4,223.20 8,251.50 7,524.75 13,342.25 6,845.75 1,725.50 37,405.25 2,930.25 2,930.25
Totals for Province, 1961 Totals for Province, 1960		308	19,064 11,748	16,665 13,157	\$54,640.00 \$47,540.00	39	1,544	110	<u>36</u> 30	379 248	767 811	\$9,350.00	382 189	\$64,481.00 \$55,410.50	\$182,196.20	\$295,608.88

DEPARTMENTAL WORK

COAL, PETROLEUM, AND NATURAL GAS

The Administration Branch is responsible for the administration of the Petroleum and Natural Gas Act and for the Coal Act. Information concerning applications for permits and leases issued under the Petroleum and Natural Gas Act and concerning the ownership and standing of them may be obtained upon application to the office of the Chief Commissioner, Department of Mines and Petroleum Resources, Victoria, B.C. Similar information may be obtained respecting licences and leases issued under the Coal Act. Maps showing the locations of permits and leases under the Petroleum and Natural Gas Act are available, and copies may be obtained upon application to the office of the Department of Mines and Petroleum Resources, Victoria, B.C. Monthly reports listing additions and revisions to permitlocation maps and listing changes in title to permits, licences, and leases and related matters are available from the office of the Chief Commissioner upon application and payment of the required fee.

Coal Revenue, 1961		
Licences—		
Fees\$5'	75.00	
Rental	17.95	
		\$9,992.95
Leases—		
Fees\$10	00.00	
Rental2	86.95	
Cash in lieu 10	00.00	
		486.95
	-	······································

. 10/1

1 D

\$10,479.90

At the end of 1961, 33,925,009 acres, or approximately 53,000 square miles, of Crown petroleum and natural-gas rights, issued pursuant to the *Petroleum and Natural Gas Act*, were held in good standing. This acreage, held by operators ranging from small independent companies to major international ones, was comprised of:— Acres

424	permits	25,898,913
5	natural-gas licences	159,027
32	drilling reservations	546,699
	leases	7,320,370

33,925,009

Petroleum and Natural-gas Revenue, 1961

Rentals and fees—		
Permits	\$2,856,551	
Drilling reservations	59,989	
Natural-gas licences	12,638	
Petroleum, natural-gas, and petroleum		
and natural-gas leases	3,616,123	
Total rentals		\$6,545,301

A 56 MINES AND PETROLEUM RESOURCES REPORT, 1961

Sale of Crown reserves—	* 1 +>* <=>	
Permits		
Drilling reservations	3,082,821	
Leases	3,065,391	
Total Crown reserve sales	·····.	\$7,641,891
Royalties—		
Gas	\$1,152,396	
Oil		
Processed products	119,405	
Total royalties		1,479,193
Miscellaneous fees		23,817
		<u></u>

Total petroleum and natural-gas revenues \$15,690,202

ANALYTICAL AND ASSAY BRANCH

By S. W. Metcalfe, Chief Analyst and Assayer

ROCK SAMPLES

During 1961 the chemical laboratory in Victoria issued reports on 1,927 samples from prospectors* and Departmental engineers. A laboratory examination of a prospector's sample generally consists of the following: (1) A spectrographic analysis to determine if any base metals are present in interesting percentages; (2) assays for precious metals and for base metals shown by the spectrographic analysis to be present in interesting percentages. The degree of radioactivity is measured on all samples submitted by prospectors and Departmental engineers; these radiometric assays are not listed in the table below.

The laboratory reports were distributed in the following manner among prospectors who were not grantees, prospectors who were grantees under the *Prospectors' Grub-stake Act*, and Departmental engineers:—

	Samples	Spectrographic Analyses	Assays
Prospectors (not grantees)	1,308	1,285	3,066
Prospectors (grantees)	311	307	748
Departmental engineers	308	164	742
Totals	1,927	1,756	4,556

Samples submitted to the laboratory for identification are examined by the Mineralogical Branch of the Department. During the year such samples numbered 140.

PETROLEUM AND NATURAL-GAS SAMPLES

Reports were issued on forty-six samples. Of this number, nineteen were samples of formation waters from wells being drilled for gas and oil in the Province; five were supposedly waters from the same source but actually were drilling-muds, and therefore no analyses were performed on them; eight were samples tested for oil seeps; seven were condensates; one was a tank-bottom sample in which the

^{*} A reasonable number of samples are assayed, without charge, for a prospector who makes application for free assays and who satisfies the Chief Analyst that prospecting is his principal occupation during the summer months. A form for use in applying for free assays may be obtained from the office of any Mining Recorder.

amount of water was determined; one was a sample of petroleum; four were samples submitted by engineers of the Petroleum and Natural Gas Branch; and one was a natural gas. Nineteen spectrographic analyses were reported on samples in this category.

COAL SAMPLES

Reports were issued on forty-six samples of coal submitted by the Purchasing Commission for proximate analysis and calorific value.

MISCELLANEOUS SAMPLES

Reports were issued on eighty-seven samples of a miscellaneous nature.

For the Minister of Mines and Petroleum Resources, four samples of rock were spectrographed and assayed for both precious and base metals. One sample from the Deputy Minister of the same Department was treated similarly.

For the Petroleum and Natural Gas Branch of the Department, spectrographic analyses were performed on two glass vials made by different manufacturers. Three types of commercial gels used in oil drilling operations were examined to determine the nature of the thickening agent used, and in addition two samples from stockpiles of gel in the Peace River area were investigated for the same reason. A sample of bran from the same area was examined for chemicals which may be poisonous to cattle.

For the British Columbia Research Council, spectrograpic analyses were performed on five samples.

For the Purchasing Commission, five samples of anti-freeze were compared, and in addition two cements.

For the Department of Agriculture, five samples were spectrographed and four of these were analysed for their content of the oxides of calcium and magnesium. Nineteen quantitative spectrographic determinations were performed on each of twenty-six samples of soil and plant ash. A white powder on holly leaves was identified as calcium carbonate. A sample of gypsum also was examined.

For the Department of Lands and Forests (Forest Research), ten samples of soil were spectrographed and ninety chemical analyses were performed on the same samples.

For the Department of Highways (Materials Testing Branch), spectrographic analyses were performed on two copper tubes. One water sample was examined for its lead content and another for the presence of sulphur compounds. A white layer on a piece of concrete was examined and found to be calcium carbonate. The oil content of two samples of gasoline was determined, and a spectrographic analysis was performed on a sample of soil.

For the British Columbia Hydro, the nature of a sediment plugging plastic tubes at a dam-site was determined by spectrographic means.

For the Dominion Astrophysical Observatory, a metal plating was spectrographed.

For the Victoria City Water Works, two water samples were analysed for comparison purposes.

For citizens of the Province, the following materials were examined: A sample of pozzolan was spectrographed for the presence of rare metals; a fatty material found on a beach was examined; the chloride content of two waters was determined, and an analysis was performed on another water sample; a spectrographic analysis was performed on a rock sample, which was also assayed for precious and base metals. A sample of clay was submitted by a citizen who had obtained it in Denmark and wished to determine whether such a clay occurred in the Province; the X-ray diffraction pattern indicated that the clay mineral was illite.

X-RAY POWDER DIFFRACTION ANALYSES

One hundred and five analyses of this type were performed for identification purposes.

EXAMINATION FOR ASSAYERS

A Provincial Government examination for certificates of competency and licence to practise assaying in British Columbia was held at Victoria and Trail in December. Two candidates passed the examination, four were granted supplementals, and one failed.

INSPECTION BRANCH

ORGANIZATION AND STAFF

Inspectors and Resident Engineers

J. W. Peck, Chief Inspector	Victoria
Robert B. Bonar, Deputy Chief Inspector of Mines	
L. Wardman, Senior Electrical Inspector of Mines	Victoria
E. R. Hughes, Senior Inspector of Mines	Victoria
J. E. Merrett, Inspector and Resident Engineer	Vancouver
A. R. C. James, Inspector and Resident Engineer	Vancouver
J. D. McDonald, Inspector and Resident Engineer	Nelson
D. R. Morgan, Inspector and Resident Engineer	Fernie
David Smith, Inspector and Resident Engineer	Kamloops
W. C. Robinson, Inspector and Resident Engineer	Prince Rupert

The Inspectors are stationed at the places listed and inspect coal mines, metalliferous mines, and quarries in their respective districts. They also examine prospects, mining properties, and roads and trails.

E. R. Hughes supervised the Department's roads and trails programme and prospectors' grub-stakes.

Instructors, Mine-rescue Stations

Arthur Williams	Fernie Station
W. H. Childress	Nelson Station
T. H. Robertson	Kamloops Station
W. High (part time)	Cumberland Station

Board of Examiners for Coal-mine Officials

Robert B. Bonar, Chairman and Secretary	Victoria
A. R. C. James, Member	Vancouver
D. R. Morgan, Member	Fernie

R. B. Bonar, A. R. C. James, D. R. Morgan, and the mine-rescue instructors for the district in which an examination is being held form the Board for granting certificates of competency to coal-miners.

An Inspector is empowered to grant provisional certificates to coal-miners for a period not exceeding sixty days between regular examinations.

Board of Examiners for Shiftbosses (Metalliferous Mines)

Robert B. Bonar, Chairman	Victoria
A. R. C. James, Member	Vancouver
J. E. Merrett, Member	Vancouver

A 58

The Board conducts written examinations in various mining centres for applicants for underground shiftboss certificates. The Board is also empowered to grant provisional certificates without examination under such conditions as the Board considers necessary.

MINERALOGICAL BRANCH

Field work by officers of the Mineralogical Branch includes geological mapping and examination of mineral deposits, and studies related to ground-water and engineering geology. The results are published partly in the Annual Report of the Minister of Mines and Petroleum Resources and partly in a series of bulletins. The Mineralogical Branch supplies information regarding mineral deposits and the mineral industry, in response to inquiries received in great number. The activities of the Branch also include identification of rock and mineral specimens submitted directly by prospectors and others, or through the Analytical Branch.

PROFESSIONAL STAFF

On December 31, 1961, the professional staff included the following engineers classified as geologists or mineral engineers: H. Sargent, Chief of the Mineralogical Branch; M. S. Hedley, S. S. Holland, J. W. McCammon, N. D. McKechnie, G. E. P. Eastwood, J. T. Fyles, A. Sutherland Brown, J. M. Carr, W. G. Jeffery, W. C. Jones, A. F. Shepherd, and J. E. Hughes. In November Dr. Jeffery went on leave for a year in order to go to Ghana on a Canadian external aid mission.

Technical editing of the Annual Report of the Minister of Mines and Petroleum Resources and of other publications was directed by M. S. Hedley. Copy for orinting was prepared by and under the direction of the editor for English, Mrs. Rosalyn J. Moir. Messrs. Hedley and Holland assisted in directing and supervising field work. Most of the other members of the professional staff are assigned to mapping the geology of selected areas and of mineral deposits. Mr. McCammon is responsible for studies of industrial minerals and structural materials, and Mr. Shepherd for records and library.

FIELD WORK

A. Sutherland Brown with one assistant nearly completed the areal mapping of the Queen Charlotte Islands. A large part of Graham Island underlain by Tertiary volcanic rocks was mapped rapidly, using a helicopter after a previous photogeological study. The northern part of Moresby and eastern part of Graham Islands were mapped, using a land rover and inflatable speedboat.

J. M. Carr visited and examined many copper deposits in southern, central, and northwestern British Columbia, including the Princeton, Merritt, Poison Mountain, Taseko Lake, Granduc-Unuk, and Stikine River areas.

G. E. P. Eastwood with one assistant made petrographic and structural studies at several magnetite occurrences on Vancouver Island. The studies were concentrated mainly at Kennedy Lake and at the Merry Widow property (Mannix mine). At the latter the study was made in collaboration with W. G. Jeffery, who was carrying on 1-mile mapping in the area.

J. T. Fyles with three assistants continued mapping in the North Kootenay Lake-Duncan Lake area. The work included mapping at 500 feet to the inch and 1,000 feet to the inch in two localities near Ainsworth, and mapping at 2,000 feet to the inch in the vicinity of Duncan Lake. The work also included a reconnaissance west of Meadow Mountain. Visits were paid to six mines or prospects in the Kootenay Lake-Salmo area and at the Wigwam property south of Revelstoke and a property on Ruddoch Creek, 60 miles northwest of Revelstoke.

S. S. Holland made studies regarding alluvial jade on the Fraser and Yalakom Rivers in the Lillooet area and on Wheaton Creek at the head of Turnagain River, visited placer ground in the Bridge River, Horsefly, Likely-Keithley Creek, and Manson Creek areas, and placer operations in the Wells-Barkerville area, and examined operations at Squaw Creek and McConnell Creek. He visited lode-metal properties in the Telkwa, Hazelton, Wedeene River, and Stewart areas, and an appraisal was made of the possibility of structural mapping on Bear Ridge in the Stewart area.

J. E. Hughes began a study of Devonian strata in the northern Rocky Mountains and in cores from drill-holes. The surface study was in the Stone Range and along Racing River, Alaska Highway, mileage 392 to 428. Cores examined were from holes in the Fort Nelson-Clarke Lake area.

W. G. Jeffery with four assistants continued mapping in an area in northern Vancouver Island, including Alice and Kathleen Lakes, and extending to Neroutsos Arm and Rupert Inlet. A preliminary geological map of the area has been prepared for publication at 1 mile to 1 inch.

W. C. Jones made studies regarding damsites involving geological mapping and evaluation of test-drill results, test-pit data, and seismic data for damsites on McGregor River, Clearwater River (Clearwater-Azure site), and Cariboo River (Cariboo Falls site), and mapped geologically the Hobson Lake-Summit Lake and Grand Canyon (Fraser River) sites.

J. W. McCammon examined industrial mineral and structural material occurrences or operations in many parts of the Province, completed a study of limestone deposits in the Vernon area, and examined molybdenite deposits at Towloon Lake, Sands Creek, and Takomkane (Boss) Mountain, and lead-zinc showings at Agate Bay on Adams Lake and at East Barriere Lake.

N. D. McKechnie examined and mapped lode-metal mines and prospects at Jordan River, Shawnigan Lake, Tranquil Inlet, and Mount Washington, on Vancouver Island, at Hedley, Olalla, Greenwood, Martel, and selected properties in the Merritt area.

The Department participated with the Geological Survey of Canada in an aeromagnetic survey that covered much of the area of moderate relief in central British Columbia. The area is of irregular outline and lies between 52 degrees 15 minutes and 56 degrees 00 minutes north latitude and mainly between 121 degrees 30 minutes and 125 degrees 00 minutes west longitude.

PETROLEUM AND NATURAL GAS BRANCH

The Petroleum and Natural Gas Branch is responsible for the administration of the "Regulation Governing the Drilling of Wells and the Production and Conservation of Oil and Natural Gas," made pursuant to the *Petroleum and Natural Gas Act*. The regulation provides for the use of efficient and safe practices in the drilling, completion, and abandonment of wells; for the orderly development of fields discovered within the Province; and for the conservation and prevention of waste of oil and natural gas within the reservoir and during production operations.

Investigations are made of complaints of property damage resulting from geophysical and test-hole drilling programmes. The "Geophysical Regulations" are administered by the Chief Petroleum and Natural Gas Commissioner.

DEPARTMENTAL WORK

Staff

J. D. Lineham, Chief of the Branch	Victoria
R. R. McLeod, Senior Petroleum Engineer and member of the	
Board of Arbitration	
A. N. Lucie-Smith, Senior Petroleum Engineer and Chairman	
of the Conservation Committee	Victoria
W. L. Ingram, Petroleum Engineer	Victoria
K. C. Gilbart, Petroleum Engineer	
E. V. Rehwald, Petroleum Engineer	Victoria
T. A. Mackenzie, Statistician	
S. S. Cosburn, Geologist	
D. L. Griffin, Geologist	
D. M. Callan, Assistant Geologist	Victoria
P. K. Huus, Engineering Assistant	Victoria
M. B. Hamersley, Engineering Assistant	Victoria
G. E. Blue, District Engineer. Ch	
H. B. Fulton, Field GeologistCh	arlie Lake
D. L. Johnson, Field Engineer	arlie Lake
H. A. Sharp, Engineering Assistant	
M. A. Churchill, Engineering Assistant	

The total Branch staff numbered twenty-five at the end of the year, including the above-named personnel, of whom seventeen were employed at headquarters and eight in the field office at Charlie Lake.

STAFF CHANGES

There were no resignations from the professional or technical staff.

D. L. Johnson, a 1961 graduate in chemical engineering from the University of Alberta, joined the field staff as a petroleum engineer on July 3rd.

D. M. Callan returned from educational leave of absence on July 7th. Mr. Callan, who was awarded a diploma in petroleum reservoir engineering by the Imperial College of Science and Technology, London, England, resumed work with the Geology Section.

G. V. Rehwald was transferred on August 8th from the field office to Victoria to assume duties in the Reserves and Evaluation Section.

An additional man was employed on a permanent basis for sample-washing and core-handling duties at the field office.

ADMINISTRATION

The Petroleum and Natural Gas Branch is subdivided for administrative purposes into five sections, each of which is headed by a supervisor who is responsible for a specific phase of Branch work. There is a field office, including sample-washing and core-storage facilities, at Charlie Lake. The sections and respective section heads are as follows: Reservoir Engineering, R. R. McLeod; Reserves and Evaluation, A. N. Lucie-Smith; Development Engineering, W. L. Ingram; Geology, S. S. Cosburn; Statistics and Well Records, T. A. Mackenzie; and Field Office, G. E. Blue.

BOARD OF ARBITRATION

Chairman: A. W. Hobbs, solicitor, Department of the Attorney-General. Members: R. R. McLeod, engineer, Department of Mines and Petroleum Resources; S. G. Preston, agrologist, Department of Agriculture. The Board of Arbitration, responsible to the Minister of Mines and Petroleum Resources, held one hearing in 1961 at Fort St. John.

Eleven applications concerning right of entry came before the Board. Of these, one was settled by an award order of the Board, five were pending at the end of the year, three were concluded by agreement between parties subsequent to Board order, and two were settled by agreement between parties while a hearing was pending.

CONSERVATION COMMITTEE

Chairman: A. N. Lucie-Smith, petroleum engineer. Members: N. D. Mc-Kechnie, geologist; M. H. A. Glover, economist.

An application by Sun Oil Company to the Minister of Mines and Petroleum Resources for a Pool MPR (Maximum Permissible Rate) for its Blueberry Mississippian Oil Field was referred to the Conservation Committee. The application was made to enable the company to meet a temporary refinery commitment in excess of the sum of the individual MPR's of the four potential producers in the field at that time.

The decision reached by the Committee was that a Pool MPR was only justified after a field had been fully delimited by drilling and was about to enter into a unitized operation for the purpose of pressure maintenance or secondary recovery and therefore, in this particular instance, there was no justification for changing for the temporary benefit of one operator the existing policy of individual well MPR's.

The Minister did not approve the application of Sun Oil Company but agreed to consider overproduction on a temporary basis, provided the equity of other operators in the Province was not thereby affected.

GRUB-STAKING PROSPECTORS

Under authority of the *Prospectors' Grub-stake Act* the Department has provided grub-stakes each year since 1943 to a limited number of applicants able to qualify. The normal maximum grub-stake is \$300, with an additional amount up to \$200 for travelling expenses. A limited number of experienced prospectors of proven ability may be granted top priority grub-stakes of as much as \$400, plus a maximum of \$300 for travelling expenses, where prospecting is to be done in approved areas where air transportation is necessary.

To qualify at the present time, the Department requires that the applicant shall be a bona fide prospector holding a free miner's certificate. He must be a British subject, between the ages of 18 and 70 years, and must have resided in British Columbia during the year preceding the date of application. He must be able to identify common rocks and minerals. The grub-staked prospector is provided with maps, a current list of prices of metals and ores, and the latest Departmental information circulars on prospecting and related matters.

It is required that in order to obtain the maximum grub-stake he agree to spend at least sixty days actually prospecting in the area of his choice in British Columbia considered favourably by officers of the Department. If he prospects a lesser time, the grant will be reduced proportionately. The grant is usually made in two payments: the first at the beginning of the season and the second after he has completed sixty days in the field and has submitted a diary. In the past, rebates have been recovered from grantees to whom payments have exceeded the proper amount for the time and effort devoted to prospecting. A field engineer is employed who contacts as many prospectors as he is able during the field season and gives advice and direction to those who need it. Grantees are permitted a reasonable number of free assays. The grub-stakes are granted with the object of maintaining the search for mineral occurrences with mine-making possibilities. Any discoveries made, staked, and recorded are exclusively the grantee's own property. The grants are not intended for the purpose of exploring and developing occurrences already found, but one year is allowed to prospect ground that has been staked by a grantee while on a grub-stake. The grantee must not accept pay from other sources for services rendered during the period credited to the grub-stake.

It is recognized that competent and experienced prospectors are capable of looking after themselves in wilderness areas. Nevertheless, experience has shown that less hazard may result when prospecting is done by two or three men in a team. A man working alone may be injured or be taken seriously ill and, if alone, he may have to endure extreme hardship and pain.

Grub-stake grantees are not working for the Government but are self-employed and are not covered under the provisions of the *Workmen's Compensation Act*. Therefore, it is recommended that prospectors make their own arrangements concerning insurance coverage to provide for medical and other expenditures that may be incurred in the event of an accident.

Statistical information covering the grub-stake programme since its inception is given in the following table:—

Field Season	Approximate Expenditure	Men Grub-staked	Samples and Specimens Received at Department Laboratory	Mineral Claims Recorded
943	\$18,500	90	773	87
944	27,215	105	606	135
945	27,310	84	448	181
946	35,200	95	419	162
947	36,230	91	469	142
948	35,975	92	443	138
949	31,175	98	567	103
950	26,800	78	226	95
951	19,385	63	255	137
952	19,083	50	251	95
1953	17,850	41	201	141
1954	19,989	48	336	123
1055	21,169	47	288	183
1956	20,270	47	163	217
1957	22,000	46	174	101
958	24,850	47	287	211
959	21,575	38	195	202
960	28,115	50	358	241
961	29,175	47	309	325

GRUB-STAKE STATISTICS

Samples and specimens received from grub-staked prospectors are spectrographed, assayed, and tested for radioactivity. Mineralogical identifications are made on request.

One hundred and seventeen applications were received in 1961, and forty-eight grub-stakes were authorized. One of the grantees was unable to go out, and he returned his initial payment. Six other grantees were unable to complete the terms and conditions of the grant and received only partial payment. Fourteen prospectors were given grants for the first time, and three proved unsatisfactory. A few grantees used aircraft for transportation to their prospecting areas. Two grantees were affected by injury or sudden illness, but each man was accompanied by a partner who took care of him. D. H. Rae again gave able service in interviewing applicants and supervising grantees in the field. He was able to contact thirty grantees in the field, of whom twenty-one were contacted at the actual scene of prospecting. The following notes have been largely compiled from Mr. Rae's observations while in the field and from information provided in the diaries of the grantees.

Alberni Mining Division.—Three miles from the head of Kennedy Lake a granodiorite contact was prospected; on Canoe Creek small limonite deposits were investigated. Near Taylor Arm on Sproat Lake, narrow quartz veins containing minor amounts of chalcopyrite were prospected.

The southwest portion of Tzartus Island (Barkley Sound) was prospected, and small outcrops of magnetite were investigated. Also in this area, along a granitelimestone contact, massive pyrrhotite containing minor amounts of chalcopyrite was given some attention. Some work was also done near Marble Cove, and in the Sarita River valley where considerable pyrrhotite was found. Sampling showed nothing of economic importance. Similar showings were found near Moyeha Bay. At Effingham Inlet a granite-limestone contact was investigated. A similar contact zone was found near Kildonan Lake and at Hecate Mountain.

Atlin Mining Division. — In the Sittakanay River valley considerable trailcutting was done, several small gossans were prospected, and minor amounts of pyrrhotite and chalcopyrite were observed. Some work was done on King Solomon River, in the King Solomon Mountain area, at Mount Manville, and in the nearby Taku River valley. One mineralized zone showed low values in manganese. A shear zone 350 feet long and up to 20 feet wide returned disappointing assays. In the Kwashona Creek valley, field work indicated some small gossans, sparse chalcopyrite mineralization, and some pyrrhotite lenses, but nothing economic was reported.

Considerable work was done from a base camp off Windy Arm, covering part of Nakina River valley and the area adjacent to Yeth Creek and Katina Creek. In the vicinity of Chikoida Mountain, narrow stringers of asbestos fibre in serpentine were investigated, but the occurrence proved to extend over an area too small to be of importance. Some work was also done in the Tatshenshini River valley and on some of its tributaries. Nothing of commercial importance was reported, although numerous narrow quartz stringers containing minor amounts of galena and chalcopyrite were found. One wide, sparsely mineralized zone and a 10-footwide quartz vein were located high above the valley.

Cariboo Mining Division.—Some inconclusive work was done in the Goat River-Killam Creek-Isaac Lake areas. One narrow vein containing minor amounts of galena, sphalerite, and chalcopyrite was reported.

Near Davie Lake in the Chuchinka Creek valley, many rock samples were taken and brought in for identification, and some pyritic zones were sampled and assayed. Near Likely a pyritized zone (shear) was uncovered, but the assays of samples taken were too low to be of interest. Near Giscome a large area underlain by serpentine was prospected, but no asbestos was found. Some work was done in the Sinkut River area and in the valley of the Chilako River.

Clinton Mining Division.—Some work was done in the Churn Creek valley and in the Deep Creek and Potato Range areas. No useful information was reported.

A wide silicified zone containing appreciable amounts of arsenopyrite was prospected close to Kleena Kleene. Gold values in samples taken were sufficiently high to be of interest.

Fort Steele Mining Division.—Mount Anstey and parts of St. Mary River valley were given some attention; on Redding Creek an old tunnel on a mineralized zone showing disseminated molybdenite was cleaned out and sampled, but values were low. Golden Mining Division.—In the Copper Creek valley an extensive outcrop of schist and faulted and broken argillite showed several small and unimportant gossans and numerous narrow quartz veins—sampling indicated values were too low. Brewer Creek valley, close to Dutch Creek, and the headwaters of Ben Abel Creek were also prospected.

Greenwood Mining Division.—Some work was done near Arlington Lakes, and pyritic quartz veins in pyroxenite were sampled. Some work was also done near Norwegian Creek and in the Granby River valley.

Kamloops Mining Division.—Placer possibilities at several locations on the North Thompson River south of Clearwater were investigated.

A great deal of work was done in the Criss Creek area, east of Deadman River. A series of siliceous dykes was found to contain low values in silver, molybdenum, and tungsten.

South of Walhachin, on the Thompson River, what appears to be a large body of magnetite containing low values in copper was prospected and staked.

Areas close to Notch Hill, near Walker Lake, and west of Stump Lake were investigated. Nothing of importance was reported. Some work was done near Skwaam Bay on Adams Lake. Work was also done near the old Vidette mine. Eight miles southwest of Kamloops a great deal of work was done on and adjoining the old Last Chance property. Results were encouraging and more work is to be done in this area.

The Forge Creek-Guichon Creek sector received some attention, with fairly encouraging results. A discovery was made on the north side of Kamloops Lake near Copper Creek, but details are not yet available.

Liard Mining Division.—In the vicinity of Ealue Lake considerable work was done on a wide mineralized zone in altered limestone showing some disseminated chalcopyrite and much pyrite. Sample assays were encouraging.

The area of the Racing River, and many of its tributaries, about 40 miles south of the Alaska Highway, received some attention. Many narrow quartz veins containing scattered amounts of chalcopyrite were observed.

Lillooet Mining Division.—Field work was carried on in several sectors, including La Rochelle Creek, Holbrook Creek, Marshall Creek, the headwaters of Blue Creek, and near the headwaters of Yalakom River. Molybdenite occurrences at the headwaters of Texas Creek were prospected. The Anderson Lake area near Gold Creek was given some attention, also parts of the Shulaps Range where serpentine containing small stringers of short fibre asbestos was reported.

Nanaimo Mining Division.—On Quadra Island, 6 miles north of Heriot Bay, serpentine containing very short fibre asbestos was investigated; minor amounts of malachite and chalcopyrite were also found in these outcrops. Some work was done near Hyacinthe Bay.

Nelson Mining Division.—A full season's work was carried out from a base camp on Summit Creek, between Bayonne and Blazed Creeks. The valleys of several creeks in this area were prospected.

New Westminster Mining Division.—Some work was done on the west side of Pitt Lake, close to the south end, where quartz veins mineralized with pyrite and minor amounts of chalcopyrite were uncovered.

Extensive serpentine outcrops were investigated in the Sowaqua Creek valley. Near Coquihalla Lakes a 20-foot-wide zone well mineralized with pyrite, galena, sphalerite, and rhodonite was thoroughly prospected. This zone has possibilities.

Nicola Mining Division.—In the Pete Hope-Plateau Lakes area, dyke rocks containing disseminated sulphides were investigated, as well as a narrow quartz vein well mineralized with chalcopyrite and galena.

Omineca Mining Division.—Field work was continued in the Manson Creek area. On Jackfish Creek a narrow silver-bearing vein was discovered, and on Boulder Creek scheelite float was found.

Considerable work was done on the north side of the Nation River commencing about 5 miles east of the Fort St. James-Manson Creek road. Narrow quartz stringers and sheets of coarse to fine mica were found in pinkish granite. Some work was also done near Twenty Mile Creek and up the east fork of Twin Creek: nothing of interest was reported.

About 10 miles west of Uslika Lake an interesting discovery was reported, and a 15-foot-wide zone mineralized with hematite and chalcopyrite was traced for about 2,000 feet. Assays of samples taken were very encouraging.

An extensive area adjacent to the Rottacker Creek valley was prospected, and several quartz veins from 3 to 8 feet wide were found in granodiorite. These were well mineralized with hematite and contained minor amounts of chalcopyrite.

Some prospecting was done at the northern end of the Nechako Valley, where quartz veins in limestone were investigated, and a large deposit of pure limestone was sampled.

A large area was prospected near the west end of Eutsuk Lake. On Chikamin Mountain, at 5,000 feet elevation on the south slope, a zone 30 feet wide showing minor chalcopyrite mineralization was uncovered. Two other vein outcrops, one 2 feet wide and one 9 feet wide, were found; both were sparsely mineralized but showed a wide range of sulphide minerals. At the southwest corner of St. Thomas Bay a large exposure of highly oxidized andesite was reported; argillaceous rocks here were heavily pyritized and in places showed minor amounts of galena.

In the Toodoggone Lake area, float well mineralized with chalcopyrite was found.

Osoyoos Mining Division .--- Some prospecting was done around Mount Kobau, and a new vein was uncovered east of the old Smuggler mine southwest of Oliver. On the west side of Okanagan Lake close to Summerland considerable work was done on a wide pyritized shear zone. Several high assays in gold were reported but were not verified. Some work was done near Richter Pass and in the Apex Mountain area.

Revelstoke Mining Division .--- Prospecting was done near Albert Canyon, lower Goldstream River, Frisby Creek, Ferguson, and the west side of Trout Lake. Nothing conclusive was reported.

A short time was spent prospecting in the vicinity of Moloch Creek, on the Tangier River where a granite-porphyry contact was investigated, and on Fang Creek where argillaceous schist containing large amounts of coarse cube pyrite was sampled.

Similkameen Mining Division .--- In the Trout Creek area a zone 60 feet wide, mineralized with hematite and magnetite, was prospected. No further details are available. Several mineralized quartz veins were found on Siwash Creek, and a considerable amount of work was done on them. Near Teepee Lakes a mineralized shear zone was found.

Prospecting was done at a number of other places-in the Missezula Lake-Aspen Grove area, Lawless Creek, Mount Rabbitt, Mount Kennedy, Newton Creek, and along the Otter Lake fault.

Skeena Mining Division.-South of Stuart Anchorage on the east side of Pitt Island considerable work was done in endeavouring to prove further continuity of a small deposit of magnetite. At Baker Inlet on Grenville Channel, claims were staked and considerable work done on a deposit of sericite mica. An extensive

A 66

limestone deposit on the shoreline in Kumealon Inlet was prospected and sampled. At Refuge Bay on Porcher Island a wide pyritized quartz vein was prospected and sampled.

Some work was done in the Marmot River valley near Stewart, where narrow quartz veins showing considerable galena and pyrite were prospected.

A short time was spent at the headwaters of Kwinitsa Creek close to a granitegneiss contact, where pyritized quartz veins proved to be too low grade to be of interest; narrow pegmatite dykes were also investigated in this area. Up the Khyex River, barren-looking quartz veins were found close to a granite-sedimentary contact. Bornite float found near Rainbow Lake stimulated interest in the immediate area, but nothing was found in place.

At Horetzky Creek (Kemano area) altered limestone along a granodiorite contact showed minor amounts of pyrite, pyrrhotite, and traces of chalcopyrite. Some work was done near Suquash Landing, at Alarm Cove on Denny Island, and on Dowager Island on Mathieson Channel; nothing of importance was reported from any of this work. Near Lagoon Bay (on Fisher Channel) a small deposit of volcanic glass was discovered.

A base camp was established close to the highway bridge on the Bella Coola-Anahim road at Kahylskt Creek (Burnt Bridge River) crossing. Much copperbearing float was found on the steep mountainside and was finally traced to its source. The showing appears small, but the area warrants further intensive prospecting. From here work was also done up Nusatsum River and up the Talchako River.

Some prospecting was done on the Queen Charlotte Islands—near Ironside Mountain, west of Steel Creek, up the Coates River, Yakoun Lake, Shields Bay, and Harrison Island.

Vancouver Mining Division.—Near Cascade Point on Knight Inlet, quartz veins found in granite showed minor amounts of molybdenite.

Halfway up Jervis Inlet, on the west side, iron-stained rocks containing narrow quartz stringers were prospected without success. Near McCannel Lake an unsuccessful attempt was made to trace the source of molybdenite float.

Vernon Mining Division.—Prospecting was done east of Enderby and near Bessette Creek. Northing of importance was reported.

MINING ROADS AND TRAILS

Provision is made in the *Department of Mines and Petroleum Resources Act* whereby the Minister may, with the approval of the Lieutenant-Governor in Council, authorize the expenditure of public funds for the construction or repair of roads and trails into mining areas. Assistance on a half-cost basis may also be provided on roads and trails to individual properties.

Requests for road and trail assistance must be made to the Department before the commencement of work. The type of access upon which assistance may be given depends upon the value of the property, the stage of development, and the amount of work to be done. A trail is sometimes sufficient for initial exploration, and a tractor-road may be adequate for preliminary work. Subsequent development might warrant assistance on the construction of a truck-road. A carefully drawn sketch or plan of the location of the road is required to be submitted and, where warranted by the amount of assistance requested, a report on the property by a professional geological or mining engineer may be required. An engineer from the Department may be required to report on the property before a grant is made and to inspect the road after the work has been done.

Mining-roads	Miles	Cost
Construction	64.6	\$80,600.00
Maintenance	233.0	25,615.15
Photo interpretation and terrain analysis		2,000.00
Bridge-site survey		11,834.45
	•	
Total		\$120,049.60

Total mileages and disbursements under "Grants in Aid of Mining Roads and Trails" during the fiscal year ended March 31, 1961, were as follows:—

In addition to the above, work was continued on the Cassiar-Stewart road. This road is being constructed under the "Roads to Resources" agreement between Canada and British Columbia. The construction is being supervised by the Department of Highways on behalf of the Department of Mines and Petroleum Resources. At the north end of the road, construction of the 30.5-mile section from Sawmill Point on Dease Lake to Tanzilla River was completed. The Tanzilla River to Stikine River section, 26.6 miles long, was 98 per cent completed at the end of 1961, and the Stikine River to Eddontenajon Lake section of 24.7 miles was 75 per cent completed. In December a contract was awarded on the 40.1-mile section from Eddontenajon Lake to Burrage River. At the south end of the road the Bear Pass section was 85 per cent completed, and the Strohn Creek to the lower Bell-Irving section of 31.87 miles was 13 per cent completed.

The Fort Nelson River bridge, about 1 mile upstream from the confluence of the Muskwa River, which was damaged when the ice went out on April 25th, was repaired and again put into service. The approach access, 4 miles long, from the Alaska Highway at Mile 298.7 to the west end of the bridge was reconstructed to an all-weather standard.

MUSEUMS

The Department has a large exhibit of mineral and rock specimens in the Douglas Building, Victoria; collections are also displayed in the joint office in Vancouver and in the offices of the Inspectors of Mines in Nelson and Prince Rupert.

Specimens from the collection in Victoria, accumulated in a period of more than sixty years, are displayed in cases on the fourth floor of the Douglas Building. The collection includes specimens from many of the mines and prospects in the Province, and also specimens of type rocks and special minerals from British Columbia and elsewhere.

British Columbia material includes specimens collected by officers of the Department of Mines and Petroleum Resources and specimens donated by propertyowners. The collection also includes type specimens purchased from distributors. Other valued specimens or groups of specimens have been donated or loaned to the museum.

ROCK AND MINERAL SPECIMENS

Information regarding collections of specimens of rocks and minerals available to prospectors and schools in British Columbia may be obtained from the Chief of the Mineralogical Branch.

PUBLICATIONS

Annual Reports of the Minister of Mines and Petroleum Resources, bulletins, and other publications of the Department, with prices charged for them, are listed in the Department of Mines and Petroleum Resources List of Publications available from the Chief of the Mineralogical Branch.

A 68

DEPARTMENTAL WORK

Publications may be obtained from the offices of the Department in Victoria and elsewhere in the Province. They are also available for reference use in the Department's library (Mineralogical Branch) at Victoria, in the joint office in Vancouver, and in the offices of the Inspectors of Mines in Nelson and Prince Rupert, as well as in public libraries.

MAPS SHOWING MINERAL CLAIMS, PLACER CLAIMS, AND PLACER-MINING LEASES

From the details supplied by the locators, the approximate positions of mineral claims held by record and of placer-mining leases are shown on maps that may be inspected in the central records offices of the Department of Mines and Petroleum Resources in Victoria and in Vancouver. Copies of these maps may be obtained on request. The boundaries of surveyed claims and leases are shown on the reference maps and other maps of the British Columbia Department of Lands, Forests, and Water Resources.

JOINT OFFICES OF THE BRITISH COLUMBIA DEPARTMENT OF MINES AND PETROLEUM RESOURCES AND THE DEPARTMENT OF MINES AND TECHNICAL SURVEYS, CANADA.

The Provincial Department's Inspector and Resident Engineer, the Gold Commissioner and Mining Recorder for the Vancouver Mining Division, and the officers of the Federal Geological Survey occupy one suite of offices. All official information relating to mining is available to the public in the one suite of offices at 739 West Hastings Street, Vancouver 1.

The services offered to the public include technical information on mining, the identification of mineral specimens, distribution of Federal and Provincial mining publications, a reference library, a display of rocks and minerals, and a central records office.

Topographic Mapping and Air Photography

The four divisions comprising the Surveys and Mapping Branch—namely, the Legal Surveys, Topographic, Geographic, and Air Divisions—continued to supply basic data relating to Provincial surveys and cartography during 1961.

Field-notes were received by Legal Surveys Division for the survey of 631 lots, thirty of which were completed under authority of the *Mineral Act* and the remainder under the *Land Act*. The Departmental reference-map series showing the current status of Crown land alienation was also maintained, and four sheets covering the lower Fraser Valley west of Hope are being redrawn at a larger scale.

Subdivision surveys undertaken by Legal Surveys Division in 1961 included twenty-five lots at Bear Lake north of Prince George and forty-two lots in the Willow River area. As the result of burgeoning mining activity in the vicinity of Merritt, thirty-two new subdivision lots were surveyed near that village. In the Chief Lake and Chilako River areas, sixty-six old section and district lot corners were restored, while reposting on a smaller scale also took place at Nanoose, Clinton, Fort Fraser, South Hazelton, and Kaleden. Five widely separated highway surveys covered a total of 69.19 miles.

Accomplishments of the Topographic Division during 1961 included establishing field control for 29¹/₂ standard National Topographic map-sheets in the vicinity of Banks Island, Bella Bella, and Stuart Lake. Large-scale surveys were also completed in the McGregor River, Prince George, Quesnel, Hobson Lake, Clearwater River, Fraser River, Kamloops, Nanaimo, Port Hardy, and Nitinat areas.

Order in Council No. 2033/61, dated August 14th, set out new regulations governing well-site surveys under the *Petroleum and Natural Gas Act*. The responsibility for checking and examining well-site plans to see that they conform to the accuracy stated in the regulations was delegated to the Geographic Division.

Geographic Division also introduced a new system of road classification for use on Provincial maps at scales of 1 inch to 2 miles and 1:250,000. The system should be particularly helpful to persons who frequently travel off the network of main roads. New Provincial maps reproduced and printed during 1961 included three editions of regional map 1D (Northeastern British Columbia); two sheets at 1:250,000 scale, Nootka Sound (92E) and Taseko Lakes (92O); and two maps at 1-inch-to-2-miles scale, namely, Kaslo (82 F/NE) and Nakusp (82 K/SW). In addition, Merritt (92 I/SE) was completely revised. Ottawa mapping agencies supplied stocks of fourteen National Topographic map-sheets at 1:50,000 scale covering widely separated parts of the Province.

During 1961 the prices of reprints and enlargements of air photographs were increased. The rates now charged by the Air Division are similar to those of the National Air Photo Library at Ottawa. Aerial photographic operations accomplished 13,817 square miles and 2,807 lineal miles of new coverage, while 184,286 photo reprints were sold or loaned to various public and private agencies.

Indexes showing available published maps, reference maps, manuscripts, and aerial photographs may be found in the envelope attached to the back cover of the 1961 Lands Service Annual Report. Further details concerning Provincial maps, aerial photographs, and surveys are available from the Director, Surveys and Mapping Branch, Department of Lands, Forests, and Water Resources, Victoria, B.C.

Department of Mines and Technical Surveys

The Canadian Government Department of Mines and Technical Surveys performs many functions related to mining and the mineral industry in general. The Mines Branch, Geological Survey of Canada, and Surveys and Mapping Branch are the three branches of the Department of the most direct interest to the mineral industry. Brief reference to the work of the Surveys and Mapping Branch in British Columbia is made in the preceding note headed "Topographic Mapping and Air Photography." A note on the Geological Survey of Canada follows this paragraph and is followed by a note on the Mines Branch.

GEOLOGICAL SURVEY OF CANADA

By an arrangement made at the time the Province of British Columbia entered Confederation, geological investigations and mapping in the Province are carried on by the Geological Survey of Canada. Several geological parties are in the field each year. Many excellent reports and maps covering areas of British Columbia have been issued by the Geological Survey of Canada, and they have made available a great amount of information that has been of much benefit to the mining and prospecting activities in British Columbia.

A branch office of the Geological Survey of Canada is maintained in Vancouver. Maps and reports on British Columbia can be obtained there. J. E. Armstrong is in charge of this office at 739 West Hastings Street, Vancouver 1.

FIELD WORK BY GEOLOGICAL SURVEY OF CANADA IN BRITISH COLUMBIA, 1961

R. B. Campbell commenced field work in the Quesnel Lake East Half (93 A, E. $\frac{1}{2}$) map-area.

D. B. Craig completed very detailed mapping of a well-exposed area in 82 L/16 map-area near Revelstoke.

D. C. Findlay completed detailed mapping and sampling of the Tulameen ultrabasic complex.

P. E. Fox commenced and completed a study of the Adamant batholith west of the upper Columbia River as part of the "Granites in Canada" investigation.

W. L. Fry made collections of plant remains from Mio-Pliocene rocks in the Kamloops-Quesnel area.

R. J. Fulton continued the study and mapping of the surficial deposits of the Nicola (92 I, E. $\frac{1}{2}$) map-area.

H. Gabrielse completed the mapping of the Kechika (94 L) and Rabbit River (94 M) map-areas and also brought up to standard the work done by Operation Stikine in the Cry Lake (104 I) and Dease Lake East Half (104 J, E. $\frac{1}{2}$) map-areas.

E. C. Halstead commenced the study and mapping of the surficial geology of the Nanaimo-Duncan-Gulf Islands map-areas (92 F/1, E. $\frac{1}{2}$, G/4, C/16, B/13, B/14) together with A. Treichel, who studied the geohydrology of the same area.

R. L. Herr, B. S. Norford, and D. L. Scott carried out stratigraphic studies in southern British Columbia and Alberta.

D. W. Hyndman commenced detailed mapping in an area near Nakusp (82 K/4).

E. J. W. Irish continued field work in the Halfway River (94 B) map-area.

S. Learning began a study of the sand and gravel deposits of the Strait of Georgia area.

G. B. Leech examined known mineral deposits in Fernie West Half (82 G, W. $\frac{1}{2}$) map-area.

H. W. Little commenced 1-mile mapping of the Rossland-Trail (82 F/4) map-area.

E. W. Mountjoy completed the mapping of Mount Robson (83 E, S.E. ¹/₄) map-area, part of which lies in British Columbia.

J. E. Muller completed the mapping of the Pine Pass (93 O) map-area and mapped one-half of the McLeod Lake (93 J) map-area in co-operation with H. W. Tipper.

K. H. Owens, F. Essex, J. Houlihan, J. Lee, and J. W. Kempt conducted an aeromagnetic survey of part of central British Columbia roughly between 121 degrees 30 minutes and 125 degrees west longitude and 52 degrees 15 minutes and 56 degrees north latitude. The cost of this survey was shared by the Department of Mines and Technical Surveys and the Department of Mines and Petroleum Resources.

B. R. Pelletier continued his stratigraphic studies of the Triassic formations in the Foothills and Rocky Mountains of northeastern British Columbia.

R. A. Price commenced a field and laboratory investigation of selected folds in the Foothills and Front Ranges, mainly in 82 G, East Half map-area.

J. E. Reesor continued his studies of granite and metamorphic complexes in the Valhalla Mountains,

D. F. Sangster began a study of contact metamorphic magnetite deposits on Vancouver and Texada Islands.

J. G. Souther completed the mapping of Chutine (104 F) and Tulsequah (104 K) map-areas and brought up to standard past work in Iskut (104 B), Telegraph Creek (104 G), and west half of Dease Lake (104 J) map-areas.

D. F. Stott completed the stratigraphic study of the Upper Cretaceous Smoky group, Lower Cretaceous Fort St. John group, upper part of the Lower Cretaceous Bullhead group, and equivalent strata in the foothills between Smoky River and Peace River.

G. C. Taylor continued the mapping of MacDonald Creek (94 K/10) maparea.

H. W. Tipper, with J. E. Muller, completed the mapping of McLeod Lake (93 J) map-area.

J. O. Wheeler completed the mapping of Rogers Pass (82 N, W. $^{1\!/}_{2}$) maparea.

PUBLICATIONS OF THE GEOLOGICAL SURVEY

A total of nineteen publications of the Geological Survey of Canada relating to British Columbia was received by the British Columbia Department of Mines and Petroleum Resources in 1961.

MINES BRANCH

The Mines Branch has branches dealing with mineral resources, mineral dressing and process metallurgy, physical metallurgy, radioactivity, and fuels and explosives. A total of seventeen publications of the Mines Branch pertaining to British Columbia was received in 1961 by the British Columbia Department of Mines and Petroleum Resources. They included tabular pamphlets dealing with coal mines, gold mines, stone quarries, petroleum refineries, and milling plants in Canada.

MINERAL RESOURCES DIVISION

The Mineral Resources Division, which was a division of the Mines Branch, has now been transferred from the Mines Branch to the office of the Deputy Minister of Mines and Technical Surveys.

The Mineral Resources Division publishes studies on mineral resources, mineral economics, mineral legislation, mineral taxation, mining technology, and other miscellaneous mineral-industry subjects. A total of seven publications published by this Division was received by the library.

Lode Metals

CONTENTS

Page

GENERAL REVIEW	
Notes on Metal Mines	
Tootsee River	
Cassiar	
Stikine	
Iskut River	
Unuk River	
Portland Canal	
Alice Arm	
Observatory Inlet	
Queen Charlotte Islands	
Kitimat	
Smithers	
Endako	
Cariboo	
Lac la Hache	
Clinton	
Taseko Lake	
Lillooet	
Anderson Lake	
Lillooet River	
Spences Bridge	
Highland Valley	
Abbott Lake	
Merritt	
Nicola	
Aspen Grove	
Kamloops	
North Thompson	
Clearwater	
Skwaam (Agate) Bay	
Similkameen River	
Hedley	
Olalla	
Fairview Camp	
Anarchist Mountain	
Camp McKinney	
Beaverdell	
Greenwood	

MINES AND PETROLEUM RESOURCES REPORT, 1961

2

.....

_

-- __

DTES ON METAL MINES-Continued	PAGE
Phoenix	65
Rossland	
Trail	
Nelson	
Ymir	67
Salmo	
Nelway	
North Kootenay Lake	
Woodbury Creek	
Kaslo	
Retallack-Three Forks	
Sandon	
Slocan Lake	
Springer Creek.	
Nakusp	
North Lardeau	
South Lardeau	
Creston	
Kimberley	
St. Mary River	
Windermere	
Spillimacheen	
Ruddock Creek	
Revelstoke	
Skagit River	
Норе	
Harrison Lake	
Howe Sound	
Sechelt Peninsula	
Powell Lake	
Bute Inlet	
Loughborough Inlet	
Texada Island	
Quadra Island	
Vancouver Island	
ORTS ON GEOLOGICAL, GEOPHYSICAL, AND GEOCHEMICAL WORK	114

GENERAL REVIEW

Compared to 1960 the average Canadian prices paid in 1961 for gold and silver were up, and those for copper, lead, and zinc were down. The change in parity between the Canadian and United States dollar, brought about in the middle of the year, created a premium on the United States metal prices for the first time in ten years. The 1961 Canadian average price for gold consequently increased— \$1.50 per ounce above that of 1960. The Canadian price for silver remained close to the fixed New York price of 91.375 cents per ounce until the end of 1961, when the price increased to \$1.09, a price not equalled since 1919. The Canadian average prices for copper, lead, and zinc fell a substantial fraction of a cent each, compared to 1960, resulting in the lowest average price for lead since 1946. The decreases in base-metal prices would have been greater had it not been for the revaluation of the dollar.

Gold, silver, copper, lead, and zinc produced at British Columbia lode mines in 1961 had a value of \$109,325,484. Miscellaneous metals, including iron ore, nickel, tin, and minor metals recovered at the Trail smelter, had a value of \$18,651,608. The total quantity of ore mined at all lode mines amounted to 8,392,161 tons and came from fifty-nine mines, of which thirty-nine produced 100 tons or more. The average number employed in the lode-mining industry in 1961, including mines, concentrators, and smelters, was 7,111.

In 1961 twenty-three mills were operated—fifteen of them throughout the year. Of the other eight mills, that at the Empire mine was a seasonal operation, five operated intermittently, one closed, and one operated for the first time. The Craigmont mill opened September 15th with a production capacity of 4,000 tons per day, a capacity that has subsequently been increased. Five small mills operated intermittently, and the French mill closed after a life of five years. Three small mills accepted custom ore, as did one large one, the Britannia mill. Five mills were being built at the end of the year—three for iron ore and two for copper ore.

The Trail smelter recorded custom receipts of 13,957 tons of ore from eighteen properties, of which 98 per cent was from seven properties shipping siliceous ore. The smelter also recorded custom receipts of 2,799 tons of lead concentrates and 47,138 tons of zinc concentrates. Totals of approximately 32,691 tons of lead concentrates and approximately 31,364 tons of zinc concentrates were shipped out of the Province for smelting. Copper concentrates were shipped to the Tacoma smelter, except for part of the Craigmont production, the copper concentrates recovered by Texada Mines Ltd., and the copper contained in bulk nickel concentrates from Giant Nickel Mines Limited, all of which went to Japan. All iron-ore concentrates, amounting to 1,264,017 tons, were shipped to Japan.

Lode-gold production was down about 22 per cent from 1960 and was at the lowest figure in fifteen years. This was due in large part to closure of the Pioneer mine in 1960 and of the French mine in 1961, but it was also due to a minor drop in production from Bralorne and a drop in the 1961 gold production from Britannia and the copper mines at Greenwood. A new 600-ton cyanide mill was built at Bralorne to replace the combined gravity and flotation mill that had been in operation for many years. Closure of the Fairview mine at Oliver, long a source of silica flux at the Trail smelter, encouraged the shipment of siliceous gold ores, but smelter requirements of silica in excess of custom ore shipments was met by recovery of the dumps of the Queen mine at Sheep Creek. The French mine at Hedley closed on May 21st, due to depletion of the orebodies. In its first period of operation from 1950 to 1955 the mine produced 32,463 tons containing 25,284 ounces gold; in its second period, with a mill, from 1957 to 1961 it produced 53,085 tons containing 26,429 ounces gold. The ore is gold-bearing skarn.

There was no change in the production of silver; the change in price came too late in the year to affect output or development to any marked extent. Except for very minor quantities of ore, the Highland-Bell continued to be the only operating silver mine in the Province.

The position of copper improved greatly with the coming into production of the Craigmont mine. Opened officially on September 15th, the mill by the end of 1961 was operating at more than its rated capacity of 4,000 tons of ore daily. This is the first major mine in British Columbia that was found solely as a result of geochemical and geophysical investigation of ground that was very largely covered by overburden and also by a younger formation. The Britannia mine, after going through a critical period in 1957–58, has reaffirmed its position as a mine and not merely a salvage operation. Effort is being made to revise the geological maps and to investigate the ore possibilities of many parts of the mine. With excess mill capacity, Britannia has accepted custom ore, a fact of advantage in the development of some copper deposits in the general region.

The active exploration for copper in southern British Columbia has begun to pay off. Serious investigation of the Bethlehem property started in 1955 and at once led to surface activity that spread far and wide. The Craigmont ore zone first became known in 1957 and focused attention on the general Promontory Hills area. In 1961 Bethlehem began to prepare its open pit for production to start about a year later than Craigmont. In seven years a great deal of money has been spent, and it has been demonstrated that exploration for hidden ore zones can be an expensive business. Much ground has been gone over by surveys of one sort or another more than once, and it is plain that better geological knowledge of ore occurrence is sorely needed.

Activity continued on the Granduc property, as well as on new and relatively new showings in the general Unuk River area, and more work is planned for 1962. East of the Stikine River, attention was attracted to Galore Creek, where extensive surface investigations were carried out on copper showings and diamond drilling was started. A great many claims are held in the general Unuk-Stikine area, and it is evident that copper mineralization, of types associated with porphyry and with skarn, is quite widely distributed.

Lead production was at the highest level since 1943, at a time when the price was the lowest in fifteen years. Zinc production was down, being 9 per cent below the average of the past five years. In August the United States Government contracted to purchase from The Consolidated Mining and Smelting Company of Canada, Limited, 55,000 tons of lead, using funds generated from disposal of surplus agricultural products. About half this amount was shipped in 1961.

The Reeves MacDonald mine established a new low level at an elevation of 420 feet. The main lead-zinc orebody has been demonstrated to have had, before faulting, a plunge length of more than 5,000 feet.

Exploration for lead and zinc continued along the general course of the Kootenay arc, and a discovery was made west of the Columbia River near Gordon Horne Peak.

For the second successive year the export of magnetic iron concentrates to Japan passed the million-ton mark, from three producing mines. Iron ore is already fourth in value of production of metallic products, with three more magnetic

concentrators under construction and diamond drilling being done on at least two other deposits. What appeared for some years to be a relatively minor commodity has become one of the most important products of the mining industry.

Of the less common metals, molybdenum continued to attract attention. Work was done on showings at Alice Arm, Smithers, and Boss Mountain. The Boss Mountain property was acquired by Noranda Mines Limited, and major development was begun.

Prospecting was active in many quarters. In 1961, 19,064 mineral claims were recorded, the most for any year with the exception of 1956, when 26,170 claims were recorded.

Sensitized ammonium nitrate—AN/FO—was used underground in quantity for the first time. Pneumatic loaders were designed to permit the loading of any hole, and in the latter part of 1961 several mines had changed over to this new explosive. Activated raise platforms continued in use, a 600-foot raise being driven at 70 degrees at the Jedway mine. At the Jersey mine a raise platform was used in pillar recovery (*see* photographs, p. 70). A mill with a rated capacity of about 750 tons per day was built underground at the Sunloch mine. This is the first underground mill since a 750-ton mill was completed at the Big Missouri mine in 1938.

NOTES ON METAL MINES

TOOTSEE RIVER*

Lead-Silver

Silver Tip Group (Pegasus Explorations Limited)

(59° 130° N.E.) Registered office, 212, 678 Howe Street, Vancouver 1. E. P. Chapman, Jr., president and engineer in charge of property. This property of thirty-five recorded claims is about 4 miles northeast of Tootsee Lake and 17 miles by road south of Mile 701 on the Alaska Highway.

Work done between June 15th and September 30th consisted initially of a geophysical survey. It has been reported that subsequently 17 miles of winter road was reconstructed and made suitable for summer travel with four-wheel-drive vehicles. Two vertical holes, totalling 795 feet, were diamond drilled on anomalous areas. The work was done by an average crew of fourteen men. The property was not visited.

CASSIAR*

Molybdenum

Lamb Mountain (Fort Reliance

(59° 129° S.W.) Company office, 3100, 25 King Street West, Toronto 1. J. A. Harquail, president; A. D. Wilmot, exploration manager. The property is about 7 miles north Minerals Limited) of Cassiar, and consists of twelve claims held by option and five claims held by record. It is reported that the miner-

alization consists of disseminated molybdenite occurring in altered granite and limestone along the contact between these rocks. The contact is obscured by overburden, but the presence of float indicates a mineralized zone extending over a considerable distance.

During July, 1961, some trenching and stripping was done by three men with the aid of a bulldozer. An access road was constructed between the property and the Cassiar mine road. Between September 30th and October 12th a crew of nine men was employed. Two EX holes, totalling 639 feet, were diamond drilled. All equipment was left on the property. The property was not visited.

Gold

(59° 129° S.W.) Head office, 401, 470 Granville Street, Hanna Gold Vancouver 2; mine office, Cassiar. J A. Hanna, president; C. Hood, Jr., managing director. The property, which was Mines Ltd. originally known as the Cornucopia group, consists of sev-

enty-seven claims held by record. The claims lie on the east slope of Quartzrock Creek valley and 2 to 3 miles north of McDame Lake. The showings have been described in the 1947 Annual Report.

Work in 1961, which was carried out by a crew of five men, commenced on May 15th and was suspended on November 15th. Development work comprised 228 feet of drifting and 35 feet of crosscutting. Some surface stripping and sampling was also done. A camp, consisting of two bunk-houses, compressor-house, store-house, and several other buildings, was constructed. Access to the property is by one-quarter of a mile of road from the Cassiar-Stewart road.

[References: Minister of Mines, B.C., Ann. Repts., 1946, p. 61; 1947, pp. 70-72.]

* By W. C. Robinson.

Copper

Lang Creek (59° 129° S.W.) The Bass Nos. 1 to 10 recorded claims are held by The Consolidated Mining and Smelting Company of Canada, Limited. The Copper Nos. 1 to 32 recorded claims were held by the company under option from W. Storie and Associates, of Cassiar. The property is about 5 miles south-southeast of Cassiar at the juncture of Lang and McDame Valleys. Access is by 2 miles of jeep-road from the Cassiar-Stewart highway. Mineralization is reported to consist of a bedded deposit containing pyrrhotite, pyrite, chalcopyrite, and sphalerite in argillite interbedded in volcanics.

Work on the property commenced in May and was completed on August 27th. An average crew of seven men was employed under the direction of R. G. Gifford. Twelve holes were diamond drilled, totalling 2,202 feet. A Ronka EM geophysisal survey was made and plane-table mapping was done. It is reported that the option has been dropped. The property was not visited.

Lark (59° 129° S.W.) Twenty recorded mineral claims were held under option by The Consolidated Mining and Smelting Company of Canada, Limited, from W. Storie and Associates, of Cassiar. The claims adjoin the Lang Creek group. Work on the property, which was done in conjunction with the work done on the Lang Creek group, included geophysical surveying, mapping, and the diamond drilling of three holes totalling 500 feet. It is reported that the option has been dropped. The property was not visited.

Copper

STIKINE*

Galore Creek
 (57° 131° S.E.) Company office, 1111, 1030 West Georgia
 Street, Vancouver 5. C. J. Sullivan, president, Toronto;
 (Kennco Explorations (Western)
 Limited)
 Limited)
 (57° 131° S.E.) Company office, 1111, 1030 West Georgia
 Street, Vancouver 5. C. J. Sullivan, president, Toronto;
 J. A. Gower, manager, Vancouver. This company holds 162
 claims by record and sixteen claims by option from Hudson
 Bay Exploration and Development Company Limited, all in
 the headwaters of Galore Creek, about 20 miles southeast of

the junction of the Stikine and Scud Rivers. This property, which was partly located and explored in 1960, is to some extent a relocation of the HAB and BUY groups, on which trenching and diamond drilling was done by the Hudson Bay company in 1956 (Ann. Rept., 1956, p. 14). Its east boundary is close to the Copper Canyon property of Southwest Potash Corporation, on which some work was done in 1957 (Ann. Rept., 1957, p. 5). Work in 1961 included geological mapping and sampling, an air-borne magnetometer survey, ground geophysical and geochemical surveys, and surface diamond drilling of six holes totalling 1,239 feet. An average crew of twenty men was employed from May to September under the supervision of D. A. Barr. The property is accessible only by helicopter and was supplied in 1961 from the Stikine River, on which a river-boat was operated by Ritchie Transportation Company, of Wrangell.

Chalcopyrite-bornite mineralization is exposed in several zones at elevations ranging between 2,500 and 5,000 feet within an area of about 8 square miles. The area is largely underlain by syenite together with dykes and irregularly shaped intrusions of trachyte porphyry.

* By J. M. Carr.

(57° 131° S.E.) Company office, Trail. This company holds, under option from W. Buchholtz, four claims and one fractional claim of the HAB group which are surrounded by Smelting Company of Canada, Limited) Limited. The claims straddle the west fork of Galore Creek

at about 2,600 feet elevation and were the site of some of the exploratory work done by the Hudson Bay company in 1956. Work in 1961 included making six hand trenches together with sampling and geological mapping. An average crew of four men was employed for about two weeks in July under the supervision of G. M. Gibson.

The exposed mineralization resembles that seen elsewhere in the Galore Creek area and is in altered porphyry. On the east side of the west fork, porphyries are exposed in contact with greywacke strata.

ISKUT RIVER*

Copper-Iron

 (56° 130° N.E.) Head office, 906, 211 Portage Avenue,
 Lake, Don, and Ken
 (Newmont Mining Corporation of Canada Limited)
 (56° 130° N.E.) Head office, 906, 211 Portage Avenue,
 Winnipeg 2. J. Drybrough, president; G. W. H. Norman,
 geologist, Vancouver. This company holds 192 claims near
 the head of Forrest Kerr Creek, about 75 miles northwest of
 Stewart. The property includes the Lake, Don, and Ken
 groups and is reported to contain showings of skarn with

magnetite and copper minerals. Work in 1961 was done by a small prospecting crew and continued from June to September. It included magnetometer surveying together with trenching by means of a Pionjar drill. The property is accessible only by helicopter.

UNUK RIVER*

Copper and Copper-Iron

Granduc Mines, Limited

(56° 130° S.E.) Company office, 604, 744 West Hastings Street, Vancouver 1. J. Drybrough, president; J. S. Moore, mine superintendent; G. W. H. Norman, geologist. This company owns the Granduc property, at the head of the

Leduc River 25 miles north-northwest of Stewart, and holds large groups of claims farther north in the Unuk River district. In 1961 detailed property examinations were continued together with regional prospecting, and diamond drilling was done at Granduc and two other properties, as noted below. Base camps were re-established in April at the Granduc mine and at the junction of the Unuk and South Unuk Rivers, and an airstrip for two-engined aircraft was built near each. At Granduc 5 miles of road was constructed between the airstrip and the camp, and sixteen prefabricated buildings 12 by 16 feet in size were flown in and erected. As many as five aircraft, including helicopters, were used by the company to supply and maintain these widespread operations, which employed up to fifty men between May and September. At the end of the season the Unuk River camp was closed and work continued at Granduc with about fifteen men engaged.

(a) Granduc.—This property comprises sixty-four Crown-granted and 259 recorded claims. Work in 1961 was done mainly to explore possible north and south extensions of the Granduc orebody. An adit was driven southwestward for 500 feet from a portal at 3,400 feet elevation, more or less directly across the south fork of the Leduc glacier, from the existing adits. From this new adit six holes,

^{*} By J. M. Carr.

totalling 5,734 feet, were drilled, partly southeastward under a mineralized showing (identified as No. 1A on Fig. 3, Ann. Rept., 1953) that is exposed high up in inaccessible cliffs, and partly northeastward under the glacier. Eleven other holes totalling 12,537 feet were drilled from surface at moderate to high elevations on Granduc Mountain, to explore possible mineralization lying north of the mine workings. Later in the year, seismic surveys and additional drilling, amounting to several thousand feet, were done to determine ice thicknesses in the south fork of the Leduc glacier.

(b) Max.—This group of 211 claims extends northward on McQuillan Ridge and the east side of Harrymel Creek. Work in 1961 included geological mapping and 2,550 feet of surface diamond drilling on the north side of McQuillan Ridge in a skarn zone containing iron sulphides, magnetite, and chalcopyrite. Including two holes drilled in 1960, a total of twelve holes has been drilled in this zone.

(c) Ted Ray.—This group comprises fifty-eight claims on the north side of Sulphuret glacier. Work in 1961 included geological mapping and 700 feet of packsack diamond drilling, which was done in an area of chalcopyrite and pyrite mineralization near an east-northeasterly shear zone. The area was referred to in 1935 as the Big Showing group (Ann. Rept., 1935, p. B 12), and is underlain by a body of porphyritic syenite which is emplaced in tuffaceous and limy sedimentary strata.

PORTLAND CANAL

SALMON RIVER (56° 130° S.E.)*

Gold-Silver-Lead-Zinc

Silbak Premier
 Mines Limited
 Company office, 844 West Hastings Street, Vancouver 1.
 A. E. Bryant, president; H. Hill & L. Starck & Associates
 Ltd., consulting engineers. In May this company resumed mining and exploration of the high-grade oreshoot in the

south wall of the Premier glory-hole. A truck-road was built into the glory-hole from the north side, and diamond drilling was done which located an extension of the oreshoot downward for about 50 feet, to the elevation of the old No. 1 level of the mine. An east drift on this level had been started in 1960, using a new portal constructed in the glory-hole. This drift was extended and the ore mined by raising, a pillar being left at the top. The oreshoot was then found by diamond drilling to persist downward to a depth of about 57 feet below No. 1 level. A new adit was driven to connect with the No. 110 sublevel, which is about 100 feet below No. 1 level, and from the old workings a crosscut and raise were driven to the ore. Altogether in 1961, 330 feet of drifting and crosscutting and 20 feet of raising were done, together with 2,030 feet of diamond drilling from surface and underground. A small shop was built at the 110 level. An average crew of fifteen men was employed, and 831 tons of high-grade ore was mined and shipped. The operation was closed in December because of washouts on the road to Stewart.

Examination of rock exposures on surface eastward from the mine camp shows the existence of steep, parallel sheets, which at least partly conform to the bedding of tuffaceous rocks. At the glory-hole the sheets strike east-northeast and possess steep northerly dips and are parallel both to the adjacent part of the main Premier vein, now stoped out, and to the oreshoot now being mined. The oreshoot is apparently localized near a cross-fracture of westerly dip, and it plunges steeply to the west. Existing plans and sections show that many of the mined-out orebodies

^{*} By J. M. Carr and W. C. Robinson.

in the main vein also had this attitude, which suggests that ore in this part of the mine was mainly localized by the sheeting and cross-fractures.

[References: Minister of Mines, B.C., Ann. Repts., 1947, pp. 74-82; 1956, pp. 17-18; 1960, p. 8; Geol. Surv., Canada, Mem. 175, pp. 161-166.]

ALICE ARM*

Silver

Dolly Varden Mines Ltd.

(55° 129° N.W.) Company office, 837 West Hastings Street, Vancouver 1. F. C. Buckland, president; A. C. Skerl, consulting engineer. The company holds, by option agreement, the Dolly Varden group of seven Crown-granted claims,

the Torbrit group of fifteen Crown-granted claims, and the Wolf group of four Crown-granted claims. The Dolly Varden property is on the west slope of Kitsault Valley and on the top of Dolly Varden Mountain, between 1,000 and 2,200 feet altitude. The Wolf property is on the east slope and bottom of Kitsault Valley about one-quarter of a mile south of Trout Creek. The 1951 Annual Report describes the geology and mineral occurrences of the upper Kitsault Valley.

Work in 1961 commenced in June and was suspended in October. Old workings were cleaned out and re-examinations were made of the properties, Geological mapping was also done. A crew of three men was employed under the direction of David Yorston. Transportation to the Torbrit camp was by truck from Alice Arm.

Molybdenum

(55° 129° S.E.) Head office, 25 King Street West, Toronto 1. C. J. Sullivan, president. The property is on the east fork Alice (Kennco of Lime Creek, about 5 miles southeast of Alice Arm. It Explorations (Western) Limited) consists of sixty-three claims held by location. Work during 1961 commenced May 23rd and was suspended on November

15th. Nine BX holes, totalling 8,267 feet, were drilled. An average crew of eighteen men was employed under the direction of B. A. Bradshaw.

The camp was supplied mainly by helicopter. Some air-dropping was also employed from Beaver aircraft operating out of Terrace. A foot-trail from a point on tidewater opposite Alice Arm was used by personnel.

OBSERVATORY INLET*

Copper

Limited)

(55° 129° S.W.) D. C. Jackson, engineer in charge. The Anyox (The Con- property is on the east side of Observatory Inlet and comsolidated Mining prises seventy-three Crown-granted claims and thirteen reand Smelting Com- corded claims. In the period May 25th to October 17th pany of Canada, two deep holes, with an aggregate length of 4,913 feet, were diamond drilled from the surface. The work, which was done by an average crew of eight men, included the construction

of approximately 1,000 feet of road. The property was serviced by aircraft based at Prince Rupert and, in part, by helicopter.

* By W. C. Robinson.

QUEEN CHARLOTTE ISLANDS

MORESBY ISLAND

Iron-Copper

Tassoo (Wesfrob Mines Limited)*

(52° 132° N.E.) Executive office, 25 King Street West,
Toronto 1. G. T. Woodrooffe, president; G. K. Polk, engineer in charge. Wesfrob Mines Limited is a subsidiary of Ventures Limited (now Falconbridge Nickel Mines Limited).

The property is on Tasu Sound near the mouth of Fairfax Inlet and consists of twenty-one Crown-granted and eleven recorded claims. Originally explored in 1907–09, production in 1914–17 was of the southernmost orebody (No. 3 zone) for chalcopyrite contained in magnetite. Recorded production is 5,180 tons, containing: Gold, 94 ounces; silver, 1,408 ounces; copper, 165,566 pounds. The property was acquired in 1956 by Frobisher Limited, and a subsidiary, Wesfrob Mines Limited, was formed to explore and develop the property, primarily as a source of iron ore. Some 22,000 feet of diamond drilling, much of it by packsack drill, was completed in 1956–57, and no further work was done until April, 1961. Seventy holes, totalling 16,308 feet, were drilled, and geological and magnetometer surveys were carried out during 1961. A thirty-man camp was completed in December, and work on the property is continuing.

The geology of the area surrounding the property is shown on Figure 1. The oldest rocks are pillow lavas, greenstones, and amphibolites of the Vancouver group that are correlatives of the Karmutsen formation of northern Vancouver Island. These volcanic rocks are overlain conformably by a thick massive limestone succeeded by thin-bedded dark limestones and argillites, which together form the Kunga formation. The limestone is of early Upper Triassic (Karnian) age, and the overlying thin-bedded limestones and argillites are of Upper Triassic (Karnian, Norian) to Early Jurassic (Sinemurian) age. Fragmental andesites of the Yakoun formation (Middle Jurassic) overlie the Kunga formation, and related dykes and sills are very numerous in the older rocks, especially along the shore of Lomgon Bay. Feldspar porphyry intrusive bodies occur at the property and in the central part of Lomgon Bay that are younger than the Kunga formation, unlike the Yakoun rocks, and older than granitic rocks of the northern termination of the San Cristoval batholith, the largest pluton of the islands. The San Cristoval batholith is composed primarily of foliated hornblende diorite. Its age is not known, except that it is younger than Middle Jurassic and older than post-tectonic intrusives that intrude early Upper Cretaceous rocks. Cobbles similar to San Cristoval diorite occur in the Honna formation of early Late Cretaceous age. Abundant dykes of undeformed, unmetamorphosed basalt of probable Tertiary age intrude all other rocks in the area.

Metamorphism has changed greenstones into amphibolites, limestone into marble, and argillite into hornfels. The hornfelsic argillites are very difficult to identify in the field as sedimentary rocks. The metamorphism is general in the rocks adjacent to the San Cristoval batholith. Metasomatism is more local and has formed the magnetite and skarn deposits. In spite of the intensity of alteration, remnants of the fossil pelecypods *Monotis* and *Halobia* may be found at a number of localities in the vicinity of the property.

The structure of the pre-diorite rocks on the south shore of Tasu Sound consists of a main northwesterly plunging syncline with secondary anticlines on each limb (*see* Fig. 1). Many northerly and northwesterly steep faults are known that are not shown on the figure, and others are suspected.

^{*} By A. Sutherland Brown.

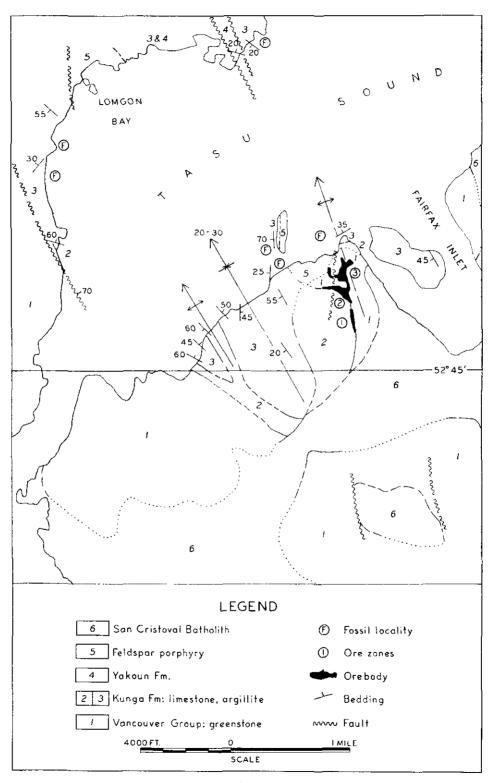


Figure 1. Geology of part of Tasu Sound, Moresby Island.

The orebodies are not yet fully explored. They occur along a northerly trending belt that is roughly coincident with the axial zone of the eastern subsidiary anticline. The southern and central orebodies (No. 3 and No. 2 zones) occur at the contact of the greenstone and the limestone, and the southern (No. 3) appears to be largely replacing limestone. The northern zone is contained entirely in greenstone. Prior to the current work, the company had announced ore reserves of 5,000,000 tons, averaging: Iron, 58.7 per cent; sulphur, 2.69 per cent. Sulphur varied from about 2 to 3 per cent throughout, present to a large extent as chalcopyrite in No. 3 zone, and to a lesser extent in No. 2 zone; in No. 1 zone it was largely present as pyrite.

[References: Minister of Mines, B.C., Ann. Repts., 1913, pp. 96-97; 1956, pp. 125-127; Western Miner, Oct. 1959, pp. 38-44.]

Iron

 Harriet Harbour
 (52° 131° S.E.) Head office, 1111 West Georgia Street, Vancouver 5; mine office, Jedway. L. T. Postle, president; J. M. Stitt, manager. Harriet Harbour is on Skincuttle Inlet, on the southeastern coast of Moresby Island, and is 70 miles south of Sandspit. The properties on Harriet Harbour con-

sist of two Crown-granted claims, sixty-four recorded claims, and one optioned claim. The company is a subsidiary of The Granby Mining Company Limited and was formed in April, 1961, to take over and mine the Harriet Harbour property of Silver Standard Mines Limited. An option to purchase had previously been announced in January, 1961. Jedway Iron Ore Limited has a contract with Sumitomo Shoji Kaisha Ltd., of Tokyo, to supply 2,000,000 long tons of iron-ore concentrates over five years.

The geological setting of the Jessie orebody and other magnetite bodies at Harriet Harbour is shown on Figure 2. The oldest rocks exposed are greenstones and fine-grained amphibolites of the older volcanic rocks of the Vancouver group co-relatives of the Karmutsen formation of northern Vancouver Island. These volcanic rocks are overlain conformably by limestone of the Kunga formation of early Upper Triassic age (Karnian). This limestone is thinner than normal in the vicinity of the Jessie orebody, where it is 50 to 100 feet thick. Stratigraphically above the massive limestone are thin-bedded dark limestones, followed by calcareous and siliceous argillites, all of the Kunga formation. These rocks have a total thickness of about 2,000 feet and are of early Upper Triassic (Karnian) to early Lower Jurassic age (Sinemurian). The volcanic and sedimentary rocks are cut by several groups of dykes and sills, a large number of which are amygdaloidal andesite similar to rocks of the Yakoun formation (Middle Jurassic age). In addition, feldspar porphyries occur that are older than the Jedway stock and the metamorphism.

The stratified rocks are folded into a broad domal anticline that trends approximately north 70 degrees west. This fold is truncated by northwesterly structures, both folds and faults, in the vicinity of Harriet Harbour. Part of the junction of these structures shows on Figure 2. All the aforementioned rocks are intruded by the Jedway stock, a small pluton with a surface area of about $1\frac{1}{2}$ square miles. The stock is dominantly composed of medium-grained hornblende diorite. It is one of five small stocks on southeastern Moresby and Burnaby Islands that seem to be interrelated. These bodies are younger than early Cretaceous (Barremian) and may be late Cretaceous or early Tertiary. The plutonic rocks are cut by undeformed basalt and rhyolite dykes of presumed late Tertiary age.

* By A. Sutherland Brown and W. C. Robinson.

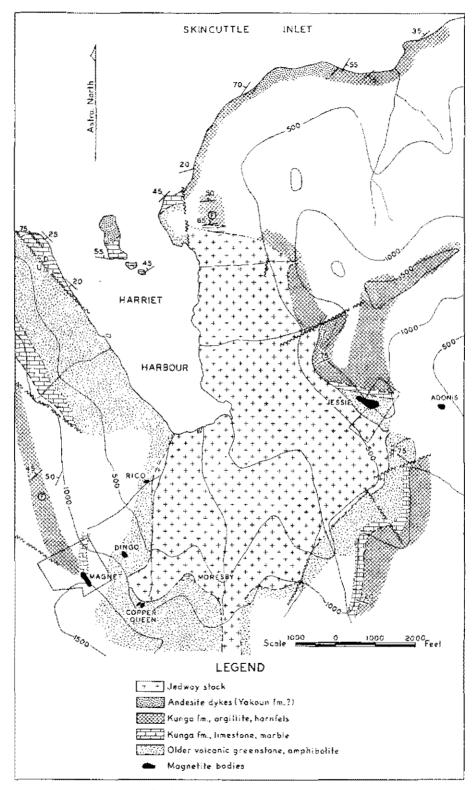


Figure 2. Geology of Harriet Harbour, Moresby Island.

Metamorphism has affected all the pre-diorite rocks to some degree. The older volcanic rocks show no trace of the pillow structures that are ubiquitous in them where they are undeformed and little altered. Close to the Jedway stock these rocks are now fine-grained amphibolites. The limestone is recrystallized, in some places to a sugary white marble. The argillites are white hornfels with no trace of bedding; with successively less metamorphism they range through varicoloured, banded, flinty rocks to dark-green thinly bedded rocks not much different from the original. Metasomatism has affected local areas around the periphery of the stock. In these places, greenstones and amphibolites have been converted to lime garnet-actinolite-epidote-chlorite skarn with magnetite and pyrite and chalcopyrite. The limestone has likewise been changed to garnetite in a few localities. The thin-bedded rocks of the Kunga formation were not seen to be greatly metasomatized. The feldspar porphyries appear to be affected by the metasomatism only slightly.

The Jessie orebody occurs in greenstone on the northern flank of the domal anticline adjacent to the Jedway stock. The orebody consists of a complicated series of digitate lenses of magnetite-rich skarn in a general zone of skarn and intense chloritic alteration. The ore lenses and the skarn zone are subparallel to the overlying base of the Kunga limestone. The limestone, the skarn zone, and the ore lenses all strike about north 60 degrees west and dip about 40 degrees northeastward. The skarn and chloritic zone is guite continuous. The top is 50 to 150 feet below the limestone, and the bottom, so far as is known, is 350 to 400 feet below the limestone. Some ore lenses are quite continuous, others irregular or discontinuous. Some discontinuities may be explained by steep minor faults striking parallel to the rock units. The orebody has not been fully outlined by diamond drilling, but three deep holes show its existence 800 feet down dip from the outcrop area. Near the surface the ore zone is nearly 1,000 feet long. Within the skarn zone the greatest thickness of ore is about 90 feet. Ore reserves have been stated to be 4,700,000 tons, which will produce 2,570,000 tons of concentrate. About 2,000,000 tons of ore will be mined by open pit.

Most of the information on the orebodies was obtained by diamond drilling and magnetometer surveying prior to 1961. While the property was under option in the period January 28 to March 3, 1961, four diamond-drill holes, totalling 2,230 feet, were drilled from the surface.


In May, clearing of the property was started and work continued on construction and development of the open pit throughout the remainder of 1961. Mining contractors, R. F. Fry and Associates (Western) Ltd., drove 1,518 feet of adit and 552 feet of raise. Surface development work included the construction of 3.9 miles of road and the removal of 45,860 tons of waste from the open pit. Construction by the end of the year included the erection of a cook-house, two bunk-houses, a dry, store, school, office, staff-house, and ten residences.

At the end of 1961 the number of men employed on the property was eightyseven. The camp is supplied by Northlands Navigation freighter as well as by barge. Transportation of personnel is by charter aircraft based at Sandspit.

[References: Minister of Mines, B.C., Ann. Rept., 1959, pp. 11-14; 1960, pp. 11-12; B.C. Dept. of Mines, Prel. Geol. Map, Southern Queen Charlotte Islands, 1960.]

Kano Inlet, west coast of Graham Island.

View northwest from head of Tartu Inlet, west coast of Graham Island. Basalt and trachyte flows of the Masset formation dipping northeast.

LOUISE ISLAND*

Iron

Iron Duke

(52° 131° N.W.) This property consists of ten Crowngranted and two recorded claims. Ownership of the claims is diverse, but Campbell M. Robertson, of New Westminster,

one of the owners, has an agreement with the others that enables him to explore the property or negotiate regarding it.

The property is on the slope north of Waste Creek, about 21/2 miles west of Girard Point on the northeast coast of Louise Island. It is reached by a trail that leaves the beach nearly a mile west of Girard Point. During 1961, exploration initiated by Campbell Robertson included a geological examination and an attempt to build a road to the property from the shore near Mathers Creek. In the autumn the property was optioned by Magnum Consolidated Mining Co. Ltd., who made a magnetometer survey of the property and a geological map of the vicinity. Two diamond drills were moved to the Iron Duke late in 1961, and in January and February, 1962, fifteen AX holes were drilled totalling 3,054 feet. The exploration was maintained by helicopter. The option was dropped in March, 1962.

Bedrock is poorly exposed in the vicinity of the showings, except in some old cuts and a 70-foot adit. Young and Uglow (1926, p. 28) illustrate and describe the surface exposures of magnetite. Limestone occurs in a small outcrop at the northwest of the showings and granitic rocks for some distance just east of the showings. A zone of magnetic anomalies extends approximately 800 feet northeast up the hill from just below the adit, which is at about 1,100 feet elevation. A somewhat detached anomaly occurs southeast of the adit. Both anomalies are characterized by isolated distinct peaks. Most of the anomalous zone is on the Iron Duke No. 2 claim, Lot 2333, but extends onto the southwest corner of the Iron Duke No. 1, Lot 2332. The drill-holes were collared at the sites of magnetic peaks. The core seems to indicate that intercalated limestone, skarn, and magnetite with interfingering sills of granitic rocks all dip gently westward.

[Reference: Young and Uglow, 1926, Iron Ores of Canada, Vol. I, Geol. Surv., Canada, pp. 27-30.]

KITIMAT†

Iron

(54° 128° S.W.) Quebec Metallurgical Industries Ltd., 2200, 25 King Street West, Toronto, holds four Crown-Wedeene Iron granted and nine recorded mineral claims on magnetite show-

ings on the south side of Iron Mountain. Iron Mountain rises to a height of 2,300 feet between the Wedeene and Kitimat Rivers about 8 miles north of Kitimat and 30 miles south of Terrace. In 1961 a camp was established at the railway bridge crossing Wedeene River at Mile 30.7 from Terrace. A drill camp was established at an elevation of about 1,800 feet on the mountain about 1¹/₂ miles by trail from the lower camp.

The claims cover showings of magnetite containing small amounts of pyrite and chalcopyrite, located more than fifty years ago for their copper content, and on which four short adits had been driven.

Geological mapping shows (Geol. Surv., Canada, Map 11-1956) that the summit and western slope of Iron Mountain are underlain by grey diorite, which is intrusive into an assemblage of green andesitic flows and fragmental rocks cut by dykes of much the same composition. On the eastern side of the Iron Mountain intrusions, irregular areas of skarn are exposed along both sides of a south flowing

* By A. Sutherland Brown. † By Stuart S. Holland.

creek, which seems to flow along a structurally controlled lineament that can be seen on aerial photographs. The skarn is composed essentially of brown garnet and green epidote and appears to occur along the line of the creek and along lines of fracturing at a small oblique angle to it. The eastern contact of the Iron Mountain intrusion appears to be not less than 500 feet to the west of the creek lineament, and it is considered that the localization of skarn is related more to the fracturing than to the position of the intrusive contact. There is no indication that the skarn represents a replacement of limy beds in what is an essentially volcanic assemblage.

Within the skarn there are irregular disseminations and bodies of more or less massive magnetite. The magnetite occurs in three zones: A lower zone at the foot of the hill on the west side of the creek, an upper zone at an elevation of about 1,600 to 1,800 feet on the east side of the creek, and a zone at intermediate elevations in and along the creek. The lower zone was explored in 1960 by drilling with packsack and EX machines and in 1961 by further packsack drilling. The ore zone is about 600 feet long, along a northeasterly direction, and about 400 feet wide.

In 1961 the upper zone was being explored by diamond drill recovering EX core with drill-holes fanned downward along lines of section about north 60 degrees west and 100 feet apart. The upper zone has a length of about 1,000 feet in a northeasterly direction and a maximum width of about 300 feet.

No work has been done on the intermediate occurrences. Diamond drilling indicates that within the skarn zones the occurrence of disseminated and massive magnetite is most irregular. It is difficult with the present knowledge of mineral control to correlate from one diamond-drill hole to another in the same line of section and also from one line of section to the next adjacent.

In 1961, work was under the supervision of H. S. Lazenby. There were six men and a cook at the main camp at Wedeene bridge and four diamond drillers at the mountain camp. Diamond drilling comprised fifty-five holes totalling 11,489 feet. In addition, a magnetometer survey was made of the property.

SMITHERS*

Copper

Stock

(54° 127° N.E.) The Stock group of fifteen claims held by Carl Glover, of Smithers, is at an elevation of about 5,000 feet at the head of Winfield Creek. The claims are reached by

road up the Telkwa River, thence by about 10 miles of trail which climbs to the ridge north of Cumming Creek. The claims cover an old copper showing known as the Copper Queen, which from 1917 to 1919 shipped 12 tons of ore containing 1 ounce of gold, 91 ounces of silver, and 6,465 pounds of copper.

The rocks at the headwaters of Winfield Creek comprise intercalated reddish and brownish weathering dacitic and andesitic flows and breccias which strike north 35 degrees east and dip 20 degrees southeast. These rocks on the southeast side of the creek are cut by a southeasterly striking fracture which is mineralized with chalcocite. The old work, consisting of a large open cut with an adit and crosscut beneath, is caved and provides no information. It would appear that the mineralization developed preferentially in certain of the layered rocks, and that a pale biscuitcoloured dacite flow outcropping near the adit and open cut may have maintained a more open fracture than did the coarse agglomerates lying above it.

The main fracture, a break of small displacement, at one point contained a chalcocite vein as much as 12 inches wide, but elsewhere appears to be only sparsely mineralized. Wallrock alteration is absent in the vicinity of the old workings and along the extension of the fracture to the southeast.

^{*} By Stuart S. Holland.

In the autumn of 1960 three X-ray drill-holes were put down beneath newly discovered showings of disseminated chalcocite lying to the southeast of the old workings. The results were not sufficiently good to encourage more work as the copper content was low and the width narrow.

Molybdenum

(54° 127° N.E.) Executive office, 1270 Avenue of the Americas, New York 20. F. Coolbaugh, president; J. W. Glacier Gulch (Southwest Potash Bryant, engineer in charge. A total of sixty-one claims are held under option from W. Yorke-Hardy and partners. The Corporation)* property is in the cirque at the head of Glacier Gulch on Hud-

son Bay Mountain. Molybdenite mineralization occurs in volcanic rocks over a large area at the toe of the glacier.

Work on the property commenced June 1st and was suspended on November 4, 1961. Six holes, totalling 10,354 feet, were diamond drilled. The average crew consisted of fourteen men. The camp was supplied by pack-horses and the intermittent use of a helicopter. The helicopter simplified the problem of moving the drill and equipment to various sites on the rough terrain near the toe of the glacier.

[Reference: Minister of Mines, B.C., Ann. Rept., 1958, pp. 10-11.]

Silver-Lead-Zinc

Cronin (New **Cronin Babine** Mines Limited)*

(54° 126° N.W.) Company office, 844 West Hastings Street, Vancouver 1, L. C. Creery, president; H. Hill & L. Starck & Associates Ltd., consulting mining engineers. The property is on the east slope of Cronin Mountain, about 30 miles by road from Smithers. A description of the prop-

erty was given in the 1949 Annual Report. During part of 1961, P. Kindrat, lessee, again operated the mine and mill. Eighty tons of lead concentrate and 93 tons of zinc concentrate were produced and shipped to the Trail smelter.

Molybdenum

Stella

ENDAKO*

(54° 125° S.E.) This property is 5 miles southwest of Endako. Twenty-six recorded claims are held by C. Riley, of Vancouver. The showings consist of a number of quartz

veins in Topley granite that contain molybdenite. Work on the property done between July 15th and August 20th consisted of channel and bulk sampling of rock trenches, which had been blasted. A crew of five men was employed under the direction of S. Weiss. Transportation was by truck.

[References: B.C. Dept. of Mines, Bull, No. 9; Geol. Surv., Canada, Mem. 252, pp. 192-193.]

CARIBOO

WELLS-BARKERVILLE (53° 121° S.W.) †

Gold

Company office, 1007 Royal Bank Building, Vancouver; Aurum (The Cari- mine office, Wells. Dr. W. B. Burnett, president; Marcel boo Gold Quartz Guiget, general manager; J. J. Stone, mill superintendent. Mining Company Capital: 2,000,000 shares, \$1 par value. This company operates the Aurum mine on the east side of Island Mountain adjacent to the community of Wells, which is 51 miles by

road from Ouesnel.

Limited)

19

^{*} By W. C. Robinson. † By A. R. C. James.

The mine has been in continuous production since 1934 and has been operated by the present company since 1954. It is developed from a main haulage adit at the 4,000-foot level. Eleven levels have been developed from the Aurum shaft, which is a three-compartment internal shaft 1,450 feet deep and collared at the 4000 level. With the exception of a large quartz stope on 3125 level, all the working-stopes are now northwest of the shaft.

The ore occurrences are of two kinds. Pyritized quartz veins are found in groups and clusters in the micaceous quartzites of the Snowshoe formation. Pyritic replacement bodies in limestone occur in the Baker limestone beds of the same formation at the contact with the micaceous quartzites, and these bodies are directly related to the amount of folding, being more numerous where major folding has taken place. Both types of ore occurrence appear to be related to major faulting in the area. The average grade of the quartz ores of the Aurum mine has usually been in the range of 0.35 ounce of gold per ton, while the replacement ore is usually of higher grade, an average being 0.75 ounce of gold per ton. The quartz orebodies are mined by a cut-and-fill method, while the replacement deposits are usually developed by inclined drifting and are mined by slashing the ore on a retreating system.

Until about three years ago all the workings were in the general area of the Aurum fault zone and associated zone of folding. In 1958 it was decided to drift northwest on the 3000 level to explore the Mosquito Creek property, also held by the company. At a point 2,300 feet northwest of the shaft the drift crossed a fault which was subsequently named the Burnett fault. As with other major faults in the Wells camp, the Burnett fault strikes northward and dips eastward. Exploration soon confirmed that this was favourable ground for ore deposition. The first replacement stope, the M1, was opened on the northwest side of the fault in 1959, and shortly afterwards another orebody, the 64, was found on the southeast side of the fault. A system of folds with a general northwesterly plunge appears in the vicinity of the fault. In 1960 it was decided to drive into the Burnett fault area on two levels (3125 and 2850) immediately above and below the 3000 level. The drift on the 3125 level was completed in November, 1960, and that on the 2850 in March, 1961. The 2850 drift was extended several hundred feet beyond the Burnett fault and cut another northerly striking fault believed to be the Mosquito Creek fault. Exploration from these drifts has resulted in the discovery of a number of replacement orebodies, especially in the Burnett "crumple" up-plunge toward the Aurum workings. Four stopes have been mined on the 3125 level, and two stopes were being developed on the 3250 level at the end of the year. Northwest of the Burnett fault, mining continued in the M1 stope below the 3000 level, while a new orebody adjacent to the Mosquito Creek fault, the M8, was developed during the year. Three orebodies, the 56 and the 38 and 39, were developed on the 3000 and 2850 levels respectively southeast of the Burnett fault, and further exploration was continuing in this area at the end of the year. It would appear that the decision to drive into the Mosquito Creek section of the property is being amply justified by the ore being found.

The following is a summary of development work done at the mine in 1961:---

Drifting	Ft.
Deferred development	2,025
Current development	1,251
Crosscutting	1,403
Raising	637
Diamond drilling	15,322
Box-holes and subdrifts	427
Test-holes (jackleg and ribbon steel)	15,719

20

At the end of the year a crew of 124 men was employed, of which eighty were underground. The remarkable safety record established in 1960 was maintained in 1961, there being only one lost-time accident recorded, giving a rate of four accidents per million man-hours worked. This compares very favourably with a rate of 64.2 accidents per million man-hours for the average for the previous five years. A full-time safety director is employed, and regular safety meetings and inspections are carried out.

A total of 37,944 tons of ore was milled, yielding 20,243 ounces of gold and 3,213 ounces of silver. This is approximately a 7-per-cent increase in gold production and a 3-per-cent decrease in the amount of ore milled.

LAC LA HACHE

TAKOMKANE MOUNTAIN (52° 120° S.W.)*

Molybdenum

Boss Mountain tion Company, Limited)

British Columbia office, 202, 2256 West Twelfth Avenue, Vancouver 9. This company bought the Boss Mountain (Noranda Explora- molybdenum property in 1961. It includes eleven Crowngranted claims, forty-two previously recorded claims, and twenty-two claims newly recorded in 1961. The property is at 5,500 feet elevation near the head of Molybdenite Creek

on the east side of Takomkane Mountain, 50 miles due east of Williams Lake. Camp was serviced by 80 miles of road from Williams Lake via Horsefly, the final 9 miles being passable by jeep only. During the work season 8 miles of new road was built from the camp down the south side of Molybdenite Creek to connect with the Hendrix Creek forest access road from Canim Lake. This creates a new access route about 57 miles long from 100 Mile House to the property.

The presence of molybdenite at this locality has been known since 1917 and has attracted attention intermittently to date. Stevenson (B.C. Dept. of Mines, Bull. 9, 1940, pp. 34-47) and Sutherland Brown (Ann. Rept., 1957, pp. 18-22) have published the most recent descriptions of the property.

The molybdenite mineralization occurs in a quartz diorite breccia pipe and in a long narrow zone of small quartz veins in quartz diorite.

The breccia pipe is exposed in an irregular lens-shaped area more than 100 feet wide and 400 feet long, as shown on Figure 3. In the centre of the pipe, molybdenite forms an irregular orebody 20 to 30 feet wide and about 350 feet long. The orebody plunges to the northwest and appears to bottom at depths ranging from 200 to 500 feet below ground surface. Estimates of the orebody so far delimited range from 11/2 million tons averaging 0.7 per cent molybdenum to 1 million tons averaging 0.95 per cent molybdenum.

In the quartz veins, molybdenite is present as thin isolated seams and in scattered flakes. The veins are a few inches to 2 feet wide. They have been uncovered in short sections by cuts as indicated in the diagram and by pits and small trenches in a narrow zone extending nearly 2,000 feet up the bank of the creek southeast from the trenches shown.

Current interest in the showings began in 1956, when Climax Molybdenum Company optioned the property and started a programme of diamond drilling which was continued in 1957. American Metal Climax, Inc., a union of American Metal Company and Climax Molybdenum Company, did further diamond drilling, geological mapping, and geophysical surveying in 1958. In 1959 Southwest Potash Corporation, a subsidiary of American Metal Climax, Inc., carried out a programme

* By J. W. McCammon and A. R. C. James.

involving trenching, mapping, and more diamond drilling. They relinquished their option in 1960. In 1961 Noranda Exploration Company, Limited, used a bulldozer to do the trenching shown on the accompanying figure, and by the middle of August had completed the five diamond-drill holes indicated.

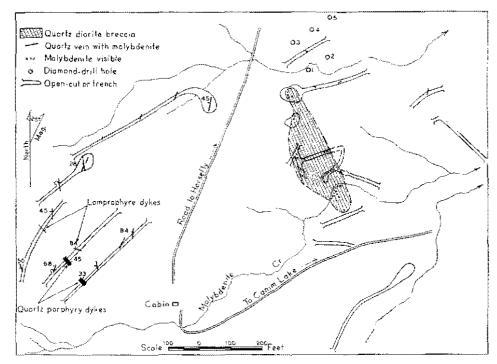


Figure 3. Boss Mountain molybdenite showings.

The trenches west of the road to Horsefly are shallow and barely expose bedrock. The rock uncovered is highly fractured quartz diorite. The quartz veins visible in the quartz diorite average 2 to 6 inches wide, with a single vein in the east end of the most northerly trench 19 inches wide. Most veins are badly fractured and cut by small faults with offsets of a few inches to a few feet. Molybdenite is erratically distributed through the veins as hairline seams and patches of flakes. None was recognized in the quartz diorite host rock.

Where the breccia pipe was exposed in trenches, molybdenite mineralization was seen as indicated in the diagram. The trenches were only a foot or two deep when examined, but the main one, near the centre, was being deepened. The best mineralization was visible in the old workings on the creek bank.

Previous diamond drilling, which seems to have tested most of the favourable ground, apparently failed to disclose a concentration of mineralization of economic interest other than that in the breccia pipe. As a result, the present company was directing its efforts to a search for extensions of the orebody in the pipe. The work carried out included 6,423 feet of exploratory diamond drilling; trenching and stripping; geological mapping; electromagnetic surveying; sampling of pits, trenches, and cores; soil-sampling; and general surveying. A crew ranging up to twenty-five men was employed throughout the season under the supervision of A. D. K. Burton.

CLINTON

POISON MOUNTAIN (51° 122° S.W.)*

Copper

Copper Nos. 1 to 4 This property comprises about forty-eight claims and fractions which are currently held by Huestis and Associates, partly by record and partly on option from H. Reynolds, of Lillooet. It is mainly on the west side of Poison Moun-

tain, about 40 miles northwest of Lillooet near the headwaters of Yalakom River and Churn Creek. The principal showings are between 5,600 and 6,000 feet elevation on the east side of Poison Mountain Creek, mainly north of its tributary, Copper Creek. Access is by jeep-road, either from Big Bar ferry on the Fraser River or from the Yalakom River road at Blue Creek. Work done in 1961 by American Smelting and Refining Company on behalf of Messrs. Huestis and Reynolds included improvement of the road from Blue Creek, cleaning out of trenches, and a reconnaissance geophysical survey by the induced polarization method. A maximum crew of eight men was employed for about four weeks under the supervision of D. M. Fletcher and Lloyd Hewitt.

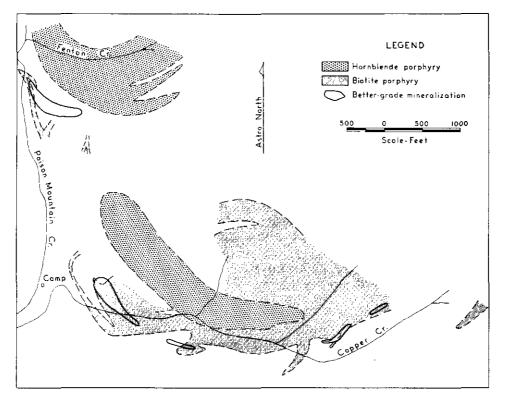


Figure 4. Copper group, Poison Mountain. Simplified geology.

Past work on this property has all been done in an area which measures about 1 square mile and is roughly bounded by Poison Mountain Creek to the west, Fenton Creek to the north, and Copper Creek to the south (*see* Fig. 4). Numerous trenches have been made and about 4,000 feet of diamond drilling done, in

* By J. M. Carr.

twenty-five holes of maximum length about 300 feet. The following description of the geology is based on a three-day examination of the showings and drill core, and on information kindly made available by the present and previous owners of the property.

In the explored area, two kinds of dacite porphyry have been successively intruded into interbedded argillite, greywacke, and conglomerate of presumed Lower Cretaceous age. The attitudes of the sedimentary rocks are seen only near Poison Mountain Creek, where the beds strike mainly north and northwest and possess moderate to steep easterly dips. The earlier porphyry is distinguished from the later one by the presence of rare but conspicuous books of biotite. The biotite porphyry forms an irregular, many-fingered body which extends for about 1 mile along Copper Creek and is roughly elliptical in plan. Dykes which may be offshoots of the main body occur farther north, near Poison Mountain Creek. The biotite porphyry grades in many places into breccia, which consists mostly of cataclastic porphyry but also of sedimentary rocks, and which resulted probably from explosion of this porphyry magma during its emplacement. The later hornblende porphyry forms two principal bodies of similar size and shape, each having a length of about half a mile and a maximum width of several hundred feet. The bodies are roughly crescent shaped in plan, being convex to the southwest, and are about 1,000 feet apart in a northerly direction. The southern one is emplaced mostly in biotite porphyry.

Alteration and mineralization affect all rock types, the hornblende porphyry being the least affected because it is the least fractured. Alteration includes biotitization, silicification, and, to a lesser extent, feldspathization. Mineralization is both disseminated and fracture-filling, and consists mostly of pyrite and chalcopyrite but also of bornite, molybdenite, and magnetite. Two zones of very lowgrade copper mineralization occur, each containing one or more restricted areas of somewhat better-grade material. The northern zone follows roughly the southern margin of the northern body of hornblende porphyry. The southern zone is much larger and covers approximately the elliptical mass of biotite porphyry. It apparently grades outward to a halo of pyrite mineralization. In both zones, better-grade material occurs near the southwestern margin of the respective body of hornblende porphyry, and is either in or near biotite porphyry. Additional better-grade material occurs sparsely in the southern zone along the southern margin of the biotite porphyry.

[References: Minister of Mines, B.C., Ann. Repts., 1946, pp. 101-102; 1956, pp. 35-37; 1960, pp. 19-20.]

TASEKO LAKE*

Copper

(51° 123° S.W.) Company office, 904, 1030 West Georgia Fish Lake (Phelps Street, Vancouver 5. W. A. Hutchinson, Toronto, general Dodge Corporation manager; D. C. Malcolm, Vancouver, resident geologist. of Canada. This company holds seventy-nine claims and fractions on both sides of the creek immediately northwest of Fish Lake. some 7 miles due north of Taseko Lake. The property was

located in the fall of 1960 and partly covers the former Viccal group (Ann. Rept., 1935, pp. F 28–29). It occupies rolling country at about 5,000 feet elevation, and is a short distance east of a jeep-road which connects Fishem Lake in the Taseko Lake area with Hanceville.

Limited)

24

^{*} By J. M. Carr.

For several weeks in 1961, a small crew under the supervision of Lisle Dunn camped at Fish Lake and did work which included line-cutting, soil-sampling, magnetometer surveying, and the deepening of old hand trenches. These trenches contain the only bedrock seen on the property and are in two areas about 2,000 feet apart. In both areas, copper mineralization is disseminated in dacite porphyries. This and other properties held by the company in 1961 were supplied over distances of as much as 80 miles by helicopters and light aircraft which operated from newly constructed landing-strips situated at Pemberton Meadows, the head of Bridge River, and Fishem Lake respectively. During its summer operations in this region, the company employed about twenty-two men. Properties at Fish Lake and Tenquille Creek were visited by the writer.

LILLOOET

Copper

BRIDGE RIVER $(50^{\circ} 122^{\circ} \text{ N.W.})$

B.R. (Phelps Dodge Corporation of Canada, Limited)*.—This company holds 125 claims forming the B.R. group near the head of Bridge River. In 1961 work was under the supervision of John Deleen and included rehabilitation and sampling of an old adit about 200 feet long, together with about 2,000 feet of diamond drilling.

Gold

Ace†

The Ace Mining Company Ltd., 404, 510 West Hastings Street, Vancouver 2, holds forty-one recorded mineral claims covering a considerable area lying for the most part north of

the Bridge River and extending for 4 miles west of the junction of Gun Creek. It includes the Wayside, Congress, and Minto mines. Work on this property was resumed, after an interval of twelve years, when Ernest Howard, now president of Ace Mining Company Ltd., discovered a new vein shear carrying gold values about 3,000 feet west of the old Congress mine. In December of that year an agreement with Bralorne Pioneer Mines Limited was reached whereby the latter optioned the property and carried out exploration work. Throughout much of 1960, exploration was concentrated on the new vein, and a drift was driven on it for 277 feet. Some geological examination and mapping was done on other parts of the property, and two diamond-drill holes were drilled in the Congress mine.

In 1961, work was continued from June 12th to the end of the year under the supervision of J. P. Weeks, chief geologist for Bralorne Pioneer Mines Limited; a crew averaging four men was employed. A considerable amount of stripping was done at various locations throughout the area of the property, and several mineralized shear zones were discovered. The most encouraging results were obtained from a showing called the Bluff vein, on the banks of Gun Creek 2,000 feet east of the Congress portal. This vein shear was traced for a length of 825 feet, and it is reported by the company that sampling indicated an average grade of: Gold, 0.13 ounce per ton; silver, 1.60 ounces per ton; antimony, 3.03 per cent; across an average width of 3.5 feet. The location and attitude of this vein suggests that it might be an extension of one of the veins developed in the Congress mine, in which case a very considerable strike length is indicated. Another vein, the Paul vein, was discovered too late in the season to permit its being traced along strike, but some encouraging assays are reported to have been obtained from the few exposures made.

* By J. M. Carr.

† By A. R. C. James.

Seven diamond-drill holes totalling 2,187 feet were drilled from underground sites in the Congress mine, mainly with the object of tracing and indicating the grade of the hangingwall vein. The work was still in progress at the end of the year and is said to be yielding some encouraging results. No surface diamond drilling was undertaken during 1961. Metallurgical test work continued to be carried out on mineral from the Congress mine.

In addition to the above-mentioned work by Bralorne Pioneer Mines Limited, Ernest Howard, president of Ace Mining Company Ltd., did some prospecting and bulldozer stripping on the west side of Gun Creek three-quarters of a mile north of the highway bridge across the creek. This work was started in July and continued until November. Mr. Howard also prospected on the Gold Belt group of sixteen claims, lying due north of the property under option to Bralorne Pioneer Mines Limited.

[References: Minister of Mines, B.C., Ann. Repts., 1948, pp. 106-112; 1960, pp. 20-21; Cairnes, C. E., Geol. Surv., Canada, Mem. 213, 1937, pp. 102-104.]

Bralorne Pioneer Mines Limited* Company office, 355 Burrard Street, Vancouver 1; mine office, Bralorne. F. R. Joubin, president; C. M. Campbell, Jr., resident manager; J. S. Thomson, mine superintendent; E. H. Hall, mill superintendent; A. J. Learmonth, plant

Superintendent. This company operates the Bralorne mine on Cadwallader Creek. It is reached by 51 miles of road from Shalalth or 75 miles from Lillooet, both stations on the Pacific Great Eastern Railway. The property was described in some detail in the 1958 Annual Report. The extensive workings are in a northwesterly trending vein system now being mined at depths between 3,600 and 4,700 feet below surface, with development work proceeding up to a depth of 5,200 feet below surface.

The workings are approached by a main haulage adit on No. 8 level. There are three internal shafts: the Crown shaft, approximately 2,600 feet deep from No. 8 to No. 26 level; the Empire shaft, approximately 3,280 feet deep from No. 3 to No. 26 level; the Queen shaft, 2,000 feet deep from No. 26 to a point just below No. 39 level. The major portion of present production is mined in cut-and-fill stopes between No. 28 and No. 35 levels, the 77 vein being the principal producing vein together with a small production from the 79 vein. The ore is hoisted in the Queen shaft to No. 26 level, the main haulage level of the mine, and hauled by trolley locomotive to the mill. During the latter half of the year the new 600-ton cyanide mill was brought into full operation, replacing the old gravity and flotation mill. The old crushing plant was still in operation at the end of the year, but a start is to be made in 1962 on building a new plant. In 1961, 154,000 tons of ore was milled, yielding 105,510 ounces of gold.

A summary of development work done in 1961 is given below:----

	Advance (Ft.)	Additional Slashing (Cu. Ft.)
Drifting	2,476	14,050
Crosscutting	2,249	8,727
Raising	1,503	
Transfer raises	489	570
Station excavation		21,370
Diamond drilling	10,893	

* By A. R. C. James.

Following the completion of the shaft to No. 39 level in 1960, crosscuts were driven on No. 37 and No. 38 levels to the 77 and 79 veins. Seven hundred and ninety-one feet of development was done on the 77 vein on No. 38 level and 377 feet on the 79 vein. Three hundred and fifty-two feet of development work was done on the 77 vein on No. 37 level. At the end of the year the station had been cut and the crosscut was being driven on No. 36 level.

The sand fill system of stope-filling was completed in January, and, by the end of 1961, 70 per cent of the mine production was coming from hydraulic fill stopes. The sand and water mixture is pumped from the mill to a central reservoir on No. 8 level. From here it is passed downward to the lower workings through a 23%-inch diamond-drill hole.

An additional Jeffrey fan was installed on the surface at the top of the ventilation raise. The two fans in parallel now force approximately 120,000 cubic feet of air per minute down the raise to No. 25 level. From this point the air passes down into the Queen section by the developed part of the 79 vein and the Queen shaft. Auxiliary fans are located on Nos. 33, 34, 35, and 37 levels to direct the desired air flow on these levels. The exhaust air flows upward via stopes and manways and the Crown and Empire shafts to surface at Nos. 3 and 8 levels. Rock temperatures in the deeper workings reach 108 degrees, and an ample air flow is normally required to provide reasonable working conditions. In some development drifts and raises the air temperatures reach 90 degrees, but the average temperature of twelve stopes at the beginning of November was 75.6 degrees.

The number of men employed was 316, of whom 216 were employed underground. Although the year was marred by one fatal accident, it is pleasing to be able to report that last year's generally low accident rate has been maintained. The fatal accident occurred on the surface on December 23rd; a detailed description will be found elsewhere in this Report. A total of fifteen compensable accidents was reported during the year. This is a rate per million man-hours of twenty, which, although not quite as good as the 1960 record, compares favourably with rates of previous years. An active safety organization at the property receives the full backing of management, and regular safety meetings and inspections are held.

Bridge River United Mines Ltd.*

Company office, 404, 510 West Hastings Street, Vancouver 1. Raymond R. Taylor, president. Capital, 4,500,000 shares, no par value. This company controls twenty-one Crowngranted claims and fractions on the lower reaches of Hurley River, extending for a distance of 2 miles up the river from a

point 1½ miles above Gold Bridge. The property includes the Ural, Forty Thieves, and Why Not claims, which were first located in 1897. Intermittent exploration work has been done for many years on these claims, which lie on the east side of the deep and rugged canyon of the Hurley River. The claims are underlain mainly by andesite of the Pioneer formation and diorite of the Bralorne intrusions, bounded on the west by an outcrop of serpentinized pyroxenite. Quartz-filled fractures occur in the andesites and diorites, some of which have been traced for over 900 feet. These veins in places contain gold values, but the vein matter has hitherto not generally been found to be of ore grade. A number of adits have been driven at various points at the foot of the canyon bluffs to explore the Forty Thieves, Why Not, Jewess, and other veins that outcrop either close to or on the canyon bluffs. Until the present company began work in 1959, the property had lain dormant since 1946.

In September, 1960, an agreement was made with Rayrock Mines Limited for the latter company to participate in the exploration of the property. In 1961, work was continued from the beginning of the year until the end of September. A total of 2,860 feet of diamond drilling was completed. Four thousand four hundred and forty feet of bulldozer trenching was done in June and July. The portal of the Ural No. 3 adit was retimbered and a detailed examination was made of the tunnel. Geological mapping was carried out on the property. A crew of eight men was employed in the early part of the year while diamond drilling was in progress. The work was under the supervision of Raymond R. Taylor.

[References: Minister of Mines, B.C., Ann. Rept., 1946, pp. 106-112; Cairnes, C. E., Geol. Surv., Canada, Mem. 213, 1937, pp. 88-91.]

ANDERSON LAKE*

Gold

Golden Contact (Cassiar Copperfields Limited)

(50° 122° N.E.) Company office, 928 West Pender Street,
Vancouver 1. John A. McKelvie, president. Capital:
5,000,000 shares, \$1 par value. This company holds under option the Golden Contact property on Gold Creek, north of McGillivray Creek, about 4 miles by jeep-road from Marne

station on the Pacific Great Eastern Railway. The main showings are quartz veins, locally mineralized and containing gold values, within a schistose host rock. The showings were discovered in 1898, and a considerable amount of underground exploration has been carried out over three separate periods—1900–03, 1932–38, and 1947–53. There are six adit levels from No. 1 at 3,615 feet to the Pep adit at 2,938 feet elevation. The underground workings were inaccessible when the present company began work in 1960, but the workings on the Pep level and the Fortyniner adit level (3,187 feet elevation) have been reopened. The main workings on these two levels are in a strong quartz vein which strikes northward and dips west at 65 degrees. The vein is broken into segments by northwesterly striking faults. Development so far has been mainly in the "east segment" of the vein, lying north of the No. 1 fault.

A crew ranging from three to eighteen men was employed throughout most of the year under the supervision of John McKelvie. Underground work was mainly confined to the first four months of the year, when a raise was driven in the east segment of the vein from the Pep to the Fortyniner level. During the summer months the access road was improved and widened in places. The ground was cleared and levelled in front of the Pep adit portal. A sawmill and planer-mill were installed for cutting local timber. Two small bunk-houses were erected for personnel. Three 24- by 48-foot buildings were constructed as warehouse, machineshop, and power-house respectively. The track was extended from the adit portal toward the crusher-site and 200 feet of snowshed was erected. An ore-bin building was completed, and a start made on a building to house a 100-ton mill. Work was still in progress at the end of the year. No compensable accidents were reported.

LILLOOET RIVER[†]

Copper

Salal (Phelps Dodge Corporation of Canada, Limited).— $(50^{\circ} 123^{\circ} N.E.)$ This company holds forty-six claims near the head of Lillooet River on Salal Creek. Work in 1961 included geological mapping together with trenching and bulk sampling of a precipitous cliff face for a length of 1,500 feet.

^{*} By A. R. C. James.

[†] By J. M. Carr.

Copper, etc.

Phelps DodgeandCorporation of15 mCanada, Limitedbert

(50° 122° N.W.) This company holds eighty-four claims and fractions around Tenquille (Maud) Lake, which is about 15 miles north of the Pacific Great Eastern Railway at Pemberton and is reached by a good trail about 7 miles long from Pemberton Meadows. The property contains several pros-

pects, including the Seneca, Gold King, Silver Bell, and Eva (Moffat and White's camp), whose locations were recorded by the Geological Survey in 1924. In about 1932, some drilling was done at the Gold King prospect. Mineralization seen on the property includes chalcopyrite that is partly in shear zones adjacent to dykes, and partly with magnetite in skarns. The host rocks include tuffaceous and volcanic strata together with limestone, and they show resemblances to rocks of the Nicola group. They are intruded nearby by granitic bodies. In 1961, work on this property included geological mapping and prospecting.

[References: Geol. Surv., Canada, Sum. Rept., 1924, Pt. A, pp. 91-99; Minister of Mines, B.C., Ann. Rept., 1932, p. 211.]

Copper

SPENCES BRIDGE*

(50° 121° S.E.) Office, 700 Burrard Building, Vancouver 5. **Dora Kay (Tombac Exploration Ltd.**) This property consists of sixty-five claims held by record. It includes the showings of the original Dora Kay group on the north side of Pimainus Creek, 7 miles northeast of Spences

Bridge. Access is by a narrow road which leaves the Spences Bridge–Merritt highway just southeast of the Nicola River bridge and follows the east side of the Thompson River to Pimainus Creek, where a branch road follows the north bank of Pimainus Creek for some 2 miles and then climbs by a number of steep switchbacks to the Dora Kay. The road was badly gullied by run-off and impassable by automobile just east of the Pimainus Creek crossing.

The showings consist of stringers and thin veins of hematite, with minor chalcopyrite, erratically distributed in a strong shear zone in Guichon quartz diorite. The shear zone strikes north 15 degrees west and dips about sixty-five degrees east. Most of the hematite stringers strike a little south of west and dip, with few exceptions, between 40 and 85 degrees to the north.

The work done in 1961 included 1,000 feet of stripping, 482 feet of diamond drilling, and 6 miles of road construction. A crew of seven men was employed under the supervision of D. J. McDonald.

[References: Minister of Mines, B.C., Ann. Rept., 1926, p. 194; Geol. Surv., Canada, Mem. 262, Ashcroft Map-area, p. 105 (Toketic).]

Copper

HIGHLAND VALLEY

Royal Canadian Ventures Ltd.†

(50° 121° S.E.) Company office, 1011 Seventeenth Avenue West, Calgary, Alta. A. P. Newell, president; V. R. Chamberlain and H. W. Hunt, consulting engineers. This company holds about 100 claims in a block which extends from south

of Calling Lake to north of the O.K. mine, in the southeastern part of the Highland Valley area. The property surrounds but does not include the O.K., Empire, and Kathleen mines, and it includes ground formerly held by Bethsaida Copper Mines Ltd. and Laco Mines Ltd. respectively.

[•] By N. D. McKechnie,

[†] By J. M. Carr.

Work in 1961 included geological mapping, magnetometer surveying, and about 650 feet of surface diamond drilling in seven holes. Some of the showings on the property are recent discoveries by Pat Gouthro, prospector, and are on either side of an irregular contact between younger quartz diorite and the later Bethsaida granodiorite porphyry stock. Bornite and chalcopyrite occur, mostly on silicified and sericitized joints but also as local disseminations in the adjacent rock.

Trojan Consolidated Mines Ltd.* (50° 120° N.W.) Company office, 809, 837 West Hastings Street, Vancouver 1. P. Cramond, president. This company holds eighty-two claims north and east of the south peak of Forge Mountain. Work in 1961 consisted of dewatering the

Trojan mine and diamond drilling fourteen holes totalling 1,963 feet from the 150 level. An average crew of ten men was employed in May and June, the work continuing to July and being directed by H. Hill & L. Starck & Associates Ltd. Drilling was mainly from two stations about 90 feet apart in a northerly direction. Upward fans of holes explored the upper, least-known part of a mineralized zone on which exploration in the Trojan breccia area has been concentrated previously. Mineralization was encountered in many of the drill-holes but apparently not in commercial amounts.

[References: Minister of Mines, B.C., Ann. Repts., 1956, pp. 43-44; 1957, p. 24; 1959, p. 29.]

(50° 120° S.W.) Company office, 814, 402 West Pender Bethlehem Copper Street, Vancouver 3. Company office, Box 520, Ashcroft. Corporation Ltd.[†] H. H. Huestis, president; D. W. Pringle, manager; C. J. Coveney, geologist. Access to the property is by about 30

miles of road from Ashcroft. This company holds fifty-six Crown-granted and 106 recorded claims and fractions, immediately east of Quiltanton (Divide) Lake. The property is being prepared for production with a target date set for December, 1962. Initial site clearing and excavation for a mill have been carried out, several miles of road built, the surface of the pit cleared, and a start made on the stripping of overburden at the pit. Erection of a permanent assay office, machine-shop, and a combination office-warehouse building has been started. This work has all been contracted. The crew consists of seven men on staff and three on day rate. A camp has been rehabilitated at Divide Lake with a capacity of seventy-five men. About 10 miles of the road to Ashcroft has been rerouted and reconstructed with the aim of providing a first-class highway to the property. This work is being done by the Department of Highways.

Jericho Mines Limited†

(50° 120° S.W.) Company office, 1531 Davis Street, Vancouver 5. H. B. Hatch, managing director; F. J. Hemsworth, consulting engineer. This company holds 156 claims south of Witches Brook, about 7 miles east of Quiltanton (Divide)

Lake. Work done in 1961 consisted of soil-sampling and trenching by bulldozer in several areas. A crew of four men was employed.

• By J. M. Carr. † By David Smith.

ABBOTT LAKE*

Copper

(50° 120° S.W.) Company office, Seymour Street, Kam-Viking (Kamloops loops. R. W. Kennedy, president; H. Hill & L. Starck & Copper Company Associates Ltd., Vancouver, consulting engineers. This com-Ltd.) pany holds more than 100 claims in the Viking, K.C., and Rock groups near Abbott Lake, which is about 7 miles west-

northwest of the Craigmont mine. Access is by a jeep-road from the Merritt-Spences Bridge highway near Dot. An average crew of eight men camped at Abbott Lake from May to July, and did work which included line-cutting, chain and compass surveying, and geological mapping.

The property is underlain by the Guichon batholith, in which most of the known copper showings are located near porphyry contacts. A collection of rock specimens taken systematically throughout the property was examined and found to contain a diversity of batholithic rocks and one specimen of Bethsaida granodiorite porphyry which was reported to have been collected at the northeast limit of the property, on the K.C. No. 18 claim.

MERRITT[†]

The Craigmont mine began production of copper concentrates and was officially opened in September, 1961. Numerous other properties in the Merritt area were actively explored in 1961, both near the mine at Promontory Hills and also south and east of Merritt. (The numbers of properties refer to their position on Fig. 6.) Several magnetic and electrical anomalies were drilled and others are still to be investigated. Whilst no commercial deposits except Craigmont have yet been found, their possible existence in this largely drift-covered area cannot be discounted. A feature of this year's exploration was the availability on contract of induced polarization survey equipment staffed by Hunting Survey Corporation Ltd., which worked on several properties at Promontory Hills.

[References: Minister of Mines, B.C., Ann. Repts., 1959, pp. 31-35; 1960, pp. 26–41, "Geology of the Promontory Hills."]

Copper-Iron

Limited[‡]

(50° 120° S.W.) Company office, 700, 1030 West Georgia Craigmont Mines Street, Vancouver 5; mine office, Box 399, Merritt. J. D. Simpson, president; R. G. Duthie, property superintendent. This company holds 112 mineral claims and fractions, of

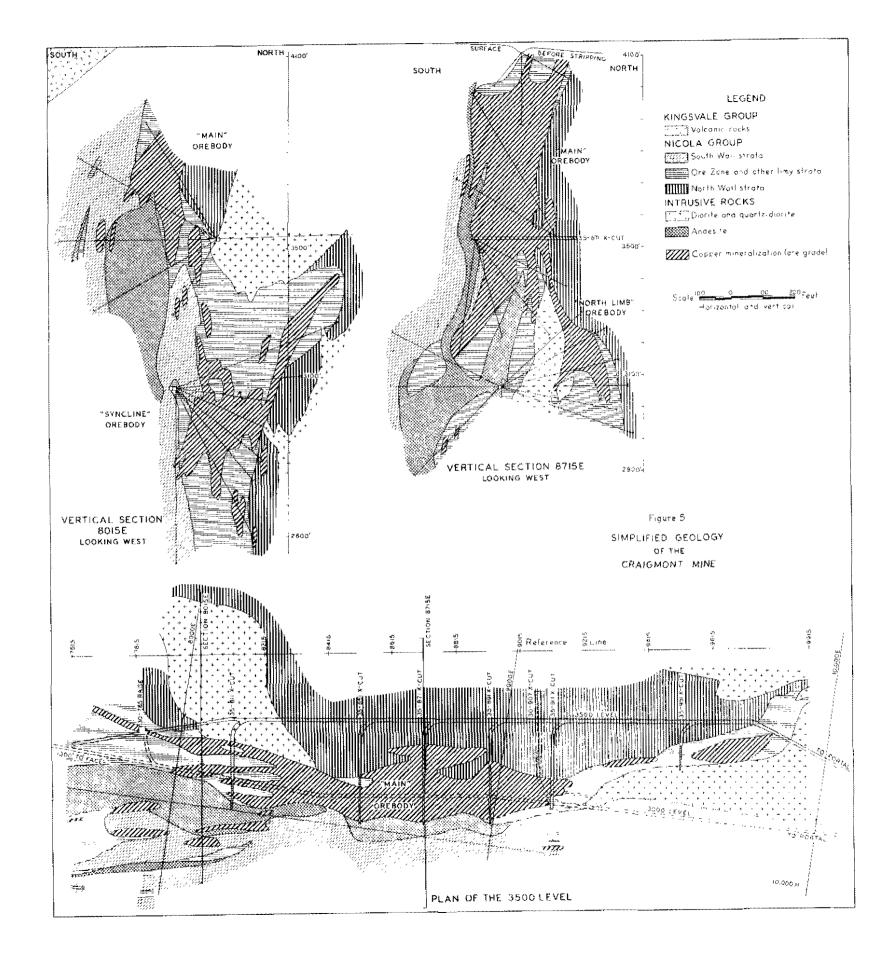
which eighteen are in five separate leases and four others have leases applied for. The Craigmont orebodies are on the Merrell Nos. 7 and 8 claims and McLeod Nos. 5 and 6 claims, and are between the forks of Birkett Creek at surface elevations between 3,800 and 4,200 feet. By a reorganization in January, 1961, the present company gained operating control of the property.

Until August, 1961, the property was being prepared for production. Milling began on August 29th at a rate of 2,400 tons per day, and the mine was opened officially on September 15, 1961. Production to the end of the year was mainly from the open pit and consisted of copper concentrates, the iron content of the orc being impounded in the tailings. Production in 1961 was as follows: Ore milled, 484,073 tons; grade of mill head, 1.63 per cent copper; concentrate shipped,

^{*} By J. M. Carr.

[†] By J. M. Carr, except as noted. ‡ By J. M. Carr and David Smith.

11,672 tons. The concentrate was trucked to the railway at Coyle, a distance of about 5 miles, and from there shipped to Japan. In 1961, in the open pit, material moved by the contractors in advance of production measured 984,627 cubic yards, which included glacial till, waste rock, and stockpile ore. An additional 5,831,938 tons of this material was moved by the company, which also mined 512,549 tons of open-pit ore grading 1.50 per cent copper. Underground development was continued on two levels, and a study was begun of mining methods and ground control in a test stope. On the 2400 level the drift was extended 6,146 feet to a point 6,827 feet from the portal, and 440 feet of secondary development was done. Work on the 3000 level included 324 feet of crosscutting, 1,321 feet of raising, and 859 feet of subdrifting, from which 11,770 tons of ore grading 3.70 per cent copper was mined and milled. Diamond drilling was done on all adit levels, but mostly on the 3000 level.


Equipment purchased for the pit included three 4½-cubic-yard electric shovels, fourteen 27-ton diesel trucks, two track- and one rubber-mounted bulldozers, one 9-inch rotary electric drill, one 3-inch percussion drill, one explosives truck, one lubrication truck, and several service vehicles. The property is supplied with natural gas for heating and power, and with electricity, telephone, and teletype. In 1961 the crew employed was 304, of which seventy-four were salaried and the remainder on wages. No housing is provided on the property, and the crew lives mainly in Merritt.

The open pit is shaped like a horseshoe, open at the east end, and measures about 2,200 feet by 1,200 feet. The working-benches are 33 feet high, the berm widths are 30 feet, and the slope of the faces is 70 degrees. At the pit limits, two benches are consolidated to give a 66-foot bench. The final depth of the pit is expected to be 700 feet. The primary crusher is installed at the east end of the pit at 3,700 feet elevation, and a cable belt conveyor, 5,600 feet long, transports the stockpiled product of this crusher to the plant site at 2,400 feet elevation. The rated capacity of the mill is 4,000 tons per day. There are workings on three underground levels, at elevations of 2,400, 3,000, and 3,500 feet, respectively. The 2400 level adit is expected to be 8,600 feet in length when completed, and will be the main haulage level. The 3000 level adit is 6,293 feet long, and the 3500 level adit is 3,448 feet long, and these two levels are connected by a vertical ventilation raise 463 feet in length. Ore mined from the 3000 level is at present trucked to the primary crusher.

General Geology

The following notes supplement previous ones on the geology of the mine (Ann. Repts., 1959, pp. 31–34; 1960, pp. 35, 40) and are based mainly on examinations made over periods of several weeks in both 1959 and 1960. In the course of this work, the 3500 level was fully mapped and the 3000 level and surface exposures were partly examined. About 135,000 feet of drill core is available at the mine, of which about 30,000 feet was logged and some other sections were less closely examined. In addition, the mine staff provided much information, which is gratefully acknowledged. The photographs of the mine model (p. 36) are published through the courtesy of the company.

At the mine, metamorphosed Nicola rocks lie close to the south margin of the Guichon batholith and are intruded by andesite and by diorite or quartz diorite. The Nicola rocks are overlain to the south and west by younger volcanic rocks assigned to the Kingsvale group, and are thus isolated from the main outcrops of the Nicola group near Lookout Point.

.

The Kingsvale rocks are exposed in the open pit and on the 2400 and 3000 levels, and consist mainly of flows and breccias of andesite together with some coaly tuffaceous sediments. They fill a basin whose northern side trends west-northwest, approximately parallel to Birkett Creek, and is moderately steep and probably structurally controlled. The rocks dip at low angles in widely varying southerly directions. In the open pit they overlie weathered, mineralized Nicola rocks and are themselves unmineralized. Biotite from a sample of an andesite flow about 50 feet above the Nicola surface was dated by radioactive methods by the Geological Survey of Canada. The determined age of the biotite is 80 million years, which the Survey suggests is a minimum age close to the actual time of deposition of the lava. On this evidence, the Kingsvale rocks are Upper Cretaceous in age and the Craigmont mineralization is earlier.

The Nicola strata form a steeply dipping sequence which strikes approximately east and which, together with the intrusive rocks, is partly altered and mineralized. With the exception of skarns and other intensely altered rocks, the strata include hornfelsed limy and non-limy greywackes, tuffaceous greywackes, tuffs, and recrystallized limestones. Textures range from very fine grained or aphanitic to medium grained or gritty, and many rocks have a porphyritic aspect due to the inclusion of grit-sized crystals or particles in a finer-grained matrix. Banding and foliation are generally more conspicuous than bedding, and may not be everywhere parallel to it. Except for their metamorphic features, the strata broadly resemble various Nicola rocks elsewhere on Promontory Hills. According to their location in the mine, the strata are divisible into the rocks of the ore zone and the north and south wallrocks, respectively. This division accords with broad lithological differences but is too imprecise to allow recognition of the detailed structure. Attempts to trace individual beds by means of their lithology have been only partly successful, and the results to date are of limited value. Accordingly, the accompanying illustrations show the geology in a general way only, without reference to the detailed structure.

Ore Zone

The ore zone ranges in width from less than 100 feet to more than 600 feet and has been explored for a length of 3,000 feet and to a depth of 1,600 feet. The zone contains most of the limy strata, the orebodies, other mineralized and strongly altered rocks, and some intrusive rocks. The limy strata are preserved mainly at the west end of the zone, and include limestones and interbedded non-limy beds which are scarcely distinguishable from some south wallrocks. The limestones are strongly banded, parallel to the bedding, which dips steeply and strikes in various directions but mostly eastward. The banding is of secondary origin and encloses occasional detached blocks of the adjacent non-limy beds. The beds thicken and thin rapidly and cannot be readily correlated even in neighbouring holes of a single fan of holes. The rest of the zone comprises intensely altered and more or less mineralized rocks. These include epidote, garnet, and actinolite skarns which partly contain calcite, quartz, and orthoclase. Some altered rocks are dark and limy, and consist chiefly of mosaic-textured quartz and orthoclase with finely disseminated calcite and chlorite. At least in the upper part of the mine, the copper and iron minerals mostly occur together, principally as iron skarn containing chalcopyrite. The iron skarn is largely a replacement of breccia and contains pink, grey, or white fragments of quartzofeldspathic hornfels which are enclosed in a skarn matrix consisting largely of magnetite and specular hematite. The fragments are mostly tabular and range in length from less than an inch to more than 1 foot. They are frequently bent, crumpled, and preserved in trains which clearly represent folded and brecciated beds. The fabric of the skarn closely resembles that of limestone at Lookout Point, which contains deformed and brecciated non-limy beds. As seen in crosscuts on the 3500 level, sections of iron skarn are separated by large bodies of hornfels whose banding is mainly steep and partly convolute. These bodies probably represent non-limy beds whose structural continuity is not established.

In the north wall the principal rock in the upper part of the mine is a rather distinctive hornfelsed greywacke without evident bedding but with a granular foliation which lies in various directions that are mainly oblique to the ore zone. The rock is traversed by sets of parallel joint planes, on which alteration has taken place. One set that is generally best developed is more or less parallel to the foliation. The foliation and joints are of uncertain origin and are probably secondary. In the 35-891 crosscut the joints form an arch which plunges at a moderate angle to the east-northeast and is asymmetrically steeper to the south. Ore is exposed in the floor beneath the crest of the arch, apparently in greywacke. In this crosscut and at several other places on the level, a well-banded hornfelsed greywacke siltstone is exposed at the contact of the greywacke and the ore zone, and is several feet thick. In this rock the strike of the banding conforms to the curved contact and the dip is nearly vertical, except at the east end, where it is fairly steep to the south. In the lower part of the mine the distinctive north wall greywacke is present in the 30-907 crosscut and in various drill-holes at least as far west as 7815 east, and is partly accompanied by the well-banded siltstone. In other holes the greywacke is missing and the north wallrocks cannot be clearly distinguished from rocks farther south.

The rocks immediately in the south wall are difficult to separate from those in the ore zone. The more distant rocks are partly distinctive, and some of them in the upper part of the mine can be recognized at places which are several hundred feet apart along the strike and dip, respectively. These rocks, which are grits and gritty tuffs, strike mostly eastward and dip fairly steeply to the south.

Intrusive Rocks

The relative age of the andesite and diorite intrusions, respectively, is uncertain. Andesite occurs principally as a steep irregular body which is more or less continuous throughout the length of the mine and is as much as 100 feet thick. The body appears to branch upward at progressively lower elevations to the east, and the main mass may reach the surface only in the extreme western part of the mine. The andesite is a non-vesicular, fine-grained rock possessing small, scattered, oriented phenocrysts of plagioclase. In places the original felted texture of the groundmass is replaced by a granular hornfelsic texture. In all specimens examined the rock consists principally of feldspar, actinolite, chlorite, and finely divided magnetite. In places the rock contains small patches of dioritic material, which possibly segregated from the rock during its cooling history. At its contacts with the limy rocks, the andesite frequently encloses numerous irregular masses of skarny limestone. These small inclusions are also seen within the main mass of the andesite, where they can partly be correlated in more or less extensive zones and may occupy the contacts of closely spaced branches of the andesite body.

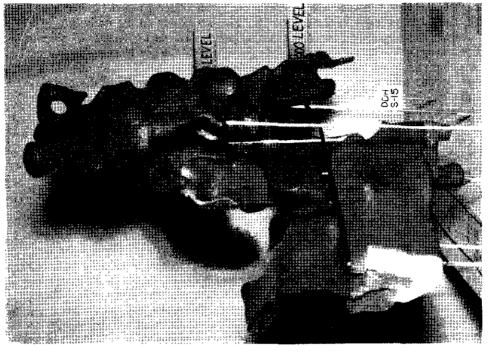
Most of the dioritic bodies consist of a porphyritic rock which texturally resembles quartz diorite of the Guichon batholith, which forms extensive outcrops about 1,100 feet north of the mine. The batholithic margin is very irregular, as shown by a flat hole drilled northward on the 3500 level at 8015 east, which intersected alternating sections of the porphyritic rock and Nicola rocks, respectively, for at least 900 feet. The porphyritic rock is partly diorite and partly quartz diorite, and is characterized by hornblende crystals of a size larger than average. It forms all the

LODE METALS

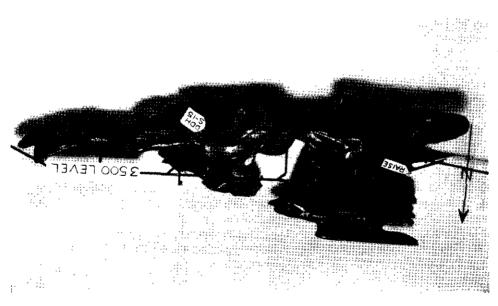
bodies in the north wall together with a ragged dyke-like mass deep in the ore zone, and which is shown on section 8715 east. A second finer-grained type of quartz diorite forms one or more bodies which may also be related to the batholith. This rock, which contains more biotite than the porphyritic rock, occurs as a large, roughly concordant body which follows the south wall of the ore zone at the east end and becomes narrower westward. A possibly connected body of similar rock is exposed farther west in the open pit and strikes within and parallel to the ore zone. In places the dioritic rocks are massive and comparatively fresh, whereas elsewhere they contain skarn and are severely altered.

Alteration

Wallrock alteration of several kinds affects all the above-described rocks and is partly inseparable from skarn formation. It is intense near the orebodies and is locally conspicuous elsewhere near faults and places of mineral deposition. The following minerals are all products of rock alteration at various places in the mine: Epidote, calcite, actinolite, chlorite, orthoclase, quartz, biotite, tourmaline, sericite, kaolin, and zeolite. The list is doubtless incomplete. Orthoclase is widespread in and adjacent to the ore. It forms conspicuous zones of alteration in brecciated north wall greywacke, where it is accompanied by mineralized veins of chlorite and tourmaline or of quartz and calcite. It also permeates parts of the south wallrocks and selectively replaces some of the plagioclase phenocrysts of the gritty tuffs. Biotite has been noted as a major constituent in some of the south wall greywackes, and under the microscope is seen to be of secondary crystallization. Calcite veins are widespread, and are concentrated especially in the rocks overlying a buried portion of the uppermost orebody.


Orebodies

Three orebodies are separately recognized and are named the "main," "north limb," and "syncline" orebodies, respectively. The "main" orebody is an irregular tabular body as much as 220 feet wide and 2.200 feet long, and with a decided pitch to the east. It extends from the surface at 4,200 feet elevation to depths below the 3000 level. Except at the east end, the base of the orebody is furrowed longitudinally, and it divides downward roughly along a line parallel to the pitch. A northerly downward projection leads to the small "north limb" orebody, which is mainly above the 3000 level. In 1961 the part of this orebody between 8815 and 9065 east was being developed for mining in 30-901 test stope. The "syncline" orebody is west of the "north limb" orebody and mostly at lower elevations. It consists of a massive keel, with a width of as much as 300 feet, and a flange which projects upward to the north. This orebody is more or less separated from the others, although recent mine maps and sections show tenuous connections between it and the "main" and "north limb" orebodies, respectively. Within the orebodies and in places beyond them, chalcopyrite occurs as veins, lenses, streaks, blebs, and disseminations, and is generally accompanied by iron mineralization, which increases in magnetite toward the east end of the "main" orebody. Other copper minerals occur in very subordinate amounts, and pyrite, although present in parts of the ore, is mostly confined to weak disseminations in the wallrocks.


In 1961 the estimated reserves of ore were reported to be 22,575,000 tons, grading 2.08 per cent copper and 19.6 per cent iron.

Structure

The detailed structure at the mine remains obscure. The ore zone is apparently one of several limy belts in an upturned south-facing sequence of Nicola strata

Model of the Craigmont orebodics. View looking eastward.

Model of the Craigmont orebodies. Plan view.

adjacent to the batholith (Ann. Rept., 1960, p. 37). In the ore zone, as in some other limy belts, the strata were partly intensely deformed and brecciated, with minor dragfolding accompanied by flowage of limestone. In the rocks now comprising the orebodies, the dragfolds are largely unrecognizable. The only welldefined folds in the mine are a few small, steeply plunging dragfolds which occur in limestones at the west end of the ore zone. Should larger folds exist, their proper recognition will depend on an increased knowledge of the stratigraphy.

Faults are numerous at the mine, but the major ones are probably unidentified. There are many small pre-mineral faults exposed underground, and other, possibly larger ones are inferred in the drill-holes. A fault which may be important has recently been exposed in the open pit, and is an easterly fault of probable premineral age which dips steeply to the south in the south wallrocks. It is parallel to strong sheeting in the rocks, which are better mineralized to the north of the fault. Oblique faults occur farther north, and they separate rocks whose sheeting differs somewhat in attitude across the faults.

The structure of the mine is so uncertain that the shape of the orebodies cannot adequately be explained. Their shape would appear partly to be controlled by that of the ore zone, which is irregular for reasons that are not yet understood. Folding, faulting, and dilation by igneous intrusions may all be factors controlling not only the shape of the ore zone, but also its internal structure. The easterly pitch of the " main " orebody and its bifurcation in depth may depend partly on the distribution and shape of the intrusions, whose emplacement was no doubt controlled to some extent by pre-existing structures. An important structural discontinuity approximately between 8200 and 8600 east shows the following features:-

- (1) A vertical pinch in the "main" orebody.
- (2) A possible gap between the "north limb" and "syncline" orebodies.
- (3) A change in the attitude of secondary foliation and sheeting in the north wall greywacke in the 3500 level drift.
- (4) A gap in the andesite on the 3500 level.
- (5) A gap, in plan, between porphyritic diorite intrusions on the 3000 and 3500 levels, respectively.
- (6) An easterly termination of a grit bed in the south wallrocks on the 3500level.
- (7) An offset, or divergence in strike, of a gritty tuff horizon to the south of the grit bed on the 3500 level.

A correct explanation of the discontinuity, whose nature is at present unknown, could help to solve many problems of ore control.

Exploration

On the Willy group of about thirteen claims and fractions, in the southwest part of the property, work in 1961 included about 20 miles of line-cutting, of which about half was done by bulldozer, together with a ground magnetometer survey and geological mapping, which was done by W. S. Pentland.

Copper

(1)

(50° 120° S.W.) Company office, 408, 580 Granville Street, Vancouver 2. N. H. McDiarmid, president; F. L. C. Peel Resources Limited Price, consulting engineer. This company holds forty-two claims in the Peel group which adjoin the north boundary of

the Craigmont property and are largely a relocation of claims formerly in that property. The group lies entirely in the Guichon batholith. Work in 1961 was done by an average crew of five men under the supervision of D. R.

Morgan and included magnetometer, geochemical, and geological surveying. A road was built for the length of the property and joins the Craigmont mine road near Jackson Lake.

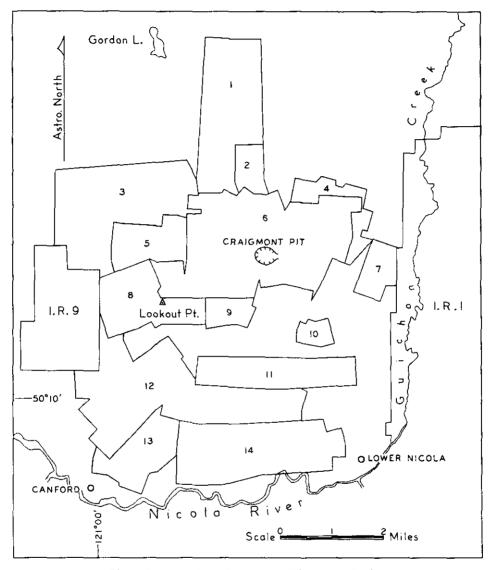


Figure 6. Properties at Promontory Hills, near Merritt.

Friday Mines Limited (2) $(50^{\circ}\ 120^{\circ}\ S.W.)$ Company office, 408, 580 Granville Street, Vancouver 2. N. H. McDiarmid, president; F. L. C. Price, consulting engineer. This company holds eight claims in the Ron group which adjoin the north boundary of the Craigmont property and are a relocation of claims formerly in

that property. Work done in 1961 was similar to that done on the adjoining Peel group and was performed by the same crew.

38

(1962) Ltd. (3)

(50° 120° S.W.) Company office, 404, 409 Granville Torwest Resources Street, Vancouver 2. W. E. Garnett, president; R. E. Falkins, secretary-treasurer; R. E. Renshaw, consulting engineer. This reconstituted company holds seventy claims which are in the Marb group west of the Craigmont property and are

accessible by road from the Titan Queen (Paystin) showing on that property. The group lies mainly north of Shackelly (David) Creek at about 5,000 feet elevation, and covers ground that was partly the former C.J.S. group (Ann. Rept., 1958, p. 27). The group is underlain partly by batholithic rocks and partly by metamorphosed strata which occur within the Guichon batholith.

Work in 1961 included road construction, magnetometer surveying, trenching, and surface diamond drilling of nineteen holes totalling 8,166 feet. Prefabricated huts were used to build a camp at a small lake to the west of Jackson Lake, and an average crew of seven men, exclusive of drillers on contract, was employed from February to September.

Four localities on the property were chiefly explored. At the westernmost locality, which is north of Shackelly Creek near the eastern boundary of Indian Reserve No. 9, trenching exposed fractured, altered, and partly mineralized rocks including small bodies of limestone. Holes Nos. 3 and 7 were drilled eastward near this showing and failed to intersect significant mineralization. At a second locality, about 1 mile farther northeast, hole No. 1 was drilled vertically for 200 feet, mainly in batholithic rocks showing little or no mineralization. The third locality is 1 mile farther east, on or near the Marb No. 3 claim about 2 miles west-northwest of the Craigmont mine. At this locality in 1958 Northwestern Explorations, Limited (now Kennco Explorations (Western) Limited), mapped magnetic and geochemical anomalies in addition to mineralized outcrops. A magnetic anomaly was mapped for a length of as much as 700 feet in an east-northeasterly direction and a width of 150 feet. In 1961 the present company trenched the anomalous area and drilled holes Nos. 2 to 6 and 8 to 16. Rocks encountered were quartz diorite, diorite, and basaltic hornfels together with rare, short sections of dioritized tuffaceous rocks and limestone. Foliation, or layering, is moderately to steeply inclined. Finely disseminated magnetite is estimated to form as much as 10 per cent by volume of some of the hornfels. Rock alteration includes chloritization and epidotization. Sulphide mineralization is apparently greatest near strong, chloritic faults, and consists of chalcopyrite and pyrite, which occur either together or separately as fine disseminations and slender, rather widely spaced veins. In hole No. 2, which is one of the better mineralized holes, the core from a 30-foot intersection is estimated to contain about 0.65 per cent copper.

The fourth and easternmost locality is reported to be about 2,500 feet northeast of the third, on the site of a magnetic anomaly discovered in 1961 and measuring 600 feet long in a direction slightly north of east and 50 feet wide. Three holes were drilled and are reported to have intersected mineralization comparable to that at the previous locality.

Tormont Mines Limited* (4)

 $(50^{\circ} \ 120^{\circ} \ S.W.)$ Company office, 405, 25 Adelaide Street West, Toronto 1. A. Roberston, president. This newly formed company holds about thirty claims in the Laron group adjoining the northeast part of the Craigmont property. Work done included road construction together with geochemical,

magnetometer, and induced polarization surveys. In addition, seismic surveying was done in order to determine depths to bedrock. Surface diamond drilling was

* By David Smith.

started, and one hole 590 feet in length was completed by the end of the year. Excluding a geophysical survey crew on contract, an average crew of eight men was employed from August under the direction of R. C. Coutts.

Highvale Copper **Mines Limited** (5)

(50° 120° S.W.) Company office, 1000, 355 Bay Street, Toronto 1. This newly formed company is controlled jointly by Rio Tinto Canadian Exploration Limited (Vancouver office, 1818, 736 Granville Street, Vancouver 2; L. B. Gatenby, manager), Mt. Washington Copper Co. Ltd., and

Crown Silver Development Company Ltd. It holds about eighteen claims in the Lil group, which adjoins the western part of the Craigmont property and is part of the former K.L. group, on which the Rio Tinto company did geological, geochemical, magnetometer, and electromagnetic surveying in 1957 and 1958. In 1960 the same company did an induced polarization survey of part of the Lil group. In 1961 further work on this group was supervised by J. R. Lehto and included a small amount of trenching and road construction, together with surface diamond drilling of four holes totalling at least 2,593 feet. A camp on Shackelly (David) Creek was occupied from June to September.

The group occupies part of the southern contact of the Guichon batholith with rocks of the Nicola group, and is largely covered by overburden. Rocks encountered in the drill-holes and in a single trench included quartz diorite and diorite together with greywacke, quartz-poor tuffaceous greywacke, tuffs, and their dioritized equivalents. Hole No. 1 was drilled northward for a length of 648 feet near the extreme west limit of the adjoining Craigmont property. The other holes were drilled southeastward in a single vertical section, in the southeastern corner of the Lil group, about one-half mile farther east. Hole No. 3 is the most northerly and, like hole No. 1, partly intersected batholithic rocks. The middle hole, No. 4, penetrated strongly faulted and slightly mineralized Nicola strata, together with unmineralized light-coloured andesite of a type which occurs as post-mineral dykes elsewhere on Promontory Hills and at Highland Valley. The southern hole, No. 2, is close to an inferred contact between rocks of the Nicola group and later volcanic rocks of the Kingsvale group. It was drilled at minus 55 degrees for a length of 1,100 feet and intersected Nicola strata, which, in the lower half of the hole, contain a diabase dyke swarm. Numerous closely spaced dykes, intersected individually for lengths of as much as 40 feet, are partly sheared, chloritized, and mineralized with pyrite disseminations and veinlets. The adjacent Nicola rocks are similarly mineralized.

A trench made a short distance to the west of hole No. 1 exposed mainly tuffs which strike northeastward and dip steeply to the southeast. Assuming an approximate northeasterly strike for the Nicola strata in all the drill-holes, observations of the apparent dip of beds intersected in the cores suggest that the regional dip of the Nicola strata varies between steep and vertical.

(7)

(50° 120° S.W.) Company office, 320, 355 Burrard Street, Consolidated Stand- Vancouver 1. This company, which is controlled and manard Mines Limited* aged by Bralorne Pioneer Mines Limited, controls twelve claims and fractions in the Shot group to the east of the

Craigmont property. Access is by road a quarter of a mile north of the Craigmont mill. The group is largely covered by overburden, and work consisted mostly of geophysical surveying. A crew of five men was employed under the supervision of J. P. Weeks.

^{*} By David Smith.

(Canex Aerial Exploration Ltd.)*

(50° 120° S.W.) Company office, 700, 1030 West Georgia Betty Lou and Lou Street, Vancouver 5. J. D. Simpson, president. This company holds about thirty claims in the Betty Lou and Lou groups at Lookout Point, adjoining the southwestern part of the Craigmont property. Work in 1961 consisted of geo-

physical surveying, which included completion of a magnetometer survey begun in 1960, an aerial photographic survey, and 602 feet of surface diamond drilling. A crew of six men was employed under the supervision of A. Allan.

Ltd. (9, 10, 11)

(50° 120° S.W.) Company office, 1002, 850 West Has-Mid-West Copper tings Street, Vancouver 1. G. S. Shaw, president; F. J. & Uranium Mines Hemsworth, consulting engineer. This company holds thirtyseven claims in three separate groups to the south of the Craigmont property. The groups are the Har (9), Mid (10), and ARH (11), respectively, and in 1958 were part

of the Merritt property held by Noranda Exploration Company, Limited. Work by the present company in 1961 included a geochemical survey of all the groups together with 1,000 feet of surface diamond drilling in two holes drilled from a single set-up near a mineralized showing immediately east of the road to Lookout Point, on the ARH No. 17 claim. One or more basalt flows were intersected together with other Nicola strata, none of which are strongly mineralized in the core. An average crew of three men was employed from April to August.

P.C.M., Cap, Domino, Hank, Freda (Britmont Mines Limited) (12).— (50° 120° S.W.) Company office, 402, 25 Adelaide Street West, Toronto 1. S. A. Perry, president; R. D. Bell, secretary-treasurer. This company holds about 100 claims on the south slope of Promontory Hills. Work in 1961 was directed by W. M. Sharp and included surveying and geological mapping together with trenching at several localities, mainly where geochemical anomalies had previously been found.

Wade (General Resources Ltd.) (13)

(50° 120° S.W.) Company office, 213, 678 Howe Street, Vancouver 1. E. M. Olts, president; Chapman, Wood and Griswold Ltd., consulting engineers. This company holds about thirty-eight claims, which are known as the Wade group and include the Wade, Tex, and Apache claims. The

group is on the southern slopes of Promontory Hills at elevations mostly between 2,000 and 3,500 feet, and partly covers the former Lis group, on which magnetometer surveys were made in 1958 and 1959. Access is either from the Kinvig ranch or by a newly constructed road which joins the highway from the north side about 1 mile east of Canford railway station. Work by, or on behalf of, the present company in 1961 included surveying and line-cutting, geophysical and geological surveying, together with production of a topographic map from air photographs. It also included about 3 miles of road construction together with hand and bulldozer trenching whose total length exceeded 1 mile. A small crew was employed from March to December under the supervision of R. B. Stokes.

The principal showing is on a west-trending spur at about 2,700 feet elevation on or near Tex No. 4 fractional claim. Steep slopes immediately to the south are largely scree-covered, and the ground to the west and northwest is likewise poorly exposed. On the spur, several trenches and outcrops expose Nicola strata which dip northward at low to moderate angles and change strike progressively eastward, from

^{*} By David Smith,

easterly to northeasterly. The strata, which are exposed intermittently along strike for a distance of as much as 1,000 feet, apparently comprise the following upward succession: pebbly dacitic quartz-tuff, vitric or lithic tuff, limy rocks (including limestone, limy tuff, and limy tuffaceous greywacke), andesite or basalt lava, and tuffaceous greywacke and siltstone. Although their true width is probably less than 75 feet, the limy rocks partly underlie a dip-slope and thus have an apparent width of as much as 150 feet. At the east end of the showing, steep dykes of quartz porphyry cut both the quartz tuff and more southerly beds, and probably extend west-southwestward under the scree. Granitic rocks were not seen and may be absent in this area, where they were previously mapped (Ann. Rept., 1960, Fig. 3). The exposed mineralization is of low grade and occurs mainly in the limy rocks. It consists of disseminations and veinlets of chalcopyrite and bornite which are either in the rocks themselves or in carbonate veins. The carbonate veins are mostly of calcite, but some are of siderite together with small amounts of quartz. The best mineralization was seen in limestone containing both siderite and calcite veins on either side of a mineralized fault of north-northeasterly strike and steep westerly dip. The fault encloses a narrow body of strongly sericitized, sheared, and mineralized quartz porphyry. In a gully at the extreme western end of the showing, a dyke of sheared, argillized, and unmineralized light-coloured biotiteandesite is exposed against somewhat mineralized and oxidized Nicola rocks, which are not limy. This post-mineral dyke is apparently emplaced in a major fault of uncertain trend

Canford Explorations Limited

(50° 120° S.W.) Company office, 204, 569 Howe Street, Vancouver 1. R. A. Brossard, president. This company controls three properties in the Merritt area, on all of which work was done in 1961 by a small crew under the supervision

of M. K. Lorimer.

(a) P.L. Group (14).—This group consists of about sixty-five claims on the southern slopes of Promontory Hills at elevations between 2,000 and 3,000 feet. Parts of the group were formerly held by Georgia Leaseholds Limited, which in 1958 made a magnetometer survey and reportedly diamond drilled two holes on the site of an anomaly near P.L. No. 12 claim. In 1961 the present company diamond drilled a surface hole vertically for 449 feet in the same locality, which is about 3,000 feet north of the Merritt-Spences Bridge highway, measured from a point about 7,000 feet west of the Lookout Point road-junction. The hole is near outcrops of schistose metamorphic rocks, and it penetrated rock of this type containing disseminated magnetite in amounts of a few per cent, together with rare sections of pyrite as veinlets and disseminations. Immediately southeast of the drill-hole, a northeast-trending gully appears to follow a geological contact between the metamorphic rocks and medium-grained granite, which is exposed southeast of the gully.

(b) Mint Group.—This group of thirteen claims and fractions is owned by Marvin Scheuerman and adjoins the south bank of Nicola River, about 2 miles west of Merritt. It includes the Anaconda and Copper Belle prospects, described in Memoir No. 249 of the Geological Survey of Canada (pp. 125–126). Work in 1961 consisted of a magnetometer survey of six claims and a spontaneous polarization survey by S. F. Kelly of parts of the group.

(c) H.J. Group.—This group of one full and three fractional claims is north of Jesse Creek, about 4 miles north of Merritt, and was held for part of 1961 by option from W. D. Barr. Work consisted of a magnetometer survey, following which the option was dropped.

Skeena Silver Mines Ltd.

 $(50^{\circ} 121^{\circ} \text{ S.E.})$ Company office, 301, 744 West Hastings Street, Vancouver 1. A. F. Lungley, president; C. Rutherford, consulting engineer. This company holds more than twenty claims adjoining the west side of Indian Reserve No. 9,

about 1 mile north of the Merritt-Spences Bridge highway between Canford and Dot. The property is largely, if not completely, underlain by rocks of the Spences Bridge group. Work in 1961 included line-cutting and geophysical surveying.

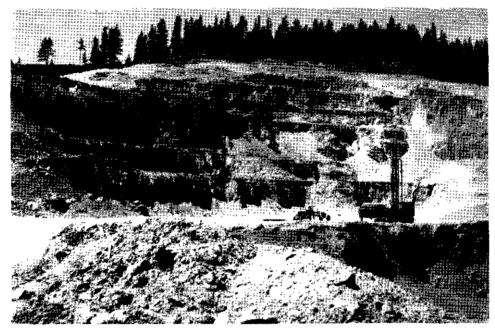
Copper-Iron

Copper Soo Mining Company Limited (50° 120° S.W.) T. G. Wilson, managing director, Osoyoos; H. Hill & L. Starck & Associates Ltd., consulting engineers, Vancouver. This company, newly formed from the Copper Soo Mining Syndicate, holds forty-eight claims in the

Soo, Bare, and Verna groups on the west slope of Sugarloaf Mountain, about 6 miles east and southeast of Merritt. The main showings are on Soo No. 11 claim, at about 3,300 feet elevation on the east side of the cut-off road, and were trenched in 1959. In 1960 a magnetometer survey was made of the Soo and Bare groups by H. H. Cohen. Work in 1961 consisted of additional magnetometer surveying, together with a self-potential survey near the main showings, geological surveying, and surface diamond drilling of nine holes, totalling 1,037 feet, on the Soo No. 11 claim.

The main showings are exposed in trenches and outcrops at two localities about 1,000 feet apart in a northerly direction, and occur in Nicola strata which strike north or east of north and dip steeply. At the northern showing a 4-foot bed of limestone is almost entirely replaced by magnetite-epidote-garnet skarn for a distance of about 10 feet along its strike, and the skarn contains chalcopyrite in amounts estimated in places to equal 1 per cent copper. The limestone is sharply bounded on the west by bleached tuff or volcanic conglomerate which, although generally unmineralized, is at one place invaded by an offshoot of the skarn body. The offshoot pinches out within a few feet in a west-southwesterly direction, its only visible continuation being a series of steep fractures which cross the tuff bed in this direction. A second, thinner bed of limestone is exposed about 50 feet east of the first and is separated from it by massive tuff. Limestone can be traced for several hundred feet to the south of the showing.

At the southern showing, dark-green lava or poorly bedded tuff is fractured and contains patches and veins of altered rock consisting mainly of epidote and calcite together with magnetite and, locally, quartz and small amounts of chalcopyrite and malachite. The alteration and mineralization are chiefly associated with complex fracturing, which occurs at the south end of the showing. North-trending fractures continue northward for as much as 300 feet and contain only epidote, calcite, and magnetite. The upper parts of holes drilled from a set-up at the south end intersected unmineralized garnet-skarn and massive magnetite containing minor amounts of chalcopyrite and pyrite.


Copper

Judy Group*

 $(50^{\circ} 120^{\circ} \text{ S.W.})$ This group of thirty-five claims, Judy 1 to 35, is on the southwest slope of Iron Mountain, $4\frac{1}{2}$ miles south of Merritt. The claims are held by record by H. D.

Merrell, K. I. Merrell, K. Moyes, and W. Hegan, all of Merritt. Access is by a road, passable to automobiles, which leaves the Merritt-Kingsvale highway about 3 miles from Merritt.

* By N. D. McKechnie.

Craigmont Mines Limited. Preparation of open pit, June, 1961.

Huestis Mining Corporation Limited. Bulldozer stripping at Skwaam Bay.

The ground was located in 1896 as the Victoria, Islander, and Charmer mineral claims. A shallow shaft, still in existence, was sunk on copper showings on the Charmer claim. There is no record of any subsequent work. The Charmer shaft, partially filled with water, measured 32 feet deep.

The rocks are tuffs and lapilli tuffs of the Nicola volcanic group showing in thin-section considerable secondary quartz and orthoclase and in some instances the barium feldspar celsian. In the latter connection it is interesting to note that barite is the principal gangue mineral in the Comstock of B.C. vein exposed in workings about a half mile northeast of the Charmer shaft. Near the shaft the rocks dip steeply east, and in trenches about 1,000 feet west they dip steeply west. One nearly east-west strike was noted about 400 feet west of the shaft. The tuffs show little or no bedding, and dips and strikes are obtainable only at formation contacts.

Chalcopyrite mineralization was seen only in the vicinity of the shaft, where it occurs in scattered stringers and blebs in a lapilli tuff and to a lesser degree in an overlying aphanitic grey siliceous tuff exposed for 250 feet on strike in a trench immediately west of the shaft. Hematite, which veins the chalcopyrite, occurs in fracture fillings and blebs and is widespread. It appears to bear no definite relationship to the copper mineralization.

At the time of the writer's visit in August, a series of bulldozed trenches had exposed the rocks over an east-west width of about 1,000 feet.

Copper

NICOLA

(50° 120° S.W.) Head office, 1150 Denman Street, Van-Copperado (Toluma couver 5; mine office, Merritt. A. M. Arnold, president; Mining and Devel- A. R. Allen, consulting engineer. The property, consisting of opment Co. Ltd.)* sixty-five claims held by record and one Crown-granted mineral claim, is owned by Guichon Mines Limited and operated

under agreement by Toluma. It is $4\frac{1}{2}$ miles by road from Nicola village and north of the lower end of Nicola Lake at an elevation between 3,500 and 4,500 feet.

The original showings, on the Turlight Crown-granted claim, were first opened in 1929 by an inclined shaft and further developed by underground workings between the years 1947 and 1952. A detailed description and maps of the Turlight occurrence are in the Annual Report for 1949, pages 115–120. A northwestwardstriking shear zone in granodiorite contains lenses of quartz mineralized with chalcopyrite and bornite. The shear dips northeast at about 75 degrees.

Work in 1961 consisted of bulldozer trenching and diamond drilling on the P62, P64, P65, and B4 fractional mineral claims, about 1 mile northwest of the Turlight workings. The rock is granodiorite, similar to that at the Turlight, cut by aplite dykes. An east-west trending contact with Nicola volcanic rocks is exposed about 200 feet north of the south boundary of the P64 claim. Both granodiorite and aplite are cut by scattered stringers and narrow veins of quartz which is weakly mineralized by chalcopyrite and bornite.

The aplite occupies two sets of fractures, one striking a few degrees east of north, the other about northwest. The former dip eastward or westward at about 60 degrees, and the latter dip southwest at 25 to 35 degrees. The sulphide-bearing quartz stringers mostly strike north to north-northeast and dip flatly eastward at from 10 to 30 degrees. Two narrow veins dip northeast at less than 30 degrees. One barren quartz vein striking east and dipping 80 degrees north was the only steeply dipping quartz vein observed; its relationship to the mineralized quartz is not known.

* By N. D. McKechnie.

An unmineralized fault striking north 35 degrees west and dipping 65 degrees southwest has displaced the Nicola contact at least 600 feet to the southeast on its footwall side.

The showings displayed neither continuity nor correlation.

[References: Minister of Mines, B.C., Ann. Repts., 1929, p. 246; 1947, p. 136; 1948, p. 120; 1949, pp. 115-120; 1950, p. 112; 1951, p. 128; Geol. Surv., Canada, Mem. 249, p. 130.1

(50° 120° S.W.) Company office, 736 Granville Street, Quilchena (Guichon Vancouver 2. This property was operated under a share agreement with the owners by Quilchena Mining & Develop-Mines Limited)* ment Co. Ltd., 736 Granville Street, Vancouver. The prop-

erty overlooks Nicola Lake and is about 1 mile south of Quilchena. Work in 1961 consisted of examination of the old workings, sampling, and some surface stripping. An average crew of five men was employed under the direction of S. F. Kelly.

ASPEN GROVE*

Copper

(49° 120° N.W.) Company office, 301, 744 West Hastings Wen Group (Skeena Street, Vancouver 1. The Wen group consists of thirty-two Silver Mines Ltd.) claims, the HN 1 to 18 and the Wen 1 to 14, which are southeast of Tommy Lake, 8 miles east of Aspen Grove. An electromagnetic survey was made by the Hunting Surveys Corporation. A crew of five men was employed under the direction of C. Rutherford. Subsequently an option was taken by Noranda Exploration on this group, and some 7,200 feet of stripping was done in 1961.

KAMLOOPS[†]

Copper

ment Company Limited

(50° 120° N.E.) Company office, 915, 736 Granville Street, Makaoo Develop- Vancouver 2. L. G. Wood, president; W. I. Nelson, general manager. This company holds five Crown-granted and sixtyseven recorded claims in the vicinity of Coal Hill, about 3 miles southwest of Kamloops. Work in 1961 included eight

surface diamond-drill holes totalling 3,126 feet, together with trenching and stripping amounting to 9,018 lineal feet and 6,290 square feet, respectively. About 2,000 feet of road was built. This work was done partly close to and northeast of the Noonday shaft and partly about 1,500 feet east of this shaft. Stripping in the latter area exposed disseminated, partly oxidized copper mineralization in porphyry and other fine-grained rocks.

Ltd.

(50° 120° N.E.) Company office, 1403, 1030 West Georgia Galaxy Minerals Street, Vancouver 5. W. Fred Evans, president; W. I. Nelson, consulting engineer; P. C. Badgley, consulting geologist. This company holds six Crown-granted and forty-six recorded claims immediately west of the Makaoo property.

Work in 1961 continued from June to December and was done mainly on the Evening Star and Golden Star claims. It included nine surface diamond-drill holes totalling 4,263 feet together with 4,435 feet of trenching, 2,200 feet of road construction, and geochemical and geophysical surveys. One or more mineralized zones were intersected at intervals within a distance of several hundred feet measured in a west-northwesterly direction from the Star shaft.

^{*} By David Smith.

[†] By J. M. Carr, except as noted.

Iron Mask (Kamloops Copper Company Ltd.)

(50° 120° N.E.) Company office, 105 Seymour Street, Kamloops. R. W. Kennedy, president; H. Hill & L. Starck & Associates Ltd., Vancouver, consulting engineers. This company holds about thirty-nine claims, some of them Crown granted, in the vicinity of the Iron Mask mine, 7 miles west

of Kamloops. The mine has been inaccessible since production ceased in 1928.

Work in 1961 included dewatering the mine by pumping from the Norma shaft, whose collar is about 410 feet above the lowest workings in the mine, which are on the 750 level. Other work included retimbering the Erin shaft down to the 300 level, setting up an assay office, underground sampling, and preparing for underground diamond drilling, which began after the year's end. A crew of about nine men was employed.

The parts of the mine which were accessible at the time of a visit in early February, 1962, included all the Norma workings, the Erin workings from the 300 level upward, and the 750 level as far west as the vicinity of the Iron Mask shaft station. Existing workings, which are not shown on published maps, occur as part of the 750 level east of the Iron Mask shaft and as the 50 and 80 levels, respectively, in the uppermost part of the Erin workings.

Mineralization seen in the Norma workings and in the Iron Mask and western Erin sections on the 750 level consisted principally of streaks and knots of chalcopyrite in veins of banded gypsum. These veins follow shears and persist in some cases for more than 100 feet, with widths in places of several feet. They mostly strike northeastward and dip fairly steeply to the southeast, and are then nearly parallel to the former Iron Mask and Erin orebodies. East of the Iron Mask shaft, however, some veins have irregular attitudes and others strike eastward. The Erin orebody, judging by a brief examination of the upper workings, was in a coarse breccia, consisting mainly of altered diorite, which grades at both ends into a banded gypsum vein. The length of the orebody in horizontal projection was about 600 feet, or roughly twice the length indicated on published maps, which fail to show the full southwestern extent of the orebody as indicated by large stopes above the 300 level. In plan the shape of the orebody is apparently somewhat concave to the southeast. Several porphyry intrusions occur near the Erin stopes, some being mineralized, whereas others are not. On the 100 level and elsewhere, an unmineralized dyke occurs parallel to the orebody immediately in the hangingwall, as though partly following the mineralized structure.

On the 300 level, broken, altered, and mineralized porphyry occurs well inside the footwall of the southwest part of the Erin structure, and may continue eastward into the Erin orebody. The mineralized porphyry is partly of a type formerly described as microdiorite or micromonzonite (Ann. Rept., 1956, p. 50) and is cut by easterly striking unmineralized porphyry dykes. Rock alteration is of several kinds and includes biotitization.

Faults and shears are numerous in the mine. An attempt was made in a previous report to explain the mineralized shears as due to the faulting of an inferred igneous contact lying farther west in the mine area (Ann. Rept., 1956, Fig. 6). The inferred contact is between picrite-basalt on the west and diorite on the east. Recent examination revealed this contact a hundred or more feet west of the Iron Mask shaft-station on the 750 level, where it coincides with a wide zone of brecciation and shearing, apparently devoid of mineralization. Between this point and the Erin workings on the 750 level, and on the 300 level at the southwest end of the Erin structure, faults of different character occur. They are tight, slickensided faults which strike north or northwestward and dip westward, and contain a thin seam of brown gouge and no visible mineralization. In both places the faults appear to interrupt or terminate mineralized gypsum veins. On the 300 level the Erin vein is exposed on the northeast side of one of these faults, which is itself offset farther southeast by a cross-fault. The cross-fault strikes northeast and contains a soft green breccia and a thin seam of brown gouge, which cause it to resemble postmineral faults in the Python zone of the adjacent Makaoo property (Ann. Rept., 1956, p. 56). The south wall of the cross-fault contains an unmineralized porphyry dyke, whose attitude is similar to that of the fault.

[References: Minister of Mines, B.C., Ann. Repts., 1913, pp. 185-189; 1926, pp. 183-185; 1956, pp. 47-69.]

Ajax and Monte Carlo (The Consolidated Mining and Smelting Company of Canada, Limited)* .-- (50° 120° N.E.) Company office, Trail. This company holds eight Crown-granted and five recorded claims. The property is situated immediately east of Jacko Lake, approximately 6 miles southwest of Kamloops. Surface work consisted of two diamond-drill holes totalling 1,004 feet in length. A crew of four men was employed, supervised by members of the company staff.

Mining Corporation Ltd.)*

(50° 120° N.E.) Company office, 1818 Marine Building, Rainbow (Huestis 355 Burrard Street, Vancouver 1. This property consists of twenty-three claims held by option and lies on Sugarloaf Mountain approximately 6 miles southwest of Kamloops. Surface work consisted of stripping by bulldozer and the

drilling of four diamond-drill holes. A crew of four men was employed under the direction of Frank Cooke and C. Brown, The option was dropped.

NORTH THOMPSON

BARRIERE[†]

Lead-Zinc

Renning No. 1, LT, etc.

(51° 119° S.W.) A syndicate headed by K. Calder, of Vancouver, did a small amount of exploratory work on a lead-zinc showing on the south side of East Barriere Lake during 1961. The showing is about 3 miles east of the lake outlet, one-third

of a mile southeast of the shoreline, and 450 feet above water-level. It can be reached by a rough 3-mile jeep-road from the sawmill at the end of the lake. The mill is 14 miles by road east of Barriere, a community on No. 5 highway 40 miles north of Kamloops.

The showing consists of a zinc-lead-copper replacement body in the crest of a small, recumbent, dragfolded anticline. It is exposed in the face of a low limestone bluff. By late August, 1961, a north and south oriented exposure 400 feet long with a maximum height of 36 feet had been created by blasting a few rounds off the bluff face and using a bulldozer to clear away debris and trench down a few feet along the base of the bluff.

A large fault, apparently of the thrust type, can be traced near the base of the exposed face from the south end to within 120 feet of the north end. It strikes north and dips 25 degrees east. Below the fault, only black siliceous and limy gouge and unconsolidated breccia can be seen. Between 160 and 190 feet from the north end of the trench the gouge contains several blocks, up to 4 feet in diameter, of

^{*} By D. Smith. † By J. W. McCammon.

highly siliceous rock material containing traces of sulphides. At the north end of the exposure the rock above the fault is relatively undisturbed, very thin-bedded, dark-grey platy limestone that strikes north 20 degrees west and dips 36 degrees east. In the central part of the cut the rock is poorly exposed and relationships are obscured, but there appears to be a narrow cherty or silicified thin-banded limestone zone immediately above the fault. This zone is, in turn, overlain conformably by limestone similar to and of the same attitude as that to the north. In the southern 150 feet of the exposure the rock above the fault is much disturbed. At least three other faults intersect the main fault at low angles, and the rock between the faults is shattered and silicified. Above the fault intersections, and forming the upper part of the bluff, is the nose of a recumbent anticline that contains the main mineralized showing. In the crest of the fold is a mass about 21 feet long and 21 feet high of siliceous, calcitic, and dolomitic gangue containing patches and streaks of sphalerite, galena, chalcopyrite, and pyrite. The rock stratigraphically above the mineralized zone is thin-bedded limestone similar to that to the north; the rock stratigraphically below the zone is thin-bedded siliceous material that is either chert or silicified limestone. The upper limb of the fold is almost horizontal, and the lower limb is cut off by the main fault.

A chip sample across the chord of the fold at the mineralized section, a distance of 21 feet, assayed: Gold, trace; silver, 2.1 ounces per ton; copper, 0.11 per cent; lead, 3.11 per cent; zinc, 5.9 per cent.

Gold

LITTLE FORT

(51° 119° S.W.) Head office, 3100, 25 King Street West, Toronto. The property is east of Dunn Lake, about 8 miles Windpass (Fort Reliance Minerals north of Chu Chua, and east of Little Fort, about 60 miles Limited)* north of Kamloops. This former gold producer, which closed in 1939, is held under three mineral leases covering the fol-

lowing former Crown-granted claims: North Dunn, Donegal, Brenda Fraction, Signe, Belfast, Gott, Elise, Jupiter, Maple Leaf, Premier, Sweet Home, and the Windpass Nos. 1 to 3. A small amount of stripping and a geophysical survey were carried out under the direction of A. D. Wilmot, engineer-in-charge; address, Hobson Road, R.R. 4, Kelowna.

Molybdenum

(Calder Molvbdenum Company Limited)†

(51° 120° N.E.) In the autumn of 1960 and in 1961 Calder Tintlhohtan Lake Molybdenum Company Limited did some trenching and diamond drilling on an old molybdenum prospect near Tintlhohtan Lake. This lake is 12 miles northwest of Little Fort, a village on No. 5 highway 62 miles north of Kamloops. By July, 1961, the area had been blanketed by 140 mineral

claims—four in the name of Thomas Loveway, four in the name of Gung Lov Jim, six in the name of Gordon Angus, nine in the name of Guy Gilman, and 117 in the name of Calder Molybdenum company. The showings were first investigated in 1938 and 1939, when the ground was known as the Anticlimax property.

Access is by 17 miles of road from Little Fort via Lemieux and Fourteen Mile Creeks. The last 8 miles of road are suitable for jeep vehicles.

At the showings, molybdenite occurs in small veinlets and lenses of pegmatite and quartz in a granite stock. The stock is at least three-quarters of a mile in

† By J. W. McCammon.

^{*} By David Smith.

diameter. It is bordered on the north, east, and south by greenstone and is covered by overburden to the west. The bulk of the stock appears to be medium-grained alkali-granite consisting essentially of quartz, microperthite, and albite-oligoclase. A porphyritic finer-grained phase is exposed around the "B" workings, and a few small aplite masses occur at scattered points.

The original showings, at "A" and "B" on Figure 7, are at 4,500 feet elevation on the bare top and west slope of a small hill one-half to three-quarters of a mile northeast of the north end of Tintlhohtan Lake. A recent discovery is in the creek bed one-half mile southeast of the original showings.

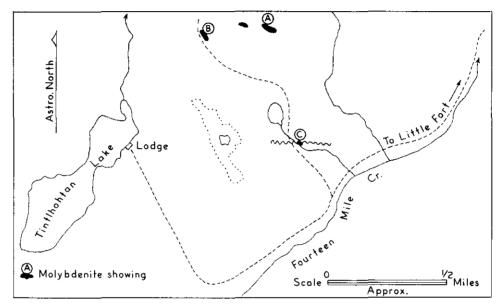


Figure 7. Tintlhohtan Lake molybdenite showings.

Stevenson* has described in detail the old workings at "A" and "B." At "A" he mentions six small pits, each with one or two short quartz veins, generally one-half to 1 inch wide but with one or two as much as 8 inches wide, that contain small scattered flakes of molybdenite. Recent work consisted of digging one new trench 100 feet long from east to west, another 12 feet long, and a third one 15 feet long on the bare hilltop. A few $\frac{1}{4}$ - to $\frac{1}{2}$ -inch-wide quartz veinlets containing scattered flakes of molydenite were exposed by the trenches.

At "B" the old workings consisted of ten pits, of which only one showed mineralization. This pit appears to have exposed a single large pod of highly mineralized pegmatitic-aplitic material that contained as much as 10.8 per cent molybdenite in a 10-inch-thick specimen. No new diggings were found at "B," but two shallow bulldozer trenches roughly 200 feet long had been scraped in a northwesterly direction across a flat area between "A" and "B." The trenches did not reach bedrock.

During current exploration work a new discovery of molybdenite mineralization was made at "C" in the bed of a small creek. In the creek bed a contact between granite on the north and greenstone on the south is exposed along a shear zone. Much brecciation and bleaching and some pyritization has taken place along

[•] B.C. Dept. of Mines, Bull. 9, Molybdenum Deposits of British Columbia, 1940, pp. 20-28. (Scale on page 22 should read 200 feet instead of 40 feet.)

LODE METALS

the zone. Considerable bulldozing had been done on the creek bank in preparation to set up two diamond drills about 150 feet upstream from the contact. This activity had covered much of the bedrock, and in the visible exposures no molybdenite was recognized. However, a diamond-drill core 191 feet long that was available for examination showed granitic rock containing molybdenite scattered in dark quartz veinlets and hairline seams at 1- to 12-foot intervals through much of its length.

Molybdenum

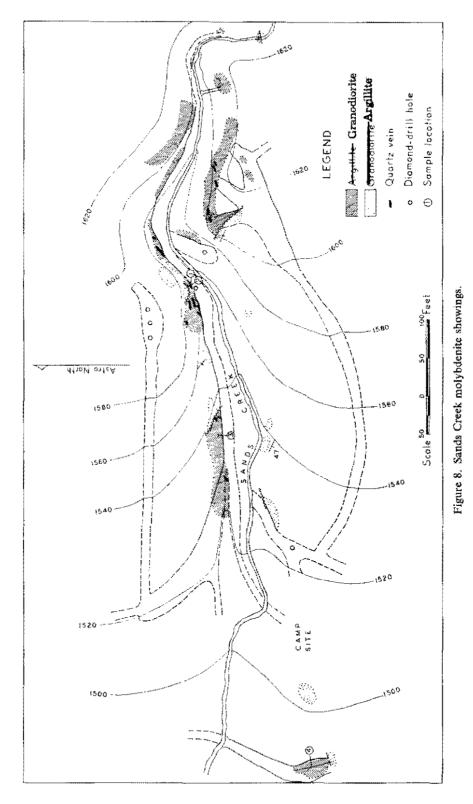
CLEARWATER*

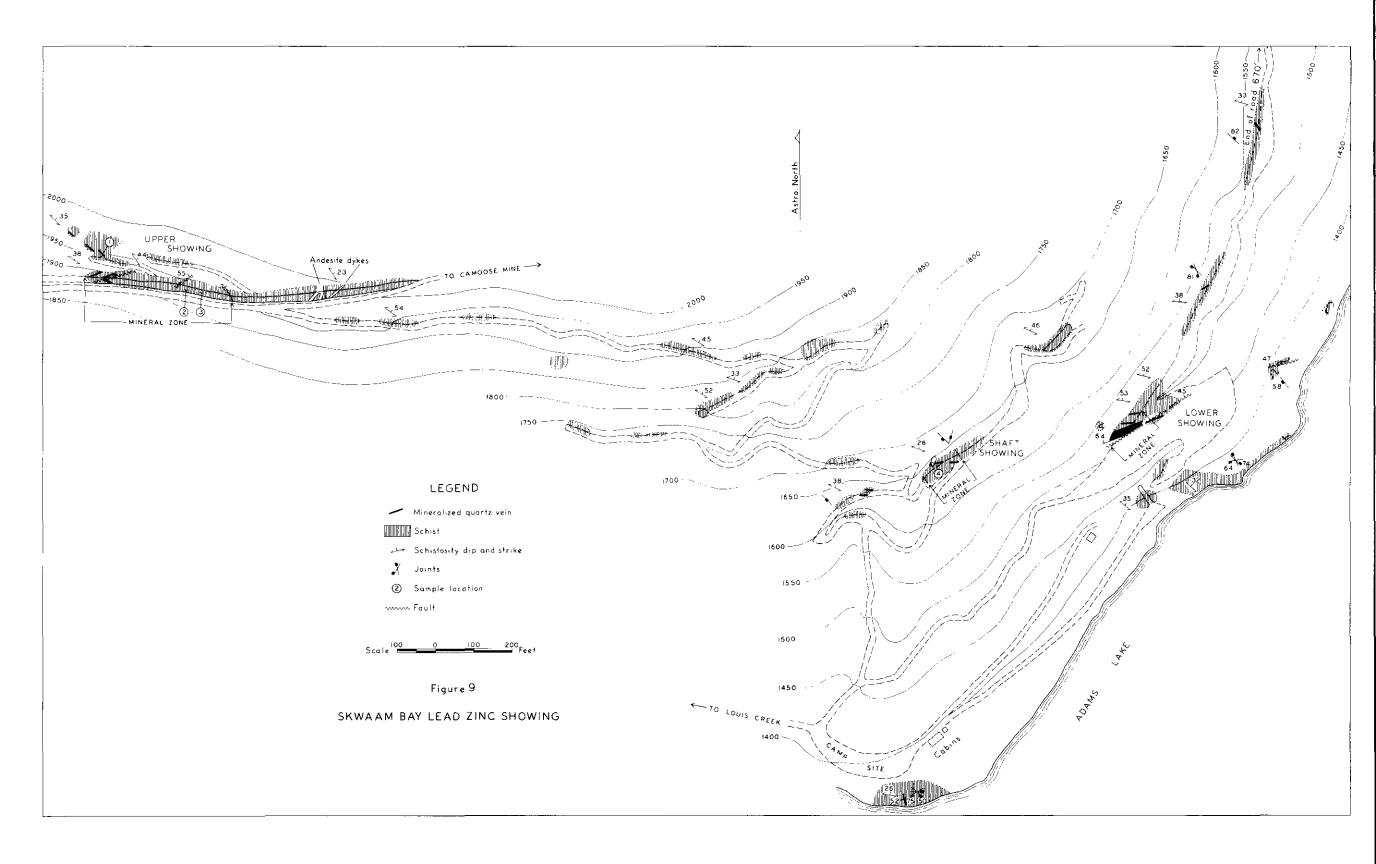
Sands Creek

(51° 120° N.E.) During 1960 and 1961 Calder Molybdenum Company Limited did some trenching and diamond drilling on an old molybdenite prospect near the mouth of

Sands Creek. The showings and surrounding area were covered by seventy-seven mineral claims located in 1959 and 1960 by T. Wrixon, C. Fuller, and S. Pearson. Very brief notes on the prospect have been published by J. F. Walker (Ref. 1) and J. S. Stevenson (Ref. 2).

Sands Creek is a small stream that flows westward into the Clearwater River 2 miles north of Clearwater, a village on No. 5 highway 82 miles north of Kamloops. The Clearwater River road crosses Sands Creek $1\frac{1}{2}$ miles north of the highway. The showings are in the creek banks a few hundred feet downstream from and west of the road. A rough road extends from the river road through a sawmill site 1 mile north of No. 5 highway to the workings.


In the surface showings, molybdenite occurs as scattered flakes in quartz veins and pegmatite dykes that intrude granodiorite near a contact with metamorphosed sediments. At two or three isolated spots in drill cores, some molybdenite was seen disseminated in granodiorite.


The oldest rocks on the property are thin-bedded micaceous quartzites and siliceous argillites. They are best exposed along the south bank of the creek but also show at two places on the north bank as indicated on Figure 8. They strike northwestward and dip vertically to steeply south.

The quartzites and argillites are intruded by a coarse-grained speckled pinkish granodiorite composed of approximately 30 per cent each of quartz, orthoclase, and oligoclase, with accessory biotite and minor apatite and sphene. Scattered phenocrysts as long as three-quarters of an inch give the rock a somewhat porphyritic appearance. The contact between the granodiorite and the argillites is not well exposed, and in most places the visible contact is faulted and irregular. It has a general east-west trend and appears to be nearly vertical but may dip steeply south.

The granodiorite is intruded by quartz veins, pegmatite dykes and lenses, and granophyre dykes. No veins nor dykes were seen in the metamorphic rocks, and in one or two instances veins in the granodiorite were seen to end at a faulted contact. The thickness of the quartz veins ranges from 2 to 18 inches, most often being 8 inches or less. The veins pinch and swell and are badly broken by faulting, usually being continuous for less than 10 feet along strike. The strike varies from north 30 degrees east to east, generally being between north 50 and 70 degrees east. Dips are steep south to vertical. A few small irregular masses and short faulted dykes of quartz-feldspar pegmatite are exposed in the workings. Granophyre dykes 2 inches to 1 foot thick are common. They consist of medium- to fine-grained, granular, light-coloured rock characterized by a micropegmatitic intergrowth of quartz and feldspar.

• By J. W. McCammon.

There is apparently a strong east-west striking shear zone extending down Sands Creek at the molybdenite showing. This is indicated by the fragmented veins and the crushed, gougy, and sometimes brecciated nature of the rocks, particularly on the north bank of the creek. The granodiorite especially crumbles readily into coarse sand. In places it looks fresh and solid, but if it is struck with a pick it disintegrates into rubble. The bulk of the diamond-drill core examined was very crumbly and gougy or in short segments.

As previously mentioned, the only mineralization found on the surface was in quartz veins or pegmatite lenses. Molybdenite, pyrite, and occasionally small amounts of chalcopyrite occur erratically in patches and hairline seams in the gangue. Most of the vein segments contain some molybdenite, but a few are quite barren. None of the veins seen contained any appreciable concentrations of mineralization. The erratic nature of the distribution is well illustrated by the assays of samples 1 and 2, which were cut across the width of the same 8-inch-wide vein 1 foot from each other. Rusty patches several feet across were found in various places along the exposed granodiorite bank. Pyrite was the only sulphide mineral detected in these patches, but sample No. 3 was cut across the diameter of a 5-foot zone of this type to check for possible molybdenum mineralization. Sample No. 4 was cut across a series of small rusty patches of pegmatite and quartz in granodiorite exposed in the most westerly open cut. The results of assays for the molybdenite content of the four samples were: No. 1, 1.91 per cent; No. 2, 0.15 per cent; No. 3, trace; No. 4, trace. Sample No. 1 was taken at one of the best-mineralized sections seen on the property.

The key to a core shack containing cores of eleven diamond-drill holes was kindly made available by Mr. Calder. Unfortunately the cores were incomplete, and it was not possible to obtain a plan to correlate the cores with known drill sites. All core examined consisted essentially of crumbly or gougy granodiorite with widely scattered narrow quartz veins, pegmatite lenses, and thin granophyre dykes. One core, presumably from the most westerly drill site shown on Figure 8, started in dark argillite and changed to granodiorite at the 68-foot mark. Thinly disseminated molybdenite flakes in granodiorite were noted in four sections a few inches long in three cores. Apart from these instances, all the mineralization was confined to quartz veins or pegmatite. The metallic minerals noted were molybdenite, pyrite, magnetite, and scarce chalcopyrite. No extensive nor heavy mineralization was seen in any of the cores.

Development work done on the property consisted of bulldozer trenching and diamond drilling. The main trenches and what are thought to be the diamond-drill hole sites are shown on Figure 8. One to two hundred feet northeast of the creek and about 100 feet above the main trench a shallow bulldozer trench several hundred feet long had been dug along the hillside in a northwesterly direction. Nothing other than a few small barren exposures of granodiorite was seen in this trench.

[References: (1) Geol. Surv., Canada, Sum. Rept., 1930A, p. 153A; (2) B.C. Dept. of Mines, Bull. 9, 1940, pp. 33, 34, 83.]

SKWAAM (AGATE) BAY*

Lead-Zinc

(51° 119° S.W.) In mid-May, 1961, Huestis Mining Corporation Ltd. began exploration work on some lead-zinc showings on a group of 115 claims located by Ivan Bennett, Harold Jones, and Ken Calder at Skwaam (Agate) Bay on

^{*} By J. W. McCammon, except as noted.

Adams Lake. The original showings were formerly known as the Try Me and Rankin group (Ann. Rept., 1924, p. B 157). After completing nearly 2 miles of bulldozer trenching and stripping and doing extensive prospecting in the claims area and adjoining countryside, the company abandoned the property in mid-August.

The showings are at the point on the west shore of Adams Lake where the north side of Agate Bay joins the lake. The workings are spread for three-fifths of a mile along the hillside from the shoreline for 600 feet up the hill. Access is by 24 miles of road east from Louis Creek, a small community on No. 5 highway 37 miles north of Kamloops.

On the property very low-grade lead-zinc-copper mineralization occurs in guartz veins in schists. The schists consist mainly of fine-grained guartz and sericite or fine-grained quartz and chlorite. One thin-section examined contained relatively large grains of orthoclase and another contained plagioclase. All rocks contain pyrite with at least a little carbonate, and several are limy enough to effervesce freely with dilute acid. Scattered small pods and lenses of limestone occur in a few places. The schists are normally some shade of green, but in irregular zones have been bleached to yellow and brownish light grey to white. These bleached zones range from a foot to 200 feet wide, most being exposed for less than 20 feet. As far as could be seen, the zones are not directly related to the mineralization and nothing of value was noticed in them. The strike of the schistosity ranges between south 80 degrees west and north 35 degrees west, averaging north 70 degrees west. It dips to the northeast at 22 to 54 degrees, averaging 38 degrees. A microscopic secondary cleavage inclined at about 45 degrees to the schistosity can be seen in many thin-sections. Lineations representing minute parallel and en échelon crenulations, secondary cleavage traces, and striations are abundant on planes of schistosity, sometimes striking in as many as three different directions on a single plane. The rocks are part of the Shuswap terrane, whose age is in doubt.

Two small dykes of fine-grained andesite exposed near the east end of the upper trench contain the only rock other than schist seen on the property.

Many faults with small apparent throws are exposed in the workings. Most strike northwestward or northeastward and dip rather steeply north. The majority appear to be thrust faults. Slickensides indicate that there has been considerable movement along the schist planes, and although no major locus of such movement was recognized, there may well be some large faults parallel to the schistosity.

Joints are prevalent in the rocks. They fit roughly into three sets: one strikes northwest; a second, east-west; and a third, northeast. All are nearly vertical or dip steeply, usually to the south.

Apart from pyrite, which is abundant everywhere, the only sulphides recognized occur in quartz and quartz-carbonate veins in the schists. Two types of veins are present. One type is characterized by the narrowness of individual members, widths ranging chiefly between one-quarter and 1 inch. These are in closely spaced swarms that form the main mineralized zones in the upper and shaft cuts. The veins are more or less parallel and lie partly conformable with the schistosity but frequently cross it at small angles. Few seem to persist for many feet along strike, but rather they tend to pinch out or are sheared off along schist planes. The other veins are larger, with widths ranging from 4 to 18 inches and in one exceptional case to 20 feet. The larger veins are widely scattered throughout the property. They strike slightly north or south of west and usually dip fairly steeply northward. All pinch and swell erratically and are cut off by faults, some being represented only by short scattered lenses and pods. The veins consist chiefly of quartz with variable amounts of calcite, dolomite, or ankerite and erratically distributed grains and patches of pyrite, galena, sphalerite, and chalcopyrite. Fine-grained dark greygreen tourmaline forms conspicuous patches in one or two veins visible in the adit near the lakeshore.

Exploration work was concentrated in three areas referred to herein for convenience as the upper, shaft, and lower showings. A rough road bulldozed out between the showings served to expose bedrock in intervening areas, and in some spots additional stripping was carried out. The layout of the work is shown on Figure 9.

The workings at the upper showing consist of the main trench, two shallow cuts above the main trench, and two or three small blast-holes in the bluffs to the north. The main trench is 1,000 feet long, 15 feet wide at the floor, and has a maximum face height of 50 feet on the north wall. A concentration of slightly mineralized quartz veins, most less than an inch thick, was uncovered in a 380-foot-wide zone as shown on the figure. The best mineralization is in the eastern 200 feet of this zone. The short cut immediately north of the main trench exposed a few scattered half-inch veins and one 1-foot-wide vein near the west end. Blast-holes exposed scattered mineralization in lensy 6- to 18-inch veins 50 and 100 feet northwest of this cut. The second cut to the north exposed only barren yellow-stained lightgrey schist. Sample No. 1 was cut across 1 foot of well-mineralized vein exposed in the first cut as indicated, sample No. 2 was cut along 10 feet on the bottom of the main trench across numerous thin veins, and sample No. 3 was similar to No. 2 but 30 feet east of it.

At the shaft showing a trench 15 feet deep, 150 feet long, and up to 30 feet wide was excavated on a swarm of $\frac{1}{2}$ - to 1-inch-thick slightly mineralized veinlets and one or two thicker veins. On the bank at the northwest corner is an old inclined shaft 5 feet square sunk on a bearing of north 25 degrees east at a 45-degree angle down a lensy 6-inch to 1-foot-thick vein that contains scattered sulphides. Sample No. 4 was cut for 10 feet across the schistosity near the centre of the swarm of thin veinlets.

At the lower showing an area roughly 400 feet long by 200 feet wide was stripped off a large lens-like exposure of quartz-carbonate material containing sparse, patchy, but in spots quite spectacular, sulphide mineralization. The lens appears to terminate to the southeast at a fault in the floor of the cut and is covered by overburden to the northwest. Numerous small slightly mineralized veinlets are present in the exposure along each side of the main lens.

On the beach 100 feet south of the lower showing, an old adit extends for 56 feet into the hillside on a bearing of north 38 degrees west. Several small veins are exposed in the adit. One or two contain small amounts of sulphides, and some contain tourmaline, but nothing of apparent economic interest is visible.

Three small pits near the beach northeast of the adit show nothing of interest. Assay results on the four samples that were collected are shown below.

During its exploration work the company took bulk samples from the upper showing. The samples were cut along consecutive 10-foot spacings across the 200foot eastern section of the mineralized zone indicated on Figure 9. Each of the twenty samples weighed 400 pounds. The average of all of these samples is shown as sample No. 5 in the table.

Sample	Gold	Silver	Copper	Lead	Zinc	
No. 1	Trace	Oz. per Ton 0.8	Per Cent 0.14	Per Cent 5.16	Per Cent 1.70	
No. 2	Nn Nn	Trace	0.03	0.64	0.70	
No. 3	Nil Nil	Trace	0.01	0.20 0.16	0.14	
No. 4		0.1				
No. 5 average	Ттасе	0.1	0.025	0.21	0.38	

5

Zinc

(51° 119° S.W.) This property consists of the following Rose Group* claims: Rose 1 to 20 and Rose 27 to 46, located by I. Ben-

nett, R.R. 3, Salmon Arm, and held under option by Tombac Explorations Limited. The claims lie about 5 miles north of Agate Bay on the west shore of Adams Lake. The ore, a high-grade resinous sphalerite, lies against the southern contact of a very prominent limestone bed which strikes almost at right angles across Adams Lake at this point. A total of 1,575 feet of diamond drilling was done. A crew of six was employed under the direction of B. Backler. The option was dropped.

SIMILKAMEEN RIVER[†]

Copper

Deep Gulch Mines Ltd.)

(49° 120° S.W.) Company office, 1500 Marine Building, 355 Burrard Street, Vancouver 1. R. Collishaw, president. (Copper Mountain This company holds forty-eight claims, on which the main showings are immediately east of the Hope-Princeton highway, to the south of Deep Gulch Creek, about 12 miles by

road south of Princeton. In 1961 four surface diamond-drill holes were made, bringing the total number drilled on the property since 1958 to sixteen and the total footage drilled to 3,028 feet. An average crew of three men was employed between April and November. Some of the drilling was in the Copper Mountain gabbroic stock and some in the adjacent Nicola rocks.

[Reference: Minister of Mines, B.C., Ann. Rept., 1959, pp. 53-54.]

Friday Creek Development Co. Ltd.

(49° 120° S.W.) Company office, 1614 Burrard Building, 1030 West Georgia Street, Vancouver 5. D. F. Hamelin, president. This company holds twenty-six claims, of which all except four are on option from I. C. and R. L. Ashley, of Princeton. The property adjoins the southern part of the

Deep Gulch property and lies mainly between the Hope-Princeton highway and the Similkameen River. Access by vehicle is either through the Deep Gulch property or from a point on the highway south of Friday Creek.

Work in 1961 included about 500 feet of trenching, 710 feet of diamond drilling, road construction, and a geophysical survey. Stripping to bedrock was done over a wide area on the south bank of Friday Creek, and one or more new trenches were made a few hundred feet south of the creek. About 12 tons of hand-picked material with bornite was stored for prospective shipment, and bulk samples were taken from the stripped area for assay and mill tests.

[References: Minister of Mines, B.C., Ann. Rept., 1960, pp. 56-67.]

HEDLEY

Good Hope and Nighthawk (Nighthawk Gold Mines Limited)‡

Gold

(49° 120° S.E.) Head office, 1500, 355 Burrard Street, Vancouver 1; W. R. Wheeler, president. The property includes ground formerly held by Hedley Mascot Gold Mines Limited and is 3 miles southeast of Hedlev at an elevation of about 5,000 feet, between Cahill and Winters Creeks. There are fifty-four mineral claims, thirty of which are Crown

granted. The geology in the vicinity of the workings is described and illustrated

* By David Smith.

[†] By J. M. Carr. ‡ By N. D. McKechnie.

in the Annual Report for 1947, pages 142 to 144. Drill cores mentioned in that account were not available to the present writer.

The principal showing (Fig. 10) lies on the boundary between Good Hope No. 1 and Good Hope No. 2 fractional Crown-granted mineral claims about 150 feet north of their south boundaries. This is a large open cut, or pit, from which some 4,500 tons was mined intermittently between 1944 and 1948. Bulldozer cuts are distributed over an area about 800 by 300 feet, extending from the main pit southwestward through the Good Hope No. 3 to the Nighthawk No. 7 Crown-granted mineral claims.

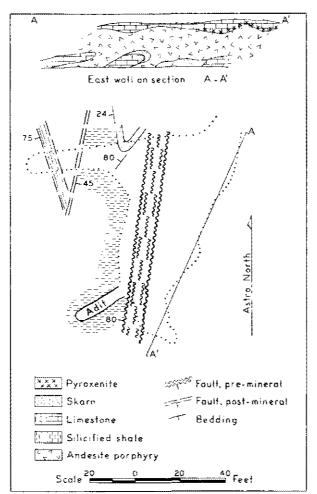


Figure 10. Nighthawk Gold Mines Ltd. Main pit.

The rocks in the vicinity are volcanic flows and fragmentals, with subordinate tuffs, argillite, and limestone, intruded by granodiorite and aplite. Epidote, garnet, and calcite are common metamorphic minerals; locally the rocks are altered to an epidote-pyroxene-garnet-quartz-calcite skarn and to garnetite. The limestones are recrystallized and locally may be strongly silicified. The argillites are metamorphosed to a cherty rock, in which bedding structures have been preserved; of these, the most striking are concretions up to a foot or more in diameter, the best exposures of which were in the south side of the main pit. On the north side of the main pit a zone of coarse green pyroxene crystals lies along the footwall of crystalline limestone in contact with mineralized skarn. A similar zone is exposed in a trench 300 feet south, where the pyroxene lies in limestone along its contact with silicified shale. At both places the pyroxene appears to be a local phenomenon.

Bedding dips flatly, up to 25 degrees except at local steepenings, in a general northerly direction. A section accompanying the 1947 Annual Report shows granitic sills, indicated by diamond drilling, dipping northward at some 15 to 20 degrees.

The principal showing (Fig. 10) consists of a mineralized fault about 10 feet wide striking north 10 degrees east and dipping 80 degrees westward. The rock on the footwall side on the north side of the pit consists of flat-lying limestone overlying altered andesite porphyry. The porphyry is epidotized and garnetized and locally forms skarn. There are three tongues of limestone, bordered in part by skarn, exposed in the lower half of the pit wall and dipping 20 to 60 degrees north to northeast. The footwall of the flat-lying limestone is bordered for an exposed length of some 25 feet by coarse pyroxene crystals. The pyroxene may bear some relationship to the fault because it disappears from the contact as the pit wall recedes eastward from the fault. The rock on the hangingwall side of the fault, exposed in the west side of the pit, is silicified argillite overlain by flat-lying limestone. There is no pyroxene exposed on this contact. At the north end of the pit there is a small fold marked by a thin skarn bed. If this fold is due to movement on the fault, then the hanging wall side moved up and southward at an angle of about 70 degrees to the horizontal. A limestone-pyroxene-silicified shale contact exposed 300 feet south of the main pit and on the footwall side of the projected fault shows a swing from southwest to south approaching the projected fault. This would agree with a southward movement of the hangingwall side. No marker beds were recognized, and the amount of movement on the fault is not known, but as the pit is about 15 feet deep the movement would need to be more than that figure since recognizable rocks are not exposed across the fault. It is possible, then, that the mineralized fault has appreciable lateral and vertical extensions beyond the present exposure.

The mineralization is sparse. It is described in the 1947 Annual Report as follows: "Metallic minerals sparingly present include arsenopyrite, pyrite, chalcopyrite, pyrrhotite, native bismuth, a lead-bismuth telluride 'hedleyite,' molybdenite, and native gold. The gold is erratically distributed and does not appear intimately associated with any particular mineral. Small grains of gold were seen in cleavage cracks in pyroxene and coarse calcite, and also in apparently close association with quartz, arsenopyrite, and native bismuth."

Two post-mineral faults are exposed west of the mineralized fault. One, striking north 20 degrees west and dipping 75 degrees southwestward, is truncated by the other, which strikes north 12 degrees east and dips 45 degrees southeastward. The later fault would cross the mineralized fault about 25 feet below the pit. The displacement on either fault is not known.

French (French Mines Ltd.)* (49° 120° S.E.) Company office, 314, 718 Granville Street, Vancouver 2; mine office, Hedley. W. B. Burnett, president; J. S. Biggs, mine superintendent. The French mine is on the Oregon mineral claim, on the east side of Cahill Creek, a

southwesterly flowing tributary of the Similkameen River about 5 miles east of Hedley. It is at an elevation of 3,900 feet and is reached by a branch from the Nickel Plate road about 3 miles from the highway.

[•] By David Smith.

A short history of the property is given in the Annual Report for 1957 and more detailed descriptions in the Reports for 1959 and 1960.

On May 21, 1961, management suspended mining and milling operations. Ore reserves had become depleted, and a continuous exploration programme was not encouraging.

The operation averaged 45 to 50 tons per day with a mine crew of nine men. The ore was trucked to the cyanide mill on the flat east of Hedley. Fencing and closure of mine openings has been carried out.

The mine is developed from three adit levels—the 3920 level (Kelowna), the 3835 level (Granby), and the 3785 level (Cariboo). In 1961 mining and development was carried out on an exploration basis. Previously and on clean-up, ore was mined by open stoping and transferred to raises by slusher. The following is a summary of work completed in 1961:---

Drifting		 	 	ft.	190
Raising		 	 	ft.	126
Crosscutting					95
Ore milled					
Gold recovered		 	 	OZ.	1,927
A	-	 			· •

A crew of twenty men was employed in all operations-nine underground and eleven on surface.

OLALLA

Manganese

Olalla Manganese (The Consolidated Mining and Smelting Company of Canada, Limited).*--(49° 119° S.W.) Company office, Trail. This property consists of twelve recorded claims, the Dief Nos. 1 to 12, approximately 6 miles northwest of Olalla. Access is by truck-road. Surface work in 1961 consisted of geological mapping. A crew of three men was employed under the supervision of J. Richardson.

Copper-Gold

Copper King (Friday Mines Limited)†

(49° 119° S.W.) Head office, 408, 580 Granville Street, Sunrise, Golconda, Vancouver 2; mine office, Box 45, Keremeos; N. H. Mc-Diarmid, president; G. E. Leonard, project engineer. The property is at Olalla and consists of four Crown-granted and forty-three recorded mineral claims. It includes the assets of Hedley Monarch Gold Mines Ltd., absorbed by Friday Mines

Limited, and the Golconda group, held by option from Keremeos Mines Ltd.

The showings have been known since 1899. They are known as the Sunrise showings, immediately west of the highway at Olalla; the Golconda, about $1\frac{1}{2}$ miles west of Olalla at about 2,600 feet elevation; and the Copper King, about onequarter of a mile southeast of the Golconda at an elevation of 3,400 feet. The Golconda is described in the 1960 Annual Report. All are described in various Annual Reports from 1899; the more detailed descriptions are: Copper King, 1917, page 206, 1922, page 163; Sunrise, 1937, page D 17, 1946, page 126, 1947, page 151, 1948, page 124. The geology of the region is shown on Geological Survey of Canada Maps 341A, Keremeos, and 628A, Olalla.

During 1961 bulldozer stripping was done in the Sunrise and Copper King areas, and 9,720 feet of diamond drilling was done in the area as a whole.

All the showings lie within a stock of pyroxenite which intrudes sedimentary and volcanic rocks of the Triassic(?) Shoemaker formation. The pyroxenite is

* By David Smith.

† By N. D. McKechnie.

intruded by diorite and by a still younger syenite. Dykes of andesite intrude pyroxenite and syenite.

The pyroxenite, originally chiefly augite, has undergone successive alterations, three of which are detectable in hand specimen and will be described in terms of the most evident secondary minerals. The earliest is marked by a development of biotite, in plates up to one-quarter inch in diameter, and is formed at and near syenite contacts. Locally, where narrow syenite dykes are abundant, the pyroxenite may become a fairly fine-grained highly biotitic rock not obviously related to its parent. The next successive alteration is a development of calcite which may be coarse enough to be visible and which in any event is made apparent by the application of acid. This alteration is strongest in the general vicinity of the working known as the Powder adit; some thin-sections were found to be so high in calcite as to resemble a silicified impure limestone. The cause of the alteration is not known. The third consists of the introduction of quartz and orthoclase. It varies widely in intensity from place to place but seems to occur more or less throughout the pyroxenite mass.

The syenite also is markedly affected by the introduction of quartz and orthoclase, yielding a rock type locally described as "silicified syenite." Calcite is present but is not prominent.

The andesite dykes are comparatively fresh and appear to be younger than the quartz-orthoclase alteration.

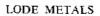
The mineralization can be divided into four main types:----

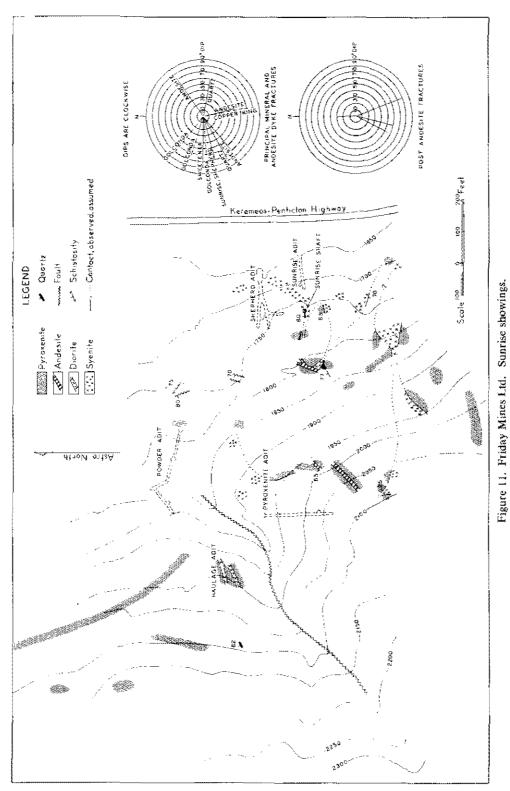
(1) Quartz, pyrite, chalcopyrite, galena, sphalerite, tetrahedrite, and gold.

(2) Quartz, pyrite, chalcopyrite, and molybdenite.

(3) Chalcopyrite and magnetite.

(4) Quartz with minor calcite and, locally, sparse pyrite.


The last appears to be younger than the first three, but the relative ages of the others are not known.


Sunrise Section.—The Sunrise workings consist of recent open cuts and a number of underground workings which have been known for years as the Sunrise shaft and the Sunrise, Shepherd, Powder, Pyroxenite, and Haulage adits (see Fig. 11).

The Sunrise showings consist of narrow quartz veins lying in and near apophyses of the principal syenite mass and to a minor extent in the pyroxenite. The principal showing is the Sweetener vein, which is exposed in the north side of the Shepherd adit and is the only example of type 1 mineralization found so far on the property. It is in a narrow shear in syenite striking east-west and dipping 80 degrees north. The quartz is about an inch wide and locally, with rock inclusions, up to about 4 inches wide. Erratic high assays have been obtained in several samplings; 255 tons shipped in 1948 assayed 0.537 ounce gold per ton and 0.5 ounce silver per ton. The remaining showings are barren quartz veins with calcite, of type 4. Their strikes and dips are indicated diagrammatically on Figure 11.

The Sweetener vein is cut off at the Shepherd adit face by a northward-striking andesite dyke. The Sunrise and Shepherd veins occupy parallel fractures, and the quartz of the Shepherd vein cuts an accompanying andesite dyke. The barren quartz and the andesite dykes are contemporary and are younger than the Sweetener vein. It appears that conjugate fractures may be occupied by both the barren quartzcalcite veins and the andesite dykes.

A ravine trending southwest from the vicinity of the Powder adit marks the trace of a fault striking about north-south, parallel to the main Keremeos Creek valley, and dipping 30 to 35 degrees east; this fault is exposed also in a road cut north of the ravine at an elevation of about 2,000 feet. The 1947 Annual Report

states that the last 100 feet of the Powder adit follows a southwesterly striking unmineralized shear in pyroxenite, but the working was not accessible at the time of the writer's visit.

Copper King Section .- This showing is on the west contact of the pyroxenite with Shoemaker quartzites and consists of a shear up to 6 inches wide mineralized with chalcopyrite and magnetite striking north 10 degrees west and dipping 80 degrees west. Some epidote-garnet skarn is present. The quartzites are intruded by diorite sills to which the vein shear is more or less parallel. The shear is exposed in a 35-foot shaft and, 200 feet northward on strike and 100 feet lower in elevation, it is exposed in a trench where it is in contact with a small body of limestone. An adit started in pyroxenite 25 feet northeast of it does not reach the shaft. There is no apparent relationship between this shear and the Golconda structure to the northwest.

FAIRVIEW CAMP*

Silica-Gold

Limited)

(49° 119° S.W.) Head office, Trail; mine office, P.O. Box Fairview (The Con- 337, Oliver. G. S. Ogilvie, property superintendent. This solidated Mining property consists of thirty-six Crown-granted claims. The and Smelting Com- mine lies about 5 miles to the west of Oliver. Quartz is mined pany of Canada, and shipped to Trail for use as flux. Production was continuous from January to July, and the mine was officially closed in September, 1961. All mine entrances and openings were closed, mining plant dismantled, and buildings removed. A total of 15,259 tons of

quartz was shipped. Development work included 68 feet of raising and 912 feet of diamond drilling. One accident was reported. A crew of six men was employed.

Stemwinder (The Consolidated Mining and Smelting Company of Canada, Limited).--(49° 119° S.W.) Company office, Trail. This property consists of five Crown-granted claims held under a lease-royalty agreement. It adjoins the Fairview property and is situated 8 miles west of Oliver. Surface work consisted of six diamond-drill holes totalling 1,156 feet. A crew of four was employed under the supervision of G. S. Ogilvie.

Gold

(49° 119° S.W.) This property of nine recorded claims, the Standard Nos. 1 to 9, is 2 miles northwest of Oliver and is Standard accessible by the Fairview road for 21/2 miles and by road north for 2 miles. The property is held by Continental Consolidated Mines Limited, 535 Howe Street, Vancouver, having been acquired late in 1961 from Oliver interests. In the summer an adit 230 feet long was driven under old shallow workings on a quartz vein and a small stope was mined to surface. A total of 502 tons was shipped to the Trail smelter. A crew of three men was employed.

Chromite

ANARCHIST MOUNTAIN*

(49° 119° S.E.) Pacific Chrome Alloys Ltd.; company office, Anarchist Chrome 213, 736 Granville Street, Vancouver 2. S. W. L. Kelly, manager; F. J. Hemsworth, consulting engineer. This property comprises the following twenty-eight claims: Three Sisters Nos. 1 to 8, Pacific Nos. 1 to 12, and RS Nos. 1 to 8. Access is by 1 mile of road north of the Anarch-

^{*} By David Smith.

ist Summit on Highway No. 3. Work during 1961 consisted of magnetometer and geological surveys and the diamond drilling of five holes totalling 803 feet. A crew of four men was employed.

CAMP McKINNEY*

Gold

Cariboo-Amelia (McKinney Gold Mines Limited)

(49° 119° S.E.) Mine office, Rock Creek. H. Hill & L. Starck & Associates Ltd., consulting management engineers; A. G. Ditto, general superintendent. This property consists of the following Crown-granted claims held under option: Cariboo, Alice, Emma, Maple Leaf, Waterloo, Sawtooth,

Okanagan, Wiarton, and Amelia. Early in 1961 the shaft was sunk 180 feet below No. 5 level, and No. 6 station was cut 140 feet below that level. On No. 6 level a crosscut was driven 400 feet in a southwesterly direction to the vein, and at the end of 1961, 800 feet of drifting had been done to the east. Two raises were driven to connect with No. 5 level. Between the two levels 250 feet of subdrifting was done. Ten diamond-drill holes totalling 1,900 feet were drilled.

Production in 1961 totalled 5,086 tons of ore, which was trucked 16 miles to Rock Creek and shipped to the Trail smelter. Gross content: Gold, 5,432 ounces; silver, 6,024 ounces; silica, 65 per cent. A crew of sixteen included twelve men underground and four on the surface.

BEAVERDELL*

Silver-Lead-Zinc

Highland-Bell (Mastodon-Highland Bell Mines Limited)

(49° 119° S.E.) Company office, 502, 1200 West Pender Street, Vancouver 1; mine office, Beaverdell. K. J. Springer,
president; O. S. Perry, manager; A. Zelmer, mine superintendent; B. Goetting, mine engineer. The property consists of thirty-two Crown-granted claims and four recorded claims. Production for 1961 was obtained from the 2800, 2900, and

3000 levels, the main haulage being the 2900 adit. Development work continued, and ore has been opened up on the 2850 level. In 1961 the normal production of 75 tons per day was maintained. Further exploration work and diamond drilling was carried out on the Sally property.

The following is a summary of operations for 1961: Drifting, 752 feet; crosscutting, 596 feet; raising, 211 ieet; diamond drilling, 9,697 feet; ore milled, 18,954 tons. An average crew of forty men was employed, of whom twenty-two worked underground.

 (49° 119° S.E.) Company office, 1030 West Georgia Street, Vancouver 5. The MATT group of seventy-five recorded claims is on the south side of Tuzo Creek, 5 miles southwest
 (Western) Limited) of Beaverdell. Work on the property in 1961 consisted of geochemical sampling, geological mapping, trenching, and prospecting. An access road 5 miles long was built into the area. A crew of six men was employed under the direction of J. M. Anderson.

* By David Smith.

GREENWOOD

Copper-Gold-Silver

 (49° 118° S.W.) Company office, 204, 569 Howe Street;
 Woodgreen Mines Limited)*
 (49° 118° S.W.) Company office, 204, 569 Howe Street;
 Vancouver 1; mine office, Greenwood. R. A. Brossard, president; C. W. S. Tremaine, manager; G. F. Groves, chief
 How Street;
 Vancouver 1; mine office, Greenwood. R. A. Brossard, president; C. W. S. Tremaine, manager; G. F. Groves, chief
 Vode-Sunset ore zones. A total of 201,123 tons of ore was

milled, almost all of it from the Mother Lode pit. Milling was continuous throughout the year at nearly 650 tons per day. Thirty-four men were employed.

On the Morrison Crown-granted mineral claim an old crosscut adit and related workings, some 3,000 feet southwest of the Mother Lode pit, and 200 feet lower in elevation, were reopened. Most of the underground work was done during the years 1899 and 1900. The crosscut, bearing east of north and shown on a company map to be about 800 feet long, was inaccessible beyond 500 feet because of water dammed by caved ground. The 1899 Annual Report states that mineralization was found in the crosscut at distances from the portal of 90, 415, and 565 feet. No attempt was made to develop the showing at 90 feet, and limited and erratic workings illustrate the poor success achieved in attempts to explore the other two. Recent diamond drilling, about 1956, did not find important mineralization. Up to 1907, the last year of record, about 3,500 tons had been shipped; the principal assays were in gold, reported (1899) as \$8 to \$10 per ton.

The rocks on the west side of Deadwood Creek, opposite the Mother Lode pit, are grey Knob Hill cherts. On the hilltop, 200 feet higher in elevation than the Mother Lode mill, the Knob Hill is overlain by siliceous Brooklyn sharpstone conglomerate; the contact strikes north 45 degrees east and dips 30 degrees southeast. To the northwest along the hilltop, on a line passing near the northwest corner of the Gem Crown-granted mineral claim, Lot 297, the rocks are downfaulted twice across shallow northeastward-trending ravines. The sharpstone conglomerate disappears beneath Phoenix volcanics about 1,000 feet northwest of the corner post.

Presumably the Brooklyn limestone, with which most of the ore of the general district is associated, lies above conglomerate; Seraphim places it 2,000 feet above the Knob Hill formation (*see* list of references).

The Morrison adit is in limestone for 320 feet. The limestone then terminates against a northwest-striking fault, and on the west side of the adit it ends against a northeast-striking fault. From 320 feet to a strong east-west fault zone at 450 feet the adit is in tuffs and andesite. Sharpstone conglomerate is exposed in a working west of the adit. Limestone is exposed immediately north of the fault zone, but the adit was not accessible much beyond; the drill cores from this section are sharpstone conglomerates, tuffs, and andesites of the Brooklyn formation. There is some skarn in the cores, but it is not prominent. No Knob Hill rocks were recognized in the adit nor in the cores from the drill-holes.

The geological situation at the Morrison is not clear. The drilling shows a limited amount of limestone. Along the ridge the rocks appear to be higher in the succession to the northwest, and it is in this direction that a stronger occurrence of limestone might be sought.

[References: Geology and Copper Deposits of the Boundary District, B.C., Trans., C.I.M., Vol. LIX, 1956, R. H. Seraphim; Geol. Surv., Canada, Mem. 21, 1912, Geology and Ore Deposits of Phoenix, Boundary District, B.C., O. E. LeRoy; Mem. 19, 1913, Mother Lode and Sunset Mines, Boundary District, B.C., O. E.

^{*} By N. D. McKechnie.

LeRoy; Paper 45-20, 1945, Greenwood-Phoenix Area, B.C., D. A. McNaughton; Map 6-1957, Kettle River (East Half), H. W. Little.]

Ruby Mac*(49° 118° S.W.)Rubymac Mines Ltd.; company office,
507, 475 Howe Street, Vancouver 1. Karl Wickstrom, presi-
dent. This private company owns eighteen recorded claims
and two mineral leases on the north side of McCarren Creek, 1 mile east of No. 3
highway. The property is 3½ miles by road south of Greenwood. Bralorne
Pioneer Mines Limited held an option and stripped with a bulldozer and diamond
drilled one hole 409 feet. A crew of four was under the direction of J. P. Weeks.
The option was dropped.

Copper-Gold-Silver

PHOENIX*

(49° 118° S.W.) Company office, 1111 West Georgia Street,
 Vancouver 5; mine office, Phoenix. L. T. Postle, president;
 J. H. Parliament, manager. This property consists of seventy-seven claims as follows: Twenty-nine Crown-granted, thirty-

eight recorded, and ten leased. The mine and concentrator were operated continuously during 1961.

In October, 1961, a decision was made to enlarge the capacity of the concentrator from 1,000 to 1,500 tons per day by the installation of additional grinding and flotation equipment. This work has been started. The average tonnage milled during the year was 1,076 tons per day.

Production of ore, for the most part, was from the Old Ironsides pit. A small amount was produced at the Idaho pit. Some ore was produced from the Rawhide claim on a royalty basis. No diamond drilling or underground mining was done. The geological mapping of the old underground workings was continued. A $2\frac{1}{2}$ -cubic-yard power-shovel and two 20-ton Euclid trucks were purchased in 1961 to replace equipment previously rented. During 1961, 890,652 tons of waste was removed and 420,372 tons of ore transferred to the mill. A total of 392,767 tons was milled.

A total crew of seventy-three men was employed, as follows: Surface, fourteen; open pit, twenty-seven; crusher and concentrator, eighteen; and staff, fourteen.

Gold-Copper

ROSSLAND[†]

(49° 117° S.W.) This property is leased from Mid-West
Velvet (Velvet
Mine Leasers)
Mine Leasers)
Copper & Uranium Mines Ltd. by Velvet Mine Leasers—
R. Lefevre, H. W. Lefevre, J. C. Urquhart, B. W. Price.
Company office, P.O. Box 340, Rossland. J. Rozeck, mine

manager. The property is on the western slope of Sophie Mountain, 11 miles from Rossland on the Rossland-Cascade highway.

Mining was done in stopes above No. 7 level. Development consisted of 335 feet of drifting and 490 feet of raising. The mill operated part time in milling 8,153 tons, producing 457 tons of concentrate, which was shipped to the Tacoma smelter. The average number of men employed was ten.

^{*} By David Smith.

[†] By J. D. McDonald.

Rossland Mines

(49° 117° S.W.) Company office, Trail. The property consists of ninety-one Crown-granted claims and fractions wholly (The Consolidated owned by The Consolidated Mining and Smelting Company Mining and Smelt- of Canada, Limited. The Alberta and Charleston claims were ing Company of leased from the Crown, and the Iron Colt claim was optioned. **Canada**, Limited) These were abandoned at the end of 1961. Under the supervision of D. W. Heddle, exploration geologist, one diamond-

drill hole was drilled a total of 2.240 feet. The hole was collared on the Alberta claim. Drilling was done between the end of March and the middle of May. Four men were employed during drilling operations.

TRAIL*

Gold

(49° 117° S.W.) This property is owned and operated by W.D. (W.D. Mining W.D. Mining Company Ltd. The company consists of five men with equal shares. F. Donelly, of Trail, president. Mine Company Ltd.) office, 1360 McLean Street, Trail. All work on the property

is done on a part-time basis. The property is on the west side of the Columbia River, 5 miles south of the old Trail bridge along the Casino road. In 1961, 355 feet of diamond drilling was done.

NELSON

Copper

Queen Victoria (Swift Copper Mines Limited)†

(49° 117° S.E.) Company office, 206, 62 Richmond Street West, Toronto, H. W. Olch, president; E. Derrough, mine manager. This company owns three Crown-granted and a large number of recorded claims near Beasley. The main showings and old workings were originally on the Queen

Victoria Crown-granted claim, which has lapsed, and the ground has since been held by recorded claims. A road $1\frac{1}{2}$ miles long leads to the property from a point on the Nelson-Trail highway about 8 miles west of Nelson.

The Queen Victoria claim was Crown-granted in 1896, and shipments of copper ore were made mainly to the B.C. Copper Company smelter at Greenwood, between 1907 and 1917 and again in 1926 and 1927. Total production up to and including 1927 is recorded as: Ore shipped, 44,423 tons. Gross contents: Gold, 168 ounces: silver, 19,993 ounces; copper, 1,404,884 pounds. In 1956 the Finley Company of Reno, Nevada, optioned the property and shipped about 1,800 tons of ore to the Kenville mill.

Old workings on the property consist of open pits and an open stope. In 1961 the present company did extensive bulldozer stripping close to these workings and uncovered the portals of two old adits beneath the stope. An average crew of four was employed in this work for seven months. A trial shipment of 60 tons of ore, assaying 4.35 per cent copper, was shipped to the Tacoma smelter. The 150-ton Kenville mill at Taghum was optioned by Swift Copper Mines Limited, but no work was done on the mill.

The copper mineralization is in an easterly dipping lens of skarn in a series of beds whose trace runs diagonally westward and upward across the face of the hill. Blocky, very fine-grained green rocks are in the hangingwall, and relatively thin layers of dark-green amphibolite are exposed near the footwall. A blocky grey silllike mass of feldspar porphyry also occurs along the footwall. The skarn consists of

† By James T. Fyles.

^{*} By J. D. McDonald.

LODE METALS

mixtures of a reddish-brown granular rock rich in garnet, a greenish rock rich in epidote and diopside, and a dark-green medium-grained amphibolite. Calcite is common in some of the skarn, and at one place a small lens of limestone is exposed.

The lens of skarn has an average dip of 20 to 30 degrees to the east, and its longest dimension exposed in the stripping is more or less parallel to the dip. The skarn rapidly increases in thickness from about 10 feet near the east end of the stripping to at least 100 feet near the centre of the stripping and decreases again to the west to no more than 10 feet at the west end of the stripping. The stripped zone is 400 to 500 feet long. Exposures of rocks beyond the stripping are poor, but a thin lens of skarn, possibly at the same horizon as that in the main stripping, has been exposed by bulldozers about 300 feet west of the upper end of the main stripping. Folds and broad warps of the hangingwall near the eastern end of the main stripping plunge about 10 degrees in a direction somewhat east of north. Probably the long axis of the main lens of skarn is parallel to this plunge.

Sulphide mineralization consists of disseminated grains and irregular clusters of chalcopyrite, pyrite, and minor bornite within the skarn. Fine-grained magnetite is present in minor amounts. Zones of chalcopyrite are irregular and do not have well-defined shapes or boundaries. Locally, spectacularly high-grade material is present, but considerable amounts of skarn contain no chalcopyrite. Ore that has been mined appears to have come from two poorly defined shoots in the thickest section of the skarn lens.

Gold-Silver

White* (49° 117° S.E.) D. Norcross, of Nelson, has the White, Greenhorn Fraction, and My Emer Crown-granted claims under lease from Kenville Gold Mines Limited. They are adjacent to the upper adit of the old Granite mine. The vein is a faulted section of the Granite vein and has a limited tonnage of high-grade ore. The drift, serviced by a 50-foot winze inclined at 40 degrees, was extended 100 feet during 1961. Some stoping was done on the vein from the drift. Seventy-four tons of ore was shipped to the Trail smelter, with returns of 64 ounces of gold. All work was done by Mr. Norcross.

Gold

YMIR

(49° 117° S.E.) Company office, 3669 West Thirty-fifth Yankee Dundee (Cayzor Athabaska Mines Limited)* (49° 117° S.E.) Company office, 3669 West Thirty-fifth Avenue, Vancouver 13. Mine office, Ymir. J. D. Lippmann, president. Capital: 3,500,000 shares, no par value. D. C. Smith, exploration superintendent; W. A. Hall, mine superintendent. In August, 1961, Cavzor Athabaska Mines Limi-

ted optioned the property from Yankee Dundee Mines Limited. Equipment was moved onto the property in September, and mining started September 23rd. A raise was started from a point 4,600 feet from the portal of the Wildhorse adit. The 5by 12-foot two-compartment raise was driven to a point 142 feet above the track, following the dip of the vein at about 67 degrees. Operations were shut down temporarily on December 7th. It is proposed to continue the raise to break through in the old workings, a distance of about 400 feet from the Wildhorse tunnel. The average number of men employed was eight.

• By J. D. McDonald.

SALMO*

ERIE CREEK (49° 117° S.E.)

Gold

New Arlington This property was leased by G. D. Fox, 1396, 3307 Dahlia Crescent, Trail, from J. Russell, Borrega Springs, California. Other lessees are F. Singer and S. Hadler. The property is on Rest Creek, 7 miles by road from Salmo. During the year 161 tons of ore was shipped to the Trail smelter.

Sheep Creek $(49^{\circ} 117^{\circ} \text{ S.E.})$

Silica

K. Belle Enterprise Company Limited, Linden, Alta., has leased the waste dumps on the old Kootenay Belle mine from M. Arishenkoff, of Shoreacres. The dump material is shipped

to the Trail smelter for flux, and the gold content is paid for in addition to silica. A front-end loader and one truck were used to load and haul the silica rock to Trail. Total shipped: 7,703 tons.

Queen F. R. Rotter, of Salmo, is shipping silica rock from the Queen waste dumps to the Trail smelter for flux, having leased the mine dumps on a royalty basis from Sheep Creek Mines Lim-

ited. A front-end loader and truck were used to load and haul the silica rock to Trail. Total shipped, 18,937 tons.

Gold

Nugget.—This mine, which was formerly part of the Reno holdings, is owned by A. Endersby, of Fruitvale. Some development work was done during the year by the owner.

ASPEN CREEK (49° 117° S.E.)

Lead-Zinc

H.B. (The Consolidated Mining and Smelting Company of Canada, Limited)
Company office, Trail; mine office, Salmo. J. C. MacLean, property superintendent; J. M. B. Scarborough, mine superintendent; N. Doyle, mill superintendent. The H.B. mine is on the west side of Aspen Creek, with the main camp on the north side of Sheep Creek, 7 miles by road from Salmo. The ore occurs as lead-zinc replacement in dolomite. There are five zones, known as No. 1 or east orebody, No. 2 or

west orebody, two flat-lying orebodies named X-1 and X-2, and No. 4 orebody, which lies between X-1 and X-2.

The main production comes from the No. 1 and No. 2 orebodies, in which the ore is mined by long-holing from sublevels on the hangingwall and footwall, and scraped to ore-passes from slusher drifts. In the long-holing the holes are drilled with $2\frac{1}{8}$ -inch tungsten carbide bits. Hoists in the slusher drifts are 50and 60-horsepower electric. Production from these two stopes accounted for 69 per cent of the total production. The total long-hole footage for the year was 100,289 feet. In 1962 further pillar recovery is scheduled for No. 1 zone.

Production in the other ore zones accounted for 27 per cent of the total production. Mining is done by slashing and benching with jacklegs, using a panel system of pillars and stopes. Partial pillar recovery is done on a retreating basis. Development: Drifting and crosscutting, 1,239 feet; sublevels, 3,291 feet; raising, 2,356 feet; total, 6,886 feet.

* By J. D. McDonald.

68

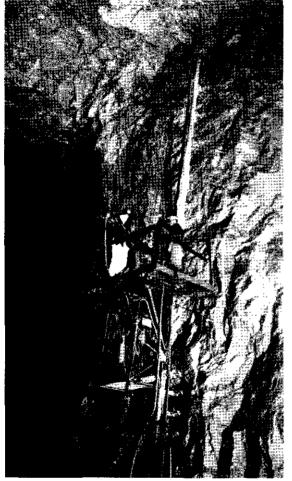
Underground diamond drilling was 11,776 feet, and surface diamond drilling to check the extension of No. 1 ore zone was 3,245 feet.

The concentrator treated 472,731 tons of ore during 1961, an average of 39,394 tons per month. This was the highest in the West Kootenay area. The average number of men employed was 117, sixty of whom were employed underground.

The mine-rescue team trained regularly and competed in the West Kootenay competition. There were no lost-time accidents during 1961. This performance won for the mine the Dominion and Regional John T. Ryan Safety Trophies for 1961. This is the third time in the past four years that these awards have been won by the H.B. mine. This is an outstanding achievement in the mining industry.

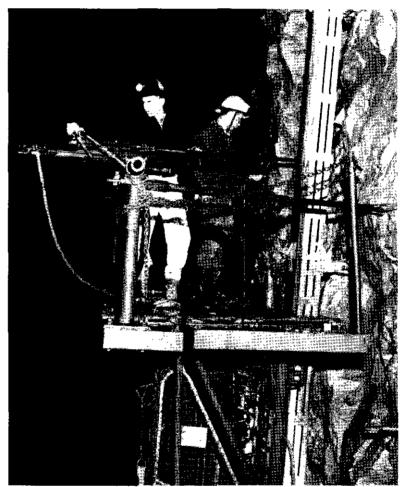
IRON MOUNTAIN (49° 117° S.E.)

Lead-Zinc


Jersey (Canadian Exploration Limited)
 Head office, 700 Burrard Building, Vancouver; mine office, Salmo. G. A. Gordon, general manager; J. D. Little, assistant general manager; R. G. Weber, property superintendent; J. W. Robinson, mine superintendent; H. A. Steane, general mill superintendent; R. W. Gould, mill superintendent. This

company is a wholly owned subsidiary of Placer Development Limited. The property is reached by two roads which leave the Nelson–Nelway highway 4 and $4\frac{1}{2}$ miles, respectively, south of Salmo, the north road being the main access road. The lead-zinc concentrator is beside the Nelson–Nelway highway and is served by a conveyor system. The mine and camp are located on the summit between Sheep Creek and Lost Creek.

All production came from the Jersey lead-zinc mine. The ore occurs as leadzinc replacement in dolomitized limestone along folds which plunge gently to the south. Trackless mining is being done in the A, D, E, F, and G zones and conventional track mining in A and B zones. Most of the ore being developed is in relatively thin steeply dipping beds, and is being mined by conventional open stoping with jacklegs and slushers. In the trackless mine the ore is hauled from chutes or loading points by 8-ton Dumptors; this is 65 per cent of the total production.


Pillar recovery was started during the year. Three pillars in the track mine were blasted, the drilling and loading being done from a staging. In A zone of the trackless mine the pillars range in plan size from 20 by 20 feet to 40 by 40 feet, and up to 60 feet in height. A raise machine was used in the A zone to drill off a 60-foot-high pillar (see illustration). The rail was rock bolted to the pillar wall, fillers being used for irregularities. A horizontal bar arrangement was mounted rigidly on the rear of the platform. A Leyner was mounted on the bar to swing horizontally, and 4-foot 1¹/₄-inch round sectional steel was used with 2-inch tungsten carbide bits. The platform was made rigid by coupling the outer ends of the drill cross-bar to eyebolts set in the pillar. Horizontal rings were drilled at intervals from the top down. This pillar has not been blasted. A smaller pillar in the G zone was drilled and blasted, using the raise machine. Management is of the opinion that the raise machine provides a safe and economical method for drilling pillars where undercutting and removal through footwall haulage is not possible, where height makes scaffolding impractical, and where pillars are too small to economically warrant internal development.

Total development was 7,686 feet, consisting of 999 feet of 16- by 16-foot drifting, 6,227 feet of subdrifting, and 460 feet of raising.

(Courtesy Canadian Exploration Limited.)

Pillar recovery with a raise machine at the Jersey mine, Salmo. View of set-up.

(Courtesy Canadian Exploration Limited.)

Pillar recovery with a raise machine at the Jersey mine, Salmo. The drilling-platform.

In the fall of 1961 the use of AN/FO explosive was tried on an experimental basis. By the year end the mine was converting to the use of AN/FO in most of the workings.

'The concentrator treated 374,032 tons of ore during 1961, an average of 31,169 tons per month. Lead concentrates were shipped to the Bunker Hill smelter at Kellogg, Idaho; zinc concentrates were shipped to the Trail smelter during the first six months of the year, and for the remainder of the year were shipped to Kellogg.

A mine-rescue team practises regularly in the mine, and competed in the West Kootenay Mine Rescue Competition at Nelson. The property continued to maintain its excellent safety record of the past three years, having only one lost-time accident over six days during 1961. The average number of men employed was 157, of whom seventy worked underground.

Lead-Zinc

NELWAY*

(49° 117° S.E.) Company office, 410 Metropolitan Building, 837 West Hastings Street, Vancouver 1; mine office,
Remac. L. M. Kinney, Metaline Falls, Wash., general manager; F. R. Thompson, manager; W. Pollock, mine superintendent; J. M. McDearmid, mill superintendent. Capital: 3,000,000 shares,
\$1 par value. This company owns the Reeves MacDonald mine on the Pendd'Oreille River, on the Nelway-Waneta road 4 miles west of Nelway. Lead-zinc
replacement orebodies in limestone have been developed from the 1900 main haulage level.

Four orebodies are being mined—the Reeves, B.L., O'Donnell, and No. 4 the major production coming from the Reeves. These four orebodies are faulted segments of a single ore zone.

Mining above the 1900 level in the Reeves has been completed, and the major development is between the 1100 and 1900 levels. This section is serviced by No. 2 and No. 3 shafts. The No. 2 shaft is used as a service shaft for hoisting men and supplies. It is located in the footwall of the Reeves orebody, inclined at 52 degrees, with the hoistroom on the 1900 level. The No. 3 shaft, which is inclined at 55 degrees, is the production shaft. During 1961 the No. 3 shaft was sunk from the 980 level to the equivalent of the 403 level, a distance of 694 feet. The sinking was contracted to R. F. Fry and Associates (Western) Limited. The sinking, including timbering and rails, was done during the period of June to November. Mucking was done with a Cryderman mucker mounted in the centre compartment with wood stringers along the top and bottom of the frame. The bottom level was established at the 420 level, with the scram level at the 660 level, and the loadingchute at the 480 level.

Mining is done with long-hole machines, drilling down-holes from horizontal slots. These slots are slashed to the ore outline and are at 50-foot intervals. Modifications to the horizontal slots are being made on the lower levels. The full slot is not being taken out, leaving pillars in the centre. A vertical slot is taken out along the main longitudinal pillar and 50-foot down-holes are drilled and blasted to the vertical slot. Drilling is done with $2\frac{1}{8}$ -inch (75,548 feet) and 3-inch (17,466 feet) tungsten carbide bits.

Total development was 5,390 feet, consisting of drifting, 2,783 feet; raising, 1,721 feet; sinking, 694 feet; stations, 192 feet.

* By J. D. McDonald.

The crushing unit had a 4-foot Symons short head cone crusher installed in September. This by-passes the secondary crushing unit used previously, which has been left in place for emergency work. In the mill new tanks for the flotation cells were installed.

The milling rate averaged 35,042 tons per month, with a total production of 420,508 tons. Zinc concentrates were shipped to the Trail smelter. Lead concentrates were shipped to the smelter at Kellogg, Idaho. The number of men employed, including staff, was 117, of whom fifty-two worked underground.

A mine-rescue team practises regularly, and competed in the West Kootenay Mine Rescue Competition.

(49° 117° S.E.) This property, comprising sixteen Crown-Red Bird (The Con- granted mineral claims and fractions, was optioned by the solidated Mining Hecla Mining Company, of Wallace. Idaho, to The Consoliand Smelting Com- dated Mining and Smelting Company of Canada, Limited. pany of Canada, Fourteen recorded claims, held by Consolidated adjacent to Limited) the Red Bird group, are included in the group. The property is on the south side of the Pend-d'Oreille River and west of

claims belonging to Reeves MacDonald Mines Limited. It is accessible by 14 miles of road north from Metalline Falls, Wash., to the International Boundary (via the Gardner Cave-Frisco Standard road) and then approximately 2 miles to the No. 1 adit. A geological description of the property is contained in British Columbia Department of Mines Bulletin No. 41.

No. 1 adit was rehabilitated for a distance of 1,000 feet. Two hundred feet of drifting and timbering was required to by-pass a caved section of the old drift. This was completed at the end of August.

A diamond-drilling programme consisted of nine holes totalling 2,136 feet. These were drilled from underground in No. 1 adit. The exploration programme under the property supervision of R. W. Holditch was completed in the middle of October. A maximum of nine men was employed.

NORTH KOOTENAY LAKE*

RIONDEL (49° 116° N.W.)

Silver-Lead-Zinc

solidated Mining pany of Canada. Limited)

Company office, Trail; mine office, Riondel. D. S. Campbell, Bluebell (The Con- property superintendent; J. B. Donald, mine superintendent; T. F. Walton, mill superintendent. This property is at Rionand Smelting Com- del, on a small peninsula $1\frac{1}{2}$ miles long, on the east shore of Kootenay Lake, 6 miles by road north from the southern trans-Provincial highway at Kootenay Bay ferry-landing. The ore occurs as lead-zine replacement in a limestone bed 100 to

150 feet in stratigraphic thickness, striking north and dipping 35 to 38 degrees to the west, under Kootenay Lake. There are three zones conforming to three broad arches in the limestone-the Kootenay Chief at the south end, Bluebell in the centre, and Comfort to the north.

The mine is serviced by No. 1 shaft, inclined at 35 degrees. The levels are at intervals of 150 vertical feet, with No. 2 level and No. 5 level extending north to the Bluebell and Comfort zones.

^{*} By J. D. McDonald.

Development was confined mainly to the Kootenay Chief zone, with some work above No. 5 level in the Comfort ore zone. On No. 8 level a ventilation raise was driven through to No. 6 level. Crosscutting on No. 9A level was slow, due to heavy ground, water, and carbon dioxide gas, and solid timbering was required. Development work in 1961: Drifting, 1,281 feet; subdrifting, 5,263 feet; raising, 4,205 feet; total, 10,749 feet; a total of 1,566 feet of raise and drift timbering. Diamond drilling consisted of 20,550 feet in exploratory holes.

Mining methods are open stoping and cut-and-fill stoping with deslimed tailings. Recovery of longitudinal pillars continued, and the mining of one sill pillar was started, using square sets and deslimed tailings. A total of 57,835 cubic yards of tailings was placed in cut-and-fill and open stopes for pillar recovery. Up to the end of 1961 a total of 224,078 cubic yards of deslimed tailings has been placed underground, using 4-inch-diameter polyethylene pipe. Wear has been slight, and no pipe has been replaced because of it.

Present pumping is at the rate of 4,200 imperial gallons per minute. Main pump stations are on No. 5, No. 8, and No. 9A levels. Discharge lines presently consist of two 12-inch-diameter pipe-lines extended up the manway of No. 1 shaft. Considerable success was made in solving the problem of scale deposits in the pumps and pipes from the precipitation of the dissolved carbonates in thermal water. A "threshold" treatment is being used, which consists of the addition of sodiumtri-poly-phosphate to the mine water in a concentration of 3 to 4 parts per million. This keeps the dissolved carbonates in the thermal water from precipitating out in the pumps and pipes. A hard deposit had been built up in the main 12-inch discharge lines that had cut down the capacity of pumping. The insides of the pipes were treated with a weak solution of muriatic acid by completely filling the pipes with the acid solution. This treatment was very successful.

In the main ventilation system, an additional 48-inch dual-duty aerofoil fan was installed in parallel with the other three similar units. Three units are operating at all times, and the fourth unit is a stand-by. Installed capacity is 200,000 cubic feet per minute exhausting from the mine. Three stand-by diesel units, two 375 kva. and one high-speed 187.5 kva., supply power to main fans, auxiliary fans on No. 8 and No. 9A levels, as well as for pumping in the event of power outages.

The thermal water and the carbon dioxide gas released by this water continue to be a serious problem. Cementation Company (Canada) Limited was contracted to carry out a programme to seal off the thermal water, the work starting in July under the supervision of A. York. On No. 8 level five 4-inch drainage holes were drilled into the thermal zone and the water was lowered to just above No. 8 level. The openings to the thermal water zone on No. 6 level were sealed with concrete bulkheads and the surrounding fractures were grouted. This sealed off the flow of water and gas at No. 6 level preparatory to grouting the entire zone above No. 8 level. Grouting was done on No. 9A level to tighten up the ground in drifting through the footwall argillites. The ground below the bottom of No. 1 shaft was grouted through long drill-holes. This has apparently grouted off the ground below shaft bottom.

Mine-rescue and first-aid classes were held. Two teams competed in the West Kootenay Mine Rescue Competition at Nelson. The team captained by B. Ramage won the West Kootenay competition and competed in the Provincial competition in Nanaimo. The average number of men employed was 265, of whom 178 were employed underground.

The concentrator treated 252,821 tons of ore, or 21,068 tons per month.

Tam O'Shanter leums Ltd.)

Company office, 980 West Pender Street, Vancouver 1. L. R. Cranwall, president. This property was optioned by H. F. (Prudential Petro- Kenward to Prudential Petroleums Ltd. The claims are about one-half mile north of the Bluebell mine and lie east of the Bluebell limestone, which is under Kootenav Lake in this area.

The Tam O'Shanter is a narrow vein in argillites and pegmatites, just north of Indian Creek. There is very little mineralization showing on the surface. In 1918 and 1921 a total of 94 tons was shipped, with a gross content of 1,664 ounces of silver. Three men were employed and four holes were drilled during the month of October.

AINSWORTH (49° 116° N.W.)

Silver-Lead-Zinc

Mines Limited)

Company office, 525 Seymour Street, Vancouver 2; mine Highlander, etc. office, Ainsworth. H. M. Turner, of Western Mines Limited, (Yale Lead & Zinc property manager. Capital: 5,000,000 shares, \$1 par value. This company controls most of the mineral claims lying between Coffee and Cedar Creeks. The property was closed

in December, 1958, and since then has been worked by lessees. T. G. Laughton and three partners continued leasing for the first three months of 1961. They were then employed by Yale Lead & Zinc Mines Limited in doing a small amount of development work on the 1900 level. The mill operated temporarily, milling lessees' ore. The mine and concentrator were completely closed in July. In November the mine office at Ainsworth was completely destroyed by fire.

The concentrator has been left in operational condition. This is the only mill in the area, and it is understood that the company would lease it to any mines in the district that start operating and require milling facilities.

WOODBURY CREEK*

Gold-Silver-Lead-Zinc

(49° 117° N.E.) Company office, 1519 Marine Building, Scranton (Scranton 355 Burrard Street, Vancouver 1. R. H. Olcott, president; Mines Limited) C. E. Lind, mine manager. Capital: 3,000,000 shares, \$1 par

value. This company owns the Scranton group of claims in Kokanee Glacier Park, astride Pontiac Creek, a tributary of Woodbury Creek. The mine camp is on Pontiac Creek, at an elevation of 5,600 feet, and is reached by 111/2 miles of road from a point on the Nelson-Kaslo highway 8 miles south of Kaslo.

A crew of two men were employed from June 1st to September 29th, All work done was on the upper Pontiac vein. This consisted of surface stripping and 101 feet of timbered drift 50 feet below the old workings.

KASLO*

Silver-Lead-Zinc

Black Fox (New **Ainsworth Base** Metals Ltd.)

(49° 117° N.E.) Company office, 623, 470 Granville Street, Vancouver 2; mine office, Kaslo. W. Inverarity, president and manager. Capital: 4,000,000 shares, no par value. This property is on Keene Creek, 101/2 miles by road from Kaslo and one-half mile past the Cork Province mine. A crew of

three men was employed for seven months. The main drift was extended north and south along the vein. The ore occurs in a 7- to 8-foot steeply dipping vein which

^{*} By J. D. McDonald.

strikes roughly north-south. Good zinc ore was observed in the drift, ranging from 6 inches to the full width of the vein. Diamond drilling was done to test for parallel veins to the east. A geophysical survey was made on the property, and it was reported that some anomalies were recorded. Development ore was stockpiled at the mine.

(49° 117° N.E.) Company office, 1776 Broadway, New Utica (Standard York 19, N.Y.; mine office, Kaslo. P. L. Brandon, president; Berylium Corpora-W. W. Tyler, manager. This company has obtained controltion of New York) ling interest in Lajo Mines Limited. The mine is at the head

of Twelve Mile Creek, about 15 miles from Kaslo. An extensive examination of the property was made by Mr. Tyler in the spring and early summer. A pilot run of 900 tons of dump and backfill material was put through the 50-ton mill on the property. The grade of the material was: Silver, 7.7 ounces per ton; lead, 0.65 per cent; zinc, 2.3 per cent.

In September, 1961, the camp was rehabilitated and a small development programme was started. On No. 5 level 98 feet of drifting was done on the east vein. On No. 7 level a 70-foot rope raise and dump pocket was completed, and 43 feet of winze was sunk below No. 7 level, following the ore. On the surface some stripping was done on the West and Sol veins. The property was shut down on December 10th due to winter conditions, and reopening is planned for May, 1962. An average of ten men was employed.

Lead-Zinc-Silver

Empire(49° 117° N.E.) This property consists of eight recorded
claims owned by E. Muller, of Helix, Ore. Mine office,
Kaslo. E. Augustine, mine manager. The road to the prop-
erty leaves the Kaslo-New Denver highway at a point 12 miles west of Kaslo, and
runs in a northerly direction to Mount Jardine, a distance of 7 miles. Two men
worked for one month. Eleven feet of drifting was done. No ore was shipped.

Silver-Lead-Zinc

RETALLACK-THREE FORKS*

(50° 117° S.E.) Company office, 519 West Mission, Kellogg, Idaho; mine office, Retallack. This is a private company consisting of three partners, E. B. Olds, D. G. Lehn, and D. M. Russell, of Kellogg, Idaho. D. M. Russell is mine manager. The property is near Blaylock, adjacent to the

Kaslo-New Denver highway. It consists of fourteen Crown-granted claims which were optioned in May, 1961, from Mrs. G. E. McCready, of Kaslo. Stoping in the old workings on No. 2 level started June 1st. A 200-foot raise to connect No. 3 to No. 2 level was started. The raise was driven 75 feet when the property shut down on December 15th due to winter conditions. An average of three men was employed. The ore was trucked to Sandon and milled at the Carnegie mill. Zinc concentrates were shipped to the Trail smelter and lead concentrates to the Bunker Hill smelter at Kellogg.

Production: Ore milled, 1,079 tons. Gross content: Silver, 11,259 ounces; lead, 153,779 pounds; zinc, 209,384 pounds.

* By J. D. McDonald.

July (July Silver Mines Ltd.)

(50° 117° S.E.) Company office, Carbon, Alta., mine office, Texas, Fourth of Kaslo. V. J. Dresser, president; L. N. Garland, manager. This company holds under option a group of Crown-granted mineral claims at the headwaters of Robb Creek, a tributary of Kaslo River. The property is reached by 6 miles of road

which leaves the Kaslo-New Denver highway at a point 16 miles from Kaslo, and follows the west side of Robb Creek in a southerly direction. The road is well constructed and maintained. On the Texas vein, No. 2 tunnel was reopened and No. 3 tunnel was extended to pick up the downward extension of the vein from No. 2 tunnel. During the operational period from June to October 31st, three men were employed.

Silver-Lead

London-Panama (Vimy Explorations Limited)

(50° 117° S.E.) Company office, 837 West Hastings Street. Vancouver 1; mine office, New Denver. S. Garnett, president; J. Bell, manager. This company has under option the London-Panama group of claims on London Ridge, above Retallack, at an elevation of 6,000 feet. One and a half miles

of old road was rehabilitated, and 3 miles of new road was constructed to the property. The road takes off from the New Denver-Kaslo highway at a point $10\frac{1}{2}$ miles from New Denver. Sampling was done on the surface and in some of the old workings. The caved portal of the Panama was stripped to gain access to the old workings. An average of four men was employed for three months.

SANDON*

Silver-Lead-Zinc

Corporation Limited)

(49° 117° N.E.) Company office, 416, 25 Adelaide Street Silversmith, Rich- West, Toronto; mine office, New Denver. A. W. White, mond-Eureka, etc. president; J. C. Black, manager. Capital: 5,000,000 shares, (Carnegie Mining no par value. This company is controlled by Violamac Mines Limited. The property consists of forty-six Crown-granted and six recorded claims and fractions which include the Silversmith, Slocan Star, Richmond-Eureka, Ruth-Hope, and Slocan

King mines on Sandon Creek, south of Sandon.

In the Richmond-Eureka mine, lessees E. Perepolkin, L. Fried, and E. DeRosa shipped 575 tons of ore to the Carnegie mill. The operational period was three months.

The concentrator operated on a one-shift part-time basis from May to December. Three men were employed. The total amount of ore treated was 5,010 tons, made up of ore from the Victor, 3,174 tons; Caledonia, 1,079 tons; Richmond-Eureka, 575 tons; Lone Bachelor, 182 tons.

Carnation, etc. (Silver Standard Mines Limited)

(49° 117° N.E.) Company office, 808, 602 West Hastings Street, Vancouver 1; mine office, New Denver. R. W. Wilson, president; A. E. Ritchie, general superintendent. This company has optioned a group of fifty-nine Crown-granted claims and fractions in the Sandon area, formerly held by Kelowna

Exploration Limited. The option was obtained from Oil Participations Inc., who had acquired the claims when Kelowna Exploration Limited went into liquidation.

^{*} By J. D. McDonald.

This group of claims covers part of the Standard-Silversmith lode system, and includes such old properties as the Carnation, Wakefield, Mascot, and Minniehaha, and others. It is accessible by 4 miles of road which switchbacks up the mountain west of Sandon. The geology of the area and of the various showings is described in British Columbia Department of Mines Bulletin No. 29.

A diamond-drilling programme was completed between August and early October. A total of 2,573 feet was drilled—five surface holes with a total of 1,543 feet and four underground holes on the Carnation 5480 level, with a total of 1,030 feet. Eight men were employed for a period of two months.

Mines Limited)

(49° 117° N.E.) Company office, 416, 25 Adelaide Street Victor (Violamac West, Toronto; mine office, New Denver. A. W. White, president; J. C. Black, mine manager. Capital: 1,000,000 shares, \$1 par value. Violamac Mines Limited is controlled

and operated by New Dickenson Mines Ltd. The Victor mine is 2¹/₂ miles by road northwest of Sandon, or 2¹/₂ miles by road southeast of Three Forks.

Salvage operations continued during 1961. Mining was done above No. 7 level and above and below No. 5 level. Total development was 261 feet, including 110 feet of drifts and crosscuts and 151 feet of raising. The mine produced 3,174 tons of ore, which was milled at the Carnegie concentrator. The concentrates were shipped to the Trail smelter. The number of men employed was thirteen. There were no lost-time accidents during the year. This is a continuation of the excellent safety record which Violamac operations have had over a number of years.

Lone Bachelor (Lone Bachelor Mines Limited).—(49° 117° N.E.) This company is controlled by Violamac Mines Limited, which owns the adjoining Victor property. The property was under lease to E. Perepolkin, L. Fried, and E. DeRosa, who worked the property until June, 1961. Production was 182 tons of mill feed, which was treated at the Carnegie concentrator.

Slocan Base Metals (Violamac Mines Limited).—(49° 117° N.E.) Violamac Mines Limited has optioned this group of claims adjacent to the Victor property. An adit was driven 1,100 feet on a vein which had not previously been explored. This adit is on the road to Sandon, above and south of No. 4 level of the Lone Bachelor. Two men were employed during 1961.

New Springfield.--(49° 117° N.E.) This Crown-granted claim, 1 mile west of Sandon, is owned and operated by E. H. Petersen, of Sandon. Some development work was done, but there was no production.

Silver-Lead-Zinc

SLOCAN LAKE*

(49° 117° N.E.) Company office, 801 Fina Building, 736 Mammoth (Loma Eighth Avenue Southwest, Calgary; mine office, Silverton. Minerals Limited) D. W. Hilland, president; R. T. Avison, mine manager; C. Towgood, mill superintendent. This company has a long-

term lease on the holdings of Western Exploration Company Limited, in the Silverton area.

Development work started in February, and the main raise from No. 12 level was completed to No. 10 level. A drift was driven along the vein on No. 10 level,

^{*} By J. D. McDonald.

and the raise was driven from No. 10 level to the old Mammoth workings on No. 9 level. This provides access and ventilation to the area below No. 9 level. The main stoping area was between No. 10 level and No. 9 level. Development consisted of 270 feet of drifting and 460 feet of raising. The concentrator, operating on a one-shift basis, treated 3,401 tons of ore during 1961. The average number of men was fourteen, three of whom were employed in the mill.

Hewitt (Kopan Developments Limited).—(49° 117° N.E.) Company office, 906, 11 Adelaide Street West, Toronto. W. W. Dennis, president. This property was leased to F. Pho and J. Hichert for two years. The lessees mined on No. 10 level, and the ore was hauled to the Western Exploration concentrator. The total ore treated was 282 tons.

Galena Farm.-(49° 117° N.E.) F. Mills, of Silverton, holds a lease on this mine, 2 miles by road south of Silverton. The ore was hauled to the Western Exploration concentrator. The total ore treated was 374 tons.

SPRINGER CREEK*

Silver

Mines Limited)

(49° 117° N.E.) This group of five claims is owned by Anna (Silver King Silver King Mines Limited; mine office, Silverton. B. Marasek, president and manager. The property is on the northern side of Springer Creek, adjoining the Ottawa mine on the east. It is accessible by 5 miles of good road from Slocan City.

Development continued on No. 4 level: Drift extension, 650 feet; crosscutting, 35 feet; raising, 205 feet. One raise was driven 170 feet on the dip to con-

nect with No. 3 level, but was not completed. An average crew of four men was employed for six months. No ore was shipped.

Ottawa (Ottawa Silver Mines Limited)

(49° 117° N.E.) Company office, 19 North Bernard Street, Spokane, Wash.; mine office, Silverton. T. C. Hughes, president; C. Thickett, mine manager. The option on this property to Skylane Mines Limited was bought back by Ottawa Silver Mines Limited in the spring of 1961. In August the

property was optioned to Silver Buckle Mining Company, of Wallace, Idaho. This option was dropped in November after geological examination.

The property is on the north side of Springer Creek, 5 miles by road from Slocan City. All work was done by Ottawa Silver Mines Limited. A small tonnage of ore mined on No. 8 level was shipped to the Trail smelter. A new drift was started, called No. 9 level, to be driven along the Ottawa shear to intersect the downward extension of the vein.

Arlington (Aumaque Gold Mines Limited)

(49° 117° N.E.) Company office, 1600, 100 Adelaide Street West, Toronto 1; mine office, Slocan City, A. W. Johnson, president; R. C. Phillips, manager. Capital: 10,000,000 shares, \$1 par value. This property consists of five Crown-granted and ten recorded claims and is under

option from B. I. Nesbitt, of Vancouver. The property is on the north side of Springer Creek, 6.7 miles by road from Slocan City.

^{*} By J. D. McDonald.

The old "A" level of the Arlington mine was rehabilitated by stripping the first 80 feet, which was caved, and retimbering 238 feet of drift. The level was reopened for a length of 700 feet. The portal of "D" level was opened up, and some surface stripping was done. On "A" level eight diamond-drill holes were completed, with a total length of 600 feet. The holes were drilled along the drift at intervals to explore the shear from footwall to hangingwall. Work was completed and all equipment removed by the end of October.

Copper

Nadeco

NAKUSP*

(50° 117° N.W.) This group of six recorded claims is owned by R. Joy, P. Hurry, R. Jordan, F. Jordan, and H. Murphy, of Nakusp. The claims are 8 miles north of

Nakusp, on the new Nakusp-Galena Bay road, 1,000 feet up the hill from the road at an elevation of 1,900 feet. Copper mineralization occurs in narrow shear zones in diorite. Three shears were observed, the widest being 4 feet. A short distance to the west, and down hill from the showings, a limestone bed outcrops and strikes parallel to the strike of the shear zones. Three diamond-drill holes were drilled to a total depth of 144 feet. It was noted that the diorite had pyrite sprinkled through it.

NORTH LARDEAU*

FERGUSON (50° 117° N.E.)

Copper

Company office, 120 McKenzie Avenue, Revelstoke; mine New Zone Copper office, Ferguson. A. E. Peterson, mine manager. Capital: 200,000 shares, no par value. This property is west of the Limited Nettie L and is reached by the Nettie L road, 11/2 miles from

the road up the south fork of Lardeau Creek. The showing is in schistose siliceous rocks alongside the road at an elevation of about 4,000 feet. The zone appears to strike north 20 degrees west and to dip steeply to the southwest. The vein was sparsely mineralized with pyrite and some chalcopyrite. Two grab samples from surface assayed 0.29 per cent and 0.16 per cent copper, and 0.12 per cent and 0.13 per cent nickel.

A drift was started a short distance below the showing and was driven about 35 feet. The property was closed in November. Four men were employed for a three-month period.

Lead-Zinc

SOUTH LARDEAU

pany of Canada, Limited)*

(50° 116° S.W.) Company office, Trail. This property Duncan (The Con- consists of fifty-eight Crown-granted and recorded claims. solidated Mining No underground work was done in 1961. On the surface, and Smelting Com- geological mapping and diamond drilling were done. In an area south of the adit, and another area near the south end of the peninsula on which the mine is located, thirteen diamonddrill holes were completed with a total footage of 6,416 feet.

From the end of April to the middle of August, ten men were employed under the supervision of T. W. Muraro, exploration geologist for the company.

• By J. D. McDonald.

(50° 116° S.W.) This group of thirty-seven claims was lo-Sal (The Consoli- cated by A. B. Mawer, a prospector for The Consolidated dated Mining and Mining and Smelting Company of Canada, Limited, in 1960. Smelting Company The claims are on Mount Willet, a 9,000-foot peak east of the of Canada. head of Kootenay Lake. They cover lead-zinc mineralization Limited)* in dolomite on both limbs of the Duncan anticline that in prospecting was traced southward from the Duncan mine on

Duncan Lake 15 miles to the north. On the Duncan anticline, quartzites of the Hamill group are in the core and calcareous rocks and dark-grey argillites of the overlying Badshot formation and Lardeau group are repeated on the flanks. The anticline is isoclinal; on Mount Willet the axis plunges about 10 degrees to the north and the axial plane strikes about north 20 degrees east and dips steeply to the west.

Mineralization consists of fine-grained pyrite, galena, and sphalerite in grey and dark-grey dolomite and siliceous dolomite. Three zones, known as the A, B, and C zones of mineralization were mapped and sampled. These three zones are between elevations of 7,500 and 8,000 feet and are on the eastern limb of the Duncan anticline. The A zone is in a basin facing southwest about $1\frac{1}{2}$ miles southeast of the summit of Mount Willet, B zone is on a northwesterly facing cliff three-quarters of a mile southeast of the summit, and C zone is on a steep east-facing slope less than one-half mile north of the summit. The A and C zones were tested by packsack diamond-drill holes. Eleven holes totalling about 550 feet were drilled. Although several mineralized shoots are present in each zone, the grade is low and the mineralization not continuous enough to encourage continued exploration.

A helicopter was used for all transportation. The crew consisted of four men under the direction of T. W. Muraro.

CRESTON[†]

(49° 116° S.E.) This property consists of eight recorded claims owned by Mrs. E. Barclay, of Nelson. It is at 3,100 Liz B feet elevation on Wildes Creek, 2 miles north of Wynndel and 1¹/₂ miles east of the Creston-Kootenay Bay highway.

The mineralization occurs as low-grade zinc in limestone, with footwall and hanging wall rocks varying from schist to limy schist. The property was optioned to Sheep Creek Mines Limited in October. At the end of 1961 one diamond-drill hole was completed at 365 feet. During a two-month period three men were employed.

KIMBERLEY[‡]

Silver-Lead-Zinc

Sullivan (The Consolidated Mining pany of Canada, Limited)

(49° 115° N.W.) Company office, 215 St. James Street West, Montreal: western headquarters, Trail. W. S. Kirkpatrick, Montreal, president; R. D. Perry, Trail, vice-president and Smelting Com- and general manager. Sullivan mine office, Kimberley. J. R. Geigerich, general superintendent; R. M. Porter, mine superintendent; H. J. Chalmers, Chapman Camp, superintendent, Sullivan concentrator. The Sullivan mine is on Mark Creek,

2 miles north of Kimberley, and the concentrator is at Chapman Camp, 2 miles south of Kimberley. The holdings include 678 Crown-granted claims and fractions. The following report, prepared by the management, is a synopsis of the operations:----

^{*} By James T. Fyles, † By J. D. McDonald.

[‡] By D. R. Morgan.

"During 1961 the mine produced and the concentrator treated about 2,462,000 tons of ore; seventy-one per cent of which was produced from the section above 3900 level and twenty-nine per cent from below 3900 level. Drawing of P-14 pillar, blasted in July, 1959, was completed after producing 1,500,000 tons.

"Approximately 16,000 tons of slag were loaded and shipped to Trail from the old smelter site at Marysville, B.C.

"The total development footage was 53,597 feet. This included drifting on the new 2600 and 2700 levels. Major development included the excavation of the new 2500-level crushing chamber, coarse ore and fine ore bins. Installation of the new crusher and 1,500-foot conveyor from the 2500 to the 2850 level will be completed in 1962. A new hoist-room was excavated on the 3900 level for No. 32 shaft. Installation of the new hoist for No. 32 shaft was nearly completed at the year-end.

"The total backfill placed was 710,079 cubic yards. This consisted of 378,668 cubic yards (53%) of planned cave, 186,050 cubic yards (26%) of gravel, 120,982 cubic yards (17%) of float rock (with five per cent iron sulphides added) placed in 5 stopes below 3900 level, and 24,379 cubic yards (4%) of development waste. The gravel filling program which started in 1935 has now been completed.

"The ventilation system supplied fresh air and exhausted 900,000 c.f.m. of contaminated air. A new exhaust ventilation shaft (No. 31) was near completion and will replace No. 14 shaft. An additional 90,000 c.f.m. will be added to the exhaust system when this is completed. Thirteen primary fans, requiring 1,425 horsepower, were in operation.

"Improvements and developments in 1961 included the noise control devices installed on vane type motors on blast-hole drills and on long-hole percussion drills. The use of Nitro-Carbo-Nitrate as a blasting agent was progressing favourably by the end of 1961.

"The Sullivan mine had 16 lost-time accidents in 1961, a reduction of 10 from the previous all-time low of 26 in 1959 and 1960. No lost-time accidents occurred at the Sullivan concentrator in 1961. Accident frequency rate at the mine was 10.1 accidents per million man-hours worked and severity was 950.5 days lost per million man-hours worked or a total time loss of 1,505 days. At the concentrator there were no accidents in 1961. A carry-over of 220 days lost time from former accidents gave a severity rate of 298.8 days lost per million worked. No. 1 shaft section, employing about 120 men, completed their second consecutive calendar year without a lost-time accident.

"Fourteen Sullivan mine and concentrator employees obtained or renewed their Industrial First Aid certificates. One hundred and twenty-eight employees passed St. John's First Aid examinations. A team from the Sullivan concentrator won the East Kootenay First Aid competition.

"Sixteen employees obtained their Mine Rescue certificates in 1961, making a total of 279 since 1930. A team from the Sullivan mine won first place in the B.C. Provincial Mine Rescue competition at Nanaimo. Refresher training was given to twenty-eight men in four rescue squads and to all underground supervisors.

"The concentrator operated 247 days during 1961 at an average of 9,966 tons of orc per day. Employees at the year-end totalled 807 at the mine and 379 at the concentrator." Lead-Zinc

(49° 115° N.W.) Head office, 410, Metropolitan Building, tion (Reeves Limited)

Western Explora- 836 West Hastings Street, Vancouver 1; mine office, Remac. L. M. Kinney, Metalline Falls, Wash., general manager; F. R. MacDonald Mines Thompson, manager. This property is near the headwaters of the east branch of Mark Creek, 10 miles north of Kimberley. It can be reached by a rough road leading from the old open

pit area at the Sullivan mine. The property comprises 110 Crown-granted claims, leased from the Western Exploration Company Limited, and six claims held by record at the north end of the group. Activities were directed to exploration.

A crew of men extended a jeep-road 3.3 miles from the existing road on Consolidated property, and soil-sampled an area of claims in the vicinity of Buhl Creek. Preparations were made for a number of drill sites on the Kent No. 5 and Bur No. 5 mineral claims, and a contract crew drilled two diamond-drill holes totalling 1,461 feet on the claims. M. H. McLeod was in charge of the work for the company.

ST. MARY RIVER*

Copper

(49° 116° N.W.) Head office, 604, 744 West Hastings Street, Vancouver 1. John Drybrough, Winnipeg, president. Welcome and **Enterprise** (New- This property is near the headwaters of the St. Mary River, mont Mining Cor- 25 miles northwest of Kimberley. It is 2 miles east of the poration of Canada outlet of Sawyer Creek, and can be reached by about 34 miles Limited) of road from the highway at Marysville. In addition to the

Welcome and Enterprise Crown-granted claims, the property consists of eighty-eight mineral claims which have been optioned by the company

for exploration. The showings are quartz-carbonate lenses containing chalcopyrite and locally galena in a vertical, north 20 degrees east fault zone.

Exploration work during 1961 included surface stripping, mapping, and 1,590 feet of diamond drilling in five holes. A maximum of eight men was employed. The work commenced in mid-May and continued to August 1st under the direction of A. J. Stanley, geologist.

WINDERMERE*

TOBY CREEK (50° 116° S.E.)

Silver-Lead-Zinc

Mineral King (Sheep Creek Mines Limited) Company office, 6, 490 Baker Street, Nelson; mine office, Toby Creek. J. R. Pyper, president; H. E. Doelle, managing director; J. B. Magee, resident manager. This mine is at Toby Creek, 28 miles southwest of Athalmer. It has been developed in a ridge between Jumbo and Toby Creeks, and is

entered by three levels which have been driven from the mountainside north of the camp. No. 7, the lowest or main haulage level, is at an elevation of 4,775 feet, No. 3 level at 5,460 feet, and No. 2 level at 5,595 feet. Three intermediate levels have also been driven from an inclined shaft in the workings but do not extend to the surface. The mine is operated by the open-stope method, and the workings are in four orebodies known as the "A," "B," "C," and "D." The property comprises twenty-three Crown-granted claims and seventeen located claims. A description of the deposit is included in the 1959 Annual Report.

The mine produced 211,010 tons of lead-zinc ore in 1961, most of the ore coming from the stopes above No. 4 level. The ore was developed and mined from

^{*} By D. R. Morgan.

all the levels between No. 2 and No. 7, and its extraction was extended across the "A," "C," and "D" zones. Total development included 4,274 feet of drifting and crosscutting, 1,397 feet of raising, and 23,769 feet of diamond drilling. New development included the extension of No. 7 level to the orebody on the north side of the workings, and the commencement of a new level to enter the limestone at an elevation of 300 feet below the present workings. This level is being driven from the Jumbo Creek side of the property and will be known as No. 9 level.

The production of barite during 1961 was 4,215 tons. Most of the barite was obtained from the "C" and "D" zones above No. 3 level. The reserves in that area are rapidly nearing depletion, and preparations are being made to mine barite from the lower levels. The barite is shipped in the crude state, and is trucked to Invermere for shipment by rail.

The mine was ventilated by both mechanical and natural means. Approximately 29,000 cubic feet of air per minute was exhausted from the workings, and of this quantity 18,000 cubic feet per minute was supplied by a 15-horsepower electrically driven fan which is located on the No. 2 intake airway. The remainder was by natural means. This quantity was found to be sufficient for the requirements of the workings.

The concentrator operated at 90 per cent capacity throughout the year and produced 19,247 tons of zinc concentrates, which averaged 57.5 per cent zinc, and 7,227 tons of lead concentrates, grading 68 per cent lead. The concentrates were trucked to Invermere for shipment by rail. Surface construction and alterations during 1961 included the addition of a 22- by 40-foot extension to the power-plant building and the installation of a 350-kva. diesel-operated a.c. generator. Other construction included the building of a duplex dwelling, one teacher's quarters, and an additional room to the school. The company logged and cut 180,000 board feet of timber for the mine.

The average number of men employed was ninety-nine, of whom fifty-five were engaged underground.

Copper

SPILLIMACHEEN*

St. Andrew Mining (50° 116° N.W.) Head office, 1501 Burrard Building, 1030
St. Andrew Mining West Georgia Street, Vancouver 5. This company relinquished a large number of claims held in the Warren Creek area in 1960, and presently holds 101 mineral claims which are located between the headwaters of Warren Creek and Rocky Point Creek, 15 miles due west of Spillimacheen. The claims run in a north-south direction and form a block 5¼ miles long and 1¾ miles wide. The northern end, on Rocky Point Creek, can be reached by a 30-mile logging and mining road leading from Parson, and the southern end by a 20-mile logging-road from Brisco along Bugaboo Creek and a 5-mile pack-horse trail. The property is divided into two parts known as the Sykes and Copper Butte zones, and elevations range from 7,000 to 9,000 feet. A report on a previous prospect in the area is included in the 1920 Annual Report.

Geological and geophysical surveys were made in 1961, and eight holes were diamond drilled, totalling 1,200 feet. The work was under the direction of A. C. A. Howe, consulting engineer, and lasted from June 1st until the beginning of September. The crew consisted of six men.

* By D. R. Morgan.

RUDDOCK CREEK*

Lead-Zinc

(51° 118° N.W.) Head office, 25 King Street West. Toronto. H. V. Fraser, president: Alex, Smith, manager: E. D. IT and IN (Ventures Limited) Dodson, geologist in charge. More than 100 claims, known as the Ruddock Creek property, have been located on the

boundary between the Revelstoke and Kamloops Mining Divisions about 60 miles northwest of Revelstoke. The claims are on Gordon Horne Peak, a 9,500-foot summit between the head of Ruddock Creek, which flows east into the Columbia River, and Oliver Creek, which flows north and west into Tumtum Lake.

The claims cover lead-zinc mineralization in a calcareous laver in schists and gneisses of the Shuswap terrain. The mineralization was discovered in late September, 1960, on the south slope of Gordon Horne Peak between elevations of 7,500 and 8,000 feet. Subsequently it was traced intermittently to the northwest onto the east slope of Oliver Creek.

The mineralized zones consist of relatively continuous layers a few feet to a few tens of feet thick containing dark-brown sphalerite, pyrrhotite, and galena closely associated with a layer of grey to white fetid marble. Sphalerite commonly is medium grained and occurs with quartz in a granular aggregate which superficially resembles a gneissic gabbro. Sulphides also occur as matrix in a breccia of rounded and streaked-out fragments of glassy quartz and siliceous rock. Locally very fine-grained sphalerite, pyrrhotite, and quartz form a thinly banded rock of cherty appearance, containing rounded and eye-shaped cherty fragments. All the cherty material seen in thin-section resembles mylonite. Fluorite, barite, epidote, and amphibole are found at places in the mineralized zones. Sill-like sheets and irregular masses of pegmatite which in general are not mineralized are present throughout the schists and gneisses.

On Gordon Horne Peak, where most work has been done, the schists and gneisses dip gently to the southwest more or less parallel to the slope of the hill. The mineralized layers are contorted by relatively small complex folds which appear to plunge gently to the northwest. The pegmatites and the folding produce a complicated distribution of the mineralized zones.

A Hiller 12E helicopter, based at Mile 64 north of Revelstoke on the Big Bend highway, was used for transportation. A tent camp was maintained near the showings, and during the summer detailed mapping and drilling of the showings on the south slope of Gordon Horne Peak were carried on.

REVELSTOKE*

solidated Mining pany of Canada, Limited)

(51° 118° S.E.) Head office, Trail. This property consists Wigwam (The Con- of fourteen recorded claims on the north side of the Akolkolex River, a westerly flowing stream that joins the Columand Smelting Com- bia 14 miles south of Revelstoke. The property is accessible by rough road which leaves the Revelstoke-Arrowhead highway 101/2 miles south of Revelstoke and follows a southeasterly direction for 5 miles to the Akolkolex River then

turns northeastward up the river for about 4 miles. The road along the river was cleared by bulldozer during the summer, and a tent camp was used by the exploration crew of six men during September. Work consisted of plane-table geological mapping, trenching, sampling of the known showings, and prospecting of the surrounding country.

^{*} By J. T. Fyles.

The Wigwam is a lead-zinc property, on which considerable work was done between 1924 and 1930 by the Wigwam Mining Company, of Tacoma, Wash. At that time a road was built to the property from the railway station of Wigwam, a camp was built at the end of the road below the showings, almost 6,000 feet of diamond drilling was done, and many trenches, pits, and a number of short adits were made. Very little work has been done on the property since 1930. The camp has since been destroyed by fire, and the present road makes use of loggingroads north of the Akolkolex River and the old mine road along the river.

The showings consist of replacements of limestone and siliceous limestone by pyrrhotite, pyrite, galena, and dark-brown sphalerite. The limestone forms a thick layer which strikes north 20 to 30 degrees west and dips 20 to 25 degrees to the east. The rocks adjacent to the limestone are somewhat metamorphosed dark-grey argillites and schists. The limestone is finely crystalline white or grey and white banded, and is fetid. It contains siliceous zones with layers of fine-grained grey or white cherty rock a few inches thick lying parallel to the banding in the limestone. These thin layers show repeated tight dragfolds which plunge at low angles to the north and are Z-shaped looking down plunge.

The sulphides are mainly in the siliceous parts of the limestone. They are mostly very fine grained and occur in layers parallel to the layering in the siliceous limestone. Some of the mineralization consists of scattered disseminated grains of sulphides; other mineralization is massive in layers a few feet thick which locally contain rounded fragments of siliceous rock resembling incompletely replaced breccia fragments. Locally fairly coarse-grained galena and minor light-brown sphalerite and pyrite occur as irregular lenses in crystalline limestone. Grades given in old reports in general are low in lead-zinc and silver (*see* Ann. Rept., 1929, p. 334).

The main siliceous zone extends to the northwest up the hill from the end of the road, a horizontal distance of almost a mile and a vertical distance of more than 2,000 feet. The zone is about 200 feet thick, gradually becoming thinner toward the northwest. Early exploration outlined three poorly defined mineralized lenses within the siliceous zone. Because of the low dip of the limestone, the dimension exposed by the slope of the hill is more nearly parallel to the dip than it is to the strike. Exploration has not gone far enough to determine the rake of the mineralized lenses.

[References: Minister of Mines, B.C., Ann. Rept., 1929, p. 334; Gunning, H. C. (1929), Lardeau Map-area, British Columbia, Geol. Surv., Canada, Mem. 161, pp. 101–103.]

SKAGIT RIVER

Copper

A.M. (Canam Copper Company, Ltd.)*

 $(49^{\circ}\ 121^{\circ}\ S.E.)$ Company office, c/o 609, 850 West Hastings Street, Vancouver 1. W. M. Sharp, resident engineer. This property, comprising eight Crown-granted and fifty recorded claims, is astride the divide on the west boundary of Manning Park, about 4 to 6 miles by road from the Hope-

Princeton highway, 26 miles east of Hope. Detailed descriptions of this property have appeared in the Annual Reports for 1938, 1949, 1954, and 1959. The last-mentioned report indicates that the mine is in a steep fold close to a major fault.

Intermountain Construction Ltd., employing a crew of twenty-five men, extended the 8- by 8-foot No. 15 level or 4300 adit a total distance of 932 feet to the east face, now 6,400 feet from the portal. The final 220 feet of tunnel was driven

^{*} By J. E. Merrett.

in the ore zone, and an additional 175 feet was driven in a southerly direction in brecciated beds. Near the east face a raise machine was used to complete 136 feet of 6- by 10-foot timbered raise. In driving the raise, 650 feet of long-hole drilling was done for perimeter blasting with Xactex explosives. In addition, 2,200 feet of exploratory diamond drilling was completed. All work was suspended at the end of August.

Copper-Lead-Zinc

Gold Coin (Earlcrest Resources Ltd.)* (49° 121° S.E.) Company office, 213, 678 Howe Street, Vancouver 1. E. M. Olts, president; R. B. Stokes, engineer in charge. This company holds forty-seven claims and two mineral leases on the north side of Shawatum (Ten Mile) Creek, a tributary of Skagit River, 25 miles southeast of

Hope. The property is reached by leaving the Trans-Canada highway a few miles west of Hope and following the Silver Creek-Skagit River road in a southeasterly direction for 28 miles. A short distance beyond the Skagit River bridge a jeep-road leads to the claims, a distance of 3 miles. The showings, consisting of numerous outcrops of sulphide mineralization in altered sedimentary and volcanic rocks of the Hozameen group, have been prospected over a number of years by minor surface workings. In 1950 a few hundred feet of diamond drilling was done on the Gold Coin No. 2 claim to explore the downward extension of a series of narrow veins that outcrop on bluffs to the north of Shawatum Creek and east of Star Group Creek. In 1958 Noranda Exploration Company, Limited, did some prospecting, mapping, and magnetometer surveying. The present company began similar work in 1960. In 1961 a crew averaging nine men was employed under the direction of R. B. Stokes between May and November. A magnetometer survey was carried out on the Gold Coin No. 4, a total of 205 feet of trenching was done on the Gil group, test pitting and stripping was carried out on the Gold Coin group, and eight diamonddrill holes totalling 1,377 feet were drilled. Over 4 miles of jeep-road was completed up to the camp. The company reports that the object of its work has been to investigate the possibility of establishing a large low-grade open-pit operation. The weighted average for thirteen cut samples taken over the mineralized zone is, according to figures published by the company, as follows: Gold, 0.049 ounce per ton across 22.5 feet; silver, 0.86 ounce per ton across 22.5 feet; copper, 0.10 per cent across 21.8 feet; lead, trace across 21.8 feet; zinc, 3 per cent across 22.8 feet.

[References: Minister of Mines, B.C., Ann. Repts., 1929, pp. 241, 242; 1938, pp. F 16-F 20.]

HOPE*

Nickel-Copper

Pride of Emory (Giant Mascot Mines Limited)

(49° 121° S.W.) Company office, 844 West Hastings Street, Vancouver 1; mine office, P.O. Box 820, Hope. W. Clarke Gibson, president; H. Hill & L. Starck & Associates Ltd., consulting management engineers; F. Holland, mine superintendent; C. Major, mill superintendent; O. C. Gilroy, surface

superintendent. The property is at the head of Stulkawhits (Texas) Creek, which flows eastward into the Fraser River about 6 miles north of Hope. From a point on the Trans-Canada highway 10 miles north of Hope, a good gravel road 5.1 miles long leads up Stulkawhits Creek valley to the mill and surface buildings at the 2600 adit portal. A branch road from this point gives access to the 3550 adit portal. The adit numbers designate elevations above sea-level.

^{*} By A. R. C. James.

The Pride of Emory showing was found in 1923 by Carl Zofka, and since that time development and production have been carried on by several different companies. A short summary of earlier development was given in the 1959 Annual Report. In 1959 Giant Mascot Mines Limited acquired Newmont Mining Corporation's interest in Western Nickel Mines Limited, and on May 26th joined with Pacific Nickel Mines Limited to form a new company, Giant Nickel Mines Limited. The mine was immediately prepared for production, which began on July 5, 1959. Apart from occasional temporary stoppages, production has been continuous since that time. Early in 1961 Pacific Nickel Mines Limited sold its interests to Giant Mascot Mines Limited, and the latter company took over the sole ownership of the property.

The ore occurs in a number of separate orebodies, the principal ones being the Pride of Emory, the Brunswick Nos. 1, 2, and 5, and the 2663, which was mined out in 1958. The orebodies are steeply plunging pipe-like deposits and occur in an irregular stock-like intrusion of ultrabasic rocks approximately $1\frac{1}{2}$ square miles in area. They comprise disseminated and massive sulphides, of which pyrrhotite, pent-landite, and chalcopyrite are the most common. The mine is developed from two adit levels—the 3550 level, with portals on both west and east sides of the mine, and the 2600 level, which is the main haulage level. An ore-pass and an internal inclined shaft joins the two levels. Until this year most mining and development was in the section of the mine from the 3550 level to the outcrops of the orebodies at the 4,000- to 4,250-foot levels. This year two new levels were developed from the internal shaft at 3,400 and 3,250 feet elevation, respectively.

In 1961 most production was from the upper section of the Pride of Emory orebody. By the year-end this section was mined out, with the exception of some pillars, and broken ore was being drawn from the "B" zone of this orebody. In the Brunswick No. 1, an additional 10,000 tons of ore was broken at the surface, and this was being drawn at the year-end. Diamond drilling confirmed a substantial tonnage of ore in this orebody between the 3550 and 3710 levels, and this was being drilled for long-hole blasting at the end of 1961. In the Brunswick No. 5, diamond drilling indicated a considerable tonnage of ore above the back of the old stope at the 3,710-foot level up to 3,850 feet elevation. This was drilled, and blasting was nearly completed by the year-end. The ore was loaded into 6-toncapacity Granby cars at two mucking-machine draw-points on the 3550 level and trammed to the main ore-pass.

The most important development work in 1961 has been in the section of the mine below the 3550 level. Early in the year a breakaway was made from the internal shaft at the 3400 level. A crosscut was driven 340 feet to a point midway between the Brunswick Nos. 1 and 5 orebodies. From here drifts were driven laterally to intersect the two orebodies and to provide drill sites for the exploration of the Brunswick Nos. 2 and 7 orebodies. Development and currently planned long-holing has been completed to the 3550 level in the Brunswick Nos. 1 and 5 orebodies. Blasting is in progress, and ore is being drawn from both stopes. Ore is extracted via scraper drifts and is dropped to the 3400 level, where a 100-horsepower slusher pulling tandem 60-inch hoes moves the ore to the main ore-pass.

Another level at 3,250 feet elevation has also been developed from the shaft. The main crosscut has been driven 9 by 9 feet in cross-section, and trolley locomotives with 6-ton Granby cars have been installed for haulage. This level is planned as a major access to the Brunswick orebodies to the south, the Pride of Emory to the north, and the 1600/1900 zone to the east. Emphasis has initially been given to exploring the Brunswick Nos. 5 and 7 zones, and development here between the 3250 and 3400 levels was virtually completed by the end of the year. It is planned to load from the Brunswick No. 5 by chute and bulldoze chambers and from the Brunswick No. 7 by two scraper draw-points direct into Granby cars. In the Brunswick No. 2 zone, diamond drilling has indicated a substantial tonnage of ore between the 2950 and 3550 levels, and a probable downward extension of this orebody to the 2600 level is also indicated.

The following is a summary of development work done in 1961:---

	Feet
Drifting and crosscutting	3,392
Raising	3,407
Diamond drilling	32,079
Long-hole (blast-hole) drilling	155,178

The mine and surface plant was shut down from November 26th to the end of the year to permit extensive alterations to the crushing plant and to permit removal to surface of waste from an intensified development programme. At the crushing plant a Nordberg vibrating grizzly was installed ahead of the primary crusher, a Symons rod deck screen replaced the existing screen, and a short head gyratory crusher replaced the standard secondary crusher. An addition was made to the crusher building to permit reinstallation of the standard gyratory crusher, which is being overhauled. The mill continued to produce a bulk nickel concentrate, which is supplied to Sumitomo Metal Mining Company Ltd. in fulfilment of a three-year contract. The concentrates are trucked from the property to Vancouver Wharves Ltd. bulk-loading plant at North Vancouver by two Mack truck-trailer units. In 1961 a total of 260,583 tons of ore was milled, a 4-per-cent increase from last year's production despite the five-week shut-down.

The crew in December comprised 139 men, of whom seventy-six were employed underground. The accident rate at Giant Mascot mine in 1961 showed some improvement on the 1960 record; there were thirty-one lost-time accidents, giving a rate per million man-hours of 89.0 as compared with 162.0 in 1960. However, this still compares unfavourably with the Provincial metal-mine rate, which was 21.0.

HARRISON LAKE

Copper

Valley View*

(49° 121° S.W.) Owner, George Dietrich, Agassiz. This property is on the east slope of Mount Woodside, 41/2 miles west of Agassiz. Steve and Mike Romaniuk, of Harrison Hot

Springs, leased the property and in April trucked to the Britannia concentrator 50 tons of chalcopyrite-bearing quartz ore which had been removed by surface trenching. Production was suspended when it was found the grade of the ore was not sufficient to warrant this type of operation.

Copper-Zinc-Gold

M. & H. Mining Co. Ltd.)*

(49° 121° S.W.) J. N. McLeod, New Westminster, presi-Lucky Jim (Mac.- dent. This property, comprising thirty-one recorded claims and fractions, is on the east side of Chehalis River approximately 8 miles by road north from the Mission-Agassiz highway at Harrison Mills. Between January and May a crew of

five men erected a camp, constructed roads to the tunnel portal, and completed 470 feet of 6- by 7-foot drift on a vein occurrence of pyrite, chalcopyrite, and sphalerite in quartz.

^{*} By J. E. Merrett.

HOWE SOUND*

Copper-Zinc

Britannia (Howe Sound Company (Britannia Division))

(49° 123° N.E.) Head office, 500 Fifth Avenue, New York, N.Y.: mine office, Britannia Beach. William M. Weaver, Jr., president; A. D. McCutcheon, manager; A. J. McDougall, general superintendent. Shrinkage, cut-and-fill, filled squareset, sublevel caving, and blast-hole mining methods were used to remove ore from the Victoria, No. 8, and Bluff ore zones.

Exploration development was done locally in many areas, the principal amounts being done on the extension of 41-234 drift in the Victoria mine and in extending the east and west headings of the 5700 level of No. 8 mine. During 1961, 8,567 feet of drifting and 1,580 feet of crosscutting were completed. Additional exploration was done by diamond drilling, of which 25,058 feet was completed. The concentrator milled 461,601 tons of Britannia mine ore and 4,800 tons shipped by various mining operations for custom milling. The milled ores produced 22,064 tons of copper concentrate, 5,352 tons of zinc concentrate, and pyrite which was stockpiled. The copper and zinc concentrates were shipped to the Tacoma and Anaconda smelters, respectively, and 19,790 tons of pyrite was also shipped for sale. Some metallic copper was recovered by precipitation, by passing mine drainage water over iron shavings. In addition, some mill tailing was sold to British Columbia Cement Company Limited, Lafarge Cement of North America Ltd., and Construction Aggregates Ltd.

During the year five employees were successful in passing a mine-rescue training course, forty-five men completed industrial or St. John Ambulance first-aid courses, and eight men completed shiftboss certification.

The average number of men employed was 336, of which 205 were employed underground.

SECHELT PENINSULA*

Copper

(49° 123° N.W.) Company office, 1505 West Third Avenue. Vancouver 9. Colonial Mines, a registered partnership, Cambrian Chieftain employing a crew of five men, optioned the Cambrian Chieftain property of twelve recorded mineral claims, located south

of Mount Hallowell near the top of the steep western slope of the Caren Range on Sechelt Peninsula. Access to the showings, at a general elevation of 3,200 feet, is by way of 5¹/₂ miles of steep gravel road from Kleindale, a settlement on Pender Harbour.

Between May and September, 1961, 389 tons of ore was mined by open-pit methods. The ore was trucked to a newly constructed dock at Garden Bay, whence 214 tons was shipped to the Britannia concentrator and the balance to the Tacoma smelter. It was reported that the average grade of the ore was 7 per cent copper, 4 ounces silver, and 0.02 ounce gold per ton.

In addition, geophysical (magnetometer) and geological surveys were made of the property.

Gold

Mines Ltd.)

(49° 123° N.W.) Company office, 1007 Royal Bank Build-**Skookum** (French ing, Vancouver 2. This company optioned and examined the Skookum group of twelve claims, located in the area of Aero Bay, Agamemnon Channel in Jervis Inlet at the north end of

* By J. E. Merrett.

Sechelt Peninsula. It was reported that a crew of two men working during the months of July and September under the direction of John Biggs completed 16 feet of 4- by 4-foot shaft and 243 feet of diamond drilling in eight holes. The mineralization was reported to be pyrite in a granitic porphyry.

POWELL LAKE*

Copper-Iron

(50° 124° S.W.) Company office, Room 405, 25 Adelaide Copper King (Delhi Street West, Toronto. Andrew Robertson, manager. This **Pacific Mines** company optioned from Norco Resources Ltd. five Crown-Limited) granted and 102 recorded claims south of Olsen Lake and in the vicinity of Theodosia River. A crew of twelve men and

a helicopter were used to explore and diamond drill occurrences of magnetite and chalcopyrite in a northwesterly trending skarn zone along the southeast flank and across the summit of a ridge approximately 1 mile south of Olsen Lake. The option was dropped after 3,400 feet of diamond drilling had been completed in twelve holes.

BUTE INLET*

(50° 125° N.E.) Company office, 904, 1030 West Georgia Colossus (Phelps Street, Vancouver 5. W. A. Hutchison, Toronto, general Dodge Corporation manager; D. C. Malcolm, Vancouver, resident geologist. of Canada, Limited) This company held under option from H. W. Gardner, Van-

couver, four Crown-granted and forty recorded mineral claims and fractions in the vicinity of Buker Creek on the north side of Estero Basin of Frederick Arm, west of the south end of Bute Inlet.

A crew of four to six men, employed from February to June, rehabilitated three tunnels and completed 363 feet of diamond drilling in three underground drill-holes.

LOUGHBOROUGH INLET*

Gold

Copper

ing Corporation Ltd.)

(50° 125° N.W.) Company office, 580 Hornby Street, Van-Loughborough Gold couver 1. L. Wolfin, president. This company optioned (Great West Min- twelve claims in the area 1 mile south of Gray Creek on the east shore of Loughborough Inlet, 7 miles north of Chancellor Channel. This property was formerly known as the Golden Gate group and was described in the 1936 Annual Report.

The mineral exposures and mine workings are at an approximate elevation of 500 feet and 4,000 feet from tidewater. It was reported that gold and silver mineralization occurs in northeasterly striking quartz veins and stringers within a 10- to 15-foot-wide band of altered and sheared andesitic rocks in typical coastal granodiorite. A crew of two men was employed for a month examining this property and completing 396 feet of diamond drilling in two holes.

TEXADA ISLAND*

Iron-Copper

(49° 124° N.W.) Registered office, 626 West Pender Street, Texada Mines Ltd. Vancouver 2; mine office, Box 35, Vananda. A. D. Christen-

sen, San Francisco, president; B. L. Alexander, general manager; J. Kenneth Halley, chief engineer; J. Yuill, mine superintendent; L. D. Smillie, mill superintendent. This property, comprising eight Crown-granted and twelve

^{*} By J. E. Merrett.

recorded claims, is at Welcome Bay, 3 miles northwest of the mine camp at Gillies Bay on the southwest coast of Texada Island.

Open-pit mining methods were used to remove 770,804 cubic yards of waste rock and 894,621 tons of iron ore. The concentrator milled 893,892 tons of ore and produced 475,419 tons of iron concentrate and 7,352 tons of copper concentrate.

An exploration programme was undertaken to investigate the ore potential below the bottom limits of the open pits. In carrying out this work 108 diamonddrill holes totalling 34,261 feet were completed. A survey was also made of the possibility of mining the indicated ore.

At the mine plant a new 36- by 48-inch primary jaw crusher, a hydraulically activated feeder, and a new dumping pocket were installed to replace the older wornout unit. Additions were made to the grinding and flotation sections of the recovery plant to improve and increase recovery. These additions included a 9- by 14-foot Dominion rod mill with its accessory conveyors, pumps, etc. A new three-drum wet magnetic separator was added to the coarse circuit, and a larger filtering unit was added to the fine circuit.

Other additions to the mine plant included a new assay office, an 80,000-gallon steel water-storage tank, new explosive and cap magazines, a new electrical transformer bank, and two substation buildings. A new carpenter-shop was added to the Gillies Bay camp plant. The average number of men employed was 180.

QUADRA ISLAND*

Copper

Copper Road

(50° 125° S.E.) This property, comprising twelve recorded claims, is owned by Messrs J. and E. G. Adams, of Campbell River, and is under lease to Robert I. Bennett, of Seattle,

Wash. The mineral occurrence is a narrow quartz-bornite vein having a generally northwest strike and steep dip. A crew of two men completed 110 feet of open cut and 30 feet of winze, from which 87 tons of ore was shipped to the Britannia concentrator. Work completed on the surface plant included the clearing and levelling of an operating yard, the construction of a water reservoir and the installation of a permanent water-line, the installation of truck-loading facilities, and the erection of a sinking A-frame.

VANCOUVER ISLAND

SAYWARD (50° 125° S.W.) †

Iron

Office, c/o Caldwell and Hartt, R.R. 1, Campbell River. The group consists of seventy claims, held by record, 4 miles southwest of Sayward and 3 miles west of the junction of the

White and Salmon Rivers. The magnetite showings were found in 1959, and there is a brief description of them in the Annual Report for 1960.

Diamond drilling totalling 2,100 feet in twenty-four holes was done to the end of 1961 on the Iron Mike, Iron Dan, Iron John, and Iron Dick claims, and some stripping was done on the Iron Ken. The diamond-drill holes were grouped in four areas.

Six vertical holes explored for the continuation of magnetite exposed in outcrops on the Iron Dan mineral claim over a strike length of 300 feet. In two holes appreciable core lengths of clean magnetite were obtained, 14 feet in one and 6 feet

Iron Mike

^{*} By J. E. Merrett. † By N. D. McKechnie.

in the other. The 14-foot section appears to correlate with a zone of thin magnetite, or magnetite stringers in skarn, encountered in the other five holes; the 6-foot section in hole 6 does not appear to be represented in the other holes.

Figure 12. Diamond-drill intersections on the Iron Mike property.

Holes 7 to 18 (Fig. 12) tested an area 200 feet square on the Iron Mike mineral claim. These were the strongest and most persistent indications of magnetite found. The longest core length of clean magnetite was 39 feet in hole No. 8. The better intersections in the other holes were of the order of 20 feet, but the vein pinches quite rapidly southward.

Three vertical holes were drilled on the Iron John mineral claim at 100-foot intervals, away from an exposure of magnetite. One, nearest the outcrop, cut 15.5 feet of magnetite with numerous skarn inclusions; the second hole cut 10 feet of magnetite from surface, beneath 5 feet of overburden, and an additional 35 feet of core containing clean magnetite in lengths of 8, 3, and 5 feet and 4.5 feet of magnetite and skarn; the third hole cut 8.5 feet of magnetite with skarn inclusions.

Three holes were drilled near magnetite outcrops on the Iron Dick mineral claim over a length of 200 feet. The core of only one was seen by the writer; it contained magnetite with garnetite inclusions in the first 5 feet from surface.

Limestone was cut in only three of the holes-two on the Iron John mineral claim and one, No. 14, on the Iron Mike. There was no apparent continuity of limestone between the Iron John holes, 100 feet apart, nor did limestone show in holes 13 and 15, 50 feet on either side of hole 14. It is possible that if more continuous limestone beds could be found in the vicinity, magnetite associated with them might be in larger bodies,

NIMPKISH LAKE (50° 126° S.W.)*

Iron

(Nimpkish Iron Mines Ltd.)

Company office, 419, 409 Granville Street, Vancouver 2; Nimpkish, Klaanch mine office, Camp A, Beaver Cove. S. V. Wines, project manager; D. Burns, mine superintendent; R. Bick, mill superintendent. A crew of sixty-five mined 666,361 tons of ore, from which 423,826 tons of concentrate was produced

and shipped by Canadian Forest Products Limited railway to the loading-dock at Beaver Cove. In addition, 183,435 cubic yards of waste rock was removed from the ore zone. Sixteen diamond-drill holes totalling 2,595 feet were completed on an extension of the ore zone on the south side of the pit. In addition, several holes were diamond drilled to test a magnetic anomaly about 1,000 feet northwest of the pit.

The camp is on Anutz Lake, immediately south of Nimpkish Lake, and the pit is 5 miles farther south, on the southwest bank of the Nimpkish River. The crushers are immediately southeast of the pit, and the mill is across the river. The access road for the entire operation passes across the pit headwall.

The regional geology is described in Geological Survey of Canada Memoir 272 and illustrated in Map 1029A. Near the pit the Nimpkish River more or less follows a contact zone between Ouatsino limestone on the southwest and a large intrusion of quartz diorite and related rocks on the northeast. The rock of the contact zone is mostly fine grained and medium to dark green, and was assigned by Hoadley to the Karmutsen group. In the pit, however, it appears to intrude the limestone and is locally medium grained. It may be an instrusion associated with the Bonanza group or a chilled marginal phase of the quartz diorite. It is called greenstone in this report.

The local geology is described in the Annual Report for 1960 and is illustrated by Figure 13 herewith. Relations are complex in detail, but in general diorite underlies the east part of the pit, limestone the west part, and greenstone occurs between these rocks in the north, near the river. Four magnetite orebodies lie athwart the limestone-diorite contact; from north to south they are called the River, Road, South, and East orebodies. The Road and South orebodies are incompletely separated by a wedge of diorite. The East orebody is small, and mining from it has been incidental to pit preparation.

^{*} By G. E. P. Eastwood and J. E. Merrett.

Skarn and sulphide minerals are abundant only in the River orebody, where the host rock is largely greenstone. In the other orbodies the magnetite is generally massive and contains only sparse pyrite and pyrrhotite. Some garnet, epidote, and pink microcline have formed in diorite adjacent to magnetite, but limestone is generally merely recrystallized. Considerable ankerite is developed in sheared limestone west of the South orebody, but it is not known whether it is related to magnetite deposition. In the River orebody the principal minerals associated with the magnetite are garnet, epidote, calcite, and pyrite, with less amphibole, pyrrhotite, and chalcopyrite.

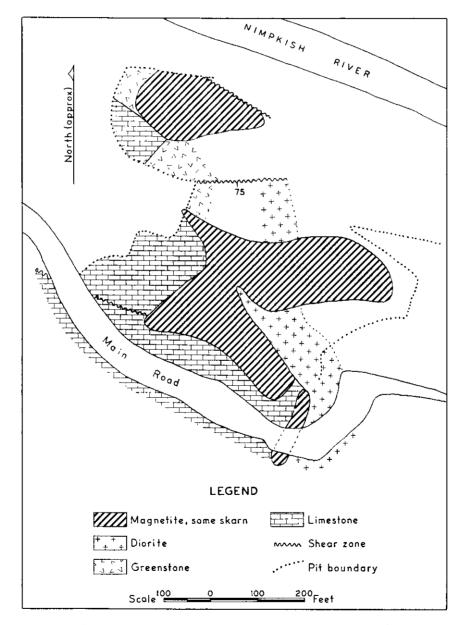


Figure 13. Nimpkish Iron Mines Ltd. Simplified geology of pit.

Benson River $(50^{\circ} 127^{\circ} S.E.)^*$

Iron

Empire Development Company
 Limited
 Company office, 1012, 736 Granville Street, Vancouver 2;
 mine office, Port McNeill. E. C. Oates, general manager;
 P. W. Billwiller, mine engineer; J. Lamb, geologist. The mine is operated by Mannix Co. Ltd. (company office, 737 Eighth Avenue Southwest, Calgary, Alta.). In October,

P. M. Stiles succeeded A. Ostgard as project manager. Empire Development is owned 40 per cent by Quatsino Copper-Gold Mines Limited, 33 per cent by Mannix, and 27 per cent by various interests.

The property includes a large block of Crown-granted claims and several recorded claims on the northeast slope of Merry Widow Mountain, adjoining the Coast Copper property on the south and west; it is conveniently referred to as the Empire property. A reciprocal agreement exists involving exploration rights to iron mineralization by Empire Development on the Coast Copper property and to copper mineralization by The Consolidated Mining and Smelting Company of Canada, Limited, on the Empire property.

The camp and mill are in the Benson River valley at 800 feet elevation, and are reached by 25 miles of road from Port McNeill on the east coast of Vancouver Island. From the camp, 4 miles of tote-road leads to the crusher and open pit at about 2,500 feet elevation. Crushed ore is brought down to the mill by surface tram-line. The heavy snowfall at pit elevation precludes open-pit mining during the winter, and the operation is shut down from Christmas to about the beginning of May.

In 1961 the Merry Widow was the only open pit in production. The Kingfisher pipes had been mined down to the economic limit for open-pit operation in 1960, and the small Raven orebody had been mined out. At the end of May it was discovered that a large section of the Merry Widow headwall was very slowly settling into the pit. Mining was halted, then cautiously resumed. The headwall was drilled off with a wagon drill, and blasted on August 6th to a stable slope. The average number of men employed during the eight-month operating period was 120. During this period 772,800 tons of waste and 535,833 tons of ore were mined from the open pit and 364,772 tons of concentrate was produced and shipped. Increased sulphides were encountered in the deeper mining, resulting in a higher sulphur content in the concentrates.

An adit was collared at about 1,800 feet elevation and driven 920 feet to pass beneath the Kingfisher pits. In order to remove the ore remaining in the Kingfisher deposit, 110 feet of additional crosscut and 1,450 feet of raising were driven. Drilling has shown that the Kingfisher deposit is shaped like a sling-shot; the remaining ore is in the lower part of the forks and in a short stem which pinches downward, above the adit level. A portable crushing plant was erected at the portal for crushing the ore to be trucked to the mill.

The regional and local geology are described in the Annual Report for 1960 and illustrated by Figure 9 therein. The magnetite occurs in Quatsino limestone and in an overlying thin wedge of Bonanza pyroclastics, near the contact with a diorite stock. The contact of the stock is gently cuspate in plan and dips east or northeast at 55 to 70 degrees. The layered rocks generally dip west or southwest at low to moderate angles, that is toward the diorite. The Kingfisher and Merry Widow orebodies are in one of the embayments in the diorite contact, the Kingfisher entirely in limestone, the Merry Widow partly in limestone but mostly in pyroclastics. The headwall of the Merry Widow pit has been cut back into diorite.

[•] By G. E. P. Eastwood and J. E. Merrett,

Early in the exploration and development it was apparent that the layered rocks have an anomalous northeast strike, with northwest dip, adjacent to the orebodies, and that they have been broken by a northeast-striking fault, known as the Kingfisher fault, but there were only obscure hints of additional structural complexity. Bedding in the Kingfisher pit and remnants of bedding in the upper part of the Merry Widow dipped uniformly northwest. Deeper mining in the Merry Widow has, however, disclosed one relatively large fold in the upper contact of the limestone; from a gentle northwest dip it turns abruptly down to a steep southeast dip. Deep drilling indicates that it changes back to a northwest dip at greater depth and is probably involved in several smaller and relatively tight folds. During mineralogical studies of tuff and skarn in the pit, several high-calcite bands were outlined, above probable anticlinal bands of limestone intersected in deep drilling. It seems likely that the tuffs have also been folded to some extent. Several small, tight folds in the limestone contact are exposed in the south wall of an extension of the main pit, known as the South pit, but limestone is not exposed on strike with them in the main pit, and therefore they were assumed to be very local structures. It now seems more probable that they plunge steeply northeast, passing beneath the present floor of the main pit. In the Kingfisher adit, limestone beds are markedly warped and twisted, though not in any regular fold pattern, contrasting sharply with the uniform beds in the Kingfisher pits above. It is concluded that rocks adjacent to the orebodies have been considerably stressed, even where the structure appears simple, and it is suggested that the stressed condition of the rock may have been just as effective as were individual structures in localizing the deposition of magnetite.

The Merry Widow deposit contains a variable amount of sulphides, and these in turn contain a certain amount of gold and silver. The sulphides include pyrrhotite, pyrite, chalcopyrite, and minor arsenopyrite and sphalerite. They occur sparingly through most of the upper part of the deposit, but are more abundant in the northeast and in the lower part. They are present as grains disseminated through magnetite and skarn and as irregular masses intimately associated with the magnetite. Seven grab samples were taken from sulphide masses in the course of mineralogical studies in the pit, and were assayed for gold, silver, copper, and sulphur. A pyrrhotite sample, No. 1239, was also assayed for platinum, but none was found. The other results are shown in the left-hand columns of the table below. Only one sample was pure sulphide, and the various sulphide contents in the other samples were calculated from the sulphur and copper assays and from visual estimates of the relative proportions of pyrite and pyrrhotite. The gold and silver assays were then recalculated as content in total sulphides; these recalculated values are shown in the two right-hand columns of the table.

Sample No.	Gold	Silver	Copper	Sulphur	Chalco- pyrite	Pyrite	Pyrrho- tite	Arseno- pyrite	Total Sul- phides in Sample	Gold, Total Sul- phides	Silver, Total Sul- phides
	Oz. per	Oz. per	Per	Per	Per	Per	Per	Per	Per	Oz. per	Oz. per
	Ton	Ton	Cent	Cent	Cent	Cent	Cent	Cent	Cent	Ton	Ton
1185	0.50	6.8	18.67	27.67	54	16	۱ ۰۰۰۰		71	0.71	9.6
1242	1.01	10.8	20.72	31.50	60	20		i	80	1.27	13.6
1237	0.34	9.3	19.81	35.36	58		38		96	0.35	9.7
1238	1.16	1.6	2.76	23.09	8		1	91	100	1.16	1.6
1239	0.74	1.3	1.66	33.30	5		80)	85	0.87	1.5
1240	0.08	5.1	13.53	17.96	39	8	j		47	0.17	10.8
1241	0.08	0.2	0.15	27.55	0.4	51			52	0.15	0.4

The silver is obviously concentrated preferentially in chalcopyrite. The gold content appears to be related not so much to chalcopyrite as to the total sulphide content of the ore. Samples Nos. 1240 and 1241 were taken from an extension of the pit that is known as the South pit, where sulphides are scarce. The other samples are from the northeast part of the pit, where the sulphide content is relatively high. However, the relationship is not a regular one. Samples Nos. 1185 and 1242 were taken a few feet apart, from the same chalcopyrite mass.

Empire Development continued exploration on the Ajax and Shamrock prospects, both on Coast Copper ground, and conducted a dip-needle survey on the Snowbird prospect on Empire ground, 21/2 miles northwest of the Merry Widow. Diamond drilling on the Shamrock amounted to about 800 feet in eight holes. The magnetite here occurs as relatively massive lenses a few feet thick and as larger stockworks and breccia zones in which the magnetite is crowded with blocks of skarn. The various occurrences are too small or too low in over-all grade to make ore at this time. Dip-needle surveying was continued on the Ajax. The magnetite here forms thin west-dipping sheets in Bonanza tuffs and in underlying limestone adjacent to a small northeast-striking fault. An orebody was not indicated.

[References: Minister of Mines, B.C., Ann. Repts., 1928-31, 1950-52, 1956-60.1

Copper

Limited)

Company office, Tadanac; mine office, Port McNeill. The Old Sport (Coast Consolidated Mining and Smelting Company of Canada, **Copper Company**, Limited, is principal shareholder and manages the operation. H. G. Barker, property manager; R. M. Mattson, mine superintendent; A. B. deVoogd, mine geologist. The property,

also known as the Benson Lake property, comprises forty-eight Crown-granted claims southward from Benson Lake on the west side of Benson River, and adjoins the Empire property on the north and east. Access is by way of a 26-mile gravel road from Port McNeill, where twenty employee residences were under construction.

In 1960 a road was built from the Empire camp to Benson Lake. In 1961 a permanent camp suitable for 200 men was constructed at a site one-half mile south of the lake. A crew of eighty-two men completed the construction of four bunkhouses, a cafeteria, a general office, a laundry, and a 50,000-gallon water-storage tank, and the erection of power-line poles from the power plant to the mine site. At the end of the year the crushing plant, 750-tons-per-day concentrator, changehouse, recreation hall, and shop buildings were under construction. A new adit crosscut was driven from the new camp to intersect the 5500 level (formerly No. 8 level) drift near the south end, and the drift was enlarged to serve as a main haulageway. Raises were driven in ore in preparation for mining. A crew of fourteen men completed 1,262 feet of crosscutting, 1,031 feet of drifting, and 1,200 feet of raising. Exploratory diamond drilling was continued from underground stations. A waterstorage dam for power development on Raging River above the falls between Benson and Maynard Lakes was 70 per cent completed. Approximately 160 acres of land were cleared in the area to be flooded. An adit and penstocks were driven beside the river. Work commenced on the preparation of the power-house foundations, where it is intended to install generating equipment of 2,400-horsepower (2,200 kva.) capacity. It was hoped the annual rainfall (134.9 inches in 1960 and 129.7 inches in 1961) would be sufficient to maintain the plant's operation throughout most of the year, but in case of water shortage it is intended to install a diesel-driven stand-by plant.

The mineralization occurs along the contact of the Karmutsen volcanics with the overlying Quatsino limestone. This contact dips 37 degrees southwest at the mine. In detail the mine sequence is, in descending order:—

Quatsino limestone.

Upper flow.

"Old Sport Horizon."

Karmutsen volcanics.

The Karmutsen volcanics in the mine are massive, fine grained to dense, and dark green to greenish-black. Scattered amygdules suggest that most of the rock is flow lava. The "Old Sport Horizon" is a concordant zone, about 15 feet thick, of skarn and magnetite containing many dykes and sills. It is host to a large part of the copper ore and is described in some detail below. The upper flow, where fresh, is dense and dark-green to greenish-black volcanic rock. It was considered to be a sill and was long known as the "included diorite," but recent drilling has disclosed amygdules in it, convincing company geologists that it is a flow and that similar appearing dykes cutting the limestone also cut the flow. Its average thickness on 5500 level is about 40 feet. The lower and upper few feet of the flow are partly replaced by skarn and magnetite. The Quatsino limestone is medium to coarse grained and commonly is white to light grey and massive; in part it is banded light and dark grey. It is intruded by many small, dense, greenish-black dykes, commonly from 6 inches to 2 feet wide. A larger body occurs in the limestone in a long crosscut southwest from the central part of the 5500 level drift; in colour and texture it closely resembles both the dykes and the upper flow.

The "Old Sport Horizon" was studied in some detail in the southern 800 feet of the 5500 level drift, and more generally in the remainder of this drift and in the old No. 5 level drift. It is a thin zone of skarn, magnetite, and one or more sill-like bodies, lying between the Karmutsen volcanics and the upper flow, and is transected by many narrow dykes. The sill-like bodies are light green, massive, fine to medium grained, and were called felsite by Gunning. One of them locally rests on the Karmutsen group and sends apophyses into it; it also sends similar apophyses into massive skarn and magnetite. The sill-like bodies, and some of the dykes, have, however, been partly replaced by skarn; it is concluded that they were intruded not into skarn, but into a pre-existing rock, and that such pre-existing rock has been completely replaced by skarn and magnetite, whereas dykes and sills have been replaced only partially. What this other rock may have been is not evident in the mine. Scattered skarn in small, local shear zones in the underlying Karmutsen might suggest that the "Old Sport Horizon" may have been sheared Karmutsen volcanic rock. However, surface exposures on Craft Creek 1 mile northwest of the mine and diamond drilling through the Quatsino-Karmutsen contact zone half a mile south of the mine disclose that the Karmutsen is overlain successively by a thin limestone member, an amygdaloidal flow, and the Quatsino limestone. It thus appears probable, although not entirely certain, that the "Old Sport Horizon" originally was a thin limestone member. If it was limestone, its thorough replacement by skarn and magnetite contrasts sharply with other deposits of this type in the Benson River area, in which dykes and volcanic rocks are preferentially replaced by skarn, and limestone is but little altered.

Fractures include several bedded shear zones and many cross-faults. Some bedded shear zones, a few inches wide, occur in the upper part of the Karmutsen volcanics and displace some of the dykes a few inches. The hangingwall part of the "Old Sport Horizon" is also more or less sheared. A few narrow shear zones wind through skarn and sills. In the southeast part of the mine the cross-faults

Nimpkish Iron Mines Ltd. Open-pit operation, August, 1961.

Noranda Mines Limited, Kennedy Lake Division. Open-pit preparation, September, 1961.

strike northeast and are vertical or dip steeply northwest. They range from tight fractures to shear zones a foot wide. Most of them displace horizontal traces of contacts to the right, commonly from 5 to 15 feet. In the northwest part of the mine the cross-faults are more variable in direction, are commonly marked by broader shear zones, and generally displace horizontal traces greater distances, both left and right.

The magnetite throughout the zone is not considered ore at this time, as the cost of mining it alone would be prohibitive at present prices. However, some magnetite may be recovered as a by-product of the mining and milling of copper ore.

The ore minerals are chalcopyrite and less bornite. Only the Bornite shoot contains significant bornite. Other sulphides include widely distributed pyrite and local pyrrhotite. The ore minerals occur as veinlets and disseminated grains in sills, skarn, and magnetite. A little vein quartz is commonly associated. The ore minerals form four shoots in the "Old Sport Horizon" and in the hangingwall of the upper flow. The shoots are short and deep, and are separated by several hundred feet of essentially barren ground. Generally they rake northwest, but the upper part of the Central shoot plunges directly down-dip. From northwest to southeast they are named the North, Central, Bornite, and South shoots. The North and Bornite shoots lie entirely in the "Old Sport Horizon," the South in the hangingwall of the upper flow, but the Central shoot lies partly in each zone. The upper and lower sections of the Central shoot are in the "Old Sport Horizon," the middle section in the hanging wall of the flow. In the shoots in the "Old Sport Horizon" the copper mineralization generally does not extend across the full width of the horizon, but is commonly restricted to the middle or footwall portion. Copper mineralization in the hangingwall of the upper flow is exposed in few places; in the Central shoot on 5500 level it occurs across a total thickness of 9 feet. The controls of the shoots are not evident.

[References: Gunning, H. C., Geol. Surv., Canada, Sum. Rept., 1929, Pt. A; Minister of Mines, B.C., Ann. Repts., 1911-31, 1956, 1960.]

KYUQUOT (50° 127° S.E.)*

Little Lake Group This group of eighteen recorded mineral claims is in the Alberni Mining Division about 2¹/₂ miles north of Power Lake at the head of Ououkinsh Inlet. The property, held by H. Benjamin and H. Clement, of Zeballos, was optioned to Rio Tinto Canadian Exploration Limited. A crew of four men employed from mid-April to the end of June completed magnetic and geological surveys, stripped some outcrops, and did a total of 262 feet of diamond drilling in four holes.

ZEBALLOS (50° 126° S.W.)* Gold-Copper

Privateer (New Privateer Mine Limited)

Iron

Company office, c/o H. Hill & L. Starck & Associates Ltd., 844 West Hastings Street, Vancouver 1. New Privateer Mine Limited, under the option and control of National Explorations Limited, holds the former Privateer mine property and, by option, four claims located by George Uebel,

1,500 feet northwest of the Privateer concentrator. The Privateer shaft and 1300 level workings were dewatered, and a crew of six men completed seven diamond-

^{*} By J. E. Merrett.

drill holes totalling 1,186 feet of drilling from that level to investigate No. 3 vein below the level and Nos. 4 and 5 veins to the north. The workings were allowed to flood after the drilling was completed.

In addition, the crew completed 5,732 feet of diamond drilling in twenty-four surface holes in exploring two copper-bearing ore zones on the Uebel claims.

Iron

Company office, 504, 850 West Hastings Street, Vancouver 1;
 F.L. (Zeballos Iron mine office, Zeballos. R. M. Belliveau, project manager;
 Mines Limited)
 R. Kirwan, general superintendent. This company is a subsidiary of International Iron Mines Ltd., which latter company

has been acquired by National Bulk Carriers Incorporated of New York, N.Y. Thirteen Crown-granted and seven recorded claims are under lease from Ventures Limited, and eighteen recorded claims are under lease from various owners. The mine is on Blacksand Creek, 4 miles north of Zeballos.

In 1961 the number of men employed varied between twenty and 225, depending upon the amount of construction work being done. The construction of the crushing plant, surface tram-line, beneficiating plant, tailings disposal, and shiploading facilities was 80 per cent completed at the end of the year. The designed daily capacity of the plant is 3,600 tons of mill feed.

Surface stripping of the planned pit area began in December, and 23,000 cubic yards of overburden was drilled and blasted during that month.

Hesquiat Harbour (49° 126° S.E.)*

Iron-Copper

Company office, Tofino. Lorne Hansen, president. A crew **Hesquiat (Sun-West** of five men was employed surface stripping and completing **Minerals, Limited)** 1,500 feet of diamond drilling in eight holes on an occurrence

of magnetite and chalcopyrite near the mid-point of the east shore of Hesquiat Lake. The property was optioned in October to Paco Resources Ltd. and Fort St. John Petroleum Limited.

HERBERT INLET (49° 125° S.W.)*

Berton Gold Mines Limited Company office, 42, 610 Jervis Street, Vancouver 5; mine office, Herbert Inlet via Tofino. B. L. Clayton, president; J. C. Jackson, manager. This company owns twenty-one Crown-granted and two recorded mineral claims on the south slope of Abco Mountain at the head of Herbert Inlet. A crew of three men extended the 1,000-foot level adit to a total length of 915 feet, at which point it was reported the drift intercepted a 12-foot dyke. The drift face is now approximately 500 feet south of and 800 feet vertically below the lowest exposed vein outcrop.

Copper

Gold

Catface (Ventures
Limited)British Columbia office, Suite 401-4, 402 West Pender Street,
Vancouver 3. Alex. Smith, exploration manager. This com-
pany owns forty-four recorded claims on Catface Mountain
at the west end of the peninsula between Herbert Inlet and
Bedwell Sound. A crew of five men was employed for one month completing 677

Bedwell Sound. A crew of five men was employed for one month completing 677 feet of diamond drilling in seven drill-holes.

* By J. E. Merrett.

BEDWELL RIVER (49° 125° S.W.)*

Gold

Town Mines Limited)

Musketeer (Copper Street, Vancouver 1; mine office, Tofino. John Luttin, president; S. Craig, manager. This company optioned seven Crown-granted and five recorded mineral claims covering the former Musketeer and Buccaneer mines, on the south side of

Registered office, c/o Curry & Co., 202, 717 West Pender

Bedwell River, approximately $7\frac{1}{2}$ miles from the river mouth. In October the Musketeer mine and mill were reopened. Ore was removed by underhand stoping methods. A crew of thirteen men, five of whom were employed underground, mined 1,100 tons of ore, of which 339 tons was milled to produce 14 tons of concentrate. Three diamond-drill holes totalling 1,200 feet were drilled to investigate the Robillard vein to the east of the Trail vein. The operation closed December 19th.

TSOLUM RIVER (49° 125° N.W.)*

Copper-Silver

Domineer (Qualicum Mines Limited)

Operating companies, January to October-Noranda Exploration Company, Limited, Room 202, 2256 West Twelfth Avenue, Vancouver 9; October to December-Mt. Washington Copper Co. Ltd., Suite 404, 1111 West Georgia Street, Vancouver 5; mine office, Courtenay. S. J. O. McClay suc-

ceeded O. W. Nichols as property manager at the time of the change in operating companies. This property, comprising four Crown-granted and eighty-five recorded claims is near the summit on the northeast slope of Mount Washington, 15 miles northwest of Courtenay. Access is by public motor-road to Comox Logging Company gate near the southwest end of Wolf Lake. From there logging-roads and a short connecting road lead to the showings at about 4,500 feet elevation. The claims lie within the land grant of the Esquimalt and Nanaimo Railway Company, Limited, the owners of the base-metal occurrences and with whom an operating agreement has been made for the removal of the ore.

While under the direction of Noranda Exploration, the work was confined to the Murex Creek area. A long trench was made across an electromagnetic anomaly discovered in the fall of 1960. Bedrock was exposed in a series of ridges of silicified volcanics. A rusty zone some 50 feet wide in the volcanics was noted to be mineralized with pyrite, pyrrhotite, and chalcopyrite, which in some sections was reported to assay as much as 1 per cent copper. Two diamond-drill holes totalling 745 feet were put down on this zone, and the copper mineralization disclosed assayed less than 0.5 per cent copper.

Under the direction of Mt. Washington Copper Co. Ltd., a crew of eight men did 925 feet of diamond drilling in eight holes, built 1 mile of road, and removed 10,000 cubic yards of overburden to prepare the Domineer ore zone, described in the 1960 Annual Report, for the mining and shipping of ore. The crew was increased to twenty-five, and 4,449 tons of low-grade ore was mined, trucked to the Comox dock, and shipped by scow to the Britannia concentrator. In addition, 856 tons of higher-grade ore was shipped by scow to the Tacoma smelter. At the end of 1961, when snow conditions made ore removal too difficult, 70 feet of 6- by 8-foot tunnel was completed.

[•] By J. E. Merrett.

BUTTLE LAKE (49° 125° N.W.)*

Gold-Silver-Copper-Lead-Zinc

Lynx, Paramount, Price (Western Mines Limited) Company office, 1500 Marine Building, 355 Burrard Street, Vancouver 1. J. A. C. Ross, managing director. In May this company optioned from P. M. Reynolds and Associates the Lynx, Paramount, and Price groups of mineral claims in the vicinity of Myra and Price Creeks at the south end of Buttle

Lake. The property comprises twenty-three Crown-granted and forty-two recorded mineral claims, covering an area approximately 6,000 feet wide and 21,000 feet long. The Lynx showings are at several locations between elevations of 1,200 and 1,700 feet on the north side of Myra Creek approximately $2\frac{1}{2}$ miles west of the south end of Buttle Lake. The Paramount showings, at an elevation of 1,500 feet, are south of the Lynx and on the south side of Myra Creek. The Price showings are on the east slope of Myra Mountain at several locations between elevations of 900 and 1,900 feet, and are one-half to $1\frac{1}{2}$ miles southwest of the south end of Buttle Lake.

Information contained in earlier Annual Reports indicates that the mineral occurrence is in a generally northwesterly trending zone of sericite schists formed by shearing in volcanic rocks of the Vancouver group. Contained in the schists are silicified zones and innumerable narrow quartz stringers. The silica gangue is accompanied by calcite and barite. Pyrite, chalcopyrite, tetrahedrite, galena, and sphalerite occur mainly in the siliceous lenses, either disseminated or in small veinlets. Small fractions of an ounce of gold and variable amounts of silver occur with the sulphide minerals.

Work done in 1961 was directed to the development of the Lynx and Paramount areas and, to provide access to these workings, 5 miles of trails and $2\frac{1}{2}$ miles of jeep and tractor road were built from the lake. In addition to the road and trail construction, the crew of eleven men completed 60 feet of trench and four diamonddrill holes totalling 689 feet of drilling on the Paramount zone, fourteen diamonddrill holes totalling 6,544 feet of drilling on the Lynx zone, and a detailed geological map embracing the three mineralized areas.

GREAT CENTRAL LAKE (49° 125° S.E.)*

Gold

Apex, Morning (Sileurian Chieftain Mining Company Limited) Company office, c/o Claude E. Hamilton, secretary-treasurer, 833 Rogers Building, Vancouver. Walter Eilers, president. The property comprises six Crown-granted and eleven recorded claims, including the former Apex and Morning groups, north of Doran Lake, between Sproat and Great Central Lakes, 26 miles north of Alberni. Commencing in

August, a crew of three men completed 1,694 feet of diamond drilling in nine drillholes. TRANQUIL INLET (49° 125° S.W.)*

Gold

Tofino Mines Limited

This property, 2¹/₂ miles north of the head of Tranquil Inlet is owned by Moneta Porcupine Mines, Limited, and is under option to W. E. McArthur, of Greenwood. In order to improve access to the property, the crew of four men reopened

and in places rerouted the existing 3 miles of road from the base camp, 1 mile upstream from the mouth of Tranquil Creek, to the lower tram terminal below the

^{*} By J. E. Merrett.

mine. At the mine it was reported that construction included a new approach to the ore-bin, a new roof on the mill building, two bunk-houses, and an assay office, and the assay office was fully equipped. Underground it was necessary to replace the ladders between the 1500 and 1700 levels and to rebuild some chutes. On the 1500 level 30 feet of drift was completed and a raise was started. On the 1700 level 50 tons of ore was mined for a mill test.

Iron-Copper-Gold

West Minerals. Limited)

Company office, Tofino. Lorne Hansen, president. This Tofino Inlet (Sun- company holds sixty-five recorded mineral claims encompassing the area around Deer Bay at the head of Tofino Inlet. A crew of five men using a TD-20 bulldozer was employed surface stripping five mineral showings of magnetite, bornite,

and chalcopyrite. It was reported that the chalcopyrite, when accompanied by quartz, contained high values in gold and silver.

KENNEDY LAKE (49° 125° S.E.)*

Kennedy Lake (Noranda Mines. Lake Division))

Iron

British Columbia office, 601, 1587 West Eighth Avenue, Vancouver 9; mine office, Ucluelet. F. E. Patton, property manager; J. Sadler, mine engineer. The operation of the Limited (Kennedy property was turned over to the Kennedy Lake Division of Noranda Mines, Limited, by Noranda Exploration Company, Limited, on April 1st. The company owns or controls a large

block of recorded mineral claims in the Draw Creek drainage basin between Maggie and Kennedy Lakes, 7 miles east of Ucluelet on the west coast of Vancouver Island. Access to the open pit is by 21/2 miles of MacMillan, Bloedel and Powell River Limited logging-road from the shore of Kennedy Lake on the Alberni-Tofino road (Kennedy Highway), 14 miles from the Tofino-Ucluelet road.

A strong magnetic anomaly on Draw Creek (then known as Magnetic Creek) was reported by the Provincial Mineralogist in 1902 and by Einar Lindeman in 1908, but magnetite was not found. Recently E. Chase found a strong anomaly on Draw Creek by dip-needle, and in January, 1960, located nine covering claims. Western Ferric Ores Ltd. diamond drilled 1,184 feet in six holes and ran additional dip-needle traverses, then sold its interest in the property to Noranda Exploration Company, Limited, on May 15th. Diamond drilling was continued through 1961.

During 1961 Deeg & Yarrow Diamond Drilling Co. Ltd., diamond-drilling contractors, completed thirty-four AX holes totalling 20,220 feet of drilling. Kie Mine Co. Ltd., a wholly owned subsidiary of Peter Kiewit Sons Company of Canada Ltd., obtained the contract to prepare an open pit for mining of the iron ore, and removed 673,000 cubic yards of overburden, 1,478,000 cubic yards of bedrock, and stockpiled 40,000 tons of ore. The open pit was mined by conventional benching methods. A. Hill was project manager.

Draw Creek was diverted from the eastern part of the orebody. The timberowners had in 1960 logged off the bottom and lower slopes of Draw Creek valley, including the pit site. Belliveau Enterprises Ltd. constructed 71/2 miles of two-lane truck-road from the crushing plant at the quarry to the concentrator at the mouth of Toquart River on Toquart Bay. John Laing and Son, contractors, were erecting the crushing plant and the concentrator. The concentrator is designed to produce 700,000 long tons of iron concentrates per year. It has been located on tidewater to avoid pollution of Draw Creek and Maggie Lake. Adjacent to the concentrator,

^{*} By G. E. P. Eastwood and J. E. Merrett.

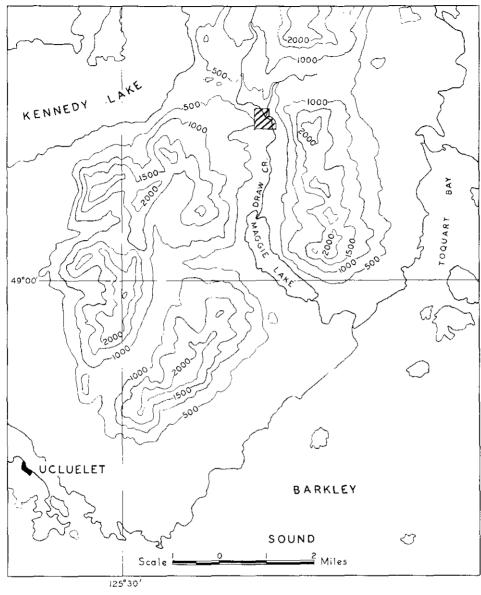


Figure 14. Index map of Kennedy Lake-Toquart Bay area. Showing location of Figure 15.

on Toquart Bay, Pacific Piledriving Co. Ltd. was constructing the dock and loading facilities. These facilities will make it possible to accommodate vessels of 45,000 tons capacity. The Noranda staff of fifteen was accommodated in a small trailer camp south of the pit and east of Draw Creek. Rock fill was laid nearby as foundation for a permanent office building. The Kie Mine staff and crew of 140 were housed in a trailer camp on the south shore of Kennedy Lake, about 5 miles from the pit. Belliveau and Laing established temporary camps farther west along Kennedy Lake. A permanent bunk-house and a cook-house for twenty-five men have been built on a Crown lease near the shore of Kennedy Lake. The company purchased twenty lots in the village of Ucluelet to provide sites for employee houses.

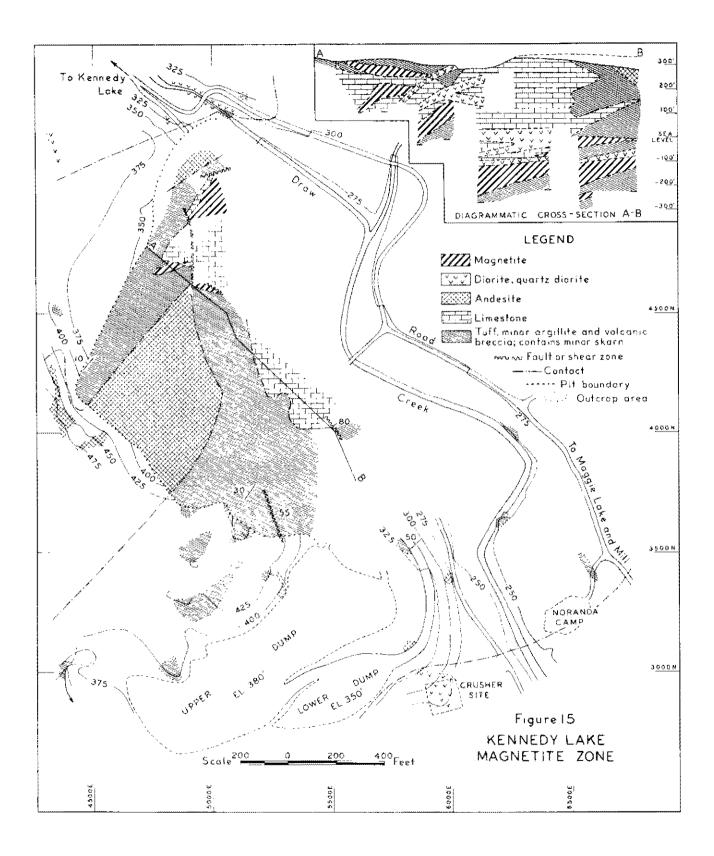
The area has a high rainfall, and vegetation is correspondingly lush. Between October 1, 1960, and September 30, 1961, the Noranda staff recorded over 300 inches of rain, even though the summer of 1961 was unusually dry. Snow is uncommon. Timber is generally large and underbrush tall and very thick.

The principal streams are Draw Creek, which flows southeast and south to Maggie Lake, and Redford Creek, which flows south to join Draw Creek opposite the north end of the pit. Draw Creek follows a relatively broad valley that has a low gradient southward from the pit. Creek elevation at the pit is between 250 and 275 feet, and the elevation of Maggie Lake is about 120 feet.

The topography varies from rolling to mountainous. East of Draw Creek a ridge rises steeply to 2,000 feet, locally to 2,600 feet, and 2 miles southwest of the pit another hill rises steeply to 2,300 feet. Within the first mile north, west, and southwest of the pit, however, the relief is relatively low and in detail is highly irregular. A thick deposit of gravel, sand, and less clay has been laid on the floor and lower walls of Draw Creek valley. Only on the steep slope of the ridge to the east are rock exposures abundant. The pit lies between two prongs of a low, east-trending bedrock ridge. One prong crosses Draw Creek just north of the pit, producing a short section of continuous outcrop, and passes beneath a gravel terrace on the east bank. The other prong plunges southeast beneath overburden at the crusher site. Relationships are such that the pit wall will be highest at the south end, against the south prong. Bedrock is sporadically exposed along the ridge, whereas to the north, east, and south it is about 99 per cent covered.

General Geology

The regional geology has not been mapped. Reconnaissances by Noranda Exploration and the Department of Mines and Petroleum Resources have merely indicated the principal rock types. In general, a large area southeast of the pit appears to be underlain mostly by quartz diorite and related rocks. Kennedy Lake appears to be underlain largely by massive, dark greyish-green volcanic rocks. Between these areas is a complex belt of volcanic rocks, limestone, minor argillite, and abundant but relatively small dioritic intrusions. The local structural trend is northeast, an anomalous direction for Vancouver Island.


Exposures in the pit in late August and early September, 1961, together with nearby outcrops, were mapped at 100 feet to the inch. They were not sufficient, however, even when supplemented by logging of core from twenty-seven drill-holes, to fully determine the relationships of the rocks or outline the structure. Figure 15 is a generalized plan of the rocks as then exposed, and serves as a reference in describing what is known of their distribution.

The rocks in the pit belong to a narrow belt that trends northeast between the large quartz diorite mass on the southeast and a smaller diorite body on the northwest. They include limestone, dark greyish-green andesite, light-coloured rocks thought to be largely tuffs, minor argillite, and numerous dykes that are probably apophyses of the quartz diorite. Drilling has shown that most of the area between the pit boundary and Draw Creek is underlain by variable thicknesses of magnetite at greater or lesser depth, but when the pit was mapped only small areas of this magnetite had been exposed.

Limestone

The limestone forms a relatively large mass, beginning about the middle of the pit and extending northeast far beyond the area of Figure 15. It is bounded on the northwest, southwest, southeast, and below by the light-coloured rocks, and is

106

LODE METALS

intruded by many dykes. Limited exposures of the limestone when the pit was mapped were largely of massive white rock, fine to medium grained, normally little altered but locally dolomitized, silicified, or serpentinized. This alteration is found principally along sheared zones; it is rare against dykes and magnetite. Locally on surface and more commonly in drill cores, the limestone is light to dark grey and banded. The occurrences of banding were too scattered to indicate the internal structure of the limestone. Relations between limestone and the light-coloured rocks are complex in detail, as indicated on Figure 15, and the over-all structure is not clear. In general the limestone has the form of a large irregular lens with tongues extending out into the enclosing rocks. It is believed to have undergone intense plastic deformation.

Tuffs

Light-coloured rocks lie beneath the limestone and on three sides of it. They are exposed in two general bands in the west part of the pit and extend southwest beyond the area of Figure 15. Drilling has shown that they also underlie andesite between the bands at depths generally less than 100 feet. Additional outcrops of these rocks occur north and southeast of the pit. They are mostly massive looking, but locally are markedly banded. In colour they range from white to light pink, to light and medium green or greenish-grey, and to vaguely mottled white, green, and red; more rarely they are light brown. The banded rocks are mostly white, pink, and pale green. The white and pale-coloured rocks, both banded and massive, are hard and brittle and resemble cherts. In thin-section, however, they are seen to consist dominantly of feldspar, with less amphibole and epidote, occasionally some pyroxene, and variable amounts of clinozoisite, sericite, and chlorite. Quartz forms veinlets with clinozoisite but is rare as a rock constituent. Light- and mediumgreen rocks contain proportionately more ferromagnesian minerals. Pink bands differ from the white only in having reddish-brown allophane dust disseminated through the feldspar. The rocks are fine grained to dense, the paler varieties being generally the finer grained. All show granular rather than interlocking texture. In addition, much of the white or cream-coloured rock, both banded and massive, contains angular and sub-rounded medium-sized grains of feldspar in the dense matrix, accentuating the detrital appearance of the rock. It is concluded that the paler varieties are feldspathic tuffs, and that much of the light- and medium-green rocks may be more mafic tuffs. The mottled rocks are sparingly scattered through the tuffs and do not appear to represent a definite horizon. They consist of angular but vaguely defined bodies, an inch or two across, of white and red rock in a medium-green matrix, and are thought to be modified volcanic breccias.

Alteration of the tuffs is not commonly apparent in outcrop or hand specimen, but is revealed in thin-section as a variable replacement of feldspar and amphibole by sericite, clinozoisite, chlorite, and serpentine. All stages in this alteration can be seen, from almost fresh tuff with only incipient sericite on the feldspar, through altered rock with remnants of the original minerals and relics of the original texture, to masses of sericite and clinozoisite. The distribution of alteration was not determined.

Small patches of dark-grey tuffaceous argillite are scattered along the southeast tuff band, both in the pit and to the southwest. Exposed boundaries of these patches are vague. The centre of one patch is calcareous, and another patch contains angular limestone fragments.

The internal structure of the tuffs is obscure. The only evidence is provided by three areas of banded tuff, indicated by symbols of attitude on Figure 15. In the northwesterly area about 20 feet of banded tuff is exposed above massive tuff. Extensions were covered at the time of mapping. In the middle area, banded tuff occurs over a strike length and a width across strike of 250 feet and a vertical range of 80 feet. Extensions along strike were covered. Both up-dip and downdip, the banded tuff appears to grade to massive tuff by fading of the colour differences between bands. The southeast area is exposed merely as a small rock cut along the haulage road. In each area the banding dips northwest, but the areas are too small and too isolated from each other to outline a significant segment of the structure; in view of the intense deformation that the limestone appears to have undergone, the structure in the tuffs is probably also complex.

Andesite

Massive dark greyish-green andesite occurs in the western part of the pit between the main tuff bands, and extends to the southwest. Additional exposures of massive andesite were found in the north part of the pit and southeast of the pit. Diamond drilling has disclosed short sections of this rock in limestone. In thinsection it is a confused, interlocking aggregate of andesine feldspar, amphibole, and minor quartz, epidote, and chlorite. The feldspar crystals tend to be large and lath-like, and the rock is sub-porphyritic. The groundmass is fine grained, but notably coarser than the tuffs. Some indistinct angular reddish patches, an inch or two across, were found along the margins of the main mass in the west part of the pit, but fragmental structures are generally absent. Andesite in limestone is almost certainly intrusive. Andesite in small exposures southeast of the pit may also be intrusive. But the andesite in the north and west parts of the pit is probably flow lava. Contacts with the tuffs, both on surface and in drill core, are gradational rather than sharply defined. The drilling has shown that tuffs underlie the andesite in the west part of the pit at depths generally less than 100 feet, and that the contact is nearly flat. When this flatness is considered in conjunction with the relatively great thickness of andesite revealed on the steep hillside west of the pit, an andesite intrusion appears improbable. Finally, the andesite is uniformly fine grained, a fact compatible with flow lava, but not with an intrusion the size of the main body, that should show some increase in grain size toward the centre.

Intrusive Rocks

A large stock or batholith lies southeast of the pit, and one outcrop of it is shown on Figure 15 at the crusher site. A smaller stock is exposed just northwest of the pit. Numerous dykes cut the rocks in the pit, but none was large enough to show on Figure 15. All of the bodies are massive. The southeasterly mass is coarse grained and mottled light grey and greenish-black to black; it has a broad chilled margin that is greenish-grey and non-porphyritic. The northwesterly stock is mostly medium grained and medium grey to greyish-green, but locally is porphyritic, light grey, and siliceous looking. The thicker dykes have coarse-grained cores, that closely resemble the southeast mass, and broad marginal zones of light-brown porphyry. Thinner dykes are entirely porphyritic or have brown aphanitic margins. The thinnest dykes, 1 to 5 feet thick, are entirely aphanitic. They are distinguished from the fine-grained andesite dykes by being brown rather than green. The most abundant mineral in the intrusions is plagioclase, predominantly andesine but locally grading to oligoclase or labradorite. Potash feldspar was not seen. Quartz ranges from *nil* to 15 per cent. The ferromagnesian minerals are amphibole, biotite. and chlorite, locally also pyroxene, clinozoisite, or epidote. Magnetite, hematite, sphene, apatite, and pyrite are accessory. The rocks are mostly quartz diorite and diorite.

108

LODE METALS

Skarn

Garnet-epidote skarn is common in tuffs in drill core for a few tens of feet above and below magnetite, but is scarce elsewhere. It has replaced many of the andesite dykes in limestone, but is rare in the limestone itself, and has not been found in the main bodies of andesite. Only a few veinlets have been found in porphyry dykes. The few occurrences of skarn in tuff distant from ore consist of fracture veinlets of garnet and epidote, with an occasional associated massive pocket, scattered through volumes of tuff a few tens of feet across. Near ore the skarn is more or less massive, diminishing above the ore zone as pockets and veinlets in tuff. Below ore, skarn commonly continues to the bottoms of the drill-holes, but this distance is only a few tens of feet, and therefore the full extent and the distribution of skarn at depth are unknown. Locally the skarn contains a little coarse pyroxene, and small pockets of massive diopside occur in the magnetite.

Structure

The rock sequence and fold structure are uncertain. The limestone appears to overlie the tuffs and may at one time have occupied a syncline that plunged northeast, but it has flowed extensively, and other explanations are possible. If the andesite in the west part of the pit is a flow or flows, then it would appear to occupy an open syncline and to rest on tuffs. Much more work will have to be done, particularly northeast and north of the pit, before the relations can be clarified.

The rocks have been much broken. The widest shear and gouge zones are indicated on Figure 15. Additional shear zones are exposed in lifts between benches or are suggested by sections of crumbly drill core. Tight fractures are common, and some that transect banded tuff were seen to represent a few feet of movement, but on most of the breaks the amount and direction of movement, if any, is not apparent. Drill-hole sections such as Figure 15 suggest that ore and limestone may have been downthrown on the east side of a fault striking northnorthwest through the middle of the pit, yet little surface evidence of such a fault was found.

Age

The age of rocks and ore is not known. No evidence of age was obtained from the Kennedy Lake area, and any suggestions as to the age of the rocks have to be based on lithologic comparisons with other areas on Vancouver Island. Most of the quartz diorite and diorite intrusions on the Island are known or presumed to be of Upper Jurassic age, but a few are known to be Tertiary. The Upper Triassic Quatsino limestone has been traced southeast to Nootka Sound, and observation of scattered exposures of limestone from there to Kennedy Lake and Draw Creek has led to a suggestion that all are Quatsino. However, it seems at least equally likely that the limestone on Draw Creek is Permian. Quatsino equivalents on the southern part of the Island tend to be thin and discontinuous, in contrast both with the Permian limestones and the limestone on Draw Creek, and the tuffs associated with the limestone on Draw Creek resemble descriptions of Sicker tuffs from Cowichan Lake much more closely than they do rocks associated with the Ouatsino limestone.

Ore

The magnetite occurs in an irregular zone that tends to straddle the lower contact of the limestone but extends southwest and southeast into tuffs beyond the limestone. In general the zone reaches its greatest elevation in the northwest and is lowest in the southeast, but a definite strike and dip cannot be given. When the pit was mapped, only the northwest edge of the zone had been exposed, and knowledge of the zone has had to be built up mostly from study of diamond-drill core. The holes have been drilled on a 100-foot grid spacing through most of the pit, and more closely at the north end. This spacing is generally too wide to outline the occurrence of magnetite in any detail. In some parts of the pit there are clearly two or more bands or lenses of magnetite, one above the other, and separated by limestone or tuff. In other parts there appears to be a single band or lens, commonly containing tongues or inclusions of tuff or skarn. Elsewhere it is not clear how the drill-hole intersections should be related. Figure 15 illustrates the different situations. Over considerable areas the bands or lenses are flat or dip gently, but in several places there are abrupt changes in elevation of ore between drill-holes. These changes could be explained equally well by local steepening of the dip, by faulting, or by the pinching-out of an ore lens at one elevation and the start of a separate lens at another elevation. Such a change in elevation along a more or less straight line has led to the suggestion of the fault mentioned above. However, it does not appear that enough deep holes have been drilled west of the supposed fault to prove that deeper ore does not occur there. Indeed, it is not certain that any of the holes logged have reached the base of the mineralized zone. The best-known part of the zone is in the north end of the pit, where a single pod of magnetite was partly exposed and has been outlined by close drilling. The pod may be likened to a much-battered cigar; the cross-sectional shape changes rapidly along it, now square, now diamond shaped, now flat tabular, now steeply dipping tabular, etc. The width and depth are of the order of 200 feet, and the length is about 500 feet. The pod plunges at both ends. The upper part is in limestone, the lower part in tuff or, at the south end, resting on a diorite dyke.

The relationship of magnetite to diorite and porphyry dykes is unclear. Magnetite is commonly found above and (or) below a dyke, but it is not apparent whether it was deposited preferentially along the dyke contacts or whether it has been intruded by the dyke. The dykes do not contain veinlets of magnetite, and the few grains observed may be normal accessories in the diorite.

On the other hand, the magnetite is clearly later than the other rocks. Veinlets of it traverse andesite dykes and even the main mass of andesite. Veinlets and masses cut tuff and skarn. A few veinlets occur in limestone, although in most places contacts are smooth and gradational over a few inches. In or against limestone, magnetite contains pockets and veinlet-like bodies of calcite, and in exposures in the north part of the pit the magnetite is earthy and friable, suggesting surface leaching of intergranular calcite; these features probably result from incomplete replacement of the limestone by magnetite, followed by recrystallization of the calcite. In most drill-hole intersections the magnetite is uniformly massive, fine grained, and black.

Sulphide minerals are rare, and do not appear to be closely associated with magnetite or skarn. Pyrite is widely but very sparingly distributed. Pyrrhotite was found with minor magnetite in fresh tuff at the south rim of the pit. Small pockets of chalcopyrite were encountered in a few drill-holes, both in fresh andesite and with magnetite in skarn. A little arsenopyrite was found in magnetite in one drill-hole.

[References: Fyles, J. T., B.C. Dept. of Mines, Bull. 37, 1955, pp. 14–19; Hoadley, J. W., Geol. Surv., Canada, Mem. 272, 1953, p. 17; Lindeman, Einar, Mines Branch, Ottawa, Publ. No. 47, 1910; Ann. Repts., Minister of Mines, B.C., 1902, 1960.]

110

BARKLEY SOUND (48° 125° N.E.)*

Iron

Company office, 736 Granville Street, Vancouver 2. This company optioned one recorded and seven Crown-granted **Tzartus Island** claims on a steep hillside above Clifton Bay on the east coast (Empire Developof Tzartus Island. According to a report made available by ment Company Limited) the company, the mineral occurrence is in a gently eastdipping pile of bedded sediments and volcanics, chiefly of

tuffaceous origin. To the west, granodiorite is in contact with these rocks while diorite occurs to the northeast. Magnetite and skarn occur in the tuffaceous volcanics, with numerous dykes and sills interrupting the continuity of the mineralization.

Dip-needle surveying and 2,270 feet of diamond drilling indicated a triangularshaped layer of magnetite lying at or near the surface and not more than 25 feet thick. The base of the triangle extends along the west side of the ridge approximately at 830 feet elevation, with the apex to the east below an adit at 720 feet elevation.

An average of three persons was employed from January to mid-July.

Sarita River ment Company Limited)

Company office, 736 Granville Street, Vancouver 2. This company optioned seven Crown-granted and two recorded (Empire Develop- claims on the south side of Sarita River approximately $1\frac{1}{2}$ miles from the river mouth. A geological survey indicated a contact between white crystalline limestone and quartz diorite close to the north boundary of the property and a

parallel diorite-volcanic contact through the middle. A dip-needle survey disclosed an anomalous area in the vicinity of the Pachena Creek swamp adit on the Indian reserve. As not further indications were obtained, work was discontinued.

COWICHAN LAKE (48° 124° N.E.)*

Copper

Company office, 764 Cowichan Lake Road, Lake Cowichan. Alpha, Beta, etc. Allan H. Harder, president and managing director; George E. (Albeta Mines Apps, general manager. The property consists of three Ltd.) Crown-granted and twenty-three recorded mineral claims and fractions along the east fork of Robertson River, 7 miles south

of Mesachie Lake. Access from the end of the Forestry Department road up Robertson River is by way of four-fifths mile of newly constructed road and a bridge over the river.

It is reported the mineralization is chalcopyrite, with varying amounts of magnetite and minor values in gold and silver occurring in a garnetized skarn zone in altered, shattered volcanics lying adjacent to a granodiorite intrusive mass. Preliminary and detailed magnetometer surveying indicated and outlined two anomalous areas south of the main mineral outcrop at the junction of Long Creek and Robertson River.

In addition to the surveying, a crew of four men completed 97 feet of diamond drilling in one hole and 2,000 feet of trenching to an average depth of 20 feet on the skarn zone.

* By J. E. Merrett.

Shawnigan Lake (49° 123° N.W.)*

Iron

Willoron

This group of fifteen recorded claims is owned by Thomas Kirk and associates, 1143 Lockley Road, Victoria. The property is on Mount Wood, between Shawnigan Lake and

Saanich Inlet, just north and west of Oliphant Lake, at an elevation of about 1,600 feet. A jeep-road leads 2 miles from No. 1 highway to Oliphant Lake and the property.

Showings of iron and copper mineralization in the vicinity are described in the Annual Report for 1902, page 221, under "Malahat Mountain," and the geology is discussed in Memoir 96, Geological Survey of Canada, page 271 *et seq.* The regional geology is illustrated on Map 42A, accompanying Memoir 96.

The rocks are a complex of Wark and Colquitz gneisses and possibly younger non-gneissic intrusives enclosing northwestward-trending lenses of Sutton limestone and garnet-diopside-epidote skarn. Magnetite is the principal metallic mineral. It occurs as lenses and fracture fillings in all the rock types, but in the main it is associated with the limestone lenses. Pyrrhotite, pyrite, and chalcopyrite occasionally are present in minor amounts.

The workings consist of thirteen open cuts, three old adits, and a shallow shaft. A dip-needle survey was made in 1961 by A. E. Aho, and a copy of the resulting map was made available to the writer by Mr. Kirk.

The principal showings, as numbered by the owners, are described from east to west.

No. 12 showing, on Willoron No. 15 mineral claim, consists of two veins of magnetite about 40 feet apart striking nearly north-south and dipping 75 to 80 degrees westward. The westerly vein is about 10 feet wide, the easterly one about 20 feet. About 50 feet to the north of the easterly vein, magnetite is exposed for a distance of about 20 feet, but the dip and strike are not apparent. The wallrocks are skarn.

No. 13 showing is on the south side of Willoron No. 6 mineral claim. A 10- by 10-foot pit exposes massive magnetite overlying skarn with a steep dip southward. At about 100 feet southward, magnetite is again exposed and is overlain by skarn. Results of the dip-needle survey suggest that the intervening distance may be underlain by magnetite.

No. 3 showing, on Willoron No. 13 mineral claim near its north boundary, is in an old adit and shallow shaft. It is a magnetite vein 7 feet wide, enclosed in diorite walls and dipping 80 degrees southward.

No. 4 showing, near the south side of Willoron No. 3 mineral claim and 300 feet northeast of No. 3 showing, is a magnetite-skarn contact exposed along a trench for a distance of 15 feet. The contact dips 40 to 45 degrees southwestward. The full width of the magnetite is not exposed.

No. 5 showing, on the west side and toward the north boundary of Willoron No. 3 mineral claim, is made up of stringers of magnetite in a fracture zone in skarn, dipping about 80 degrees southward. Limestone is exposed nearby.

No. 6 showing, on Willoron No. 1 mineral claim, is similar in character to No. 5 but is not in line of strike with it.

No. 7 showing, on Willoron No. 1 mineral claim 300 feet northeast of No. 6 showing, consists of two magnetite veins 6 and 3 feet wide, respectively, separated by 10 feet of skarn and silicified limestone. The zone dips steeply southward, and the footwall is diorite. The magnetite here shows appreciable pyrrhotite and chalcopyrite, in contrast to the other showings in which sulphides are fairly sparse.

112

^{*} By N. D. McKechnie.

No. 8 showing, toward the east corner of Willoron No. 10 mineral claim, is a 5- to 6-foot zone of magnetite in limestone in a 10-foot adit. The magnetite noses out in the adit on a westerly plunge.

No. 10 showing, near the west corner of Willoron No. 2 mineral claim, is a small lens of magnetite in a short adit. At the east end of the magnetite lens is a smaller one containing pyrrhotite, pyrite, and chalcopyrite.

Continuity between any of the showings has not been established. The distribution of anomalies on the dip-needle map suggests that the magnetite is in lenses of limited lateral extent.

Copper

JORDAN RIVER $(48^{\circ} 124^{\circ} S.E.)^*$

Company office, 620 Howe Street, Vancouver 1; mine office, Sunloch and Gabbro River Jordan. Oswood G. MacDonald, president; J. R. Bil-(Cowichan Copper Co. Ltd.) Lingsley, mine manager. An operating lease was obtained by Cowichan Copper Co. Ltd. from Sunro Mines Limited (controlled by The Consolidated Mining and Smelting Company

of Canada, Limited) to remove ore from the Cave, Central, and River ore zones.

The rehabilitation of the surface plant and Sunro or main adit commenced in January and was completed in March. In order to improve underground ventilation, a vertical raise was driven with a raise platform from near the face of the Sunro adit to the surface. On completion of the raise and in preparation for the installation of the mill and crushing plants underground, additional drifting, cross-cutting, raising, and chamber-slashing was done. The amount completed was as follows: Total drifting, 700 feet; total crosscutting, 140 feet; total raising, 925 feet; crushing-chamber, 74,600 cubic feet; mill-room chamber, 143,000 cubic feet; mill workshop chamber, 11,200 cubic feet; and fine-ore bin, 35,600 cubic feet.

A compressor-house, housing two 1,000-cubic-feet-per-minute electrically driven compressors, was erected on the surface at the British Columbia Electric Company penstock intake, and 2,000 feet of 8-inch water and air lines were installed from the power-house to the bottom of the ventilation shaft. The 2,300-volt power-line was extended 1,100 feet to the portal; 2,000 feet of 12,000-volt power-line and an underground substation were completed.

In the underground crushing plant a 40- by 48-inch Buchanan jaw crusher, a 36-inch Traylor pyrosphere, and a 48-inch Telsmith pyrosphere were installed and part of the conveyor system was completed. In the mill-plant area three mill foundations were poured, two mills installed, and most of the concrete floor poured.

The construction of mine and general offices, warehouse, and dry-house has been completed near the main portal.

At the year-end a total of seventy men was employed, of whom forty-five were employed underground.

* By J. E. Merrett.

REPORTS ON GEOLOGICAL, GEOPHYSICAL, AND GEOCHEMICAL WORK

Reports accepted to the end of 1958 for credit on assessment requirements for properties held under the *Mineral Act* and the *Placer-mining Act* since January 17, 1947, and reports on geochemical surveys accepted since April 6, 1951, are listed in the Annual Report for 1958. Starting with 1959, each Annual Report lists the reports accepted during the current calendar year. A copy of each report may be examined in the office of the Mining Recorder for the mining division in which the property is located. A second copy of each report is filed in the office of the Chief of the Mineralogical Branch, Department of Mines and Petroleum Resources, Victoria.

The property name is that which appears to be in most common use. It is not feasible to list all the claim names in each property. The author of each report is given and the principal for whom the report was written.

Geographic Position		Property		Kind of Work			
	1	Owner or Principal					
		Owner or Principal		Cal	lica		
1° Quadr.	Quarter	Author of Report	gic:	Geophysical	Geochemical		
		Date of Submission of Report	0	1ª	5		
_			Geological	Ge	ð		
49° 115°	N.W.	Special Placer-mining Lease 906	×	×			
		H. R. Mortis.			1		
	1	W. H. Myers,			í		
	1	December 16, 1961.]		1		
49° 115°	S.W.	Mark Creek Group			ĺΧ.		
	1	Reeves MacDonald Mines Limited.		1	1		
	1	Roy A. Anderson.	1	ĺ	ĺ.		
		September 7, 1961.			ALA		
49° 118°	N,W.	Amcana Group	l	X			
	1	Amcana Gold Mines Limited.		1			
	Ť	A. R. Allen.	I	[
	(September 7, 1961.	Į	ļ			
49* 118*	S.E.	Raven and Crow		X	1		
	1	Nizgara Mining & Development Corporation Ltd.	l.		1		
		V. B. Bjorkman.		Í	1		
		May 11, 1961.	İ	Í	Ì		
49° 119°	N.E.	Matt 1-75	X I				
	1	Kennco Explorations (Western) Limited.					
	(C. S. Ney.	l				
	1	December 1, 1961.	I	l			
49° 120°	S.W.	Aku Group		X			
	Î	Kennco Explorations (Western) Limited.	ļ	1			
		J. A. Gower and J. M. Anderson.		1			
	1	May 17, 1961.	1		1		
49° 120°	S.W.	Whip and Saw Groups	***	X			
	1	Texas Gulf Sulphur Company.	1		i		
		W. R. Bacon,			ļ		
	l	July 18, 1961.			ļ		
49° 124°	S.E.	Nel 1 and Nel 1 Fraction	X	X			
	1	C. Campbell.	1		i		
	1	C. F. Millar.			ł		
		June 9, 1961.					
49° 125°	N.W.	Wildcat Nos. 1-6		X			
	1	Gulf Equipment & Finance Co. Ltd.			I		
	1	H. H. Cohen.			ļ		
	1	June 16, 1961.	ļ	Į	1		
50° 117°	N.E.	Silver Chief	\times	*****			
	ļ	Larrie B. York and Loyd York.	1	1	1		
	l	H. C. B. Leitch.	1		1		
	1	May 5, 1961.	1	1	1		

REPORTS CREDITED FOR ASSESSMENT, 1961

LODE METALS

Geographic Position		Property		Kind of Worl		
1° Quadr.	Quarter	Owner or Principal	Geological	Geophysical	Geochemical	
50° 120°	N.W.	Betty Lou and Lou Groups Canex Aerial Exploration Ltd. A. Allan.	W10,0750.	×		
50° 120°	 S.W. 	May 24, 1961. Cana, Bon, Call, Royal, Ezz, Pal, and Eon. Royal Canadian Ventures Ltd. C. Warren Hunt and Virgil R. Chamberlain.	×	×		
50° 120°	s.w.	October 2, 1961. Mint Group W. D. Barr, M. K. Lorimer.	+	×	·	
50° 120°	s.₩.	June 15, 1961. Peel Groups "A," "B," and "C" Peel Resources Limited. Franklin L. Price. November 22, 1961.	····.	×	×	
50° 120"	N.W.	Harvey H. Cohen. Harvey H. Cohen. July 11, 1961.	•	×		
50° 120°	S.W.	N. H. McDiarmid. Franklin L. Price. November, 1961.		×	×	
50° 120°	N.W.	Ann 3 to 8 and Rover 1 and 2 Salmo Prince Mines Limited. L. B. Gatenby. January 30, 1961.		×		
50° 120°	S.W.	Shot Claim Group Donald S. Paterson. Roderick Macrae. December 29, 1960.	**	×	 	
50° 120°	N.W.	Soo 1 to 32 and Bare 1 to 4 Thomas Goodrick Wilson. H. Cohen. February 17, 1961.	4000	×		
50° 121°	N.W.	K.B. and Lodge Groups Northlodge Copper Mines Limited. L. B. Gatenby. January 25, 1961.	•••	×		
50° 121°	N.W.	Mox, C.N., and SB Groups Trojan Consolidated Mines Ltd. L. B. Gatenby. January 9, 1961.		×		
50° 121°	S.E.	Shot, J.J.M., Nora, and Vulgar Consolidated Standard Mines Limited. C. W. Faesaler, January 4, 1961.		×		
50° 121°	S.E.	V.L. 14-21 Northwest Ventures Ltd. R. H. Seraphim. February 24, 1961.		×		
50° 122°	N.W.	Owl Creek Gold Mines Nos. 1–4. Owl Creek Gold Mines Limited. Allan P. Fawley. June 5, 1961.	×			
50° 122°	N.W.	Phelps Dodge Corporation of Canada, Limited. D. C. Malcolm. September 25, 1961.	×			
50° 127*	S.E.	Little Lake Group H. Clements and H. F. Benjamin. L. B. Gatenby. June 19, 1961.	×	×		
50° 127°	N.W.	New Handy Andy R. P. Mason. John Lamb. December 19, 1961.	×			

REPORTS CREDITED FOR ASSESSMENT, 1961-Continued

Geographic Position		Property	Kinc	Kind of Wo		
		Owner or Principal			-	
			1 ल	sica	i i	
1° Quadr.	Quarter	Author of Report	ogi	hy	her	
		Date of Submission of Report	Geological	Geophysical	Geochemical	
51° 123°	s.w.	Jo Group		×		
		Phelps Dodge Corporation of Canada, Limited, J. H. Ratcliffe.				
53° 122°	N.E.	September 25, 1961. Axe Nos. 69 to 72		X		
		Totem Minerals Ltd. Roderick Macrae.				
54° 125°	S.E.	June 1, 1961. Bell Claim Group		×	1	
)	Carl L, Erickson.			Ì	
		Roderick Macrae. December 20, 1961.		-		
54° 125°	S.E.	Elk Nos. 1 to 12		×		
		Totem Minerals Ltd. Roderick Macrae.			ļ	
55° 124°	NW.	November 14, 1961, Duckling, Dorothy, and Eldor Groups	×		$\frac{1}{1}$	
		Kennco Explorations (Western) Limited.			1	
		R. W. Stevenson. September 25, 1961.				
55° 125°	N.E.	Dorel, Lorrex, and Lorraine	×			
	ł	Kennco Explorations (Western) Limited. R. W. Stevenson,				
55° 125°	N.W.	November 29, 1961. Fore 1 to 24	x	 	1	
		Fort Reliance Minerals Limited.				
		G. T. Warren. January 16, 1961,				
55° 125°	N.E.	Valley Group			$\langle \rangle$	
		Kennco Explorations (Western) Limited. R. W. Stevenson.			ł	
	İ	December 5, 1961.		ļ		
55° 129°	N.W.	R.A.F. Nos. 1 to 3 Angelo Bugnello.	×	×	-	
		R. A. Knutson.		1	İ.	
56° 130°	S.E.	March 21, 1961. Adell and Seabee Groups		×		
50 150	5.12,	Granduc Mines, Limited.			1	
		G. W. H. Norman. February 3, 1961.		1		
56° 130°	S.E.	Fox and Ox Groups	×	×		
	ţ.	Granduc Mines, Limited. G. W. H. Norman.		ĺ	1	
		April 7, 1961.				
56° 130°	S.E.	Har Groups	×	×	-	
		Granduc Mines, Limited. G. W. H. Norman.			1	
Fro 1900	6.5	April 7, 1961.			1.	
56° 130°	S.E.	Max Group Granduc Mines, Limited.	×	X		
	ł	G, W. H. Norman.				
56° 130°	S.L.	April 7, 1961. Mineral Lease No. 12	×	1	ļ	
	1	Newmont Mining Corporation of Canada Limited.				
	Į	D. A. Davidson, October 16, 1961.	ļ			
56° 130°	S.E.	Queen Group		×	_	
		Granduc Mines, Limited. G. W. H. Norman.		1		
	1	January 17, 1961.		ł		
56° 130°	S.E .	Red, Tay, and Ted Groups Granduc Mines, Limited.	×	X	-	
	ĺ	G. W. H. Norman.		l		
570 1310	S.E.	April 7, 1961. Buy and Hab Groups				
57° 131°	່ ວ. <u>ຬ</u> .]	Kennco Explorations (Western) Limited.	X]		
	1	D. A. Barr.		j	1	

REPORTS CREDITED FOR ASSESSMENT, 1961—Continued

LODE METALS

Geographic Position		Property	Kind of Work			
1° Quadr.	Quarter	Owner or Principal Author of Report Date of Submission of Report	Geological	Geophysical	Geochemical	
57° 1 31°	S.E.	G.C. Group Kennco Explorations (Western) Limited.			×	
57° 131°	S.E.	D. A. Barr. September 20, 1961. G.C., Hab, and Buy Groups Kennco Explorations (Western) Limited. C. C. Kamm.		×		
5 7° 131°	S.E.	August 23, 1961. G.C., Hab, and Buy Groups Kennco Explorations (Western) Limited. McPhar Geophysics Limited (Halloff and Bell).		×		
5 7° 131°	S.E.	September 20, 1961. G.C., Hab, and Buy Groups Kennco Explorations (Western) Limited. H. W. Fleming.		×		
58° 125°	N.W.	September 21, 1961. Pat and Pat No. 1. Harold R. Dicconson. James P. Elwell.	×			
58° 131°	S.E.	January 5, 1961. Kid 1-12. Kennco Explorations (Western) Limited. D. A. Barr and E. A. Lawrence.	×		×	
58° 132°	S.E.	May 9, 1961. Nan Group. Totem Minerals Ltd. Roderick Macrae.		×		
59° 130°	N.E.	December 20, 1961. Silvertip and Extention Group Peter Timar, Andrew Meszaros, Andrew Zborovsky. E. P. Chapman, Jr.		×		
59° 130°	N.E.	June 9, 1961. Silvertip Group Andrew Zborovsky. P. C. Halloff and R. A. Bell. August 1, 1961.		×		

REPORTS CREDITED FOR ASSESSMENT, 1961—Continued

Placer

.

CONTENTS

JADE IN BRITISH COLUMBIA.	Page 119
ATLIN-	•••••••••••••••••••••••••••••••••••••••
Squaw Creek	
Spruce Creek	
Pine Creek	
Birch Creek	
McKee Creek	
Omineca	
McConnell Creek	128
Germansen River	
Manson Creek	
CARIBOO-	
Hixon Creek	
Willow River	
Williams Creek	
Antler Creek	
Cunningham Creek	
Lightning Creek	
Cottonwood River	
Swift River	
Quesnel River	
Keithley Creek	
Horsefly River	
Bridge River—	
Cadwallader Creek	
Marshall Creek	
FRASER RIVER-	
Hill's Bar	
Similkameen—	
Granite Creek	
Tulameen River	
LARDEAU	
Nelson—	
Fifteen Mile Creek	
CRANBROOK	
FORT STEELE-	
Maus Creek	
KIMBERLEY—	
Lisbon Creek	
Revelstoke—	
McCulloch Creek	136

JADE IN BRITISH COLUMBIA*

Widespread interest has developed over the past few years in the cutting and polishing of minerals and rocks for pleasure and profit. This has led to a lively search for jade, which, due as much to the magic of the name as to the appeal of the material itself, is a rock now greatly in demand. The occurrence of alluvial jade boulders in the vicinity of Lillooet has resulted in the establishment of an active market for jade there. The widespread occurrence of the material in fair abundance has led to the present investigation, which it was hoped might give some indication of the bedrock source. The finding of new material is rapidly slowing down, and it is possible that very shortly the discovery of a jade boulder or cobble might become a rarity. Consequently, the discovery of commercial jade in place would be extremely important to the local trade, now dependent on boulders found along the river beds.

A measure of the interest in jade is given by the fact that in the past ten years and mostly in the last five it is estimated that considerably more than 100 tons of jade in the form of alluvial boulders has been removed from the lower Fraser River and certain of its tributaries. It is also estimated that about 50 tons has been sold in small amounts to lapidaries in Canada and the United States and in bulk shipments of larger amounts to dealers in Canada, the United States, West Germany, and China.

The price that the jade commands depends upon its quality, which is governed very largely by its colour and its freedom from flaws, such as fractures or the presence of objectionable minerals such as magnetite. A very large amount of the jade has been sold at prices of from 50 cents to \$1 per pound; better than average individual boulders or cut slabs may command a price of from \$2 to \$5 a pound, and exceptional material, of which there is very little, will fetch a price of \$10 a pound or more.

Jade occurs in British Columbia as alluvial boulders on parts of the Fraser River and certain of its tributaries and on Wheaton (Boulder) Creek at the head of Turnagain River. The jade along the Fraser River was extensively used by the Salish Indians of the area, chiefly for making cutting-tools rather than for personal adornment. It was the strength and toughness of the material and its ability to hold an edge that was recognized by them as making the jade superior to other rock for their purpose. In addition to the tools of early-day use, they made larger artifacts which were never used, but which, because of the labour involved in making them, were valued as "property pieces" which gave evidence of the wealth of the owner. The Indians along the lower Fraser River found the jade boulders and cut and worked them in their own way for many hundreds of years, and it was not until white traders of the last century introduced superior iron tools that the working of jade by the Indians ceased. The value of the Fraser River jade must have been well known to the native peoples because jade artifacts from the Fraser River were possessed by tribes of the Mainland Coast and Vancouver Island as well as by tribes of the Interior. The superiority of jade tools over others is shown by the fact that an adze blade 2 to 3 inches long was valued amongst the Tlingit at from one to three slaves.[†]

After the first influx of placer-miners from California in 1858, many of the bars along the Fraser and Bridge Rivers were reworked by Chinese miners in subsequent years. The story is current that the Chinese placer-miners recognized the jade boulders amongst the many that they were continually handling, and that ship-

^{*} By Stuart S. Holland.

[†] Emmons, p. 18 (see list of references).

⁷

ments of jade to China were made in the years before 1900. It has not been possible to substantiate this rather interesting incident in the history of the Fraser River jade.

The present renewal of interest in the Fraser River jade began somewhat more than ten years ago when C. J. Hallesey, now retired in Kelowna but for many years a resident of Lytton, began collecting jade as a pastime. He and the late Captain Duncan, an enthusiastic jade collector, spent much time along the rivers. Hallesey's enthusiasm and interest was communicated to several of the local residents, who subsequently have built up small businesses dealing in jade. In the past five years the demand for jade by collectors and "rock hounds" has increased tremendously. A satisfactory price range is now established which makes it financially attractive for many of the local residents, Indian and white alike, to become part- or full-time jade hunters, collectors, polishers, and sellers.

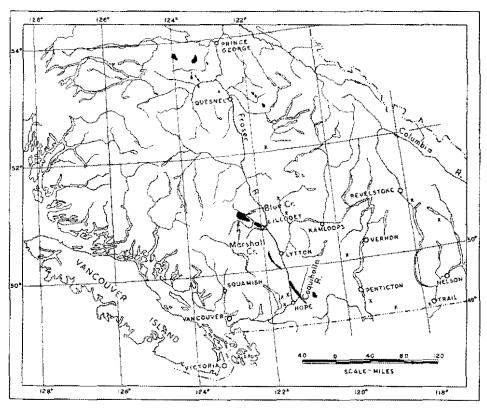


Figure 16. Index map of southern British Columbia showing main areas of serpentinite and serpentinized ultrabasic rock. Crosses mark small areas of serpentinite.

Jade boulders have been found along the bars of the Fraser River from as far downstream as Hope and upstream as far as the mouth of the Bridge River, and along the Bridge River almost to Mission Dam. Jade has also been found up Marshall Creek for at least 2 miles, along the Yalakom River as far as the mouth of Blue Creek, and found along Coquihalla River to the mouth of Dewdney Creek.

The right to mine alluvial jade is acquired under the *Placer-mining Act*. Many of the bars along the Fraser River below Lillooet are open to location, but the Bridge River, for about 18 miles upstream from its junction with the Fraser to Antoine Creek, flows through Indian Reserve land on which trespass is forbidden.

120

From Antoine Creek up to and beyond Hell Creek the river is held by placer-mining leases. As a consequence the ground available for casual collecting by "rock hounds" is restricted to parts of the Fraser, Yalakom, and Coquihalla Rivers and may not be of the best.

The jade occurs as pebbles, cobbles, and boulders of a few tens of pounds to as much as several tons in weight. The largest jade boulders seen were on Marshall Creek, about 1½ miles above its mouth. The largest of them is estimated to be about 10 tons weight, and several of 3 to 5 tons are present. It is reported that a boulder approximately 20 tons in weight was found in the lower canyon of Marshall Creek and broken up in 1960. There seem to have been concentrations of large jade boulders of a ton or more in weight on the Bridge River near Hell Creek and on the Bridge River downstream from the Horseshoe Bend. A boulder weighing about 800 pounds is known to have come from the Yalakom River. Boulders found on the Fraser River are considerably smaller in size, mostly in the range of several tens of pounds weight, but many of the finest quality have been found there.

The jade, as represented by material currently being found as well as by the material worked in the past by the natives, varies considerably in both colour and texture. The prevailing green ranges from light to dark and in shades of yellow green, olive green, greyish green, and dark spinach green with occasional small pieces or areas of better colour that might be described as leek green or sprout green. The colour invariably is in the yellow-green register; emerald greens are rarely, if ever, seen. Some very pale grey to white jade has been seen, but no true black, brown, mauve, pink, yellow, or other unusual colours have been observed.

Commonly there is a colour variation in any one piece, either between the surface of a boulder and the interior owing to the development of a dark-brown to black skin by oxidation of the ferrous iron or on an interior surface owing to slight mineralogical variations. Darkening of the jade through oxidation may penetrate to the interior of boulders along fracture or cleavage planes.

The jade from the Fraser and Bridge Rivers is almost wholly nephrite. No jadeite has been identified, and the illustration of a jadeite pebble by Emmons* is probably a misidentification based on the specimen's specific gravity of 3.35. The material more than likely is vesuvianite (specific gravity 3.35–3.45), which is known to occur at the head of Kwoiek Creek. The properties of nephrite which commonly can be used for identification are that it is subtranslucent and its specific gravity is approximately 3.0. The average specific gravity of a considerable number of samples ranging from 2.93 to 3.08 was found to be 2.99. The nephrite in very large part is peppered with small individual grains or aggregates of magnetite and occasionally chromite. The magnetite not only creates spots or dark areas on polished surfaces, but also undercuts so that the appearance and value of the polished material is reduced. Variations in specific gravity probably are more the result of magnetite contamination than of mineralogical variation.

In microscopic examination the nephrite is seen to consist very largely of bundles and sheaves of minute fibres of tremolite intergrown in a very characteristic felt-like texture. It is this nephritic fabric that makes the jade so tough. In some specimens a preferred orientation of the fibres results in a slight foliation that is discernible in hand samples. The tremolite, which is colourless in thin-section, varies somewhat in composition, chiefly in its content of ferrous iron, ranging from 3.6 to 5.4 per cent,[†] but it is this variation in iron content which seems to affect

^{*} Emmons, G. E., "Jade in British Columbia and Alaska," Monograph No. 35, Museum of the American Indian, Heye Foundation, p. 16, 1923. * Harrington, p. 64.

Jade boulders and diamond saw at E. Osterlund ranch, Yalakom River.

Close up of 24-inch diamond saw in operation.

the depth of colour of the nephrite in specimens. Jade samples from Coquihalla, Fraser, Bridge, and Yalakom Rivers and Marshall Creek are significantly alike in thin-section, showing only slight variation in amount of alteration to chlorite and in variation in grain size. In some thin-sections chlorite appears in irregular and occasionally lens-shaped areas of alteration in which the nephritic texture is retained. Specimens comprising tremolite fibres of greater length, a high percentage of which are in parallel orientation, could be called semi-nephrite, a term used by Turner* to describe comparable material from the South Island of New Zealand.

Some specimens which locally are called "intestinal jade" consist of intricately folded layers of pale greenish-grey nephrite in a matrix of darker-coloured nephritic material. Others comprising aggregates of nephrite nodules and lenses in a darker foliated matrix possibly represent a more advanced stage of deformation than "intestinal jade." In no instances, however, has jade of good quality been observed in this form.

Diopside is a constant but variable constituent of all the jade examined. The diopside occurs as aggregates and swarms of extremely small elongate green crystals disseminated throughout the mesh work of tremolite fibres and apparently has crystallized at the expense of the tremolite. In some jade rocks the diopside is sufficiently abundant to occur in lenses or layers enveloped by nephrite. When nodular and massive aggregates of diopside are present, a rock locally called "mottled jade" is the result. This latter material comprises dark greenish-black nephrite surrounding irregularly rounded masses of watery-white to greenish-grey and pale-brown aggregates that are dominantly diopside. This material has little or no value for jewellery but may be of some interest to lapidaries in cut surfaces large enough to display the pattern.

An association of nephrite with ultrabasic rocks is recognized wherever jade occurs; furthermore, it is evident from examination of thin-sections that the tremolite rocks are the recrystallization products of thermal and cataclastic metamorphism of basic rocks. It is significant that the jade along the Fraser River and its tributaries is found in close proximity to the outcrop areas of serpentinite and serpentinized peridotite that occur along the Fraser River fault zone between Coquihalla River and the head of the Yalakom. The alluvial jade boulders are derived from the erosion of nephritic lenses that were formed in certain favourable environments within the serpentinite belt, and the known distribution of large boulders indicates that there are several sources within the serpentinite belt that have shed shoulders into the rivers. No single source of jade at the head of the Yalakom or Bridge Rivers could have supplied all the material which has been found downstream as far as Hope, some 125 miles away. Rather, it is believed that there have been local sources at Marshall Creek, at the head of the Yalakom near the junction of Blue Creek, on the Bridge River at Hell Creek, on the Bridge River below the Horseshoe Bend, and at other places along the Fraser as far as the Coquihalla River near Dewdney Creek.

Although good-quality jade has not been found in place along the lower Fraser River and its tributaries, nevertheless jade does occur in bedrock at a location to which the writer was directed on the west side of Bridge River about 1,500 feet below the old cable ferry downstream from Applespring Creek. There, across a width of 18 inches to 2 feet, nodules, sheared lenses, and folded layers of pale greenish-grey waxy nephrite are enclosed by sheared tremolite lying along a pronounced fault which crosses the serpentinized rocks of the vicinity. The material is similar to the layered and nodular jade of some alluvial boulders, and this ex-

* Turner, F. J., p. 190.

posure may represent the type of bedrock occurrence from which some of the alluvial jade is derived.

At the present time the distribution pattern, and the size and number of boulders found, is the most significant factor in indicating the situation within the serpentinite belt where jade in place might be found by diligent and intelligent prospecting.

Jade boulders were first found on Wheaton (Boulder) Creek by W. J. Storie, of Cassiar, when he was placer-mining there in 1938. This information was not generally known until 1949, when Storie, who had subsequently restaked Percy Peacock's old lease as Placer-mining Lease No. 487, wrote the Department of Mines reporting the occurrence of jade on his lease. Later it was reported by Frank Bobner, who owned the next lease upstream, that a boulder estimated at 10 tons weight had been found.

Attempts were made at that time to market some of the jade, but the difficulties of the location and of breaking the boulders into pieces of manageable size combined to prevent any jade being sold at the best price then offered.* Storie's lease expired in 1951, and the ground was relocated as lease No. 628 in 1954 by Gerald Davis. In 1957 he broke up one of the large jade boulders and flew about 1,000 pounds of jade to the Cassiar road at McDame Lake. Most of this jade was sold to dealers in the United States.

When Wheaton Creek was visited during late July, 1961, no miners were working on the creek, and some inconvenience was experienced in not having anyone present who had precise knowledge of the jade occurrence. The only permanent resident is Earl Faulkner, whose cabin is on Turnagain River at the mouth of the creek. However, some jade boulders were found, as was the position from which Davis removed his large boulder.

In the lower $1\frac{1}{2}$ miles of its course, Wheaton Creek flows through a narrow canyon above which the valley widens on the old Peacock lease (now P.M.L. No. 628), where the extensive placer-mining has been done. Above the old Peacock lease the creek is constricted and flows in a narrow canyon, where there has been little placer-mining, except for Bobner's old ground-sluice cut. The first jade boulder found by Storie was about half a mile north of the head of the lower canyon and was on Jack Wheaton's old Elvira lease.[†] Most of the known jade boulders are on P.M.L. No. 628, where there are extensive boulder piles left by placer-mining operations. A boulder of pale-green colour and possibly 300 pounds weight was seen on a rock pile close to the lower limit of lease No. 628; three other boulders, of which the largest is possibly 3 tons in weight, lie close together about 500 feet from the southern limit of the lease. Several other boulders were seen 200 feet farther south. No jade was seen on Bobner's old lease nor upstream from it to the south, and inquiries confirm the belief that no jade has been found along that part of the creek, as far as Alice Creek.

The jade seen on lease No. 628, except for one boulder, has a dark outer surface and may enclose some small lenticular masses of somewhat lighter green. Its colour tends to be dark and inferior to that of the average Bridge River material. No jade was sectioned that is devoid of magnetite spots and aggregates. In addition the rock has been subjected to stress which has developed a shear foliation that in very large measure seriously reduces the amount of unflawed material.

In thin-section the jade is seen largely to comprise bundles of tremolite fibres in typical nephritic fabric, and to be remarkably similar in general aspect to the Fraser River material. There is somewhat more alteration to irregular areas and

^{*} Said to be 75 cents per pound landed in Seattle.

[†] For a map see Fig. 1 in B.C. Dept. of Mines, Bull. No. 2, 1940.

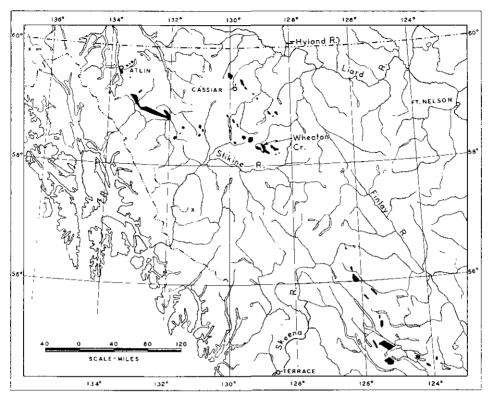


Figure 17. Index map of northern British Columbia showing main areas of serpentinite and serpentinized ultrabasic rock. Crosses mark small areas of serpentinite.

lenses of chlorite which might be reflected in a somewhat reduced hardness of the rock when it is worked.

Geological mapping along the creek* indicates that a band of serpentinite almost 2 miles wide crosses Wheaton Creek in a northwesterly direction and lies south of the southern limit of lease No. 628. The known jade boulders lie along the creek just north of the northern contact of the serpentinite mass. There is no doubt that the jade is derived from the erosion of nephrite lenses within the serpentinite, but there is no assurance that the lenses were localized along the northern margin of the mass.

The universal association of nephrite with serpentinite or ultrabasic intrusions, that is illustrated in British Columbia by the association of alluvial jade with serpentinite along a length of 125 miles in the Fraser River fault zone and with the serpentinite belt on Wheaton Creek, leads one to the belief that this association is probably more common than is generally suspected, and that other serpentinite bodies in British Columbia might have jade associated with them. The main serpentinite bodies known in British Columbia are shown on Figures 16 and 17. In addition to these, numerous serpentinite bodies occur which are too small to be shown even on the 4-mile geological maps issued by the Geological Survey of Canada. The discovery and identification of a green jade boulder amongst hundreds of green serpentinite boulders may not be easy, but the possibility of success seems sufficiently attractive to recommend search for alluvial jade in other sepentinite areas of the Province.

^{*} B.C. Dept. of Mines, Bull. No. 2, 1940, p. 13.

In this connection it is worth recording that a jade boulder of excellent quality was found some years ago by Fred Allen, of Lower Post, on the Liard River at the mouth of the Hyland River. The direction of glacial movement across the Liard Plain in that vicinity is east-northeast (north 67 degrees east). The nearest serpentinite areas are about 60 miles in a southwesterly direction at Cassiar and at the head of Blue River.* These areas and the creeks draining them suggest themselves as likely jade prospecting terrain.

Pursuing the thought further, it is suggested that creeks draining serpentinite areas that are contiguous to the Fraser and Bridge Rivers, the several creeks adjacent to Wheaton Creek at the head of Turnagain River, and creeks draining the Atlin intrusion southeast of Mount O'Keefe and the Trembleur intrusions are worth a preliminary reconnaissance for jade.

[References: Anderson, E., "Asbestos and Jade Occurrences in Kobuk River Region Alaska," *Dept. of Mines, Alaska*, Pamphlet No. 3-R, 1945; Chesterman, C. W., "Nephrite in Marin County California," *Dept. of Natural Resources*, California Div. of Mines, Spec. Rept. 10-B, 1951; Crippin, R. A., "Nephrite Jade and Associated Rocks of Monterey County," *Dept. of Natural Resources*, California Div. of Mines, Spec. Rept. 10-A, 1951; Dawson, G. M., "Occurrence of Jade in B.C.," Canadian Record of Science, Vol. II, No. 6, 1887, pp. 364–378; Emmons, G. E., "Jade in British Columbia and Alaska," Monograph No. 35, 1923, Museum of the American Indian, Heye Foundation, New York; Foshag, W. F., "Mineralogical Studies on Guatemalan Jade," Smithsonian Miscellaneous Collection, Vol. 135, No. 5, 1957, pp. 1–60; Turner, F. J., "Geological Investigation of Nephrites, Serpentines, and 'Greenstones,'" Trans., *Roy. Soc. New Zealand*, Vol. 65, Pt. 2, 1935, pp. 187–210.]

^{*} See Geol. Surv., Canada, Prelim. Paper 54-10.

ATLIN

SQUAW CREEK (59° 136° N.W.)*

Squaw Creek Placer (Ad Astra Minerals Ltd.)

Ad Astra Minerals Ltd., 526 Northern Hardware Building, Edmonton, Alta. (R. C. Sisson, president; R. G. McPhie, general manager), holds Placer-mining Lease No. 1412 on Squaw Creek and Special Placer-mining Lease No. 1447 which extends south for about 3 miles from the Yukon-

British Columbia boundary on Squaw Creek about 3 miles above its junction with Tatshenshini River. A camp established on Squaw Creek is reached (from the Haynes Road) by 4 miles of road to Dalton Post, where the Tatshenshini River is crossed, then by 12 miles of rough truck-road to the creek. This access road lies in the Yukon.

The special lease extends southerly along a shallow late-glacial meltwater channel incised in stratified glacial sands and gravels. Ten drill-holes totalling about 400 feet, put down in 1955 by O. D. Frith for Datlasaka Mines Ltd., indicated a bedrock depression at least 8,000 feet long lying beneath the surface meltwater channel. Extremely high gold values were reported by Frith about 1,000 feet south of Squaw Creek at a point where bedrock lies at a depth of 80 feet.

In the summer of 1961 work was started at this point by J. Lynass, of Red Deer, Alta., under contract with the company. Two D-4 Caterpillar tractors with front-end loaders and a D-8 Caterpillar excavated gravel which was fed by a 400-foot conveyor belt to a vibrating-screen washing plant, from which the undersize went through 48 feet of steel sluices paved with rail Hungarian riffles. Operations ceased on August 4th when no gold had been recovered from two weeks' digging on two shifts, at which time a pit about 20 feet deep had been excavated.

[References: Minister of Mines, B.C., Ann. Repts., 1932, pp. 74-79; 1933, pp. 90-93; B.C. Dept. of Mines, Bull. No. 25, 1948, pp. 36-39.]

SPRUCE CREEK (59° 133° N.W.)[†]

Duncan Falconer continued to work alone on a drift on his lease.

PINE CREEK (59° 133° N.W.) †

Spruce Creek Placers Limited sluiced gravel on Pine Creek and Goldrun Creek. This operation, which continued to use a dragline and shovel, employed five men.

The Matson brothers sluiced ground on Pine Creek and did some exploratory drilling on Bull Creek.

Karl Sieger continued to work his lease near Discovery.

BIRCH CREEK (59° 133° N.E.) †

B. Yates sluiced ground on his lease on Birch Creek.

McKee Creek (59° 133° S.W.) †

Three men, Joe and Louis Piccolo and Albert Miller, hydraulicked a considerable amount of gravel on McKee Creek. Drifting was done by the partners during the winter months.

† By W. C. Robinson.

^{*} By Stuart S. Holland.

OMINECA

MCCONNELL CREEK (56° 126° N.E.)*

McConnell Creek Placer Vancouver, are held by Guaranty Trust Co. of Canada. Two special placer-mining leases, Nos. 1536 and 1537, extending along McConnell Creek from its junction with Ingenika River to McConnell Lakes together with two placer-mining leases originally located by W. D. Savage, of

In the autumn of 1960 a TD-14 tractor and a back hoe were driven from the end of the truck-road at Uslika Lake over the old winter tote-road to Aiken Lake, thence following the old trail to the pass at the head of Lay Creek and into McConnell Creek. In the early summer of 1961 a camp was established on the east side of McConnell Creek between the old Jensen workings and the head of the canyon at the mouth of Jensen (Meadow) Creek. The camp was serviced during the summer by aircraft from Fort St. James. During the season the ground between the mouth of Jensen Creek and the Jensen workings, an area 6,000 feet long by 2,000 feet wide, was systematically sampled by means of pits dug to a depth of about 12 feet with the back hoe. About thirty-two pits were dug at about 400-foot intervals along several lines. Channel samples of every 2 feet of depth were taken in each pit. These were panned down and part of the concentrate bottled and sent out for separation and weighing of the gold. W. D. Savage was in charge of the crew of from three to six men.

Pete Jensen, who returned in 1906 after having worked in the Klondyke and on the Nome beaches, spent thirty-five years working his placer ground on McConnell Creek. His workings are the most extensive along the creek, and he produced the bulk of the gold taken from the creek. Unfortunately there is no record of the gold he mined prior to 1931. But since that time, in the period 1931 to 1941, there is official record of 1,100 ounces having been produced.

The gold-bearing gravels lie above a compacted glacial-lake silt. The silt was overridden by an ice tongue which moved southward down the valley and compacted the lake silt which occupies the valley upstream from the head of the canyon. The upper surface of the silt was eroded, and as a consequence the silt surface is uneven and lies at varying depths below present creek level.

In the waning stages of ice occupation heavily charged meltwater streams flowed southward and southeastward from wasting ice tongues lying in the valleys between Frederickson Lake and Thutade Lake through McConnell Creek valley into the Ingenika River. At that time McConnell Creek valley up to a height of 300 to 400 feet above present creek level was occupied by a stagnant ice tongue, along the sides of which stratified materials were being deposited under a variety of ice contact environments. As the ice gradually melted, the reduced amount of meltwater deposited stratified sands and gravels on top of the compacted glacial-lake silts in the valley bottom. When the present drainage pattern was established, postglacial gravels were deposited in alluvial fans above the glacial materials at the mouths of tributary valleys such as Snowslide Creek and others. There are topographic indications of a considerable amount of slumping of the ice contact materials which flank the valley sides and bottoms. Recent erosion, initiated through the downward cutting of Ingenika River, has not affected the present area, but has resulted in a canyon being incised from the mouth of McConnell Creek upstream for about 2 miles to a point just below the mouth of Jensen Creek.

^{*} By Stuart S. Holland.

Placer gold is quite widely distributed in the stratified late-glacial gravels and cross-bedded sands and gravels lying above compacted silt. Gold occurs also in some flanking kame terraces, which, because of their origin, probably were discontinuous. As a placer occurrence, McConnell Creek presents the interesting feature of a creek in which there has been no stream erosion subsequent to the deposition of the auriferous gravels. As a consequence there has been no concentration of gold in the bed or along the course of the present creek.

Because of the nature of the occurrence, it will require thorough and closely spaced testing of the ground to follow and delimit any paystreaks that exist within the vast yardage of unconsolidated late-glacial materials that lie between the head of the canyon and the McConnell Lakes.

[References: Minister of Mines, B.C., Ann. Rept., 1908, pp. 80-84; B.C. Dept. of Mines, Bull. No. 2, 1932; Geol. Surv., Canada, Mem. 251, 1948, pp. 56-58.]

Germansen River (55° 124° N.W.)*

Gene Jack did some development work in the form of stripping and dam construction during 1961 preparatory to hydraulicking in the de Ganahl pit.

MANSON CREEK (55° 124° N.W.)*

Germansen Mines Limited is reported to have done some stripping and ditching on ground formerly held by Manson Creek Gold Mining Co. Ltd. on Manson Creek.

CARIBOO[†]

HIXON CREEK (53° 122° S.W.)

Hixon Placers Inc. Company office, 2032 Third Avenue, Seattle, Wash.; mine office, Hixon. H. W. Hargood, president; J. E. Nasenius, superintendent. This company holds twenty-one placer leases on Hixon Creek, the camp being on Placer-mining

Lease No. 2288, about 3 miles east of the Quesnel-Prince George highway. The work done on the property this year consisted in the laying of an extensive new 3-foot sluice-box, 750 feet long, above the large falls. The work involved 600 lineal feet of excavation to depths ranging from 6 to 30 feet. This work was done between May and November, and a crew averaging six men was employed. No hydraulic mining was done in 1961.

Little Hixon Creek.—D. and M. Rottacker erected a washing plant comprising trommel screens and washing-tables on their lease at the lower end of Little Hixon Creek and mined shallow gravels and decomposed bedrock with a mobile loader.

WILLOW RIVER (53° 121° S.W.)

McJana Placers This company, under the supervision of R. E. MacDougall, continued to hydraulic at the head of the Lowhee pit. A No. 2 and a No. 5 monitor were used. Shortage of water re-

stricted operations through much of the season, and at the time of the writer's visit in July only one man was employed. About 40,000 yards of gravel was moved. Work started on May 15th and continued until September 30th.

^{*} By W. C. Robinson.

[†] By A. R. C. James.

Mosquito Creek.—Jack Gunn hydraulicked on his lease on the upper part of Mosquito Creek. Although shortage of water restricted the work to about three weeks, a good recovery of gold is reported to have been made.

Pundata CreekA number of leases on Pundata Creek were optioned by R, A.Coppage and associates.A small camp was erected and a
washing plant was moved from Peters Creek and erected on

the property. Late in the season an agreement was made jointly with Centennial Mines Ltd., Canex Aerial Exploration Ltd., and Tombac Exploration Ltd. to carry out tests on the ground. A pit 100 feet wide, 60 feet long, and 5 or 6 feet deep was excavated, and 1,194 cubic yards was put through the washing plant. Bad weather prevented conclusion of the work, but it is reported that the values were not encouraging, and the agreement was terminated.

Big Valley Creek.—Nolan Fisher sluiced gravel on his lease on the south side of Big Valley Creek near Nine Mile Lake.

Coffee Creek.—Arthur Delorme ground-sluiced on his lease on Coffee Creek.

George Creek.—James Lahay built a wing-dam and ground-sluiced on his lease on George Creek.

Jack of Clubs Lake.—Harold Christensen ground-sluiced 250 yards of gravel on his lease on the southeast side of Jack of Clubs Lake.

McLellan Gulch.—R. L. Bater reset 1,600 feet of pipe-line and hydraulicked with a No. 2 monitor.

Devils Lake Creek.—H. McGowan ground-sluiced in a small gulch near the headwaters of Devils Lake Creek.

WILLIAMS CREEK (53° 121° S.W.)

Barkerville-Dakota Placer Explorations Ltd.—Company office, 119 Willow Street, North Kamloops. Eric Larsen drilled six test-holes with a Keystone drill, the average depth of hole being 52 feet. Some flume and penstock was also constructed. This company holds Placer-mining Leases Nos. 6065 and 6072.

Nick Broswick sank a 4-foot-square shaft 47 feet deep on his lease opposite the old Richfield court-house.

ANTLER CREEK (53° 121° S.E.)

Antler Creek.—Arvid Holm ground-sluiced on his lease on upper Antler Creek.

Whiskey Flat.—A. Audet and V. Saur tested about 1,000 yards of gravel on Whiskey Flat, using two Denver panners in parallel.

China Creek.—John Kelly ground-sluiced on the south side of the creek.

California Gulch.—Peter McLanders did some hydraulicking and maintenance work on his lease. Work was limited by shortage of water.

Beggs Gulch.—Harry Wade did some stripping with a TD-18 bulldozer. Hydraulicking was limited by shortage of water.

Pinus Creek.—James Doody ground-sluiced 450 yards of gravel and did some test-pitting on his lease.

130

CUNNINGHAM CREEK (52° 121° N.E.)

Dumont Explorations Ltd. Company office, P.O. Box 838, Quesnel. John McGowan, president. This company holds a special lease extending 5 miles on Cunningham and Cunningham Pass Creeks, a special lease extending 2 miles on Antler Creek, and one ordi-

nary lease on Cunningham Creek. Work done this year has been confined to drilling test-holes with a Kirk-Hillman and a Keystone drill. Several cross-sections of Kafue Dredge Company holes, drilled in 1924, were rechecked, and three cross-sections on lower Cunningham Creek were drilled.

Dan Jorgensen spent a few weeks ground-sluicing and testing ground on Placer-mining Lease No. 4429.

LIGHTNING CREEK (53° 122° S.E.)

Wingdam & Lightning Creek Mining Co. Ltd. Company office, 204, 509 Howe Street, Vancouver 1; mine office, Wingdam. R. A. Brossard, president; C. W. S. Tremaine, consulting engineer; J. C. S. Moore, manager. Capital: 10,000,000 shares, no par value. This company controls leases on Lightning Creek in the Wingdam area, 30

miles by road from Quesnel. The company's objective is to reopen the old Melvin workings and resume mining in the deep lead gravels of Lightning Creek.

Below the settlement of Stanley, the old channel of Lightning Creek follows the general direction of the present creek but is deeply buried under a varying succession of gravels, clays, and silts. The lowest part of the old channel is at a fairly uniform depth of 130 to 170 feet below the surface. Numerous attempts, some fairly successful, have been made to mine the deep level gravels since about 1865. The earlier workings were within a few miles of Stanley, but in 1896 the Lightning Creek Gold Gravels and Drainage Company acquired control of leases in the Wingdam area, which is 13 miles downstream from Stanley. From then until 1921 various attempts were made to work these leases, but from contemporary accounts the operations were badly managed and were unsuccessful. In 1931 a more serious and well-directed effort was made to mine the gravels, when the Sanderson shaft was reconditioned and preparations were made to mine the pay gravels on false bedrock at a depth of 120 feet. The Sanderson mine continued in production until 1939. Meanwhile, starting in 1935, a determined effort was made to mine the bedrock gravels at 165 feet from surface. The old Jones shaft, sunk many years before in the rimrock, was enlarged to four compartments and sunk to a depth of 280 feet. This shaft was renamed the Melvin shaft. From the bottom of the shaft, drives were made in the bedrock upstream and downstream, about 60 feet vertically below the bedrock channel, for a total distance of 3,200 feet. The channel gravels were drained by drill-holes, and at the end of 1936 the first raise was driven up into the gravels. In 1937 the Melvin workings produced 1,821 cubic yards of gravel, while the Sanderson workings produced 52,150 cubic yards and employed ninety men, On March 22, 1938, the Melvin workings were flooded by an inrush of water from Lightning Creek. There seems little doubt that the flooding occurred through the No. 1 downstream raise. It was well known that there was a dangerous area not far from this raise that had been weakened by extensive pumping operations in an area of old workings. It would appear certain that workings from the No. 1 downstream raise approached too close to this disturbed area, with the resultant cave-in and flooding with "slum" and water. Fortunately no one was drowned. However, this put an end to the Melvin mining operations. A concrete plug was placed in the connecting shaft between the Melvin and Sanderson workings, and the Sanderson mine continued to operate until April, 1939. Since that time the property has remained inactive until the present company resumed operations.

The company began work in May, 1961, when two 65-horsepower Flygt deepwell pumps were installed at the Melvin shaft and pumping-out of the water was commenced. These pumps were powered by a portable diesel-driven generator. Meanwhile the company retained Clough Engineering Ltd. to investigate and prepare a report on the feasibility of utilizing chemical grout in controlling underground water and "slum." By June it was evident that the water of Lightning Creek was still flowing into the workings through the old break-through. It was therefore decided to attempt to inject a grout plug into the No. 1 downstream raise by means of a drill-hole from the surface. This was successfully completed by the end of July, using a special cement grout. The work was supervised by Clough Engineering Ltd., and the drilling by Boyles Bros. Drilling Company Ltd. The hole was also utilized as a test-hole to examine gravels, sands, and clays down to bedrock. The pumping-out of the Melvin shaft was then continued until a deposit of silt or " slum" was encountered a short distance above the shaft bottom. Preparations were being made at the end of the year to deal with the silt.

Other work done at Wingdam included the rehabilitation of the old camp and buildings and the erection of a 20- by 44-foot cook-house and mess hall and 42- by 26-foot prefabricated office building. Repairs were carried out to the shafthouse and headframe. In November two 170-horsepower diesel-driven 200-kva. Westinghouse electric generators were installed in the old power-house building. A doubledrum electrically driven mine hoist was being installed at the Melvin shaft at the end of 1961. A second 6-inch-diameter test-hole was drilled to bedrock by Boyles Bros, Drilling Company Ltd. under the supervision of Clough Engineering Ltd. in June. Subsoil profiles between ground surface and bedrock were established, and samples were recovered for testing. The No. 1 hole reached bedrock at 171 feet and the No. 2 hole at 135 feet. Both holes indicated a vertical thickness of 50 to 80 feet of silt in the drill-hole sections. This was found to be a firm and compact material with a normal water content of about 30 per cent. Tests were carried out with the injection of AM-9 chemical grout. Small batch tests indicated that AM-9 grout could be used to produce strong gels, and that it might be successfully used in grouting "slum" material above the gold-bearing gravels.

A crew of up to eighteen men was employed. Only one lost-time accident was reported.

Hannandor Gold Ltd.

Company office, Box 937, Quesnel. E. R. Wiegand, secretary. This company holds seven leases on Mostique (Mosquito) Creek and Lightning Creek, 28 miles by road from Quesnel. The property is approached by road running about

a mile south of the Quesnel-Barkerville road. A washing plant was installed in 1960. This year the property and plant were subleased to Trommel Mining Ltd., which did a small amount of work.

Peters Creek

R. A. Coppage and associates optioned eight leases on Peters Creek. Several acres of ground were cleared and a 1,600foot drainage ditch was made. A washing plant and drag-

line were installed at the property. Late in the season an agreement was made jointly with Centennial Mines Ltd., Canex Aerial Exploration Ltd., and Tombac Exploration Ltd. for testing to be carried out. Two lines of test-holes, totalling six holes, were drilled on Placer-mining Lease No. 6129 under the supervision of Oscar T. McShane. Depth of the holes ranged from 39 to 50 feet. Although previous

reports on the property indicated the possibility of fair values, the results from these holes were reported to be disappointing, and the agreement was terminated.

COTTONWOOD RIVER (53° 122° S.E.)

F. Goodheart ground-sluiced 600 yards of gravel on his lease about 3 miles above Cinema.

Les Thompson and Tony Neill operated a small suction pump in gravels at the lower end of the canyon near Cinema. The pump operated on the venturi principle and discharged gravels through a steel sluice-box, both pump and sluicebox being mounted on a float.

Mary Creek.—Erik Sorum sluiced 800 yards of gravel on his lease on Mary Creek. James Coreau did some sluicing, ditching, and brush clearing on his leases.

SWIFT RIVER (52° 122° N.E.)

William Fisher hydraulicked 2,000 yards of gravel on his lease on the lower section of Swift River.

QUESNEL RIVER
$$(52^{\circ} 121^{\circ} \text{ N.W.})$$

George Martin did some stripping with a bulldozer on his lease near Quesnel Forks.

Smith Placers Ltd. Company office, P.O. Box 39, Chilliwack. This company operated on the east side of Cariboo River near the mouth of Spanish Creek. A bench about 80 feet above the river

level was mined by scraping the gravels onto a grizzly, where the oversize material was discarded down a steep bank into the river, while the undersize passed through sluice-boxes supplied with water from a diesel-driven pump at the river. Three men were employed under the supervision of Jim Robb.

Spanish Creek.—Adolf Anderson washed 4,000 yards of gravel on Placermining Lease No. 3454.

Rose Gulch.—R. H. Spooner ground-sluiced 400 yards of gravel and built 300 feet of 12-inch flume on his lease at the upper end of Rose Gulch.

E. Drew ground-sluiced a small amount of gravel at the lower end of Rose Gulch.

Cedar Creek.—Percy Ogden ground-sluiced on his leases north of Cedar Creek, using a small monitor. Some stripping was done in preparation for moving to a new location.

Nigger Creek.—Barney Boe supervised a small crew in preparing for a hydraulic operation in the old pit about half a mile from the mouth of the creek.

Keithley Creek (52° 121° N.E.)

Keithley Creek.—Clair Dunham ground-sluiced, cleared 500 feet of ditch, and prospected on Placer-mining Leases Nos. 5778 and 6103 in the upper section of Keithley Creek near the falls.

Ernest Lang worked with two men on his lease 1,700 feet below the confluence of Snowshoe and Keithley Creeks. A drift was driven about 170 feet on bedrock toward a buried channel indicated by previous drilling.

Four Mile Creek.—Lee Fournier ground-sluiced on his lease in the Placer Engineers pit near the mouth of the creek.

French Snowshoe Creek.—Albert Sandberg ground-sluiced on the left bank of French Snowshoe Creek.

Horsefly River $(52^{\circ} 121^{\circ} \text{ S.E.})$

Black Creek.—Harold Armes did 59 feet of test drilling, sank a 16-foot shaft, and stripped 1,100 yards of overburden on his leases.

BRIDGE RIVER

CADWALLADER CREEK (50° 122° N.W.)*

Hurley River Mines, Ltd. Hurley River Mines, Ltd., of Bralorne (Paul Polischuk, president), holds two Placer-mining Leases, Nos. 751 and 752, extending along Cadwallader Creek, upstream from its junction with Hurley River almost to the head of the canyon

below Bralorne mine. Lease No. 751 covers a low bench about 500 feet long and 200 feet wide along the creek which had been worked during the 1930's by W. Freeman.

Early in the season Cadwallader Creek was diverted into and contained in a new channel along the foot of the rock bluffs on the east side of Freeman's old cabin. In late April a Lorain ³/₄-yard shovel was taken onto the upper lease in order to work along the channel from which the creek had been diverted.

The shovel dug along the old channel down to the water-table without exposing bedrock. The gravel was washed by a shaking screen, the oversize stacked on the side by a short conveyor belt, and the undersize, through $\frac{3}{16}$ - by $\frac{1}{2}$ -inch aperture, was fed to two Wilfley tables. The table concentrates were sacked preparatory to shipment for recovery of their gold. A sample of table concentrates at the river assayed: gold, *nil*, and a sample from one of the sacks of table concentrates stacked at the head of the road assayed: gold, 0.66 ounce per ton. The operation had ceased by late September, at which time a length of about 150 feet along the old channel had been worked. It is estimated that not more than about 1,000 cubic yards of gravel had been washed.

Mining on the property was done under lease by B.C. Placer Mining & Refining Ltd.

MARSHALL CREEK $(50^{\circ} 122^{\circ} \text{ N.W.})^{\dagger}$

Mr. and Mrs. Wickham operated a small suction dredge on the Doyle lease for a short period at the end of the summer.

FRASER RIVER

HILL'S BAR (49° 121° S.E.) †

Kenneth A. Kent and partners operated a small suction dredge at Hill's Bar for several months at the latter end of the year.

SIMILKAMEEN

GRANITE CREEK $(49^{\circ} 120^{\circ} N.W.)$

Geojimal Mining Development Co. Ltd.

Company office, 120 Second Avenue, Chilliwack; J. A. Robb, manager. The company worked on Placer-mining Lease No. 1333 on Granite Creek, three-quarters of a mile upstream from its mouth. The rock drift driven in 1960 was continued and turned to the right to parallel the buried chan-

^{*} By Stuart S. Holland.

[†] By A. R. C. James.

[‡] By David Smith.

nel of Granite Creek overhead. Several raises were driven upward, breaking into the gravels above. Results are not known. A crew of three men was employed.

TULAMEEN RIVER (49° 120° N.W.)*

Gra-Dorphan Mines Ltd.

Company office, P.O. Box 8, Murravville, A group of placer-mining leases covering the river valley and in the immediate area of the former El Alamein mine were located some 3 miles above Tulameen. Stripping was carried out

using a D-6 tractor equipped with a front-end loader. A crew of five men was employed. Results were not disclosed.

LARDEAU[†]

(50° 117° N.E.) W. Hladinec and three associates, of Hladinec Placer Trout Lake, own Placer-mining Lease No. 456, at the main falls on Lardeau Creek, 5 miles by road from Ferguson. In

the previous two years the creek had been diverted by a tunnel and log dam which dried up the pot-hole below the falls. In 1961 the job of digging out the material in the hole was completed. It was reported that very little gold was found at bedrock.

NELSON[†]

FIFTEEN MILE CREEK (49° 117° S.E.)

F. H. Stegmen and one man operated for two months for **Skookum Uranium** this Spokane company on Fifteen Mile Creek, about 1 mile from the Nelway-Trail highway. The creek has been di-

verted to another channel, and the gravel in the creek bed is put over a series of grizzlies and screens, with the fines going through sluiceboxes. The gravel is moved by means of a scraper and hoist arrangement.

CRANBROOK[‡]

Monilee

Placer

(49° 116° S.W.) This placer-mining lease is near the falls on the Moyie River, 14 miles southwest of Cranbrook. It is held by D. J. Oscarson, of Kimberley, and operated by two

parties who subleased the property in 1958. Each party is driving an adit toward an old course in the river, and activities are confined to week-ends.

T. O. Bloomer drove No. 1 tunnel 30 feet in gravel and a further 70 feet alongside and 4 feet below the elevation of the old channel. Several test-holes were drilled into the channel. There was no recovery.

P. Kotush and two partners drove No. 2 tunnel 50 feet in bedrock and a winze for 20 feet to get to the bottom of the old channel.

Keller

(49° 116° S.W.) This lease is 2 miles north of the falls on the Movie River and near the mouth of Weaver Creek. A shaft was in the process of being sunk by C. Bruhaug and

M. Petrosky, of Kimberley, but the operation was suspended in July, 1961, following a fatal accident to one of the partners.

^{*} By David Smith.

[†] By J. D. McDonald, ‡ By D. R. Morgan,

FORT STEELE*

(49° 115° N.W.) Company office, 5504 One Hundred and Expander Mines & Ninth Street, Edmonton, Alta. M. J. Pritchard, president Petroleums Ltd. and manager. This company was formerly known as the Boreas Mines Limited, but the name was changed to Ex-

pander Mines & Petroleums Ltd. in 1961. The property, comprising four placermining leases, is near the mouth of Fisher Creek, a tributary of the Wild Horse River, 5 miles northwest of Fort Steele. During 1961 a party of three men drilled eleven shallow holes in gravel and sluiced 291 cubic vards of material. A fair amount of gold was recovered.

MAUS CREEK (49° 115° N.W.)

A crew of two men under the direction of G. R. Castles, of Lethbridge, Alta., completed a headframe and continued to sink a shaft on the Maus Creek Placers.

KIMBERLEY*

LISBON CREEK (49° 115° N.W.)

This placer-mining lease is near the confluence of Lisbon and Perry Creeks, 9 miles south of Kimberley, and can be reached by road from Wycliffe. The lease was owned by the late Dan McIntosh, of Cranbrook, but was subleased to R. E. Williams and W. Kludash, of Kimberley. A small tunnel being driven alongside the creek was abandoned early in the year because of water. Some sluicing was done in the bottom of a cut nearby.

REVELSTOKE[†]

MCCULLOCH CREEK (51° 118° S.E.)

Gold Acres Development Ltd.

Registered office, Box 463, Revelstoke. L. Latham, president; G. Laforme, manager. This company has leased from McCulloch Gold Placer Mining Co., Limited, of Revelstoke, nine placer-mining leases which extend to the headwaters of

McCulloch Creek. The camp is at an elevation of 4,100 feet. It is reached by a road which leaves the Big Bend highway at Mile 57 and follows the north side of Goldstream River for 5 miles, then turns and follows the east side of McCulloch Creek for 3 miles.

A large section of hydraulic pipe, which was installed in 1960, was damaged by a snowslide. In the spring of 1961 the pipe was repaired and the installation completed. Very little sluicing was done due to abnormally low water in McCulloch Creek. About 200 cubic yards of gravel was washed through a small sluicebox, recovering 17 ounces of coarse gold and 55 ounces of amalgam. The average number of men employed during the months of May, June, and July was five.

Argo Exploration & Mining

Registered office, 201, 1027 West Broadway, Vancouver 9; mine office, 1202 First Street West, Revelstoke, H. B. Zavitz, president; A. E. Horne, managing director. Capi-**Company Limited** tal: 10,000 shares, no par value. This company holds twenty-seven mineral claims and four placer leases on the

headwaters of Graham Creek, a tributary of French Creek. The property is acces-

^{*} By D. R. Morgan.

⁺ By J. D. McDonald,

sible by road from Mile 57 on the Big Bend highway. The road follows the north side of the Goldstream River for 5 miles, then turns and follows McCulloch Creek to its headwaters, crosses a 6,000-foot summit, and extends down into the headwaters of Graham Creek, a distance of $13\frac{1}{2}$ miles. The top section of road was improved in 1961, and the bridge over McCulloch Creek was replaced.

The camp and hydraulic system was moved half a mile downstream from its location in 1960. Pressure-box, hydraulic pipe, and sluice-boxes were installed. A pit above the sluice-boxes was bulldozed out, along with sample cuts in the gravel. An average of six men was employed for six months. The property suspended operations in October due to winter conditions.

Structural Materials and Industrial Minerals

CONTENTS

Asbestos	120
░╶╶┼╶╴┲╴╔╴╡╶╶╴╡╘╍╍╍╕╡┙┙┙╗╎┛╅╞╍╍╍╍╕┦┫╘╍╶┽┱┱┱┟┟╱╝╅┱┱┟┷╍╖╗┫╝╡┟╍╷╖┲╘╔╢┶┾╌╖╗╽╗╖┟╱┽┓┹┟╴╸╴╖╖╖╖╡┹╴╴╴╴╶╴	138
BARITE	140
	141
	141
A	142
	142
	143
	144
	144
	150
	150
S /	151
	151
	151
	157

ASBESTOS

Cassiar Asbestos Corporation Limited*

Mount McDame (59° 129° S.W.). Head office, 1001, 85 Richmond Street West, Toronto, Ont.; mine office, Cassiar. F. M. Connell, president; J. D. Christian, general manager; J. G. Barry, general superintendent. The property is 86 miles by road southwesterly from Mile 648.8 on the Alaska

Highway. The mine is on McDame Mountain at an elevation of approximately 6,300 feet. The mill and townsite are in Troutline Creek valley at 3,500 feet elevation. The property has been described in previous Annual Reports.

In 1961 mining was carried on from February 25th to December 20th. Ore was mined from benches at elevations of 6,140, 6,110, 6,080, 6,050, and 6,020 feet in the open pit. During the mining season 540,128 tons of ore and 1,990,520 tons of waste were broken. The rock reject plant at the mine treated 345,342 tons of ore and rejected 116,767 tons of waste. The aerial tram-line operated from March 2nd to December 18th. The mill operated for 307 days to process 465,840 tons of ore, which yielded 45,530 tons of fibre. The fibre produced is premium-grade low-iron chrysotile.

During 1961 exploratory work on the property consisted of 842 feet of diamond drilling, which was done from the lower cirque.

Throughout the year an average crew of 462 men was employed.

Plant expansion included an addition to the rock reject circuit, an addition to the mill, and the erection of a new power-house building. An additional extension to the mill was started at the end of the year. New construction of the townsite included the erection of a new bank building and a new Anglican rectory.

Naltesby Lake[†]

(53° 123° N.E.) A large number of asbestos claims were recorded in an area southwest of Prince George, especially in the vicinity of Naltesby Lake, following the publication of

* By W. C. Robinson. † By A. R. C. James. Geological Survey of Canada Information Circular No. 4 in March, 1961, which reported the occurrence of asbestos showings in ultrabasic rocks in this area. In general it would seem that many of the showings were found to be disappointing, no large programmes of work were carried out this year, and many of the claims were allowed to revert to the Crown.

Canadian Johns-Manville Company Limited*

Naltesby Lake (53° 123° N.E.). Company office, 1955 West Fourth Avenue, Vancouver 9; Yukon field engineer, R. G. Jury. The company recorded three groups of claims, totalling fifty-eight in all. Two of the groups were on Bobtail Mountain, immediately east of Naltesby Lake, extending from close by the lake-shore to 5 miles east of the lake. The

third group was 14 miles due south of Naltesby Lake.

A two-man prospecting and mapping party worked on the three claim groups from July 21st to October 30th. Trails were made from Naltesby and Keith Lakes to the claim groups, and dip-needle surveys and geological mapping were carried out. The company reports that no chrysotile asbestos deposits of any significant economic importance were discovered. Very small occurrences of short-fibre material were found on Bobtail Mountain near the southeast end of Naltesby Lake and on the claims 14 miles south of the lake.

[References: Geol. Surv., Canada, Lord, C. S., and Jenness, S. E., Inf. Circ. No. 4, Fieldwork 1960; Geol. Surv., Canada, Map 49-1960, Prince George.]

Williams Lake (52° 122° S.E.). During May, 1961, D. DRD Group† Rottacker, of Williams Lake, located twenty-two mineral claims, the DRD Nos. 1 to 22, on a chrysotile asbestos-

bearing serpentine exposure 1 mile south of the east end of Williams Lake. In August, Bell Asbestos Mines Ltd. prospected the property, mapped the geology, and stripped several areas with a bulldozer.

The showings are a few hundred feet above the valley floor near the base of a conspicuous light-coloured bare patch on the hillside at the head of a small gully 2 miles northwest of the Pacific Great Eastern Railway siding at Onward. Access is by means of an abandoned logging-road that branches west off the Onward-Springhouse road at the sharp bend one-half mile south of the railway crossing.

In the immediate vicinity of the workings, bedrock exposures are scarce and consist of small scattered knobs of serpentinized peridotite. The serpentine is associated with rocks mapped as part of the Permian(?) Cache Creek group (Geol. Surv., Canada, Map 12-1959, Quesnel). Similar small patches of serpentine with Cache Creek group rocks are known in the area east and northeast of the DRD claims (Geol. Surv., Canada, Map 59-1959, Quesnel Lake). For the most part, the peridotite has been sheared and altered into typical "fish scale" serpentine consisting of thin lens-shaped fragments a few inches in diameter. In certain zones more intense shearing has reduced the rock to clayey gouge, and in still other places the rock has remained in unsheared but fractured chunks.

Rather harsh, short, cross-fibre chrysotile asbestos occurs in serpentine in the main open cuts distributed as shown on Figure 18. A few very small scattered showings have been found beyond the limits of the diggings. The fibre is in veinlets from hair-line to one-half inch wide, most being in the $\frac{1}{32}$ - to $\frac{1}{3}$ -inch range. The wider veinlets have one or more central partings, with the result that fibre lengths are short, the longest measured being one-quarter inch. Fibre this long is rare. The

^{*} By A. R. C. James. † By J. W. McCammon.

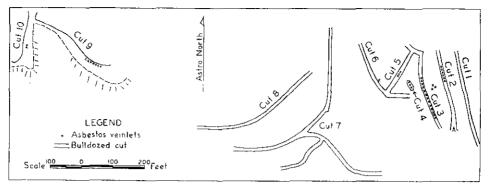


Figure 18. Main workings on DRD claims, Williams Lake.

veinlets show no readily apparent strike pattern. Along strike the veins pinch and swell and seldom persist for more than 1 or 2 feet. The asbestos is obvious only in the more massive unsheared parts of the serpentine, none being evident in the "fish scale" rock, and only traces showing in parts of the highly sheared rock.

Approximately 4,000 feet of open cutting was done on the property in 1961. No fibre was exposed in cut No. 1. In cut No. 2, veinlets of asbestos were exposed along the bottom and west wall for 52 feet. The veinlets were generally 1 or more feet apart, but in places clustered closer together. Because of the random orientation of the veins, lineal measurements for grade estimation are not reliable; however, some were made to get a rough idea of the amount of fibre visible. One 3-foot section contained 2.2 per cent fibre, and short sections contained 5 to 6 per cent fibre, but the zone as a whole averaged less than 1 per cent fibre content. Bulk sampling would undoubtedly give higher yields. In cut No. 3 a fibre zone 140 feet long was uncovered in the bottom and walls. The veins were similar in occurrence to those in cut No. 2. Measurement on a 2-foot section near the centre of the cut gave an indicated fibre content of 5 per cent. Cut No. 4 exposed scattered veinlets over most of its length. Near the centre of cut No. 5, scattered veinlets were uncovered in a massive section of serpentine about 9 feet long. One or two short segments of fibre-bearing veinlets were found in the wall near the south end of cut No. 6. No fibre was seen in cut No. 7 or 8. In cut No. 9, scattered veinlets were exposed along the side and bottom for 55 feet near the east end. A massive block of serpentine in the floor near the centre of cut No. 10 contained a few small veinlets of fibre.

From what could be seen at the time of examination, at the middle of August, it would appear that the fibre occurs in rather small, irregular, and discontinuous patches without forming sizeable zone, and most of the fibre is one-eighth inch long or less.

BARITE*

Mountain Minerals Limited Company office, Meech Building, P.O. Box 275, Lethbridge, Alta.; quarry office, Brisco. R. A. Thrall, managing director; William MacPherson, superintendent. This company operates two barite properties at alternative intervals in the Windermere Valley, south of Golden. The major operation

is at Brisco (50° 116° N.E.) and the other at Parson (51° 116° S.W.). A description of the properties has been included in the 1958 Annual Report.

The Brisco operation was active for a nine-month period in 1961, during which period a crew of three men quarried, crushed, and shipped 5,026 tons of barite to

^{*} By D. R. Morgan.

the company's processing plant at Lethbridge. The production was obtained from the new quarry which was started in 1960. No other development work was done.

At the Parson property 948 tons of chemical-grade barite was mined for shipment to Montreal. The barite came from the drift that was opened in 1958.

(50° 116° N.E.) Company office, 44 King Street West, Toronto, Ont. J. A. Martino, president; T. A. Studer, **Baroid of Canada** Ltd. manager; Harold K. Beggs, plant superintendent. This company operated the former Giant Mascot lead and zinc property at Spillimacheen, south of Golden. It was purchased in 1960, and the agreement included the whole property comprising forty-five Crown-granted claims and one recorded claim. Most of the activities in 1961 were directed to the recovery of barite from the tailings dump of the old mine. A new set of separation tables was installed in the mill, and it is estimated more than 1,500 tons of barite was

recovered. Six men were employed for a period of three months.

Elkhorn Mining Co. Ltd.

Windermere (50° 115° S.W.). Company office, 1302 Eleventh Avenue Southwest, Calgary, Alta. Alfred Pegg, president. This company optioned the Lucky group of four mineral claims from T. Cameron, of Windermere, for a

period of two months during 1961. The claims are located on the west slope of the Stanford Range, 1 mile east of the Cranbrook-Radium highway and 6 miles south of Windermere. A small shipment of barite was sent to a processing plant at Rosaland, Alta. The option was relinquished in October. Two men were employed.

BERYL*

International Bervllium Corporation Ltd.

Hellroaring Creek (49° 116° N.E.). Company office, 417, 837 West Hastings Street, Vancouver 1. This company held a controlling interest in thirty-two claims in the Hellroaring Creek area in the early part of 1961. In an effort to find beryl crystals in a pegmatite showing, several trenches were

dug. The operation was abandoned after approximately one week. Six men were employed.

BUILDING-STONE†

International Marble & Stone Company Ltd.‡

Sirdar (49° 116° S.W.). Company office, 540 Howe Street, Vancouver 1; main office, 4106 MacLeod Trail, Calgary, Alta.; plant office, Sirdar. W. R. Rookes, president; W. Czbiorr, plant superintendent. Capital: 3,000,000 shares, 50 cents par value. This is a newly organized company

which has taken over the former plant and quarry of Kootenay Granite Products Limited at Sirdar. The plant is 2 miles north of Sirdar on the Kootenay Bay-Creston highway. In addition to this plant, the company has options or has obtained other holdings of granite, quartitie, and marble, including the Lawrence Simpson Quarry at Ymir (granite); a dolomite quarry on Swift Creek, south of Salmo (marble); a quartzite quarry on Sheep Creek (quartzite slabs); the Feeney Marble Quarry on the Salmo-Creston cut-off (marble); and a silica prospect on La France Creek, near Boswell.

Products manufactured by the company are stucco chips, terrazo chips, roofing chips and granules, turkey and chicken grit, structural stone.

† By J. E. Merrett, except as noted. ‡ By J. D. McDonald.

^{*} By D. R. Morgan.

142 MINES AND PETROLEUM RESOURCES REPORT, 1961

The plant at Sirdar was in operation for the last five months in 1961. Improvements were made to the dust-collection system. An average of four men was employed for five months at the Sirdar operation. Some road and development work was done at the other quarries.

Valley Granite Products Limited

Cheam View (49° 121° S.W.). Company office, 410 Mayfair Avenue, Chilliwack; plant, Cheam View. K. Jessiman, general manager. The quarry and plant are on the west side of the Trans-Canada highway, 11 miles northeast of Rose-

dale. A crew of six men produced approximately 8,000 tons of granite products, including bird and poultry grits, stucco dash, and sand-blast materials.

Evans, Coleman & Evans, Limited (Gilley Quarry) Pitt River (49° 122° S.W.). Company office, north foot of Columbia Street, New Westminster. E. Thorsen, production manager; Francis J. MacDonald, quarry superintendent. The quarry is on Pitt River, immediately south of its confluence with Munro Creek. During a three-month oper-

ating period a crew of twenty men produced 60,000 tons of quartz diorite.

Indian River Quarries Limited.—Granite Falls (49° 122° S.W.). In September, D. Milavsky, 630 Taylor Street, Vancouver 3, acquired this property near the north end of Indian Arm and shipped 857 tons of granite which had been quarried previously.

British Columbia Slate Co. Ltd.

Nelson Island (49° 124° N.E.). Company office, 813, 475 Howe Street, Vancouver 1; granite quarry, Nelson Island. Philip Graham, president. This company acquired the assets of Vancouver Granite Co. Limited, and during the year

removed 1,000 tons of quarry rubble, from which was produced split-face granite for building-finish veneers.

CEMENT*

British Columbia Cement Company Limited.—Bamberton (48° 123° N.W.). Head office, 540 Burrard Street, Vancouver 1. W. F. Foster, president; B. M. Brabant, executive vice-president; R. E. Haskins, vice-president in charge of production. During 1961 this company operated its cement plant at partial capacity.

Lafarge Cement of North America Ltd.—Lulu Island (49° 123° S.E.). This company operated its cement plant at partial capacity during 1961.

CLAY AND SHALE[†]

 Clayburn-Harbison
 Ltd.
 (49° 122° S.E.) Head office, 1025 West Seventy-seventh Avenue, Vancouver 14; plants, Kilgard and Abbotsford.
 R. M. Hungerford, president; G. H. Peterson, general manager. Two plants are operated by this company—one at

Kilgard, where sewer-pipe and flue-linings are manufactured, and the other at Abbotsford, where face-brick and refractories are made. Clay was produced from two underground and two open-pit operations. The two underground mines are at Kilgard, where a crew of five men produced 13,988 tons of clay from the Fireclay mine and a crew of two men produced 2,201 tons of clay from the New Fireclay mine. A crew of three men produced 13,089 tons of clay from the No. 9 pit on the mountain above the Fireclay portal. An additional 9,182 tons of clay was

[•] By R. B. Bonar.

[†] By J. E. Merrett, except as noted.

produced by two men working at the Selby pit, immediately west of the Abbotsford microwave station.

Richmix Clays Limited.—Kilgard (49° 122° S.E.). Office and plant, 2890 Kent Avenue, Vancouver 12; quarry, Kilgard. G. W. Richmond, manager. One man mined and trucked to the Vancouver plant 5,621 tons of fireclay.

Haney Brick and Tile Ltd. Haney (49° 122° S.W.). Company office and plant, Haney. E. G. Baynes, president; J. Hadgkiss, managing director. Clay is removed from a pit adjacent to the plant or from the surface outcrop and trucked to the plant. In the pit, a

 $\frac{1}{2}$ -cubic-yard-capacity gasoline-shovel is used for digging and loading, while the surface outcrop is worked only during the summer months. At that time a ripper and grader is used to remove the top 2 or 3 inches of clay over a wide area. The loosened material is sun-dried and trucked to the plant air-drying area. Further drying is done in a rotary wood-fired kiln, the product being conveyed to a dry-pan for grinding. Brick and tile are formed by a stiff-mud extrusion process and then dried in a controlled-temperature drying-room. After drying, the products are burned in down-draught behive kilns.

During 1961 this company acquired the B.C. Clay Products Limited business after the plant of the latter company was destroyed by fire. Manufactured clay products now include partition tile, drain-tile, face-brick, building-brick, flue-lining, curoval tile, and flower-pots.

In 1961 two men were employed on clay removal and thirty-three men were employed in the plant. Production was 18,772 tons of clayware, of which 32 per cent consisted of drain-tile, 12 per cent of structural materials, and 56 per cent of processed clay products.

Mainland Clay Products Limited Barnet (49° 122° S.W.). Head office, 8699 Angus Drive, Vancouver 14; plant, Garnet. This company, a subsidiary of Pitkethly Brothers Limited, employing a crew of three men, produced 2,150 tons of red clay building-bricks and

firebricks at the plant adjacent to the highway on the north slope of Burnaby Mountain. Clay for the building-bricks was obtained from an adjacent pit, and fireclay was obtained from Kilgard.

Fairey & Company Limited.*—Vancouver (49° 123° S.E.). L. T. Fairey, manager. This company produced a variety of fireclay blocks, shapes, and high-temperature cements. Local and imported raw materials were used.

British Columbia Lightweight Aggregates Ltd.[†]—Saturna Island (48° 123° N.E.). This company has a shale expanding plant and quarry at Lyall Harbour on Saturna Island.

Evans, Coleman & Evans Limited (formerly Baker Brick & Tile Company Limited).[†]—Victoria (48° 123° N.E.).</sup> Office and works, 3191 Douglas Street, Victoria. Face-brick, flue-lining, drain-tile, and flower-pots were manufactured at this plant from local surface clay.

DIATOMITE‡

Fairey & Company Limited

Quesnel (53° 122° S.E.). Company office and plant, 661 Taylor Street, Vancouver 3. L. T. Fairey, president. Four carloads (450 cubic yards) of diatomite were quarried on Lot 6182, on the east bank of the Fraser River about 6 miles

^{*} By J. W. McCammon, † By R. B. Bonar.

t By A. R. C. James.

north of Quesnel. The material was excavated by a local contractor. It is used in making insulating-back and as a concrete admixture.

GYPSUM*

Windermere (50° 115° S.W.). Company office, 306 Electric Railway Chambers, Winnipeg 2, Man.; quarry office, Athalmer. N. W. Puttock, general manager; A. E. Portman, superintendent. This company operates a large gyp-

sum property on the north side of Windermere Creek, 8 miles east of Windermere. The property was formerly owned and operated by the Columbia Gypsum company, but was acquired by the present company in 1957, mainly to supply gypsum to its processing plants at Vancouver and Calgary. The gypsum is quarried, crushed, and shipped by rail.

The 1961 production was mined from the No. 2 quarry, which has been in operation since 1958. The quarry is 400 feet long and 300 feet wide, with the walls sloped back to a 45-degree angle. The gypsum is extracted in 15-foot lifts, and the rock is blasted and loaded by power-shovel. It is then trucked 11 miles by private road to a crushing plant adjacent to the Kootenay Central Railway, near Wilmer. The mill was built in 1960, and a description is included in the 1960 Annual Report.

Total production during 1961 was 158,023 tons, of which 153,865 tons was crushed and shipped by rail and the remainder placed on stockpile. The operations were confined to a nine-month period with an average crew of fourteen men.

United Gypsum Corporation Ltd.

Canal Flats $(50^{\circ} 115^{\circ} \text{ S.W.})$. Office address, 549 Howe Street, Vancouver 1. This company holds twenty-seven claims beside Lussier River near the confluence of Roam Creek, 16 miles southeast of Canal Flats. The property is

reached by 21 miles of old logging-road that branches off the Cranbrook-Radium highway north of Skookumchuck. No drilling was done in 1961, and the equipment used in 1960 was removed from the property during the summer.

LIMESTONE

LIMESTONE IN THE VERNON AREA[†]

Many of the rocks in the Vernon area are limy, but only two or three sizeable deposits of a good grade of limestone are known. Previously published reports mentioning "an abundance of limestone" and "much of it comparatively free of impurities" are misleading.

At least four limestone lenses are exposed in the Permian(?) Cache Creek rocks along the Salmon River valley between Westwold and Falkland. The largest and purest lens forms a knoll across the front of the main slope on the north side of the valley 6 miles west of Falkland. The lens consists of vertical thick and thin beds of limestone that have a maximum aggregate thickness of 500 feet and are exposed for nearly three-quarters of a mile along a northwesterly strike. The limestone is light grey. It contains irregular zones and patches of light-coloured chert, white quartz, and argillaceous material. The weathered surface is rough due to the impurities. An analysis of a sample consisting of random chips collected along the top of the exposure is shown as No. 1 in the table on page 148.

^{*} By D. R. Morgan.

[†] By J. W. McCammon.

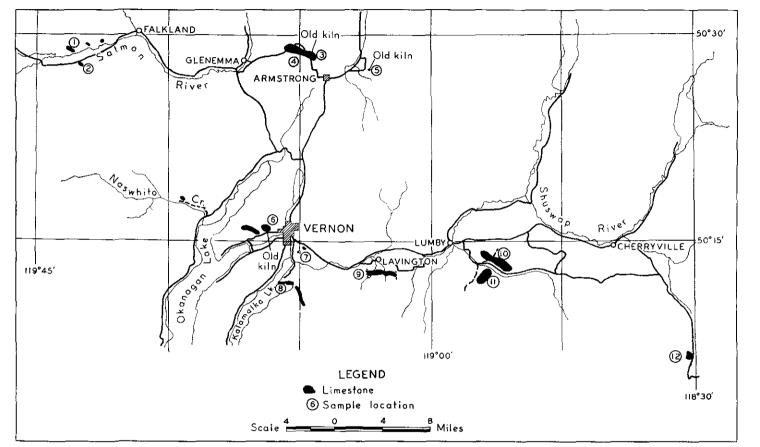


Figure 19. Limestone in the Vernon area.

A mile and one-half to the east a second lens of limestone is exposed in bluffs beside the railway track. The lens is 150 feet wide and extends for 1,000 feet northwestward up the sidehill. The rock is fine grained, dark grey to black, and contains abundant stringers and nodules of dark chert and siliceous brown-weathering material.

Another mile and one-half farther east scattered outcrops of impure, dark, thin-bedded limestone intermixed with black slaty argillite extend for 1,500 feet up the north side of the valley.

On the south side of the valley, No. 97 highway passes through a shallow rock cut 5.8 miles west of Falkland. A 200-foot-wide band of black, fine-grained, thinbedded, impure limestone is exposed in the cut. The beds are contorted and faulted and cut by narrow veinlets of white calcite and narrow, sheared volcanic dykes. The limestone can be traced for 600 feet southeastward up the hill, where it disappears beneath overburden. A sample across 200 feet of strata exposed in the road cut had the analysis shown as No. 2 in the table below.

The purest and one of the largest deposits of limestone in the Vernon area forms a northwest-trending band across the top of a hill 2 to 4 miles northwest of Armstrong on the road to Glenemma. One exposure of the band, consisting of coarse-grained white limestone, can be seen in an open field one-quarter mile east of the road, 3.7 miles from Armstrong. The rock is badly fractured and is cut by at least one igneous dyke. An area of bare rock approximately 200 feet in diameter is exposed. In it are a small abandoned quarry and the remains of two pot kilns. This is apparently the deposit described by Goudge (Ref. 2), from which he took a sample that had the analysis shown as No. 3 in the following table. One-quarter mile due east of this deposit, flat-lying beds of similar coarse-grained white limestone in an area 200 feet wide and 300 feet long are exposed by a side road and in the adjacent fields. One mile northwest of the first deposit a side road joins the Glenemma road from the south. A good exposure of the limestone occurs in the bush a few hundred feet west of this road half a mile south of the junction. The rock can be traced for one-quarter mile from north to south and for 1,200 feet from east to west. It is medium to coarse grained and white to white and grey streaked. Scattered siliceous stringers and inclusions stand out on weathered surfaces. Sample No. 4 consisted of chips cut at 30-foot intervals across 1,200 feet from west to east near the south end of the exposure. A fourth exposure of the limestone band forms 50- to 100-foot-high bluffs, 300 feet north of the Glenemma road, 5.7 miles from Armstrong. The bluffs are below the road and run parallel to it for more than 1,000 feet. The rock exposed is white to grey streaked limestone similar in appearance to that of sample No. 4. Half a mile to the west past the bluffs, some coarsegrained white and grey streaked limestone has been excavated from a pit on the south side of the road.

More than thirty years ago a quarry was opened on a small limestone lens on Lot 989 about $3\frac{1}{2}$ miles northeast of Armstrong. Some stone was ground for agricultural use and some was burned for quicklime in a pot kiln beside the quarry. The limestone exposure is 40 feet wide and can be traced 160 feet along the north bank of Kendry Creek. The rock is coarse grained and of a light-grey to cream colour. A sample of chips from across the 40-foot face of the quarry had the analysis shown as No. 5 in the following table.

A few small impure lenses of limestone occur in the lower valley of Fortune Creek, 2 miles south of Kendry Creek. In the vicinity of Meighan Creek, 1 mile south of Fortune Creek, the country rock is limy quartzite, which would be of no use as a source of lime. Some small scattered pods of limestone are exposed on the hillside north of the end of the road that goes up the left bank of Naswhito Creek. The rock is highly siliceous and occurs mixed with cherty argillite.

Two bodies of limestone are exposed on the hillside above the north road from Vernon to Okanagan Landing. The first can be seen beside the road, 1.6 miles west of Thirty-second Street. Here the limestone forms humps and bare patches on the grassy open sidehill over an area roughly half a mile in diameter. The stone is medium- to dark-grey medium-grained limestone containing white quartz and calcite veinlets and lenses. The remains of an old kiln lie at the side of the road, 1.8 miles west of Thirty-second Street. The city of Vernon once burned lime in the kiln for use in the sewage-treatment plant, but stopped because of the poor quality of the stone. Analysis No. 6 shows the composition of a sample consisting of random chips collected from the top of the largest hummock. The second body of limestone borders the road for 1,000 feet about a mile west of the old kiln. From the road it extends as a ¼-mile-wide band curving up over the hill to the northwest for nearly 2 miles. The rock consists of thin beds of dark-grey medium- to finegrained limestone with interbedded ribbons of chert and veins of white quartz.

Highly siliceous limestone is exposed in a 500-foot-diameter area on the north slope of an isolated bare hill 2 miles southeast of Vernon. The outcrops are behind some farm buildings one-quarter mile south of No. 6 highway. The rock is dark grey and weathers light grey with a rough surface due to included impurities. Fractures are abundant and white calcite veins are numerous. Analysis No. 7 represents a sample consisting of chips taken at random across the exposure.

A band of rock that extends across the south side of "Rattlesnake Point" on Kalamalka Lake, 4 miles south of Vernon, is shown on Map 1059A (Ref. 1) as consisting of limestone. Where examined, this rock was found to consist of scattered bands of limestone a few inches thick interbedded with white quartzite and limy quartzite. A sample across 30 feet of the best-looking material had the analysis shown as No. 8 in the table. A zone of similar rock forms part of the south face of Vernon Hill, half-way between Vernon and Lavington.

A 500-foot-wide band of siliceous limestone extends for nearly $2\frac{1}{2}$ miles along the south side of Coldstream Valley 1 mile south of Lavington. The logging-road up the west side of Brewer Creek passes through a cut in the band. From the road continuous limestone outcrops can be followed for one-third mile westward to a fault contact with volcanic rocks. The band is exposed on a bare knoll on the ridge between Brewer and Craster Creeks and also on the nose that runs north from Bluenose Mountain down the east side of Craster Creek. The rock is white and grey streaked and coarse grained. Knots and lenses of light chert and inclusions of volcanic material are abundant. A sample of chips taken at 10-foot intervals along a 500-foot exposure on the Brewer Creek logging-road had the analysis shown as No. 9 in the table.

Two large zones of fairly pure Permian(?) limestone occur in Creighton Valley, 4 miles southeast of Lumby. The largest forms a 3-mile-long band across the southwest end of a prominent mid-valley hill known locally as the "Camel's Hump." The band averages more than half a mile wide. It is bordered on the southwest by sandy beds and argillite and on the northwest by volcanic flows. The rock is medium to fine grained, dark to light grey, and weathers light grey. In some places it is brecciated and the fractures are healed with white calcite. Argillaceous streaks and inclusions of black chert occur in other places. About a mile and a half from the north end of the band the rock is very dark and fetid and contains numerous fossil shell fragments. A sample of chips taken at random over the surface of the band had the analysis shown as No. 10 in the table. The second zone is a mile southwest of the first. It forms steep bluffs along the west face of a 1,500-foot-high hill on the east side of a small tributary valley. A road up the valley passes within half a mile of the deposit. Exposures of limestone indicate a northeast-trending band 600 feet wide and 1 mile long. The rock is medium to fine grained and light grey to white. It is highly fractured, is brecciated in places, and contains discontinuous lenses of white chert and veinlets of white quartz. A sample of randomly spaced chips from the top of the lens had the composition shown as sample No. 11 in the table.

Bands of rock shown on Map 1059A (Ref. 1) as limestone similar to that at Rattlesnake Point were examined at several locations along the Shuswap River. In all cases the only rock found was calcareous white quartzite; no true limestone was seen.

A large zone of Cache Creek rocks that contains limestone is crossed by No. 6 Highway near Monashee Pass. The only limestone outcrop within easy access comes to within 100 yards of the highway 14.6 miles from Cherryville. The rock forms steep high bluffs for more than 1,000 feet along the west side of the road. It is generally medium- to fine-grained medium-grey limestone, partly massive and partly showing bedding that strikes east-west and dips steeply south. The limestone is bordered on the south by granite and on the north by rusty greywacke. The rock is highly jointed and contains a considerable amount of chert in rusty stringers and contorted 6- to 8-inch-thick bands. A sample of chips collected at 10-foot intervals across 200 feet at the south end of the bluffs had the analysis shown as No. 12 in the table.

Sample No.	Insol.	R_2O_3	Fe ₂ O ₃	MnO	MgO	CaO	P ₂ O ₅	s	Ig. Loss	H ₂ O
	6.50	0.28	0.24	0.04	1.56	50.13	0.02	0.03	41,32	0.10
2	25.26	1,26	0.97	0.04	0.82	39.76	0.03	0.06	32.61	0.13
31	1.10	0.23	0.10		0.24	55.04	Trace	Nil		
4	1.62	0.20	0.09	0.04	0.23	54.44	0.01	0.01	43.35	0.04
5	3.88	0.56	0.40	0.14	0.30	53.07	0.04	0.09	42.00	0.08
5	5.14	1.00	0.62	0.07	2.16	49.92	0.05	0.01	41.68	0.07
7	19,88	1.14	0.83	0.04	0.51	43.41	0.04	Trace	34.82	0.11
3	59.26	3.14	1.00	Nil	1.06	20.20	0.07	0.05	14.58	0.1
9	22.39	10.96	3.36	0.06	2.66	33.80	0.05	Trace	28.18	0.1
)	3,84	0.82	0.50	0.07	0.48	52.66	0.03	0.01	42.05	0.1
L	4,02	0,30	0.26	0.04	0.26	53.07	0.02	Trace	42.16	0.1
2	5.79	1.84	0.83	0.04	1.99	49.55	0.01	Trace	40.37	0.2

Vernon Area Limestone Analyses

¹ By M. F. Goudge,

148

[References: (1) Geol. Surv., Canada, Map 1059A, Vernon, 1960; (2) Bureau of Mines, Canada, Publ. No. 811, 1944, pp. 204–205.]

Norkay (The Consolidated Mining and Smelting Company of Canada, Limited)*

Fort Steele (50° 115° N.W.). This property is located on the north side of the Kootenay River 5 miles northwest of Wardner, or 2 miles west of the Bull River. The quarry is owned and operated under contract by The Consolidated Mining and Smelting Company of Canada, Limited, to supply dolomite flux for the iron-reduction plant at Kimberley. Most of the material to date has been loaded from a talus

slope, and 9,700 tons of screened product was shipped to the plant during 1961. The material was shipped by rail. Two men were employed in the quarry.

^{*} By D. R. Morgan.

Fraser Valley Lime Supplies*

Popkum (49° 121° S.W.). Head office, 7, 583 Edmonds Street, Burnaby. Thomas Mairs, manager. The quarry and crushing plant are on the east side of the Trans-Canada highway adjoining the southernmost tip of Indian Reserve No. 1,

three-quarters of a mile east of Popkum station on the Canadian National Railway. Limestone is quarried in 25-foot benches by horizontal jackleg-drilled holes. The broken rock is transported by truck to the adjacent crushing plant, which produces agricultural lime and industrial filler. A small auxiliary crusher was added to the crushing equipment. An average crew of ten men quarried 7,533 tons of limestone, from which was produced 7,436 tons of crushed lime products.

Beale Quarries Division (Lafarge Cement of North America Ltd.)*

Vananda (49° 124° N.W.). Head office, 1051 Main Street, Vancouver 4; quarry office, Vananda. W. D. Webster, quarry superintendent. The quarry, crushing plant, and loading-dock are on the east coast of Texada Island, 1 mile south of Vananda. Open-pit bench-mining methods were used to produce 536,422 tons of limestone, of which

478,951 tons was crushed. The major portion of the crushed rock was shipped from the island and was primarily for cement manufacture, although it did include pulp rock and sized limerock. In addition 73,026 tons of rip-rap limerock was produced and shipped. A crew of twenty-six was employed.

Ideal Cement Company Ltd.*

Vananda (49° 124° N.W.). British Columbia office, 1155 West Georgia Street, Vancouver 5; quarry office, Vananda. W. S. Beale, manager, Rock Products Division; J. K. Johnson, superintendent. Rock quarries were operated on Lot

25, 2 miles south of Vananda and adjacent to the crushing plant and loading-dock at Marble Bay. A washing section was added to the crushing plant in order to produce an improved product. During 1961 seventeen men quarried, by open-pit benching methods, 190,000 tons of limestone, of which 163,000 tons was crushed and shipped. The materials shipped included rip-rap rock, pulp rock, cement rock, and rock for metallurgical uses.

Imperial Limestone Company Limited*

Vananda (49° 124° N.W.). Office, 7309¹/₂ East Marginal Way, Seattle 8, Wash.; plant and quarry office, Vananda. John Jack, manager; Don McKay, superintendent. The quarry and primary crushing plant is on Lot 500, near the summit of a small hill 1 mile west of Spratt Bay on the east

coast of Texada Island. At the quarry crushing plant the limestone is sorted into white and grey fractions. The select white limestone is trucked to the plant at Vananda for further crushing to produce stucco dash and whiting. Run-of-pit material and the sorted grey limestone is trucked to the nearby Lafarge Cement crushing plant.

In 1961 a crew of six men was employed and 27,000 tons of limestone was mined, crushed, and shipped. In addition, a crusher, storage hopper, and reclaiming tunnel were installed at the Spratt Bay plant-site.

Gypsum Lime & Alabastine Limited* Blubber Bay (49° 124° N.W.). Head office, 50 Maitland Street, Toronto 5, Ont.; British Columbia office, 1105 West Pender Street, Vancouver 1; quarry office, Blubber Bay; lime plants, Blubber Bay and Vancouver. A. W. Jones, British Columbia area manager; Arthur Pitt, Blubber Bay plant

* By J. E. Merrett.

MINES AND PETROLEUM RESOURCES REPORT, 1961

manager. This company is a subsidiary of Dominion Tar and Chemical Company Limited. The limestone quarry is approximately 2 miles south of Blubber Bay on Texada Island.

A crew of fifteen men was employed at the guarry and crushing plant and fortyfive men in the lime plant. Open-pit bench-mining methods were used to produce 320,224 cubic yards of limerock, of which 231,352 cubic yards was shipped.

sten Marine Services Limited)*

Koeye River (51° 127° N.W.). Company office, Bella Koeye River (Wid- Bella; mine office, Koeye River. A. O. Widsten, manager. Limestone is mined by benching methods from the west pit of two adjacent quarries on the north side of Koeye River, less than a mile from its mouth on Fitz Hugh Sound, 6 miles

south of Namu. In an eight-month period a crew of five men produced and shipped 10,114 tons of limestone to the Crown Zellerbach Canada Limited paper-mill at Ocean Falls.

British Columbia Cement Company Limited[†]

Cobble Hill (48° 123° N.W.). Head office, 540 Burrard Street, Vancouver 1. W. F. Foster, president; B. M. Brabant, executive vice-president; R. E. Haskins, vice-president in charge of production. Limestone for the Bamberton cement plant is quarried by this company from a deposit at

Cobble Hill on Vancouver Island. In 1961, 226,572 tons of raw material was mined.

MAGNESITE[‡]

The Consolidated Mining and Smelting Company of Canada, Limited

Perry Creek (49° 115° N.W.). Head office, Trail. This property occupies a 5-mile strip between St. Mary River and Perry Creek, approximately 2 to 7 miles southwest of Marysville. It is owned by The Consolidated Mining and Smelting Company of Canada, Limited, and comprises eighteen Crown-granted claims and three located claims. The prop-

erty can be reached by road from Wycliffe.

The company conducted a bulldozer trenching programme, excavating 6,611 cubic yards of material from nine trenches, at the south end of the property during a short period in 1961. The field work was under the supervision of G. W. Webber.

MARL*

Cheam Marl Products Ltd.

Popkum (49° 121° S.W.). Office, 13 South Fletcher Street, Chilliwack. R. S. Davidson, manager. A crew of four men was employed to excavate marl and overlying humus from a post-glacial deposit accumulated on the floor of Cheam

Lake. In past years a ditch was dug to drain the lake. Recent production was obtained by a dragline working in the area north of the former lake. The materials produced were either trucked wet to the consumer or stockpiled on a draining-pad. A crew of three men produced 37,931 tons of marl and 7,073 cubic yards of topsoil in 1961.

^{*} By J. E. Merrett. † By R. B. Bonar.

[‡] By D. R. Morgan.

MICA*

Georgian Mineral Industries Ltd. Cedarside (52° 119° N.E.). Company office, 301, 513 Eighth Avenue Southwest, Calgary, Alta. G. C. Short, president; George Brunette, mine manager; H. Gilmour, plant manager. This company operates a mica-grinding plant at

Cedarside near Valemount. Schist from a quarry on Canoe River 1½ miles upstream and west of the railway is used as raw material for the plant. The schist consists chiefly of muscovite and quartz with minor garnet, biotite, and feldspar. The schist is interbedded with layers of quartzite. In the quarry the beds strike north 60 degrees east and dip about 10 degrees northwest. When examined the main quarry was approximately 200 feet in diameter with a face 10 to 15 feet high. A hard 1- to 4-foot-thick capping of quartzite lay along the lip of the quarry and a hump of similar rock was exposed in the centre of the floor. A bulldozer was being used to strip a trench parallel to the face, 50 feet to the northwest.

Broken rock is trucked 3 miles to the plant, which is located near the south end of the sawmill yard on the west side of the railway track at Cedarside siding. At the plant the schist is fed from a feed hopper through a dryer to a hammer mill, thence to gyratory screens and a Kipp-Kelley air separator. Five sizes of mica are made, and these can be blended to suit the customer. During 1961 about 125 tons of mica was produced in the process of tuning up and testing the mill.

POZZOLAN†

Canadian Pozzolan Industries Limited (52° 122° N.E.) Registered office, 475 Howe Street, Vancouver 1; company office, 1118, 355 Burrard Street, Vancouver 1. J. G. Fleming, president; J. C. Mills, vicepresident. This is a private company which, in 1961, com-

menced to quarry pozzolanic shale on a lease on Lot 122, immediately south of the confluence of the Quesnel and Fraser Rivers. The quarry is situated close to the Pacific Great Eastern Railway, and a spur line extends into the quarry. Excavation of the shale was carried out by local contractors. In 1961 a pilot run of approximately 100 tons of shale was quarried. This was shipped to the company's mill at Britannia Beach, where it was dried and ground.

SAND AND GRAVEL

Data on sand and gravel production are presented in a table on the following pages. References to detailed descriptions previously published are shown in the table as follows: (MM 1959) meaning the report appeared in the Annual Report of the Minister of Mines for 1959.

The following abbreviations are used in the table for the types of sand and gravel produced: AA—asphalt aggregate; SA—sized aggregate; WS—washed and sized aggregate; RP—run-of-pit material; AP asphalt paving mix; RM—ready-mix concrete.

^{*} By J. W. McCammon.

[†] By A. R. C. James.

Sand and Gravel Pits

Location	Operator	Equipment and Plant	Men	Production
Fort St. John Fort McLeod Kitimat	Columbia Bitulithic Limited Columbia Bitulithic Limited Kitimat Concrete Products (1961) Ltd	Paving Paving Dragline, conveyor, washing, crush- ing, screening	10	AP=118,755 tons. AP=42,313 tons. RP and WS.
Prince George— (1) North Nechako Road	Central Sand and Gravel Ltd. (J. W. Phil- lips, president)	Scoopmobile, Cedar Rapids two-deck screening plant, ready-mix plant	11	No. 4 sand and %-in. sand, 11,953 yd.; %-, %-, 1-, and 1½-in. rock, 15,314 yd.; RP concrete gravel, 1,174 yd.; fill gravel, 6,018 yd.; Total, 34,459 yd.
(2) Parcel Y, Lot 2507, Plan 833, Central Fort George	Wilson Construction Co. Ltd.	Bucyrus-Erie shovel, portable crush- ing and screening plant	6	No sand and gravel sold; custom crushing for paving plant.
Creston-Goat River bank	Louis Salvador and Son	Crushing, screening, washing	4	WS.
Wynndel-beside highway 41/2 mi. north of town		Crushing, screening	1	SA and AA.
Nelson-Anderson Creek above Fairview district Trail-	Premier Sand and Gravel Company Lim- ited (A. Shrieves, president)	Dragline, crushing, screening (MM 1959)	4	SA.
(1) Ferraro pit, Casino Road, 2 mi. south of Trail	Korpack Cement Products Limited, Trail	Portable crushing, screening	3	SA.
 (2) McGauley pit, Casino Road, 1 mi. south of Trail 	McGauley Ready-Mix Concrete Company (J. McGauley, owner)	Scraper, crushing, screening, wash- ing, ready-mix	3	ws.
Castlegar—McGauley pit, river bank east of Castlegar	McGauley Ready-Mix Concrete Company, Trail	Loader, crushing	2	SA.
Vancouver-Granville Island	Columbia Bitulithic Limited	Paving plant		AP=24,839 tons.
North and West Vancouver— (1) Mouth of Capilano River	Capilano Crushing Co. Ltd., 1 West First Ave., Vancouver	Washing plant	23	WS=234,452 yd.
(2) Capilano Indian Reserve	Routledge Gravel Limited (T. C. Rout- ledge, president)	Scraper, portable crusher, washing and screening Scraper, portable crusher, washing	24	WS=191,000 yd.
Brooksbank Ave.	Kouttedge Ofaver Linnted	and screening	}	
(4) Seymour Creek mouth, foot of River- side Drive	Seymour Gravel Company Limited (E. S. Livesey, manager)	Dragline shovel, portable crusher, washing and screening	6	WS=55,550 yd., supplied to Jamieson Construction's concrete mix and paving plants.
(5) West end of East Keith Road, east of Seymour Creek	E. R. Taylor Construction Co. Ltd., Deep Cove Highway	Shovel, paving plant	11	AA=19,560 yd.
Indian Arm-pit, Bishop Creek; plant, Barnet	Indian Arm Sand & Gravel Co. Ltd., Barnet	Shovel; conveyors and screening plant under construction	6	WS=5,000 yd., stockpiled at Bishop Creek.
City of Port Moody-Barnet Highway 11/2 mi, west of Port Moody	City of Port Moody	Front end loader		Sand fill.

Coquitlam Municipality—	}		ł	
(1) Junction of Laurentian and Austin	Corporation of the District of Coquitlam		-	
Roads, west end of Westwood Road (2) North Road and Lougheed Highway	Burquitlam Sand & Gravel Co, Ltd. (A. J.	and screening Front-end loader	2	RP and fill=71.083 yd.
(a) a the sate adding many should be a stable they	Percy, manager)		•	sec and m
(3) South end of Schoolhouse Road	F. W. Monssen Construction Ltd.		5	RP and crushed aggregate=51,000 yd.
(T. B. Allard and Son, owner) (4) Pipeling Road, Coquitlam River, 1	Decks-McBride Ltd., 1051 Main St., Van-	screening Shovel, new 600-tons-per-day crush-		TVC ++ 4 D34 + 103 600 ++4
(4) Pipeline Road, Coquitain River, i mi. north of Lougheed Highway	couver, and Columbia Bitulithic Limited	ing, washing, and screening plant;	5	WS and RM=123,600 yd. AP=21,032 tons.
anna ann an an an an an Charles an an an an an an an an an an an an an	and a first the state of the st	ready-mix; paving plant in same pit		
(5) Westwood Road	Independent Ventures Limited, 2065 Co-	Shovel, crushing and screening	1	RP and SA=42,241 yd.
(C) Birolina Bost 7 mil roth of	guitlam Ave., Port Coquitlam F. Dotten, 677 Fairview St., New West-	Shovel, crushing and screening	21	RP and crushed aggregate = 10,000 vd.
(b) Fipenic Roal, 2 nil. horni of Lougheed Highway	minster	Shovel, clusing and screening		Kr and crushed aggregate = 10,000 yd.
	S. & S. Sand & Gravel Limited, 1101	Shovel	11	RP=33,829 yd.
Lougherd Highway, Taylor pit	Eighth Ave., New Westminster			
(8) Pipeline Road, 314 mi. north of Lougheed Highway	S. & S. Sand & Gravel Limited, 1101 Eighth Ave., New Westminster		4	RP and WS=42,108 yd.
(9) Pipeline Road, 3½ mi, north of		and washing Shovel, paving plant	9	AP=100.000 tons.
Lougheed Highway	New Westminster	DRALATA BOLITER BATHER CONTRACTOR CONTRACTOR		11 - 100,000 totta.
(10) East side of Coquitiam River, 21/2			35	RP and WS=175,000 yd.
mi. north of Lougheed Highway	lam (G. Scott, manager)	washing, and screening	0.5	
Port Coquitiam — Fraser River at Mary Hill, 2 mi. south of Port Coquitlam	Evans, Coleman & Evans Limited, foot of Columbia St., New Westminster	Shovel, 500-tons-per-hour processing plant	25	RP and WS=750,000 yd.
Pitt Meadows Municipality-	Communa St., New Westminster	prant		
(1) 1 mi. northwest of Port Hammond	Hancy Brick and Tile Ltd.			Sand=3,160 yd.
(2) Bonson Road, 1 mi, north of Fraser	Lasser Trucking & Contracting Co. Ltd.	Front-end loader		RP and topsoil.
River Maple Ridge Municipality—				
(1) Grant Hill, 1 mi. east of Albion and	Corporation of the District of Maple Ridge_			Fin.
adjoining Kirkpatrick pit	corporation of the product of prapie and put			× ****
(2) Grant Hill, 1 mi. north of above pit		Shovel, screening	31	RP and SA=18,000 yd.
(3) Grant Hill, north of McIntosh pit	Henry Van Bocyen, Albion		-7.	RP.
(4) Grant Hill, 1 ml. north of municipal pit	Valley Ready-Mix, Albion	Shovel, washing, screening, and mix- ing near Albion landing	11	RP=45,000 yd.
(5) East end of No. 27 Road, Alouette	Kirkpatrick Sand and Gravel Co. Ltd.,	Shovel, crushing, washing, and screen-	3	RP and WS=7,451 yd.
River	Haney	ing		· · · · ·
(6) Lougheed Highway, 1 mi, east of	R. E. George, Whonock	Front-end loader	11	RP=1,658 yd.
Whonock Mission Municipality				
(1) 1 mi. east of Stave Falls power-house	Corporation of the District of Mission	Screening plant	#* b.M	
(2) 31/2 mi, east of Stave River power-		Screening plant		
house				
(3) Dewdney Road, 1.8 mi. south of Steelhead	Department of Highways	Small plt		Чурчанальная на на на на на на на на на на на на на
(4) Hulla Island, mouth of Stave River	Routledge Sand and Gravel Co. Ltd.,	Portable crushing, screening, and	31	WS=9,500 yd.
	Lower Capilano P.O.	washing		

1 Part time.

Sand and Gravel Pits—Continued

.

Location	Operator	Equipment and Plant	Men	Production
Dewdney—Lougheed Highway, 2 mi. west of Squakum Kent Municipality—	Department of Highways	Front-end loader		
 (1) West end of Cemetery Road, south of Mount Agassiz 	Corporation of the District of Kent	Shovel and front-end loader in rock quarry and large gravel pit	-	
(2) 3 mi. south and 1½ mi. west of Har- rison Hot Springs Chilliwack Municipality—	Department of Highways	Front-end loader		
 Minto Landing and 1½ mi. west of Vedder Crossing 	Corporation of the Township of Chilli- whack	Various operators obtain gravel from these properties on a royalty basis; shovels, front-end loaders, screen- ing, and crushing		RP and SA.
(2) Chilliwack Creek	B. and G. Sand and Gravel Co. Ltd. (A. K. Gregory, manager)		21	WS=6,500 yd.
(3) Cultus Lake Sumas Municipality	Columbia Bitulithic Limited	Paving		AP=25,618 tons.
(1) Northeast slope of Sumas Peak	Dawson Wade & Company Limited	Shovel, large pit		Fill.
(2) At foot and east of Taggart Peak	H. Quadling, owner; various operators	Front-end loader, screening		Fill.
(3) 1 mi. east of Abbotsford	Corporation of the District of Sumas			Fill.
(4) Vye Road (Eighth Ave.), 4 mi. south of Abbotsford	Corporation of the District of Sumas	Shovel, screening, and Columbia Bitu- lithic paving plant	•	AP=28,539 tons and fill.
Matsqui Municipality-				
 (1) 1 mi. east of Abbotsford	Blackham's Construction Limited	Screening New large pit	31	SA=13,944 yd. Fill gravel for new Trans-Canada Highway.
(3) Tretheway Road, ³ / ₄ mi. north of Clearbrook	Department of Highways	Two adjoining pits		
(4) Tretheway Road, ½ mi. north of Clearbrook	Deeks-McBride Ltd., 1051 Main St., Van- couver	Screening, washing, and ready-mix; shovel and front-end loader	2	WS, RP, and RM=15,140 yd.
(5) Clearbrook Road, ½ mi. north of border	Abbotsford Gravel Sales Ltd.	Scraper, front-end loader, screening; ready-mix plant of Totem Trucking Ltd.	2	SA and RM=27,574 yd.
(6) Twelfth Ave., ¼ mi. west of Clear- brook Road	Valley Rite Mix Ltd., Abbotsford	Screening, crushing, and ready-mix concrete	51	SA and RM=9,769 yd.
(7) Corner of King (Sixteenth Ave.) and Foy (316th St.)	Valley Rite Mix Ltd., Abbotsford	Shovel		RP.
(8) Aberdeen Road (288th St.), 1 ¹ / ₂ mi. north of border	Department of Highways	Shovel; large pit		RP; fill gravel for new Trans-Canada Highway,
(9) Lefevre Road (280th St.), 1 ¹ / ₄ mi, north of border	Corporation of the District of Matsqui	Shovel, screening, and Columbia Bitu- lithic paving plant		SA and AP==41,890 tons.
(10) Lefevre Road at Eighth Ave Langley Municipality—	R. Caplette, North Vancouver	Front-end loader	21	RP=1,500 yd.
(1) Northwest corner of Jackman Road and Eighth Ave.	Corporation of the Township of Langley	Shovel		Fill.

<u></u>	I			1
Langley Municipality—Continued				
(2) 1/2 mi. west of Carvolth Road above	Corporation of the Township of Langley		• -	Fill.
Twenty-fourth Ave.	Dupont Bros.	Front and los day	11	DB-750 with approved
(3) At Matsqui boundary north of Eighth Ave.	Dupont Bros.	Front-end loader	1.	RP=750 yd. approx.
(4) At Matsqui boundary south of Eighth Ave.	Emil Anderson Construction Co. Ltd.	Front-end loader	<u> </u>	RP=1,000 yd. approx.
	S. O'Malenick, Jackman Road	Front-end loader	11	RP=1,000 yd.
(6) ¹ / ₄ mi. north of corner of Jackman Road and Eighth Ave.	J. Craig, Trans-Canada Highway, Langley	Front-end loader	11	RP=1,680 yd.
(7) Boundary Road at Surrey boundary	Border Sand & Gravel Ltd	Loader, washing, crushing, and screen- ing	2	WS=18,000 yd.
(8) Dogwood Ave, and Brown Road		Loader	11	RP=18,000 yd.
(9) Bradshaw and Berry Roads	Hornby General Machinery Company, Clo- verdale	Screening and crushing; shovel	21	RP and SA=13,058 yd.
(10) 2962 Lambert Road	Highland Sand and Gravel Company Lim- ited and Evans, Coleman & Evans Lim- ited	Scraper, front-end loader, washing, crushing, and screening	5	RP and WS=4,800 yd.
(11) Sixteenth Ave. at Surrey border	Department of Highways	Shovel		Fill for Deas Throughway extension.
(1) North Bluff Road (Sixteenth Ave.) at 192nd St.	Department of Highways	Shovel		Fill for Deas Throughway extension.
(2) East end of Stokes Road (Twentieth Ave.)	Corporation of the District of Surrey	Shovel		Fill.
(3) Stokes Road, 1/2 mi. east of 184th St	A. B. Longstaff & Son Ltd.	Shovel	11	RP = 16,344 yd.
(4) Larsen Road (Twenty-eighth Ave.) at 193rd St.	Deeks-McBride Limited, 1051 Main St., Vancouver	Scraper, portable crushing, screening, washing, and ready-mix	2	WA and RM=23,909 yd.
(5) South of McLellan Road at Delta boundary	• • • • • • • • • • • • • • • • • • • •	Shovel and asphalt plant	·· •	RP and AP.
(6) Fifty-third Ave, at Delta boundary	Colebrook Sand & Gravel Company, Lim- ited	Front end loader, crushing, screening, and washing	3	RP and WS=49,000 yd.
(7) 15945-112th Ave., North Surrey	Richmond Sand and Gravel Ltd.	Loader, portable washing and screen- ing	3	RP and WS=30,000 yd.
(8) 112th Ave. east of Pike (160th) St	Steeves and Mann Equipment Ltd.		1	RP=33,230 yd.
(9) 104th St., 1 mi. south of Port Mann Delta Municipality—	S.U.B. Quarries	Front-end loader	4	RP=1,622 yd.; closed since May.
(1) 10720 Eighty-fourth Ave.	Knight Gravel, Ltd.	Shovel, loader, and screening	111	RP and SA=33,322 yd.
(2) ¼ mi, south of west end of Seventy- second Ave.	Locke Holmes, 5508 Forty-seventh Ave., Ladner	Pit leased from Industrial Peat Prod- ucts Ltd.; shovei; Perini Pacific Company had screening and asphalt plant in same pit	1	RP, SA, AP, and RP=93,456 yd.
(3) ¹ / ₂ mi. west of Scott Road at Sixty- eighth Ave.	Linton's Construction Co. Ltd	Two shovels, screening, and Western Paving Ltd. plant	4	RP=102,837 yd.
(4) Corner of First Ave. and Fifty-sixth St.	Corporation of the District of Delta			Fill.

¹ Part time.

Sand and Gravel Pits-Continued

Location	Operator	Equipment and Plant	Men	Production
lowe Sound—				
(1) Britannia Beach	Construction Aggregates Ltd.	Scraper, loader, crushing, screening, and washing	10	WS=410,000 yd.
(2) Hastings Creek, 1 mi. south of Port Mellon	Evans, Coleman & Evans Limited, foot of Columbia St., New Westminster	Shovel, crushing, screening, and wash- ing	25	WS=400,000 yd.
owell River-		-		
 Haslam Lake Road, 3 mi. northeast of Westview 	G. & H. Sand and Gravel Company Ltd.	Screening, washing, and ready-mix	21	WS and RM=2,500 yd.
(2) Allen Road, 3 ml. northeast of West- view	P. Massichuk	Screening	1 1	RP and \$A=4,292 yd.
(3) Cranberry Lake Road	Parsons Tractor Services Ltd.	Crushing and screening	41	RP and SA=9,753 yd.
(1) Keating Cross Road	Butler Brothers Supplies Ltd.	Diesel-driven shovels, overhead loader, washing and sizing	б	RM, RP, WS=173,928 yd.
(2) Saanich	McIntyre & Harding Gravel Company Lim- ited (now Keystone Concrete Limited)		14	WS=29,379 yd.
(3) Royal Bay.	Evans, Coleman & Evans Limited	Plant No. 1-scraper on a slack-line cableway, shovel, crushing, screen- ing, and washing; Plant No. 2- dlosel-driven shovel, washing and cleaning	11	₩S==230,480 yd.
(4) Langford Lake	McRae Bros. Ltd.	Overhead loader	2	RP.
(5) Langford Lake	Midland Pit (George F. Fox)		*****	SA.
(6) 4 mi. from Duncan on Lake Cow- ichan road	Butler Brothers Supplies (Duncan) Ltd.	ready-mix	3	RP, WS, RM=20,410 yd.
(7) Adjacent to Island Highway at Cas- sidy	Cassidy Sand and Gravel Ltd. (now Evans, Coleman & Evans Limited)	Overhead loaders, washing and sizing_	б	WS=23,880 yd.
(8) 21/2 ml, from Courtenay	S. H. Marriott Sand and Gravel	Mobile loader, rotary screening	3	SA.

1 Part time.

SILICA

Mountain Minerals Limited* Golden (51° 116° S.W.). Company office, Meech Building, P.O. Box 273, Lethbridge, Alta. R. A. Thrall, managing director; William MacPherson, superintendent. This company holds leases covering a silica deposit on the south-

western slope of Moberly Mountain, 5 miles northeast of Golden. The showings are at an elevation of 5,000 feet, and can be reached by a 6-mile road leading from the Golden-Field highway, 1 mile east of Golden. A description of the property is included in the 1959 Annual Report.

Minor development was carried out for a short period during 1961, and a small number of samples of silica were shipped for testing purposes.

Winlawt

(49° 117° N.E.) Harold Avis, of Winlaw, located two mineral claims in October, 1960, and four more in January, 1961, on a quartz lens 4 miles due east of Winlaw station.

An unsuccessful attempt to diamond drill the quartz was made in the early spring of 1961.

The claims are at 5,000 feet elevation on the east side of the north fork of Winlaw (Cedar) Creek, $2\frac{1}{4}$ miles upstream from the forks. They can be reached by driving $3\frac{1}{2}$ miles from Highway No. 6 to the end of the road to the abandoned farms on the terrace 2 miles east of Winlaw. From the end of the road the forestry trail is followed up the ridge west of the north fork for 2 miles. From this point one can continue up the ridge, around the head of the north fork, and back down the ridge on the east side to the deposit, an additional 2 miles, or one can drop down to the north fork and climb 1,400 feet up the east bank to the deposit, a distance of about 1 mile.

The showing consists of an irregular pod of massive, barren, milky-white quartz 150 feet wide from north to south and about 200 feet long from east to west. At the west end the quartz is intergrown with coarse perthitic feldspar and fingers out into pink porphyritic syenite. To the north there is a fairly sharp gradation from pure quartz into a 100-foot-wide zone of intergrown quartz and feldspar and then porphyritic syenite. To the east the outcrop of quartz ends in earthy overburden, and from there on only talus and scattered outcrops of the syenite are visible. Along the south side the contact is obscured, but syenite can be found in place close to the quartz. Jointing is strongly developed in several directions in the quartz. Apart from a few scattered rusty spots and a few places where minute scales of specularite occur on joint faces, no impurities were recognized in the main body of quartz. One sample consisting of chips taken at 5-foot intervals from north to south across the centre of the exposure had the following percentage analysis: SiO₂-99.12; Fe-0.007; Al₂O₃-0.60; Ig. loss=0.27.

Oliver Silica Quarry‡

(49° 119° S.W.) Pacific Silica Limited. Registered office, 717 West Pender Street, Vancouver 1; quarry office, Box 397, Oliver. I. A. Hunter, manager. The Oliver silica quarry is on the Gypo mineral claim, owned by The Con-

solidated Mining and Smelting Company of Canada, Limited, and operated under a lease by Pacific Silica Limited. The claim is less than one-quarter of a mile west of Highway No. 97, 1 mile north of Oliver. Estimated production for the year was 39,500 tons, and shipments made were 8,300 tons sacked and 27,000 tons in bulk. Two accidents were reported. New construction included the start of a washing plant. A crew of twenty-six was employed.

^{*} By D. R. Morgan.

[†] By J. W. McCammon.

[‡] By David Smith.

Petroleum and Natural Gas

CONTENTS

	PAGE 1.50
GENERAL ADMINISTRATION	
PETROLEUM AND NATURAL GAS BRANCH	
GENERAL REVIEW	
FIELD OFFICE	
Field Work	
Geological Laboratory	
Well Samples and Core	
Core Storage	
Core and Sample Examination	
Sample Library	
Sample-washing	
EXPLORATION	
DEVELOPMENT	
Production	
Crude Oil	
Natural Gas	
Natural-gas Liquids and Sulphur	
Pipe-lines	
Gas-gathering System	
Oil-gathering System	
Oil Transmission-line	
Reserves	
Reservoir Data	
STATISTICS AND WELL RECORDS	
Statistics	
Schedule of Wells	
Reports	
Weekly Report	
Monthly Oil and Gas Report	
Drilling and Land Report	
PUBLICATIONS	179
TABLES-	
Table 1.—Seismic Exploration, 1961	
Table 2.—Surface Geological Exploration, 1961	181
Table 3.—Oil-field Reservoir Data, 1961	
Table 4.—Gas-field Reservoir Data, 1961	183
Table 5.—Summary of Drilling and Production Statistics, 1961	185
Table 6.—Wells Drilled and Drilling, 1961	186
Table 7.—Oil and Gas Fields Designated as of December 31, 1961	193
Table 8Proved Reserves of Recoverable Crude Oil, Natural Gas, and	
Natural-gas Products at December 31, 1961	195
Table 9.—Authorized Maximum Permissible Rates to December 31,	
	196
Table 10.—Yearly Crude-oil Production, 1957–61	200
Table 11.—Yearly Natural-gas Production, 1957–61	202
Table 12.—Number of Producing and Producible Oil Wells by Month,	• • -
1960 and 1961	207

TABLES—Continued	PAGE
Table 13Number of Producing and Producible Gas Wells by Month,	
1960 and 1961	209
Table 14.—Monthly Crude-oil Production by Fields/Areas and Pools,	
1960 and 1961	216
Table 15.—Monthly Natural-gas Production by Fields/Areas and Pools,	
1960 and 1961	217
Table 16.—Monthly Natural-gas Liquids and Sulphur Production, 1960	
and 1961	220
Table 17.—Monthly Crude-oil Disposition, 1960 and 1961	221
	223
Table 19Monthly Natural-gas Liquids and Sulphur Disposition, 1960	
and 1961	225
Table 20.—Monthly Value of Crude Oil, Natural Gas, Natural-gas	
Liquids, and Sulphur to Producer, 1960 and 1961	227
NATURAL-GAS TRANSMISSION, GATHERING, AND DISTRIBUTION PIPE-LINES	228
CRUDE-OIL PIPE-LINES	229
Gas-processing Plants, 1961	230
SULPHUR PLANTS, 1961	230
CRUDE-OIL REFINERIES, 1961	231

GENERAL ADMINISTRATION

By K. B. Blakey

For purposes of administration of the *Petroleum and Natural Gas Act*, the Department is divided between a General Administrative Section and the Petroleum and Natural Gas Branch. The former, under the direction of the Chief Commissioner, is responsible for the administration of the *Petroleum and Natural Gas Act*, which includes all matters related to and affecting title to Crown petroleum and natural-gas rights. The regulations governing geophysical operations are also administered by the Chief Commissioner.

The Petroleum and Natural Gas Branch, under the direction of the Chief of the Branch, is responsible for administration of the "Regulations Governing the Drilling of Wells and the Production and Conservation of Oil and Natural Gas" made pursuant to the *Petroleum and Natural Gas Act*. The regulations specify the conditions which must be employed for efficiency and safe practice in the drilling, completion, and abandonment of wells; for well spacing; prevention of waste; conservation; and all related matters.

As at December 31, 1961, 33,925,009 acres, or approximately 53,000 square miles, of Crown petroleum and natural-gas rights, issued under the *Petroleum and Natural Gas Act*, were held in good standing by operators ranging in stature from small independent companies to major international ones. The form of title held, total number issued, and acreage in each case were as follows:—

Form of Title	Number	Acreage
Permits	424	25,898,913
Natural-gas licences	5	159,027
Drilling reservations	32	546,699
Leases (all types)	2,006	7,320,370
Total	·	33,925,009

Details of land disposition for the years 1947 to 1960, inclusive, may be found on page A 61 of the 1960 Annual Report.

The area of major land-holding interest, development, and production lies in the northeastern corner of the Province, in that segment of British Columbia roughly flanked by the Rocky Mountain Trench. Other acreage is held in the Prince Rupert, Williams Lake, and Fernie Land Recording Districts, in areas generally referred to as the Groundhog Basin area, Chilcotin River area, and Flathead River area respectively. In addition, some 4,000,000 acres are held in the coastal regions of the Mainland, the Queen Charlotte Islands, and Vancouver Island.

During the year, land disposition was changed by the following transactions:—

	Issued	Terminated	Decrease (-) or Increase (+)
Permits	46	120	76
Natural-gas licences	1	1 8	í —7
Drilling reservations	18	18	
Leases-			
Petroleum and natural gas	562	36	+526
Natural gas	12	j	+12
Petroleum			

Petroleum and natural-gas revenue which has accrued to the Crown from all sources from April 1, 1947, to December 31, 1961, is shown in the accompanying table.

PETROLEUM
AND
NATURAL
GAS

Cumulative,

1947-61

\$32,106,953

278,196

1961

\$2,856,551

59,989

1947-541 1954 1955 1956 1957 1958 1959 1960 -----\$3,000.337 \$8,337,460 \$2,425,599 \$3,465,295 \$2,773,067 \$2,737,989 \$3,307,732 \$3,202,923 5,147 76,115 136,945 -----10,157 4,521

Rentals and Fees

Permits_

Drilling reservations

PETROLEUM AND NATURAL-GAS REVENUES

Natural-gas licences 29,648 12,638 56,964 Petroleum, natural-gas, and petroleum and natural-1,147 430,177 990,383 3,339,790 3,616,123 10,273,218 gas leases... 78,288 122,157 1,695,153 \$8,337,460 | \$2,426,746 Total rentals \$3,543,583 \$2,895,224 \$3,168,166 \$4,313,419 \$4,776,126 \$6,709,306 \$6,545,301 |\$42,715,331 Sale of Crown Reserves Permits \$788 \$605,307 \$1,614,325 \$1,342,813 \$4,144,059 \$3,486,337 \$1,650,324 \$1,493,679 \$14,337,632 Drilling reservations. 72,370 1,004,711 2.136.105 3,082,821 6,296,007 ---------Leases. 293,694 6,499,766 2,400,198 3,065,391 | 12,259,049 -----------Total Crown reserve sales. \$788 \$605,307 \$1,614,325 | \$1,342,813 | \$4,510,123 \$10.990.814 \$6,186,627 | \$7,641,891 |\$32,892,688 Royalties \$761 \$2,612 \$433,546 \$492,053 \$1,152,396 \$3,003,560 Gas. \$2,826 \$7,264 \$912,102 Oi1.... 37,196 104,569 140.158 231,403 219.156 207,392 939,891 17 Processed products 62,105 69,998 76.059 119,405 327,567 Total royalties... \$761 \$2,629 \$40.022 \$111,833 \$635,809 \$793,454 | \$1,207,317 | \$1,479,193 | \$4,271,018 Miscellaneous fees... \$3,604 \$12,392 \$10,027 \$12,870 \$14,722 \$13,220 \$23,817 | \$103,080 \$12,428 Total petroleum and natural-gas revenues . \$8,337,460 \$2,431,899 54,163,911 \$4,561,999 \$4,632,839 \$9,472,221 \$16,575,116 \$14,116,470 \$15,690,202 \$79,982,117

¹ Administered under the Department of Lands and Forests until March 31, 1953. Details of revenue are not available by calendar years; total revenues are shown under permits by fiscal years ending March 31st for the period 1947-54. The detailed amounts of revenue for each fiscal year, 1947 to 1954, are shown on page A 61 of the 1960 Annual Report.

PETROLEUM AND NATURAL GAS BRANCH

VICTORIA

The Petroleum and Natural Gas Branch is subdivided, for administrative purposes, into five sections, each of which is headed by a supervisor who is responsible for a specific phase of Branch work. These sections and the supervisors in charge are as follows:—

J. D. Lineham	Chief of the Branch
R. R. McLeod	Reservoir Engineering
A. N. Lucie-Smith	Reserves and Evaluation
W. L. Ingram	Development Engineering
S. S. Cosburn	
T. A. Mackenzie	
The based seconds and the first states of	a sector and a sector take data and

The headquarters staff includes also two engineers, two geologists, two engineering assistants, three clerks, one clerk-stenographer, and one clerk-typist.

CHARLIE LAKE

G. E. Blue	District Engineer
H. B. Fulton	Field Geologist
D. L. Johnson	Field Engineer
H. A. Sharp	Engineering Assistant
M. A. Churchill	
	1 state of and and along along the state

The field-office staff includes also two general assistants and one clerk-stenographer. Two university students were employed during the summer months.

The field office is situated at Charlie Lake, a small community on the Alaska Highway about 5 miles northwest of Fort St. John.

GENERAL REVIEW

By J. D. Lineham

During 1961 the general level of activity in the development of the petroleum and natural-gas industry in British Columbia increased substantially over that of any previous year. Although most phases of activity were above average, the increases in development drilling and production were the most significant.

The main activity again was concentrated in northeastern British Columbia, although the Fernie-Flathead area, the Lower Mainland region, and Graham Island received some attention.

Reports of geological and geophysical work submitted by companies to the Petroleum and Natural Gas Branch indicate that nineteen companies operating in northeastern British Columbia carried out exploration involving 116 seismic crewmonths, nine companies had geological parties in the field, and three structure testholes were drilled. The greatest seismic activity was in March, when thirty-nine crews operated. Seismic programmes were conducted also in the Lower Mainland region and in waters adjacent to Graham Island. Two surface geological parties carried out investigations in the southeastern part of the Province in the general Fernie-Flathead area.

The increase in the number of development wells drilled in the known oil fields was responsible for the marked increase in total drilling activity in 1961, and also for the high ratio of successful-to-abandoned wells. It is of interest to note that 73 per cent of all wells drilled in 1961 were completed as potential oil or gas producers. More than 1,000,000 feet of hole was drilled at 237 locations by fifty-four

drilling rigs owned by twenty contractors. The 151 wells completed, an increase of 80 per cent over 1960, included sixty-four gas-well completions and eighty-eight oil-well completions. The fifty-five abandonments represent a 17-per-cent decrease from the number of abandonments in 1960. Drilling was again concentrated during the winter months, at the beginning and end of the year, the greatest intensity being in December, when forty-two drilling rigs were active.

Although exploratory drilling decreased slightly from the previous year, significant oil and gas discoveries were made in widely separated parts of the Peace River District. Oil discoveries resulted mainly in extensions to existing producing fields rather than the discovery of new pools. In the case of gas, several significant new discoveries, in previously unproductive areas, were made in geologic formations ranging from Lower Cretaceous Bluesky down to Middle Devonian. The most important gas discoveries were made in the Triassic Schooler Creek formation at Cypress, in the Mississippian at Judy Creek, and in the Middle Devonian at Beaver River, Komie, and Tsea.

Production of oil and gas increased over 1960 by 17 per cent and 23 per cent respectively to 1,017,826 barrels and 103,122,789,000 cubic feet. The number of producible oil wells increased 84 per cent to 191, and gas wells 27 per cent to 293. At the end of 1961 the number of wells actually being produced included 114 oil wells and 138 gas wells, which represented an increase from the end of 1960 of 119 per cent and 31 per cent respectively. The production of sulphur showed an 8-per-cent decrease, whereas the production of the natural-gas by-products condensate/pentanes plus, propane, and butane showed increases of 8 per cent, 23 per cent, and 5 per cent respectively.

Pipe-line construction in 1961 resulted in increased production and the development of known oil and gas fields. British Columbia's oil-transportation facilities were expanded through construction by Trans-Prairie Pipelines (B.C.) Ltd., Western Pacific Products and Crude Oil Pipeline Ltd., and British Columbia Oil Transmission Co. Ltd. Extension of the oil-gathering system, owned by Trans-Prairie, to the Peejay, Milligan Creek, Beatton River, and Beatton River West oil fields was completed in February. Construction by Western Pacific Products and Crude Oil Pipelines Ltd. of the 505-mile 12-inch oil pipe-line from Taylor to Kamloops was approved on January 31st and completed before the end of 1961. The application by British Columbia Oil Transmission Co. Ltd. to install an oil-gathering line from the Blueberry field to Taylor was approved on June 5th. The line was nearing completion at the end of the year.

Gas-gathering facilities were extended to include the Beg field and additional wells in the Buick Creek field.

Reserves of crude oil, natural gas, and natural-gas by-products showed marked gains at the end of 1961 as compared to 1960. Crude-oil reserves increased approximately 53 per cent to 104,212,368 barrels, raw natural gas 72 per cent to 5.79 trillion cubic feet, gas liquids 47 per cent to 120,799,706 barrels, and sulphur 45 per cent to 3,336,630 short tons.

FIELD OFFICE

By G. E. Blue

FIELD WORK

Field work, done for the purpose of enforcing the "Regulation Governing the Drilling of Wells and the Production and Conservation of Oil and Natural Gas" and to obtain technical and other data required by the Department, was accomplished from the permanent field headquarters at Charlie Lake and from a trailer office established at Fort Nelson during the winter months.

The field staff carried out comprehensive inspections of all phases of drilling and producing operations in northeastern British Columbia and investigated complaints by landowners of damage resulting from seismic operations conducted under the "Geophysical Regulations." A total distance of 99,146 miles was driven by the field staff in performance of their duties.

Drilling activity was greater during 1961 than in any previous year. Therefore, a large part of the inspection work involved both exploratory and development drilling operations. A total of 118 routine inspections was made of drilling rigs, and fifty-one abandoned well-sites were examined.

The rapidly increasing number of productive oil and gas wells necessitated the allocation of more time to the production phase of development. Detailed inspections were made of 260 producing wells. In furtherance of the policy of fastchecking gas meters on producing wells at least once a month, 1,390 meters were checked during the year and seven complete meter inspections were made.

The continuing programme of measurement of reservoir temperatures and pressures resulted in 145 bottom-hole survey runs being made by the Branch-owned bottom-hole unit. In addition, a number of "spot" pressure surveys were made for comparison with surveys made by operating companies. Due to the rapid increase in development drilling, the majority of the runs were made to measure original temperatures and pressures on newly completed wells. The charts obtained from all runs were scanned and calculated at the Charlie Lake office.

The absolute open-flow potential tests on gas wells, witnessed by the field staff, numbered sixty-four. The results of these tests were calculated by Branch staff.

A Coleman 10,000-pounds-per-square-inch dead-weight tester was added in July to field-office facilities. This tester, which is used to calibrate bottom-hole pressure bombs, will serve as the standard for the Province. It is planned to install a temperature bath to be used in conjunction with the dead-weight tester. During the period from July to the end of the year, thirty Amerada bombs were calibrated, using air-calibration procedure. There is no charge for calibration of bottom-hole bombs used in wells in northeastern British Columbia.

Renovation of the second floor of the office building commenced in December to provide additional office accommodation and space for a field laboratory. The laboratory will be used primarily for calibration of dead-weight testers; bottom-hole bombs and gauges; crude-oil gravity and basic sediment and water tests; and Tutweiler hydrogen sulphide and gas gravity determinations.

GEOLOGICAL LABORATORY

Well Samples and Core

Unless otherwise directed, any operator who drills a well for petroleum and natural gas is required to take a sample of bit-cuttings at least every 10 feet of depth.

All material from core boxes must be preserved in labelled boxes not more than 30 inches inside length and must be delivered to the geological laboratory at Charlie Lake.

Samples from wells with drilling authorities issued before March 1, 1961, continued to go to the geological laboratory in Victoria to be washed and bottled, and samples from wells with drilling authorities issued after March 1, 1961, were

processed at Charlie Lake. During 1961, 60,209 samples were washed and bottled at Victoria and Charlie Lake.

All the core from British Columbia wells is stored at Charlie Lake, as well as samples from all wells drilled since September, 1957. The Victoria sample library and the Geological Survey of Canada in Calgary each has a set of samples from wells drilled in British Columbia since 1948.

Core Storage

The core-storage facilities, capable of holding approximately 20,000 5-foot core boxes, were completed in December, 1960.

All operators holding core obtained from their wells were requested, early in January, to forward their core to Charlie Lake for permanent retention in the central core-house. The transfer of core was completed by July, and at the end of the year 14,046 boxes of core were stored and catalogued. This represented more than 75,000 feet of cored rock from 600 wells drilled in all parts of the Province, although the majority of it was obtained from wells drilled in the northeastern British Columbia district. Due to the excellent co-operation of the companies that had retained core during the period when the Department lacked facilities, it is estimated that less than 1 per cent of the total core actually recovered from wells is missing. Only 5 per cent of the core recalled from companies had to be reboxed, at a nominal cost to the operators, because of inadequate boxes, poor identification, or damage. The Branch logged all core where any doubt existed as to the correct sequence.

Core and Sample Examination

The core-examination facilities were made available to the public during February, although collection of company-stored core was proceeding at the time. During the year 5,051 boxes of core from 273 wells were studied by company personnel and privately interested individuals. Thus over one-third of the total core stored was withdrawn from the files for examination purposes.

Sample examination facilities, although not used to capacity during the year, were frequently in demand. Considerable core was examined in these quarters when the core-examination facilities were overcrowded.

Sample Library

The sample library at Charlie Lake includes bit-cutting samples from all wells drilled after September, 1957. A total of 199,355 samples from 532 wells is contained in glass vials filed in 7,410 trays. These samples are catalogued to permit fast and accurate reference.

Bit-cutting samples of wells drilled prior to September, 1957, are available for examination at Branch headquarters in Victoria. The Calgary office of the Geological Survey of Canada also has an almost complete set.

Sample-washing

Installation of a mechanical sample-washing machine was completed in April. This machine washes and dries samples in a continuous operation. An auxiliary sample-splitting unit, which was designed and constructed by Branch staff, has proved to be very efficient. This unit splits a sample into three cuts and directs each into a separate bottle, thus reducing the time required for sample-handling. Samples processed at Charlie Lake were from wells drilled in other than coastal areas and approved by Drilling Authorities issued after March 1st. Consequently, only 18,836 samples from fifty-nine wells were washed, filed, and distributed at the field office, whereas 41,373 samples were processed at Victoria.

EXPLORATION

By S. S. Cosburn

In northeastern British Columbia, despite continued research, muskeg operations remained seasonal with concentration of activity during freeze-up. Seismic exploration increased in 1961, mostly due to work in the plains region of the Fort Nelson area, where Middle Devonian gas-bearing carbonates continued to provide the stimulus for intensive exploration. In northeastern British Columbia in 1961, 550 seismic crew-weeks were completed, compared to 427 crew-weeks in 1960 (one crew-week represents approximately fifty working-hours). Geological mapping in the folded foothills belt declined about 15 per cent in 1961; nine companies employed geological field parties between the Wapiti River and the northern boundary. Three structure test-holes were drilled as follows:—

Structure Test-holes

Month	Company	Number Drilled	Агеа
Januaty	Atlantic Refining	1	94-P-3
March	Atlantic Refining	1	94-P-3
December	Union Oil Company of Canada	1	94-A-5

D. L. Griffin studied Devonian strata in the Racing River area in conjunction with J. E. Hughes, of the Mineralogical Branch.

In the Fernie-Flathead area geological mapping was done by two companies. In the Vancouver area a marine seismic survey was conducted near Point Roberts. In Hecate Strait, off Graham Island, two weeks were spent in studying submarine geology.

Of 237 wells drilled in British Columbia during 1961, ninety-five were drilled as exploratory wells. Exploration was concentrated in northeastern British Columbia, where ninety-two exploratory wells were drilled. Two wells were drilled in the Vancouver-Chilliwack area to test the Tertiary and Cretaceous sediments of the lower Fraser Valley, and one was drilled as a further test of the Tertiary sediments on Graham Island.

Major geological objectives for wildcat exploration in northeastern British Columbia were the Devonian reservoirs of the Northern Plains, the Mississippian and Triassic of the Foothills region, and the oil trend of the Triassic Halfway formation. In addition, exploratory outpost wells were drilled in an effort to extend known fields. Of the 234 wells drilled in northeastern British Columbia, 230 were located on the plains and four in the foothills.

Exploratory drilling during 1961 resulted in twenty-five discovery wells in northeastern British Columbia—three of oil and twenty-two of gas.

The most significant oil discovery was that in the Triassic Boundary Lake zone in Sinclair et al Flatrock 16-34-84-13, which would indicate a considerable extension of the Boundary Lake field southward. Both Union HB Woodrush d-55-H and Pacific SR West Canadian Peejay d-33-I found oil in the Triassic Halfway formation in stratigraphic traps associated with the pinchout of that formation.

Richfield et al Cape Ball, Cape Ball, Graham Island. (Commonwealth Drilling Company Ltd. photo.)

Geological field work in Hecate Strait. Geologist, left, and professional diver, right. Cape Ball in right background. (Richfield Oil Corporation photo.)

The thick sequence of Middle Devonian carbonates underlying the Northern Plains region constituted an important objective for exploration following the gas discoveries at Clarke Lake, Kotcho Lake, and Petitot River in recent years. Exploratory drilling in these carbonates during 1961 yielded four new gas discoveries. West Nat Imp Clarke Lake b-78-J found gas some 4 miles east of the presently defined Clarke Lake field and West Nat Kathy b-30-F established gas 7 miles north of the Kotcho Lake field. Pan Am A-1 Komie a-51-A and Texaco NFA Tsea b-68-K both encountered gas in Middle Devonian strata north and west of Kotcho Lake field, indicating that favourable reservoir conditions may be relatively widespread. Gas was discovered also in the Upper Devonian in Atlantic Pac North Kotcho c-22-F. The Mississippian Rundle group yielded gas in Texaco NFA Judy c-53-D approximately 10 miles north of Kotcho Lake field. Amerada Pac Ft St John W 11-17-83-19 discovered gas in the Permian Belloy formation 5 miles west of Fort St. John.

A total of eleven new gas discoveries in the Triassic was recorded-six in the Halfway formation and five in the upper Schooler Creek reservoirs. Four exploratory wells drilled along the Halfway oil trend-Pacific SR West Cdn Peejav d-52-I. Sinclair Pacific Weasel d-50-A, Triad BP Birley a-5-A, and Whitehall et al Milligan d-75-G-each found gas in stratigraphic traps in the Triassic Halfway formation close to its pinchout. The Halfway pool in the Bubbles field was extended northward by the Pac Imp N Bubbles d-95-B discovery, and the Farrell Creek well a-9-L was completed in 1961 as a Halfway gas well after being previously abandoned. A significant discovery by the HB Cypress b-27-F resulted in gas from the upper carbonate of the Schooler Creek in the structurally favourable foothills region. Sinclair et al N Julienne c-54-H, approximately 4 miles north of the previous Julienne discovery, also yielded gas from the upper Schooler Creek. The upper carbonate of the Schooler Creek, which constitutes the reservoir in the Nig Creek-Laprise Creek area, was tested successfully by FJP Union Birch b-62-I and Pacific Pan Am N Beg a-4-D. Union HB Alder c-39-I discovered gas in the upper portion of the eroded Schooler Creek to the west of Milligan Creek.

Four discoveries were made in the Bullhead group of the Lower Cretaceous. Imp et al Rigel 6-27-88-18 found Dunlevy gas 3 miles southeast of the Texaco Roseland well, while Pure et al Big Nancy b-70-B and Pure RO Corp Firebird d-89-D discovered gas in the Gething in the Milligan Creek area. Triad BP Pickell Creek reported gas in the Lower Cretaceous Bluesky-Gething.

DEVELOPMENT

By W. L. Ingram

The year 1961 showed significant growth in drilling activity in northeastern British Columbia. Other areas of the Province were relatively unexplored, with only three active locations in the southwest corner and no drilling activity in the Cariboo or Flathead areas where previous interest had been shown.

The number of wells completed was almost double that of 1960, and the percentage of successful ventures increased from 47 to 73 per cent. This rise indicates the increased development of the known oil pools resulting from the construction of the oil pipe-line to Kamloops.

Completed wells totalled 151, compared to eighty-four during 1960. These included eighty-eight* oil and sixty-four* gas wells. Fifty-five locations were abandoned, eleven fewer than in 1960.

^{*} Includes Texaco NFA Boundary Lake 6-25-85-14, completed as a gas and oil well.

At the end of 1961 thirty wells were being drilled, while none were suspended pending further drilling. The number of wells operated fluctuated from a monthly total of forty-two at the peak of the winter drilling season to nine during the spring thaw.

Thirty-nine wells were reportedly worked over during the year to complete new pools, stimulate producing wells, repair damaged equipment, or to abandon potential wells.

Five new fields were designated as Beg, Charlie Lake, Laprise Creek East, Petitot River, and Snyder Creek, and amendments were made to sixteen existing fields. These bring the designated fields to thirty-five as of December 31, 1961.

One of the principal duties of the development engineering section is that of dealing with applications for Drilling Authorities. During 1961 a total of 222 such applications were received and approved. Each application involves consideration of the proposed drilling programme, the title clearance of the petroleum and natural-gas rights, and the various conditions regarding the submission of geological and engineering data. Further approval is required for any proposed alteration to the completion, suspension, or abandonment methods that may be used.

At the time of approval of a Drilling Authority the location is classified as Development, Exploratory Outpost, or Exploratory Wildcat, based upon its relative position to other completed wells. This classification is used as the basis for submission of well information to the Branch. A Development well may be defined as a well located in a spacing area that is contiguous to another spacing area containing a completed well. The general term "Exploratory" is used to describe all locations that do not meet this condition, and then a further division is made into Outpost and Wildcat well locations. Wildcat well locations are those greater than $4\frac{1}{2}$ miles from a completed well, and Outpost well locations are in the area between Development and Exploratory Wildcat well locations. Consideration is given to each geological pool, and locations to be drilled to pools above or below known pools are classified as shallow-pool and deep-pool tests respectively.

A programme of well drilling for the eventual injection of fluids into the Milligan Creek oil reservoir was commenced during the year. This injection system will be used in an attempt to increase the recovery of oil as the pool is drained by production.

The salt-water disposal well Pacific Ft St John 3-30-83-18(6) received a total of 32,794 barrels for return into the Belloy formation from nearby producing gas wells. This well serves only a small number of the wells producing significant quantities of salt water, and the conversion or drilling of another well elsewhere in the Province may become necessary. At the present time most of the salt water produced is contained in surface pits near the producing wells for disposal by evaporation. The dispersement of salt water must be carefully controlled as arable land may be rendered sterile for several years if contaminated.

Two major fires were reported in 1961 at producing oil wells in the Blueberry area. One was extinguished in eight hours, while the other required the work of a professional fire-fighter and burned uncontrolled for over six days.

The exploration carried out in northeastern British Columbia by geophysical and well-drilling companies has greatly contributed to the opening of new lands for settlement. Many of the areas that were without road connection to the populated areas now have year-round access, except possibly during spring break-up. Proper road construction by the oil companies to areas previously considered inaccessible has been a major factor in encouraging settlers to clear land in these new areas. The area north of the Nelson River, previously isolated except during the winter, is now served by a permanent bridge constructed by the Provincial Government, and a permanent access is under construction to the Milligan-Beatton River area.

A tabulation of the general statistics concerning well operation and production data is shown in Table 5, and a summary of the wells drilled during 1961 is shown in Table 6.

The designated fields as of December 31, 1961, are shown in Table 7.

PRODUCTION

By T. A. Mackenzie

CRUDE OIL

The 1961 production of crude oil in British Columbia was 1,017,826 barrels, representing a 17-per-cent increase over 1960 (see Table 14). The Boundary Lake field produced 643,746 barrels in 1961, a 6-per-cent decrease from 1960. This decrease can be attributed to the discontinuance of refining facilities in the area. The production of eight smaller fields and of other areas north of Fort St. John was 374,080 barrels. This represents an increase of 104 per cent over 1960, attributable to the completion of an oil-gathering pipe-line system, permitting the movement of oil to the refinery at Taylor.

The number of producible oil wells completed in the Boundary Lake field in 1961 showed a 110-per-cent increase over the 1960 total, whereas in the other fields and areas the number of producible oil wells increased by 21 per cent. The Triassic Boundary Lake and the Triassic Halfway pools continue to be the most important productive oil horizons. For well count of producing and producible oil wells *see* Table 12.

NATURAL GAS

The 1961 production of natural gas showed an increase of 23 per cent over that of 1960. The 103,122,789 M s.c.f. produced came from twenty-three natural-gas fields and other areas.

The fields which produced more than 5 billion cubic feet of gas each were the Bubbles, Buick Creek, Buick Creek West, Fort St. John, Fort St. John Southeast, Jedney, Kobes-Townsend, Laprise Creek, Laprise Creek East, and Nig Creek fields.

Eighty-five per cent of the natural gas produced was from the following formations: Triassic upper carbonate of Schooler Creek (33 per cent), Lower Cretaceous Buick Creek (17 per cent), Triassic Halfway (15 per cent), Triassic Baldonnel (10 per cent), and Permian Belloy (10 per cent). For well count of natural-gas wells *see* Table 13.

In 1961 marketed sales of natural gas, including imported Alberta natural gas, amounted to 114,839,340 M s.c.f., of which 85,487,658 M s.c.f. was exported to the United States. Of this latter amount, 70,899,576 M s.c.f. was natural gas produced in British Columbia. The marketed sales of natural gas reported by distributors within the Province amounted to 29,812,532 M s.c.f. and was distributed as follows: Residential, 11,626,813 M s.c.f.; commercial, 4,014,052 M s.c.f.; and industrial, 14,171,667 M s.c.f.

NATURAL-GAS LIQUIDS AND SULPHUR

Condensate/Pentanes Plus.—The 1961 production of condensate/pentanes plus amounted to 813,724 barrels, as compared to 750,848 barrels in 1960, a gain of 8 per cent.

1

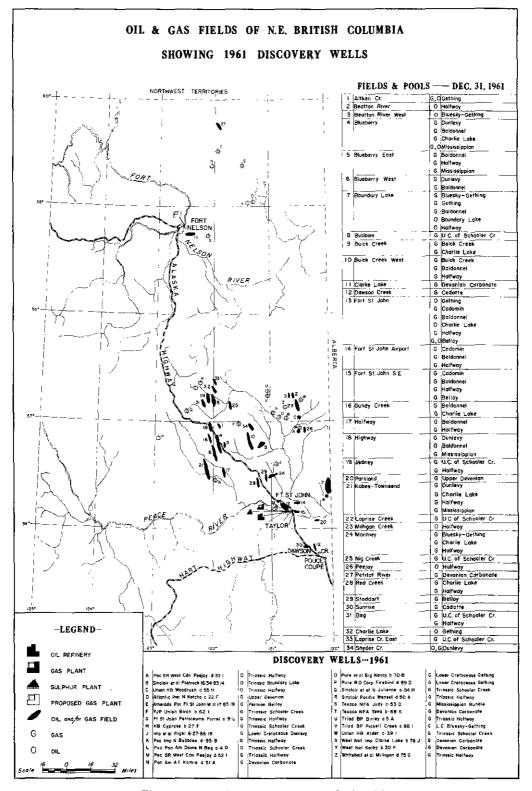


Figure 20. Petroleum and natural-gas fields, 1961.

Butane.—The production of butane in the same period amounted to 319,231 barrels, as compared to 303,187 barrels in 1960, a gain of 5 per cent.

Propane.—The production of propane was 154,717 barrels, as compared to 125,366 barrels in 1960, a gain of 23 per cent.

Sulphur.—The production of sulphur decreased 8 per cent in 1961, with an output of 55,655 short tons, as compared to 60,454 short tons in 1960. This decrease was due to a lower sulphur content of the natural gas processed in 1961.

PIPE-LINES

By A. N. Lucie-Smith

GAS-GATHERING SYSTEM

The gas-gathering system was extended by Gas Trunk Line of British Columbia Ltd. from the terminal of the 18-inch line in the Blueberry field by $23\frac{1}{2}$ miles of 16-inch line and $16\frac{1}{2}$ miles of 12-inch line in a northwesterly direction to the Beg gas field and thence in a northerly direction to the north Jedney gas field. In addition, Sun Oil company installed a feeder system, consisting of 20,000 feet of 8-inch, 6-inch, and 4-inch pipe, to connect its Buick Creek gas wells with the field terminal of the gathering system of Westcoast Transmission Company Ltd.

OIL-GATHERING SYSTEM

The oil-gathering system, owned and operated by Trans-Prairie Pipelines Ltd., was extended early in the year to the Peejay, Milligan Creek, Beatton River, and West Beatton River oil fields. This system now comprises 163.4 miles of 8-inch, 6-inch, and 4-inch pipe with an over-all capacity of not less than 20,000 barrels of crude oil per day. A second oil-gathering system, connecting the Blueberry oil field with the terminal of the 12-inch oil transmission-line at Taylor, was completed, and at the end of 1961 was awaiting the certificate of inspection. This system, owned by British Columbia Oil Transmission Co. Ltd. and operated by Sun Oil Company, consists of 70 miles of 8-inch pipe with feeders of 12 miles of 4-inch pipe and 3 miles of 6-inch pipe, and is estimated to have a capacity of 15,000 barrels of crude oil per day.

OIL TRANSMISSION-LINE

Western Pacific Products and Crude Oil Pipelines Ltd. completed 505 miles of 12-inch oil transmission-line from Taylor to Kamloops, where it was connected with the main line of Trans Mountain Oil Pipe Line Company to Vancouver. This line, with an estimated ultimate capacity of 75,000 barrels a day, was being filled at the end of 1961.

RESERVES

By A. N. Lucie-Smith

Proved recoverable reserves of crude oil and natural gas increased substantially during 1961, the increases being 52.9 per cent for oil and 72.4 per cent for gas. A summary of these reserves, together with explanatory notes, is given in Table 8. The increase of established reserves of disposable gas in 1961 was 117 per cent.

The construction of the 12-inch oil pipe-line from Taylor to connect with the main line of Trans Mountain Oil Pipe Line Company at Kamloops gave great impetus, especially during the latter half of the year, to development drilling in the Boundary Lake and Blueberry fields and to exploration drilling along the Halfway

oil trend from Boundary to Beatton, West Beatton, and northward. The Boundary Lake zone discoveries at Sinclair et al Flatrock 16-34-83-14 and 9-22-83-14 have not yet been fully tested and may result in a considerable extension southward of the Boundary Lake field.

An extension of the Peejay field to the north was proved by the successful completion of Pacific SR West Cdn Peejay d-33-I in the Halfway formation. The Halfway discovery last year at Wildmint has been extended by further drilling, but

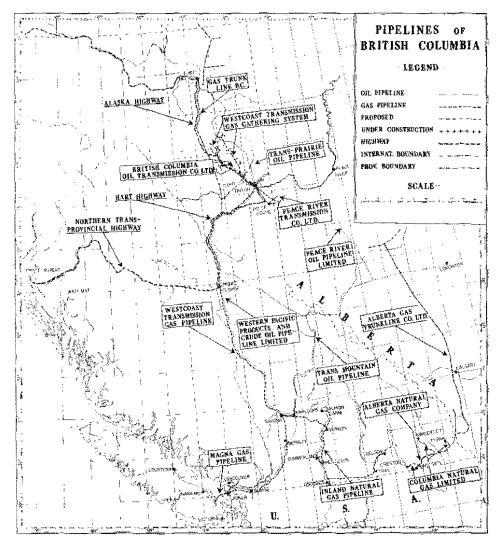


Figure 21. Oil and gas pipe-lines, existing and proposed.

the Woodrush discovery well turned to gas and was abandoned. The well that discovered oil in 1960 in the Dunlevy formation at Blueberry is now classed as a statutory gas well, while an attempt to extend the oil reserve in the Gething at Aitken Creek met with failure. Oil was discovered in both the Belloy and Charlie Lake formations in Amerada Pacific Ft St John West 11-17-83-19, south of the Peace River, but the well was completed as a statutory gas well in the Belloy; the oil in a thin-section ("C" Sand) of the Charlie Lake formation will probably be included by effecting a dual completion early next year.

The large increase in gas reserves is due mainly to the inclusion of a part of the probable reserves in order to report established disposable reserves instead of proved reserves so that the figures can be used directly by the National Energy Board; to a revision of the figures for the Clarke Lake field, where a study of the lithology of the Middle Devonian reef showed it to be wider than previously estimated; to the extension northward of the main reef at Kotcho by the successful completion of West Nat Kathy b-30-F; and to the extensions of the Buick Creek, Nig, Beg, Jedney, Bubbles, and East Laprise fields.

Several gas discoveries in formations ranging from the Bluesky to the Halfway were made while exploring for oil along the Peejay, Milligan, Beatton, and West Beatton oil trend at Pacific SR West Cdn Peejay d-52-I, Pure et al Big Nancy b-70-B, Triad BP Pickell Creek c-88-I, Pure ROC Firebird d-89-D, Union HB Alder c-39-I, and Triad BP Birley a-5-A, but, as far as reserves were concerned, the important gas discoveries were made in the Middle Devonian formation at Tsea, Komie, and Beaver River, in the Mississippian at Judy Creek, and in the upper carbonate of the Schooler Creek formation at Cypress. Another discovery of gas was made in the Schooler Creek upper carbonate in Sinclair Pacific Julienne Creek b-39-D and, along the same trend, in Sinclair et al North Julienne c-54-H, the former well also discovering commercial gas in the Halfway formation. Commercial gas in small quantity was also discovered in the Upper Devonian at Kotcho in Atlantic Pacific North Kotcho c-22-F.

Of the potential gas discoveries made in the Devonian carbonate last year, exploration wells at Evie Lake, Deer Lake, and Kledo were abandoned, a second well drilled at Beaver River was an outstandingly successful completion, and the Cam Lake well on the Petitot River trend has not yet been fully tested.

The occurrence of commercial gas in the Halfway formation in Ft St John Farrell a-9-L, which had previously been abandoned, may eventually prove to be a southward extension of the Kobes-Townsend field in this formation.

Due to the large increase of gas reserves in the vicinity of Fort Nelson and in the area to the north and to the additional potential indicated by this year's successful wildcats, it is expected that a start may soon be made on the projected 30-inch gas trunk line from Fort Nelson 245 miles south to tie into the main gas transmission-line at Chetwynd. It is probable that this prospect will supply the incentive for increased drilling activity throughout this area in the winter of 1962/63.

RESERVOIR DATA

By R. R. McLeod

The Reservoir Engineering Section of the Branch is responsible for the general evaluation of oil and gas reservoirs. This involves study and assessment of the various reservoir characteristics that are significant to the performance and operating efficiencies of the individual wells and the reservoir as a whole. These characteristics, listed in the following tables, are of primary importance not only for the establishment of production rates, but also for predictions of oil and gas recovery and estimates of reserves.

A production rate limit is established by the Branch before any well is allowed to produce, in order to guard against possible damage to the well and reservoir by too rapid a rate of production. This limit in the case of an oil well is established by a maximum permissible rate formula which initially is based on the thickness of the oil-bearing section and the known reservoir characteristics. If these characteristics are not known, reference values are set to ensure protection for a new well until more detailed information can be compiled for the reservoir.

The production rate limit for gas wells is established at 25 per cent of the open flow potential determined by field tests run in accordance with procedures issued by the Branch.

The rock characteristics given in Tables 1 and 2 are the porosity, which is the volume of pore space in the rock capable of containing fluid, expressed as a percentage of the bulk volume of the rock; the permeability, which is a measure of the ease with which fluid will flow through the rock, expressed in millidarcy units; and the water saturation, which is the fraction of the pore space in the rock occupied by water, expressed as a percentage of the total pore space. The difference between 100 per cent and the water saturation is the percentage of the total pore space occupied by oil or gas.

The properties of each gas are its specific gravity relative to air and its compressibility factor, which is a number expressing the ratio between the actual volume occupied by the gas at reservoir temperature and pressure and the volume of the gas under the same conditions as predicted by the perfect gas laws.

The properties of each oil given are its gravity, the measure of the density of the oil under stock-tank conditions expressed in degrees A.P.I., and its shrinkage, the ratio between a unit volume of oil in the stock tank and the volume that the same oil with its dissolved gas occupied in the reservoir.

The absolute open flow potential (A.O.F.P.) of a gas well is a measure of the theoretical ability of a well to produce gas if the pressure in the well bore opposite the producing interval were reduced to zero.

The M.P.R. of an oil well is a calculated maximum permissible rate based on the amount of recoverable oil in the drainage area of the well.

The fundamental data for porosity, permeability, and fluid saturation are obtained from analyses of cores, usually less than 4 inches in diameter, from a well spacing area of about 160 acres. The ratio of the volume of rock sampled to the volume of rock potentially productive is very small indeed, about 1 part in 80,000,-000 if the productive interval is cored completely on 160-acre spacing. It is less if the productive interval is not completely cored.

STATISTICS AND WELL RECORDS

By T. A. Mackenzie

STATISTICS

Information concerning the British Columbia oil and gas industry is collected, classified, and tabulated by the Petroleum and Natural Gas Branch and is made available in statistical content and form to all interested parties in accordance with the regulations.

The release of well information follows a pattern agreed upon and accepted by the members of the Technical Committee of the Mines Ministers' Conference, with the object of making well data available on a timely and uniform basis. Additional information concerning the collection operations of pipe-lines, gas-processing plants, refineries, and marketers is compiled and published.

Under the direction of the above-mentioned Technical Committee, the Statistical Subcommittee, composed of government and industry representatives was formed in 1955. Its primary objectives are as follows:—

MINES AND PETROLEUM RESOURCES REPORT, 1961

- (1) Standardization of forms designed for the same purpose but which are required individually by both Provincial and Federal Governments under different formats.
- (2) Standardization of forms to accommodate machine accounting procedures for reporting production statistics to the Provincial Governments.
- (3) Amendment of existing model report forms to conform with present requirements.
- (4) Investigation of ways and means of obtaining the co-operation of both Provincial and Federal Government agencies for the earlier availability of information on all phases of the oil and gas industry.

The reporting forms presently in use by the Branch are:---

- *(1) Well-names Register.
- (2) Application for a Drilling Authority.
- (3) Application to Amend a Drilling Authority.
- (4) Application to Change a Well Name.
- (5) Application to Abandon a Well.
- (6) Application to Alter a Well.
- (7) New Oil Well Report.
- (8) New Gas Well Report.
- (9) Application for M.P.R.-Oil.
- (10) Application to Commingle Production before Measurement.
- (11) Battery Test Data Report.
- (12) Monthly Proration and Production Report.
- (13) Monthly Disposition Report and Crown Royalty Statement.
- (14) Monthly Oil Gathering Operations Report.
- (15) Monthly Gas Gathering Operations Report.
- (16) Monthly Natural Gas Plant Statement.
- (17) Monthly Natural Gas Processing Statement.
- (18) Monthly Sulphur Plant Operations Report.
- (19) Monthly Refinery Operations Report.
- (20) Monthly Crude Oil and Condensate/Pentanes Plus Purchasers' Statement.
- (21) Monthly Liquefied Petroleum Gas Purchasers' Statement.
- (22) Well Completion Report.
- (23) Supplement to Well Completion Report.
- (24) Work-over Report.
- *(25) Work-over Card.
- *(26) Monthly Operations Report.
- (27) Application for a Rig Licence.
- (28) Monthly Water Flood Operations Report.
- (29) Monthly Natural Gas and/or Liquid Petroleum Gas Injection Operations Report.
- (30) Statement of Nomination and Estimated Requirements for British Columbia Crude Oil, Condensate/Pentanes Plus.

Following a directive issued by the Technical Committee of the Mines Ministers, the Subcommittee on Uniform Nomenclature—Petroleum Products was formed in the early part of 1961. The objective of the Subcommittee was to define in precise terms certain words and phrases commonly used in the petroleum and natural-gas industry. Several meetings were held toward achieving these ends. The recommendations of the Subcommittee were presented at the Meeting of the

^{*} Branch use only,

Mines Ministers' Conference in September, 1961, and with the exception of a change in the definition of natural gas and the addition of a preamble, the definitions were accepted by the Technical Committee, the Interprovincial Petroleum and Natural Gas Committee, and the Mines Ministers. This concluded the work of the Subcommittee, of which the Branch was a member.

In March, 1961, the Statistical Subcommittee met with representatives of the Dominion Bureau of Statistics for the purpose of finalizing the means by which joint collection of gas-distribution statistics could be effected. As an outcome of this meeting, it was decided to form a group to be known as the "Provincial-D.B.S. Committee on Oil and Gas Statistics," the members to be Statistical Subcommittee personnel together with appropriate members from the Dominion Bureau of Statistics and other Federal agencies. The Committee would meet to establish and revise, as required, statistical forms on the production, transportation, and distribution of oil and gas and to foster the joint collection of these statistics, eliminating as much duplication of effort as possible. The Committee held its second meeting at Toronto on September 21 and 22, 1961, immediately following the Eighteenth Annual Conference of the Provincial Ministers of Mines.

SCHEDULE OF WELLS

Each year a volume is prepared dealing with the wells drilled for petroleum and natural gas in British Columbia during that year. It covers the period from 8 a.m. January 1st to 8 a.m. January 1st of the succeeding year. The following well information is listed when applicable: Well name, Drilling Authority number, classification, operator, title and number, location, co-ordinates, spud date, rig release date, ground elevation, Kelly bushing elevation, total depth, well status, interval open to production, casing, logs, cores, samples, drill-stem tests, and geological markers.

The foregoing information is condensed from reports submitted to the Branch by the operators of the listed wells.

REPORTS

Weekly Report

The weekly report is prepared for Branch use from data collected from the operators by the field office at Charlie Lake. The week is from 8 a.m. Friday to the following 8 a.m. Friday. The report provides the following information as it occurs:—

- (1) New locations.
- (2) New locations pending.
- (3) Locations cancelled.
- (4) Well-name changes.
- (5) Change of well classification.
- (6) Rigs operating.
- (7) Suspended wells.
- (8) Completed wells--oil and gas.
- (9) Abandoned wells.
- (10) Change of well status.
- (11) Workovers.
- (12) Box score-

Total wells drilled in British Columbia. Total producible oil wells. Total producible gas wells.

Monthly Oil and Gas Report

The Monthly Oil and Gas Report is prepared from returns made monthly by the operators (*see* reporting forms listed elsewhere). Figures are carried cumulatively for the year on a comparative basis with the preceding year.

The contents of this report are as follows:----

Summary Statistics

Crude oil----

Number of producing and producible oil wells—field totals. Oil production—field totals. Number of producing and producible oil wells by field and pool. Oil production by field and pool. Oil disposition. Value of oil sales to British Columbia producer. New oil wells placed on production. Natural gas—

Number of producing and producible gas wells-field totals.

Gas production—field totals. Number of producing and producible gas wells by field and pool.

Gas production by field and pool.

Gas disposition.

Value of gas sales to British Columbia producer.

New gas wells placed on production.

Water----

Water production-field totals.

Water production by field and pool.

Water disposition.

Natural-gas liquids and sulphur---

Production and disposition of condensate/pentanes plus, butane, propane, and sulphur.

Value of natural-gas liquids and sulphur.

Approved maximum permissible rates.

This report is compiled and mailed to subscribers approximately two weeks after receipt of returns from the operators.

Drilling and Land Report

The Drilling and Land Report is published concurrently with the Monthly Oil and Gas Report. The Drilling Section is largely prepared from data obtained from the operators. The contents of the report are as follows:---

A. Drilling Section-

Summary statistics. Drilling Authorities approved. Locations outstanding. Locations cancelled. Change of well status. Change of well name. Wells suspended. Drilling and completions. Estimated oil production. Drilling/service rig licences issued. Drilling/service rig licences cancelled. Well data released from confidential status. B. Land Section— Acreage synopses. Permits. Leases. Natural-gas licences. Miscellaneous. Disposition of permits, leases, licences, and drilling reservations.

PUBLICATIONS

Write to the Chief,	Petroleum and N	atural Gas	Branch, for	r the following:
Regulations Governing	the Drilling of W	ells and th	e Productio	on and Conser-
vation of Oil and	Natural Gas			\$0.50 per copy
Monthly Crude Oil and	Natural Gas Pro-	duction by	Field/Area	a and Pool—
1961	\$5.00	1957		\$2.00
	5.00			
1959		1955		
1958	. 3.00	1954		50
Schedule of Wells Drille	d for Oil and Nat	ural Gas in	British Co	lumbia (1906–
				\$7.50 per copy
Schedule of Wells Drille	d for Oil and Nati	ıral Gas in	British Col	lumbia (1960),
Volume II				\$5.00 per copy
List of Petroleum and N				
Oil and Gas Field Desc	riptions			\$0.50 per copy
Annual Report reprints				Free
Stratigraphic Correlation				
				.\$1,25 per copy
				75 per copy
List of Released Geolog				
Representative Well Lo				
Area maps (2 inches=				
Regional maps (1 inch-				
Oil and Gas Field Boun	dary Plats			.\$0.35 per copy

Write to the Chief Commissioner for the following:

Petroleum and Natural Gas Act \$0.35 per copy Permit and Lease Grid System \$1.00 per copy Geophysical Regulations \$0.25 per copy Official Specification of Geographic Position of a Petroleum and Natural Gas
Permit (approximately 220 permit specifications)
Monthly Oil and Gas Report (Summary Statistics)\$6.00 per calendar year or \$0.75 per copy
Drilling and Land Report (Monthly)\$6.00 per calendar year or \$0.75 per copy
List of Leases in Peace River District showing Lease Number, Lessee, Acre- age, Issue Date, Years, and Ex. Permit Number \$1.00 per list
List of Permits in Peace River District showing Permit Number, Permittee, Acreage, and Issue Date
Additions and Revisions to Permit, Licence, and Lease Maps (Monthly Report)
Permit and Lease Location Maps

TABLES

TABLE 1.—SEISMIC EXPLORATION, 1961

Note.---Unless otherwise indicated, exploration method is reflection seismic survey. For indicating location, the National Topographic Series map numbering system is used.

Company	Location of Exploration	Number of Seismic Crews	Соправу	Location of Exploration	Number of Seismic Crews
January	l		Sheft Oil Company	94-N-11	1
British American Oil Co,	94-J-9	1	Shell Oil Company	94-1-14, 13	1
California Standard Co	94-G-2	Î	Shell Oil Company	94-N-14	Î
Hudson's Bay Oil & Gas Co.,		i	Shell Oil Company	94-J-10	î
Hudson's Bay Oil & Gas Co.	94-H-15	i	Sinclair Canada Oil	94-G-2	i
Imperial Oil Limited	94-J-16, 9	2	Sinclair Canada Oil	94-I-15	i
Imperial Oil Limited	94-G-14	ĩ	Schio Petroleums		î
Imperial Oil Limited	94-1-16	1	Texaco Exploration		i
Mobil Oil of Canada	94-I-15	Î	Triad Oil Company	94-H-12	i
Pacific Petroleums	94-I-16	i	Union Oil Co. of Canada	94-H-2	i i
Pan American	93-I-91	Ĩ	Western Natural Gas	94-I-12	i
Pan American	94-G-14,	Î	Western Natural Gas	94-J-16	1
the stress was to prove the stress	94-0-1, 2	-	Western Natural Gas	94-B-12	i
Pure Oil Company		1			
Pure Oil Company		i	March		ł
Pure Oil Company	1 1 1 2 7	2	Atlantic Refining	94-A-12	1 1
Pure Oil Company		$\tilde{2}$	British American	94-J-9	Î
Richfield Oil Corp.		ii	Hudson's Bay Oil & Gas Co.	94-H-15	lî
Richfield Oil Corp.	i	1	Hudson's Bay Oil & Gas Co.	94-G-7	Î
Richfield Oil Corp.	94-P	i	Hudson's Bay Oil & Gas Co.	94-P-14	ĩ
Shell Oil Company	94-N-11, 12	ii	Imperial Oil Limited	94-A-5	î
Shell Oil Company		î	Imperial Oil Limited	94-1-11	ì
Shell Oil Company	94H-12, 94N-11		Imperial Oil Limited	94-1-7	i
Shell Oil Company	94-I-13, 14	1	Imperial Oit Limited	94-1-2	î
Shell Oil Company	94-J-7	Î	Imperial Oil Limited	94-I-11	i
Shell Oil Company	94-J-10	i	Mobil Oil of Canada	94-1-5	ĩ
Shell Oil Company	94- P -3	ĺĺ	Pacific Petroleums	94-J-2	ī
Sinclair Canada Oil Co.	94-G-2	ī	Pan American	94-0-2, 7, 10, 15	1
Sohio Petroleum Company		ĺĺ	Pan American	93-J-91	1
Texaco Exploration		i	Pure Oil Company	94-J	4
Texaco Exploration		í	Pure Oil Company	94-J	i
Triad Oi) Co. Ltd.		1	Pure Oil Company	94-1	ĩ
Union Oil Co. of Canada	94-H-2	i	Pure Oil Company	94-1	i
Western Natural Gas Co	94-J-10, 94-I-14	i	Pure Oil Company	94-P-3	2
Trestown waterin our contain			Pure Oil Company	94-P-3	ĩ
February			Richfield Oil Corp.	94-1-3	1
Atlantic Refining	94-A-12	1	Richfield Oil Corp.	94-P-5, 13	î
British American	94-J-9	i	Richfield Oil Corp	94-J-8	i
California Standard		Í	Richfield Oil Corp	94-0-1	1
California Standard	94-J-15	1	Shell Oil Company	94-1-13, 14,	Î
Hudson's Bay Oil & Gas Co.	94 P-14	i	and on company	94-P-12	Î Î
Hudson's Bay Oil & Gas Co.	94-H-15	li.	Shell Oil Company	94P.3	1
Hudson's Bay Oil & Gas Co.	94-G-7	i	Shell Oil Company	94-B-6	i
Imperial Oil Limited	94-P-8	1	Shell Oil Company	94-8-11	ĩ
Imperial Oil Limited		1	Shell Oil Company	94-1-13, 14	1
Mohil Oil of Canada	94-1-5	1	Shell Oil Company	94-J-10	1
Pacific Petroleums	94-I-16	1	Sinclair Canada Oil	94-I-15, 94-G-2	1
Pan American	94-P-12,	1	Texaco Exploration	94-P-2	i
	94-0-8, 9, 10		Triad Oil Company	94-H-2	i
Pan American	93-1-91	1	Western Natural Gas	94.P-12	i
Pure Oil Company	94-J	2	Western Natural Gas	94-I-12	Î
Pure Oil Company		i			
Pure Oil Company	94-J	1	April		
Pure Oil Company		i	British American	94-G-7.6	1
Pure Oil Company		1	California Standard	94-G-2	i
Pure Oil Company		1	Imperial Oil Limited	94-I-11	Î
Richfield Oil Corp.		Í	Richfield Oil Corp.	(2)	1
Richfield Oil Corp.	94-P-13	Í	Contractor Contractor in the		· `
Richfield Oil Corp.	94-J-8	1	Мау		
Shell Oil Company	94-0-16,	i	British American	94-G-6, 7	1

¹ Combination reflection-refraction. ² Vancouver area near Point Roberts, Marine Seismic Survey 92-G.

Company	Location of Exploration	Number of Seismic Crews	Сотрапу	Location of Exploration	Number of Seismic Crews
June		Ţ	November		[
British American	94-G-6, 7	1 1	Atlantic Refining	94-H-3	1
Imperial Oil Limited	93-I-15	Î	Imperial Oil Limited	93-P-3	Î
		· .	Ohio Oil Company	94-J-16	i i
July			Pure Oil Company	94-J-7.10	1
British American	94-G-6, 7	1	Richfield Oil Corp.	94-J-16	1
Imperial Oil Limited.	93-I-15	(L)	Shell Oil Company	94-P-3, 4	1
4		i	Shell Oil Company	94-J-10	1
August		1	Sinclair Canada Oil	94-A-1	1
British American	94-A-7	1			l l
Imperial Oil Limited	93-I-13	1	December		ĺ
Sentember		1	Amerada Petroleum	94-P-16	1
		{	Atlantic Refining	94-H-4	1
Imperial Oil Limited	93-I-13	1	French Petroleum	94-B-9	1
Richfield Oil Corp	94 - J-16	1	Hudson's Bay Oil & Gas Co.	94- B -10	1
Sinclair Canada Oil	94-G-10	{ 1 '	Hudson's Bay Oil & Gas Co.	94-H-2, 94-A-16	} 1
October		ļ,	Ohio Oil Company	94-G-15	1
			Pacific Petroleums	94-B-9, 16,	1
Imperial Oil Limited		1 1	ľ	94-A-12	
Richfield Oil Corp	94-J-16	1	Shell Oil Company	94-P-3, 4	1
Shell Oil Company	94-P-3, 4	1	Shell Oil Company	94-J-10) 1
Shell Oil Company	94-J-10	1	Shell Oil Company	94-G-3, 6	1
		1	Sinclair Canada Oil	94-I-11, 14	1
			Triad Oil Company	94-J-7	1
ì		1			}

TABLE 1.—SEISMIC EXPLORATION, 1961—Continued

TABLE 2.---SURFACE GEOLOGICAL EXPLORATION, 1961

Сотралу	Location of Exploration	Number of Geolo- gists	Company	Location of Exploration	Number of Geolo- gists
			Pan American	94-K-8	6
British American	Northeastern	4	Shell Oil Company	93-I-1	4
	B.C.	r i	Shell Oil Company	93-I-15	4
Husky	93-O 7, 10	2	Shell Oil Company	93-P-13	4
Shell Oil Company	93-1-1	4	Sinclair Canada Oil	82-G-10	1 2
Shell Oil Company	93-I-15	4	Texaco Exploration	93-I-1	1 5
Shell Oil Company	93-P-13	4	Union Oil Company	94-N-8, 94-K-1	5
Sinclair Canada Oil	82-G-10	2			1
Union Oil Company	94-K-14	5	August		1
_		Í	British American	93-I-1	4
June	1	1	California Standard	94-M-9	5
British American	Northeastern	4	Pan American	94-K-8, 94-B-3	6
	B.C.	1	Shell Oil Company		4
California Standard) 5	Shell Oil Company.	93- I-1 5	4
Husky		2	Shell Oil Company	93-P-13	4
Pan American	94-K-8	6	Texaco	93-P-12	5
Plymouth		2	Union Oil Company	94-G-5	5
Shell Oil Company	93-I-1	4	Sector has		
Shell Oil Company		4	September		
Shell Oil Company		4	British American	82-3-3	2
Sinclair Canada Oil	82-G-10	2	Pan American	94-B-3	6
Texaco Exploration	93-I-1	5	Shell Oil Company	93-I-1	4
Union Oil Company	94-K-14, 94-N-8	5	Shell Oil Company	93-1-15	4
July		Į	Shell Oil Company	93-P-13	4
•			Texaco	93-P-12	5
British American	/ / / / / /	4	Union Oil Company	94-G-S	5
California Standard	94-M-9	5	11		1

- ----

Field	Pool	Rock Type	Age	Trap	Drive Mechanism	Av. Porosity (per Cent)	Av. Thickness (Ft.)	Av. Per- meability (Md.)	Av. Water Saturation (per Cent)	Shrinkage	Gravity Degrees (A.P.I.)	Original Pressure (Psig.)	Av. M.P.R. ¹ (Bbl./Day)
Beatton River	Halfway	Sandstone	Triassic	Stratigraphic- structural	Undetermined	17.5	13,0	130.0	25.0	0.86	40.0	1,190	114
Beatton River West Blueberry	Bluesky Gething Mississippian	Sandstone Limestone	Lower Cretaccous Mississippian	Stratigraphic Structural- stratigraphic	Undetermined Gas cap and possible water	13.3 7.7	13.0 61.0	65.0 38.0 ²	25.0 25.0	0.80 0.745	42.0 40.0	1,040 2,710	82 214
Boundary Lake	Boundary Lake .	Limestone	Triassic	Structural- stratigraphic	Depletion with small gas cap	19.2	14,2	45.0	5.8	0.77	35-36	1,825	140
Fort St. John Milligan Creek	Charlie Lake Halfway		Triassic	Stratigraphic_ Stratigraphic- structural	Gas cap Undetermined .	13.8 23.0	6.4 24.0	570.0 430.0	25.0 8.0	0.79 0.86	36.0 41.0	1,950 1,190	37 320
Peejay	Halfway	Sandstone	Triassic	Stratigraphic- structural	Undetermined .	14.4	16.8	90.0	16.0	0.83	39.0	1,380	127
Wildmint	Halfway	Sandstone	Triassic	Stratigraphic- structural	Undetermined	21.6	15.8	380.0	8.0	0.86	39–40	1,208	199

¹ Maximum permissible rate.

2 Plus fractures.

Field	Pool	Rock Туре	Age	Ттар	Av. Porosity (rer Cent)	Av. Thickness (Ft.)	Av. Permeability (Md.)	Av. Water Saturation (per Cent)	Compressi- bility Factor	Specific Gravity (Air=1.0)	Original Pressure (Psig.)	AV. A.O.F.P.) (M.S.C.F./
Aitken Creek	Gething	Sandstone	Lower Cretaceous	Structural	12.1	25,5		21.7	0.790	0.685	1.526	
Beg	U.C. of Sch. Cr.	Limestone	Triassic	Structural	9.5	88.3	64.73	22.6	0.861	0.670	1,520	2.95
Beg	Halfway	Sandstone	Triassic	Structural	10.3	105.0	8.5	37.4	0.836	0.674	1.826	4.37
Blueberry		Sandstone	Lower Cretaceous.	Structural	10.5	60.0	10.3	25.0	0.820	0.650		
	Dufflevy			Structural		23.8	37.1	29.6			1,366	1,36
Blueberry	Baldonnel	Limestone	Triassic		10.6				0.810	0.687	1,639	4,44
Blueberry	Charlie Lake	Sandstone	Triassic	Structural-stratigraphic	9,9	31.0	100.1	30.0	0.823	0.645	2,380	
Blueberry	Mississippian	Limestone	Mississippian	Structural	15.9	55.0	106.4	20.0	0.841	0.670	2,792	17.00
Blueberry East	Baldonnel	Limestone	Triassic	Structural	11.1	22.0	47.7	25.0	0.781	0.684	1,886	7,10
Blueberry East	Halfway	Sandstone	Triassic	Struciural	10.0	39.0	7.3	25.0	0.767	0.733	2,066	6,40
Blueberry East	Mississippian	Limestone	Mississippian	Structural	12.3	30.0	32.5	30.5	0.871	0.612	2,686	3.5
Hueberry West		Sandstone	Lower Cretaceous	Structural	9.5	39.0	61.8	25.0	0.821	0.658	1,406	5,2
Blueberry West	Baldonnel	Limestone	Triassic	Structural	9.7	24.0	83.7	22.8	0.819	0.648	1,726	5.4
Soundary Lake	Bluesky-Gething	Sandstone	Lower Crétaceous	Structural-stratigraphic	17.7	15.0		19,3	0.844	0.634	1,276	j 3,92
Soundary Lake	Gething	Sandstone	Lower Cretaceous	Structural-stratigraphic.	15.8	63,0	******	32.5	0.830	0.641	1.393	11.7
Boundary Lake	Baldonnel	Limestone	Triassic	Structural	12.9	24.5		35.1	0.814	0.670	1,453	4.6
Boundary Lake	Halfway	Sandstone	Triassic	Structural	6.4	8,6	i j	23.4	0.841	0.632	1.686	
Bubbles		Limestone	Triassic	Structural	9,9	133.4	33.3	17.7	0.831	0.665	1,596	111,0
Buick Creek	Buick Creek	Sandstone	Lower Cretaceous	Structural-stratigraphic	13.3	38.0	139.8	23.7	0.847	0.646	1.286	12,5
Buick Creek	Charlie Lake	Sandstone	Triassic	Structural-stratigraphic.	8.0	5.0		10.4	0.834	0.670	1.536	7.8
Buick Creek West	Buick Creck	Sandstone	Lower Cretaceous	Structural	10.9	73.7	165.0	31.9	0.854	0.693	1.309	25.8
Buick Creek West	Baldonnel	Limestone	Triassic	Stratigraphic	11.4	19,8	44.9	11.5	0.828	0.675	1,521	3,2
Buick Creek West	Halfway	Sandstone	Triassic	Structural	12.3	69.9	20.8	49.8	0.750	0.773	1,715	8,5
Jarke Lake	Devonian	Limestone	Devonian	Stratigraphic	9.7	150.0	247.8	13.2	0.935	0.670	2.886	73,3
Jawson Creek	Cadotte	Sandstone	Lower Cretaceous.	Structural-stratigraphic.	17.3	50.3	31.0	35.0	0.921	0.580	686	5,7
Fort St. John	Cadomin	Sandstone	Lower Cretaceous	Structural	12.4	12.0	421,0	40.0	0.844	0.610	1,340	29,0
Fort St. John	Baldonnel 'A'	Limestone	Triassic	Structural	16.2	33.0	120.4	28.0	0.809	0.670	1.604	1 13.9
Fort St. John		Limestone	Triassic	Structural	10.7	62.3	101.6	27.0	0.818	0.686	1,604	19,4
Fort St. John		Sandstone	Triassic	Stratigraphic	10.9	5.0		30.0	0.802	0.670	1,882	1
Fort St. John	Halfway	Sandstone	Triassic	Structural	11.1	37.4	22.6	25.0	0.802	0.679		
Fort St. John		Limestone		Structural-stratigraphic_	11.1	44.5	59.3	25.0	0.808	0.670	2,006	10,0
			Lower Cretaceous	Structural		25.0			0.832		2,756	13,5
Fort St. John Airport	Cadomin	Sandstone			17.5			40.0		0.640	1,443	·
Fort St. John Airport	Baldonnel 'A'	Limestone	Triassic	Structural	10.0	25.0		28.0	0.813	0.670	1.614	
Fort St. John Airport	Halfway	Sandstone	Triassic	Structural	10.0	15.0		25.0	0.804	0.670	2,039	1,4
Fort St. John Southeast .	Cadomin	Sandstone	Lower Cretaceous	Structural	15.8	22.0	64.2	40.0	0.847	0.620	1,376	2,4
Fort St. John Southeast	Baldonnel 'A'	Limestone	Triassic	Structural	14.7	35.0	30.0	28.0	0.813	0.670	1,626	13,6
Fort St. John Southeast	Halfway.	Sandstone	Triassic	Structural	9.8	37.8	14.5	25.0	0.798	0.670	2,107	11,0
ort St. John Southeast	Belloy	Limestone	Permian	Structural-stratigraphic	9.2	23.3	62.2	25.0	0.871	0.626	2,814	1 15,5

TABLE 4.---GAS-FIELD RESERVOIR DATA

¹ Absolute open flow potential.

² Thousands of standard cubic feet per day.

³ Plus fractures.

PETROLEUM AND NATURAL GAS

Field	Pool	Rock Type	Age	Trap	Av. Porosity (per Cent)	Av. Thickness (Ft.)	Av. Permeability (Md.)	Av. Water Saturation (per Cent)	Compressi- bility Factor	Specific Gravity (Air=1.0)	Original Pressure (Psig.)	Av. A.O.F.F (M S.C.F./ Dav??
undy Creek.	Dunlevy	Sandstone	Lower Cretaceous.	Structural	15.6	8.0		23.0	0.822	0.626	1,650	80:
undy Creek	Baldonnel	Limestone	Triassic	Structural	8.9	22.0	69.3	19.2	0.840	0.636	1,790	4,15
undy Creek	Charlie Lake	Sandstone	Triassic	Structural-stratigraphic.	6.5	10.0		25.0	0.813	0.653	2,339	5,55
alfway	Baldonnel	Limestone	Triassic	Structural	7.9	32.3	5.93	35.0	0.812	0.653	1,646	10,86
alfway	Halfway	Sandstone	Triassic	Structural	12.0	62.0	49.1	25.0	0.800)	0.670	2,223) 3,30
lighway	Dunlevy	Sandstone	Lower Cretaceous.	Structural	8.6	20.0	84.9	25.0	0.839	0.650	1,346	54
lighway	Baldonnel	Limestone	Triassic	Structural	10.0	22.0	124.0	25.1	0.812	0.663	1,666	5,81
lighway	Mississippian	Limestone	Mississippian	Structural	11.0	83.0	104.7	19.7	0.898	0.611	3,145	41,00
edney	U.C. of \$ch. Cr	Limestone	Triassic	Structural	8.8	124.0	33.7	19.0	0.852	0.693	1,553	12,76
edney	Halfway	Sandstone	Triassic	Structural	12.7	151.0	16.4	19.5	0.842	0.673	1,692	10,58
obes-Townsend	Dunlevy	Sandstone	Lower Cretaceous	Structural	12,5	101.6	17.9	19.8	0.797	0.651	1,486	3,52
obes-Townsend	Charlie Lake	Sandstone	Triassic	Structural	16.3	76.6		25.0	0.812	0.646	2,586	5,16
obes-Townsend	Halfway	Sandstone	Triassic	Structural	7.6	289.0	5.1	28.0	0.810	0.650	2,636	10,89
obes-Townsend	Mississippian	Limestone	Mississippian	Structural	4.9	30.0	10.4	16.2	0.859	0.640	3,025	7,50
aprise Creek	U.C. of Sch. Cr	Limestone	Triassic	Structural	10.6	106.0	43.5	22.4	0.837	0.686	1,523	7,50
aprise Creek East	U.C. of Sch. Cr	Limestone	Triassic	Structural	11.5	154.1	21.8	10.1	0.813	0.679	1,526	8,32
fontney	Bluesky-Gething	Sandstone	Lower Cretaceous.	Structural-stratigraphic	17.0	15.0		45.0	0.862	0.620	1,266	89
lontney	Charlie Lake	Sandstone	Triassic	Structural-stratigraphic	20.0	37.0		30.0	0.817	0.670	1,746	i 4.90
fontney	Halfway	Sandstone	Triassic	Structural	14.6	20.0	67.1	33.5	0.757	0.730	1.846	10.00
ig Creek	U.C. of Sch. Cr.	Limestone	Triassic	Structural	10.8	69.5	61.3	21.5	0.849	0.678	1,613	15.55
arkland	Upper Devonian	Limestone	Devonian	Structural-stratigraphic	19.0	72.0		13.7	1.014	0.620	4,900	16,20
etitot River	Devonian Carbonate	Limestone	Devonian	Structural-stratigraphic.	8.6	95.4		12.6	0.929	0.674	2,782	198,50
ed Creek	Charlie Lake	Sandstone	Triassic	Structural-stratigraphic	18.0	5.0		32.0	0.788	0.668	1.741	2.40
ed Creek	Halfway	Sandstone	Triassic	Structural	13.3	16.0	18.1	25.0	0.698	0.810	2,089	3,50
nyder Creek	Dunlevy	Sandstone	Lower Cretaceous.	Structural-stratigraphic	12.0	10.5		30.0	0.858	0.623	1,275	9,90
oddart	Belloy	Limestone	Permian	Structural-stratigraphic.	15.8	26.0	105.93	12.0	0.822	0.680	2.411	21.00
unrise	Cadotte	Sandstone	Lower Cretaceous	Structural-stratigraphic.	20.6	69.0	36.2	35.0	0.909	0.590	686	5,70

TABLE 4.—GAS-FIELD RESERVOIR DATA—Continued

¹ Absolute open flow potential.

² Thousands of standard cubic feet per day.

³ Plus fractures.

	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
Well Data													
Drilling Authorities issued	19	12	8	4	7	4	3	29	22	35	30	49	222
Wells spudded		18	7	2	2	8	3	22	24	29	31	42	207
Rigs operated during month	36	37	33	9	9	13	12	21	26	30	28	42	
Rigs operating at end of month	32	28	8	7	6	1 9	8	15	20	22	19	30	
Development footage	30,129	22,245	34,597	9,751	15,359	31,988	18,875	102,540	95,802	91,240	85,201	107,747	610,689
Exploratory outpost footage	21.210	35,146	14,895	285		4.100	976	490	17,575	14,667	29,021	41,725	188,218
Exploratory wildcat footage	76.238	41,672	13,820	2,162	1,043	904	10,151	22,144	11,105	8,270	32,010	29,259	221,742
Footage drilled, total	127,577	99,063	63,312	12,198	16,402	36,992	30,002	125,174	124,482	114,177	146,232	178,731	1,020,649
Vells abandoned	7	13	12	1		! 1		2	1	2	7	9	55
Service wells			<u>. </u>									1	1
Oil Wells						1 		1		1) '		
Completed	1		4	1	2	2	1	11	15	15	18	18	88
roducible	1063	1053	109	1093	111	113	114	125	140	155	173	191	İ 191
roduced	32	47	77	9	17	22	64	61	75	101	93	114	
roduction (bbl.)	65,541	87,443	102,645	2,748	40,028	25,562	50,800	51,926	88,657	144,092	140,712	1 217,672	1,017,826
verage daily production (bbl.)	2,145	2,915	3,422	92	1,334	852	1,693	1,731	2,973	4,803	4,690	7,256	
Gas Wells				1		[
Completed	9	9	11	1	2	2	3	2	3	10	9	j 3	64
roducible	2388	2483	259	260	262	2633	266	2693	272	282	291	2938	293
roduced	117	120	124	124	115	121	124	120	120	120	128	Ì 138	
Production (M s.c.f.) 4	8,535,501	8,358,138	9,580.000	9,024,024		7,700,914	7,661,719	7,901,136	8,131,763	8,362,158	8.977,700	10,222,753	103,122,789
Average daily production (M s.c.f.)	284,517	278,605	319,333	300,801	288,899	256,697	255,391	263,371	271,059	282,376	302,753	329,766	
Natural-gas By-products										1		 	
Condensate/pentanes plus (bbl.)	71.682	68.680	79,077	67,604	73,736	67,956	68,643	70,583	65,548	66,790	50,886	62.539	813,724
Sutane (bbl.)	32,360	30,169	29,271	25,687	25.459	24,383	24,467	24,415	27,385	27.912	11,905	35,818	319,231
ropane (bbl.)	17,166	15,733	14,448	10.428	10,985	11,542	8,946	10,133	12,615	13,478	7,330	21,913	154,717
ulphur (short tons)	5,685	5,295	5,895	5,230	4,580	4,315	4.020	4,362	2,484	3,545	4,918	5,326	55,655

TABLE 5.—SUMMARY OF DRILLING AND PRODUCTION STATISTICS, 1961

This amends annual totals as shown in monthly reports.
 Includes Texaco NFA Boundary Lake 6-25-85-14, completed as a gas and oil well.
 Adjustment due to change of well status.
 Excludes solution gas.

185

PETROLEUM AND NATURAL GAS

Drilling Authority No.	Well Name	Date Spudded	Date Rig Released	Total Depth	1961 Footage	Status at Dec. 31, 1961
773	Amerada Boundary 16-20-85-13	Sept. 1, 1961	Sept. 14, 1961	4,380	4,380	Dry and abandoned.
771	Amerada Boundary 14-29-85-13	Aug. 14, 1961	Aug. 31, 1961	4,590	4,590	Triassic Boundary Lake oil well.
799	Amerada Boundary 8-5-85-14	Sept. 14, 1961	Oct. 10, 1961	4,470	4,470	Lower Cretaceous Dunlevy gas well.
692	Amerada Boundary Lake 11-24-85-14	Dec. 25, 1960	Jan. 14, 1961	4,625	770	Dry and abandoned.
751	Amerada Boundary A11-24-85-14	June 7, 1961	June 18, 1961	3,975	3,975	Triassic Baldonnel gas well.
736	Amerada Boundary 16-24-85-14	May 9, 1961	May 28, 1961	4,640	4,640	Triassic Boundary Lake and Halfway oil well.
864	Amerada Ft St John W 6-5-83-19	Dec. 8, 1961			4,205	Drilling,
697	Amerada Pac Ft St John W 11-17-83-19	Dec. 29, 1960	Mar. 18, 1961	6,624	5,899	Permo-Carboniferous gas well.
723	Amerada Oval 16-3-86-15	Feb. 21, 1961	Mar. 17, 1961	4,833	4,833	Dry and abandoned.
716	Atlantic Pac E Kotcho b-19-G	Jan. 30, 1961	Mar. 13, 1961	7,072	7,072	Dry and abandoned.
673	Atlantic Pac North Kotcho c-22-F	Nov. 28, 1960	Jan. 24, 1961	7,023	453	Wabamun Devonian gas well.
781	Apache Pacific Fort Nelson d-76-G	Sept, 14, 1961	Oct. 20, 1961	7,265	7,265	Dry and abandoned.
859	BA Pocketknife b-6-L	Dec. 8, 1961			1,306	Drilling.
891	Champlin Midwest Osborn 1-23-88-15	Dec. 28, 1961			2,056	Drilling.
765	Dome Boundary 16-11-84-14	Sept. 12, 1961	Sept. 24, 1961	4,316	4,316	Triassic Boundary Lake oil well.
768	Dome Boundary 8-22-85-14	Aug. 14, 1961	Aug. 28, 1961	4,387	4,387	Triassic Boundary Lake oil well.
764	Dome Boundary 8-11-86-14	Aug. 30, 1961	Sept. 10, 1961	4,342	4,342	Triassic Boundary Lake oil well. Triassic Boundary Lake oil well.
808	Dome Boundary 8-14-86-14.	Sept. 30, 1961	Oct. 10, 1961	4,267	4,267	Dry and abandoned.
696	Dome Prosper Holman Creek b-48-B	Dec. 23, 1960	Jan. 28, 1961	3,900	3,846	Triassic upper carbonate of Schooler Creek gas w
666	Dome Provo Laprise Creek a-33-H	Feb. 2, 1961	Feb. 25, 1961	4,470	4,470	Triassic upper carbonate of Schooler Creek gas w
665	Dome Provo Laprise a-46-H	Mar. 1, 1961	Mar. 16, 1961	4,519	4,519	Dry and abandoned.
762	Dome Provo Laprise b-57-H	Aug. 12, 1961	Aug. 25, 1961	4,349	4,349	Triassic upper carbonate of Schooler Creek gas w
837	Dome Provo E Laprise a-81-H	Nov. 3, 1961	Nov. 19, 1961	4,260	4,260	Triassic upper carbonate of Schooler Creek gas w
809	Dome Provo E Laprise d-91-H	Oct. 3, 1961	Oct. 27, 1961	4,112	4,112 4,947	Drilling.
873	Dome CDP C&E W Laprise c-82-G	Dec. 4, 1961 Oct. 30, 1961	Nov. 24, 1961	4.170	4,947	Triassic upper carbonate of Schooler Creek gas w
834	FJP Union Birch b-62-I	Nov. 30, 1961		.,	630	Drilling.
611	Fraser Valley Chilliwack 14-19-26	Jan, 20, 1959	Apr. 1, 1961	8,739	8,739	Dry and abandoned,
706	HB Union Chinchaga a-96-C	Oct. 30, 1961			3,616	Dry and abandoned.
827	HB Cypress a-86-C	Mar. 16, 1961	Oct. 11, 1961	9.135	9,135	Triassic Schooler Creek gas well.
737 647	HB Cypress b-27-F	Oct. 4, 1960	Jan. 29, 1961	5,061	1,106	Dry and abandoned.
	Imp Pac Boundary 6-29-83-13	Nov, 3, 1961	Nov. 16, 1961	4,477	4,477	Dry and abandoned.
842	Imp Pac Boundary 6-29-83-13	Dec. 28, 1961		· ·	3,315	Drilling.
888	Imp Pac Boundary 6-5-85-13	Oct. 16, 1961	Oct. 26, 1961	4,311	4,311	Triassic Boundary Lake oil well.
813	Imp Pac Boundary 8-5-85-13	Dec. 3, 1961	Dec. 12, 1961	4,337	4,337	Triassic Boundary Lake oil well.
878 832	Imp Pac Boundary 14-5-85-13	Nov. 8, 1961	Nov. 17, 1961	4,313	4,313	Triassic Boundary Lake oil well.
832 882	Imp Pac Boundary 16-5-85-13	Dec. 13, 1961	Dec. 29, 1961	4,335	4,335	Triassic Boundary Lake oil well.
882 789	Imp Pac Boundary 10-3-83-13		Sept. 15, 1961	4,335	4,285	Triassic Boundary Lake oil well.
789	Imp Pac Boundary 8-6-85-13		Sept. 15, 1961	4,285	4,285	Triassic Boundary Lake oil well.
795 792	Imp Pac Boundary 8-6-85-13		Sept. 20, 1961	4,303	4,279	Triassic Boundary Lake oil well.
792	Imp Pac Boundary 16-6-85-13	Sept. 21, 1961	Oct. 4, 1961	4,255	4,255	Triassic Boundary Lake oil well.
763	Imp Pac Boundary 6-7-85-13		Aug. 28, 1961	4,308	4,308	Triassic Boundary Lake oil well.

TABLE 6.—WELLS DRILLED AND DRILLING, 1961

807	Imp Pac Boundary 8-7-85-13	Oct. 4, 1961	Oct. 15, 1961	4,330	4,330	Triassic Boundary Lake oil well.
775	Imp Pac Boundary 16-7-85-13		Sept. 10, 1961	4,335	4,335	Triassic Boundary Lake oil well.
847	Imp Pac Boundary 6-8-85-13	Nov. 18, 1961	Nov. 27, 1961	4,337	4,337	Triassic Boundary Lake oil well.
906	Imp Pac Boundary 8-8-85-13	Dec. 30, 1961			2,200	Drilling.
767	Imp Pac Boundary 14-8-85-13	Nov. 30, 1961	Dec. 10, 1961	4,330	4,330	Triassic Boundary Lake oil well.
889	Imp Pac Boundary 16-8-85-13		Dec. 27, 1961	4,345	4,345	Triassic Boundary Lake oil well.
760	Imp Pac Boundary 6-17-85-13	Aug. 8, 1961	Aug. 21, 1961	4,301	4,301	Triassic Boundary Lake oil well.
738	Imp Pac Boundary 14-17-85-13	Mar. 21, 1961	Apr. 2, 1961	4,345	4.345	Triassic Boundary Lake oil well.
734	Imp Pac Boundary 6-18-85-13	Mar, 8, 1961	Mar. 20, 1961	4,292	4,292	Triassic Boundary Lake oil well.
774	Imp Pac Boundary 8-20-85-13	Aug. 22, 1961	Sept. 3, 1961	4,353	4,353	Triassic Boundary Lake oil well.
843	Imp Pac Boundary 14-10-84-14		Nov. 17, 1961	4,460	4,460	Triassic Boundary Lake oil well.
872	Imp Pac Boundary 16-24-84-14		Dec. 24, 1961	4.465	4,465	Triassic Boundary Lake oil well.
861	Imp Pac Boundary 8-34-84-14	Nov. 28, 1961	Dec. 9, 1961	4,125	4.125	Triassic Boundary Lake oil well.
883	Imp Pac Boundary 14-34-84-14	Dec. 11, 1961	Dec. 22, 1961	4,075	4.075	Triassic Boundary Lake oil well.
846	Imp Pac Boundary 16-34-84-14	Nov. 17, 1961	Nov. 26, 1961	4,105	4,105	Triassic Boundary Lake oil well.
833	Imp Pac Boundary 6-35-84-14		Nov. 7, 1961	4,188	4,188	Triassic Boundary Lake oil well.
815	Imp et al Boundary 8-35-84-14	Oct. 15, 1961	Oct. 25, 1961	4,233	4,233	Triassic Boundary Lake oil well.
805	Imp Pac Boundary 14-35-84-14		Oct. 15, 1961	4.155	4,155	Triassic Boundary Lake oil well.
797	Imp Pac Boundary 16-35-84-14		Oct. 5, 1961	4,185	4,185	Triassic Boundary Lake oil well.
804	Imp et al Boundary 6-36-84-14		Oct. 9, 1961	4.295	4,295	Triassic Boundary Lake oil well.
814	Imp et al Boundary 8-36-84-14		Oct. 20, 1961	4,320	4,320	Triassic Boundary Lake oil well.
793	Imp et al Boundary 14-36-84-14		Sept. 18, 1961	4.271	4,271	Triassic Boundary Lake oil well.
798	Imp et al Boundary 16-36-84-14		Sept. 28, 1961	4,283	4,283	Triassic Boundary Lake oil well.
761	Imp et al Boundary 6-1-85-14		Aug. 18, 1961	4,245	4,245	Triassic Boundary Lake oil well.
770	Imp et al Boundary 8-1-85-14		Aug. 29, 1961	4.247	4.247	Triassic Boundary Lake oil well.
776	Imp et al Boundary 16-1-85-14		Sept. 8, 1961	4,270	4.270	Triassic Boundary Lake oil well.
788	Imp Pac Boundary 8-2-85-14		Sept. 11, 1961	4,246	4,246	Triassic Boundary Lake oil well.
777	Imp Pac Boundary 16-2-85-14		Sept. 21, 1961	4,230	4,230	Triassic Boundary Lake oil well.
767	Imp Pac Boundary 8-11-85-14	Aug. 18, 1961	Sept. 1, 1961	4,285	4,285	Triassic Boundary Lake oil well.
821	Imp Pac Boundary 14-11-85-14		Oct. 30, 1961	4,286	4,286	Triassic Boundary Lake oil well.
759	Imp Pac Boundary 14-12-85-14		Aug. 17, 1961	4.310	4,310	Triassic Boundary Lake oil well.
758	Imp Pac Boundary 6-13-85-14		Aug. 17, 1961	4,303	4,303	Triassic Boundary Lake oil well.
848	Imp Pac Boundary 8-14-85-14		Nov. 28, 1961	4,305	4.305	Triassic Boundary Lake oil well.
905	Imp Kyklo b-73-F				1,433	Drilling.
828	Imp et al Rigel 6-27-88-18		Nov. 18, 1961	4.340	4.340	Lower Cretaceous Dunlevy gas well.
863	Imp Pac Sirius d-21-I		Dec. 7, 1961	4,200	4.200	Dry and abandoned.
791	McCoy Dome Bubbles d-42-B		Sept. 29, 1961	4,663	4,663	Triassic upper carbonate of Schooler Creek gas well
693	McCoy Dome Bubbles c-72-B		Jan. 8, 1961	4,670	225	Dry and abandoned.
685	Mobil W Sahtaneh d-88-I		Mar. 1, 1961	8,260	4.382	Dry and abandoned.
876	Mobil W Sahtaneh c-89-1				5,607	Drilling.
898	Ohio Boundary 14-5-86-13			1	4,109	Drilling.
766	Pacific Pan Am Dome N Beg a-4-D	Sept. 10, 1961	Nov. 6, 1961	5,607	5,607	Triassic upper carbonate of Schooler Creek gas well
855	Pacific Pan Am Dome N Beg d-15-D		Dec. 30, 1961	4,940	4,940	Triassic upper carbonate of Schooler Creek gas well
895	Pacific Boundary 16-14-85-14				4,480	Drilling.
750	Pac Imp N Bubbles d-95-D		July 31, 1961	5,076	5.076	Triassic Halfway gas well.
820	Pacific Imperial Jedney d-53-C		Nov. 23, 1961	5,322	5,322	Triassic upper carbonate of Schooler Creek an
020	I acmo imperiar roundy a-ro		1.07. 40, 1701		2,22	Halfway gas well.

Drilling Authority No.	Well Name	Date Spudded	Date Rig Released	Total Depth	1961 Footage	Status at Dec. 31, 1961
868	Pacific Imperial Jedney b-73-C	Nov. 27, 1961			5,303	Drilling.
691	Pacific Sunray Imp Jedney b-84-C	Dec. 28, 1960	Feb. 9, 1961	5,290	3,670	Triassic Halfway gas well.
778	Pacific et al Jedney c-86-C	Aug. 30, 1961	Oct. 14, 1961	5,502	5,502	Triassic Halfway gas well.
779	Pacific et al Jedney a-17-F	Aug. 28, 1961	Oct. 3, 1961	5,285	5,285	Triassic Halfway gas well.
715	Pacific Sunray Imp E Laprise a-22-E	Jan. 25, 1961	Feb. 9, 1961	4,336	4,336	Triassic upper carbonate of Schooler Creck gas well.
690	Pacific Sunray Imp E Laprise a-33-E	Dec. 27, 1960	Jan. 21, 1961	4,453	3,486	Triassic upper carbonate of Schooler Creek gas well.
725	Pacific SR West Cdn Peejay d-33-I	Feb. 22, 1961	Mar. 13, 1961	3,775	3,775	Triassic Halfway oil well.
893	Pacific SR West Cdn Peejay d-43-I	Dec. 31, 1961			55	Drilling.
713	Pacific SR West Cdn Peejay d-52-I	Jan. 27, 1961	Feb. 11, 1961	3,750	3,750	Triassic Halfway gas well.
894	Pacific SR West Cdn W Peejay d-11-J	Dec. 14, 1961	Dec. 29, 1961	3,804	3,804	Dry and abandoned.
682	Pan Am Beaver River d-73-K	Jan. 23, 1961	Dec. 6, 1961	13,581	13,857	Middle Devonian carbonate gas well; whipstocked at 12,285 ft.
680	Pan Am Cam Lake c-25-L	Feb. 2, 1961	Mar. 18, 1961	7,090	7,090	Dry and abandoned.
681	Pan Am et al Dilly a-27-K	Dec. 27, 1960	Feb. 10, 1961	7,154	6.155	Dry and abandoned.
877	Pan Am et al Dilly a-30 K	Dec. 4, 1961			6,202	Drilling,
705	Pan Am July a-65-K		Mar. 18, 1961	6,913	6,913	Dry and abandoned.
527	Pan Am A-1 Komie a-51-A		Jan. 22, 1961	7,812	181	Middle Devonian carbonate gas well.
683	Pan Am Komie c-94-I		Mar. 13, 1961	8,440	8,126	Dry and abandoned.
707	Pure R O Corp Firebird d-89-D		Feb. 15, 1961	3,860	3,860	Lower Cretaceous Gething gas well.
720	Pure et al Big Nancy b-70-B	Feb, 19, 1961	Mar. 9, 1961	3,906	3,906	Lower Cretaceous Gething gas well.
675	Pure Imperial Bull b-67-J	Dec. 11, 1960	Feb. 2, 1961	8,267	4,795	Dry and abandoned.
892	Pure Pac Cheves c-5-A	Dec. 12, 1961			2,986	Drilling,
874	Pure ROC Donis d-61-D	Dec. 11, 1961	Dec. 30, 1961	3,920	3,920	Dry and abandoned.
839	Pure et al W Milligan d-67-G	Nov. 24, 1961	Dec. 8, 1961	3,780	3,780	Dry and abandoned.
701	Pure R O Corp Prespatou d-99-A	Jan. 4, 1961	Jan. 26, 1961	4,129	4,129	Dry and abandoned.
838	Pure et al Sam d-88-F	Nov. 2, 1961	Nov. 17, 1961	3,895	3,895	Dry and abandoned.
822	Pure Pacific Tanaka c-94-L	Oct. 26, 1961	Dec. 25, 1961	8,472	8,472	Dry and abandoned.
884	Richfield Pure Abbotsford 16-17-16	Dec. 5, 1961		•••••	3,117	Drilling.
754	Richfield et al Cape Ball d-41-L	July 16, 1961	Aug. 20, 1961	7,988	7 988	Dry and abandoned.
702	Sinclair et al Attachie 7-12-84-23	Jan. 19, 1961	Feb. 3, 1961	2,750	2,750	Dry and abandoned.
732	Sinclair et al Beg b-99-B	Mar. 16, 1961	Mar. 23, 1961	1,513	1,513	Junked and abandoned.
739	Sinclair et al Beg b-A99-B	Mar. 25, 1961	May 21, 1961	5.437	5,437	Triassic Halfway gas well.
711	Sinclair et al Beg a-21-F	Jan. 23, 1961	Feb. 27, 1961	5,252	5,252	Triassic upper carbonate of Schooler Creek and Halfway gas well.
748	Sinclair et al Beg b-42-F	June 18, 1961	July 23, 1961	5,116	5,116	Triassic upper carbonate of Schooler Creek and Halfway gas well.
733	Sinclair et al Beg d-64-F	Feb. 28, 1961	Apr. 13, 1961	5,101	5,101	Triassic upper carbonate of Schooler Creek and Halfway gas well.
741	Sinclair et al Beg b-84-F	Apr. 15, 1961	May 22, 1961	5,095	5,095	Triassic upper carbonate of Schooler Creck and Halfway gas well.
747	Sinclair et al Beg b-95-F	July 10, 1961	Aug. 19, 1961	5.428	5,428	Triassic Halfway gas well.

TABLE 6.—WELLS DRILLED AND DRILLING, 1961—Continued

541	Sinclair et al Beg d.10 G		Jan. 6, 1961	5,610		Triassic upper carbonate of Schooler Creek and Halfway gas well.
740	Sinclair et al Beg b-6-K	Apr. 24, 1961	June 17, 1961	5,326	5,326	Triassic upper carbonate of Schooler Creek and Halfway gas well.
749	Sinclair et al Beg a-28-K	June 25, 1961	Aug. 8, 1961	5,648	5,648	Triassic upper carbonate of Schooler Creek and Halfway gas well.
786	Sinclair et al Beg b-59-K	Aug. 31, 1961	Oct. 15, 1961	5,426	5,426	Triassic upper carbonate of Schooler Creek and Halfway gas well.
772	Sinclair et al W Beg c-58-F	Aug. 20, 1961	Oct. 9, 1961	5,863	5,863	Triassic upper carbonate of Schooler Creek gas well.
841	Sinclair Boundary 14-11-84-14		Nov. 18, 1961	4,485	4,485	Triassic Boundary Lake oil well.
865	Sinclair Boundary 16-11-84-14				4,502	Drilling.
803	Sinclair Boundary 6-14-84-14		Oct. 17, 1961	4,485	4,485	Triassic Boundary Lake oil well.
866	Sinclair Boundary 8-14-84-14		Dec. 10, 1961	4,503	4,503	Triassic Boundary Lake oil well.
755	Sinclair Boundary 14-15-84-14		July 24, 1961	4,277	4,303	Triassic Boundary Lake oil well.
752	Sinclair Boundary 16-15-84-14		June 27, 1961	4,400	4,400	Triassic Boundary Lake oil well.
780	Sinclair Boundary 6-22-84-14		Sept. 8, 1961	4,230	4,230	Triassic Boundary Lake oil well.
742	Sinclair Boundary 8-22-84-14		June 12, 1961	4,360	4,360	Triassic Boundary Lake oil well.
794	Sinclair Boundary 14-22-84-14		Sept. 22, 1961	4,360	4,360	Triassic Boundary Lake of well.
727	Sinclair Boundary 16-22-84-14		Mar. 20, 1961	4,103	4,185	Triassic Boundary Lake oil well.
802	Sinclair Boundary 6-27-84-14			4,430	4,430	Triassic Boundary Lake oil well.
743			Dec. 10, 1961		4,130	Triassic Boundary Lake oil well.
	Sinclair Boundary 8-27-84-14		May 26, 1961	4,160		Drilling.
853	Sinclair Boundary 14-27-84-14			4.160	3,667	
753	Sinclair Boundary 16-27-84-14		Aug. 23, 1961	4,160	4,160	Triassic Boundary Lake oil well.
679	Sinclair et al N Conroy Creek d-45-K		Jan. 21, 1961	5,070	997	Dry and abandoned.
698	Sinclair et al Datcin b-46-G		Feb. 12, 1961	6,306	4,590	Dry and abandoned.
870	Sinclair et al Datcin a-54-G				4,925	Drilling.
831	Sinclair et al Flatrock 9-22-83-14		Nov. 18, 1961	4,939	4,939	Triassic Boundary Lake oil well.
703	Sinclair et al Flatrock 6-29-83-14		Feb. 23, 1961	4,985	4,985	Dry and abandoned.
825	Sinclair et al Flatrock 16-34-83-14		Nov. 22, 1961	4,535	4,535	Triassic Boundary Lake oil well.
658	Sinclair Pac Julienne Creek b-39-D	Oct. 24, 1960	Feb. 24, 1961	6,275	202	Triassic Baldonnel gas well.
757	Sinclair et al N Julienne c-54-H	Aug, 17, 1961	Nov. 10, 1961	6,340	6,340	Triassic Schooler Creek gas well.
421	Sinclair Pac Klua Ck a-55-L (B11-1)		Feb. 20, 1961	8,614		Dry and abandoned.
694	Sinclair Pacific Lichen d-31-A		Feb. 18, 1961	6,470	4,989	Dry and abandoned.
914	Sinclair et al Peejay d-58-E			·	519	Drilling.
881	Sinclair et al Peejay d-59-E		Dec. 26, 1961	3,900	3,900	Triassic Halfway oil well.
648	Sinclair Pac Robertson Creek d-39-J	Oct. 3, 1960	Apr. 10, 1961	9,141	3,802	Dry and abandoned.
709	Sinclair Pacific Weasel d-50-A	Jan. 19, 1961	Feb. 18, 1961	3,680	3,680	Triassic Halfway gas well.
726	Sinclair Pacific Weasel d-33-B	Feb. 22, 1961	Mar. 7, 1961	3,727	3,727	Dry and abandoned.
897	Sohio C & E Ekwan a-55-G	Dec. 15, 1961			3,622	Drilling.
784	Sohio Septimus 4-34-81-19	Sept. 14, 1961	Nov. 11, 1961	6.220	6,220	Dry and abandoned.
785	Sun et al Blueberry d-19-K		Nov. 29, 1961	6,649	6,649	Mississippian Rundle oil well.
746	Sun et al Blueberry d-30-K		Aug. 16, 1961	6,693	6,693	Mississippian Rundle oil well.
783	Sun et al Blueberry d-40-K		Nov. 21, 1961	6,681	6,681	Mississippian Rundle oil well.
851	Sun et al Blueberry b-60-K				4,791	Drilling.
745	Sun et al Blueberry 6-25-88-25		Aug. 23, 1961	6,581	6,581	Mississippian Rundle oil well.
850	Sun et al Blueberry 14-25-88-25				4,576	Drilling.
719	Sun Boundary 16-23-85-14		Mar. 21, 1961	4,580	4,580	Triassic Boundary Lake oil well.

Drilling Authority No.	Well Name	Date Spudded	Date Rig Released	Total Depth	1961 Footage	Status at Dec. 31, 1961
744	Sun Buick c-16-B	June 2, 1961	July 5, 1961	4,709	4,709	Lower Cretaceous Buick Creek gas well.
756	Sun Buick d-19-B	Sept. 4, 1961	Sept. 17, 1961	3.650	3,650	Lower Cretaceous Buick Creek gas well.
818	Sun Buick d-11-C	Oct. 13, 1961	Oct. 27, 1961	3,835	3,835	Lower Cretaceous Buick Creek gas well,
871	Sun Buick b-42-C	Dec. 11, 1961	Dec. 31, 1961	3,895	3,895	Dry and abandoned.
671	TGT Tooga Lake c-27-K	Dec. 28, 1960	Feb. 19, 1961	6,727	6,122	Dry and abandoned.
844	Texaco NFA Boundary 16-7-85-13	Nov. 6, 1961	Nov. 16, 1961	4,315	4,315	Triassic Boundary Lake oil well.
862	Texaco NFA Boundary 6-7-86-13	Nov. 27, 1961	Dec. 18, 1961	4,353	4,353	Triassic Boundary Lake oil well.
811	Texaco NFA Boundary 6-18-86-13	Oct. 12, 1961	Oct. 22, 1961	4,311	4,311	Triassic Boundary Lake oil well.
901	Texaco NFA Boundary 16-19-86-13	Dec. 27, 1961	•		3,600	Drilling.
836	Texaco NFA Boundary 16-31-86-13	Nov. 3, 1961	Nov. 25, 1961	4,770	4,770	Triassic Halfway gas well.
823	Texaco NFA Boundary 16-22-85-14	Oct. 24, 1961	Nov. 6, 1961	4.366	4,366	Triassic Boundary Lake oil well.
687	Texaco NFA Boundary Lake 6-25-85-14	Dec. 12, 1960	Jan. 14, 1961	4,646	31	Triassic Baldonnel gas well.
845	Texaco NFA Boundary 8-27-85-14	Nov. 8, 1961	Nov. 21, 1961	4,375	4,375	Triassic Boundary Lake oil well.
812	Texaco NFA Boundary 16-27-85-14	Oct. 7, 1961	Oct. 23, 1961	4,340	4,340	Triassic Boundary Lake oil well.
857	Texaco NFA Boundary 8-34-85-14	Nov. 23, 1961	Dec. 6, 1961	4,331	4,331	Triassic Boundary Lake oil well.
860	Texaco NFA Boundary 16-1-86-14	Nov. 28, 1961	Dec. 14, 1961	4,402	4,402	Triassic Boundary Lake oil well.
829	Texaco NFA Boundary 6-12-86-14	Oct. 23, 1961	Nov. 4, 1961	4,393	4,393	Triassic Boundary Lake oil well.
900	Texaco NFA Boundary 14-12-86-14	Dec. 18, 1961			4,350	Drilling,
880	Texaco NFA Boundary 6-13-86-14	Dec. 4, 1961	Dec. 15, 1961	4,340	4,340	Triassic Boundary Lake oil well.
858	Texaco NFA Boundary 16-13-86-14	Nov. 18, 1961	Nov. 30, 1961	4,312	4,312	Triassic Boundary Lake oil well.
885	Texaco NFA Boundary 6-24-86-14	Dec. 8, 1961	Dec. 22, 1961	4,320	4,320	Triassic Boundary Lake oil well.
835	Texaco NFA Boundary 14-36-86-14	Oct. 31, 1961	Nov. 24, 1961	4,710	4,710	Dry and abandoned.
787	Texaco NFA Buick d-96-I	Sept. 10, 1961	Sept. 28, 1961	3,877	3,877	Lower Cretaceous Buick Creek gas well.
728	Texaco NFA Buick d-93-J	Mar. 1, 1961	Mar. 23, 1961	4,265	4,265	Lower Cretaceous Buick Creek and Triassic Charlie Lake gas well.
717	Texaco NFA Judy c-53-D	Feb. 1, 1961	Mar. 30, 1961	7,322	7,322	Mississippian Rundle gas well.
565	Texaco NFA Maxhamish Lake c-15-L	Jan. 13 , 1960	Jan. 25, 1961	6,902		Dry and abandoned.
819	Texaco NFA Nig a-69-A	Oct. 16, 1961	Nov. 10, 1961	4,445	4,445	Triassic upper carbonate of Schooler Creek gas well.
729	Texaco NFA Nig c-36-B	Feb. 28, 1961	Mar. 18, 1961	4,510	4,510	Triassic upper carbonate of Schooler Creek ga well.
79 0	Texaco NFA Nig d-71-B	Sept. 14, 1961	Oct. 7, 1961	4,467	4,467	Triassic upper carbonate of Schooler Creek ga well.
852	Texaco NFA Nig b-44-G	Nov. 16, 1961	Dec. 18, 1961	4,420	4,420	Triassic upper carbonate of Schooler Creek ga well.
731	Texaco NFA Silver b-65-J	Feb. 26, 1961	Mar. 17, 1961	4,163	4,163	Dry and abandoned.
704	Texaco NFA Tsea b-68-K	Jan. 12, 1961	Mar. 29, 1961	7,110	7,110	Middle Devonian carbonate gas well.
710	Texaco NFA Wendy c-90-G	Jan. 17, 1961	Feb. 5, 1961	4,042	4,042	Dry and abandoned.
708	Texaco NFA Wolfe 1-8-88-14	Jan, 19, 1961	Feb. 18, 1961	5,663	5,663	Dry and abandoned.
896	Triad Beatton d-49-J	Dec. 13, 1961	Dec. 23, 1961	3,790	3,790	Triassic Halfway oil well.
816	Triad Beatton d-50-J	Oct. 17, 1961	Oct. 29, 1961	3,760	3,760	Triassic Halfway oil well.

TABLE 6.---WELLS DRILLED AND DRILLING, 1961--Continued

689	Whitehall et al Milligan d-75-G		19. 1961	Mar. 5, 1961	3,753	3,753	Triassic Halfway gas well.
676 801	West Nat Petitot River a-81-L White Rose Sec Montney 6-5-87-18		29, 1960 21, 1961	Feb. 17, 1961 Oct. 26, 1961	6,720 4,779	6,098 4,779	Dry and abandoned. Triassic Halfway gas well.
	West Net Detited Di me e 91 I	Der	00 10/0	E-1 17 10/1	6 700	C 000	4,711 ft.
							drilled from West Nat Petitot River a-81-L
722	West Nat Petitot b-90-K		17, 1961	Mar. 17, 1961	6,732	2,021	Middle Devonian carbonate gas well; directional
379	West Nat Kotcho b-54-K		17, 1961			4,169	Drilling.
714	West Nat Kotcho a-9-F	Jan,	30, 1961	Mar. 13, 1961	6,966	6,966	Dry and abandoned.
57 7	West Nat Kathy b-30-F		9, 1960	Jan. 24, 1961	6,785	2,416	Middle Devonian carbonate gas well.
356	West Nat Ft Nelson a-52 J	Dec.	1, 1961			3,483	Drilling,
588	West Nat et al Fort Nelson b-70-1	Dec.	18, 1960	Jan. 20, 1961	6,422	3,808	Middle Devonian carbonate gas well,
317	West Nat et al Evie D-14-F	Oct.	23, 1961	Dec. 8, 1961	7,925	7,925	Dry and abandoned.
700	West Nat Imp Clarke Lake b-78-3	Jan.	26, 1961	Mar. 19, 1961	6,520	6,520	Middle Devonian carbonate gas well.
190	Union HB Woodrush d-55-H	Dec.	15, 1961	Dec. 29, 1961	3,750	3,750	Triassic Halfway oil well.
330	Union HB Willow b-10-H		25, 1961	Nov. 6, 1961	3,785	3,785	Triassic Halfway gas well.
30	Union HB Wildmint d-57-A	Feb.	26, 1961	Mar. 9, 1961	3,830	3,830	Dry and abandoned.
10	Union HB Wildmint d 45 A		18, 1961	Oct. 28, 1961	3,710	3,710	Triassic Halfway oil well.
67	Union HB Wildmint b-45-A		22, 1961	Dec. 13, 1961	3,835	3,835	Dry and abandoned.
19	Union HB Wildmint d-25-A		31, 1961			506	Drilling,
340	Union HB Wildmint b-24-A		31, 1961	Nov. 17, 1961	3.825	3,825	Triassic Halfway oil well.
375	Union HB Milligan b-83-G		4, 1961	Dec. 18, 1961	3,789	3,789	Triassic Halfway injection well.
326	Union HB Milligan b-62-G		20, 1961	Nov. 30, 1961	3,794	3,794	Triassic Halfway oil well.
199	Union HB Milligan b-53-G		21, 1961			3,715	Drilling.
112	Union HB Laurel a-53-D		23, 1961	Feb. 5, 1961	3,665	3,665	Dry and abandoned
349	Union HB Bluebell b-31-H		9, 1961	Nov. 20, 1961	3,678	3,678	Dry and abandoned
904	Union KCL ROC Bearberry d.71-J	Dec	19, 1961	Jan. 1. 1962	3,768	3.768	Dry and abandoned.
/24	Union HB Alder C-37-1	reb.	9, 1901	Feb. 24, 1961	3,765	3,703	well.
300 721	Union Aitken b-52-L Union HB Alder c-39-I		20, 1961 9, 1961	Feb. 24, 1961	4,338	4,358	Triassic upper carbonate of Schooler Creek a
18	Triad BP E Pickell d-50-L		2, 1961	Feb. 13, 1961 Oct. 3, 1961	3,978 4,358	3,978 4,358	Dry and abandoned.
95	Triad BP Pickell Creek c-88-1		30, 1960	Jan. 14, 1961	4,054	3,537	Lower Cretaceous Bluesky-Gething gas well. Dry and abandoned.
72	Triad BP Conroy Creek c-100-A		1, 1960	Mar. 20, 1961	9,896	5,204	Dry and abandoned.
24	Triad BP Birley a-5-A		15, 1961	Mar. 3, 1961	4,100	4,100	Triassic Halfway gas well.
54	Triad W Beatton d-30-K		10, 1961	Nov. 17, 1961	3,440	3,440	Dry and abandoned.
324	Triad W Beatton d-29-K		2, 1961	Nov. 10, 1961	3,373	3,373	Dry and abandoned.
699	Triad BP N Beatton R d-87-D		18, 1961	Jan. 29, 1961	4,023	4,023	Dry and abandoned.
369	Triad et al Beatton d-41-K		25, 1961	Dec. 11, 1961	3,760	3,760	Triassic Halfway oil well.

Field	Date Designated	Date(s) Revised	Field Location	Pool(s)	Number of Wells	Discovery Well(s)	Pool(s) Dis- covered	Battery Name	Battery Location
en Creek	Feb. 15, 1960	Jan. 1, 1961	N.T.S. 94-A-13	3	2	{ Union Aitken Creek b-42-L, oil	3	· · · · · · · · · · · · · · · · · · ·	
on River	Aug. 7, 1959 Aug. 7, 1959	Jan. 1, 1961	N.T.S. 94-H-2	11	6) Union Aitken Creek a-53-L (3), gas Triad Beatton River b-38-J, oil	3 11	Triad Beatton 'J' Battery	
	July 1, 1961	Jan, 1, 1961	N.T.S. 94-H-2 N.T.S. 94-G-1	2 8, 11	5 10	Friad West Beatton River d-39-K, oil	28	Triad West Beatton 'K' Battery	
		Dec. 22, 1958	1) Sinclair et al Beg d-10-G, gas (Sun et al Blueberry c-32-D (2), gas	11 5		
berry	Feb. 7, 1958	Feb. 15, 1960 May 27, 1960	N.T.S. 94-A-12, 94-A-13 Tp. 88, R. 25, W. of 6th M.	5, 7, 9, 13	19	Sun et al Blueberry d-87-D (1), gas	. 7 9		
		Oct. 1, 1961	J			Sun et al Blueberry c-82-L (11), oil Sun et al Blueberry a-34-D (10), gas	13 13		
berry East	Dec. 22, 1958	·	N.T.S. 94-A-13	7, 11, 13	2	(Sun et al E Blueberry b-38-C (7), gas) Sun et al E Blueberry b-36-C (17), gas	7, 11		
berry West	Feb. 7, 1958	July 1, 1961	N.T.S. 94-A-12, 94-B-9, 94-B-16 Tp. 88, R. 25, W. of 6th M.	5,7	3	Sun et al W Blueberry d-82-I (9), gas	5		
			1p. ao, x . 25, <i>w</i> . of our b .			2 Sun et al W Blueberry d-19-L (12), gas	1	Amerada Boundary Battery No. 1	
								Amerada Boundary Battery No. 2	
								Dome Boundary Battery No. 11	16-12-85-14, W. of 6th M.
								Dome Boundary Battery No. 26 Imperial Boundary Battery No. 6-1	
		Feb. 7, 1958 Aug. 7, 1959	Tp. 84, 85, 86, R. 13, W, of 6th M.	2, 3, 7, 10, 11	138	f Pacific Boundary 8-15-85-14, gas Pacific Boundary 12-10-85-14, gas	2,7	Imperial Boundary Battery No. 6-2 Imperial Boundary Battery No. 6-3	
idary Lake	Oct. 30, 1956	Feb. 15, 1960	Tp. 84, 85, 86, R. 14, W. of 6th M.	e] Texaco NFA Boundary L 6-6-86-13 (1), oil Sun Boundary Lake 6-23-85-14, oil	10 11	Imp Pac Boundary Battery No. 12-5 Imp Pac Boundary Battery No. 12-8	- 12-5-85-13, W. of 6th M.
		Apr. 1, 1961	J					Imperial Boundary Battery No. 16-11	
								Imperial Boundary Battery No. 14-7	
								Ohio Boundary Battery No. 1	14-8-86-13, W. of 6th M.
								Sinclair Boundary Battery No. 1	8-22-84-14, W. of 6th M. 8-23-85-14, W. of 6th M.
		feb. 15, 1960)					Texaco Boundary Battery No. A-1	
bles	Nov. 24, 1959	May 27, 1960 Jan. 1, 1961	N.T.S. 94-G-1, 94-G-8, 94-H-4	8	13	Pacific Imperial Bubbles b-33-I, gas	8		
k Creek	Feb. 7, 1958	Aug. 7, 1959 Jan. 1, 1961	N.T.S. 94-A-11, 94-A-14	6,9	13	(Texaco NFA Buick Creek d-98-I (1), gas	6		
		July 1, 1961 Oct. 1, 1961				Texaco NFA Buick Creek d-83-J (4), gas	9		
k Creek West	Eeb. 7, 1958	{ Jan. 6, 1959) N.T.S. 94-A-11, 94-A-14	6 7 11	13	Pacific W Buick Creek c-83-K (13A), oil Pacific West Buick Creek b-78-C (2), gas	6		
n Orbba () 03(Feb. 15, 1960		6, 7, 11	15] Pacific West Buick Creek d-58-C (8), gas	7		
rlie Lake		{ May 27, 1960	Tp. 84, R. 18, W. of 6th M. N.T.S. 94-J-9, 94-J-10, 94-J-15,	3	1	I Pacific West Buick Creek b-23-E (1), gas Imp Pac Charlie 13-5-84-14, oil	3		**
		Jan. 1, 1961	ς 94-J-16	15	4	West Nat Imp Clarke Lake d-88-L, gas	15		
son Creek	. Feb. 7, 1958		Tp. 79, R. 15, W. of 6th M.	1	4	Pacific Sc Dawson Ck 1-15-79-15 (1), gas	1 4]	
: St. John	Aug. 22, 1955	Feb. 7, 1958 Feb. 15, 1960	Tp. 83, R. 18, W. of 6th M.	4, 7, 9, 11, 12	28	Pacific Ft St John 14-15-83-18 (7), gas Pacific Ft St John 3-14-83-18 (9), oil	7 9	Pacific Ft St John Tank Farm No. 2	10-14-83-18, W. of 6th M.
		Jan. 1, 1961	1			Pacific Ft St John 1-20-83-18 (30), gas	11 12	[
						Pacific Ft St John 14-21-83-18 (4), gas (Pacific Airport 8-32-83-17 (3), gas	12	ļj	
St. John Airport	Feb. 7, 1958		Tp. 83, R. 17, W. of 6th M.	4, 7, 11	3	{ Pacific Airport 9-32-83-17 (97), gas	7		
St. John Southeast	Feb. 7, 1958		Tp. 82, 83, R. 17, W. of 6th M.		15	(Pac Ft St John SE 10-31-82-17 (80), gas	4		
an John Boutheast	100. 1, 1930		1p. 62, 65, K, 17, W. OF Cal 11,	4, 7, 11, 12	15	Pac Ft St John SE A4-10-83-17 (55), gas Pac Ft St John SE 10-33-82-17 (22), gas	11		
dy Creek	Feb. 7, 1958	Jan. 6, 1959	N.T.S. 94-B-16	7, 9	4	Pac Ft St John SE 4-10-83-17 (12), gas West Nat Gundy Creek c-80-A, gas	12 7		
way	Dec. 22, 1958		Tp. 86, 87, R. 25, W. of 6th M.	7, 11	3) West Nat Gundy Creek b-69-A, gas	9 7		
						Sun et al Halfway 8-11-87-25, gas	11 5		
lway	Feb. 7, 1958		N.T.S. 94-B-16	5, 7, 13	5	Phillips Highway b-25-I (1), gas Phillips Highway a 90-I (4), gas	7 13		
ney	Aug. 7, 1959	Nov. 24, 1959 Feb. 15, 1960) N.T.S. 94-G-1, 94-G-8	8, 11	15	Pacific et al Jedney b-88-J, gas	8		
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Jan. 1, 1961 Apr. 1, 1961	Γ .	0, 11		Pacific Imp Jedney d-99-J, gas	11		
	Dec. 22, 1958	Feb. 15, 1960	, N.T.S. 94-B-8, 94-B-9			(Phillips Kobes a-3-A (4), gas	5		
es-Townsend				5, 9, 11, 13	9	Phillips Kobes d-94-I (1), gas Phillips Townsend a-20-H (A-1), gas	9, 11 13		
ise Creek	Feb. 15, 1960	{ Jan. 1, 1961 } Apr. 1, 1961) N.T.S. 94-G-8, 94-H-5	В	8	Dome Basco Laprise Ck a-35-H, gas	8		•
ise Creek East	Jan. 1, 1961	Apr. 1, 1961 (Aug. 7, 1959	N.T.S. 94-G-8, 94-H-5	8	10	Pacific Sunray Imp E Laprise d-68-E, gas	8 11) Union-HB Milligan Creek Battery No. 1	a-64-G/94-H-2
gan Creek	Feb. 7, 1958	<pre>{ Feb. 15, 1960 Jan. 1, 1961</pre>	} N.T.S. 94-H-2	11	11	Whitehall et al Milligan d-75-G, gas	11	5	
tney	Feb. 7, 1958	Jan. 6, 1959	Tp. 87, R. 18, W. of 6th M. Tp. 86, 87, R. 19, W. of 6th M.	2, 9, 11	3	[Pac Sunray Montney 16-32-86-19 (3), gas	2 9		
-		(Feb. 15, 1960				Pac Sunray Montey 14-31-86-19 (5), gas	11		
Creek	Aug. 7, 1959	{ Jan. 1, 1961 Apr. 1, 1961	N.T.S, 94-H-4	8	9	Texaco NFA Nig Creek a-79-B (1), gas	8		
land (formerly skatinaw)	Feb. 7, 1958		Tp. 81, R. 15, W. of 6th M.	14	1	Pacific Imp Parkland 6-29-81-15, gas	14		
y	Feb. 15, 1960	(May 27, 1960) N.T.S. 94-A-16	11	B	Sinclair Pac Peejay d-39-E (B8-3), oil	11	Sinclair Pac Peejay Battery No. 39-E	39-E/94-A-16
ot River	Apr. 1, 1961	{Jan. 1, 1961	N.T.S. 94-P-12, 94-P-13	15	3	West Nat Petitot River d-24-D, gas	15		
Coupe	Aug. 22, 1955	{ Feb. 7, 1958 } Jan. 1, 1961	Entire field deleted		•				
Creek		Aug. 7, 1959 Feb. 15, 1960		9, 11	2	Pacific Red Creek 5-27-85-21 (36), gas	9, 11		
dart	Jan. 6, 1959	Feb. 15, 1960	N.T.S. 94-A-14 Tp. 86, R. 20, W. of 6th M.	5 12	1 2	Union Snyder Creek a-28-K (1), gas Pacific Stoddart 4-24-86-20 (85), gas	5 12		
ise	Feb. 7, 1958	Jan. 1, 1961	Tp. 78, 79, R. 16, W. of 6th M.	1	3	Pacific Sunrise 10-7-79-16 (3), gas	Ĩ		
Numerical list of pools: 1. Lower Cretaced 2. Lower Cretaced 3. Lower Cretaced 4. Lower Cretaced 5. Lower Cretaced 6. Lower Cretaced	ous Cadotte sands ous Bluesky-Gethi ous Gething sands ous Cadomin sand ous Dunlevy sands	ng sandstone. tone, lstone, stone,	<u> </u>	10. 11. 12. 13.	Triassic Bour Triassic Half Permian Bell Mississippian	tlie Lake sandstone and carbonate. ndary Lake carbonate. way sandstone. oy carbonate. 1 Rundle carbonate. jan Wabamun carbonate.	ı <u>. </u>	, _,, _,, _,,	· · · · · · · · · · · · · · · · · · ·

PETROLEUM AND NATURAL GAS

	Pro	wed	Established						
	Crude Oil (BbI.)	Raw Gas ¹ (M S.C.F.)	Disposable Gas (M S.C.F.)	Gas Liquids (Bbl.)	Sulphur (Short Tons)				
Reserves remaining at Decem-			0.007.000						
ber 31, 1960	68,158,777	3,361,824	2,987,200	74,305,834	2,062,621				
Production during 1961	1,017,826	103,123	91,6872	2,910,8552	82,1182				
Adjustments made during 19613	-333,873	+306,999	+1,421,387	+14,681,886	+414,453				
Reserves discovered during 1961	37,405, 290	2,229,000	2,166,600	34,722,841	941,674				
Reserves remaining at Decem-									
ber 31, 1961	104.212.368	5,794,700	6,483,500	120,799,706	3.336.630				

TABLE 8.—RESERVES OF RECOVERABLE CRUDE OIL, NATURAL GAS, AND NATURAL-GAS PRODUCTS AT DECEMBER 31, 1961

¹ Excludes solution gas and gas in gas caps of oil reservoirs while still in the stage of primary recovery. ² The production of residual gas, gas liquids, and sulphur are the quantities calculated from gas analyses to have been produced with the raw gas, both sweet and sour, and are not the quantities actually extracted. The actual quantity of gas delivered to the transmission-line during 1961 was 95,967 million cubic feet, and 'b' amounts of gas liquids and sulphur actually extracted were 1,287,672 barrels and 55,655 short tons respectively.

³ Reserves are continually under revision as data are provided by additional drilling and production. The adjustments made for disposable gas, gas liquids, and sulphur are unusually high due to the inclusion for the first time of a percentage (usually 50 per cent) of the probable reserves to determine established reserves.

195

· · · · · · · · · · · ·

1_⊒, e - ^ `

-

Field	Drilling Authority No.	Well Name	Location	Pool	Maximum Permissible Rate (Bbl./Day)
itken Creek	485	Union Aitken Creek b-42-L		Gething	32
eatton River.		Triad Beatton River d-28-J		Halfway	
	395	Triad Beatton River d-29-J	d-29-J/94-H-2	Halfway	
	309	Triad Beatton River b-38-J	b-38-J/94-H-2	Halfway	115
	393	Triad Beatton River d-39-J	d-39-J/94-H-2	Halfway	
eatton River West		Triad West Beatton River d-38-K	d-38-K/94-H-2	Bluesky-Gething	
	408	Triad West Beatton River d-39-K	d-39-K/94-H-2	Bluesky-Gething	
	441	Triad West Beatton River d-48-K	d-48-K/94-H-2	Bluesky-Gething	
	515	Triad West Beatton River d-57-K	d-57-K/94-H-2	Bluesky-Gething	
	512	Triad West Beatton River d-59-K	d-59-K/94-H-2	Bluesky-Gething	
ueberry	549	Sun et al Blueberry c-A29-K	c-29-K/94-A-12	Mississippian	
-	746	Sun et al Blueberry d-30-K	d-30-K/94-A-12	Mississippian	
	242	Sun et al Blueberry d-50-K (13)	d-50-K/94-A-12	Mississippian	
	205	Sun et al Blueberry d-82-L (11)	d-82-L/94-A-12	Mississippian	110
	272	Sun et al Blueberry d-46-D (16)	d-46-D/94-A-13	Mississippian	
	745	Sun et al Blueberry 6-25-88-25	6-25-88-25 W6M	Mississippian	
oundary Lake		Amerada Cr BC-B Boundary 14-18-85-13	14-18-85-13 W6M	Boundary Lake	
	628	Amerada Boundary Lake 16-18-85-13		Boundary Lake	
	563	Amerada Cr BC-C Boundary 14-20-85-13		Boundary Lake	
	591	Amerada Cr BC-C Boundary 6-29-85-13	6-29-85-13 W6M	Boundary Lake	
	771	Amerada Boundary 14-29-85-13		Boundary Lake	
	629	Amerada Boundary Lake 14-13-85-14	14-13-85-14 W6M	Boundary Lake	
	580	Amerada Cr BC-B Boundary 16-13-85-14	16-13-85-14 W6M	Boundary Lake	
	639	Amerada Boundary Lake 6-24-85-14	. 6-24-85-14 W6M	Boundary Lake	
	608	Amerada Cr BC-D Boundary 8-24-85-14	8-24-85-14 W6M	Boundary Lake	
	736	Amerada Boundary 16-24-85-14	16-24-85-14 W6M	Boundary Lake	
	736	Amerada Boundary 16-24-85-14		Halfway	
	361	Decaita Boundary Lake 14-32-85-13	14-32-85-13 W6M	Boundary Lake	
	624	Dome Boundary Lake 6-12-85-14		Boundary Lake	
	625	Dome Boundary Lake 8-12-85-14	8-12-85-14 W6M	Boundary Lake	
	602	Dome Boundary Lake 16-12-85-14	16-12-85-14 W6M	Boundary Lake	
	603	Dome Boundary Lake 8-13-85-14	8-13-8 5-14 W6M	Boundary Lake	
	768	Dome Boundary Lake 8-22-85-14	8-22-85-14 W6M	Boundary Lake	
	575	Dome Boundary Lake 6-26-85-14		Boundary Lake	
	550	Dome Boundary Lake 8-26-85-14		Boundary Lake	
	573	Dome Boundary Lake 14-26-85-14	- 14-26-85-14 W6M	Boundary Lake	
	465	Dome Boundary Lake 16-26-85-14		Boundary Lake	
	574	Dome Boundary Lake 6-35-85-14	6-35-85-14 W6M	Boundary Lake	
	488	Dome Boundary Lake 8-35-85-14	8-35-85-14 W6M	Boundary Lake	

TABLE 9.—AUTHORIZED MAXIMUM PERMISSIBLE RATES TO DECEMBER 31, 1961

ļ

1

T

196

MINES AND PETROLEUM RESOURCES REPORT, 1961

528	Dome Boundary Lake 14-35-85-14	14-35-85-14 W6M	Boundary Lake	
606	Dome Boundary Lake 16-35-85-14	16-35-85-14 W6M	Boundary Lake	144
642	Dome Boundary Lake 8-2-86-14	. 8-2-86-14 W6M	Boundary Lake	13
605	Dome Boundary Lake 16-2-86-14	. 16-2-86-14 W6M	Boundary Lake	120
764	Dome Boundary Lake 8-11-86-14	8-11-86-14 W6M	Boundary Lake	116
765	Dome Boundary 16-11-86-14		Boundary Lake	59
808	Dome Boundary 8-14-86-14		Boundary Lake	
296	Imp Pac Boundary 14-20-84-13		Boundary Lake	
369	Imp Pac Boundary 16-31-84-13		Boundary Lake	154
813	Imp Pac Boundary 6-5-85-13		Boundary Lake	187
832	Imp Pac Boundary 14-5-85-13	-	Boundary Lake	
789	Imp et al Boundary 6-6-85-13		Boundary Lake	
795	Imp Pac Boundary 8-6-85-13		Boundary Lake	
792	Imp Pac Boundary 14-6-85-13		Boundary Lake	
796	Imp Pac Boundary 16-6-85-13		Boundary Lake	168
	Imp Pac Boundary 6-7-85-13	-	Boundary Lake	
763	Imp Pac Boundary 8-7-85-13	••	Boundary Lake	198
807	Imp Pac Boundary 8-7-85-13		Boundary Lake	
368	Imp Pac Boundary 14-7-85-13		Boundary Lake	
775			Boundary Lake	
847	Imp Pac Boundary 6-8-85-13		Boundary Lake	
760	Imp Pac Boundary 6-17-85-13			-
738	Imp Pac Boundary 14-17-85-13		Boundary Lake	
734	Imp Pac Boundary 6-18-85-13		Boundary Lake	
523	Imp Pac Boundary 8-18-85-13		Boundary Lake	
524	Imp Pac Boundary 6-20-85-13		Boundary Lake	
774	Imp Pac Boundary 8-20-85-13		Boundary Lake	
250	Imp Pac Boundary 1-23-84-14		Boundary Lake	
846	Imp Pac Boundary 16-34-84-14		Boundary Lake	
833	Imp Pac Boundary 6-35-84-14		Boundary Lake	
805	Imp Pac Boundary 14-35-84-14		Boundary Lake	
797	Imp Pac Boundary 16-35-84-14	16-35-84-14 W6M	Boundary Lake	
804	Imp et al Boundary 6-36-84-14	6-36-84-14 W6M	Boundary Lake	
814	Imp et al Boundary 8-36-84-14	_ 8-36-84-14 W6M	Boundary Lake	
793	Imp et al Boundary 14-36-84-14	14-36-84-14 W6M	Boundary Lake	
798	Imp et al Boundary 16-36-84-14	16-36-84-14 W6M	Boundary Lake	
761	Imp et al Boundary 6-1-85-14	6-1-85-14 W6M	Boundary Lake	13:
770	Imp et al Boundary 8-1-85-14.		Boundary Lake	
521	Imp et al Boundary 14-1-85-14		Boundary Lake	. 20
776	Imp et al Boundary 16-1-85-14		Boundary Lake	
501	Imp Pac Boundary 6-2-85-14		Boundary Lake	
788	Imp Pac Boundary 8-2-85-14		Boundary Lake	
493	Imp Pac Boundary 14-2-85-14		Boundary Lake	
777	Imp Pac Boundary 16-2-85-14		Boundary Lake	
362	Imperial Pacific Boundary 6-3-85-14		Boundary Lake	
379	Imperial Pacific Boundary 8-3-85-14		Boundary Lake	
363	Imperial Pacific Boundary 14-3-85-14		Boundary Lake	
303	Imperial Facilie Boundary 14-5-65-14	- 14-3-03-14 WOM	Doundary Lane	· • • •

Field	Drilling Authority No.	Well Name	Location	Pool	Maximum Permissible Rate (Bbl./Day)
oundary Lake	359	Imperial Pacific Boundary 16-3-85-14	. 16-3-85-14 W6M	Boundary Lake	218
	267	Imperial Pacific Boundary 16-4-85-14	16-4-85-14 W6M	Boundary Lake	189
	360	Imperial Pacific Boundary 8-10-85-14		Boundary Lake	188
	227	Imperial Pac Boundary 11-10-85-14		Boundary Lake	
	282	Imperial Pacific Boundary 6-11-85-14		Boundary Lake	
	769	Imp Pac Boundary 8-11-85-14		Boundary Lake	
	821	Imp Pac Boundary 14-11-85-14		Boundary Lake	
	356	Imperial Pac Boundary 16-11-85-14		Boundary Lake	155
	759	Imp Pac Boundary 14-12-85-14		Boundary Lake	
	758	Imp Pac Boundary 6-13-85-14		Boundary Lake	
	845	Imp Pac Boundary 8-14-85-14		Boundary Lake	
	815	Imp Pac Boundary 8-35-85-14		Boundary Lake	
	618	Ohio Boundary Lake Crown 6-19-85-13		Boundary Lake	
	632	Ohio Boundary Lake 8-19-85-13		Boundary Lake	
	635	Ohio Boundary Lake 14-19-85-13		Boundary Lake	
	636	Ohio Boundary Lake 16-19-85-13		Boundary Lake	
	604	Ohio Boundary Lake 14-8-85-13		Boundary Lake	
	667	Pacific Boundary Lake 11-14-85-14		Halfway	
	752	Sinclair Boundary 16-15-84-14		Boundary Lake.	
	780	Sinclair Boundary 6-22-84-14		Boundary Lake	
	742	Sinclair Boundary 8-22-84-14		Boundary Lake	
	794	Sinclair Boundary 14-22-84-14		Boundary Lake	
	727 802	Sinclair Boundary 16-22-84-14		Boundary Lake	
	802 743	Sinclair Boundary 8-27-84-14		Boundary Lake	
	753	Sinclair Boundary 16-27-84-14		Boundary Lake	
	755	Sinclair Boundary 14-15-85-14		Boundary Lake	
	646	Sun Boundary Lake 6-23-85-14		Boundary Lake	
	652	Sun Boundary Lake 8-23-85-14		Boundary Lake	
	643	Sun Boundary Lake 14-23-85-14		Boundary Lake	
	719	Sun Boundary Lake 16-23-85-14		Boundary Lake	
	101	Texaco NFA Boundary L 6-6-86-13 (1)		Boundary Lake	
	152	Texaco NFA Boundary L 14-6-86-13		Boundary Lake	
	844	Texaco NFA Boundary 16-7-86-13		Boundary Lake	
	811	Texaco NFA Boundary 6-18-86-13		Boundary Lake	
	823	Texaco NFA Boundary 16-22-85-14		Boundary Lake	
	656	Texaco NFA Boundary Lake 14-25-85-14		Boundary Lake	
	845	Texaco NFA Boundary 8-27-85-14		Boundary Lake	
	812	Texaco NFA Boundary 16-27-85-14		Boundary Lake	
	183	Texaco NFA Boundary L 6-31-85-14		Boundary Lake	

TABLE 9.---AUTHORIZED MAXIMUM PERMISSIBLE RATES TO DECEMBER 31, 1961---Continued

	1.07	Texaco NFA Boundary L 14-31-85-14	14-31-85-14 W6M	Boundary Laka	100
	167	Texaco NFA Boundary L 14-31-85-14	16-31-85-14 W6M	Boundary Lake	122
	218	Texaco NFA Boundary L 16-31-85-14	8-34-85-14 W6M		202
	857	Texaco NFA Boundary Lake 6-36-85-14		Boundary Lake	30
	662		6-36-85-14 W6M	Boundary Lake	156
	657	Texaco NFA Boundary Lake 14-36-85-14	14-36-85-14 W6M	Boundary Lake	
	206	Texaco NFA Boundary L 16-36-85-14	16-36-85-14 W6M	Boundary Lake	137
	663	Texaco NFA Boundary Lake 6-1-86-14	6-1-86-14 W6M	Boundary Lake	110
	664	Texaco NFA Boundary Lake 14-1-86-14	14-1-86-14 W6M	Boundary Lake	110
	860	Texaco NFA Boundary 16-1-86-14	16-1-86-14 W6M	*	100
	829	Texaco NFA Boundary 6-12-86-14	6-12-86-14 W6M	Boundary Lake	112
	593	Texaco NFA Boundary Lake 16-12-86-14	16-12-86-14 W6M	Boundary Lake	155
	880	Texaco NFA Boundary 6-13-86-14	6-13-86-14 W6M	*	119
	858	Texaco NFA Boundary 16-13-86-14	16-13-86-14 W6M	Boundary Lake	89
	633	Texaco NFA Boundary Lake 14-24-86-14	14-24-86-14 W6M	Boundary Lake	107
harlie Lake	269	Imp Pac Charlie 13-5-84-18	13-5-84-18 W6M	Gething	36
ort St. John	171	Imp Pac Ft St John 9-19-83-18 (45)	9-19-83-18 W6M	Beiloy	85
	34	Pacific Ft St John 3-14-83-18 (9)	3-14-83-18 W6M	Charlie Lake	46
	214	Pacific Ft St John 10-14-83-18 (76)	10-14-83-18 W6M	Charlie Lake	14
	225	Pacific Ft St John 1-23-83-18 (81)	1-23-83-18 W6M	Charlie Lake	23
	216	Pacific Ft St John 9-23-83-18 (78)	9-23-83-18 W6M	Charlie Lake	65
illigan Creek	409	Union-HB Milligan Creek d-42-G	d-42-G/94-H-2	Halfway	514
	435	Union-HB Milligan Creek d-43-G	d-43-G/94-H-2	Halfway	463
	401	Union-HB Milligan Creek d-52-G	d-52-G/94-H-2	Halfway	357
	398	Union-HB Milligan Creek d-53-G	d-53-G/94-H-2	Halfway	469
	402	Union-HB Milligan Creek d-54-G	d-54-G/94-H-2	Halfway	290
	826	Union-HB Milligan b-62-G	b-62-G/94-H-2	Halfway	228
	440	Union-HB Milligan Creek d-63-G	d-63-G/94-H-2	Halfway	213
	341	Union-HB Milligan Creek d-64-G	d-64-G/94-H-2	Halfway	320
	248	Union-HB Milligan Creek d-73-G	d-73-G/94-H-2	Halfway	155
	436	Union-HB Milligan Creek d-74-G	d-74-G/94-H-2	Halfway	192
ejay	612	Sinclair et al Peejay d-18-E	d-18-E/94-H-2	Halfway	51
	589	Sinclair et al Peejay d-28-E	d-28-E/94-H-2	Halfway	101
	543	Sinclair et al Peejay d-29-E	d-29-E/94-H-2	Halfway	70
	578	Sinclair et al Peejay d-38-E	d-38-E/94-H-2	Halfway	114
1	418	Sinclair Pac Peejay d-39-E (B8-3)	d-39-E/94-H-2	Halfway	288
	577	Sinclair et al Peeiav d-48-E	d-48-E/94-H-2	Halfway	191
	588	Sinclair et al Peejay d-49-E	d-49-E/94-H-2	Halfway	141
her areas	841	Sinclair Boundary 14-11-84-14	14-11-84-14 W6M	*	108
	803	Sinclair Boundary 6-14-84-14	6-14-84-14 W6M	*	103
	866	Sinclair Boundary 8-14-84-14	8-14-84-14 W6M	*	65
	725	Pacific SR West Cdn Peejay d-33-1	d-33-1/94-A-15	*	5
	569	Phillips-SR-West Cdn-Peejay d-80-E	d-80-E/94-H-2	Halfway	60
	840	Union-HB Wildmint b-24-A	b-24-A/94-H-2	*	27
	810	Union-HB Wildmint d-45-A	d-45-A/94-H-2	Halfway	186
	530	Union-HB Wildmint d-46-A	d-46-A/94-H-2	Halfway	364
	584	Union-HB Wildmint d-56-A	d-56-A/94-H-2	Halfway	218

* Held confidential as of December 31, 1961.

		19 57			1958			1959			1960			1961	
Field and Pool	Oil (Bbl.)	Gas (M S.C.F.)	Water (Bbl.)	0il (B51.)	Gas (M S.C.F.)	Water (BbL.)	0:1 (B51.)	Gas (M S.C.F.)	Water (Bbl.)	Оіі (ВЫ.)	Gas (M S.C.F.)	Water (Bbl.)	Oil (Bbl.)	Gas (M S.C.F.)	Water (Bbl.)
Aitken Creek												l			
Gething		·····	 + +++ !		ľ		4,396 4,396	2,836 2,836	l 	12,830 17,226	6,584 9,420	*****	3,249 20,475	1,610	
Field totals		1					4,396 4,396	2,836		12,830 17,226	6,584 9,420	 	3,249 20,475	1,610	
Beatton River		1				[1			l		ŀ	
Halfway			• • • ••• •••	1,601 1,601	2,701 2,701		5,447 7,048	5, 192 7,893		1,719	2,654 10,547		32,163 40,930	63,654 74,021	*****
Field totals				1,601 1,601	2,701 2,701		5,447 7,048	5,192 7,893		1,719 8,767	2,654 10,547	********	32,163 40,930	63,654 74,021	46
Beatton River West		ĺ	·······	A		1		[-					[
Bluesky-Gething	, • •						1,069 1,069	395 398		1.020	204 602	*******	10,133 12,222	3,708 4,300	******
Field totals	<		i				1,069 1,069	398		1,020 2,089	294 602	*********	10,133 12,222	3,708 4,800	*******
Blueberry			1												-
Dunlevy					1		••••••		*****	1,613 1,613	5,0171 5,0171	i	1,855 8,468	4,981	B
Mississippian	4,375 4,375	8,614 8,614		2,964 7,339	4,273 12,887		2,850 10,189	2,407 15,294		51,040 81,229	50,988 66,282	******	17,069 78,289	17,118 82,262	33 33
Field totals	4,375	8,614 8,614		2,964 7,889	4,273 12,887		2,850 10,189	2.407 15,294		52,653 62,842	56,0051 71,2991		18,915 81,757	17,118 87,193	33 83
Boundary Lake									ł						
Charlie Lake				*************					•••••	819 819	635 855	*******	819	821	
Boundary Lake	199,220 307,241	124,445	205	354,388 661,629	219,558 397,515	232 698	688,821 1,350,450	484,931 882,446	79	682,301 2,032,811	482,211 1,864.657	185 962	640,929 2,673,740	413,179	132 1,094
Halfway		4-1			********				*******	495 495	191 191		2,817 3,312	2,343	******
Field totals	199,220 307,241	124,445	205 460	354,388 661,629	219,558 397,515	292 698	688,821 1.350,450	484,931 882,446	78	es3,675 2,034,125	483,237	185 962	643,748	415,522 1,757,852	132 1,004
Buick Creek West		1	[1	1		[ļ	1		1		1	
Buick Creek	3,086 3,086	2,123 2,123	25 25	4,762 7,848	1, 412 3,535	492 517	7,848	3,535	617	7,848	3,535	517	7,848	3,475	517
Field totals	3,086 3,086	2,123 2,123	25 25	4,762 7,848	1,412 3,535	492 517	7,848	3,535	517	7,848	8,535	517	7,848	3,475	517

TABLE 10.-YEARLY CRUDE-OIL PRODUCTION, 1957-61

Charlie Lake		1	ļ]
Gething	3,997 3,997	2,355 2,355	1 B 5	10,441 14,438	8,130 10,485	8 13	7,010 21,448	10,121		2,091 23,539	3,815 24,421		2,086 25,625	8,921 32,924	13
Field totals	3,997 3,997	2,355	B 5	10,441 14,438	8,130 10,485	8 13	7,010 21,448	10,121 20,606	13	2,091 23,539	3,815 24,421	18	2,088 25,625	8,921 32,924	13
Fort St. John															
Charlie Lake	126,776 158,695	93,285 110,264	158 230	119,977 278,672	134,255 244,519	27 257	100,601 379,273	182,515 427,034	257	97,5971 476,870	218,059 645,093	257	38,639 515,509	199,739 833,801	266
Belloy	7,866 16,962	41,336 53,032	28	6,705 23,667	41,943 94,975	28	9,234 32,901	129,774 224,749	28	132 33,033	1,330 226,079	28	33,033	222,213	28
Field totals	134,642 175,657	134,621 163,296	165 258	126,882 302,339	176,198 339,494	27 285	109,835 412,174	312,289 651,783	285	97,7291 509,903	219,389 871,172	285	38,639 548,542	199,789	294
Milligan Creek	~					-									[
Halfway				12,880 12,880	1,826 1,826		44,277 57,157	8,624		7,722 64,879	2,689 13,139	87 37	155,296 220,175	37,516 50,430	23 60
Field totals				12,880 12,880	1,826 1,826		44,277 57,157	8,624 10,450		7,722 64,879	2,689 13,139	37 37	155,296 220,175	37,516 50,430	23
Peejay						·			· · · · · · · · · · · · · · · · · · ·						1
Halfway							1,045	302 302		5,519 6,564	1,389 1,691		108,476 115,040	43,994 45,656	
Field totals							1,045 1,045	302 302		5,519 6,564	1,389 1,691		108,476 115,040	43,994 45,656	
Other Areas					-	·			1				/ <u></u>	1	!
Boundary Lake		·				······							488 488	488 488	•
Halfway										2,127 2,127	7,771 7,771		4,635 6,762	1,374 9,012	
Areas totals										2,127 2,127	7,771		5,123 7,250	1,862 9,500	1
Totals, fields and areas	345,320 494,356	272,158 3 54,345	400 754	513,718 1,008,074	414,098 768,443	759 1,518	864,750 1,872,824	827,100 1,595,543	79	867,0851 2,739,9091	783,7371	222 1,814	1,017,826	793,639 3,132,234	197 2,011

¹ Amended. 1957 to 1960, inclusive: Solution-gas volumes in M c.f. at 14.4 psia. and 60° F. 1961: Solution-gas volumes in M c.f. at 14.65 psia. and 60° F. Note.--Field totals for the year in bold-face type; cumulative totals in light-face type.

	1957	·	1958	l 	1959)	1960	l	1961	
Field and Pool	Gas (M S.C.F.)	Water (Bbl.)	Gas (M S.C.F.)	Water (BbI.)	Gas (M S.C.F.)	Water (Bbl.)	Gas (M S.C.F.)	Water (Bbl.)	Gas (M S.C.F.)	Water (Bbl.)
Beg								 		
S.Cupper carbonate		! 							157,384	[
jo, upper carbonate									157,384	
Jalfway		·····							372,291	
		·		<u> </u>	·····				372,291	·
Field totals			·····						629,675	
		1		<u> </u>		1	·		529,675	<u></u>
Blueberry				!					Į	
Sumlara.		1	71.672	1	566,952	153	1,043,0842	262	1.228.051	291
Junlevy			71,672		638.624	153	1.681.7082	415	2.881.002	706
3aldonnel			262,152	585	1 477,849	6,856	1,241,369	13,519	918,216	29,619
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			262,152	585	1,740,001	7,441	2,981,370	20,960	3,848,605	50,579
Field totals		·	333,824	685	2,044,801	7,009	2,284,4532	13,781	2.146,267	29.910
		1	333,824	585	2,378,625	7,594	4,663,0782	21,375	6,729,607	51,285
Blueberry East				I		<u> </u>		· · · · · · · · · · · · · · · · · · ·		1
•		i				ĺ				1
Jaldonnel			153,713	132	391,109	335				
- 14 · · ·	•		153,713	132 861	544,822 217,457	467 2.137	544,822	467	535,506	467
Halfway		1	87,963 87,963	861	305.420	2,998	305,420	2,998	300,197	2,998
Aississippian			143,071	3,845	131.994	4,318		2,000	000,151	2,500
1.001001pptut			143.071	3,845	275,065	8,163	275,065	8,163	270,361	8,163
Field totals			384,747	4,838	740,560	6,790				1
			384,747	4,838	1,125,307	11,628	1,125,307	11,628	1,106,064	11,628
Blueberry West	[1	· [1		1		\		1
-		1				1				i
Junlevy		1	45,558) 3	184,635		125,664		90,313	4
aldonnel	·····		45,558		230,193 459.752	3 4,748	355,857 254,274	3 5.558	440,085 101.353	1 0 1 9
aldonnel			115,148 115,148	1,099 1,099	574,900	5,847	829.174	11,405	916,348	1,648
Field totals					644.387		379.938	5,658		1,652
Field totals		1	160,706 160,706	1,102	805.093	4,748 5,850	1,185,031	11.408	191,666 1.356,433	13.060
Danu danu Fata		1		1,102				1 11,100	1,000,300	1 10,000
Boundary Lake		[1	}			1
Jething							143,621		1,314,916	
,							143,621		1,456,081	
lluesky-Gething							51,832		360,005	
							51,832		410,951	
3aldonnel							48,618 48,618		613,005 660,792	199 199 199
The state of the s				1	· [<u> </u>		<u> </u>	I	
Field totals			•••••				244,071 244,071		2,287,926 2,527,824	198 199
							1 444,071		4 4.041.644	1 198

TABLE 11.—YEARLY NATURAL-GAS PRODUCTION, 1957-611

					T		I	1	1	
Bubbles		1		I		1		Į		F
S.Cupper carbonate		l 			1,152,499 1,152,499		8,427,918 9.580,417	·····	8,217,338 17,633,930	
Field totals		·	· · · · · · · · · · · · · · · · · · ·		1,152,499		8,427,918		8,217,338	
Buick Creek	·	;			1,152,499	1	9,580,417	<u> </u>	17,633,930	! !
Buick Creek			·	!	22,278		1,205,309		7,450,505	1,092
Charlie Lake					22,278		1,227,587		8,657,100 1,327,711	1,092
Field totals					22,278		1,205,309	<u> </u>	1,327,711 8,778,216	262
Buick Creek West				1	22,278		1,227,587	<u>i</u>	9,984,811	1,354
		ł			40.040.000					1
Buick Creek	629,522		7,475,506 8,105,028		12,316,669 20,421,697		13,017,158 33,438,855		9,740,479 42,607,530	
Baldonnel			16,590 16,590		16,590		122,132 138,722		690,416 826,766	<u></u>
Halfway	1,234 1,234		2,085,810 2,087,044		1,547,060 3,634,104	510 510	1,034,126 4,668,230	764 1,274	730,887 5,319,290	828 828 828
Field totals	630,756 630,756		9,577,906 10,208,662		13,863,729 24.072,391	510 510	14,173,416 38,245,807	764 1,274	11,161,782 48.753,586	828 2.102
Dawson Creek				1		1				1
Cadotte		 	879,224 879,224		820,704 1,699,928	1,761 1,761	1,019,397 2,719,325	1,316 3,077	817,341 3,490,166	3.077
Field totals			879,224 879,224		820,704 1,699,928	1,761 1.761	1,019,397 2,719,325	1,316 3,077	817,341 3,490,166	3,077
Fort St. John						-/.+-				
Cadomin	69,493 113,185		113,185		16,693 129,878		129,878		127,657	
Baldonnel "A"			3,021,202 3,588,123	79 79	2,010,069 5,598,192	1,205 1,284	2,157,613 7,755,805	2,605 3,889	2,937,831 10,561,012	2,557 6,446
Baldonnel "A/B"			7,761,641 8,903,795	67 67	5,459,849 14,363,644	704	5,174,274 19,537,918	4,182	3,969,848 23,173,668	7,825
Halfway		•	12,203,733 14,134,765	570 570	7,747,474 21,882,239	3,909 4,479	6,002,529 27,884,768	2,355 6.834	4,949,990 32,357,928	1,369
Selloy	713,327 713,327	·····	2,987,885 3,701,212	88 88	1,366,130 5,067,342	653	968,010 6,035,352	854 1,395	831,702 6.763,849	673 2.068
Field totals		······	25,974,461 30,441,080	804 804	16,600,215 47,041,295	6,471 7,275	14,302,426 61,343,721	9,746 17,021	12,689,371 72,984,114	12,008

¹ For solution gas see Table 10. ² Amended.

1957 to 1960, inclusive: Volumes in M c.f. at 14.4 psia. and 60° F. 1961 volumes in M c.f. at 14.65 psia. and 60° F.

Nore.—Field totals for the year in bold-face type; cumulative totals in light-face type. The following designated gas fields have not produced and therefore are not included in this table; Aitken Creek, Clarke Lake, Fort St. John Airport, Milligan Creek, Petitot River, and Sunrise.

PETROLEUM AND NATURAL GAS

	1957		1958	3	195	1	1960	ı 	1961	
Field and Pool	Gas (M S.C.F.)	Water (Bbl.)	Gas (M S.C.F.)	Water (Bbl.)	Gas (M S.C.F.)	Water (Bbl.)	Gas (M S.C.F.)	Water (Bbl.)	Gas (M S.C.F.)	Water (Bbl.)
Fort St. John Southeast										
Cadomin	13,046 13,046	** ** 1 8 4 4 9 2 4 4	172,095 185,141		329,715 508,856	ha.aaa19799	803,447 1,112,303		651,471 1,744,754	*********
aldonnel "A"	185,208 185,208	*****	1,209,030 1,455,138		854,018 2,309,156		785,804 3.094,960		677,447 3,719,483	*****
lalfway	351,101 351,101	·····	2,750,928 3,102,029	58 58	2,083,359 5,185,418	1,650	3,094,000 3,827,039 9,112,457	2,856 4,564	2,700,080	3,385 7,949
elloy	1,301,374 1,361,374	H F # 9 K K # # A K A A	9, 521,470 10,882,844	287 1 287	7,769,092	6,554 6,841	7,142,814	11,460 18,801	5,796,781 31,140,612	9,537 27,858
Field totals	1,910,729	·····	13,714,423 15,625,152	345 345	11,020,214 26,045,366	8,204	12,459,104 39,104,470	14,316 22,865	9,825,779 48,261,568	12,922
Gundy Creek									10,201,400	00,001
aldonnel	· · · · · · · · · · · · · · · · · · ·	H	14,920 14,920		100,489 115,409		390,983	58 58	197,971 695,704	428
aldonnel-Charlie Lake		*********	164,966		994,660 1,159,626	30 1 20	506,892 420,275 1,579,901	553 583	27,676 1,580,561	857
Field totals			179,886	,	1,095,149	1 80 1 80 1 80	\$11,258	611 641	225,847	1,285
Halfway		h	119,000	1	1,210,000] au	2,086,293	641	2,276,265	1,926
aldonnel			096,185 696,185	3,151 3,151	2,186,727	19,744	552,654 3,435,566	3,164 26.059	436,060	106 26,185
Ialfway			172,622 172,622	7	2,882,912 529,001 701,623	1 22,000 	407,342 1,108,965	143 150	3,812,878 442,009 1,532,005	20,190 30 180
Field totals			868,807 869,807	3,158 3,158 3,158	2,715,728	19,744	959,998	8,307 26,209	878,003 5.344.883	138
Highway			003,007	9,199	2,384,939	22,902	4,044,051	26,209	9,011,000	20,343
Junicyy		*****			112,975 112,975	65	171,518	21 86	122,689	11 97
aidonnel		*****	153,431 153,431	210 210	981,652 1.035,083	10,673	284,488 810,747 1,345,830	26,919 37,796	402,312 187,055 1,509,871	13,478 51,269
flssissippian		*****	543,797 543,787	512 512	1,653,052	7,431	1,345,535 074,502 8,171,341	7,045	1,208,871 626,765 3,743,876	7,286
Field totals			697,218 697,218	722	2,647,679	18,169	1,458,762	38,979	936,509	29,770
Jedney		4 4 8 - 4 - 7 - 7 - 9	081'512	1 122	3,344,887	1 18.021	4,801,659	52,870	5.656,059) <u>73,640</u>
.Cupper carbonate			** ***************		524,694	1	8,023,038	238 238	7,293,419	
alfway			·····	*****	524,694 182,918 182,918	**************************************	8,547,732 3,363,409 3,546,027	238 6,368 6,368	15.694.985 3.600,628 7.086.018	238 10,491 16,859
Field totals			***************	1	707.612		11,386,147	6.608	10.894.047	10,859

TABLE 11.---YEARLY NATURAL-GAS PRODUCTION, 1957-611-Continued

204

MINES AND PETROLEUM RESOURCES REPORT, 1961

Kobes Townsend		Ì		1			*******			ļ
N		Į			474.202	30	741.577	104	994,463	100
Dunievy		*********			474,202	30	1.215.779	134	2,189,452	234
charlie Lake	*******	*****	297,785	135	1.025,106	556	1,159,718	803	1.525,270	385
Haine Lake	****	######################################	237,735	135	1.262.841	691	2,422,559	1,494	8,906,403	1.871
alfway		***********	347.656	125	1.819.326	592	1.742.674	633	1,719,101	19
LGII WAJ		******	347,656	125	2.166,982	717	8,909,656	1,350	5,561,902	1.54
fississippian			1,364,204	516	3.694,522	19.118	2.718.029	51,696	2,197,298	17,27
1 ISSUSSIPPINI	······································		1,364,204	516	5,058,726	19.634	7,774,755	71.330	9,839,103	88,80
Field totals				776	7.013.156	20.296	6.359.998	63.236	6.436.130	17.854
Ficia lotais	******		1,949,595	776	8,962,751	21.072		74,308	21,498,860	92.26
	··················		1,949,595	1 6 6 0	8,992,191	41.014	15,322,749	1 14,000	21.480,000	1 12,20.
Laprise Creek				1				1		ŧ
						1	540 004	1	0 400 944	1
Cupper carbonate		********	h				710,364	[6,136,841	1
	***************************************			<u> </u>		· · · · · · · · · · · · · · · · · · ·	710,364	H	6.835,058	·
Field totals	P			I		1	710,384		6,136,841	1
		l				*********	710,364		6,835,058	. BERKARKERS
Laprise Creek East		1	1	1		1		1	I	•
		i		i		Ì		1		1
Cupper carbonate							321,637	1 	5,340,129	
							321,637		5,656,266	1
Field totals				·						
L'IGIU LUCAIS						********	921,637 321,637		5,340,129 5,656,269	
	***************************************	********		<u> </u>		H + + + + + + + + + + + + + + + + + + +	841,037	·····	0,000,200	
Montney		1								1
luesky-Gething			\$7.084	[#0 A40			1
wesky-viethuig	*		87,084		87.084		59,919	****	1 4 4 4 5 4	1
barlie Lake	****************	**********					147,000		144,486	
name lake	*************		271,356 271,356		271,356	********	12,842		0/10 0.99	
1.1 f		*********		52	833,773	508	284,198	20 6.4 6 6 0 WHERE	279,338	
alfway	94.117		1,284,892	52	2,212,782	560	\$22,545 0 005 007	545	445,674	433
	94,117			· · · · ·			8.035.327	1,105	8,428,997	11.538
Field totals	94.117		1 643,332	52	833,773	508	895,303	545	445,574	43:
	94,117		1,737.449	52	2,571.222	560	8,466,525	1,105	3,852,821	1.53:
Nig Creek	and the second of the second sec	1		1			ADDRESS OF THE DESCRIPTION OF THE OWNER OWNER	1		1
		í		i		i l			· ·	í
Cupper carbonate	····						**************	Ì	6,963,972	5.68
						*****	·····		6,963,972	5,68
Field totals				· · · · · · · · · · · · · · · · · · ·					8.963.972	5.68
ricia wiais	····		***********		+		****************	************	6,968,972	5,680
 .						+	4 · + v */ *#### + +F # h.	2 v-4844-000004	0,000,012	0,00
Parkland		1	1	1				1		[
		1	1 070 500	1	1 949 544		0 000 070	1	0 000 000	1
pper Devonian	623,544		1,679,539		1,813,524		2,283,830	*********	2,505,673	
1	623,544	1	2,303,083		4,116,607		6.400,437		8.796,663	
Field totals	823,544		1,679,539		1,818,824	*********	2,283,830	P	2,505,673	
	623,544	• · • • • • • • • • • • • • •	2,303,083		4,116,607	********	6,400,437	*********	8,796,663	• AN NA ARAA .
Red Creek		1		1				1		(
		i		1		j l				
harlie Lake							233,669		602,573	
	*****		*****			*****	233,669	****	832,246	
			877.371		254,145	4,717	335,328	9,670	357,634	9,86
alfway										
alfway	······				631,516	1 4.717	966,844	14,387	1.307.945	24,241
alfway Field totals	NI-AN- PARADESE VERY		377,371 377,371	1	631,516 254,145	4.717	966,844 568,997	14,887 9,670	1,307,945	24,241

1 For solution gas see Table 10.

PETROLEUM AND NATURAL GAS

.

	1957	7	1958	3	1959	,	1960		1961	
Field and Pool	Gas (M S.C.F.)	Water (Bbl.)	Gas (M S.C.F.)	Water (Bbl.)	Gas (M S.C.F.)	Water (Bbl.)	Gas (M S.C.F.)	Water (Bbl.)	Gas (M S.C.F.)	Water (Bbl.)
Snyder Creek						1				
unlevy									742,565 742,565	
Field totals	· · · · · · · · · · · · · · · · · · ·					**	······································		742,565 742,565	
Stoddart	······					1				
lloy	448,851 448,851		5,217,258 5,666,109		5,138,555 10,804,664	4	5,3 42,266 16,146,930	490 490	3,748,626 19,619,443	1,287
Field totals	448,851 448,851	·····	5,217,258 5.666,109) •	5,138,555 10,804,064		5,342,268 18,146.930	490 490	3,748,828 19,619,443	1,287 1,777
Other Areas		*								
hooler Creek		·		} 		 			94,812 94,812	
ldonnel "A"	56,366 \$50,617	·····	\$50,617	1	850,617	****	350.617		344,621	
Copper carbonate								**********	28,672 28,672	
oarfie Lake	167,089 167,089		167.089	1	167.089		167.089	d= h+ + = = = = = = = = = = = =	164.232	
evonian Carbonate				1					139,981 139.901	
Areas totals	223,455	*	517,706		517,706		517.706		263,445 772,298	
Totals, fields and areas			63,638,297 72,330,619	12,382	69,128,708 141,459,827	98,957 111,339	\$5,592,590 ² 227,051,9172	153,925 265,264	103,122,789 326,292,120	127,187

¹ For solution gas see Table 10.

² Amended.

Field and Pool		Ja	n.	F	eb.	M	ar.	A	pr.	M	ay	Ju	ne	Ju	1y	A	ıg.	Se	pt.	0	ct.	No	ov.	D	ec.
Field and Pool	Year	P ¹	P 2	Pı	P2	Ρı	P ²	P1	₽²	P 1	P2	P 1	P ²	P1	P2	P 1	P2	P1	P2	P1	P2	P 1	P2		P 2
Aitken Creck				 							1														
Gething	1960 1961	1	1	1 1	1	1 1	1 1	1 0	1	0 0	1 1	0 0	1	1 0	1	0	1	0 0	1	1 0	1	1	1	1 0	1 1
Field totals	1960 1961	1	1	1	1	1	1	1 0	1	0	1 1 1	0 0	1	1	1 1	0	1	0	1	1	1 1 1	1 0	1	1 0	
Beatton River											1					<u> </u>			1				[j
Halfway	1960 1961	1 0	4 4	1 0	4 4	1 4	4 4	0 4	4	0 3	4	0 1	4 4	0		0 0	4 4	0	4	0 3	4 5	0 3	4 5	0 3	4
Field totals	1960 1961	1	4	1	4	1	4	0 4	4	03	4	0	4	0	4	0	4	0	4	03	4	0	45	03	
Beatton River West		!	-		-																1				<u> </u>
Bluesky-Gething	1960 1961	0	5 5	1	5 5	1 3	5 5	0 0	5	0 1	5 5	0 2	5 5	0 2	5 5	0	5 5	0 0	5 5	0	5 5	0 3	5 5	0 0	5
Field totals	1960 1961	0	5 5	1	5	1 3	5 5	0 0	5 5	0		0 2	5 5	02	5 5	0	5 5	0 0	[5] 5	0	5 5	0 3	5 5	0	
Blueberry			-								[1			1		Ī
lississippian	1960 1961	1 1	3 4	1 2	3 4	1 0	4 4	1	4 4	0 0	4	0 1	4 4	0 3	4 4	2	4 6	2 3	4	2	4 6	2 4	4	3 4	4
Field totals	1960 1961	1	3 4	1 2	3 4	1 0	4 4	1 1	4 4	0 0		0 1	4 4	0 3			4 6	2 3	4	2 3	4 6	2 4	4 8	3 4	
Boundary Lake							' (1		
ingle completion—• Charlie Lake	1960 1961	0	1 0	1 0	1 0	0 0	1	1 0	1 0	1 0]] 0	1 0	1 0	0	0 0	0	0 0	0	0	0 0	0 0	0	0	0 0	0
Boundary Lake	1960 1961	22	28	23	81 61	27 49	38 64	24	38 65	30 0	41 66	34 0	46 68	39 43	51 69	48	54 78	45 61	55 93		56 105		115	41 92	61 12
Halfway	1960 1961	0	0 3	0	0 33	0	0 3	0	0	0	2	Ó	2	0	0 2		0 2	0	0 1	0	1	1	1 1	1	
fultiple completion—Boundary Lake-Halfway	1960 1961	0 0	0	0	0	0	0 0	0 0	0	0 0	0 1	0 1	0	0	0	0 1	0	02	0	10 1 2	0	02	0	02	
Field totals	1960 1961	22 19	29 64	24 32	32 64	27 50	89 67	25 2	39 67	31		35 1	46 71	39 44	51 72	48 53	54 81	45	55 96	49	57 108	28 63	60 118	42 94	62 130
Buick Creek West											·							<u> </u>							1
uick Creek	1960 1961	0	2 2	0	2	0 0	2 2	0	2 2	0	12 1 2	0 0	2 2	0	$\frac{2}{2}$	0	2 2	0	2	0 0	2	0	2	0	
Field totals	1960 1961	0	2	0	2	0	2	0	2	0	2	0	2	0	2 2 2	0	2	0 0	2	0	2	0	1^{2}	0	1 2

TABLE 12.--NUMBER OF PRODUCING AND PRODUCIBLE OIL WELLS BY MONTH, 1960 AND 1961

P1—Producing. P2—Producible.

PETROLEUM AND NATURAL GAS

.....

																			~
Ma	ar.	А	pr.	м	ay	Ju	ine	Ju	ly	A	ug.	Se	pt.	[o	et.	No	ov.	D	ec.
P 1	P2	P 1	P2	P1	P ²	P1	P 2	P 1	P ²	P 1	P 2	PI	P 2	P1	P2	P1	P2	P1	P2
_					 			ĺ				}					 		
0 1	1	0		0	1	0		0	1	10	1	1	1	1	1	1		0	
0 1	1	0	1	0 0	1	0		0	1	10	1	1 0	1	1	1	1	1	0	
4	4	4	4	4	4	4	4	4	4	4	 4		4	4	4	4		Ĩ	4
4	4	2	4	0	4	8	4	2	4	4	4	4	4	4	4	4	4	4	4
0 Q	1	0		0		0 0	1	1	1	0	1	0 0	1	0		0	1	0	1 1
4 4	5 5	4	5 5	4	5 5	43	5	5 2	5 5	4 4	5 5	4 4	5 5	4	5	4	5	4	5 5
				1	_												 	Ī	
47	9	0	9	07	9	0	9	06	9	0	i 9 9	0 4	9	0	9	08	9) 0 0	9
4 7	9	0	9	07	9	0	9	0	9 9	0	9	0 4	9	0	9	0 8	9	0	10
	Ī	Ī	[<u> </u>			[Ì	i	,	{	[<u> </u>
0 6	7	0	7	0	7	0	7	06	7	0	7	0	7	0	7	0 6	7	2	7
0 6	7	0	7	06	7	0	7	0 6	7	0	7	0	7	0		0	7	2	8
	1	1	1	1]	1	1]]]	1	<u> </u>		1]	1
0	1	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0	0	0 0	0	0	0	0		0	0	0	0	0	0		0	0	0	0 0	0 0
0	0	Q	į o	Q Q	0	į o	ġ	Ö	0	0	0	0	0	Q	1	Q	6	1	17
3 1	4	0	0 4	0	4	0	4	0	4	0	4	0	4	0	45	0 2	4	0	4
3 1	5	0	5	0	4	0	4	0	4	0	4	0	4	0	4	0	4	0	4
42	82	31	82	35	84	39	88	45	93	55	96	52	97	57	99		102	1	1104
	109	9	109	17	111		113	64	114		125				155				191

Jan.

P1 **P**2

1 1

4 4

0 i 0 i

4

9

Ō 0

6

6

Ó

ō

ō

1

4 5

9

 $\mathbf{2}$

7 6

4 1 3

33 | 63 | 35 | 73 32 |106 | 47 |105

Year

1961

Field and Pool

Charlie Lake

Field totals

Fort St. John

Field totals

Milligan Creek

Field totals

Peejay

Field totals ...

Other Areas

Areas totals ...

Totals, fields and areas.

Gething.....

Charlie Lake

Belloy

Halfway_____

Halfway.....

Bluesky-Gething_

Halfway.....

Boundary Lake

ł

Feb,

P1 P2

9

9

7

7

Q

0

2 0

6

	Nr	Ja	n.	Ţ	cb.	М	lar.	A	pr.	м	ay	Ju	ne 	Ja	ly	A	ng.	Se	pt.	0	ct.	No	J¥.	L	ee.
Field and Pool	Year	рı	P2	Pi	Pa	Ът	P2	P 1	P2	Pr	P2	pı	P2	P1	P2	P 1	P2	P1	P2	Pı	P2	P1	P 2	P 1	P2
Aitken Creek		ĺ	1		-										, ,						1				1
Gething	1960	0								0	1	0	1	0	1					0 0		0	1	0	
Field totals		0	1 1	0	1	0	1 1		1	0	1		1	0	1	0	1		1	0		0		0	
Beg	1901	0		<u> </u>							1				-		<u> </u>								
Single completion— S.Cupper carbonate	1960	6		· •	• •	0		0		0	1	0	1	ø	1	0				0		0	1	9	
Halfway	1961 1960	0	í ů	ÍÔ	i õ	0	ō	0		0	1	0	1 0	0	1	İÕ	0	õ	Ó		0	0		0	1
Multiple completion-S.Cupper carbonate-Halfway	1981 1980	0	0	Ō	0		i ol		ō	0	0	0	2 0	0	1	ō	i Ö	ŏ	ō	0	Ō	0		0	1
Field totals	1961	0			<	0		0		0	4		4	0	8 1		in and the second second					<u>- 3</u>		Ð	1
	1901	Ŏ			ŝ	0		Q		0			7	0	8	•	10	0	10	0	10	4	10	7	11
Blueberry															*					A.	L A		4	4	İ.
Dunlevy	1961	4	4			4	4			4	4	4	42	4	42			4	4	4		4	4	4	j,
Baldonnel	1961	2 2	2	2	2		2	2	2	2 2	2	2	2	2	2	2	2		2	2	2	2	2!	2	į
Charlie Lake	1981	0	2	0	2	0	2	Ø	2	0		Ø	1	0	1 2	0	2		2	0	2		2	Ð	h i
Mississippian		0				0			ç	0 0			1	0 0	1	0 0	1	0	1	i o	1	0	1	0	
Multiple completion-Dunlevy-Baldonnel		1 2	1			1 2	1		22	1 2	2 2		22	1 2	2		2					2		2	
Field totals	1960	7	1 8			7	8			7	9			61			11		11		11	8		8	1
Blueberry East			1	1	1) A	1		<u> </u>			- Ť					Ì			<u> </u>	Ť				T
Single completion—Mississippian	1980	0				0				0	1	Q	1	0				0	II	0		0	1		
Multiple completion-Baldonnel-Halfway	1961 1960	0	1	i ō	1	0	(1)	0	1	0	1	01	1	0	1	ìŌ	1	0	1		1	l ôl	1	i ē	i
Field totals.	1961		-		· -					0 0	1	and the second second second second second second second second second second second second second second second	- <mark>1</mark> 2	0	1	-					2	0	2	0	1 3
	1961	Ö						0	2	0	2		2	0	2	0	2	0	2	0	2	0	2	C C	1 3 7
Blueberry West					1														fo						1
Dunleyy	1961	22	22	2	2	2		2	2	2 2		2	3	22		2	2			2	2	2			
Baldonnel	1960	10		0	1					1 0	1			1											
Field totals	1960 1961	8				32		82		8	3	8 21		3					3	8		3			

TABLE 13.---NUMBER OF PRODUCING AND PRODUCIBLE GAS WELLS BY MONTH, 1960 AND 1961

P1-Producing. P2-Producible.

PETROLEUM AND NATURAL GAS

Cicles and Deat		Ja	n.	F	eb.	M	ar.	A	pr.	М	ау	Ju	ine	Ju	ly	Å١	ıg.	Se	pt.	0	ef.	N	5 ¥.	D	ec.
Field and Poof	Ycar	Ът	P 2	Pı	pz	P1	P 2	PI	P2	P 1	P2	Pı	P2	P1	P 2	Pı	P 2	P1	P2	Pı	P2	Pt	P2	Pı	P2
Boundary Lake												-							F. 100						
Single completion— Gething	1960	r ol	0	0					0	o				0l				0	0			2			
Baldonnel	1961 1960	2	2							2` 0[ī ō			2 0				0	1 0	i õ		20			
Halfway	1961 1960	0	3	1	3		3		3 2	0 0]				2)		1		1				0			
Multiple completion-Bluesky-Gething Baldonnel	1981 1960	0	0	0	0	0			0	01 01			0 0	0 0	0		-	0	0	· • •		0		0	
Field totals	1961	1	1	1	1	Ť	Ť	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	
	1960 1981	0	2 6	0 4	6	4	2 6	0	26	0i 3			26	0 5			· -	0 4				3			
Bubbles			1		ĺ					1				1	1							-			
S.Cupper carbonate	1960 1961	6 8	9 12		10 12		10 12			7			10 12		11	7 8	11 12	8	11 13			8			1:
Field totals .	1960	6	9	8	10	6	10	7	10	7	10	7	10	71	11	7	11	8	11	8	11	8	11	8	1:
Buick Creek	1961	8	12	8	12	8	15	8	12	8	12	8	12	8	12	8	12	8	13	8	13		13	8	113
ingle completion—Buick Creek	1960		อี	1	1 5	,	5	5	5	2	5	\$	×	2) 18	• >	5	2	5		ĸ		5	2	
Aultiple completion-Buick Creek-Charlie Lake	1961	5	5 1	B	5		5	5	5	5	5			5	6 1	5	6 1	5	8	5		6	1 9	9	14
	1961	0	1						ź	2		2	2	2	2	2	2	2	2			2			
Field totals	1960	1	6	1		1	6			2	6			2	6			27	6 10		6	2		2	
Buick Creek West				_	1												-				1				í i
Buick Creek	1960	8	ŋ	401			. •••	8	9	8		8		8	9	S	9	8	9		9	8	9		
Baldonnel		8	9 1	8	jı	0	1	0		1 8 0	1	0	1	8	1	S ()	1	0	2	1 ī	2	8 1	2	1	1 2
Talfway	1961 1960		2 2		> >***	2	$\overline{2}$	2	2	1 2 2		1	2	2 1	2	2	2	2	2	2	2	1	2	2	12
Field totals	1961 1960	2	2 12	-	······································	[2				2	2							2		2	
	1961	11			13	11	13	11	Î8		13	12				11	18			11		11			
Clarke Lake			Ì		1										ļ	1			1		⊧ ' 				
Jevonian Carbonate	1960 1961	0	3 4			0		0		0				0 0								0		· ·	
Field totals	1960 1961	0	3			0	4	0	4	0	4			0	4	0	4	- 0		+		0		0	

TABLE 13.—NUMBER OF PRODUCING AND PRODUCIBLE GAS WELLS BY MONTH, 1960 AND 1961—Continued

Dawson Creek											1													1	
Cadotte	1960	1 21	4	2	4	2	4	2	4	2	4	2	4	2[4	2	4	2	4	2	4	2	4 [21	4
Field totals	1961 1960	2 2	4) 41	2 2	<u> </u>	2		2` 2	4 4	<u>2</u>] 2	4] 41		4	2 21	- 4 ! 41	2	_ 4	2	4	2	4	$-\frac{2^{1}}{2!}$	4	2 	4
	1960	ź		2	4	2		2	4	ź	4		4	2	4	2	4	2 21	4! 4[2 2	4	2	4 4	2 2	4 4
Fort St. John Single completion— Cadomin	1960		2	0		0	2	0	2	0	2	0	2	6	2!	0	2	0	2	0	2		2		
Baldonnel "A"	1961 1960	0	2		2	0	2	0	26	0	2	0	26	0	2 ¹ 61	0	2 6	0 2	2	0 2	2	0	2 6	01	26
Baldonnel "A/B"	1961 1960	4	6 6	5 6	6 6	5 6	6	5 6	6 6	4 6	6	4 6	8	4 6	6 6	4 6	6	4 6	6' 6	4 6	6	5 6]	6	5 61	6 6
Halfway	1961 1960	6 7	6 7	6 7	7	6 7	7	6 7	6 7	6 7	6 7	6 6	6 7	6) 5	6[6[G 5	6 6	5	6 6	6 5	6 6	6 5	6 6	6 5]	6 G
Belloy	1961 1960	5	6 3	5 2	3	5 2	8	4 2	6 3	4 2	6 3	4 2	6 3	4 2	6 31	4	6 3	4 2	6 3'	4 2	6	4] 21	61 31	5	6 3
Multiple completion—Charlie Lake-Halfway	1961 1960 1961	2	3 0 1	2 0 1	0	2 0 1	0	2 0 1	3 0 1	2	- 3 - 0 - 1	2 0 1	30	2	3 1 1	2 1 1	3 1 1	2 1 1	3 1 1	2 1 1	3	2 1 1	3 1	2 1 1	2 1 1
Field totals	1960	17	24 24	17 19		17	24	17	24		241		24	16			24	16	24	16	24	17	24	19!	24
Fort St. John Airport	1981	18	24)	19	24	19	24	18	24	17	24	17) 2	24	17	24)	17	24	16	24	17	24	18	24	19	23
Cadomin	1960	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0		0	1	0	ı
Baldonnel "A"	1961 1960	0	1	0		0	1	0	Î	0 0	1	oj	1	0	1	Ő	1	0 0		0	1	0 0	1 1	0 0	1
Halfway	1961 1960	0	1	0	1	0 0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	01 01	1	0	1 1
Field totals	1961 1960	0	1 3 3	0 0	3	0	3	0 0	1	- 01 01	1 3)	01	1	0	1	0	1	0 0]	1 3)	0 0	- <u>1</u> 	<u>0</u>] 0]	1) 3)	0 0]	_1 3
Fort St. John Southeast	1961			0	3	0	3	0	3	0	3	0	3	0	3	0	3		3	0	3	<u>0</u>	3	0	3
Cadomin	1960 1961	1	1	1	1 1	1	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	11	1	1
Baldonnel "A"	1960	i!	2	1	2	1	2	1	12	1	1		1 2	1	2	1	12	1 2	12	1	2	1 2	1 2	1 2	1 2
Halfway	1961 1960	1 3	2 6	3		1 3		1 3	2 6	1 3	2 6	1 3	2 6	1 3	2 61	1	2 6	1 3	2[6]	1	2 6	1 4	2 6	1 4	2 6
Beiloy	1961 1960 1961	4 5 5	6 6			4 5 5	6	4 5 5	6	3 5 5	6 6	3) 5] 5]	6	8 5 5	6) (() 6)	3 5 5	6 6	3 5	6) 6) 6)	3 5 4	6 6	3 5	6	3) 5	6
Field totals	1960 1961	10	15			10		10	15 15	10	15	10 1	15 15	10		10	15 15	4 11 9		9 10 9	15		15		6 15 15
Gundy Creek			1					1		10	1		-							3		- 8	15		15
Single completion—Baldonnel	1960 1961	1	2	1		1		1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2	1	2
Multiple completion- Dunlevy-Baldonnel	1960	0	1	0	1	0	1	0	2	0	1	0	1	0	1	0	1	1 0	1	0	1	0	1	1 0	2 1
Baldonnel-Charlie Lake	1961 1960 1961	0	1 1 1	010	1	0	1	0	1	0	1	0) 1	1	0 1 1	1	0 1 1	1	0	1	0 1 1	1	0 1 1	1	0	1
Field totals	1960 1961		4	2	-	2	4	2	4	21	4	2	4	2	4	2	4	2	4	1 2 2	4	_1 2 2	4	0] 1! 1!	4

	~-	Ja	n.	F	eb.	м	ar,	A	pë.	М	lay	Ju	ne	Ju	ly	Αu	g.	Se	pt.	O	ct.	No	¥Y.	D	ec.
Field and Pool	Year	P1	P ²	Pı	₽2	Pı	P2	PI	P2	Ρı	P2	P1	P2	P1	P2	р1	p2	Ы	P2	Pı	P2	Pı	P2	Pı	P2
Halfway								-												1					
Single completion-Baldonnel		1	2	1		1	2	1	2	1	2		2	1	2	1	2	1	2	1	2	1	2		2
Multiple completion-Baldonnel-Halfway	1091 1960 1961	1	1	1		1 0 1	1	1 1 1	2 1 1	1	1	1	21	1 1 1	2' 11 1	1 1 1		11	1	1 1 1	1	1 1 1	2 1 1	1	ίī
Field totals	1960	1 1		1		1	8	2	3	2			3	2	31 31			2		2		2	3 3		
Single completion	1960		1	1	1			1	1						1		1			1	E 1	1	1		
Baldonnet	1960 1961 1960	1		Ť Ŭ	1 8 3	1 0 1	8	0	1 8 3	1	3		1 8 3	1	1	1	1 8 9 9	1		1	3	1			\$
Multiple completion-Baldonnel-Mississippian	1960 1961			1	1	1	1	1	1	1 1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Field totals	1960 1961	2		2	5	2		2	5	3	5		6 8	3	5	3	5	8 2	51	8 2		32			
Jedney Single completion— S.Cupper carbonate Halfway Multiple completion—S.Cupper carbonate-Halfway	1960 1961 1969 1961 1960 1961	340233	522 23		3	44023	2 8 8	8 4 0 2 3	552384	340 133 3	5 2 3 3	4 0 2 3	5 5 2 3 3 4	4 41 0 2 3 3	5 5 2 3 \$	1 2 3	10 00 00 00 00 00 00 00 00 00 00 00 00 0	4 4 2 2 2 3 3 3	6 2 3	4 4 2 2 3 3	5 2 5 3	4 4 2 3 3	8	2 8 3	2 5 3
Field totals	1960	0		6		7			10	6 8			10 12		10	8	10	9 9	10	9 9		9	10	9	
Kobes Townsend Single completion Dunlevy Charlie Lake Mississippian	1960 1961 1960 1961 1961 1960	1 3 0 1	3 3 1 1 1	1 3 0 1	3 3 1 1	1 3 0 1	8 3 1	1 3 0 1 1	3 3 1 1 1	1 2 0 0 1	3 3 1 1	1 3 0 1	8 9 1 1	1 3 0 1	8 3 1 1	1 3 0 1	3 3 1 1 1	1 2 0 1	3 3 1 1	1 3 0 1	\$ 3 1 1	2 8 0 11 1	3	23021	3 3 1 2 1
Multiple completion	1961 1960 1961 1960 1961	1	2	2	22	1 2 2 2 2 2	21	2	1 3239	1 2 2 2 2	2 2 2	21 2	4 01 01 01 01 01 01 01 01 01 01 01 01 01	1 2 2 2 2		2	2	1 2 2 2 2 2	2	2	2 2 2 2	1 2 2 1	2	2	2 2
Field totals	1960 1961	6	9	6	9	6 9	9	6) 9)	9 9	67	9	61		6	9	6 9	9	-6 -8	9	6	9	7		7	9 9

TABLE 13.---NUMBER OF PRODUCING AND PRODUCIBLE GAS WELLS BY MONTH, 1960 AND 1961-Continued

							r				<u> </u>				<u> </u>							<u> </u>		
Laprise Creek				l				ļ		ļ	ļ			l		ļ								ł
S.Cupper carbonate	1960 1961	0 6	3 6	0 6		0 8		0 8	3 8	0 8	3 8	0 8	3	0 8	3 8	0 8	3 8	0 8	3 8	0 8	5	4 8	6 8	6 6 8 8
Field totals	1960	0	3	0	3	0	31	0	3	0	3	01	3	- 0	3	0	3	0	3	0	5	4	6	6 6
Laprise Creek East	1961	6	6	6	7	8	8	8	8	<u>8 </u>	8	81	8		8	_\$ 	8	- 81	8	8	8	8	<u>81</u>	8 8
S.Cupper carbonate	1960	0	2	01	2			0	2	0	21	01	2	í 01	2	0	2	0	2) 10	3	3	4	4 6
Field totals	1961 1960	6 0	7 21	6 01		8		8	8	 0]	81 21	8	8	8 ¹	8	7 01	8		8	7	9	8	10) 1	10 10 4 6
	1961	6	7	6		8			8	6	8	<u>8</u>	2 8	8	8	7	8	81	8	7	3 9		4 10	10 10
Milligan Creek	1			ļ					1	l	l	I	- {	ļ			ļ			l			l	ł
Halfway	1960 1961	0	01 0}	0		0		0	0	- 01 01	0i 11	0 0	0	01	0	0 0	0	0	0 1	0	0	0 0	0) 11	0 0
Field totals	1960 1961	0	0	0		-0	0	0	0	-0	0	0	0	0	0	0]	0	0	0	0	0	0	01	0 0
Montney	1991	, ,					1	0	-1	0	1		-1	0	1		1	_0	1	0	-1 (-	0)	1	0 1
Bluesky-Gething	1960	1	1	1	1	1		1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	0 1
Charlie I ake	1961 1960	j0 10	1	0 1		0	. 1 (0	1	0	1	0 0	1	oj Ol	1	0	1	0 0	1	0	1	0	1) 11	0 1
Halfway	1961 1960	0	1	0		0	1	0	1	0 L	1	0	1	0 1	1 1	0	1	0	1	0	1	0	1	0 1
	1961 1960	1	1	1	1	1	i 11	1	1	_1	11	1	1	1	1	1	1	1	_ 1 [1	1	1	1	<u>0 1</u>
Field totals	1960	2	3 3	3 1		3		2 1	3	- <u>1</u>	8 8	2	3 5	21 11	3 3	2 1]	3 3	2 1	3 3	2 1	3 3	1 1	3 3	1 3 0 3
Nig Creek											1		-1	ļ	Ţ	1			1		[-		
S.Cupper carbonate	1960 1961	0) 61	6) 6)	6 9		0		0) 6	6 7	0] 6	6) 7)	0] 6]	6 7	6) 6	6) 7)	0) 6)	6 7	0) 6)	6 7	0) 6)	6 8	0) 61	6 8	0 6 7 9
Field totals	1960	0	6	0	6	0	6	0	6	0	6	0	6	0	6	01	6	0	6	0	6	0	6	0 6
Parkland	1961	6	6	6	6	6	7	6	-7	<u>6</u>	71	6	7	6 	7	6	7	- 6	71	_ <u>6</u>	8	<u>- 6i</u>	<u>8</u>	7 9
Upper Devonian	1960	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1	1	1 1
Field totals	1961 1960	1	1	1			1	1	1	1	1	1	1	1	1	1	1	1 [11	1	1	1	1	1 1
	1961	1	1	1		1			<u>1</u>	1	1	1	1	1	1	1	1	1	1	1	1		11	1 1 1 1
Petitot River											1								1				-	
Devonian Carbonate	1960 1961	0	1 2	0		0		0	2	0	2 3	0	23	0 0	2 3	0	2 8	0	2	0) 0)	2 3	0	2 S	0 2
Field totals	1960 1961	0	11	0	2	0	2		2	0	2		23	01	21	0	2	0	2	0	2	0	2	0 2
Red Creek	1901	0	2	0	2	0	3! 	0	3	<u> 0</u> 	3			<u> 0</u>	3	0	3	-01	31	0	<u> </u>	0	3	0 3
Single completion—Halfway	1960	I	1	1	1	1	1	1	1	1	1	1	1	0	0	01	0	0	0	o	0	0	o	0 0
Multiple completion—Charlie Lake-Halfway	1961 1960	0	0	0		0	1	0	1	0	1	0) 01	1	0	1	Ŏ 1	1	0 1	1	0 1	1	0) 11	1	0 1
• • •	1961	1	1	1	1	_1	1	1	1	1	1	1	1	<u> </u>	_1)	11	1	1	1	1	1	1	1	1 1
Field totals	. 1960 1961	1	1 1	1	1 2	1	1 2	1	12	1 1	1 2	1	12	1 1	1) 2	1	1 2	1 1	1 2	비	1	1	1 2	1 1 1 2

.

		J		F	łeb,	N	lar.	A	pr.	м	ay	Ju	ae	Ju	ly	A	1g.	Se	pt.	0	.t.	Ne	×v.	D	ec.
Field and Pool	Year	Pl	P2	Pı	P2	P1	P2]#1	P2	Pı	Pź	Pı	P 2	P .1	p2	P1	P2	P1	Pż	P 1	P 2	Ът	b 3	Pi	P2
Snyder Creek			l											1							ļ			Ì	
Dunievy	1960	0	1	1 6	1	0	1 1	0	1	0	1	ol	1	o	1	0	1	0	1	0	1	0	1	0	1
*	1961	1 1	2			1	1 1	·		11	1	11	1	1			1	1	* - 1		·····	1		11	
Field totals	1960 1961	1 0			1		1	0		0	1	0	1	0		0		0			1	0		01 1	
Stoddart		;	1			*	1]							<u> </u>				1	Ţ	1	
lelloy	1960	2			2					2	2	2	2	2	2	2		2		2	2	2	2	2	
under de la cristian de la constante de la constante de la constante de la constante de la constante de la const	1981	2			2 2		2			21			2	2	2	2		1				2	2	2	
Field totals	1960 1031	2			2		2	2	2	2	2	21	2	2	2	21	2					2	2	2	
Sunrise			1			-	1												1	, T					
adotte	1960				<u>i 3</u>		3			0	3	0	3	<u>o</u>	31 31	0	8 3	0		0	3	0	a 3	0	l
Field totals	1961 1960	10	7	1 0	3) 3	1 0	3	0	3	10	<u>9</u> 8	0	8	0	8	-	1 3	0		0	8	0	1
Other Areas ingle completion— Cadoite	1961 1960	0	· · · · · · · · · · · · · · · · · · ·		3		3	0	2	0	5	0	9 2	0	2	0	2	0	2	Ó		Ø	2	01	
Notikewin	1961	0): 22) 1) 2			0			2	10 10		0	_	0				0 0	2	0 0	3
Bluesky-Gething	1961 1960	0	1			() ¶ } 8	0	3	0 0	8	0 0	1	0	3	- Ól	4	0	4	i oi	4	0 0	4	0	
Gething	1961 1960	0	1 (i (31 · 0	(1 5	0	ō	0	0	0	5 0	0	5 0 2	0	50	0	ō	0	õ	0 0]	5 0 2	0	
Dunlevy	1961 1960	0					2	0	4	0		0 0	2 4	0 10	4	0	2 4	0	4	0	4	0	4	0	
Jurassic-Triassic	1961 1960) 4) 1		4	0		0	4	0	4	0 0	5	0	_	0				0 0	7	01	
Schooler Creek	1961 1960) 1) 0	0	0	0	0		1	0			Ô	0	i õ	i õ	0	0 0	1 0	0	T
S.Cupper carbonate	1961 1960	0	1 1	1) 0) 1	(0	İÖ	1	0	Ī	0	0 1	0 0		0	ī	0	2	0	3	0	31	11	Í.
Baldonnel "A"	1961 1960	0	1		4	(月1 月1		i	0		01	4	0	4	0	j	0		0	ĩ	1		1	
Baldonnel	1961 1960		1 10) i () 1) 10	4 () 10		10	01		0 (0	10	0 0		0	10		10	0	10	0 0	10		i 1
Charlie Lake	1961 1960	6	n t	1 (3 11) 5	1) 11	í e	5	0	5	0	10 5	0 0	5			0	5	0	5	0	5	0 0	
Halfway	1961 1960 1961		i t	ij () 5) 5) 9	i) 5) 6) 10	1 0	G	0	C C	0	10 0 10	0	51 61 1	0	5 6 12			0	6	0	6	0	

TABLE 13.---NUMBER OF PRODUCING AND PRODUCIBLE GAS WELLS BY MONTH, 1960 AND 1961-Continued

Permo-Carboniferous	1960	0		0	2	0	2 31	0	2	0	21		2	0	2	01	2	0	2	0	2	0	2'	0	2
Belloy.	1961 1960 1961			0	2	0	2	0	0 02 0	01 01	120	0 0	2	0	2	01	2	0	33	0	20	0	2	0	2
Mississippian	1960 1961	0	6	0	6	0	7	ŏ	8	0	8	ŏ	0	õ	9	õ	9	() ()		0	9	6	- 91 81	Ő	6
Kiskatinaw	1960	0		ŏ		0	1	0	1	01	1	01 01	1	0	1	õ	1	Ő	1		1	0	1	01	1
Upper Devonian	1960	0	0	0	0	0	0	0	Ö	0	01	0	n t	0.	01	0	0	0	- 0	01	0	01	0	01	0
Devonian Carbonate	1960	0	5 13	ŏ	6 13	0	8 15	õ	8 15	01	0 16	ŏ	9 15		10 15	0	11	0	11	n A	11	0	11	0	11
Multiple completion-	1960	6		•	.0			~	.0 0		5	Â	0	1					12	5	•••				10
S.Cupper carbonate-Halfway	1961	0	0	0	0	01	0	0	0	0	ð	0	0	0	0	0	0	0	0 0	0	1	0	¥	0l	1
Baldonnel-Halfway	1960	0	1	0		0 0	1	0	20.	0	2	0	2	0	2	0	2	0	2	0	2	0	21	0	2
Schooler Creek-Mississippian	1960 1961	0	0	0	0	0 0	0	0	Ö	0'	5	0	ů.	0	0	0	0	0	0	0	1	0 1	1	Q	Ő
Baldonnel-Halfway-Mississippian	1960 1961	0	1	0	1	0	1	0	1	0	1	0	1	01 01	1	0	1	D ,	1	0	1	0 0	1 1	0	1
Areas totals	1980 1981	10	50 68	0	52	0	56 ¹ 791		57 70	0	551 791		59 79		60] 80		63 81	0 1	63 80		64 85	0 3	841 91	01 41	64 93
Totals, fields and areas.	1960 1961	19	196	80	201	81 124		8212 2512		83	2091 2621	81 2	11	8112	18	83/2	16	88	218	881	228	100	2251	1031	280
	1941	1						1				1						. 20			202	120	200	190	£90

Field	Pool	Year	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
Aitken Creek	Lower Cretaceous Gething	1960	2,344	2,405	1,618				606			450	2,558	2,582	12,830
eatton River	Triassic Halfway	1961 1960	1,266 536	954 337	1,029										3,249 1,719
		1961			3,596	832	4,303	1,476	1,527			7,069	12,139	1,222	32,163
eatton River West	Lower Cretaceous Bluesky-Gething_	1960 1961	·	657	363 1.966		63	1,174	1.116			1,669	4,145	•••••	1,020 10,133
ueberry	Lower Cretaceous Dunlevy	1960						223			61	645	258	426	1,613
	Mississippian Rundle	1961 1960	318 2,451	186 2,039	167 3.382		168	168	195	185 2,905	131 2,990	132 539	62 9,637	26,390	1,855 51,040
		1961	1,505	1,551				1,052		1,145		1,914	4,816		17,080
oundary Lake	Triassic Charlie Lake (excluding Boundary Lake)	1960 1961		78		86	273	382			·····		••••••		819
	Triassic Boundary Lake	1960 1961	74,171 28,202	62 182 56 206			48,139	65,013 581	95,722 39,206	75,882 45,703	77,880 76,538	65,344 82,570		35,495 206,463	682,361 640,929
	Triassic Halfway	1960			248]				4 0 7 0		110		495
harlie Lake	Lower Cretaceous Gething	1961 1960	121 534							248 529	1,076 400		806 244		2,817 2,091
ort St. John	Triassic Charlie Lake	1961 1960	644 8,201	980 7.476			7.864	4 8.846	8,637	8,091	7,296	7,542	7.712	9.1181	2,086 97,597
		1961 1960	8,614	5,258				880		4,645			4,413	2,378	38,639 132
	Permian Belloy	1960 1961				[[[132						182
lilligan Creek	Triassic Halfway	1960		1,891	5,831										7,722
eeiay	Triassic Halfway	1961 1960	812		9,665		28,043	18,056	5,034		8,917	33,797	53,784	4,707	155,296 5,519
•••		1961	24,871	21,973	1 1		7,451	4,172	1,785			12,658	20,948		108,476
ther areas	Triassic Boundary Lake	1960 1961												488	488
	Triassic Halfway	1960 1961	664	190 335								 	2.102	1.528	2,127 4,635
Totals	,	1960	89.713	77,255		26,036	56,276	74,464	105,097	87,407	88,627	74,904	/	79.1031	867,085
		1961	65,541	87,443	102,645	2,748	40.028		50,800	51,926	88,657	144,092			1.017,826

TABLE 14.--MONTHLY CRUDE-OIL PRODUCTION BY FIELDS/AREAS AND POOLS, 1960 AND 1961

(Quantities in barrels.)

¹ Amended. The Buick Creek West Field did not produce and therefore is not included in this table.

Field	Pool	Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
Aitken Creek	Lower Cretaceous	1960 1961	(1,096) (690)	(1,179) (350)	(1,261) (570)	(123)			(297)		 	(278)	(1,190)	(1,160)	(6,584) (1,610)
Beatton River	Triassic Halfway	1960 1961	(735)	(462)	(1,457) (6,168)	(2,172)	(10,335)	(4.191)	(4.337)			(11,265)	(22,822)	(2,364)	(2,654 (63,654
Beatton River		1960 1961	·····	(131)	(73)		(10,000)]	(417)	(754)			(508)	(1.377)	· · · · · · · · · ·	(204)
West Beg	Triassic upper	1960		••••••						······		•••••			
	carbonate of Schooler Creek	1961	•			······				•••••			13,281	144,103	157,384
	Triassic Halfway	1960 1961		· · · · · · /									99,842	272,449	372,291
Blueberry	Lower Cretaceous Dunlevy	1960 1961	83,766 114,644	85,921 114,587	87,221 107,215	86,045 101,890	87,050 106,033	80,362 99,233	76,294 109,056	81,407 101,102	77,202 100,044	98,9411 104,244	92,5351 106,697	106,3401 106,000	1,043,084 1,270,745
	Lower Cretaceous Dunlevy	1960 1961					 	(4,455)			(562)				(5.017
	Triassic Baldonnel.	1960 1961	138,311 100,587	129,161 72,713	139,614 81,311	128,046 86,277	129,936 79,713	79,000 78,266	69,302 67,439	65,484 46,881	70,594 74,717	134,162 70,027	74,790 72,012	82,969 45,579	1,241,369 875,522
	Mississippian Rundle	1960 1961	(1,637) (2,154)	(2,047) (2,569)	(4,634)	(916) (414)		(627)	(750)	(6,818) (966)	(6,283) (293)	(594) (4,049)	(9,794) (2,718)	(18,265) (2,573)	(50,988 (17,113
Blueberry West	Lower Cretaceous Dunlevy	1960 1961	8,694 8.066	12,638	10.975 8.077	11,601 7,964	11,941 8,895	9,661 7,350	12,371 9,723	11,623 9,206	9,291 7,963	9,557 8,707	8,560 4,703	8,752 2.658	125,664 90,313
	Triassic Baldonnel	1960 1961	32,488	42,455	39,254	41,218	40,756	41,146	53	888	4,331 2,150	4,598 11,915	6,644 56,742	443 30.546	254,274 101,353
Boundary Lake	Lower Cretaceous Gething	1960 1961	142,249	127.927	130,277	137,860	121,659	41,584	112,935	111,692	96,802	80,707	85,781	125,443	1,314,916
	Lower Cretaceous Bluesky-Gething	1960 1961	50,043	31,717	41,086	47,551	38,013	3,159	27,932	40,023	26,782	23,060	40,856 13,898	154,597 16,741	195,453 360.005
	Triassic Baldonnel.	1960 1961	38,033	35,319	78,902	55,577	52,717	3,967	61,880	79,380	77,873	50,936	4,000 39,957	44,618 38,464	48,618 613,005
	Triassic Charlie Lake (excluding	1960 1961		(91)		(36)	(437)	(271)	•••••			·····		• • • • • • • • • • • • • • • • • • • •	(835)
	Boundary Lake) Triassic Boundary	1960	(62,892)	(58,532)	(39,136)	(9,215)	$(26,720)^{1}$	(40,287)	(60.018)	(48,290)	(55,490)	(55,324)	(5,355)	(20.952)	(482,211)
	Lake Triassic Halfway	1961 1960	(16,650)	(42,797)	(46,914)	(306)		(1,939)	(23,586)	(28,022)	(46,096)	(47,515)	(21,195)	(138,159) (150)	(413,179) (191
Bubbles	Triassic upper	1961 1960	(60) 674,494	693.479	(478) 710,519	(450) 680,810	784,778	685,338	680,489	(232) 643.252	(594) 686,264	(65) 732.281	(464) 674,451	781.768	(2,343 8,427,918
	carbonate of Schooler Creek	1961	800,402	712,371	789,603	664,835	712,069	594,500	563,181	567,711	649,417	674,321	734,266	754,662	8,217,338
Buick Creek	Lower Cretaceous Buick Creek	1960 1961	65,579 231,953	58,611 437,787	61,804 568,314	76,359 674,892	123,258 703,360	104,954 715,108	119,098 625,136	118,357 677,980	114,403 635,950	120,140 661,213	119,149 688,316	123,597 830,496	1.205.309 7.450.505
	Triassic Charlie	1960		407,787		014,802			010,.00	077,000	000,000	001,210	088,310	300,400	1,400,300

TABLE 15.—MONTHLY NATURAL-GAS PRODUCTION BY FIELDS/AREAS AND POOLS, 1960 AND 1961 (Quantities in M s.c.f.)

1 Amended.

ų.

1

1960: Volumes in M c.f. at 14.4 psia, and 60° F. 1961: Volumes in M c.f. at 14.65 psia, and 60° F. The following designated gas fields did not produce and therefore are not included in this table: Aitken Creek, Blueberry East, Clarke Lake, Fort St. John Airport, Milligan Creek, Petitot River, and Sunrise.

Field	Pool	Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
Buick Creek	Lower Cretaceous		1,244,778	1,167,092		1,141,607	1,182,358	1,078,138	1,054,628	1,029,958	977,737	963,363	1,007.743	976,710	13,017,158
West	Buick Creek	1961	912,457	881,769	932,881	874,365	767,815	767,180	693,331	763,745	782,236	779,374	754,617	830,709	9,740,479
	Triassic Baldonnel	1960 1961	61,329	55,091	60.455	52,872	56,963	67,742	65,772	61,603	47.526	6,859 56,660	47,457 55,525	67,816 58,878	122,132 690,416
	Triassic Halfway	1960	128,670	103,818	75,798	117,960	89,919	64,383	68,317	99,705	86,595	73.643	61,152	64,166	1,034,126
	111assie IIanway	1961	50,526	76,698	83,809	81,277	52,986	66,944	58,724	43,849	29,847	48,798	61,102	76,327	730,887
Charlie Lake.	Lower Cretaceous	1960	(1,044)							(1,107)	(597)	(600)	(467)		(3,815
	Gething	1961	(6,822)	(1,324)	(775)				·						(8,921
Dawson	Lower Cretaceous	1960	93,127	87,167	91,042	87.296	88,918	84,689	71,579	82,801	79,589	83,591	84,819	84,779	1,019,397
Creek	Cadotte	1961	81,053	74,238	71,465	32,085	74,089	71,096	63,343	71,908	69,019	73,356	73,164	62,525	817,341 2,157,613
Fort St. John	Triassic Baldonnel	1960	168,486	163,926	173,287	168,610	167,037	163.258	155,984	161,474	148,373	169,809	189,625	327,744	2,157,613
	A"	1961	327,198 489,355	281,967	323,800	203,931	205,672 429,934	229,849 405,037	247 687 399,318	250,106 419,318	203,962 385,054	130,005 429,772	235,101 452,476	298,553 439,149	2,937,831 5,174,274
	Triassic Baldonnel "A/B"	1960 1961	489,300	449,431 382,757	468,568 402,374	406,862 381,808	309,680	326,550	201,209	225,374	385,054 265,274	429,112	308,360	439,149	3,969,848
	Triassic Charlie	1960	(18,633)	(17,996)	(18,559)	(20,318)	(16,870)	(19,859)	(14,215)	(16,683)	(18,318)	(18,219)	(18,328)	(20,061)	(218,059)
	Lake	1961	(21,908)	(19,179)	(10,906)	(3.376)	(10,010)	(3,068)	(11,605)	(28,344)	(14,026)	(32,574)	(35,285)	(19,468)	(199,739)
	Triassic Halfway	1960	614,354	566,823	590,326	540,253	499,237	467,256	403,866	423,048	403,509	458,699	514,970	520,188	6,002,529
		1961	517,748	442,034	477,560	433,119	415,089	400,185	375,758	391,409	358,725	366,541	347,354	424,468	4,949,990
	Permian Belloy	1960	88,060	69.348	75,758	93,079	64,041	72,499	78,818	80,237	71,391	91,894	88,992	93,893	968,010
	_	1961	96,320	74,777	83,408	70,403	78,047	76,622	61,994	59,974	67,840	57,808	54,265	60,244	831,702
	Permian Belloy	1960 1961			·····	••••••			(1,330)				••····		(1,330
Fort St. John	Lower Cretaceous	1960	45,713	42,938	46,364	46,257	40,426	51,569	47,354	54,469	53,213	60,848	53,017	61,279	603,447
Southeast	Cadomin	1961	61,802	51,002	23,686	55,110	55,535	54,438	42,085	61,023	54,021	62,520	60,337	69,912	651,471
	Triassic Baldonnel	1960	68,541	64,016	66,829	62,140	53,675	63,604	58,668	62,449	75,787	64,702	75,007	70,386	785,804
	"A"	1961	63,461	55,503	61,243	56.579	57,332	58,235	46,459	50,900	55,520	53,183	52,866	66,166	677,447
	Triassic Halfway	1960	336,978	298,251	336,810	329,209	326,140	343,967	320,807	318,987	302,576	318,421	323,686	371,207	3,927,039
	D	1961	336,045	262,144	277,654	256,563	206,426 594,208	208,158 641,134	194,679 582,008	188,715 586,821	201,713 567,457	183,856	177,742	206,385	2,700,080 7,142,814
	Permian Belloy	1960 1961	617,337 567,285	568,494 512.060	604,139 55 7.322	603,630 525,895	441,938	490.458	332.102	467,836	474,835	595,392 472.824	601,210 428,174	580,984 526.052	5,796,781
Gundy Creek	Triassic Baldonnel	1960	30,477	40,409	8,239	33,987	38,034	51,654	52.590	42,552	39,446	22,735	13,441	17,419	390,983
Oundy Creek	Thassic Baldonner	1961	11,198	1.531	17.829	12.686	30.105	38.500	30,992	3,046	713	7.665	19,987	23,719	197,971
	Triassic Baldonnel-	1960	62.062	64,595	56,109	31,654	54,408	47,918	38,854	40,948	11,890	10,284	1,553		420,275
	Charlie Lake	1961			•				11,952	2,878		5,345	7,501		27,676
Halfway	Triassic Baldonnel	1960	46,546	43,274	45,585	78,589	41,621	40,258	41,962	44,421	40,951	43,562	42,912	42,973	552,654
		1961	43,282	29,477	36,306	38,655	40,926	37,394	37,601	39,356	35,298	26,273	31,175	40,317	436,060
	Triassic Halfway	1960					11,603	56.657	54.532	55.795	57,721	60,815	56,888	53,886	407,342
*** *		1961	49,083 15,522	42,356	44,174	41,479	41,323	29,545	26.829	38,491	34,635	26,919	34,118	33,051	442,003
Highway	Lower Cretaceous	1960 1961	12,421	14,682 10,597	14,719 12,105	14.227 11,785	14,914 13,194	12,801	14,966	14,282	12,829	13,994	14,410		171,513
	Dunlevy Triassic Baldonnel	1960	21,353	16,351	13,490	14,999	19,896	36,605	42,391	2,983 37,814	3,365 32,095	9, 896 29,227	11,018 25,707	11,380 20,819	122,689 310,747
	Thassic Baldonner	1961	14.280	29,457	28,107	30,356	12.587	9,174	12.147	11.874	10,938	10,323	10,386	7,426	187,055
	Mississippian	1960	104.262	89.734	80.858	85,416	88,174	81,183	81,932	80,495	73,180	73.945	67,417	67,906	974,502
	Rundle	1961	64,980	55,794	61,524	59,547	60,452	48,087	52,740	50,435	42.435	40.252	42,864	47,655	626,765
Jedney	Triassic upper	1960	601.682	551,519	684,185	669,281	670,915	631,300	675,915	688,189	708,236	711,772	699,544	730,500	8,023,038
	carbonate of Schooler Creek	1961	720,058	636,407	694,585	595,658	660,379	462,878	535,237	482,061	614,120	610,378	655,510	626,148	7,293,419
	Triassic Halfway	1960	156,825	157,254	241,524	285,915	292,024	251,983	270,675	282,629	370,224	371,909	301,412	380,735	3,363,109
		1961	410,446	335,978	357,700	235,630	276,531	225,490	243,375	346,003	245,172	316.962	348,244	259.097	3,600,628

ł

TABLE 15.—MONTHLY NATURAL-GAS PRODUCTION BY FIELDS/AREAS AND POOLS, 1960 AND 1961—Continued (Quantities in M s.c.f.)

	Triassic Halfway Devonian carbo- nate	1960 1961 1960 1961	(178)	(1,037) 	(6.556) (185) 4.406	4,060	3,662	2,918	3,419	3,137	4,300	3,821	(634)	(555) 99 ,654	(7,771 (1,374 139,961
	Schooler Creek Triassic Boundary Lake	1960 1961						 	 			 		(488)	(488
Other areas	Triassic Schooler Creek Triassic upper carbonate of	1960 1961 1960 1960				1		······	 				20,748 10,382	74,064	94,812
Snyder Creek	Dunlevy Permian Belloy	1960 1961 1960 1961	30,761 440,481 347,984	66,935 410.517 310,366	79,307 447.614 346,606	69,482 430,280 315,492	78,287 472,891 290,674	53,650 481,901 322,526	74,225 464,030 243,435	78,654 426.362 218,573	70.421 440.681 199,855	68.720 479,811 299 543	63,268 463,298 381,464	8,855 384,400 472,108	742,561 5,342,261 3,748,620
Red Creek	Triassic Charlie Lake Triassic Halfway	1960 1961 1960 1961	57,940 44,107 35,500	45,219 27,158 27,052	63,546 17,057 34,888	58,569 1,042 33,567	56,530 34,882 34,292	52,386 40,145 30,087	41,471 17,827 27,212	6,533 43,196 12,340 32,115	52.017 42.891 31.228 13,421	56.447 43.915 35.115 30,877	58,517 47,230 36,779 30,381	60,155 49,680 37,648 28,242	233,66 602,57 335,32 357,63
Peejay	Triassic Halfway	1961 1960 1961	213,081 (196) (10,879)	198,128 (8,524)	226,113	210,310	216,176	197,269 (1,858)	204,646 (1,452)	154,440	185,137	(5.599)	215,966 (6,860)	251,304 (1,193) (433)	2,505,67 (1.38 (43,99
Parkland	carbonate of Schooler Creek Upper Devonian	1961 1960	201,545 269,466	510,300 291,785	615,032	666,032 316,708	621,857 1,211	466,084 138,176	574,214 199,127	530,780 184,694	652,980	659,063 166.723	656,780 182,347	799,805	6,963,97
Nig Creek	Triassic Halfway	1960 1961 1960	69,673 58,870	69,141 52,220	75.287 54,922	73,245 50,862	77.023 49,283	72,946 42,597	61,864	77,761 29,953	63.909 27,922	64.795 29 ,857	64,433 21,746	52,468	822,54 445,57
	Bluesky-Gething Triassic Charlie Lake	1961 1960 1961		6,457	6,385							,			12,84
Milligan Creek Montney	Triassic Halfway Lower Cretaceous	1960 1961 1960	10,965	(676) 	(2,013) (1,909) 5,910	3,912	(7,066) 5,905	(4,236) 5,676	(1,094) 6,416	6,187	(2,150) 5,214	(7 535) 4.415	(13,526)	 	(2.68 (37,51) 59,91
Laprise Creek East	Schooler Creek Triassic upper carbonate of Schooler Creek	1960 1961	273,139	352,272	542,381	521,060	457,615	314,903	424,047	435.526	463,340	413,619	84.564 536,095	265,839 1 606,132	350,40 5,340,12
Laprise Creek	Mississippian Rundle Triassic upper carbonate of	1960 1961 1960 1961	258,997 176,869 486,667	138,003 257,437 181,962 433,471	307,590 217,987 505,752	139,488 243,020 215,627 536,309	235,307 190,075 543,447	192,853 154,537 346,912	216,723 168,685 515,223	214,646 201,540 475,141	195,104 171,949 539,422	179,953 163,473	195,178 176,162 205,520 602,310	219,221 178,430 476.078 549,893	2,716,02 2,197,29 681,59 6,136,84
Townsend	Dunlevy Triassic Charlie Lake Triassic Halfway	1960 1961 1960 1961	75,063 91,379 109,777 199,861 138,132	74,533 84,830 133,075 144,811 138,003	108,384 91,543 170,677 177,972 148,288	102,394 89,999 156,871 117,273 139,468	105,933 95,791 125,731 124,761	110,649 142,926 129,641 133,434	61,899 107,514 107,861 140,471 126,000	35,865 102,596 116,085 149,430 143,820	87.744 134,233 132,821 134,852	100,542 109,380 119,477 133,455	98,808 95,276 107,807 133,993 167,812	91,713 140,787 141,193 191,076	1,159,71 1,525,27 1,742,67 1,719,10

1 Amended.

TABLE 16.—MONTHLY NATURAL-GAS LIQUIDS AND SULPHUR PRODUCTION, 1960 AND 1961

	Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
Condensate/pentanes plus (bbl.)	1960 1961	72,578	56,328 68,680	65,751 79,077	62,714 67,604	65,916 73,736	61,774 67,956	53,448 68,643	59,053 70,583	62,942 65,548	64,701 66,790	60,054 50,886	65,589 62,539	750,848 813,724
Butane (bbl.)	1301	11,002	00,000	10,017	01,004	13,130	07,000	08,045	10,000	00,040	00,750	30,886	02,555	813,724
Natural-gas liquids	1960	29,287	26,626	26,031	20,026	19,945	19,845	23,126	24.223	24.757	28,606	30,126	30,589	303.187
Liquefied refinery gases1	1960										539	450	671	1,660
Natural-gas liquids	1961	32,360	30,169	29,271	25,687	26,459	24,383	24,467	24,415	27,385	27,912	11,905	35,818	319,231
Liquefied refinery gases1	1961	677	368	293	55	62	358	259	163	43	167	30)	2,475
Propane (bbl.)-		1												
Natural-gas liquids	1960	10,623	5,807	7,018	7,215	9,149	8,260	10,391	11,380	10,804	13,682	15,298	15,789	125,366
Liquefied refinery gases1	1960										500	854	917	2,271
Natural-gas liquids	1961	17,166	15,733	14,448	10,428	10,985	11,542	8,946	10,133	12,615	13,478	7,330	21,913	154,717
Liquefied refinery gases1	1961	789	1,057	1,044	233	105	873	742	765	1,230	1,524			8,362
Sulphur (short tons)	1960	5,420	5,007	5,194	5,152	5,262	4,803	4,597	4,823	4,937	4,699	5,090	5,470	60.454
	1961	5,685	5,295	6,895	5,230	4,580	4,315	4,020	4,362	2,484	3,545	4,918	5,326	55,666

¹ Recovered at Pacific Petroleums Ltd. refinery, Taylor. Not shown in totals of Table 5.

	ł	1 			Field) 			Transp	orters			
													1	Deliveries	\$	
Month	Year	Production	Opening Inven-	Re-	Trans-	Losses and	Total	Closing Inven-	Re-	Line	Line	B.C	. Refineri	es		
			tory	ceip i s	fers	Adjust- ments	Sales	tory	ceipts	Fill	Loss	North- cast	Inte- rior	Lower Main- land	Miscel- laneous	Total
January	1960	89.718	14,441	1,947	1,512	1,277		17,191	85,221			79,694			5,627	85,221
February	1961 1960 1961	65,541 77,255 87,443	33,150 17,191	1,264 1,525 627	2,544 2,385	756 181 366	73,495	25,296 19,910 27,421	71,359 73,495 83,395	2,786 17,449	90 	62,908 63,401	**************************************		5,575 10,094 4,999	68,483 73,495 65,866
March	1960	81,446 102,645	25,296 19,910 27,421	1,370	2,184 4,225 1,677	3	83,395 78,441 101,801	20,057	78,441 101,901	10,569	213	67,291	**********		11,150 3,591	78,441 91.019
April	1960 1961	26,036	20,057	65 672	74	760	24,926 148	20,398	24,926 148			24,447	*****		479 148	24,926 1,722
May	1960 1961	56,276 40,028	20,398 29,754	160	202 744	25	52,802	23,670 24,894	52,802 44,279		213	52,802 44,066	~~***	******		52,802 44,066
June	1960 1961	74.464 25,562	23,670 24,894	109 698	657 2,074			17,800 24,499	79,757 24,536		116	78,299 24,382	**********	*****		
July.	1960 1961	105,097 50,800	17,800 24,499	379	253 9 3 8		101,951 49,990	21,072 24,371			243	100,378 49,707	·····	***********	40	
August	1969 1861	87,407 51,928	21,072 24,371	234 592	814 1,349	450		28,328 29,742	79,571 45,34 8			78,883 44,930	••••		1,188 418	79,671 45,348
September	1960 1961	88,627 88,657	28,328 29,742	943 3,278	308 7,116	343 155		22,422 25,362	94,825 89,044			94,606 79,967	**************************************		219 9,077	94,825 89,044
October	1960 1961	74,904 144,092	22,422 25,362	688 4,666	494 9,928		132,242	26,859 31,950	70,487			69,835 116,321	*******	· · · · · · · · · · · · · · · · · · ·	652 15,921	
Nøvember	1960 1961	26,757 140,712	26,859	368 8,133	1,805 6,765	413	23,890 143,595				259	20,328 122,606 69,1861	••••••••••••••	25,654	10,448	158,708
December	1960 1961	79,1031 217,672	27,756 30,022	758 6,897	811 6,660	318	73,2001 211,523	36,080		1,591	8,876	******		181,288	13,295	78,2601 204,238
Totals	1960 1961	867,0851 1,017,826	14,441 33,150	7,486 27,148	13,540 41,97 8		838,6261 997,260		838,626 997,260		10,090	798,5501 694,756		206,942		888,6261 911,413

TABLE 17 .--- MONTHLY CRUDE-OIL DISPOSITION, 1960 AND 1961

(Quantities in barrels.)

¹ Amended.

221

PETROLEUM AND NATURAL GAS

TABLE 18.—MONTHLY	NATURAL-GAS DISPOSITION, 1960 AND 1961
	(Quantities in M s.c.f.)

				Fie	LD				GAS-GATHERI	ng System				GAS PLANT							TRANSPORTE	RS			
		Total	B.C. Produ	ction					1	Delive	red to-							Receipts			Sales t	o Purchase	rs and Distrit	outors	
Month	Year			Caluatia-	Flared	Lease Fuel	Delivered to G.G.S.	Received from B.C.	Line Loss and Metering	Westcoast	Core Plant	B.C. Wet Gas Received	Plant Fuel	ing	Plant Waste and Metering	Marketable Residual	Marketable	B.C.	Alberta	Line Loss and Metering	Bri	tish Colum	bia	T7-14-4	Total Sales
		Wet Gas	Dry Gas	Solution Gas				Producers	Difference ¹	Transmis- sion (Dry Gas)	Gas Plant (Wet Gas)	from G.G.S.		Shrinkage	Difference	Gas	Residual Gas from Plant	Dry Gas from Plant	Dry Gas Imports	Differ- ence ¹	North- east	Interior	Lower Mainland	United States	
January	1960 1961	7,025,039 8,239,087	362,593 296.414	86,411 59,163	86,411 59,163	51,616 43,152	7,336,016	7,336,016		360,758	7,137,389 8,277,095	7,137,389	278,320		-37,979		6,511,856	360,758		231,8472	193,4122 217,387	612,302 858,941	2,064,077 2,157,413	6,697,117 6,963,484	9,566,908
February	1961 1960 1961	6,563,732 8.082,229	378,952 275,909	82,151 74,743	82,151 74,743	43,152 40,117 40,075	8,492,349 6,902,567 8,318,063	8,492,349 6,902,567 8,318,063	-133,276	295,249 377,030 274,417	6,658.813 8.071.547	8,277,095 6,658,813 8,071,547	275,776 239,901 265,112	359,521		6,080,305	6,080,305	377,030	2,427,406 2,647,499 2,140,860	194,566 61,8362 260,773	162,9362 192,193	503,859 691,841	1,866,257 1,893,712	6,509,946	
March	,1960 1961	7,012,192 9,278,016	315,513 301,984	73,689 73,539	73,689 73,539	41,542	7,286,163	7,286,168	-165,438	314,790 301.516	7,136,811 9,375,106	7,136,811 9,375,106	205,112 226,415 278.917	424,555 370,142 465,395	-67,622	6,607,876	6,607,876	314,790	2,747,590	236,919 410.804	173,252 197,835	569,836 715,823	1,899,016	6,791,233	9,433,337
April	1960 1961	6,795,827 8,777,569	404.004	30,608 6,718	30,608 6,718	79,198	7,120,633	7,120,633 8,982,145	-153,797	402,769	6,871,661 8,853,908	6,871,661 8,853,908	205,139 243,490	348,198 410,789		6,352,753	6,352,753	402,769		196,188 260,839	97,109 144,377	450,208 599,124	1,404,944 1,672,521	7,122,607	9,074,868
Мау	1960 1961	6,977,261 8,373,056	90,129 293,927	44,027 20,808	44,027 20,808	38,484 39,786	7,028,906 8,627,197	7,028,906		92,694 295.379	7,097,617 8,430,723	7,097,617	205,649	365,481	-51,485		6,577,972	92,694		162,344 4,784	94,676 102,522	406,937 510,345	1,262,444	7,237,007	9,001,064 9,655.637
June	1960 1961	6,655,965 7,429,631	222,865 271,283	64,872 16,336	64,872 16,336	41,215 66,726	6,837,615 7,634,188	6,837,615 7,634,188	-133,886	222,480 271,360	6,749,021 7.484,567	6,749,021 7.484.567	213,722 229,509	347,352	-76,277	6,264,224 6,934,418	6,264,224	222,480	2,291,943	146,996 101,434	78,664 73,001	337 473 462 490	969,045	7,246,469 7.007.664	8,631,651 8,506,148
July	1960 1961	6,476,252 7,390,311	270,706 271,408	75,860 43,578	75,860 43,578	77,438 40,289	6,669,520 7,621,430	6,669,520 7.621.430	-122,979	270,432 272,016	6,522,067 7,506,327	6,522,067 7,506,327	213,995	342,668	69,614		6,035,018	270,432		207,787 193,960	61,373 68,682	328,179 445,883	791,704	7,268,193 6.907.958	8,499,449 8,306.762
August	1960 1961	6,503,504 7,671,651	267,495 229,485	72,898 57,564	72,898 57,564	56,566 37.318	6,714,433 7,863,818	6.714,433 7.863,818		265,977	6,671,547 7,832,390	6,671,547 7.832,390	246,763 269.099			6,118,548	6,118,548 7,214,533	265,977	2,452,888 1.079.657	122,278 129,676	69,361 68,788	372,378 457,476	902,214		8,715,135
September	1960 1961	6,438,836 7,873,307	257,410 258,456	81,250 63,159	82,601 63,159	42,677 37.815	6,652,218 8,093,948	6,652,218 8,093,948	-167,617	255,477	6,564,358 7,990,791	6,564,358 7,990,791	225,644 282,138	387,064 287,532	-146,380 59.703	6,098,030	6,098,030	255,477	2,007,115	218,960 68.027	87,310 107,516	408 538	1,092,490	6.553,324 7,139,842	8,141,662
October	1960 1961	6,776,0662 8.051.878	250,314 310,280	75,0152 109,110	75,015 109,110	46,841 64.929	6,979,539 8,297,229	6,979,539 8,297,229		249,561 309,440	6,952,640 8,054,023	6,952,640 8,054,023	281,349 168,825	408,608	-113,560 157,666	6,376,243	6,376,243	249,561	2,446,452	52,501 79,916	126,019 153.403	493,275 645,364	1,489,952 1,843,517	6,910,509 6,947,204	9,019,755 9,589,488
November	1960 1961	7,062,0252 8,683,809	267,166 293,891	35,1752 104,881	85,175 115,282	213,010 89.470	7,116,181	7,116,181	203,046	267,841 293.931	7,051,386 8,664,251	7,051,386	283,463		-7,289		6,373,068	267,841		223,397 344,344	170,551	753,164	2,058,396	5,959,525	8,941,636
December	1960	8,002,6642 9,902,670	216,080 320,083	61,7812 164,040	60,854 257,440	42,375 114.514	8,177,296 10,014,839	8,177,296 10,014,839		216,637	8,033,528 9,693,525	8,033,528 9,693,525	301,805 167,805	440,470	-131,807		7,423,060	216,637		263,436 396,123	192,533 250,718	872,850 895,323	2,319,578	6,537,052	9,922,013
Totals	1960		3,303,227	783,737 ² 793.639	784,161	771,079	84,821,087 102,356,932	84,821,087	-1,922,197	3,296,446	83,446,838	83,446,838	2,922,165	4,516,611	-810,891	76,818,953	76,818,953	3,296,446	29,949,566	2,124,4892	1,507,1962	6,108,999	18,120,117	82 204,164	107,940,476 114,839,340

1 Differences in metered volumes necessitate adjustments between metering stations. The total of metering difference and line loss (or plant waste) is subtracted algebraically from the appropriate total; thus a minus figure represents an actual gain. 2 Amended. 1960: Volumes in M c.f. at 14.4 psia. and 60° F. 1961: Volumes in M c.f. at 14.65 psia. and 60° F.

•

.

223

1

.

	Year	Jan.	Feb.	Mar,	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
Condensate/pentanes plus (bbl.)	1000	70 570	50.000	05 751	00.714	1	01.774			0.040	C4 701	0.051	05 F00	
Production	1960 1961	72,578 71.682	56,328 68,680	65,751 79,077	62,714 67,604	65,916 73,736	61,774 67.956	5 3,448 68,643	59,053 70.583	62,942 65,548	64,701 66,790	60,054 50,886	65,589 62,539	750,848 813,724
Opening inventory		11,002	00,000		01,004								19,634	
Losses and adjustments	1961 1960	18,286 28,900	35,472 25,400	42,909 32,488	5,723 20,631	49,309 26,316	82,534 36,433	38,176 26,850	89,782 15,023	8,119 31,720	30,344 18,233	83,147	34,810	18,286 261,994
	1961			•			********						•	
Sales— British Columbia— Northeast British Columbia refin-		48.470			10.000					D1 000				
erics	1960 1961	43,678 54,496	30,928 23.113	33,263 31,476	42,083 21,218	39,600 27.911	25,341 10.550	26,958 10.837	44,030 73,549	31,222 43,323	46,468	40,420 23,166	66,937 50,265	470,568 383,891
Other British Columbia refineries	1960											20,100		
	1961]	2,800	6,600	5,600	6,200]					21,200
Other	1960 1961		•										108	108
Alberta	1960									•••••••••				100
	1961		38,130	84,787		56,000	46,164					76,057		301,138
Export	1960	•••••		•	· <i>·</i> ·····		•	••••	78,697	•				
Closing inventory	1961 1960						••		18,697			19,634	18,286	78,697 18,286
	1961	35,472	42,909	5,723	49,309	32,534	38,176	89,782	8,119	30,344	83,147	34,810	46,976	46,976
Butane (bbl.)—1	10.00	00.007	00.000	04.001				60.100	04.000	0	0.1.5			
Production	1960 1961	29,287	26,626 30.537	26,031 29,564	20,026 25,742	19,945 25,521	19,845 24,741	23,126 24,726	24,223 24,578	24,757 27,428	29,145 28,079	30,576 11,935	31,260 35,818	304,847 321.706
Opening inventory	1960	5,434	5.664	2,838	2,289	2,418	1,766	1,756	1,476	1,310	1,509	2,260	2,727	5,434
	1961	1,210	2,569	1,663	1,822	2,460	1,833	1,601	3,217	1,037	1,933	83	1,817	1,210
Receipts	1960			·····				·						
Losses, transferred, consumed	1961 1960	9.493	3.854	13.125	16.410	15.787	14.494	15,756	7.997	8,475	9.630	2,064 12.061	14,326	2,064 141,408
Losses, transferred, consumed	1961	17,160	13.568	13,771	20,174	20.987	23,990	20,130	21,010	20,737	15,784	9,734	18,518	215,563
Sales-		4									1 -			- • •
British Columbia	1960	19,564	25,598				81	2,349	11,709	4,121	9,021			72,443
Alberta	1961 1960		·····			22		499	3,717	3,895	7,522	1,529 970	7,780 425	24,958 1,395
Augenta	1961	1,319	726	583				·		898	324	810	811	4,761
Export	1960		·····	13,455	3,487	4,810	5,280	5,301	4,683	11,962	9,743	17,078	18,026	93,825
	1961	13,199	17,149	15,051	4,930	5,139	983	2,481	2,031	1,002	6,299	1,008	7,044	76,316
Closing inventory	1960 1961	5,664 2,569	2,838 1,663	2,289 1,822	2,418 2,460	1,766 1,833	1,756 1,601	1,476 3,217	1,310 1,037	1,509 1,933	2,260 83	2,727 1,817	1,210 3,382	1,210 3,382
ropane (bbl.)—1	1001	_,000	1,000	1,022	2,400	1,000	1,001	3,217	1,007	1,000		1,017	0,002	0,002
Production	1960	10,623	5,807	7,018	7,215	9,149	8,260	10,391	11,380	10,804	14,132	16,152	16,706	127,637
0	1961 1960	17,955	16,790	15,492	10,661	11,090	12,415	9,688	10,898	13,845	15,002	7,330	21,913	163,079
Opening inventory	1960	1,336 1.835	2,726 1,040	1,762 2.198	2,628 2,152	1,118 2,616	2,669 1,767	426 1,423	1,318 1.680	1,808 831	452 679	2,102 770	809 1,428	1,336 1,835
Losses, transferred, consumed	1960		763				1,063	107			0,0			1,983
	1961)		······	5	445		·	24	11				415
Sales— British Columbia	1960	9,233	6.008	5.975	8,725	7 500	0.440	0 1 0 0	9,938	11,278	1 1 1 1 1 5	18 0.91	14.950	110 000
BIIIISH COUMDIA	1960	9,233	8,008 8,995	5,975 7,460	8,720 2,583	7,598 7,310	9,440 6,851	8,482 5,399	9,938 5,824	9,255	11,415 12,146	15,931 5,092	14,259 16,190	118,282 103,867
¹ Includes butane and propane recover						.,310	2,307	4,500	-,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		,			

TABLE 19.—MONTHLY NATURAL-GAS LIQUIDS AND SULPHUR DISPOSITION, 1960 AND 1961

PETROLEUM AND NATURAL GAS

	Year	Jan.	Feb.	Mar.	Apr.	May	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
Propane-Continued														
Sales Continued	10.00	1		i			1	l	l	ł	Į '	ļ	1 100	100
Alberta	1960 1961		4,057	4,644	5.869	2,873	3,627	2,339	3.674	2,423	798	715	100 2,447	100 33,466
Northwest Territories	1960		1 '			2,013	i '		1 .	6,460	100			33,400
Northiwest remonds	1961		281	191		92	515	89	268	94	282		984	2,796
Yukon	1960						1		}	1				
	1961		377	1,193	684	511	689	688	857	886	723	377	380	7,365
Export	1960			177				910	952	882	1,067	1,514	1,321	6,823
	1961	1,988	1,922	2,050	1,056	708	1,077	916	1,148	1,350	962	488	781	14,446
Closing inventory	1960	2,726	1,762	2,628	1,118	2,669	426	1,318	1,808	452	2,102	809	1,835	1,835
	1961	1,040	2,198	2,152	2,616	1,767	1,423	1,680	831	679	770	1,428	2,559	2,659
Sulphur (short tons)—	1960	5,420		E 104		5,262	4 000	4,597	4 0 0 0	4,937	4,699	5,090	E 450	60 454
Production	1960	5,420	5,007 5,295	5,194 5,895	5,152 5,230	4.580	4,803 4,315	4,097	4,823	2,484	3.545	4.918	5,470 5,326	60,454 55,655
Opening inventory	1960	74,734	76,958	78,637	81.039	82,552	84,502	86,738	88,683	90,934	92.494	94,359	95.070	74.734
Opening Inventory	1961	97,802	98.798	98,680	99.464	99.764	99.640	100,552	99.777	101,026	100.820	99,232	99.082	97,802
Losses and adjustments	1960				,				334		1		/	
	1961													•••••
Sales—							1			1	1	1	í i	
British Columbia	1960	1,811	2,087		2,565	2,211	1,982		2,465			2,378	396	22,245
_														22,979
Export														15,475
														29,325
Closing inventory														97,802 101.153
	1961	1		1			ł			1	2,470 2,591 364 2,542 94,359 99,232	1	ľ	

TABLE 19.-MONTHLY NATURAL-GAS LIQUIDS AND SULPHUR DISPOSITION, 1960 AND 1961—Continued

TABLE 20.—MONTHLY VALUE OF CRUDE OIL, NATURAL GAS, NATURAL-GAS LIQUIDS, AND SULPHUR TO PRODUCER, 1960 AND 1961 (Dollars.)

	Year	Jan.	Feb.	Mar.	Apr.	Мау	June	July	Aug.	Sept.	Oct.	Nov.	Dec.	Total
Crude oil	1960 1961	152,245 135,497	128,406 158,708	137,596 191,395	48,259 296	97,742 84,411	147,277 46.78 5	185,802 95,737	146,919 89,353	174,807 172,065	129,345 255,363	44,588 275,918	138,063 394.873	
Natural gas	1960 1961	609,272 724,287	572,457 713,506	613,051 823,696	598,892 778.916	591,368 750,405	575,060 666,353	558,991 665,945	566,051 685,495	563,254 702,201	587,393 708,167	588,743 757,984		7,101,949
Natural-gas liquids	1960 1961	54,878 86,316	38,159 79,189	36,521 88,220	44,729 72,018	42,352 77.580	27,555 74,393	29,409 74.008	56,342 74,693	41,198 70,080	60,726 73,103	77,652 54,078	84,127 69,214	593,648 892.892
Sulphur	1960 1961	6,110 5,962	5,438 5,351	5,114 5,861	4,457 4,233	4,701 3,990	4,431 4,054	3,958 3,642	4,747 4,002	4,996 2,150	5,677 3,289	5,517 4,665	6,029 4,936	61,175 52,135
Totals	1960 1961	822,505 952,062	744,460 956,754	792,282	696,337 855,463	736,163 916,386	754,323 791,585	778,160 839,332	774,059 853,843	784,255 946,496	783,141 1,039,922	716,500 1,092,645		9,287,821 11,664,319

Сотралу	Source of Natural Gas	Size and M Transmiss	ileage of ion-lines	Compress	or Stations	Present Daily Capacity	Gather	ing and	Areas Served by Distributors
		Size	Mileage	Number	Horsepower	(M S.C.F.)	Size	Mileage of ring and tion Lines Mileage 2,333.0 2,333.0 2,333.0 2,333.0 2,333.0 2,333.0 2,333.0 2,333.0 1,27.4 3.2 31.4 7.04 17.8 13.7 23.8 28.3 663.0 44.6 21.0 37.5 18.1 1.2 17.9 9.9 9.9 9.9 6.7	
British Columbia Electric Co. Ltd.	Westcoast Transmission Co. Ltd	12" 18" 20" 24" 30"	25.0 36.0 13.6 12.0 18.0	NU		185,000	(1)	2,333.0	Lower Mainland
Gas Trunk Line of British Co-	Fields	1 -394 1 - 294	10.0	2	7,980	355,500			
lumbia Ltd.	Beg	***					16"	27.4	
	North Beg				1 1		6.625"		
	Boundary Lake			Tart to recorned	·····		16"		
	Jedney and Bubbles						§ 10.75"		
							12.75"		
	North Jedney						12.75"		
	Laprise			******			12.75″		
	Nig Creek	6 0 00					16"	28.3	
nland Natural Gas Co. Ltd.	Westcoast Transmission Co. Ltd.	(0-2.9" 3-5.9"	4.7	Nii		50,000	(2)	662.0	Interior.
manu Naturai Gas Co. Lau	Westerast fransmission C.o. Lac.	6-8.9"	46.9	1		30,000	(-)	005.0	incrior.
		9-12.9"	268.8					1	
Vorthland Utilities (B.C.) Ltd.	Peace River Transmission	2"	3.6	Nil		(8)	(2)	44.6	Dawson Creek.
VOLUBRING COULTER (IS CO.) DOGS	CORPORTING TRANSITION	4"	2.2		**********			4	LANDON CAUSES
		2"	0.3	14				1	
nains Western Gas & Electric	McMahon Plant	3″	3.4	NII NII		5,500	(2)	21.0	Fort St. John,
Co. Ltd.		4"	10.8	}		~,			
		6"	0.3		•		-	•	1
Vestcoast Transmission Co. Ltd	McMahon Plant and 26" line	30"	646.6	4	55,690	450,000			
	from Alberta		1						
	Alberta	26"	32,5	Nil	1	215,000		a	
	British Columbia				[1	1
	Alaska Highway system						26"		
	Alaska Highway system	···· A··· · ··· ··· ··· ···	i				20"		
	Alaska Highway system	···· 4		********		****	20**		
	Alaska Highway system	· · · · · · · · · · · · · · · · · · ·		MARINEAN	AI. + 5	*********	18‴		
	Alaska Highway system		I —			********	12.75*		
	Blueberry West field				****	********	8.625"		
	Boundary Lake South field			*******	******	P31210792001	16"	0.5	
	Buick Creek field			******		vv	10.75"	5.6	
	Buick Creek West field	11. 27 Mar a. 16. 7 Martin State				ACE 5004	20"	16.2	
	Dawson Creek field					355,5004	8.625"	5.4)

NATURAL-GAS TRANSMISSION, GATHERING, AND DISTRIBUTION PIPE-LINES

	** 1		····	و		1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
Fort St. John field			• * * *	**********	A	18"	7.8	
Fort St. John field						10.75"	0.9	
Fort St. John field						8.625"	0.7	
Fort St. John Southeast field						12.75**	4.0	
Gundy Creek field			Non North Pa			10.75"	6.1	
Kobes System, Kobes-Tow			1			12.75"	18.9	
end field								
Montney field		are by feeding				4.5"	7.4	
Parkland field						8.625"	6.6	
Red Creek field						4.5"	2.9	
Stoddart field						8.62.5**	6.3	
Townsend system, Kobes-					A	8.625"	5.5	
Towasend field		and a should be			w			

1	Urban	and	suburban	distributi	on.	2
---	-------	-----	----------	------------	-----	----------

Distribution. ³ Not available.

4 British Columbia gathering capacity,

CRUDE-OIL PIPE-LINES

Company	Fields Served	Size and Mileage of Main and Lateral Lines		Pumping Stations		Present Capacity	Gathering	Throughput	Storage Capacity
		Size	Mileage	Number	Capacity (Bbl./Day)	(Bbl./Day)	Mileuge	(Bbl./Dây)	(Bbl.)
B.C. Oil Transmission Co. Ltd. (Blueberry field to Taylor)	Blueberry	{ 4½" { 8%" 12%"	16.0 63.0 2.0		12,000	6,900	(1)	2,000	54,800
Trans-Prairie Pipelines (B.C.) Ltd. (terminal at Taylor)	Beatton River, Beatton Riv- er West, Boundary Lake, Milligan Creek, Peejay, Wildmint	452° 658" 856"	8.6 24.3 76.0	6	29,330	29,330	37.9	19,300	60,000
Western Pacific Products and Crude Oil Pipelines Ltd. (Tay- lor to Kamicops)		12″	505.0	4	27,500	27,500	Nil	18,000	220,000

1 Not available.

PETROLEUM AND NATURAL GAS

		GAS	-PROCESSIN	NG PLA	ANTS,	1961			
Operator	Location	Fields Served			Date on Stream		Natural-gas Ligulos	Residual Gas Sales to	Remarks
					In	Out			
cific Petroleums Ltd.	Taylor	Beg, Blueberry, Blueberry West, Boundary Lake, Bubbles, Buick Creek, Buick Creek West, Fort St. John, Fort St. John Southeast, Gundy Creek, Halfway, Highway, Jedney, Kobos-Townsend, Laprise Creek, Laprise Creek East, Mont- ney, Nig Creek, Red Creek, Sny- der Creek, Stoddart		1957	330	300	Condensate/pen- tanes plus	Westcoast Transmission Co. Ltd. and Plains Western Gas & Elec- tric Co. Ltd.	Began operation November, 19:

SULPHUR PLANTS, 1961

Name	Location	Raw Material	Principal Product	Tonnage/Day (Short Tons)	Rémarks
Jefferson Lake Petrochemicals of Canada, Ltd.	Taylor	Hydrogen sulphide	Sulphur	150	Began operation in November, 1957.

Name	Location of Refinery	Type of Refinery	Date of First Opera- tion	Source of Crude	Crude- oil Capacity (BbI./ Day)	Storage Capacity (Bbl-)	Cracking Plant Units	Crack- ing Capacity (Bbl./ Day)	Other Units
The British American Oil Co. Ltd.	Port Moody	Comp	1958	Alberta	18,000	1,500,000	Catalytic-fluid	8,480	Catalytic reformer, distillate desulphurization, alkylation- sulphuric acid.
Imperial Oil Ltd.	Ioco (Vancouver)	S.C.A.	1915	Alberta	32,000	2,700,000	Catalytic-fluid	9,000	Catalytic polymerization, pow- erformer.
Royalite Oil Co. Ltd.	Kamloops	S.C.A	1954	Alberta	5,000	400,000	Catalytic-fluid	1,400	Catalytic polymerization, plat- former,
Shell Oil Co. of Canada Ltd.	Shellburn	Comp	1932	Alberta	21,000	2,455,300	Catalytic-fluid .	6,000	Catalytic polymerization, plat- former.
							Thermal-visbreaking .	3,000	Vacuum flashing, solvent frac- tionation, distillate hydro- treater.
Standard Oil Co. of British Co- lumbia Ltd.	North Burnaby	Comp	1936	Alberta	18,000	1,534,000	Catalytic-fluid	8,100	Catalytic polymerization, cata- lytic reformer, lube-oil blend-
Pacific Petroleums Ltd.	Taylor	Comp	1957, 1961	N.E. B.C	3,800	400,000	Catalytic-fluid	2,000	ing plant, asphalt. Alkylation, asphalt depropaniz- t cr. pentanc splitter.

Refinery symbols: S .- skimming; S.C. -- skimming and cracking; S.C.A. -- skimming, cracking, and asphalt; Comp. -- complete.

Inspection of Lode Mines, Placer Mines, and Quarries

By J. W. Peck, Chief Inspector of Mines

CONTENTS

	PAGE
PRODUCTION	232
FATAL ACCIDENTS	
FATAL ACCIDENTS AND ACCIDENTS INVOLVING LOSS OF TIME	238
DANGEROUS OCCURRENCES	239
PROSECUTIONS	242
BLASTING CERTIFICATE SUSPENSIONS	242
Explosives Used in Mines	242
DUST CONTROL AND VENTILATION	243
Shiftboss Certificates	245
MINE RESCUE, SAFETY, AND FIRST AID	246
JOHN T. RYAN TROPHY	249
West Kootenay Mine Safety Association Trophy	249
SAFETY COMPETITION, OPEN-PIT MINES AND QUARRIES	249
BRITISH COLUMBIA MINING ASSOCIATION, SAFETY DIVISION	250
Awards for Bravery	250

PRODUCTION

The output of metal mines for 1961 was 8,392,161 tons. This tonnage was produced from fifty-nine mines, of which thirty-nine produced 100 tons or more.

FATAL ACCIDENTS

During 1961 there were six fatal accidents connected with lode mines, placer mines, and quarries. This was six less than in 1960.

Tonnage mined per fatal accident during the last ten-year period was 907,800 tons.

The following table shows the mines at which fatal accidents occurred during 1961, with comparative figures for 1960:—

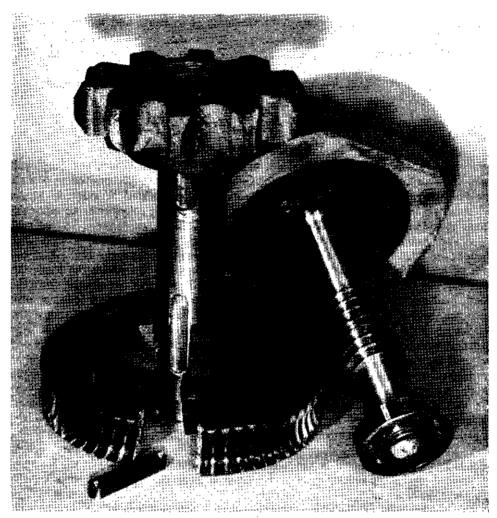
Mine	Mining Division	Number of Fata Accidents		
		1961	1960	
Bralorne	Lillooet	1	2	
Britannia			1	
Canam	New Westminster		1	
Cassiar	Liard		1	
Duncan			1	
Highland-Bell	Greenwood		1	
Iron Mask		1		
Keller P.M.L.		1		
Mastodon			1	
Mother Lode		2		
Paradise			1	
Reeves MacDonald			2	
Routledge Gravel Quarry	Vancouver		1	
Sunro	Victoria	1	f	
Totals		6	1 12	

The following table classifies fatal accidents as to cause and location:----

Cause	Number	Location
Falls of person	. 1	Underground.
Vehicles		Surface.
Asphyxiation	2	Underground.
Conveyor belt		Surface.
Total	6	

A description of all fatal accidents follows.

Nels Raymond Johnson, aged 38, married, with four children, and employed as a truck-driver by Ernie's Transfer of Greenwood, was fatally injured at 8 p.m. on February 17th at the Mother Lode mine of Consolidated Woodgreen Mines Limited when the front-end tractor loader he was operating rolled over an embankment at the crushing plant.


The embankment is a rock-filled ramp which enables trucks, loaded with copper ore from the open-pit mine, to be dumped into the coarse-ore bin. A stock-pile of ore is kept near the bin, and it was Johnson's job to operate the loader to transfer the ore from the stockpile to the bin. The loader would dig into the load, load bucket, turn toward bin, travel, dump, reverse to point of loading, turn into ore, and load. The ramp area is about 18 feet wide and the distance the loader travelled varied from 20 to 250 feet. The deceased had made several trips when it would appear that after loading the bucket he backed too far onto one edge of the ramp, and in turning to go to the bin the loader became overbalanced and upset over the edge. It rolled over one and a half times to the bottom of the slope, a distance of 40 feet. The accident was not observed, but Johnson was found shortly after, lying beside the loader. The doctor was immediately summoned, but death must have occurred quickly as there were crushing internal injuries, multiple rib fractures, and a broken spine.

The inquest into the death attached no blame to anyone. The jury recommended that a safely guard be secured along the embankment edges of the loadingramp and that a protecting canopy be secured over the operator's area on the tractor.

The first part of the jury's recommendation was put into effect shortly after the accident.

Charles Edward Leathwood, aged 34, married, with two children, and employed as a miner at the Sunro mine of Cowichan Copper Co. Ltd., was killed when he fell about 240 feet in a vertical raise about 7 a.m. on May 13th.

The raise was being driven with the assistance of an Alimak raise platform, which operates on a monorail bolted to one wall. An Alicab servicing skip was used on the same monorail and was used between the raise platform and the bottom of the raise. On the day of the accident, near the end of the shift, Leathwood and his partner had completed drilling the round and the raise platform was in position at the top of the raise. Immediately prior to the accident Leathwood brought up explosives in the Alicab skip and transferred them to the Alimak control cage and then up to the top platform, where his partner was working. At this time the partner requested Leathwood to raise the Alimak to facilitate the loading of the drilled holes. Immediately after, the partner felt the Alimak platform move slightly and at the same time heard a peculiar noise. On calling Leathwood and getting no response, he investigated and found both Leathwood and the Alicab skip gone. He then lowered the Alimak platform to the bottom of the raise, where he noted the Alicab skip was damaged but still on the track. Leath-

Gear box in Alicab raise machine after fatal accident at Sunro mine,

wood was at the bottom of the raise, lying on some of the trailing hose of the Alicab machine. No sign of life was evident, and Leathwood was pronounced dead by the attending doctor who examined him after he was removed from the raise.

Subsequent examination disclosed Leathwood sustained multiple lacerations and abrasions about the face, neck, and wrists, fractures of the wrists, four ribs, and right ankle, hæmorrhages of the lungs, upper chest, and abdominal cavity. Death was believed due to multiple traumatic injuries resulting in massive hæmorrhage and shock.

External examination of the Alicab skip showed the driving mechanism to have failed but the brake mechanism to have been in good working order. On dismantling the drive it was noted the operating action was as follows: A chain drive connects the air motor to a sprocket on one end of a shaft having a worm screw thread part way along the shaft. The worm screw drives a bronze gear internally attached to a cast steel hub. The hub is attached by a countersunk key on a second shaft having a climbing sprocket on its outer end. The worm-screw bronze-gear assembly is known as an irreversible gear; that is, the screw can turn the gear but the gear cannot turn the screw. On examination, the cast hub was found to be split into two pieces diagonally, the key unseated from the keyway, the bronze gear ruptured with an approximate gap of an inch and one-half between ends, and the gear separated from the hub. It was believed this damage could have developed during operations as a result of any or all of the following conditions: (1) Improper initial assembly, (2) faulty hub casting and (or) bronze gear, (3) the Alicab skip having been raised or lowered by some external agency when the power was off the skip. This would tend to force the drive to work in opposition to the irreversible gear.

As the hoist was assembled prior to delivery, the operating crew had no knowledge of the construction or assembly. It was reported that on a number of occasions the brake had jammed and the Alimak had been used to raise the Alicab. The driving mechanism could have been damaged at this time and finally failed at the time of the accident. The failure would have rendered braking impossible by the air motor but should not have influenced the manual or gravity operated brake. It was reported common practice to wire up this hand-brake as the Alicab skip approached the Alimak platform. This was done in order to free one hand to clear a passage through the Alimak air hoses while the other hand operated the motor controls. It was believed the brake handle was held up in some manner at the time of the accident as otherwise it would have functioned. After the accident the brake handle was examined, but nothing was present or attached to the cab which could have been used to tie back the handle.

The Coroner's jury returned a verdict of accidental death with no blame attached to anyone, but recommended (1) that the brass ring gear and cast hub be examined for metal fatigue, etc.; (2) that the brake system be revised so that the brake lever should not have to be wired in off position when moving Alicab; (3) that a telephone system be installed underground connecting with the surface.

Further to the jury's recommendations, the broken gear was given a metallographic examination by the British Columbia Research Council. The findings were that the casting was normal.

No permits are now in use for the Alicab in British Columbia. Discussion has taken place with the company's representative with respect to a redesign of the gear arrangement as well as an improvement of the braking system.

Fred Alex Derhousoff, aged 38, married, with four children, and employed as a crusher operator at Consolidated Woodgreen Mines Limited, was fatally injured by a conveyor belt at about 2.25 p.m. on August 2nd.

The site of the accident was the tail pulley of the No. 1 conveyor belt in the primary crushing plant. This pulley is located in a concrete well about 6 feet deep. Access is by steep concrete steps which lead to the back of the conveyor pulley. There is 6 inches clearance on either side between the pulley and the concrete walls. A chute feeds ore to the top of the belt near the pulley and a skirting or scraper board is fastened to the bottom of the chute in a position about 1 inch above the belt. There was no handrail alongside the stairway.

There were no witnesses to the accident. Another crusher operator was in the crushing plant prior to the accident, and he was aware that Derhousoff was going to enter the tail-pulley well, apparently to fix the skirting board. Derhousoff had shut off the conveyor to do this. The first-aid attendant, who was operating the weighing-scales outside the crushing plant, received a signal at the door of the plant that Derhousoff was going to turn on the conveyor, and it was about five minutes later that he went to look for Derhousoff. He found him lying on the steps of the concrete well with the clothes torn off his back and legs. The conveyor belt was running. He removed Derhousoff from the well and noted he was in severe shock and could not talk. Medical help was obtained, but the deceased died at

about 3.20 p.m. while being transported from Greenwood to the Grand Forks hospital. Cause of death was massive rupture of the liver and the piercing of the lung by fracture of the fourth rib on the right-hand side.

It could not be determined whether the deceased tripped on the stairs and fell on the belt so that he was pulled up against the skirting board or whether his clothes were caught between the belt and pulley. It was standard procedure to shut off the belt before going into the well and it is not known why Derhousoff went down with the belt running.

At the inquest the verdict was that death was accidental, with no blame attached to anyone. It was recommended that "some form of guard be placed over the belt so that it is not possible for an operator to fall against the belt while in operation." The District Inspector required that this recommendation be carried out. He further ordered that handrails be installed on both sides of the stairway and a notice posted prohibiting the entering of the well while the belt is in motion.

Carl Bruhaug, aged 52, married, was asphyxiated in a placer mine he was working in partnership with another man on the Keller placer-mining lease on Moyie River near Cranbrook at approximately 5.30 p.m. on August 19th.

The fatality took place in a shaft 36 feet deep which was being sunk through gravel to reach bedrock. It is 6 feet 5 inches by 3 feet 2 inches in cross-sectional area and partitioned into two compartments. It was ventilated by a small fan, and normally dewatered by a small reciprocating type of deep-well pump, both of which were operated by gasoline motors located on the surface near the collar of the shaft.

On the day of the accident the two men had difficulty in operating the regular pump and decided to use a portable gasoline pump until the trouble could be located in the regular pump. This portable pump also did not appear to be working properly, and Bruhaug's partner ascended the shaft to check the outflow. On reaching the surface he noticed the ventilation fan had stopped, so he returned down the shaft to warn his partner. He met Bruhaug coming up on the second ladder and preceded back ahead of him. After climbing a short distance he thought he heard a thud and on investigating he found Bruhaug had collapsed and was hanging on the ladder by one leg. He was unconscious and groaning. The partner was not able to lift Bruhaug but managed to place him in a more comfortable position to assure that he would not fall down the shaft. He then went back up the shaft and on reaching the top collapsed. Recovering some time later he managed to crawl around the top of the shaft and cut the ropes on which the portable pump was hanging in the shaft, so that it would fall into the water and stop operating. He then returned down the shaft on several occasions after this, waving a cloth to try to circulate the air, but each time on returning to the surface he collapsed. It is understood that during this period that Bruhaug's wife, who was staying nearby, also came to investigate and went down the shaft herself but could find no sign of life in her husband. She did not collapse when in the shaft but complained of pains in her throat and chest. Eventually the two decided to fetch help, and after driving about half a mile down the road met two placer-miners who were working another placer operation a few miles down the river. These two placer-miners were experienced mine-rescue men and were able to effect a rescue, although not without some difficulty as ventilation had to be restored first. The body was recovered at 9.30 p.m. Artificial respiration was applied until the arrival of the doctor at 10.05 p.m., when death was pronounced.

An inquest was held on September 6th. Death was determined due to carbon monoxide poisoning as the result of the operation of a gasoline engine in the shaft. No blame was attached to anyone, but the jury "felt there was a certain amount of human error involved." See Prosecutions.

Robert Kenneth Gerlib, aged 24, single, and employed as a geologist at the Iron Mask mine of Kamloops Copper Company Ltd. near Kamloops, was asphyxiated some time between 11 a.m. and 2 p.m. on November 25th, when he entered old mine workings which had been abandoned for many years.

The Iron Mask workings are shaft workings, the deepest being about 750 feet below the surface. The Iron Mask shaft has been caved for several years and is inaccessible, but the mine can be entered by means of another shaft. The last work done in the mine was about thirty years ago. Recently a consulting firm, H. Hill & L. Starck & Associates Ltd., of Vancouver, had been engaged to examine the mine. On the day of the accident, Gerlib was accompanying Mr. Starck and the senior geologist in an exploration survey of the lower or 750 level. They had reached a point where further progress was impeded by water, and at this point Gerlib was ordered by Starck to remain until the other two returned in order that he could summon help if any trouble developed. When the two men returned to the point where Gerlib had been stationed, he was not in sight, and they proceeded out of the mine on the assumption that Gerlib had done likewise. However, Gerlib was not outside the mine, and thus a search was instituted. He was found some time later in sublevel workings, 35 feet above the 750 level. There was no sign of life. The search party of two which located Gerlib suffered dizziness but were able to remove the body to the 750 level. Artificial respiration was applied until 3.30 p.m., when the doctor arrived and pronounced death. There is natural ventilation on the 750 level, but none in the workings where Gerlib was found. On November 26th the workings were inspected by the District Inspector of Mines, and at that time the safety lamp went out at the raise entrance heading to the sublevel workings. An air sample was taken, which was shown by a later analysis to contain: Carbon dioxide, 0.65 per cent; oxygen, 14.08 per cent; combustibles, 0.11 per cent; carbon monoxide, trace; nitrogen, 85.16 per cent.

At the inquest the pathologist who performed the autopsy stated that there were no fractures or external injuries. The internal examination revealed findings similar to cases of asphyxiation. The jury brought in a verdict of accidental death with no recommendations.

Melville Carrington Waddell, aged 67, married, and employed as a tractor operator by Bralorne Pioneer Mines Limited, was fatally injured on December 23rd at approximately 6.10 p.m., when the Hough Payloader which he was driving slipped and went over the bank on the highway immediately east of Bralorne. He had been engaged in snow-ploughing in the Company townsite at Pioneer, 2 miles east of Bralorne, and at the time of the accident was returning to Bralorne, having completed his job. Apparently just previous to the accident he had driven the machine onto the snow-bank on the right-hand side of the road. In order to correct this situation, it would appear from the tire marks that he had backed out and then attempted to go forward. At this moment it would seem that his machine skidded on the icy surface of the road and then went over the bank on the left side of the road. The vehicle rolled to the bottom of the 25-foot bank. A witness, aged 16, was immediately on the scene. He found the deceased near the vehicle, covered him with his coat, and went for help. The local doctor was on the scene by 6.20 p.m., and found that Waddell was dead. A later autopsy disclosed that death was due to a crushing injury of the posterior chest wall, causing rupture of the lung, spleen, and kidney, with severe internal bleeding. There was no indication of a heart attack or other seizure. A blood sample submitted to the Vancouver City analyst was found to have an alcohol content of 0.28 per cent.

The deceased was a tractor operator of generally acknowledged experience and ability. He had been employed by Bralorne Pioneer Mines Limited, and by the former Bralorne Mines Limited, since 1934. For some days prior to the accident he had been assigned to snow-ploughing in the Bralorne Pioneer camp. Immediately previous to the day of the accident there had been a heavy snowfall, and on the days of the accident it had rained hard, making road conditions hazardous in places. The Hough Payloader was equipped with a blade for snow-ploughing. It carried skid chains on all four wheels. Waddell was last seen by his supervisor at 3.30 p.m., and at that time he appeared to be in normal health and condition. Examination of the vehicle after the accident indicated it had been in normal condition, but that the blade had been raised 6 to 8 inches above road level. It is thought that an operator of Waddell's experience should have had the presence of mind to drop the blade, which would probably have prevented the skid.

At the inquest the jury brought in its findings as follows: "We find that his death was accidental, and that no blame is attached to any person or persons. However, we, the jury, believe that the hazardous condition of the road, and the influence of alcohol a contributing factor."

The following recommendations were made by the jury:---

- (1) "As medical advice on the man's reaction time, and complete medical factors relating to fatigue were not available (as yearly medical exams are not given to surface personnel), we therefore recommend yearly medical exams for all vehicle operators.
- (2) "We recommend that any attachments to vehicles be tested by qualified persons as to:---
 - "(a) Stability.
 - "(b) Visibility.
 - "(c) Roadworthiness.

"(d) Any other factors which will contribute to the safety of the operator."

FATAL ACCIDENTS AND ACCIDENTS INVOLVING LOSS OF TIME

Six fatal accidents and 196 accidents involving a loss of time of over three days were reported to the Department. These were investigated and reported on by the Inspectors of Mines.

The following three tables classify these accidents as to cause, occupation, and as to the parts of the body injured. The fourth table lists all fatal and compensable accidents which occurred in lode mines over a ten-year period and relates these accidents to the number of persons employed and tons mined.

Cause	Number of Accidents	Percentage of Total
Explosives	4	2.0
Fails of ground	31	15.8
Falls of persons	33	16.8
Lifting and handling material	24	12.3
Machinery and tools		31.6
Transportation		9.2
Flames, heat, chemicals, etc.		3.1
Bins, chutes	1	0.5
Miscellaneous		8.7
		
Totals	196	100.0

ACCIDENTS CAUSING DEATH OR INJURY CLASSIFIED AS TO CAUSE

INSPECTION OF MINES

Occupation	Number of Accidents	Percentage of Total
Underground—		
Chutemen	3	1.5
Haulagemen	12	6.2
Miners	73	37.2
Helpers	11	5.7
Timbermen		1.0
Mechanics, electricians, etc.	21	10.7
Miscellaneous		4.1
Surface—		
Shops	7	3.6
MillÎ	1 /	7.1
Quarries	11	5.6
Surface, general	34	17.3
Totals	196	100.0

Accidents Causing Death or Injury Classified as to the Occupation of Those Injured

Accidents Causing Death or Injury Classified as to Parts of the Body Injured

Location	Number of Accidents	Percentage of Total
Head and neck	18	9.2
Eyes		4.1
Trunk		29.1
Upper extremities	53	27.0
Lower extremities	50	25.5
General	. 10	5.1
	<u> </u>	
Totals	196	100.0

Compensable Fatal Accidents Related to Tons Mined and Men Employed

Year	Number of Accidents	Number of Persons Employed	Frequency per 1,000 Persons	Tons Mined	Tons Mined per Accident
952	1,327	9,610	139	9,174,617	6,910
953	899	7,105	125	9,660,281	11,750
954	718	6.293	114	8,513,865	11,850
955	679	6,208	109	9,126,902	13,450
956	615	6,507	94	8,827,037	14,350
957	535	5,678	94	7,282,436	13,600
958	396	4,353	91	6,402,198	16,200
959	310	4,316	72	6,990,985	22,550
960	394	4,389	90	8,242,703	20,920
961	338	3,993	85	8,392,161	24,830

DANGEROUS OCCURRENCES

Twenty-two dangerous occurrences were reported as required by section 9 of the *Metalliferous Mines Regulation Act* and were investigated by the Inspectors of Mines. This compares with twenty-four reported for 1960.

Of these occurrences, five were connected with hoisting; three with haulage; four with subsidence or cave-ins; two with explosives; two with fires; two with flood water or muck; two with machinery; one with gas; and one with electricity.

On January 5, 1961, at the Texada iron mine, a slowly moving subsidence occurred on the main haulage road between the open pits and mill, necessitating suspension of travel over the affected section of the road. The road was built over glacial till with a thickness ranging from 55 feet to 95 feet, and it is believed the cause of the slide was the exceptionally heavy rainfall combined with the super-imposed load of a waste dump located immediately above. In about a month's period the ground moved as much as 5 feet vertically and 20 feet horizontally.

On January 7, 1961, at Bralorne, a surge of water and fine muck spilled into the Crown shaft when the lower waste pocket was being drawn. The shaft sump was partially filled, and there was considerable damage to the loading mechanism. Precautions had been taken in the event of such an incident, and thus there were no injuries to personnel.

On January 15, 1961, at Britannia, an inrush of water occurred in the Victoria mine. This was caused by the blockage of a drainage system near a surface glory-hole.

On February 11, 1961, at Britannia, the hoisting-rope in No. 8 shaft was kinked and a set of guides was damaged when the shaft conveyance was lowered onto the spill pocket doors below a loading-pocket. The hoistman apparently failed to heed a red-light signal which warns when these doors are covering the shaft.

On February 19, 1961, at Britannia, in the No. 8 mine, a large cave occurred in two empty stopes, affecting an area from the 4300 level to above the 4200 level. No harm was done other than a break-through to a ventilation raise.

On March 21, 1961, at the Sullivan mine, a miner was slightly injured by a blast when he returned too soon to the scene of his blasting operation. The miner mistook the sound of a nearby blast for his own.

On March 28, 1961, at Britannia, considerable damage was done to the skip and shaft guides in the No. 8 shaft when the hoistman inadvertently raised the skip above the limit of the dumping range.

On April 6, 1961, at the Canam mine, a fire of undetermined origin destroyed the building containing the dry-house, power-house, and machine-shop.

On May 5, 1961, at the Jersey mine, a wedge-shaped slab weighing about 400 tons, 20 to 40 feet wide, 80 feet long, and one-half foot to 5 feet thick, peeled to a slip in the back of a stope. Two miners were in the stope at the time, but no one was injured.

On May 25, 1961, at the Merry Widow open-pit mine, two cracks developed about 30 feet back from the brow of the headwall, which was approximately 225 feet high. A 6-inch gap developed at a rate of movement of one-half inch in twentyfour hours. It was estimated 100,000 tons of rock was involved in the movement. Large bulldoze blasts involving up to 600 cases of explosives were detonated along the cracks, and when these were not successful in bringing down the headwall, it was removed by conventional mining methods.

On June 2, 1961, at Bralorne, two skip-tenders were injured slightly when a drill rod in the cage caught the shaft timbers as the cage was being hoisted. The load consisted of ninety 10-foot diamond-drill rods, and although they had been wedged in position, they had not been chained.

On June 2, 1961, at the Craigmont mine, a diesel locomotive, pulling eight loaded mine cars from underground en route to the dump, could not be braked to a stop and was carried under momentum to the end of the dump and onto the top of the ore-bin which was then under construction. The permanent stop-block had been removed while the rails were to be extended to the top of the ore-bin. No persons were injured.

On June 10, 1961, at the Bluebell mine, a miner guarding a blast underground was struck by a small piece of fly rock which punctured his leg to cause a compound multiple fracture of the tibia. The rock would have had to ricochet several times to reach the miner.

On June 14, 1961, at Bralorne, a fire occurred in an underground mechanics' shop in a container of oily rags. The smoke was so dense that the area had to be sealed off and a mine-rescue team used to extinguish the fire.

On June 30, 1961, at the Reeves MacDonald mine, a loaded muck skip fell about 200 feet and crashed through a sinking bulkhead when the brakes failed on the hoist. The skip stopped six shaft sets below the bulkhead. The shaft-sinking crew, who were farther below, escaped injury. The brakes were found in normal condition after the accident, but the hoist drum concerned was unclutched at the time for hoisting out-of-balance. A positive interlocking device was later installed which prevents a hoist drum from moving if there is brake failure when the drum is unclutched.

On July 2, 1961, at Cassiar, a truck was backed over an ore bench in the open pit and came to rest upside down on a bench 30 feet below. The driver remained with the vehicle and suffered minor injuries.

On July 7, 1961, at Britannia, the passenger train was derailed 2,800 feet from the portal in the lower adit. Minor injuries were received by one man. The cause of the derailment was worn mountings on the locomotive as well as some poor track.

On July 29, 1961, at the Giant Nickel mine, a hoisting-rope was damaged by electricity as the skip containing men was being hoisted past a level station. The cage struck the shaft gate, which had been knocked into the shaft by a nearby blast. This collision knocked out the post supporting the shaft signals and the cutout switch for the trolley feeder-line. The troller feeder-line was damaged, and the resultant sparking affected the hoisting-rope. A new hoisting-rope had to be installed.

On August 3, 1961, at Bralorne, an emission of methane occurred after completion of the drilling of a lifter hole at the face of a drift on the 77 vein on No. 38 level. The gas was ignited by one of the crew and burned for a short time. The crew was withdrawn by the shiftboss, but no sign of methane could be found a few hours later, and no further emissions of methane were reported.

On September 12, 1961, at the Texada iron mine, one man was burned and a multi-meter destroyed while he and another man were testing the low-voltage side of the potential transformer in the main switch cubicle of the mill. Apparently the meter test prods which one man was using came in contact with the 2,300-volt circuit.

On September 23, 1961, at Cassiar, four workmen were injured during the installation of a new haulage cable on the aerial tram-line. The end of the new cable had been spliced to an end of the used cable and was being drawn out by a tractor with the tram-line driving mechanism in the neutral position and the brake off. The used cable was rewound on a reel. The operation proceeded satisfactorily until an overload, presumably due to the brake being applied to the tram-line, caused the grab-hook on the tractor towing chain to spread apart. The cable was released and free haul-back of the line resulted. The reel upon which the cable was being wound moved forward suddenly to strike one of the workmen while the released cable struck three other men.

On October 7, 1961, at Cassiar, a bulldozer left the mine road and rolled down a gulley. The operator jumped clear and was not injured.

On December 22, 1961, at the Sullivan mine, a train comprising two explosive cars, with locomotive at rear, collided with a number of flat cars which had been left unattended in a drift. The front ends of both explosive cars were damaged, and two cartons containing explosives were damaged in the first car.

PROSECUTIONS

One prosecution was instituted under the *Metalliferous Mines Regulation Act*, as follows:—

A miner, and part owner of the Keller placer operation on the Moyie River, was charged under section 21, General Rule 21 (a), for using a portable gasoline pump to dewater a shaft on the property on August 19, 1961. The hearing was held at Cranbrook on September 19, 1961, and the miner pleaded guilty. He was fined \$25 and \$3.50 costs.

BLASTING CERTIFICATE SUSPENSIONS

There were violations of the provisions of the *Metalliferous Mines Regulation Act* in regard to the use of explosives and blasting procedure, but such violations were less than in former years. One miner had his blasting certificate suspended for one month for failing to properly guard a blast. Another miner had his certificate suspended for two weeks for using a bootleg hole to fasten an eyebolt.

EXPLOSIVES USED IN MINES

The table below shows the quantities of explosives and blasting accessories used in metal mines and quarries in British Columbia in 1957, 1958, 1959, 1960, and 1961:—

	1957 Total	1958 Total		1960 Total	1961 Total	1961		
						Mines	Quarries	
High explosives (lb.)	7,103,000	5,485,000	6,319,000	7,188,000	7,280,000	6,784,000	496,000	
Blasting-caps		1,244,000	1,587,000	1,320,000	1,719,000	1,612,000	107,000	
Electric blasting-caps	64,000	84,000	46,000	124,000	145,000	135,000	10,000	
Delay electric blasting-caps (short period)	160,000	129,000	157,000	146,000	154,000	143,000	11,000	
Delay electric blasting-caps (L.P.V.	127.000	128,000	153,000	146,000	170,000	170 000		
delays) Primacord (ft.)	261,000							
B-line detonating fuse (ft.)		2,197,000			3,199,000			
Safety fuse (ft.)				10,288,000				
Ignitercord (ft.)								
Ignitercord connectors								
Ammonium nitrate					2,647,000			
"Hydromex "			325,000	862,000	2,116,000	1,782,000	334,000	
" Amex "			20,000		169,000	169,000		
" Nitrone " S-1				6,000				
"Nitrone " S-1 primers		·		1,150				

The quantity of high explosives used in mines in 1961 increased 8 per cent over 1960, but that used in quarries decreased 50 per cent. This follows the trend established in former years for ammonium nitrate explosives to be accepted into nearly every surface blasting operation. Use of the slurry type of explosive, Hydromex (ammonium nitrate, T.N.T., and water), increased in 1961 to 250 per cent of that in 1960. The do-it-yourself explosive of ammonium nitrate and fuel oil (AN/FO) also continued its spectacular rise in annual consumption. During 1961 an innovation in its use was the introduction of compressed-air loading-machines

INSPECTION OF MINES

which allowed the AN/FO to be blown into horizontal or "up" holes. The commercial form, Amex II, was allowed underground and rapidly became popular. This type of explosive has good safety features in that it cannot be detonated by ordinary impact, but there is a danger that its fume characteristics will change under certain conditions. Thus its use is contingent on a permit being obtained from the Chief Inspector of Mines, Victoria. For those operators who wish to blend their own ammonium nitrate and fuel oil, written permission must be obtained from the Chief Inspector of Explosives, Ottawa.

DUST CONTROL AND VENTILATION

Problems in dust control and ventilation have continued to receive the attention of mine operators and Government departments. Dust counts and ventilation surveys were made by the staff of the Chief Inspector, Silicosis Branch of the Workmen's Compensation Board, and the results of these surveys made available to the Inspectors of Mines. The following information is taken from his report, "Summary of Dust Conditions at British Columbia Metalliferous Mines during the Year 1961":—

"1. Eighty-two surveys on dust control were made at fifty-seven metalliferous mines during 1961.

"2. The main object in this inspection work is to determine the concentrations of dust present in the atmospheres and where necessary, give recommendations to apply measures for dust control which will lower the amount of dust to which the workmen are subjected.

"3. It is not known what concentration of silica dust is considered safe to breathe without producing silicosis. Other factors besides the dust concentration must be taken into consideration. The figure of 300 particles per c.c. of air has been chosen as an objective to work towards. When this figure is attained, it indicates a very great improvement over conditions existing several years ago.

"4. Stoper drilling operations underground consistently produce the highest concentrations of dust during the time men are working. The dust counts at these operations used to be 2000 or more particles per c.c. of air. Sixty-two per cent of the surveys made in 1961 gave averages of less than 1000 particles.

"5. At leyner, jackleg, and plugger drilling operations underground the dust concentrations are lower than at stoper drilling operations. Sixty-six per cent of the surveys gave averages of less than 500 particles per c.c. of air.

"6. The averages for all other underground locations are quite satisfactory. Eighty-two per cent of the surveys made in 1961 gave averages of less than 300 particles. This condition is particularly satisfactory when considering the fact that the great majority of the men work in atmospheres containing this lower dust concentration. The percentage of mines having less than 300 particles has remained fairly constant during the past eleven years, varying between seventy-six per cent and ninety-three per cent.

"7. Some other operations underground produce denser dust concentrations than the operations mentioned above. One of these is blasting operations, but the workmen are generally not subject to this dust or subjected to it for short periods of time only. Most of the blasting operations can be arranged to occur at the ends of the shifts and allow sufficient time for ventilation to remove the dust from the workings before the following shift goes to work. A certain amount of these operations, such as blasting in chutes, may be considered necessary so that the production of ore is not interfered with but this should be reduced to the very minimum. If such operations are carried on during the shift, the dust produced is sampled in our routine surveys and included in our averages. 244

"8. Drilling in open pit mining operations give average dust concentrations that are very similar to those obtained at underground leyner drilling operations. Also the average of the dust counts obtained at all other operations in the open pit are similar to those obtained underground.

"9. The averages at some of the crushing plants were not as satisfactory as that during the five years previous to 1960. Forty-nine per cent of the surveys in 1961 gave averages of 300 or less particles. This was a slight improvement over 1960.

"10. Sixty-nine per cent of the surveys made in assay grinding rooms gave averages of less than 300 particles. This compares quite similarly with results obtained during immediate past years.

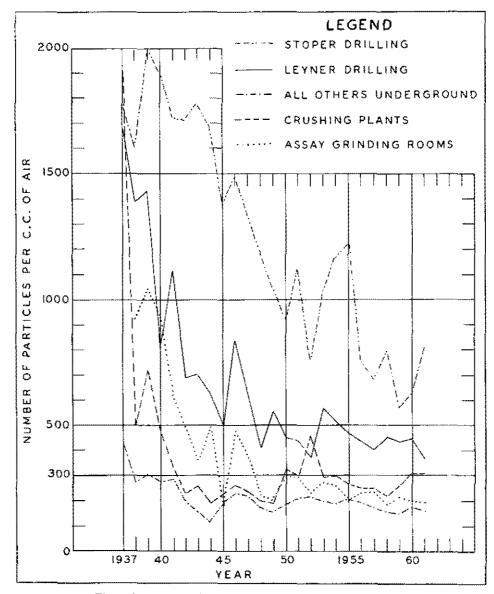


Figure 22. Average dust counts obtained each year since 1937.

"11. The percentage of certificates of fitness in good standing held by the employers for their workmen who require medical examination was more than ninety-six per cent. Considering the difficulties inherent in this work, the results are quite satisfactory.

"12. Aluminum powder prophylaxis treatments for the prevention of silicosis were given at three mines during the year. No aluminum powder therapy treatments were given at the Rehabilitation Clinic of the Workmen's Compensation Board in Vancouver, to men who have silicosis.

"13. The main measures for dust prevention, suppression, and elimination are receiving good attention at the metalliferous mines. The more important of these measures are: good ventilation; thorough wetting of the rock before it is handled in any manner; not subjecting the workmen to dust, fume and gases from blasting operations; using good exhaust systems in crushing plants, assay grinding rooms, etc. Full application of all measures at all times have not been obtained but the results have been quite satisfactory in most cases.

"14. Figure 22 is a graph showing the median of all the averages in various operations in the metalliferous mines, obtained each year since 1937."

SHIFTBOSS CERTIFICATES

The Metalliferous Mines Regulation Act, as amended in March, 1960, requires that every person employed underground be under the daily supervision of an official who is the holder of a shiftboss certificate issued under this Act. A Board of Examiners was appointed in May, 1960, and this consisted of R. B. Bonar, Deputy Chief Inspector of Mines, chairman, A. R. C. James, member; and J. E. Merrett, member.

An applicant for a shiftboss certificate is required to pass an examination on the *Metalliferous Mines Regulation Act* and general safe working practices. He must have three years' practical experience or one year plus a degree in mining engineering. He must also be the holder of a mine-rescue certificate and a first-aid certificate. A fee of \$5 is charged for the examination.

The Board may grant provisional certificates under such conditions as the Board considers advisable. During 1960 and 1961 respectively, 243 and sixtyeight provisional certificates were issued, each good for two years from date of issue. The first examination for permanent certificates was held at Vancouver on November 21, 1960, and since then at various places throughout the Province. By December 31, 1961, 138 men had received their certificates, as follows:—

Certifi- cate No.	Namo	Date	Certifi- cate No.	Name	Date
1	Albert Malvern Heath	21-11-60	20	Frank Wallace Griswold	4361
2	Herbert R, Shuttleworth	23-11-60	21	Edwin Peterson	4-3-61
3	Gordon M. Begon	23-11-60	22	Thomas Daniel Boone	4-3-61
4	Luke Thompson Kirby	23-11-60	23	William Albert G. Yerbury	4-3-61
5	Albert R, Wells	23-11-60	24	Garnet Coulter	4-3-61
6	John Arthur Dyck	23-11-60	25	Stanley Hodgson	4-3-61
7	James C. MacCullock	23-11-60	26	William Jones	4-3-61
9	Leslie R. Archibald	23-11-60	27	John Oakley Trinder	4-3-61
10	John Welter	23-11-60	28	Carl Hiemaas Olson	4-3-61
11	Robert Elmer Oakes	23-11-60	29	John Peter Rokosh	4-3-61
12	Alexander Pirie Mill	23-11-60	30	Harold Dean Johnson	4-3-61
13	James G. Scott	4-3-61	31	George Angus Derry	4-3-61
14	John K. Walsh	4-3-61	32	Roland Trevor Trenaman	4-3-61
15	William Cairns	4-3-61	33	William Arthur Cavan Jeffery	4-3-61
16	Myles Norman Anderson	4-3-61	34	Victor Albert Marunchak	4-3-61
17	George Bruce Crowe	4-3-61	35	Erick Walter Ekskog	4-3-61
18	William Leslie Pratt	4-3-61	36	Bernard Joseph N. Malchelasse	4-3-61
19	Percy Moody	4-3-61	37	Peter Richard Kotush	4-3-61

Certifi- ate No.	Name	Date	Certifi- cate No,	Name	Date
38	Albert Dellert	4-3-61	89	Walter Thiessen	13-5-61
39	William Ralph Robertson	4-3-61	90	George James Lee	
40	Gordon Russel Edmonds	4-3-61	91	Earl Fred Menhinick	13-5-61
41	William Harvey Webber	4-3-61	92	Adam Okrainec	13-5-61
42	Thomas Victor Mawson	4-3-61	93	George Vooro	13-5-61
43	William Muir, Jr.	4-3-61	94	Thomas William Illidge	13-5-61
44	John Helmer Ekskog	4	95	Edward Partridge	
45	James Dixon	4-3-61	96	Bernard Winston Bradford	13-5-61
46	Lloyd George Coulter	4361	97	Terrance Bunka	- 23-5-61
47	George Wilkie McFarlane	4-3-61	98	William Edwin Hyde	. 13-5-61
48	Francis Cornelius Lowes	4361	99	John Francis Ablett	. 13-5-61
49	John Walter Jewitt	43 61	100	Donald P. Cripps	23-11-60
50	William Cox	4-3-61	101	Donald C. Shavela	- 23-11-60
51	Reginald Walter Hoiditch	4-3-61	102	Herbert L. Fuerst	
52	John Joseph McKay	4-3-61	103	Robert J. Brown	. 9-9-6
53	Terrant Ogden Bloomer	4-3-61	104	Peter Badyk	9_9_6
54	James Allen Byrne	4-3-61	105	Brian Buckley	9-9-6
55	William Edward Walsh	4-3-61	106	William H. Childress	
56	Harvey Donald J. McDonald	4-3-61	107	Clarence L. Fiedler	
57	Brian T. Stephens	24-3-61	108	Robert G. Weber	9-9-6
58	William Muir, Sr.	22-4-61	109	Erling R. Mathisen	9-9-6
59	Hans Oslie	22-4-61	110	Kenneth Munro	9_9_6
60	John A. McSporran	22-4-61	111	Harold E. Wright	
61	Leslie McCarson	22-4-61	112	George Stregger	
62	Edmund H, Nagle	22-4-61	113	George Friesen	
63	James S. Riddell	22-4-61	114	Harvie M. Ingram	
64	George William Law	13-5-61	115	Albe Sevigny	22-9-6
65	Alexander John Richardson	13-5-61	116	Charles McNeil	. 20-9-6
66	Alvin Ronald Peterson	13-5-61	117	George A. Peebles	20-9-6
67	Ralph Giffin Peitzsche	13-5-61	118	Alexander H. J. MacCullock	20-9-6
68	Donald C. Plecash	13-5-61	119	Gordon Wyse	20-9-6
69	Carman McInnis	13-5-61	120	Archibald H. White	20-9-6
70	Ronald Louis Turner	13-5-61	121	Sydney W. Allen	
71	Roy G. McLeish	13-5-61	122	Marcel Guiguet	20-9-6
72	William Hugh Peter	13-5-61	123	John Johnson	
73	George A. Sutherland	13-5-61	124	James B. Magee	
74	John William Robinson	13-5-61	125	Joseph U. Blais	
75	John Donald McDonald	13-5-61	126	Gunter Polivka	
76	Peter Rollick	13-5-61	127	Bertram A. McConachie	
77	Norman Idwal Poole	13-5-61	128	Daryl G. McSpadden	
78	Charles Stanley Comfort	13-5-61	129	William W. Cummings	
79	George Walter Steacy	13-5-61	130	Donald M. Edwards	
80	Francis H. T. Webster.	13-5-61	131	Leonard E. Cox	
81	Sebastian Flegel	13-5-61	132	J. P. Duval	
82	Edward C. Ingham	13-5-61	133	Roy R. McMichael	
83	Bruce Glover Hawkins	13-5-61	134	Robert L. Ralph	
84	Philip E. Rowan	13-5-61	135	Angus McIntyre Scott	
85	Gerald A. Rose	13-5-61	136	John W. Rogers	
86	Fred Menhinick	13-5-61	137	John E. Merrett	
87	Robert Richardson	13-5-61	138	James N. McMorrow	
88	Allan W. Poole	13-5-61	139	Norman C. Hilborn	

MINE RESCUE, SAFETY, AND FIRST AID

The promotion of mine rescue and first aid continued at a high level throughout 1961. Three mine-rescue stations were fully maintained and another on a parttime basis. An instructor qualified in mine rescue and first aid was available at each station. Each station is equipped with sufficient self-contained oxygen breathing apparatus to maintain two mine-rescue teams of six men each should any emergency in nearby mines arise. There are also sets of mine-rescue equipment maintained at various mines, either on loan from the Government or owned by the mine. In 1961 Government-owned equipment totalled forty-seven McCaa two-hour apparatus and forty-eight Chemox three-quarter-hour apparatus, while that owned by mining companies totalled thirty-seven McCaa's and forty-seven Chemox's. Each station also has auxiliary equipment such as all-service masks, self-rescuers, gas detectors, inhalators, and a complete set of first-aid equipment. The district instructor makes a periodic check of mine-rescue and first-aid equipment at mines in his district. The station at Cumberland was maintained to serve the Tsable River coal mine, with an instructor hired on a part-time basis. There was an emergency call for the equipment in December when an underground fire broke out at the mine. Most of the rescue equipment was moved to the mine for use during the inspection and control of the fire. The only other call for equipment was for oxygen to be supplied to the local fire department. A truck is kept at the station for emergency purposes.

The Princeton station, which was opened in 1931, was closed in August, 1961, and the office of the instructor moved to Kamloops. A mobile unit has been used since 1957 to give service over a wider area. Mine-rescue and first-aid training were given at Cassiar, Texada, Britannia, Giant Nickel, Phoenix, Woodgreen, Canam, Ideal Cement, Imperial Limestone, Gypsum Lime and Alabastine, McKinney, and Craigmont mines. Forty-one persons received mine-rescue certificates, fourteen received industrial first-aid certificates, and 154 received St. John Ambulance certificates. Travelling during 1961 amounted to 11,862 miles.

The East and West Kootenay areas have been serviced since 1950 by a mobile mine-rescue unit stationed at Nelson. Mine-rescue courses were held at the Bluebell, Jersey, H.B., Reeves MacDonald, and Mineral King mines. First-aid classes were given at the larger mines or at nearby villages to a total of 147 St. John Ambulance and twenty industrial first-aid candidates. Help was given to the Nelson, Salmo, and New Denver fire departments in the use and care of oxygen breathing apparatus and gas masks. A course in life-saving was given to a class of thirty-five at Procter. One new McCaa two-hour apparatus was added to the equipment.

The mine-rescue station at Fernie is maintained principally to serve the coal mines in the area, but assistance in mine-rescue training is also given to personnel of the Sullivan and Mineral King mines. Thirty new candidates took the mine-rescue course and were awarded certificates. First-aid classes were fairly well attended, and twenty-two persons completed the course and received awards. There were no emergency calls for the equipment during 1961.

A certificate of competency in mine-rescue work is granted to each man who takes the training course and passes the examination set by the Department of Mines and Petroleum Resources. During 1961, in addition to the regular teams in training, eighty-six men took the course and were granted certificates, as follows:—

Certifi- cate No.			Certifi- cate No.	Name	Where Trained	
3255	William Francis Black	Bralorne,	3278	Robert Armour Mitchell	Cassiar.	
3256	Victor Zaporoyan	Bralorne.	3279	Rupert Lynn McKenzie	Cassiar.	
3257	William Muir, Sr	Kimberley.	3280	Donato Demitri	Cassiar.	
3258	S. Vander Maaten		3281	James R. Murdoch	Cassiar.	
3259	Arthur Lewis Burrows		3282	Kenneth R. Mayer	Grand Forks.	
3260	James Riddle Buchanan	Kimberley.	3283	Douglas Fraser Irving	Grand Forks.	
3261	Norman C. Knippleberg	Kimberley.	3284	Newman Glen Cornish	Grand Forks.	
3262	Dugal Roy McMillan	Kimberley.	3285	Howard Harry Engel	Greenwood,	
3263	Robert James McSporran	Kimberley.	3286	Ralph Andrew Andersen	Greenwood.	
3264	Leonard Nelson	Kimberley.	3287	Leslie Lewis	Cumberland.	
3265	John Clayton Hart	Kimberley.	3288	Thomas P. Shilton	Cumberland.	
3266	Stanley Hodgson	Kimberley.	3289	William Webb Cummings	Toby Creek.	
3267	Terrance William Johnson	Kimberley.	3290	Lloyd Walter Smith	Toby Creek.	
3268	Ambrose Joseph Kennedy	Kimberley.	3291	Ralph Paton Wismer	Toby Creek,	
3269	Hugh Joseph Chesser	Kimberley.	3292	Uldege Joseph Blais	Toby Creek.	
3270	Nicholas Kostuik	Kimberley.	3293	Reino Olavi Lehtonen	Toby Creek.	
3271	Thomas Pierre Huppie	Kimberley.	3294	Peter Jacob Jantz	Toby Creek.	
3272	Albert Tindale Richardson	Kimberley,	3295	Daryl George McSpadden		
3273	George Trowsdale	Cassiar.	3296	William Emil Stark	Toby Creek.	
3274	Frank Clarke	Cassiar.	3297	Harry Burgoyne	Toby Creek.	
3275	Cyril F. Dopson	Cassiar.	3298	Konrad Butler	Toby Creek.	
3276	Heinz Beyer	Cassiar.	3299	Gunther Poliva	Toby Creek.	
3277	Don Ritchat	Cassiar.	3300	Kenneth Slobodian	Toby Creek.	

Certifi- cate No.	Name	Where Trained	Certifi- cate No.	Name	Where Trained
3301	Dieter R. G. Millahn	Toby Creek.	3321	John A. McKinley	Riondel.
3302	Ubaldo Minelli	Toby Creek.	3322	Dennis G. Bouillet	Riondel.
3303	Robert Joseph Brown	Salmo.	3323	Stanton R. Foster	Riondel.
3304	Michael Karwtski		3324	Anthony J. Petrina	Merritt.
3305	Donald Lindley	Britannia Beach.	3325	Bruno Batschies	Merritt.
3306	William J. Marsh	Britannia Beach.	3326	Derek H. Channon	Merritt.
3307	Ronald D. Harrison	Britannia Beach	3327	Murray Zulps	Merritt.
3308	Ugo Peressini	Britannia Beach.	3328	Robert A. Baase	Merritt.
3309	Marcel Guillemette	Britannia Beach.	3329	Anthonic Luteyn	Merritt.
3310	John Johnson	Britannia Beach.	3330	Michael N. Osoki	Merritt.
3311	William Stewart	Salmo.	3331	George C. Sharpe	Merritt.
3312	Cory V. Sibbald	Salmo.	3332	Thomas M. Waterland	Merritt.
3313	Harold G. Copley	Salmo.	3333	John B. Evans	Merritt.
3314	Alastair H. Summers	Salmo.	3334	Charles J. Mountain	Merritt.
3315	John Sutherland	Salmo.	3335	Roger Pegoraro	Remac.
3316	Oliver D. Johnson	Kaslo.	3336	Anthony John Poloskas	Remac.
3317	Karl Borowski	Riondel.	3337	James N. McMorrow	Remac.
3318	Richard C. Wills	Riondel.	3338	William Oliver Pollock	Remac.
3319	Leonard Brown		3339	Larry Jacobsen	Remac.
3320	Archibald F. Buie	Riondel.	3340	Norman Hilborn	Remac.

The mine safety associations in different centres of the Province, sponsored by the Department of Mines and Petroleum Resources and aided by company officials, safety supervisors, Inspectors of Mines, and mine-rescue instructors, continued to promote mine-rescue, first-aid, and safety education in their respective districts.

The Vancouver Island Mine Safety Association held its forty-seventh annual competition in Cumberland on May 27, 1961. Three teams competed in the mine-rescue event—two from the Tsable River mine and a visiting team from Britannia. The winning team was from the Tsable River mine and was captained by W. High.

The East Kootenay Mine Safety Association held its annual competition at Fernie on June 3, 1961. Five teams took part in the mine-rescue competition—two from Kimberley, and one each from Fernie, Michel, and Toby Creek. First place was won by a Kimberley team captained by J. K. Walsh.

The Central British Columbia Mine Safety Association held its thirteenth annual competition at Kamloops on June 10, 1961. Four teams took part in the mine-rescue competition—two from Britannia and one each from Bralorne and Cariboo Gold Quartz mines. A Britannia team captained by L. Kirby took first place.

The West Kootenay Mine Safety Association held its fifteenth annual competition at Nelson on June 17, 1961. Five teams took part in the mine-rescue event two from Bluebell mine and one each from the Canadian Exploration, H.B., and Reeves MacDonald mines. A Bluebell team, captained by B. Ramage, took first place.

At all meets, competitions were held in first-aid as well as mine-rescue work. In these competitions, events were held for women and juniors. There were entries in these competitions from industries and organizations not necessarily connected with mining.

The Bridge River Valley Mine Safety Association held its annual competition at Bralorne on October 21, 1961. This was a first-aid meet with events for juniors and seniors. The senior event was quite spectacular in that simulated casualties were used to show what could happen on the fringe area of an atomic bomb burst. The winning team for this event was captained by M. Mitchell.

The sixth Provincial mine-rescue competition was held at Nanaimo on June 24, 1961. The winning teams from the Cumberland, Fernie, Nelson, and Kamloops events competed for a trophy and silver trays. The event was won by the Sullivan

INSPECTION OF MINES

mine team captained by J. K. Walsh. The team also won a silver cup which has been donated by the International Union of Mine, Mill and Smelter Workers for annual competition for mine-rescue teams from metalliferous mines. In conjunction with this competition, the Workmen's Compensation Board sponsored the fifth Provincial men's first-aid competition and St. John Ambulance sponsored the third Provincial ladies' first-aid competition. Teams competed which had won local events at Victoria, Kitimat, Vancouver, Fernie, Kamloops, Cumberland, and Nelson. The men's winning team was the Metropolitan Ambulance Services team captained by Ben Pietz. The ladies' winning team was the First-aid Patrol team from Vancouver captained by Carol Bradshaw.

JOHN T. RYAN TROPHY

The John T. Ryan Regional Safety Award for the metal mine with the lowest accident frequency record for 1961 was won by the H.B. mine of The Consolidated Mining and Smelting Company of Canada, Limited, at Salmo. To win this trophy the mine completed the year without a single compensable accident. The record also won the Dominion Ryan Trophy for metal mines for the third time, an outstanding record in the history of the competition. The company's safety organization, officials, and employees are entitled to high praise for this accomplishment.

The 1961 Regional Safety award for coal mines was won by the Tsable River mine of the Comox Mining Company Limited. Only five compensable accidents occurred at this mine during 1961. This excellent record won the Dominion Ryan Trophy for coal mines. The record is particularly enviable when it is considered that this is the first time the Dominion Trophy has been won by a coal mine in British Columbia.

WEST KOOTENAY MINE SAFETY ASSOCIATION TROPHY

The West Kootenay Mine Safety Association in 1951 donated a safety trophy for annual competition in order to encourage and promote safety in small mines not eligible for the John T. Ryan awards. At first the trophy was restricted to mines in the West Kootenay area, but in 1956 this restriction was removed.

The award is made to the mine having the lowest accident rate and working a total of from 2,500 to 30,000 shifts per year, one-third of these having been worked underground. An accident is taken as one which involved more than three days' loss of time.

In 1961 the award was won jointly by the Benson Lake mine of The Consolidated Mining and Smelting Company of Canada, Limited, and the Violamac mine of Violamac Mines Limited. Both mines completed the year without a single compensable accident. This is a most commendable record—for Benson Lake because it was in the throes of development and for Violamac because this was the fifth time this mine had won or shared first-place honours.

SAFETY COMPETITION, OPEN-PIT MINES AND QUARRIES

The open-pit or quarry industry has become increasingly important to the economy of British Columbia, but while its safety record has compared favourably with the rest of the mining industry, there has been little recognition of this fact. In 1961 the Department of Mines and Petroleum Resources instituted a safety competition for this industry and put up awards and a trophy for annual competition.

The trophy is awarded to the operation having worked a minimum of 75,000 man-hours in the year and having the lowest number of compensable injuries per million man-hours of exposure. For those operations which amass over 15,000 man-hours per year, certificates of achievement are given when no compensable accidents occur during the year.

In 1961 the trophy was won by the Phoenix Copper Company Limited with an injury frequency rate of 7.31. Four quarries received Certificates of Achievement, as follows: British Columbia Cement Company Limited, at Cobble Hill; Dominion Tar & Chemical Company Limited, at Blubber Bay; Ideal Cement Company Ltd., at Vananda; Evans, Coleman and Evans Limited, Producers Sand & Gravel Division at Royal Roads.

BRITISH COLUMBIA MINING ASSOCIATION, SAFETY DIVISION

This division continued to foster and encourage safe working practices to prevent accidents and injuries, and to supervise a safety-training programme in the mining industry. The lost-time injury frequency of the reporting lode-mining companies was reduced from twenty-eight in 1960 to twenty-one lost-time injuries for each million man-hours of exposure in 1961. This decrease is the greatest average yearly decrease since inauguration of the programme in 1955.

Injury statistics for 1961 are based on reports from twenty-four lode-mining companies and one coal-mining company, while in 1960 only twenty-one lode companies reported.

With the expanding interest in safety, with the evolution of safer work procedures and methods, and with additional training in safety, progress is being made in the difficult task of injury prevention.

AWARDS FOR BRAVERY

The following is taken from the Dangerous Occurrence section, page 206, of the Annual Report for 1960: "On October 21st, 1960, at Britannia, a miner was trapped for eight hours in a cave caused by a rock-burst. His left forearm was removed during the rescue operation."

In October, 1961, Her Majesty Queen Elizabeth bestowed honours for heroism performed in the rescue involved in the above incident. John Johnson received the Queen's Commendation for Brave Conduct for his work as leader of the rescue team. George J. Priessler received the George Medal for his work on the rescue team, being the first man to reach the trapped miner. Dr. B. Flather received the award of Member of the Order of the British Empire for performing the difficult surgical amputation that was necessary to release the trapped miner.

Coal

By Robert B. Bonar, Deputy Chief Inspector of Mines

CONTENTS

251
~ <i>~~</i>
. 255
_ 255
255
. 259
. 260
. 260
. 260
- 260
_ 260
. 261
. 261
. 261
- 262
. 262
_ 262
_ 263
_ 266
_ 273

PRODUCTION

The gross output in short tons of the coal mines of the Province for 1961 was 1,018,832 tons, an increase of 174,332 tons or 20.6 per cent over 1960. A total of 141,747 tons came from strip mines at Michel and Tent Mountain.

The Vancouver Island District produced 78,310 tons, a decrease of 13,094 tons or 14.3 per cent from 1960.

The Northern District production was 7,826 tons, an increase of 116 tons or 1.5 per cent over 1960.

The Nicola-Princeton District production was 505 tons, a decrease of 900 tons or 63.9 per cent from 1960.

The East Kootenay District production was 932,191 tons, an increase of 188,212 tons or 25.3 per cent over 1960.

251

Colliery and Mine	Gross Output Mined during Year (Tons)	Days Worked	Total Number of Employees	Daily Output per Employee (Tons)	Yearly Output per Employee (Tons)	Number of Employees Underground	Daily Output per Underground Employee (Tons)	Yearly Output per Underground Employee (Tons)
Tsable River Mine, Comox Mining Co. Ltd.	75.324	234	105	3.06	717	95	3.38	793
Midan Mine (Chambers No. 5 mine)	853	228	2	1.87	426	2	1.87	426
Loudon No. 6 mine		85	3	1.38	118	2	1.38	118
Lewis mine (Timberlands)		176	3	1.28	227	3	1.28	227
Carruthers & Wakelem No. 3 mine		103	1 2	2,16	223 121	1 2	2.16 1.15	223 121
Stronach mine Undun No. 3 mine		182	2	1.13	316	$\frac{1}{2}$	1.13	316
Oldnit 140, 5 littlig and an an an an an an an an an an an an an	033	102	-	1.1.1	510	-	1415	210
Princeton Blue Flame No. 3 mine	346	64	2	2,70	173	2	2.70	173
Coldwater mine		100	22	0.80	80	2	0.80	80
	• •							
Bulkley Valley Collieries	5,764	138	16	2.61	360	11	3.79	524
Gething No. 3 mine	2,062	206	7	1.43	295	5	2.00	412
Michel Colliery (underground)	790.444	237	771	4.32	1.025	578	5.76	1,367
Michel Colliery (strip)		237	13	28.40	6,740			
Coleman Collieries (strip)		216	13	[19.36	4,163			9.88.44 VII
			l	[]				[

OUTPUT AND PER CAPITA PRODUCTION, 1961

Nore .-- The Reschke mine did not operate during 1961.

DISTRICT OUTPUT AND PER CAPITA PRODUCTION, UNDERGROUND MINES, 1961

District	Gross Output Mined during Year (Tons)	Total Num- ber of Employees at Producing Collieries	Yearly Out- put per Employee (Tons)	Number of Men Employed Underground in Producing Collicrics	Yearly Output per Underground Employee (Tons)
Vancouver Island Nicola-Princeton Northern East Kootenay	78,310 505 7,826 790,444	118 4 23 771	664 126 340 1.025	107 4 16 578	732 126 489 1.367
Whole Province	877,085	916	957	705	1,244

OUTPUT PER MAN-SHIFT, UNDERGROUND MINES, 1952-61

Year	Man-shifts ¹	Tonnage	Average per Man-shift (Tons)
952	383,422	1,388,732	3.62
953	333.922	1,171,932	3.51
954	280,353	1.064.023	3.79
955	304,139	1.157.813	3.86
956	307,821	1,100,434	3.57
957	226.536	945,848	4.17
958	204,148	728.722	3.56
959	171.608	646.788	3.77
960	210,254	766.581	3.66
981	213,962	877,085	4.10

1 Includes both surface and underground workers.

				Used			Sto	cks			Sa	les		Total
Mine	Gross Output	Washery Refuse	Net Output	Under Com- panies' Boilers, etc.	Used in Making Coke	On Hand First of Year	On Hand Last of Year	Added To	Taken From	In Canada	In U.S.A.	Else- where	Total Sales	Coal Sold and Used ¹
Vancouver Island District												1	[
Comox Mining Company LtdTsable]	1	0.150			ļ		1	1		72.022
River Colliery	75,324 853		75,324 853			9,152	11,453	2,301		73,023			73,023	73,023
Midan mine (Chambers No. 5) Loudon No. 6 mine	853		353						*	353			853 353	353
Lewis mine (Timberlands)	681		681							681			681	681
Carruthers & Wakelem No. 3 mine	223		223							223			223	223
Stronach mine	243		243					.		243			243	243
Undun No. 3 mine	633		633							633			633	633
Totals, Vancouver Island District.	78,310		78,310			9,152	11,453	2,301		76,009			76,009	76,009
Nicola-Princeton District					-							ļ		
Princeton Blue Flame No. 3 mine	346		346	<u> </u>		<i>,</i>		······		346			346	346
Coldwater mine	159		159							159			159	159
Totals, Nicola-Princeton District	505	1	505]					[505]		505	505
Northern District														
Bulkley Valley Collieries	5,764		5,764		·	306	220	·	86	5,850			5,850	5,850
Gething No. 3 mine	2,062		2,062		·/····					2,062	1		2,062	2,062
Totals, Northern District	7,826		7,826			305	220		86	7.912			7,912	7,912
East Kootenay District					Ì				Ì		1		}	
The Crow's Nest Pass Coal Co. Ltd.— Michel Colliery (underground and]				1		-
strip)	878,064	86,014	792,050	14,698	200,190	14,760	20,932	6,172		186,462	9,041	375,487	570,990	785,878
Coleman Collieries (strip)	54,127	5,2892	48,838		l				••	48,838		<u> </u>	48,838	48,838
Totals, East Kootenay District	932,191	91,303	840,888	14,698	200,190	14,760	20,932	6,172	<u> </u>	235,300	9,041	375,487	619,828	834,716
Coal						i i								-
Grand totals for Province	1,018,832	91,303	927,529	14,698	200,190	24,218	32,605	8,473	86	319,726	9,041	375,487	704,254	919,142
Coke												ĺ		ļ
The Crow's Nest Pass Coal Co. Ltd Michel Colliery	1 56,15 1		156,151	·		35,945	31,393	4,552		89,034	71,669		160,703	

¹ Includes coal used in making coke and coal used under company stationary and locomotive boilers, etc. ² Estimated.

-

COAL

Mine		Supervision and Clerical			Miners		Helpers		Labourers		Mechanics and Skilled Labour			Total Men Employed				
Vancouver Island District	U.	A,	Т.	U.	A. 1	т.	U.	A.	т.	U. 1	A.	Т.	U.	A.	Т.	υ.	A.	Т.
Comox Mining Company Ltd.—Tsable River Colliery Midan mine (Chambers No. 5 mine)	9	2	11	58 1		58 1				25	4	29	3	4	7	95 2	10	103
Loudon No, 6 mine Lewis mine (Timberlands)			1	2	}						1	1				2	1	
Carruthers & Wakelem No. 3 mine				ĩ		1			*							1		1
Stronach mine	- 1		1	1		1										2		2
Undun No. 3 mine		•	1	1		1		· ·								2	·	2
Totals, Vancouver Island District	14	2	16	65		65				25	5	30	3	4	7	107	11	118
Nicola-Princeton District	1							ł	ł									
Princeton Blue Flame No. 3 mineColdwater mine	1	 	1 1	1 1												22		2
Totals, Nicola-Princeton District	2		2	2		2		Í	·						[4		1 4
Northern District]				ļ										ļ		
Bulkley Valley Collieries	2	2	4 1	4 2		4 2	4 1	····	4	1	1 2	2 3		2	2	11 5	5 2	16
Totals, Northern District	3	2	5	6	[6	5		5	2	3	5		2	2	16	7	23
East Kootenay District	{	Ì	1	Į		l	l	Į	l	ł	l	l		(}		t	l	Į
The Crow's Nest Pass Coal Co. Ltd.— Michel Colliery (underground)	37	22	59	283		283	117		117	57	48	105	84	123	207	578	193	77
Michel Colliery (strip)		1 1	1 1								 			12 12	12 12		13 13	12
Totals, East Kootenay District	. 37	24	61	283		283	117		117	57	48	105	84	147	231	578	219	797
Grand totals for Province	56	28	84	356		356	122		122	84	56	140	87	153	240	705	237	942

Collieries of British Columbia, 1961—Men Employed, Distribution by Collieries and by Districts

NOTE.-U.=underground; A.=above ground; T.=total.

MINES AND PETROLEUM RESOURCES REPORT, 1961

COAL

COAL-PREPARATION PLANTS

The construction of an additional cleaning plant to use feldspar as a medium was started at Michel Colliery, The Crow's Nest Pass Coal Company Limited, Fernie, in July, 1961. It is estimated to cost three-quarters of a million dollars and will be capable of cleaning 150 tons of minus ¹/₄-inch or ¹/₂-inch coal per hour. Provisions have been made so that capacity may be increased to 180 tons per hour when necessary. Part of the old briquetting plant was incorporated in the new building. This construction is part of the company's modernization programme and is expected to be completed early in 1962.

COKE-MAKING

Coke is made at only one plant in the Province, that of the Michel Colliery, The Crow's Nest Pass Coal Company Limited, Fernie.

LABOUR AND EMPLOYMENT

In 1961, 942 persons were employed in and about the coal mines of the Province, a decrease of 240 from 1960. Because of the five-day week in force throughout the Province at the larger mines and the legal holidays, the maximum number of working-days was 241. In the Vancouver Island District the one large mine, the Tsable River mine, worked 234 days. In the East Kootenay District the Michel Colliery worked 237 days.

COMPETITION FROM COAL PRODUCED OUTSIDE OF BRITISH COLUMBIA

In 1961 the shipment of Alberta coal and briquettes to British Columbia totalled 321,909 and 8,726 tons respectively.

The following table shows the amount of Alberta coal brought into British Columbia during the past ten years:—

Year	Short Tons	Year	Short Tons
1952	1,021,484	1957	672,527
1953	859,385	1958	532,911
1954	891,194	1959	437,118
1955	932,764	1960	379,668
1956	860,329	1961	321,909

Of the 704,254 tons of British Columbia coal marketed, 160,666 tons was sold for domestic and industrial use in Alberta, Saskatchewan, Manitoba, and Ontario; 2,099 tons was sold for railroad use in Canada; 9,041 tons was exported to the United States; and 375,487 tons was exported to Japan.

The amount sold for domestic and industrial use in the Province was 156,961 tons.

ACCIDENTS IN AND AROUND COAL MINES

In 1961 there were six fatal accidents, as compared with none in 1960. The number of fatal accidents per 1,000 persons (underground and strip-mine personnel) employed was 6.37, compared with 0.00 in 1960, 1.89 in 1959, 0.00 in 1958, 1.45 in 1957, 4.39 in 1956, 3.38 in 1955, 0.69 in 1954, 3.22 in 1953, and 1.78 in 1952.

The number of fatal accidents per 1,000,000 gross tons of coal (underground and strip-mine coal) produced was 5.88, compared with 0.00 in 1960.

The following table shows comparative figures for fatal accidents for 1960 and 1961:---

Company	Colliery	1961	1960
The Crow's Nest Pass Coal Co. Ltd	Michel	6	

The following table classifies the fatal accidents in coal mines as to cause:---

FATAL ACCIDENTS CLASSIFIED AS TO CAUSE

Cause	1	1960		
Cause	Number	Per Cent	Number	Per Cent
Runaway trip	2	33.3		
Fall of roof rock	1	16.7		
Struck by runaway plank in raise	1	16.7		
Fall of coal	2	33.3		
Totals	6	100.0		j <u> </u>

In 1961 there were six fatal accidents at the mines in the Province, all of which occurred underground.

Juczas Serksnas, aged 51, single, and employed as a miner in "A" West mine, Michel Colliery, was fatally injured when he was buried under a large cave of coal at about 11.25 a.m. on May 3, 1961.

The accident occurred near the entrance to No. 1 split, No. 5 room off No. 4 raise, No. 2 left belt-road section. The deceased and his partner were engaged in retimbering a portion of caved coal roof near the entrance to No. 1 split when six of seven sets of timber collapsed, allowing about 125 tons of top coal to drop and completely fill the roadway. Serksnas was buried by the coal, but his partner escaped with minor injuries. There was no warning of the impending cave. The sets of timber had been reinforced by reliners and were double centre-posted.

Edward Sweeney, aged 35, married, and employed as a miner in "A" North mine, Michel Colliery, was fatally injured when he was partially buried under a cave of rock at about 10.20 a.m. on May 24, 1961.

Sweeney, with the assistance of two other men of the "Borecut" crew, were engaged in placing a centre post under a cracked stringer outby the mining-machine when two other stringers broke, allowing about ten cars of rock to fall and partly bury the deceased. All of the timber sets had been braced, but they were not centre-posted, in order to allow the mining-machine to manœuvre.

Joseph Jarolim, aged 61, married, and employed as a conveyor attendant in "A" West mine, Michel Colliery, was fatally injured when he was struck by a runaway trip of empty cars and timber-trucks at about 9.30 a.m. on June 2, 1961.

The haulage crew on No. 4 incline was lowering the trip, consisting of sixteen mine cars and timber-trucks, when the first ten cars and trucks became disengaged from the trip and travelled a distance of about 1,000 feet before being derailed near the bottom of the incline. The deceased had been working near where the runaway trip derailed and was fatally injured by same. He had been warned of the lowering of the empty trip.

The dropping-out of a coupling pin was the apparent cause of the trip separating. The pin was not found.

Stanley Kabat, aged 60, married, and employed as a miner in "A" West mine, Michel Colliery, was fatally injured when he was struck by a runaway trip of two loaded coal-cars at about 3 a.m. on June 6, 1961.

The deceased and partner were engaged in timbering on No. 2 belt supply road when the accident occurred. Two other miners were timbering inby on the same road, which inclines rather steeply toward the face. These miners loaded two cars of coal and then proceeded to lower them by tugger hoist down the incline to where a sprag post was set from floor to roof. This portion of the roadway is comparatively flat. The cars were usually lowered to the sprag, which held them while the tugger rope was replaced by a rope from a bigger hoist, which then was used to lower the trip down to the belt-road parting.

At the time of the accident the two cars stalled on the flat section of the roadway before it reached the sprag. The two miners started to push the cars when they appeared to run away. The tugger hoistman had left his post when the cars stalled, and proceeded down the roadway to find out the trouble. On noticing the rope moving he ran back to the tugger and applied the brakes and also put the hoist into reverse. This action apparently broke the rope, which allowed the trip to run away freely. The trip broke the sprag post and continued on down the roadway to where Kabat and partner were working. The trip derailed at this point and knocked out some timber sets. The falling timber apparently fatally injured Kabat. The rope in question was old and was apparently not in good condition. The tugger hoistman did not have too much experience in operating the hoist.

John Rastocnik, aged 40, married, and employed as a miner in "A" South mine, Michel Colliery, was fatally injured when struck by a runaway plank in a raise at about 7.40 p.m. on December 5, 1961.

Rastocnik was one of a crew who were building a chute in No. $2\frac{1}{2}$ raise. Two members of the crew had gone to the top of the chute at the surface, 170 feet away, to lower a large plank. The plank was being lowered by a hemp rope and secured by a half-hitch when somehow the plank slipped out of the hitch and slid down the raise. The plank struck a pile of other planks that were held in the chute by a plank barricade. The impact broke the barricade and allowed the planks to slide down the chute to the point where Rastocnik was working. One of the planks struck Rastocnik on the face and pushed his head against a steel rail battery, thus inflicting fatal injuries.

The slippage of the plank from the rope was apparently due to the icy condition of the plank and rope and to carelessness in attaching the rope to the plank.

Ronald Saad, aged 36, married, and employed as a fireboss in "A" South mine, Michel Colliery, was fatally injured when he was partially buried by a fall of coal and timber at about 3.20 a.m. on December 11, 1961.

The deceased was coupling two shots in the rib at the face of a retreating pillarextraction room, preparatory to blasting, when a large rock fell from the roof in the gob ahead that dislodged the front set of timber under which he was standing. A quantity of top coal that fell when the set was dislodged partially buried Saad. He was recovered very soon after the accident but was found to be dead from shock and asphyxiation. The fall of rock gave no warning.

Including the foregoing fatal accidents, 219 accidents involving loss of four days' work or more were reported to the Department by the management of the various mines.

The following tables classify the accidents in coal mines in 1961:---

	Number of Accidents	Percentage of Accidents
Underground		
Miners	110	50.22
Drillers and facemen		
Haulage and conveyor men		15.98
Trackmen and mechanics	14	6.39
Supervisors	8	3.66
Timbermen		3.20
Coal-cutters		
Miscellaneous	18	8.22
Surface—		
Shops	4	1.83
Surface	3	1.36
Preparation and coke-ovens		7.31
Miscellaneous	4	1.83
Totals	219	100.00

ACCIDENTS CLASSIFIED AS TO OCCUPATION

ACCIDENTS CLASSIFIED AS TO CAUSE

Cause	Number of Accidents	Percentage of Accidents
Fall of ground	55	25.11
Fall of material and flying material		7.76
Lifting and handling equipment and material		28.31
Machinery and tools	40	18.27
Slipped and tripped		15.07
Falling off staging and platforms	2	0.91
Miscellaneous	10	4.57
Totals	219	100.00

Accidents Classified as to Injury

Injury	Number of Accidents	Percentage of Accidents
Head and neck		7.76
Eyes	2	0.91
Trunk		23.74
Back	16	7.31
Arms	8	3.66
Hands and fingers	55	25.11
Legs	49	22.38
Feet		8.22
Toes	2	0.91
Totals	219	100.00

- -

Compensable¹ Accidents, Including Fatal Accidents Related to Tons Mined and Men Employed in and about Coal Mines

Year	Number of Accidents	Number of Persons Employed	Frequency per 1,000 Persons	Tons Mined (Gross)	Tons Mined per Accident
1952	636	1.681	378	1,650,619	2,595
1953	557	1,550	359	1,576,105	2,829
1954	360	1,434	251	1,447,608	4.021
1955	372	1,478	252	1.484,066	3,989
1956	385	1,366	282	1,589,398	4,129
1957	340	1,380	246	1,221,766	3,593
1958	214	1.086	197	882,962	4,126
1959	189	1.056	179	757.628	4,009
1960	235	1,182	198	844,500	3,593
1961	219	942	232	1,018,832	4,652

¹ Compensable accident means an injury causing a loss of four days' work or more.

EXPLOSIVES

The following table shows the quantity of explosives used in underground coal mines in 1961, together with the number of shots fired, tons of coal produced per pound of explosive used, and the average number of pounds of explosive per shot fired (these quantities include all the explosives used for breaking coal and rock in coal mines):—

Colliery	Quantity of Explosives Used (Pounds)	Coal Mined (Tons)	Total Number of Shots	Average Tons per Pound of Explosives Used	Average Pounds of Explosives per Shot Fired
Tsable River Colliery (Comox Mining Company Ltd.) Midan Mine (Chambers No. 5) Loudon No. 6 mine Lewis mine (Timberlands) Carruthers & Wakelem No. 3 mine Stronach mine Undun No. 3 mine	27,835 300 650 850 350 200 400	75,324 853 353 681 223 243 633	59,000 400 900 1,100 420 260 600	2.71 2.84 0.54 0.80 0.63 1.21 1.58	0.47 0.75 0.72 0.77 0.83 0.77 0.67
Totals for district	29,985	78,310	62,680	2,61	0.48

VANCOUVER ISLAND DISTRICT

NICOLA-PRINCETON DISTRICT

Princeton Blue Flame No. 3 mine		346	320	1.92	0.56
Coldwater mine		159	200	1.59	0.50
Totals for district	280	505	520	1.80	0.53

NORTHERN DISTRICT

Bulkley Valley Collieries	6,300	5,764	7,280	0.91	0.86
	1,900	2,062	2,000	1.08	0.95
Totals for district	8,200	7,826	9,280	0.95	0.88

EAST KOOTENAY DISTRICT

Michel Colliery (underground)	157,833	790,444	136,957	5.01	1.15								
Province													
Totals for Province	196,298	877,085	209,437	4.47	0.94								

MINES AND PETROLEUM RESOURCES REPORT, 1961

	Lb.
Monobel of different grades	193,499
Permissible rock powder	2,799
Total	196,298
	120,220

QUANTITY OF DIFFERENT EXPLOSIVES USED

MACHINE-MINED COAL

In 1961, mining-machines produced approximately 96,754 tons or 11.3 per cent of the total output from underground mining. A total of 141,747 tons of stripmined coal was removed by mechanical means.

SAFETY LAMPS

There were 1,042 safety lamps in use in the mines of the Province. Of this number, 955 were approved electric lamps, mostly of the Edison type.

APPPROVED SAFETY LAMPS—ELECTRIC AND FLAME

The following is a list of approved safety lamps, electric and flame:---

The Wolf lamp, flame type.

The Koehler lamp, flame type.

- The Edison electric lamp (cap) under Approval No. 18 of the United States Bureau of Mines, and all Edison lamps up to and including Model P, carrying the Approval Certificate No. 26 of the United States Bureau of Mines, Model R-4, Approval No. 29.
- The Wheat electric lamp and having Approval No. 20, as issued by the United States Bureau of Mines.
- The Wolf electric lamp, No. 830c.
- The electric lamp manufactured by the Portable Lamp and Equipment Company, under Approval No. 27 of the United States Bureau of Mines.
- M.S.A. single-cell trip lamp, carrying United States Bureau of Mines Approval No. 1009, approved for use on haulage trips in mines.
- The Davis M.L. model pneumatic electric lamp.

ELECTRICITY

Electricity is used for various purposes on the surface and underground at three collieries. A total of 11,267 horsepower was used in and about these mines. Detailed information as to how and where this power was used is given in the report of the Senior Electrical Inspector of Mines.

INSPECTION COMMITTEES

The provisions of the *Coal Mines Regulation Act*, section 65, General Rule 19, require that an inspection committee of workmen shall inspect the mine regularly on behalf of the workmen and make a true report of the conditions found. In all the larger mines of the Province this rule is fully observed, and copies of the report are sent to the Inspectors for the district. The work of these committees is valuable and assists in furthering the interests of safety at the various mines.

COAL DUST

The danger of accumulations of coal dust on the roadways and in the workingplaces is fully realized, and as a rule the regulations regarding the control of coal

COAL

dust are adequately carried out. Large quantities of limestone dust are used continually in the larger mines to combat this hazard. It is used in the roadways, working-places, and for the tamping of shots.

Dust samples are taken regularly from roof, sides, and floor of mine roadways and analysed. The reports of the analyses are forwarded to the District Inspector each month.

DIESEL LOCOMOTIVES

Early in August, 1950, the first diesel underground locomotive to be used in any mine in British Columbia made its trial runs in No. 9 mine, Elk River Colliery, The Crow's Nest Pass Coal Company Limited.

MILLISECOND DELAY DETONATORS

In February, 1951, an amendment to the *Coal Mines Regulation Act* was passed to allow, with the permission of the Chief Inspector of Mines, more than one shot to be fired at a time in any coal mine or district of a mine. For further details *see* 1954 Annual Report.

DANGEROUS OCCURRENCES

On February 27, 1961, a small fire was found burning in a wood stopping outside a sealed fired area, on the No. 9 belt-road counter level, "A" West mine, Michel Colliery. The fire apparently originated from the fire zone, and had crept past a number of seals and rock-dust barrier erected in 1960. The fire was extinguished and the stopping repaired.

On March 6, 1961, a miner was partially buried and entombed by a fall of coal at the face of a pillar extraction in the No. 3 left belt-road section, "A" West mine, Michel Colliery. Rescue operations were started immediately, and two and one-half hours later the miner was released. He suffered only minor injuries.

On May 21, 1961, an inrush of water entered the workings of "A" West mine, Michel Colliery, following the undermining of a surface creek by a cave in the gob workings in the No. 4 left belt-road section. The water caused several caves on the roadways by undermining the timbers, and washed approximately 200 tons of coal down to the main west level. The creek was relocated around the caved area on the surface and the cavity filled with gravel.

On July 18, 1961, traces of carbon monoxide gas ranging up to 0.01 per cent were found issuing from an abandoned area of gob workings in the No. 2 left belt-road section, "A" West mine, Michel Colliery. There were no indications of smoke, odour, or increase in temperature, but as it was suspected that heating was taking place in the gob the area was sealed off.

On August 16, 1961, a gas explosion occurred in the coke breeze drier at the by-product plant, Michel Colliery. Several air ducts were distorted, and the exhaust stack on the roof of the building was damaged. One workman's eyebrow was slightly singed. The incident was attributed to a defective value on the gas-line feeding the burners on the drier.

On August 16, 1961, the 100-horsepower electric motor operating the main surface fan ventilating the "B" Seam mine, Michel Colliery, was damaged during a severe electrical storm. Several coils on the stator were extensively burnt, and the motor had to be replaced. The mine was idle at the time of the incident.

On August 25, 1961, a fire was found burning in a seal at No. 6 Right crosscut, No. 9 belt-road section, "A" West mine, Michel Colliery. The fire was extinguished and the seal repaired. Since that time concrete seals have been erected on the three main inclines, thus sealing off the district completely.

On October 31, 1961, an electric trailing cable used for operating a shuttle car in the No. 102 slope district, "A" East mine, Michel Colliery, was damaged. There was a flash but no one was injured. The protective equipment functioned immediately the incident occurred, thus cutting off the power to the machine.

Subsequent investigation revealed that the reel for coiling the cable on the car had ceased to function momentarily and the cable looped beneath the machine, where it was damaged by the undercarriage of the conveyor used for unloading the car.

On December 18, 1961, slight smoke was discovered issuing from the Nos. 6 Right and 8 Right level abandoned gob areas, where extensive pillar extraction had taken place.

A search to discover the seat of the fire by mine-rescue crews equipped with self-breathing apparatus proved futile because of the almost total caving brought about by the pillar extraction. On consultation with officials of the Department, the management of the mine decided to seal off the entire area. In all, twenty-eight seals were erected in two days, requiring the services of the whole mine crew of about 100 men to complete.

To date the atmosphere within the sealed-off area has proved to be extinctive, but a small percentage of carbon monoxide is still detectable.

It is thought that the fire is the direct result of the breakdown of the main fan late in 1961. The small auxiliary fan used while the main fan was being repaired was unable to ventilate the gob areas as well as the active mine workings.

PROSECUTIONS

There were no prosecutions instituted at the various mines during the year.

SUPERVISION OF COAL MINES

During 1961 twelve companies operated seventeen mines, employing 705 men underground. In the supervision of underground employees, there were three managers, nine overmen, two shiftbosses, and forty-five firebosses, or approximately one official for every twelve men.

BOARD OF EXAMINERS FOR COAL-MINE OFFICIALS

FIRST-, SECOND-, AND THIRD-CLASS CERTIFICATES AND MINE SURVEYORS' CERTIFICATES

The Board of Examiners, formed on July 10, 1919, consists at present of R. B. Bonar, Deputy Chief Inspector of Mines, chairman and secretary; A. R. C. James, Inspector of Mines, member; and D. R. Morgan, Inspector of Mines, member.

The examinations are held at least once a year and more often if necessary. Examinations were held at the Fernie centre in 1961 on May 17th, 18th, and 19th.

The total number of candidates at these examinations were as follows: Thirdclass certificates, six (passed); second class, one (passed); mine surveyor's certificate, one (failed).

The following were the successful candidates: Third-class—Philias J. Gauthier, Henry G. Beard, Gerhard F. Nowotny, Spencer Morgan, Jr., Nillo Quarin, Michael Mihalynuk; second class—Henry R. Eberts.

All officials, before engaging in multiple blasting with millisecond delay detonators, are required to obtain a permit to do so from the Board of Examiners (Coal-mine Officials). This permit is issued only after the applicant has successfully passed oral and practical examinations in such work.

In addition to the examinations and certificates already specified as coming under the Board of Examiners, the Act provides that every coal-miner shall be the holder of a certificate of competency as such. Examinations are held as circumstances warrant in coal-mining districts, and no certificate is granted where the candidate has failed to satisfy the Board as to his fitness, experience in a coal mine, and a general working knowledge of the English language.

During 1961 fifty-one candidates were successful in obtaining coal-miners' certificates. In addition to the certificates granted above, substitute certificates were issued to those who had lost their original certificates.

The Board of Examiners desires to thank the different coal-mining companies for use of their premises for the holding of examinations where necessary.

NOTES ON COAL MINES

VANCOUVER ISLAND INSPECTION DISTRICT

By R. B. Bonar

The gross output of coal from the Vancouver Island Inspection District was 78,310 tons, a decrease of 13,094 tons or 14.3 per cent from the 1960 output. Only one large coal mine, the Tsable River mine, is now in production on the Island. Operations in the once important Nanaimo coalfield are now restricted to six very small mines, providing employment for no more than thirteen men. These mines operate in outcrop, pillars, and barriers left during earlier working.

The Island coal-mining industry has suffered a rapid decline in the past few years. Production has declined over 85 per cent since 1951. This condition has resulted from loss of markets due to competition from other fuels, high cost of production, and from the depletion of economic reserves in the Nanaimo coalfield.

In 1961 there were six accidents reported and investigated. There were no fatal accidents.

The annual mine-rescue and first-aid meet organized by the Vancouver Island Mine Safety Association was held at Cumberland on Saturday, May 27th. Two teams from the Tsable River mine and a visiting team from Britannia mine participated in the mine-rescue competition, and a very high standard of performance was maintained. The winning team was the Tsable River Team No. 2, captained by William High.

NANAIMO (49° 123° S.W.)

Midan Mine

This mine, formerly known as Chambers No. 5 mine, is in Section 14, Range 7, in the Douglas district, near Extension. It is now operated by the Midan brothers; A. Midan, fireboss.

The present workings consist of a 600-foot slope driven in a section of the Wellington seam in the vicinity of the old Vancouver slope workings. The slope pillars and the pillars between the rooms driven to the right off the slope are being mined on the retreat. The coal is mined by picking out the middle band of carbonaceous shale with hand-picks. It is then blasted and hand-loaded into cars which are hauled to the tipple by a gasoline-driven hoist. A small shaker screen sorts the coal into 2-inch, 1- to 2-inch, and under 1-inch sizes.

Total production in 1961 was 853 tons over a working period of 228 days with a crew of two men. Working conditions were found to be satisfactory in the course of inspections. No accidents were reported.

Lewis Mine Glyn Lewis, operator and fireboss. The property comprises two small mines operating in the Wellington seam in a small area of outcrop coal that was left when No. 8 mine was aban-

doned by Canadian Collieries (Dunsmuir) Limited. The seam outcrops on the side of a ridge parallel to and immediately south of the Nanaimo River valley at an elevation of 540 feet above sea-level. The coal measures dip southward at 8 degrees. The two mines are one-third of a mile apart.

The new mine, which commenced production in May, 1951, is in Range 1, Section 2, of the Cranberry district. It operates in an area of coal outcrop about 1 acre in extent, which is bounded on the west by a thrust fault that also formed the western boundary of the old No. 8 mine. The seam is 6 feet thick, including two thin rock bands.

The coal is blasted off the solid and hand-loaded into cars which are hauled to the surface up the slope by a small hoist driven by a gasoline-operated engine. A shaker screen sorts the coal into lump, nut, and pea sizes. Total production in 1961 was 681 tons over a working period of 176 days, with a crew of three men. Working conditions were found to be satisfactory, and no accidents were reported.

J. Unsworth and A. Dunn, operators; A. Dunn, fireboss. Undun No. 3 Mine This mine was brought into production in September, 1960,

and is located near the No. 3 slope, old Extension Colliery. A long outcrop pillar of fairly thick coal was encountered, which was skipped on the inside for several hundred feet to form a level haulage road. This pillar is now being mined on the retreat.

Production was 633 tons over a period of 182 days with a crew of two men.

Conditions as found during inspections were satisfactory, and no accidents were reported.

NORTH WELLINGTON (49° 124° S.E.)

Loudon No. 6 Mine 1 mile southeast of Wellington and has been opened up by a flat-dipping slope driven in a small area of outcrop coal in the

No. 2 Upper Wellington seam adjacent to the old No. 9 workings. The top portion of the seam, varying from 2 to 3 feet and consisting of carbonaceous shale, is blasted off the solid and stowed. The bottom 20 inches to 2 feet of coal is broken up with light shots and hand-loaded into cars which are hauled to the surface by a small gasoline-powered hoist. Production in 1961 amounted to 353 tons over a working period of eighty-five days with a crew of three men. Working conditions were found to be satisfactory during the course of inspections, and no accidents were reported.

Carruthers and Wakelem No. 3 Mine **R.** B. Carruthers, operator and fireboss. This mine, near the Loudon mine, is also in the No. 2 or Upper Wellington seam adjacent to the abandoned workings of the old No. 9 mine. Production in 1961 amounted to 223 tons over a working period of 103 days with a crew of one man. Working con-

ditions were found to be satisfactory in the course of inspections, and no accidents were reported.

Stronach No. 2
 Mine
 Charles Stronach, operator; H. Gilmour, fireboss. This mine is a section of the No. 2 or Upper Wellington seam adjacent to the old No. 9 mine. All the output comes from the mining of pillars and small areas of coal left in the early workings. Pro-

duction in 1961 amounted to 245 tons over a period of 105 days with a crew of two men. Working conditions were found to be satisfactory in the course of inspections. No accidents were reported.

Сомох (49° 124° N.W.)

Comox Mining Company Limited.—S. J. Lawrence, president; G. Dutfield, vice-president; P. F. Grundy, secretary. Head office address, P.O. Box 4, Union Bay, B.C.

Tsable River Mine.—S. J. Lawrence, manager; James Cochrane, overman; A. Somerville, M. Frobisher, J. Thomson, A. Cullen, L. Cooper, and W. High, firebosses.

On April 14, 1960, Canadian Collieries Resources Limited ceased operations at the Tsable River mine.

On May 9, 1960, the mine was again brought into production by the newly formed company, Comox Mining Company Limited. The company leases the property from Canadian Collieries Resources Limited and payment is made on a royalty per ton of coal produced.

Mining has been concentrated in the northeast section, where previously developed pillars are being extracted by the use of shaker-conveyors, Joy loaders, and hand-loading. Electrical multiple blasting with millisecond delay detonators is used throughout the mine.

Production in 1961 amounted to 75,324 tons over a working period of 234 days with a crew averaging 105 men.

Considerable production was lost during August and early September due to total restriction of travel during the fire closure imposed by the Forest Service and to the breakdown of the main ventilating fan.

First-aid arrangements were maintained at a satisfactory standard. A suitably equipped first-aid room was provided on the surface, and an ambulance was held in readiness for emergencies. Two mine-rescue teams of six men each were maintained, and these attended periodic practices at the Cumberland mine-rescue station.

Conditions at the mine were usually found to be satisfactory in the course of inspections.

The safety record at this mine during 1961 has been exceptional. Only five accidents of six days and over were recorded. This record is recognized, and the mine has been awarded the Regional and Dominion Ryan awards for having the lowest accident rate in Canada for 1961 for coal mines.

NICOLA-PRINCETON INSPECTION DISTRICT

By David Smith

Coal production in 1961 in the Nicola-Princeton district was 505 tons. Production was obtained from two small mines. A small amount of exploration work was carried out on the property known as the Fairley Prospect.

No accidents were reported by the coal mines in 1961, nor were there any prosecutions under the *Coal Mines Regulation Act*.

Merritt (50° 120° S.W.)

Coldwater Mine This property, 1 mile south of Merritt, is operated by the owners, S. Gerrard and partners. Mining of coal has been confined to the recovery of pillars in the abandoned work-ings of the old Middlesboro No. 5 mine. Total production in 1961 was 159 tons, sold locally. A crew of two men was employed. Working conditions were satisfactory, and no methane was detected in the course of inspections.

PRINCETON $(49^\circ 120^\circ \text{ S.W.})$

This mine is about 10 miles by road south of Princeton and Blue Flame Colliery about half a mile west of the Hope-Princeton highway.

T. Bryden, fireboss, and a partner work the mine on a lease basis. Total production for 1961 was 346 tons. Working conditions were satisfactory, and no methane was detected in the course of inspections. This mine has now been closed, all possible coal having been recovered.

Fairley Prospect J. Fairley and partners carried out underground exploration on a lease on the west bank of the Similkameen River, about

10 miles south of Princeton. One hundred feet of tunnelling and some raising did not indicate a workable deposit. Work by a crew of two men was discontinued.

EAST KOOTENAY INSPECTION DISTRICT

By D. R. Morgan

The production of coal from the East Kootenay Inspection District during 1961 was 932,191 tons, an increase of 188,212 tons, or 25.3 per cent more than was produced in 1960. Most of the production was obtained by The Crow's Nest Pass Coal Company Limited, whose operations were confined to the Michel Colliery. The colliery produced 878,064 tons, an increase of 146,683 tons, or 20 per cent more than in 1960. The remainder of the production was obtained from a large strip mine operated by Coleman Collieries Limited on Tent Mountain, near Corbin. These workings are on both sides of the British Columbia-Alberta border, and are operated from the Alberta side. The production from the British Columbia side during 1961 was 54,127 tons, an increase of 41,529 tons, or 330 per cent more than was produced in 1960.

Accident statistics at the Michel Colliery during 1961 showed an increase in both frequency and severity, and recorded a high fatality rate. Six fatal accidents were reported, all of which occurred underground. Three were caused by falls of roof, two involved haulage, and one the handling of supplies. The accidents were fully investigated and the safety programme was intensified. Accidents of a lesser nature but classified as serious totalled six, four of which were caused by falls of roof, one involved haulage, and one transportation. This was an increase of seven above the total number of serious accidents reported in 1960, which was a year free of fatalities. Minor accidents resulting in the loss of one or more working-days totalled 214, of which 181 occurred underground and thirty-three on the surface, an increase of eight accidents. Ten dangerous occurrences were investigated at Michel Colliery. They are reported more fully in another part of this report under the heading "Dangerous Occurrences." There were no accidents or dangerous occurrences reported from the British Columbia side of the stripping operation on Tent Mountain.

COAL

The East Kootenay Mine Safety Association held its fortieth annual minerescue and first-aid competitions at Fernie on June 3rd, and the various contests were well attended. Five teams from Fernie, Michel, Kimberley, and the Mineral King mine at Toby Creek entered the mine-rescue competition, and the Department of Mines and Petroleum Resources shield was won by the Sullivan mine team from Kimberley, captained by J. K. Walsh. In the first-aid events the Men's Open competition was won by the Sullivan concentrator team, captained by Art Nixon, and the Men's Novice competition by the Crow's Nest Pass Coal Company mill team from Michel, captained by M. Slavens. The winners of both the mine-rescue and first-aid open competitions represented the East Kootenay district at the Provincial competitions held at Nanaimo on June 24th. The Sullivan mine-rescue team was successful in winning the Provincial championship.

The Crow's Nest Pass Coal Company Limited T. G. Ewart, president, Fernie; Thomas F. Gleed, vice-president, 2000 Washington Building, Seattle, Wash.; W. R. Prentice, secretary, Fernie; J. F. Cleeve, treasurer, Fernie; J. E. Morris, superintendent of operations, Fernie. This company has conducted large-scale mining operations in the Crowsnest

Pass area of the East Kootenay district since 1897. Present activities are confined to the Michel Colliery, and they include both underground and open-cast operations. The production is mainly sold on the industrial market and a large quantity is exported to the Japanese market. Operations are directed from a head office in Fernie.

MICHEL COLLIERY.—(49° 114° N.W.) J. E. Morris, manager; Irving Morgan, senior overman; Walter McKay, safety supervisor; William Gregory, afternoon-shift overman.

The colliery is located at Michel, 24 miles east of Fernie, and is on the Crowsnest Pass branch of the Canadian Pacific Railway. It is a large colliery and has been in operation since 1899. The present operations include the working of six mines (underground), two stripping operations, and a modern by-product plant which is located on the colliery-site. The mines are operated on both sides of the valley and, with the exception of one, are named according to the seam worked and the direction of development. Four of the mines have been developed from a pair of long rock tunnels which have been driven across the synclinal structure of the coal measures on the south side of the valley, and the other two, Balmer and "A" North, are being developed from the outcrops of the seams on each side of the valley. The mines are worked by the room-and-pillar system, and the pillars in general are extracted on the retreat. The mines are fully mechanized, and both electricity and compressed air are largely used. The electrical equipment is of the flame-proof type and has been approved for use in coal mines. Transportation in the rock tunnels and most of the entry levels to the mines is by means of compressed-air locomotives, and battery locomotives are used at the Balmer and "A" North mines.

The production of coal from all the mines is cleaned and treated at a modern preparation plant located near the entrances to the rock tunnels. It has been in operation since 1938, and a description has been given in past reports. An additional plant has been in course of construction since July, 1961, and is expected to be completed in the early part of 1962, at an estimated cost of three-quarters of a million dollars. The new plant is being built for cleaning fines, and will be capable of cleaning and treating 120 tons of minus ¹/₄-inch or ¹/₂-inch coal per hour. It embodies the very latest in coal-cleaning equipment, and provisions have been made whereby its capacity can be increased to 180 tons per hour. The plant is located on the colliery-site adjoining the remainder of the preparation plant. It is part of the company's current modernization programme.

The underground operations are under the direct supervision of five overmen and twenty-eight firebosses. A brief description of the mines follows.

"A" East Mine.—Harry Corrigan, overman; Frank McVeigh, Harry Sanders, Roger Pasiaud, James Walsh, and Henry Eberts, firebosses.

The mine is operated in the "A" seam. It is on the eastern limb of the Michel syncline, and all the workings are on the left side of the rock tunnels. The coal is 10 to 12 feet thick, dips at an angle of 20 degrees, and is overlain by a shale roof which is heavily fractured, and requires close timbering for its support. The mine has been in operation for many years, and present activities are confined to a number of dip workings which are near the outer end of the main east levels and are rapidly approaching the rock tunnels. The method of working is by the room-and-pillar system, and a description of the workings has been given in past Annual Reports.

Most of the activities during 1961 were directed to the extraction of pillars. There were two districts in operation, and the mine produced a daily average of 925 tons with a crew of 114 men. Most of the production was obtained by the operation of a new Joy continuous miner extracting a small section of pillars in the No. 102 Slope district. The unit was installed in May, 1961, and its operation to date has been satisfactory. Systematic timbering was rigidly carried out, and a strong current of ventilation was maintained at the faces of the pillar extractions to contend with the rapid advancement of the mining unit. The coal from the unit was loaded by shuttle car and fast-moving belts, and loaded into cars at a large loading point on the main east level. The remainder of the production from the mine was obtained from the No. 1 Slope district, which is operated by conventional mining methods. Conditions in general were found to be satisfactory during the course of inspections, with the exception of restricted clearance on some of the roadways in the No. 1 Slope district due to the convergence of extensive pillar extraction on the roadways.

The mine is ventilated by an electrically driven aerodyne fan which delivered 108,850 cubic feet of air per minute to the workings at a 4.2-inch water-gauge. This quantity was found to be sufficient for the normal requirements of the workings.

"A" West Mine.—Daniel Chester, overman; Reginald Taylor, Robert Taylor, Thomas Krall, William Cytko, Stanley Menduk, Herbert Parsons, Arnold Webster, Benjamin Volpatti, Andrew Davey, and Albert Littler, firebosses.

This mine has been developed in the "A" seam, and the workings are on both the eastern and western limbs of the Michel syncline. It is entered on the right side of the rock tunnels, and all the workings are toward the outcrop. The seam is 12 to 28 feet thick, dips at an angle of 20 to 35 degrees, and is overlain by a moderately strong shale roof. The mine is operated by the room-and-pillar system, and the workings are arranged so that most of the extraction is carried out on the strike of the seam.

The mine produced 972 tons per day during 1961 with a crew of 163 men. Most of the output was obtained from the lower part of the mine, where the coal is 28 feet thick and the pillars are extracted by the caving system. The workings in this area of the mine are partitioned into panels, and all the roadways are driven on the footwall of the seam and the top coal is supported by timber sets. The rooms are driven at 45-foot centres, and the coal is mined by shortwall coal-cutters or is blasted from the solid by the use of millisecond delay detonators. During extraction of pillars, the timber supports are withdrawn and the top coal is allowed

to fall or is blasted into the roadways. The coal is loaded by duckbill conveyors which extend beyond the timber supports, thus preventing the workmen from being exposed to the caved areas. All the coal is loaded onto conveyors and is transferred to a central loading point on the main west level, where it is loaded into large trips of cars which are taken from the mine by compressed-air locomotives.

The mine maintained a high production rate during 1961, but the size of the operation was considerably reduced owing to a number of heatings and fires that are reported more fully under the heading of "Dangerous Occurrences." All the workings in the No. 4 left belt-road panel were abandoned when the upper part of the mine was sealed following the ignition of two fires in the fire seals in the No. 9 right belt-road section. Six working-places were also abandoned in the No. 2 left belt-road panel when that area was sealed following the suspected heating in the old gob workings. These resulted in the complete abandonment of all the workings in the upper part of the mine and restricted the present operations to three comparatively small panels of workings in the lower part of the mine. Another panel was in an early stage of development at the end of the year. This panel will be located near the main west level, and will complete the extraction of coal from the mine.

The mine is ventilated by an electrically driven axivane fan which delivers 87,450 cubic feet of air per minute to the mine workings at a 2.5-inch water-gauge. The ventilation system was reorganized following the sealing of the upper part of the mine, and the present intake airway is via the No. 1 entry in the old No. 4 right belt-road section which is connected to the surface outcrop. The change-over proved to be successful, and the quantity was sufficient for the requirements of the workings.

Upper "A" South Mine.—James E. Anderson, overman; Michael Tymchuk, William Verkerk, Joseph Serek, Paul Kusnir, Chester Plonka, and Harvey Travis, firebosses.

The mine was opened in 1956 and is being worked to develop a large area of virgin coal left in the "A" seam between the old "A" South mine and the outcrop of the seam. The workings are on the western limb of the Michel syncline and are entered by two inclines which have been driven in the underlying seam and later connected to the "A" seam by two rock raises. The seam was entered in 1958, and since that time most of the activities have been directed to the driving of three inclines to the surface outcrop and the development of workings on each side of the main inclines. The seam is 26 feet thick, of good quality, and pitches at an angle of 35 degrees in a westerly direction. The roadways, with the exception of the inclines, are driven on the footwall of the seam, and the pillars are extracted by the caving system.

The mine averaged a daily output of 680 tons during 1961 with a crew of 110 men. Most of the output was obtained by the extraction of pillars in the No. 1 North level district. The district was developed in 1960 and was described in that Annual Report. Other activities were directed to the driving of the three main inclines and further development work. Two of the inclines were connected to the surface outcrop during the early part of 1961 and have since been used for ventilating the mine by the installation of a fan at one of the portals. Other development included the driving of a new level, No. 2 North, in the upper part of the workings and further development of a number of roadways in the No. 1 South level section. The coal at the faces is usually mined with pneumatic picks or is blasted from the solid by the use of millisecond delay detonators. It is loaded into chutes or conveyors and transferred to a central loading point on the main rock tunnels. All the

production from the mine is loaded at this point. Production from the pillar extractions in the No. 1 North level district was loaded into 10-ton-capacity bottomdumping cars and transported to a large bin on the main inclines by compressed-air locomotive. Most of the equipment is operated by electricity.

The mine is ventilated by an aerodyne fan which delivers 66,250 cubic feet of air per minute to the workings at a 1.3-inch water-gauge. The fan was installed following the connection of the main inclines to the surface. Conditions in general were found to be satisfactory during the course of inspections.

"A" North Mine. — John Whittaker, overman; Thomas Slee and Sidney Hughes, firebosses.

This mine is operated in the "A" seam on the north side of the Michel Valley, approximately half a mile east of the colliery preparation plant. It was opened in 1951 and is being developed by means of four levels which follow the strike of the seam from the outcrop. The levels have been driven over 5,000 feet, but most of the development from the levels to date has been restricted to suit the coal market. The mine will eventually become a large operation.

The seam is very irregular and faulty but is 12 feet thick where normal and dips at an angle of 15 to 20 degrees in a southerly direction. Most of the coal at the working-places is mined with pneumatic picks or is blasted from the solid by the use of millisecond delay detonators. It is loaded by hand onto shaker and chain conveyors and transferred by a series of conveyors to various loading points on the main levels, where it is loaded into 10-ton-capacity bottom-dumping cars and taken from the mine by battery locomotives. The two bottom levels are more highly mechanized and are advanced by continuous miners, which mine and load the coal in one operation. Nearly all the equipment is operated by electricity, and compressed air, which is used mainly for operating pneumatic picks, is supplied by three portable electric compressors located on the main levels inside the mine. All the production is taken to the preparation plant by truck from bins at two of the portals of the mine.

The mine averaged a daily output of 185 tons during 1961 with a crew of thirty-two men. The operations were considerably restricted owing to the coal market, and activities were mainly directed to the extraction of pillars in the No. 4 incline district, which is located above the No. 2 level. Extraction was confined to the left side of the panel, and most of the pillars were extracted by a "Borecut" continuous miner which was formerly operated in the lower levels. The "Borecut" operated in a satisfactory manner but encountered difficulties in several instances owing to poor roof conditions. Other pillar extractions in the district were carried out by conventional mining methods. No further progress was made at the faces of the four main levels, but it is expected operations will be resumed at the faces of the two lower levels in the near future.

The mine is ventilated by an electrically driven axivane fan which delivers 65,000 cubic feet of air to the mine workings at a 1.5-inch water-gauge. Small auxiliary fans, capable of producing 5,000 cubic feet of air per minute, are also used for ventilating the faces of the levels and headings beyond the last crosscuts. These quantities were found to be sufficient to meet the requirements of the mine.

"B" South Mine.—William Davey, overman; John Krall, Robert Doratty, and Kenneth Kniert, firebosses.

This mine is operated in the "B" seam. The workings are on the western limb of the Michel syncline and are on the left side of the rock tunnels. The seam is $5\frac{1}{2}$ feet thick, dips at an angle of 30 degrees in an easterly direction, and is overlain by a hard sandstone roof. The coal is of excellent coking quality, friable,

and gassy. It is mined by pneumatic picks, and no shot-firing is allowed. The mine has been a major producer for many years, but extensive pillar extractions have reduced its size considerably, and it is rapidly nearing completion. Present activities are restricted to the extraction of a limited number of pillars left alongside the main roadways from former workings. The mine is operated by the room-and-pillar system, and a description of the workings has been given in past Annual Reports.

The mine averaged a daily output of 207 tons of coal during 1961 with a crew of forty-six men. Most of the production was obtained from the extraction of pillars alongside the old No. 3 incline, and the remainder alongside the outer end of the main south levels. The conditions in general were found to be satisfactory, but a great deal of difficulty was experienced in maintaining sufficient clearance on some of the roadways.

The mine is ventilated by an electrically driven axivane fan which delivers 50,000 cubic feet of air per minute to the workings at a 3.3-inch water-gauge. This quantity was found to be sufficient for the normal requirements of the workings.

Balmer (No. 10) Mine.—William Davey, overman; John McInnes and Thomas Taylor, firebosses.

This operation was started in September, 1960, and is being worked to develop a large area of virgin coal in the No. 10 seam on the south side of the valley. The workings are located 1 mile west of the preparation plant and will be developed by three main levels which are being driven from the outcrop of the seam near creek elevation. The seam is 40 feet thick, of good coking quality, and pitches at an angle of 30 degrees in an easterly direction. The levels are driven in close contact with the hangingwall and follow the strike of the seam.

Most of the activities during 1961 were directed to the driving of the three levels. Total advancement was 1,870 feet. The coal at the faces was mined with pneumatic picks or blasted from the solid. It was loaded by hand onto conveyors and transported to a central loading point on the lower level, where it was loaded into 10-ton capacity bottom-dumping cars and taken from the mine by battery locomotive. Transportation from the surface to the preparation plant was by truck. Surface activities during 1961 included the completion of the portal of the main haulage level and the grading of an area of ground for a large timber-yard and locomotive-shed. Preparations were also being made for the construction of a 200-ton steel bin to facilitate the transportation of the coal to the preparation plant. The conditions in general were found to be satisfactory during the course of inspections. The workings at present are ventilated by natural means, which is boosted by an auxiliary fan in the upper part of the mine.

During 1961, 155,184 pounds of Monobel No. 4, 2,649 pounds of CXL-ite, and 136,917 electric detonators were used at the colliery for coal and rock blasting. No misfired shots were reported.

Three hundred and twenty-five tons of limestone dust was used for application on roadways at the various mines to minimize the coal-dust hazard and for tamping shots. Monthly mine-dust samples were regularly taken at all the mines and analysed. All the samples were found to be above the minimum requirements of incombustible content.

Regular monthly examinations were made at all the mines by the miners' inspection committees, and a meeting was held at the colliery office each month by the pit committee. All the report books kept at the mines in accordance with the *Coal Mines Regulation Act* were examined periodically and found to be in order.

Baldy Mountain Strip Mine.—J. E. Morris, manager; George Lancaster, foreman. This operation is on Baldy Mountain, 4 miles east of Michel. It is at an elevation of 5,000 feet and is reached by means of a private road leading from the colliery preparation plant. The operation has been active since 1948, and a description of the property has been given in past Annual Reports.

The operation produced 87.620 tons during 1961 with a crew of one powershovel operator for loading and three truck-drivers for transporting the coal to the preparation plant. Most of the activities were directed to the No. 4B pit, where a large area of overburden was removed in 1960 and the spring of 1961. The pit is adjacent to the old No. 4A pit, which was operated in 1959, and the coal is a continuation of the outcrop of the same seam. The coal is 45 feet thick, of fairly good quality, but certain sections of the seam possess inferior coking properties. Stripping operations were carried out by Emil Anderson Construction Company. It is estimated that over 300,000 cubic yards of overburden was removed during the stripping operations and 200,000 tons of coal exposed. Most of the activities in 1961 were confined to the loading of coal, and these were restricted to a singleshift basis.

"A" South Strip Mine .--- J. E. Morris, manager, George Lancaster, foreman. This is a new operation that was started in August, 1961, with the intention of stripping a large quantity of "A" seam coal outcropping on the mountainside, 2 miles west of the colliery preparation plant. The operation is at an elevation of 5,500 feet and is located above the underground workings of the Upper "A" South mine. It can be reached via the underground workings or by means of an old mining-road leading from the No. 3 highway east of Michel. The coal is 30 feet thick, is of good quality, and dips at an angle of 35 degrees in a westerly direction. The stripping operations were contracted to Emil Anderson Construction Company, and the intention is to remove 200,000 cubic yards of overburden to expose 120,000 tons of coal.

Most of the activities in 1961 were directed to the removal of overburden. Sufficient work was completed to enable the commencement of production, and since that time both operations have been carried out. The coal is transported to the preparation plant via the underground workings in the Upper "A" South mine. A total of fifteen men was employed on the coal and rock work.

By-product Plant.--George Lancaster, superintendent. The plant is adjacent to the preparation plant at Michel Colliery, and a description has been included in past Annual Reports. Conditions in general were found to be satisfactory, with the exception of one minor explosion in the breeze drier, which is reported more fully under "Dangerous Occurrences."

Briquette Plant.—No briquettes were produced at Michel Colliery during 1961. The plant was dismantled in September, and since that time the buildings have been used for the construction of the new fine-coal cleaning plant

Columbia Iron

Company office, 120 Montgomery Street, San Francisco 6, Calif. R. C. Talbott, manager, Land and Exploration; S. G. Mining Company Sargis, assistant manager, Exploration; J. K. Hayes, supervisor, Field Exploration; M. D. Okerlund, project manager,

Fernie. This company, a wholly owned subsidiary of United States Steel Corporation, obtained an option in May, 1960, to explore and investigate all the coal properties of The Crow's Nest Pass Coal Company Limited with a view to purchasing all or part of the property if a sufficient quantity of suitable coal was found. The option covers a period of four years and includes an intensive exploration programme. The following, prepared by the management, is a synopsis of the work completed in 1961:-

"A total working force of 52 men, including 13 geologists, 9 miners, and 30 laborers, were used to continue the investigation of the Fernie Coal Basin, begun in 1960. Field operations started the last week of May and continued at full strength until mid-September, when a portion of the crew returned to school. Sampling operations were terminated in November and diamond drilling operations continued until December 18th, when all active field work was stopped.

"One to three drilling rigs were operated throughout the field season and approximately 10,000 lineal feet drilled in seven holes. The upper portion of some holes was drilled by non-coring methods, using air as a circulation medium. The balance of the drilling was diamond coring.

"Trenching crews exposed coal beds at 30 locations on the west rim of the coal basin, and the beds were described and sampled by geologists. Twenty-four adit tunnels, totalling 1,772 feet, were driven in selected coal seams to obtain four-ton samples for washability and coking tests.

"About 24 miles of roads were constructed for access to drill sites, adit locations, and outcrop trenches. One helicopter and fifteen four-wheel-drive vehicles provided transportation for field crews."

(49° 114° N.W.) D. B. Young, general manager, Coleman, Alta.; John C. Shearer, strip-mine manager. Coal-mining activities of this company in the East Kootenay District are confined to a large stripping operation on the interprovincial boundary on Tent Mountain, near Corbin. Most of the operation is on the Alberta side, but large quantities of coal have been produced from the British Columbia side during the past ten years. Access to the property is by means of a private road leading from the No. 3 highway at Crowsnest Lake. The road is on the Alberta side, and all the production from the mine is taken to the company's preparation plant at Coleman, Alta.

Most of the activities on the British Columbia side during 1961 were confined to the No. 2 pit, which is at an elevation of 7,200 feet, and has been in operation since 1954. The coal is in the form of a synclinal basin and is over 100 feet thick in parts. The overburden has been removed in past working, and present activities are confined to the removal of coal which is loaded by power-shovel and transported to the preparation plant by truck. The operation had a greater output than in 1960 but was considerably restricted owing to the shortage of markets for the coal, and the mine was idle for several periods. Conditions in general were found to be satisfactory during the course of inspections.

NORTHERN INSPECTION DISTRICT

By David Smith

The coal mines of the Northern District produced a total of 7,826 tons of coal in 1961. The output is sold entirely on the domestic market, which limits all operations to seasonal work.

One accident and no dangerous occurrences were reported from the mines of this district in 1961.

Telkwa (54° 127° N.E.)

Bulkley Valley Collieries Limited

Company office, Telkwa. F. M. Dockrill, president; F. Bond and L. Gething, firebosses. This property is on Goat Creek, a tributary of Telkwa River, about 7 miles southeast of Telkwa. Total production in 1961 was 5,764 tons. The mine

closed at the end of March and resumed operations in September. An average crew of eighteen men was employed.

Conditions in the mine were found to be satisfactory in the course of inspections, and no methane was detected. No accidents were reported.

PEACE RIVER (56° 122° S.E.)

King Gething Mínes This property is on Lot 1039, 12 miles by road from Hudson Hope, and is owned and operated by Q. F. (King) Gething. A. Rapp is fireboss. Total production for 1961 was 2,062 tons. A crew of six men was employed. Conditions in the

mine were found to be satisfactory in the course of inspections, and no methane was detected. One accident was reported.

Inspection of Electrical Equipment and Installations at Mines, Quarries, and Well Drilling Rigs

By L. Wardman, Senior Electrical Inspector

ELECTRIC POWER

In 1961 electric power was used by thirty-eight mining companies in operations at thirty-five lode mines, three placer mines, and three collieries. Twenty-four metallurgical mills were operated during the year. Twenty-five structural-material and industrial-mineral mines and quarries used electric power during the year. Fifty-four drilling rigs drilled during the year on 237 well locations. One hundred and fifty-one wells were completed either as gas or oil wells, fifty-five were abandoned, and thirty were drilling at the end of the year. In addition to the above, one well was completed for eventual fluid injection.

LODE-METAL MINES

At eight properties the installation of completely new electrical systems was commenced. Two of these installations were completed, but the others will not be completed until sometime in 1962. Operations at four properties using electric power were terminated for an indefinite period, and two were not operated from the beginning of the year. Five properties were reopened.

The kilovolt-ampere generating capacity of mining-company-owned plants which operated in 1961 and type of prime mover is given below:—

Prime Mover	Generator Kva. Capacity
Diesel engines	10,921
Water-wheels	10,300
Steam turbines	1,800
Total	- 23,021

The electric power produced during 1961 was approximately 52,885,606 kilowatt-hours. The power purchased from public utilities and from the generating division of The Consolidated Mining and Smelting Company of Canada, Limited, amounted to 202,757,672 kilowatt-hours. The total amount of power consumed for mining and concentrating of lode mines was 255,643,278 kilowatt-hours.

A general breakdown of the connected electrical load was as follows:---

Equipment	Horsepower
Hoists (incline and shaft)	5,472
Hoists (scrapers)	6,427
Fans (mine ventilating)	4,638
Pumps (mine unwatering)	6,594
Rectifiers and M.G. sets	6,961
Air compressors (supplying mining equipment)	15,450
Crushing	9,785
Sink float	1,750
Grinding	19,671
Concentrating	12,763
Pumps	8,548

MINES AND PETROLEUM RESOURCES REPORT, 1961

Equipment	Horsepower
Workshops	1,982
Miscellaneous	4,771
Shovels and rotary drills	3,075
	<u> </u>
Total	107,887

In addition to electrically powered equipment, there was in use approximately 7,790 horsepower of prime movers driving direct-connected or belt-connected equipment as tabulated below:—

Prime Mover	Horsepower
Diesel engines	5,930
Water-wheels	1,800
Gasoline engines	
-	<u> </u>
Total	7,790

On the haulage systems there were in use eighty-eight battery locomotives, eighty-eight trolley locomotives, and eighteen diesel locomotives.

STRUCTURAL-MATERIAL AND INDUSTRIAL-MINERAL MINES AND QUARRIES

Electric power was used at twenty-three structural-material and industrialmineral mines and quarries. Electric power is purchased from public utilities for these operations, with the exception of those in remote areas which, of necessity, must produce their own power. The capacity of company-owned plants was approximately 3,490 kilovolt-amperes.

Approximately 12,104,265 kilowatt-hours of power was generated and 990,802 kilowatt-hours was purchased, making a total of 13,095,147 kilowatt-hours of power consumed.

Equipment	Horsepower
Hoists (incline)	244
Hoists (scraper)	
Fans (ventilating and dust-collecting)	101
Pumps	
Rectifiers and M.G. sets	37
Air compressors	
Electric drills and electric shovels	210
Crushing (includes drying)	4,639
Conveyors	
Screens	895
ScreensMilling	2,369
Workshops	34
Workshops Miscellaneous	1,620
Total	14,725

At these properties there was also direct-driven equipment totalling 4,760 horsepower.

One battery locomotive was used for underground haulage.

COAL MINES

There was no change in the number of collieries using electrical power. The distribution of connected load was as follows:----

Surface	Horse	power
Compressors	3,940	-
Ventilation	580	
Hoisting	545	
Haulage	15	
Coal washing and screening	2,041	
Pumping	215	
Coke		
Miscellaneous	175	
Total	w = a w = a a a a	8,691
Underground—		
Ventilation	250	
Hoisting	160	
Haulage	105	
Coal-loaders	84	
Coal-cutters	100	
Borecut	75	
Continuous miners	260	
Conveyors	1,007	
Pumping	325	
Compressed air	200	
Miscellaneous	10	
Total		2,576
Total for surface and underground		11,267

Three battery locomotives and two diesel locomotives were in use for haulage below and above ground.

A total of 26,484,610 kilowatt-hours of electric power was used for mining and coal processing.

ELECTRICAL INSTALLATIONS

LODE MINES

MORESBY ISLAND (52° 131° S.E.)

Jedway (Jedway

A camp-site was prepared and the following buildings were built: A fifty-room bunk-house, a cook-house of 120-place Iron Ore Limited) capacity, an office, store, school, change-house, staff-house, and ten residences. Plans are being prepared for a mill,

which it is expected will be built in 1962.

LILLOOET

Bridge River (50° 122° N.W.)

Mines Limited

A new mill consisting of a grinding section and a cyanide sec-Bralorne Pioneer tion was built. The grinding equipment will consist of two ball mills driven by two 200-horsepower, 2,300-volt motors. Other equipment consists of feeders, jigs, pumps, cyanide

tanks, filters, and amalgam barrels. The total connected load for the grinding and cyanide section is 670 horsepower.

New distribution equipment was added to the 460-volt bus in the power-house to supply shops, crushing plant, townsite, and cyanide mill. Also a new distribution panel consisting of fused 2,300-volt disconnecting switches was installed for the compressor motors.

A second fan driven by a 150-horsepower motor was installed on the mine ventilating system.

Kamloops

Iron Mask (Kamloops Copper Company Ltd.). (50° 120° N.W.) A transformer station was built near the shaft and ten pumps driven by 8-horsepower motors were installed for unwatering the mine.

HIGHLAND VALLEY

Bethlehem Copper Corporation Ltd. $(50^{\circ} 120^{\circ} \text{ S.W.})$ A 5,000-volt power-line 37,700 feet long was built from the camp power plant to the lake to supply two 75-horsepower pump motors when required. A machine-shop, office, and assay office were built and wired.

MERRITT

Craigmont Mines Limited (50° 120° S.W.) In 1961 complete equipment for mining and concentrating 4,000 tons of ore per day was installed. The orebody in the open pit is drilled by rotary electric drills, blasted, and then loaded onto trucks by means of electric

shovels. The total connected load of the shovels and drills is 1,325 horsepower, supplied at 4,160 volts.

A primary crushing plant was built at the open pit on the 3700 level. The crusher is driven by a 350-horsepower 4,160-volt motor. From the primary crusher to the secondary crusher at the mill the ore is carried on a retarding belt controlled by a 350-horsepower 4,160-volt motor. The total connected load of both crushing plants is 1,642 horsepower. This includes auxiliary equipment.

The main units in the grinding circuit are two 11- by 14-foot ball mills driven by two 900-horsepower, 4,160-volt synchronous motors and two 9-foot 6-inch by 12-foot rod mills driven by two 600-horsepower 4,160-volt synchronous motors. Feeder motors, conveyor motors, etc., make the connected load of the grinding circuit 3,395 horsepower.

The concentrating section consists of ninety flotation cells and thirty cleaner cells driven by sixty 15-horsepower motors. These units, together with filtering and pumping units, make a connected load of 1,575 horsepower for this section.

Two pumping stations were built to pump water from the Nicola River. A 4,160-volt power-line 21,000 feet long was built to supply power to the pump motors. The connected pump load is 375 horsepower.

An auxiliary 1,000-kw. diesel-driven electric plant was installed to take care of the fluctuating load. The main power supply is obtained from the British Columbia Hydro and Power Authority.

BEAVERDELL

Highland-Bell (Mastodon-Highland Bell Mines Limited).—(49° 119° S.E.) The 50-horsepower ball-mill motor was replaced with a 75-horsepower motor, and a new dust-collecting system was installed in the crusher-room. Further rewiring in the mill was done to replace wiring which had deteriorated.

ASPEN CREEK

H.B. (The Consolidated Mining and Smelting Company of Canada, Limited).—(49° 117° S.E.) A 30-horsepower scraper hoist was added to the mining equipment and the load centre formerly on the 3300 level was installed on the 3000 level.

IRON MOUNTAIN

Jersey (Canadian Exploration Limited).— $(49^{\circ} 117^{\circ} S.E.)$ The major electrical work on this property consisted of relocating equipment to accommodate the changing mine load.

Nelway

Reeves MacDonald Mines Limited level to the 1100 level. Improvements made in the ventilating system added 10 horsepower to the fan-motor load.

NORTH KOOTENAY LAKE

Riondel (49° 116° N.W.)

Bluebell (The Consolidated Mining and Smelting Company of Canada, Limited).—A 30-kw. 550-volt three-phase heater and two pumps driven by two 7½-horsepower 550-volt motors were installed in the mill. Five 10-kw. threephase 550-volt hot-water heaters were installed in the main dry; also installed was a battery charger for miners' lamps. Two airfoil fans driven by two 30-horsepower 550-volt motors were installed at the Kootenay Chief mine. In the mine a 40horsepower motor on a Jeffery fan was replaced with a 60-horsepower motor.

KIMBERLEY

Sullivan (The Consolidated Mining and Smelting Company of Canada, Limited)
 (49° 115° N.W.) Three 1,000-kva. single-phase transformers were moved from the hillside, adjacent to the compressorroom, to the transformer station serving the electric boiler. A 300-kva. transformer was installed on the 2500 level at No. 1 shaft station for the 2500 level crusher. A 200-of Canada, Limited)

was formerly located on the 4500 level. The 3500 level crusher was moved to the new 2500 level crushing chamber. At the mill the old wiring and switchgear is gradually being replaced with new. During 1961 the following work was done:—

In the tin-plant section forty-two circuit lighting panels and 25-kva. transformers were installed. Solenoids and wiring for the tables were also installed.

The obsolete lighting panels in the sink-float building, in the tripper section, and in the rod-mill sections of the concentrator were replaced with no-fuse panels.

Mercury vapour lighting units were installed in the retreatment section and in the mill yard.

Fluorescent lighting units were installed in the engineering, warehouse, and maintenance offices.

The fire hall, salvage shed, zinc scale-house, tank-house, and creosote building were rewired.

An annunciator system wired in with seven-conductor Pyrotenax cable was installed for the copper sulphate and lime distribution systems.

Eight motors were installed, as follows: Four ¹/₄-horsepower on the fire sprinkler system, a 5-horsepower on the high-pressure water system, a 10-horsepower on the spare lime pump, a 25-horsepower on the rod-mill discharge pump, a 30horsepower for the water-booster pump in the Turbo building.

A remote-control circuit was installed for the fire-pumps, and the substation general alarm circuit was extended to the fire hall.

A 1,000-kva. 66,000-550-volt transformer was installed in the remodelled transformer yard at the mill.

The 550-volt switchboards in the iron filter building, the No. 650 conveyor, the retreatment floor, and assay office furnace laboratory were remodelled.

Obsolete oil switches were replaced with magnetic starters on four 40horsepower, five 50-horsepower, and two 75-horsepower motor circuits.

Obsolete fused line switches were replaced with 400-ampere De-ion air circuitbreakers on three 300-horsepower ball-mill motor circuits.

WINDERMERE

Toby Creek (50° 116° S.E.)

Mineral King (Sheep Creek Mines Limited) A Miulees type TLS6 diesel driving a 350-kva. three-phase 60-cycle 600-r.p.m. a.c. generator was installed in the power-house. A 100-lamp electronic battery charger was installed in the dry for charging the Wheat cap-lamp batteries. The primary distribution voltage for the townsite voltage was

raised from 440 to 2,300 volts. The coal-stoker-fed boiler furnace was converted to oil feed with automatic controls. A duplex dwelling and a teacherage were built and wired, and one room was added to the school.

At the Jumbo mine a 20- by 40-foot power-house was built to house a 50-kva. portable diesel generating unit and a compressor. A 10-horsepower rectifier and a 10-horsepower fan were installed at the mine.

SKAGIT RIVER

A.M. (Canam Copper Company Ltd.).— $(49^{\circ} 121^{\circ} S.E.)$ On April 6, 1961, the power-house was destroyed by fire. Two Cummings diesels driving 75-kw. a.c. generators were installed to replace the units destroyed. Later in the year, operations were suspended for an indefinite period.

HOPE

Pride of Emory (Giant Mascot Mines Limited) (49° 121° S.W.) A transformer was installed on the 3400 level, consisting of six 37½-kva. 2,300-440-volt transformers connected in delta-delta and paralleled. This station supplies power to one 100-horsepower and two 50-horsepower slusher motors. A three-conductor No. 2 A.W.G. rubber-insulated

armoured cable 1,000 feet long was installed in the main shaft from the 2600 level to supply the new 3400 level substation. Trolley conductors were installed on the 3250 level.

Howe Sound

(49° 123° N.E.) A dry grinding plant was installed in the old car-shop. It consists of the following units: A ball mill driven by a 100-horsepower motor, a classifier driven by a 60-(Britannia Division)) horsepower motor, a jaw crusher driven by a 20-horsepower motor, a cone crusher driven by a 25-horsepower motor, an

elevator driven by a 10-horsepower motor, and feeders and conveyors driven by one 5-, four 3-, and five 2-horsepower motors.

A 333-kva. transformer station was installed in the 4850 level of No. 8 mine, and the 3500 level transformer station was relocated.

TEXADA ISLAND

(49° 124° N.W.) The dry mill crushing plant was rewired **Texada Mines Ltd.** with neoprene-jacketed armoured cable. A rod mill driven by a 500-horsepower motor with control gear and switchgear

was installed in the wet mill. Several smaller motors were installed for auxiliary equipment in this mill. The 12,000-volt 2,250-kva. substation was moved from the power-house site to a location adjacent to the wet mill, and the 12,000-volt line was extended to this location. For further information on the electrical installations see Annual Reports for 1952, 1956, and 1958.

VANCOUVER ISLAND

Benson Lake (50° 127° S.E.)

Benson Lake (Empire Development Company Limited).—A new crushing plant was set up for use when the underground operation commenced. It is complete with power unit.

Old Sport (Coast Copper Company Limited).—A temporary camp, four bunk-houses, cafeteria, and office-warehouse were built during the year. Construction work was started on a 2,400-horsepower hydro-electric plant, a 700-horsepower diesel-driven electric stand-by plant, a 6,900-volt power-line, a crushing plant, a concentrator, and shops.

Zeballos (50° 126° S.W.)

F.L. (Zeballos Iron Mines Limited) The installation of a mill at this property was commenced in the summer. The crushing plant will contain two crushers one a 30- by 42-inch jaw crusher driven by a 150-horsepower

motor, the other a 10- by 42-inch jaw crusher driven by a 60-horsepower motor. Screens, conveyors, and feeders will make the connected load of the crushing plant 270 horsepower.

The mill will contain the following equipment: A 36- by 60-inch vibrating feeder requiring 2 kw.; two 24-inch conveyors driven by a 5- and a 15-horsepower motor respectively; a conveyor slewing drive driven by a 5-horsepower motor; two 24- by 48-inch vibrating feeders requiring $1\frac{1}{2}$ kw.; an 18-inch conveyor driven by a 30-horsepower motor; two cobbling belts each driven by 5-horsepower motors; two magnetic pulleys requiring 3 kw.; a 24- by 42-inch vibrating feeder requiring 3 kw.; a magnetic wet separator requiring 16 kw. and drive for same requiring 4 horsepower; a concentrate classifier and a waste classifier each driven by 5-horsepower motor; two 3-horsepower motors; four 18-inch conveyors driven by a 15-horsepower motor, two 3-horsepower motors and a $7\frac{1}{2}$ -horsepower motor respectively; three 36- by 60-inch vibrating screens requiring 18 kw. each; a conveyor requiring 15 horsepower; a water pump requiring 10 horsepower; and two vibrating feeders.

MINES AND PETROLEUM RESOURCES REPORT, 1961

Jordan River (48° 124° S.E.)

Excavations for an underground mill were made, and instal-Sunloch and Gabbro lation of the machinery was commenced. By the end of the (Sunro Mines year the following work had been done: A 12,000-volt power-line 2,000 feet long was built to the upper adit of the Limited) mine; a 12,000-440-volt transformer station was built to

supply two air compressors; a compressor-house was built and two air compressors were installed. The connected load of these two compressors is 500 horsepower.

Four banks of transformers were installed in the underground transformer station, as follows: Three 200-kva. 12,000-2,300 volts connected delta-delta, three 333-kva. 12,000-2,300 volts connected delta-delta, three 150-kva. 6,900-460 volts connected wye-delta, and three 250-kva. 12,000-460 volts connected delta-delta.

An armoured cable connects the surface power-line with the underground power transformer station.

A 2,300-volt power-line 1,000 feet long was built to the mine portal.

PLACER MINES

LIGHTNING CREEK (53° 121° S.W.)

Wingdam (Wingdam & Lightning Ltd.)

Electrical equipment was installed for unwatering the mine and bringing it into production. In the old power-house two 200-kva. Westinghouse generators driven by 170-horsepower Creek Mining Co. diesels and a 250-kva. generator driven by a Caterpillar diesel were installed. Also installed was an Ingersoll Rand compressor, size H.R. 315. In the hoist-house a double-drum

hoist driven by a 75-horsepower motor was installed. In the shaft-house two Flygtt deep-well pumps driven by 65-horsepower motors were installed.

A cook-house, office building, dry, hoist-house, and trailer bunk-houses were also built

Bridge River (50° 122° N.W.)

B.C. Placer Mining & Refining Ltd.—Four small single-phase 220-volt motors were installed to operate two pumps, a vibrating screen, and a Wilfley table.

STRUCTURAL-MATERIAL AND INDUSTRIAL-MINERAL MINES AND QUARRIES

McDame

Cassiar Asbestos Corporation Limited.—(59° 129° S.W.) Some new equipment was added to the system and some old equipment was taken out of service, making the connected load at the end of 1961 as follows:---

	Load Added	Load Removed	Final Load
Crushing and drying	22.5		477.75
Mill	367.5	11.5	2,369.25
Rock reject plant			335.5
Mine crusher			119,5
Mino garage			20.0
Fram-line			244.0
Townsite	183.5		1,153.0
Workshops			200.0
Totals	755.5	11.5	4,919.0

To accommodate the increased load, an additional unit was added to the power plant, which increased the capacity by 818 kva. to 3,376 kva.

COQUITLAM

Pipe Line Road Gravel Pit (Deeks-McBride Ltd.).—(49° 122° S.W.) A new electrically driven sand and gravel plant was installed. The crushing part of the plant requires 150 horsepower, conveyors require 140 horsepower, screens require 55 horsepower, workshops require 20 horsepower, the water-pump requires 75 horsepower, miscellaneous equipment requires 120 horsepower, making a total load of 560 horsepower.

Spillimacheen

Baroid of Canada Ltd.— $(50^{\circ} 116^{\circ} \text{ N.E.})$ Some of the equipment at the Silver Giant property was returned to service for recovering barite. A tabling beneficiation plant requiring 30 horsepower was installed.

WINDERMERE

Western Gypsum Products Limited.— $(50^{\circ} 115^{\circ} \text{ S.W.})$ A crushing and screening plant was built at Athalmer in 1960 and was put into service in 1961. The equipment was taken mainly from the crushing plant at the mine. Several new units were added, bringing the total connected load to 260 horsepower.

TEXADA ISLAND

Ideal Cement Company Ltd.— $(49^{\circ}\ 124^{\circ}\ N.E.)$ A washing system was installed requiring two 7-horsepower and one 5-horsepower motors. A secondary crusher system requiring 125 horsepower was installed. The lighting facilities were improved and the power factor was improved by the installation of capacitors.

CASSIDY

Cassidy Gravel Pit (Evans, Coleman and Evans Limited).—(49° 123° S.W.) A secondary crusher driven by a 50-horsepower motor and a bucket elevator driven by a 3-horsepower motor were installed.

METCHOSIN

Metchosin Gravel Pit (Evans, Coleman and Evans Limited).— $(48^{\circ} 123^{\circ}$ S.W.) The crusher, driven by a 50-horsepower motor, was changed for a larger one driven by a 75-horsepower motor.

COAL MINES

Сомох

Tsable River Mine.—(49° 124° N.W.) The electrical installation at this mine has not been changed since it was taken over by the Comox Mining Company Limited, except that the 50-horsepower pump motor on the lower level has been replaced by a 75-horsepower motor.

MINES AND PETROLEUM RESOURCES REPORT, 1961

EAST KOOTENAY

Michel Colliery
(The Crow's Nest(49° 114° S.W.)In "A" East mine, mining efficiency was
improved by the installation of the following equipment:
One Joy continuous miner, Model 1 JCM; one Joy shuttle
car, Model 10 S.C.; One Joy 30-inch by 700-foot-long exten-
sible belt rated at 200 tons per hour; two standard 30-inch

belts rated at 200 tons per hour. This was put into service with a crew of six men, including a fireboss. A 14-B.U. loader was added in November, and peak performance then rose to 526 tons of coal per day.

On the surface above Upper "A" South mine a Joy Axivane fan rated at 100,000 cubic feet per minute capacity was installed for ventilation of the mine. It is driven by a 350-horsepower 550-volt motor.

A second oil circuit-breaker was installed at the portal of the main rock tunnel to control power to the continuous miner.

Also on the surface at Upper "A" South, the installation of a hoist driven by a 254-horsepower motor was commenced. The hoist will move men and material in the No. 2 raise.

The main power-line from Michel No. 1 substation to Sparwood Ridge was converted from 2,200 to 6,600 volts and a 500-kva. 6,600-2,200-volt transformer was installed to supply two fans driven by two 100-horsepower motors. The voltage for these motors was stepped down to 550 volts by means of two banks of 2,200-550-volt transformers. A third 100-horsepower fan was in use in the "B" seam but was closed in February, 1962. Three 150-kva. 6,600-550-volt transformers were installed to supply the 350-horsepower hoist. The electrical equipment in Upper "A" South will be supplied from the 6,600-volt line through a 6,600-volt oil circuit-breaker. Underground 6,600-550-volt transformers will step down the voltage for the equipment.

For power-supply to the Balmer mine, a 500-kva. 2,300-6,600-volt transformer and switchgear was installed at the Natal substation. Three thousand feet of 6,600-volt power-line was built from the substation to the Balmer portal.

The construction of a small coal-cleaning plant was commenced, and it is expected that it will be completed in May, 1962. Approximately 500 horsepower will be required. Six 200-kva. transformers have been installed to supply this power from the mine distribution system.

Three 75-kva. transformers were installed in a new concrete substation to supply the by-product plant tipple and the breeze drying plant.

Lode-metal Deposits Referred to in the 1961 Annual Report

The names of the properties are arranged alphabetically within five areas. Each area consists of the mining divisions listed below. The table shows the principal metals produced or indicated in the deposits in 1961:-

Northern British Columbia.-Atlin, Liard.

Central British Columbia.-Cariboo, Clinton, Omineca.

Coast and Islands .--- Alberni, Nanaimo, New Westminster, Skeena, Vancouver, Victoria.

South Central British Columbia.-Greenwood, Kamloops, Lillooet, Nicola, Osoyoos, Similkameen, Vernon.

Southeastern British Columbia .--- Fort Steele, Golden, Nelson, Revelstoke, Slocan, Trail Creek.

Northern British Columbia Liard 57° 131° S.E. 3 Galore Creek Liard 59° 129° S.W. 3 -	Property	Mining Division	Latitude and Longitude	Gold	Silver	Copper	Lead	Zinc	Tungsten	Cadmium	Iron	Manganese	Uranium	Chromium	Tin	Nickel	Molybdenum	Silica	Sulphur	Mercury	Cobalt	Page
Columbia Liard 57° 131° S.E. 3	Northern British															~						
Hab Liard 57° 137° S.E. 3 3 4 Hanna Gold Liard 59° 129° S.W. 3 - - - 3 - - - 3 - - - 3 - - - 3 - - - 3 - - - 3 - - - 3 - - - 3 - - - - 3 - <t< td=""><td></td><td></td><td></td><td></td><td>lÌ</td><td></td><td></td><td></td><td></td><td></td><td>ł</td><td></td><td>ł</td><td></td><td></td><td></td><td></td><td></td><td>í</td><td>4</td><td>1</td><td></td></t<>					lÌ						ł		ł						í	4	1	
Hanna Gold Liard 59° 129° S.W. 3 - - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - 3 - - - 3 - - - - 3 -	Galore Creek	Liard	57° 131° S.E.			3				_												7
Hanna Gold Liard 19° 120° S.W. 3	Hab	Liard	57° 131° S.E.			3							1									8
Lang Creek Liard 59° 129° S.W. 3 -	Hanna Gold	Liard	59° 129° S.W.	3	i					-										[6
Lark Liard 59° 129° S.W. 3 3 -	Lamb Mountain	Liard	59° 129° S.W.										· • • • •				3					6
Silver Tip Group Liard 59° 130° N.E. 3 3	Lang Creek	Liard	59° 129° S.W.	l		3																7
Central British Columbia Cariboo 53° 121° S.W. 1 2 19, Aurum, Catiboo Si° 120° S.W. 3 1 1 2 11 2 10 Copper Nos. 1 to 4 Clinton Si° 121° S.W. 3 1 1 2 10 2 Glacier Gulch Omineca 54° 126° N.W. 2 1 1 1 2 1 19, Glacier Gulch Omineca 54° 126° N.W. 2 1 1 2 3 1 19, Glacier Gulch Omineca 54° 127° N.E. 3 3 1 1 10	Lark	Liard	59° 129° S.W.			3																7
Columbia Aurum, Cariboo Gold Quartz Cariboo 53° 121° S.W. Boss Mountain Cariboo 52° 120° S.W. 3 1 Copper Nos. 1 to 4 Clinton 51° 122° S.W. 3 2 Cronin Babine Omineca 54° 127° N.E. 3 2 Glacier Gulch Omineca 54° 127° N.E. 3 2 Stella Omineca 54° 127° N.E. 3 3 1 Stock Omineca 54° 127° N.E. 3 3 1 Stock Omineca 54° 127° N.E. 3 3 1 Alice Skeena 55° 129° S.E. 3 3 1 Alpha, Beta Victoria 48° 124° N.E. 3 3 1 Ayex, Morning Alberni 49° 125° S.E. 3 3 1 1 Anycox Skeena 55° 129° S.E. 3 3 1 1 1 Aryox, Morning Alberni 49° 125° S.W. 3 3 1 1 1 Cabistani Anocou	Silver Tip Group	Liard	59° 130° N.E.		3		3]	6
Quartz Cariboo 53° 121° S.W. 1 2							ļ						ļ									
Quartz Cariboo 53° 121° S.W. 1 2	Aurum, Cariboo Gold						l						ł							1		
Boss Mountain Cariboo 52° 120° S.W. 3 3 3 3 4 2 2 Copper Nos. 1 to 4 Clinton 51° 122° S.W. 3 3 4 2 1 1 1 2 1 1 1 2 3 3 3 1 1 9 2 2 1 1 1 2 3 1 1 1 2 3 1 1 1 1 2 3 1 <th< td=""><td></td><td>Cariboo</td><td>53° 121° S.W.</td><td>1</td><td>2</td><td></td><td></td><td>!</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> Ì</td><td></td><td>1</td><td> Ì</td><td>19, _A46</td></th<>		Cariboo	53° 121° S.W.	1	2			!										Ì		1	Ì	19, _A 46
Copper Nos. 1 to 4 Clinton 51° 122° S.W. 3 -								- 1									3				{	21
Cronin Babine Omineca 54° 126° N.W. 2 1 1 1 1 2 1						3		- 4						- 1								23
Fish Lake Clinton 51° 123° S.W. 3 3 4 3 1 Glacier Gulch Omineca 54° 127° N.E. 3 1 3 1 Stella Omineca 54° 127° N.E. 3 1 3 1 Stock Omineca 54° 127° N.E. 3 1 3 1 Coast and Islands N. West'r 49° 121° S.E. 3 1 1 Alice Skeena 55° 129° S.E. 3 1 1 Anyox Skeena 55° 129° S.E. 3 1 1 Anyox Skeena 55° 129° S.E. 3 1 1 Anyox Skeena 55° 129° S.E. 3 1 1 Apex, Morning Alberni 49° 125° S.W. 3 1 10 Britannia Vancouver 49° 125° S.W. 3 1 10 Cambrian Chieftain Vancouver 49° 125° S.W. 3 1 10 Cobsus Vancouver 49° 125° S.W. 3 3 10 10				2	1		1			2								ÌÌ				19. 446
Glacier Gulch Omineca 54° 127° N.E. - - - - 3 - 1 Stella Omineca 54° 125° S.E. - - 3 - 1 Stock Omineca 54° 127° N.E. - 3 - - 3 - 1 Stock Omineca 54° 127° N.E. - 3 - - 3 - 1 Coast and Islands N. West'r. 49° 121° S.E. - 3 - - 3 - 1 Albera Victoria 48° 124° N.E. - 3 - - 3 - 1 Apex, Morning Alberni 49° 125° S.E. - - 3 - 1 1 Apex, Morning Alberni 49° 125° S.W. 2 2 1 2 1 1 1 1 Apex, Morning Alberni 49° 125° S.W. 2 2 1 2 1 1 1 1 1 1 1 1 1 1	Fish Lake		51° 123° S.W.			3								_							[24
Stella Omineca 54° 125° S.E. 3 3 1 Stock Omineca 54° 127° N.E. 3 3 1 Coast and Islands N. West'r. 49° 121° S.E. 3 3 1 Alice Skeena 55° 129° S.E. 3 1 3 1 Anyox Skeena 55° 129° S.E. 3 1 1 Anyox Skeena 55° 129° S.W. 3 1 1 Apex, Morning Alberni 49° 123° S.E. 3 1 10 Britannia Vancouver 49° 123° N.W. 2 2 1 1 10 Catface Alberni 49° 123° N.W. 2 2 1 1 10 Colossus Vancouver 49° 123° N.W. 2 2 1 10 10 Copper King Nanaimo 50° 125° N.E. 3 3 3 10 10 Copper Road Nanaimo 50° 125° N.E. 3 3 3 10 10 Copper Road Nanaimo 50° 125	Glacier Gulch		54° 127° N.E.														3					19
Stock Omineca 54° 121° N.E. 3																	3					19
A.M			54° 127° N.E.		<u> </u>	3							_									18
Alice Skeena 55° 129° S.E. 3 1 Alpha, Beta Victoria 48° 124° N.E. 3 - 1 Anyox Skeena 55° 129° S.E. 3 - 1 1 Anyox Skeena 55° 129° S.W. 3 - - 1 1 Apex, Morning Alberni 49° 125° S.E. 3 - - - 1 1 Britannia Vancouver 49° 125° S.E. 3 - - - 10 Cambrian Chieftain Vancouver 49° 125° S.W. 3 - - - 89, Catface Alberni 49° 125° S.W. 3 - - - 89, Colossus Vancouver 50° 125° N.E. 3 - - - 99 Colossus Vancouver 50° 125° N.E. 3 - - - 99 99 Colossus Vancouver 50° 125° N.E. - 3 - - 99 99 Dolly Varden Skeena 50° 125°]]]																	
Alice Skeena 55° 129° S.E. 3 1 Alpha, Beta Victoria 48° 124° N.E. 3 1 11 Anyox Skeena 55° 129° S.E. 3 - 11 Anyox Skeena 55° 129° S.E. 3 - - 11 Anyox Skeena 55° 129° S.E. 3 - - 11 Apex, Morning Alberni 49° 125° S.E. 3 - - 10 Britannia Vancouver 49° 125° S.W. 2 2 1 - - - 10 Cambrian Chieftain Vancouver 49° 125° S.W. 2 1 - - - 89, Colossus Vancouver 49° 125° S.W. 3 - - - 99 Copper Road Nanaimo 50° 125° S.W. 3 - - - - 99 Copper Road Nanaimo 50° 124° S.W. 3 - 3 - - 99 91 Dolly Varden Skeena 55° 129° N.W.	A.M	N. West'r	49° 121° S.E.	!'		3								İ				I			·]	85
Anyox Skeena 55° 129° S.W. 3 - - - 10 Apex, Morning Alberni 49° 125° S.E. 3 - - - 10 Britannia Vancouver 49° 123° N.E. 2 2 1 2 - - - - 10 Britannia Vancouver 49° 123° N.E. 2 2 1 2 1 - - - 89, Cambrian Chieftain Vancouver 49° 123° N.W. 2 2 1 - - - 89, Catface Alberni 49° 125° S.W. 3 - - - 89, Colossus Vancouver 50° 125° N.E. 3 - - - 10 Copper King Nanaimo 50° 125° S.W. 3 - - - 91, Dolly Varden Skeena 55° 129° N.W. 3 - - - - 91, Domineer Nanaimo 50° 125° N.W. 1 1 2 - - -	Alice	Skeeпа	55° 129° S.E.														3					10
Apex, Morning Alberni 49° 125° S.E. 3 - - - 100 Britannia Vancouver 49° 123° N.E. 2 2 1 - - - - 100 Berton Gold Mines Alberni 49° 123° N.E. 2 2 1 - - - - - 100 Cambrian Chieftain Vancouver 49° 123° N.W. 2 2 1 - - - - - - 100 Colossus Vancouver 49° 125° S.W. 3 - - - - - - - 100 Colossus Vancouver 50° 125° S.W. 3 - - - - - - - - - - 100 100 50° 125° S.E. 2 1 - - - - - - - 9 9 100 100 - - - - 110 - - - 100 100 - 100 100 100	Alpha, Beta	Victoria	48° 124° N.E.			3						!]				· (111
Britannia Vancouver 49° 123° N.E. 2 2 1 - - - 89° Berton Gold Mines Alberni 49° 125° S.W. 3 - - - 10 Cambrian Chieftain Vancouver 49° 125° S.W. 3 - - - - 10 Catface Alberni 49° 125° S.W. 3 - - - 89° Colossus Vancouver 50° 125° N.E. 3 - - - 90 Copper King Nanaimo 50° 125° N.E. 3 - - - 91 Dolly Varden Skeena 50° 125° N.W. 3 - - - 91 Domineer Nanaimo 50° 125° N.W. 1 1 2 - - - 102 Empire Development Nanaimo 50° 125° S.W. - 3 - 3 - - 102 Gold Coin N. West'r 49° 121° S.E. - 3 3 - - - 102 Gol	Anyox	Skeena	55° 129° S.W.			3										•						10
Berton Gold Mines Alberni 49° 125° S.W. 3	Apex, Morning	Alberni	49° 125° S.E.	3)	!		ł.					·						}	}		103
Cambrian Chieftain Vancouver 49° 123° N.W. 2 2 1	Britannia	Vancouver	49° 123° N.E.		2	1	2	1														89, 🗚
Catface Alberni 49° 125° S.W. 3 1 10 Colossus Vancouver 50° 125° S.E. 3 3 1 3 Copper King Nanaimo 50° 126° S.E. 2 1 3 1 3 1 9 Copper Road Nanaimo 50° 125° S.E. 2 1 1 9 9 Dolly Varden Skeena 55° 129° N.W. 3 1 1 9 9 Empire Development Nanaimo 50° 127° S.E. 1 1 1 9 95 Gold Coin N. West'r 49° 126° S.W. 3 3 3 1 102 Harriet Harbour Skeena 52° 130° S.E. 3 3 3 1 102 Harriet Harbour Skeena 52° 131° S.E. 3 3 3 1 1 1 Hesquiat Alberni 49° 126° S.E. 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Berton Gold Mines	Alberni	49° 125° S.W.	3	}									1		·'			1		İ	101
Colossus Vancouver 50° 125° N.E. 3 40° 124° S.W. 3 40° 124° S.W. 3 40° 124° S.W. 9 Copper King Nanaimo 50° 124° S.W. 3 3 40° 124° S.W. 3 40° 124° S.W. 9 9 Dolly Varden Skeena 55° 129° N.W. 1 1 2 1 1 1 102,	Cambrian Chieftain	Vancouver	49° 123° N.W.	2	2	1							!									89, 🗚 7
Copper King Nanaimo 50° 124° S.W. 3 3 9 Copper Road Nanaimo 50° 124° S.E. 2 1 3 3 1 91, Dolly Varden Skeena 55° 129° N.W. 3 1 <		Alberni				3							{									101
Copper Road Nanaimo 50° 125° S.E. 2 1			50° 125° N.E.			3											a					90
Dolly Varden Skeena 55° 129° N.W. 3 - - 1 Dominer Nanaimo 49° 125° N.W. 1 1 2 - - - 102, Empire Development Nanaimo 50° 127° S.E. - - 1 2 - - - 102, Gold Coin N. West'r 49° 126° S.W. - - 3 - - - 102, Granduc Skeena 50° 126° S.W. - - 3 - - - 102, Harriet Harbour Skeena 52° 130° S.E. - 3 - - - - - 10 Hesquiat Alberni 49° 126° S.E. - 3 - 10	Copper King	Nanaimo	50° 124° S.W.			3		Ì.			3							-			<u> </u>	90
Domineer Nanaimo 49° 125° N.W. 1 1 2	Copper Road	Nanaimo	50° 125° S.E.	'		1]										91, 🗚
Empire Development Nanaimo 50° 127° S.E. 1 1 95', F.L. Nanaimo 50° 126° S.W. 3 1 1 10 10 Gold Coin N. West'r 49° 121° S.E. 3 3 1 10 10 Granduc Skeena 56° 130° S.E. 3 3 10 10 Harriet Harbour Skeena 52° 131° S.E. 3 3 10 10 Hesquiat Alberni 49° 126° S.E. 3 3 10 10 10		Skeena									{		· • • • •	1					1			10
F.L. Nanaimo 50° 126° S.W. 3 3 40° 121° S.E. 3 3 40° 121° S.E. 3 3 40° 121° S.E. 8 Granduc Skeena 50° 130° S.E. 3 3 3 3 40° 121° S.E. 10° S.E. <td></td> <td>Nanaimo</td> <td></td> <td>1</td> <td>1</td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> }</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td> </td> <td> </td> <td>]</td> <td> </td> <td>102, 147</td>		Nanaimo		1	1	2						}]		102, 147
Gold Coin N. West'r 49° 121° S.E. 3 3 3		Nanaimo	50° 127° S.E.			!												[95, A46
Granduc Skeena 56° 130° S.E. 3 3 1 1 Harriet Harbour Skeena 52° 131° S.E. 3 3 1 1 1 Hesquiat Alberni 49° 126° S.E. 3 3 1 1 1				`	[]	1	})]		3	}]			[]				101
Harriet Harbour Skeena 52° 131° S.E. 3 3 1 Hesquiat Alberni 49° 126° S.E. 3 3 1 10				i			3	3				[l									86
Hesquiat Alberni 49° 126° S.E 3 3 1 1 0 10				'	[]	3								1		'					_	8
							1														_	13
						3																101
		+]							••••							1	17
Iron Mike Nanaimo 50° 125° S.W. 3]	Iron Mike	Nanaimo	50° 125° S.W.			[3				[[]]]	91

Shipping Mines.—(1) Metal contributed at least 10 per cent of gross value of the shipment. (2) Metal con-tributed less than 10 per cent of the shipment. Production for 1961 is listed in Table XIV. Non-shipping Mines.—(3) Metal present, indicated by assay or mineralogical determination.

MINES AND PETROLEUM RESOURCES REPORT, 1961

LODE-METAL DEPOSITS REFERRED TO IN THE 1961 ANNUAL REPORT—Continued

		KEPOI		_	_0	~~~			и 				_								
Property	Mining Division	Latitude and Longitude	Gold	Silver	Copper	Lead	Zinc	Tungsten	Cadmium	Iron	Manganese	Uranium	Chromium	Tin	Nickel	Moly bdenum	Silica	Sulphur	Mercury	Cobalt	Page
Coast and Islands- Continued																					
Kennedy Lake	Alberni	49° 125° S.E.		I	•					3	_	_							_		104
Lake, Don, Ken	Skeena Alberni	56° 130° N.E. 50° 127° S.E.			3			—	-	3											8 100
Little Lake Group	Vancouver	50° 125° N.W.	3		'			-		3			_								90
Lucky Jim	N. West'r	49° 121° S.W.	3		3		3		_		_		_							-	88
Lynx, Paramount, Price		49° 125° N.W.	3	3	3		3									<u> </u>		[103
Musketeer		49° 125° S.W.	1	2	2	2											·				102, A46 93, A47
Nimpkish, Klaanch Old Sport		50° 126° S.W. 50° 127° S.E.			3				·	1						<u> </u>	1		ļ	<u>}</u>	97
Pride of Emory		49° 121° S.W.			1		-						_		2		L		<u>ا</u>		86, A47
Privateer	Alberni	50° 126° S.W.	3		3											[[]		[]	[]	100
Sarita River		48° 125° N.E.	-				-			1							<u> </u>				
Silbak Premier	Skeena	56° 130° S.E. 49° 123° N.W.	1			2	2			-		-	-				[[]		9, A47 89
Sunloch, Gabbro		48° 124° S.E.			3]				_			_]				113
Tassoo	Skeena	52° 132° N.E.			3					3							_				11
Texada (Prescott, Pax- ton, Yellow Kid,	1		ľ																		
Yellow Jacket)	Nanaimo	49° 124° N.W.	2	2	1	_				1		-]]]	90, 147
Tofino Inlet Tofino Mines Ltd	Alberni	49° 125° S.W. 49° 125° S.W.	3		3					3											104 103
Tzartus Island		48° 125° N.E.	5							3	_			_			[111
Valley View	N. West'r.	49° 121° S.W.	-	2	1							_				۳.	1]	<u> </u>	88, A47
Wedeene Iron	Skeena	54° 128° S.W.								3						[[]	[]	Í	[17
Willoron	Victoria	49° 123° N.W.								3											112
South Central British Columbia																					
Aco	Lillooet	50° 122° N.W.	3									_		—		'	[25
Ajax and Monte Carlo	Kamloops Greenw'd	50° 120° N.E. 49° 119° S.E.			3]							3	'	')		'		48 61
Anarchist Chrome	Lillooet	50° 122° N.W.	-		3								_								25
Bethlehem	Kamloops	50° 120° S.W.	-		3														[30
Betty Lou and Lou	Nicola				3											[Į	Į,	Į	Į	41
Bounty Fraction		49° 119° S.E.	~	1		2	1									<u> </u>					A47
Bralorne Bridge River	Lillooet	50° 122° N.W. 50° 122° N.W.	1										_					₁		J (26, A48 27
Canford Explorations_	Nicola	50° 120° S.W.			3																42
Cariboo-Amelia	Greenw'd	49° 119° S.E.	1	2		2	2										1				63, A47
Consolidated Standard	Nicola	50° 120° S.W.			3									—			[]				40
Copper Soo	Nicola Nicola	50° 120° S.W. 50° 120° S.W.	·		3		•••			3								**			43 45
Craigmont		50° 120° S.W.		2	1		_										1		 		31, 448
Deep Gulch	Similk'n	49° 120° S.W.			3	****]				[]				56
Dora Kay		50° 121° S.E.		[3	[]											[]				29
Fairview French		49° 119° S.W. 49° 120° S.E.	2											-			1				61, A48
Friday Creek	Similk'n	49° 120° S.W.		Ĩ.	3												1				56
Friday Mines	Nicola	50° 120° S.W.		[]	3																38
Galaxy Minerals	Kamloops Lillooet	50° 120° N.E. 50° 122° N.E.	-3		3										Í				- <u>-</u> -'		46
Golden Contact Good Hope and Night-	Linotet	50° 122° N.E.	3														}				28
hawk	Similk'n	49° 120° S.E.	3																		56
Highland-Bell	Greenw'd	49° 119° S.E.	2	1		2	2		2] ')	\))]	63, 147
Highvale Copper	Nicola	50° 120° S.W.	·		.3												[]				40
Huestis Mining Corpo- ration	Kamloops	51° 119° S.W.	1	.		3	2												ļ		.53
Iron Mask	Kamloops	50° 120° N.E.			3																47
Jericho	Kamloops	50° 120° S.W.	17	'	3									[1	30
Judy Group	Nicola	50° 120° S.W.		i	3]i				43
Makaoo Development	Kamloops Greenw'd	50° 120° N.E.			3									I			[{	46
Matt Mid-West Copper &	Greenw'd	49° 119° S.E.	~	د		J,	3	••••													63
Uranium	Nicola	50° 120° S.W.	ľ		3						. <u></u>								,		-41
Mother Lode	Greenw'd_	49° 118° S.W.	1,	2	3 1			;.	· • • • •])]]]	64, 147
<u> </u>	!		<u> </u>													<u> </u>					

LODE-METAL DEPOSITS

Property	Mining Division	Latitude and Longitude	Gold	Silver	Copper	Lead	Zinc	Tungsten	Cadmium	lron	Мапдапско	Uranium	Chromium	Tin	Nickel	Molybdenum	Silica	Sulphur	Mercury	Cobalt	Page
South Central British Columbia—Continued				ļ																	
Nickel Plate	Osoyoos	49° 120° S.E.	1		[]				_	—	_	_									▲48
Norex Olalla Manganese	Osoyoos Osoyoos	49° 119° S.W. 49° 119° S.W.	1	2		2	2				3			—]			A48 59
P.C.M., Cap, Dom-	0303008	47 117 0.111		-				****			5	****							+		39
ino, Hank, Freda	Nicola	50° 120° S.W.			3																41
Peel Resources	Nicola Lillooet	50° 120° S.W.			3								-								37 29
Phoenix	Greenw'd	49° 118° S.W.	2	2	ĩ			_					_	1							65, 147
Pioneer	Lillooet Greenw'd	50° 122° N.W.	1			_		-			-]]				A48
Providence Quilchena	Nicola	49° 118° S.W. 50° 120° S.W.	1	1	3	2	2	-				-	-	'			<u> </u>	<u> </u>			.⊾47 46
Rainbow	Kamloops	50° 120° N.E.			3						-			-				_			48
Renning No. 1, LT	Kamloops	51° 119° S.W.				3	3]	-								48
Rose Group	Kamloops	51° 119° S.W.					3		-	·											56
tures	Kamloops	50° 121° S.E.			3								_								29
Ruby Mac	Greenw'd	49° 118° S.W.	3	3	3]]	_									65
Salal Sands Creek	Lillooet Kamloops	50° 123° N.E. 51° 120° N.E.			3		[-			-		_		3					28
Skeena Silver	Nicola				3									-		3	~				51 43
Standard	Osoyoos	49° 119° S.W.	3								-		-								61
Stemwinder	Osoyoos		3											·		[3			[_]	61
Stump Lake Sunrise, Golconda,	Nicola	50° 120° S.E.	1	1		1	1							-]					А48
Copper King	Osoyoos	49° 119° S.W.	3		3					. 1								. 1			59
Tintlhohtan Lake	Kamloops	51° 120° N.E.						_								3					49
Tormont		50° 120° S.W.			3					[_	-							39
Torwest Resources	Nicola Kamloops	50° 120° S.W.			3								Ĺ,					_			39
Viking					3												-				30 31
Wade	Nicola	50° 120° S.W.			3										· · · ·			-			41
Wen Group		49° 120° N.W.			3		[·]								46
Windpass	Kamloops	51° 119° S.W.	3				-														49
Southeastern British Columbia											ĺ										
Anna	Slocan	49° 117° N.E.		3			!		{				'								78
Arlington Bess	Nelson Slocan	49° 117° N.E. 49° 117° N.E.		3		1	2														78 •49
Black Fox	Slocan	49° 117° N.E.		1		1	ĩ		2												74, 49
Bluebell	Slocan	49° 116° N.W.		2	2	1	1		2												72, A49
Caledonia		50° 117° S.E.	2	1		1	1		2							·					75, 49
Duncan		49° 117° N.E. 50° 116° S.W.	•	3		3	3	{					-								76 79
Етріге	Slocan	49° 117° N.E.		3		3	3														75
Galena Farm Giant Western		49° 117° N.E.	2	1		1			1]								78, 149
Gold Belt		49° 117° N.E. 49° 117° S.E.		1		2 2		•				-	-	-							A50 A49
H.B,		49° 117° S.E.	1	2		1	2		1												68, A49
Hewitt	Slocan	49° 117° N.E.	2	1		1	1		1												78, a50
Highlander	Slocan	49° 116° N.W.		2		1			2]								74, A50
It and In	Revelstoke Nelson	51° 118° N.W. 49° 117° S.E.		2		3 1	3														84 69, a49
Kootenay Belle	Nelson	49° 117° N.E.	1	2		1			2							•••••					68, A49
Liz B	Nelson	49° 116° S.E.		Ĩ		3								_							80
London-Panama	Slocan	50° 117° S.E.		3		3					[[76
Lone Bachelor	Slocan Golden	49° 1.17° N.E. 50° 116° N.E.	2			1 1	1		2											[77, A50
Lucky Strike	Nelson	49° 117° S.E.	1	1		2	2												*****		a49 a49
Mammoth	Slocan	49° 117° N.E.	2			1	1		2			_									77, 150
Mineral King	Golden	50° 116° S.E.		2		1	1		2]							·			[82, _A 49
New Arlington	Slocan Nelson	50° 117° N.W.	1		3	1						-									79
New Springfield	Slocan	49° 117° S.E. 49° 117° N.E.	1	2		3	1					-									68, _A 49 77
New Zone Copper	Slocan	50° 117° N.E.		_	3	_										_			_		79
·			ı			1							1								

LODE-METAL DEPOSITS REFERRED TO IN THE 1961 ANNUAL REPORT—Continued

Property	Mining Division	Latitude and Longitude	Gold	Silver	Copper	Lead	Zinc	Tungsten	Cadmium	Iron	Manganese	Uranium	Chromium	Tin	Nickel	Molybdenum	Silica	Sulphur	Mercury	Cobalt	Page
Nugget	Slocan Slocan Ft. Steele Slocan Slocan Slocan Trail Cr'k Slocan Trail Cr'k Nelson Ft. Steele Ft. Steele.	49° 117° S.E. 49° 117° S.E. 49° 117° S.E. 49° 117° S.E. 49° 117° S.E. 49° 117° S.E. 49° 117° N.E. 49° 117° N.E. 49° 117° N.E. 49° 117° N.E. 50° 116° S.W. 49° 117° N.E. 49° 117° S.W. 49° 117° S.W. 49° 117° S.E. 49° 117° S.E. 49° 115° N.W. 49° 115° N.W. 49° 115° N.W. 49° 116° N.W. 49° 116° N.W. 49° 117° S.E. 51° 118° S.E. 51° 118° S.E. 49° 117° S.E.	3 2 1 2 3 3 3 1 2 1 2 1 2 3 1 1 1 2 3 1	1 2 2 1 3 3 1 2 3 3 1 2 3 3 1 2 1 2 2 2 2		2 2 3 1 1 3 3 3 2 1 3 3 1 1 3 3 1 1 1 3 3 1 1 1 3 3 1 1 1 3 3 2 1 3 3 1 1 1 3 3 2 1 3 3 2 1 3 3 1 1 1 3 3 2 1 1 1 1	2 2 3 1 1 3 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 3 3 1 1 1 3 3 1 1 1 3 1														68 78, A50 68, A49 72 71, A49 A50 66 74 76 80, A49 74 76 80, A49 74 75, A50 65, A50 77, A50 65, A50 77, A50 65, A50 77, A50 65, A50 77, A50 66 67, A49 84 A50 67

LODE-METAL DEPOSITS REFERRED TO IN THE 1961 ANNUAL REPORT—Continued

,	٤	
ŕ	3	

	AGE
A. B. Longstaff & Son Ltd., sand and	
gravel	155
	85
electrical installations 2	280
ARH, 50° 120° S.W.	41
ARH, 50° 120° S.W. "A" East mine, Michel Colliery, 49° 114°	
N.W. dangerous occurrence "A" North mine, Michel Colliery, 49°	268
dangerous occurrence	262
"A" North mine, Michel Colliery, 49°	
114° N.W.	270
fatal accident "A" South Strip mine, Michel Colliery, 49° 114° N.W.	256
"A" South Strip mine, Michel Colliery,	
49° 114° N.W 2	272
fatal accident 2 "A" West mine, Michel Colliery, 49° 114° N.W.	257
"A" West mine, Michel Colliery, 49°	
114° N.W 2	268
dangerous occurrence	261
fatal accidents256, 2	
Abbotsford, 49° 122° S.E., clay and shale 1	142
Abbotsford Gravel Sales Ltd., sand and	
gravel 1 Alberta, 49° 117° S.W. Abbott Lake, 50° 120° S.W.	[54
Alberta, 49° 117° S.W.	66
Abbott Lake, 50° 120° S.W.	31
accidents, coal mines 2 fatal (lode mines, placer mines, and quarries)	255
fatal (lode mines, placer mines, and	
quarries)	232
involving loss of time 7	238
Ace, 50° 122° N.W.	25
Ace Mining Company Ltd., The	25
Ad Astra Minerals Ltd., placer	27
Adams, E. G.	91
Adams, J.	91
Adell Group, 56° 130° S.E., geophysical	-
Adams, J. Adell Group, 56° 130° S.E., geophysical report	[16]
Administration Branch	52
administration, petroleum and natural gas 1	59
aeromagnetic survey	60
	112
Ainsworth, 49° 116° N.W.	74
air bhataarabu A	70
Ajax, 50° 127° S.E.	97
Ajax, 50° 120° N.E.	48
Aku Group, 49° 120° S.W., geophysical	
Ajax, 50° 127° S.E. Ajax, 50° 120° N.E. Aku Group, 49° 120° S.W., geophysical report Alberni Mining Division	14
Alberni Mining Division A	64
Albeta Mines Ltd.	111
Alexander, B. L.	90
Alice, 49° 119° S.E.	63
Alice, 47 119 D.E.	
Alice, 55° 129° S.E.	10
Alice Arm, 55° 129° N.W.	10
Allan, A.	41
Allen, A. R.	45
Allen, Fred	26
Alpha, 48° 124° N.E.	11

	PAGE
Amcana Group, 49° 118° N.W., geo-	-
physical report	114
physical report Amelia, 49° 119° S.E.	63
American Metal Climax, Inc.	21
American Metal Company	21
American Smelting and Refining Com- pany Armes, Harold Anaconda, 50° 120° S.W.	
pany sincircul sincircul sincircul sources	23
Armes. Harold	134
Anaconda, 50° 120° S.W.	42
Analytical and Assay Branch	A 56
Analytical and Assay Branch Anarchist Chrome, 49° 119° S.E Anarchist Mountain, 49° 119° S.E	62
Anarchist Mountain 49° 119° S.E.	62
Anderson, Adolf	133
Anderson I M	
Anderson, J. M. Anderson, James E. Anderson Lake, 50° 122° N.E.	269
Anderson Lake 50° 122° N E	28
Angus Gordon	- 4 <u>9</u>
Angus, Gordon Ann 3–8, 50° 120° N.W., geophysical re-	12
port	115
port Anna, 49° 117° N.E. Anticlimax, 51° 120° N.E.	78
Anticlimax 51° 120° N E	10
Antien Max, 51° 120° N.E. A 17, A 18, A Antier Creek, 53° 121° S.E., placer Anyox, 55° 129° S.W. Apache, 50° 120° S.W.	A 28
Antler Creek 53° 121° S.F. placer	130
Anvoy 55° 129° SW	10
Apache 50° 120° SW	41
Apex, 49° 125° S.E.	103
Apps George E	111
Argo Exploration & Mining Co. Ltd	111
Apex, 49° 125° S.E. Apps, George E. Argo Exploration & Mining Co. Ltd., placer Arishenkoff, M. A 44 Arlington, 49° 117° N.E. Arnold, A. M. arsenious oxide, production A 17, asbestos, Mount McDame Naltesby Lake Williams I ake	136
A rishenkoff M $A / ($	120
Arlington 49° 117° N F	700
Arnold A M	10
arsenious oxide production A 17	A 27
abostos Mount McDame	129
Nolteshy Lake	120
Williams Lake	120
Williams Lake A 17, A 18,	132
Ashley I C	n 52 56
Ashley P T	- 56
Ashley, I. C. Ashley, R. L. Aspen Creek, 49° 117° S.E.	68
electrical installations	270
Aspen Grove, 49° 120° N.W.	419
Aspell Glove, 49 120 N.W.	117
assessment reports 114 Atlin, 59° 136° N.W., placer Atlin Mining Division	127
Atlin, 59° 150° IN.W., placer	141
Audet, A.	120
Augustine, E.	150
Augustine, E	70
Aumaque Gold Mines Linned	/0 2 10
Aumaque Gold Mines Limited Aurum, 53° 121° S.W. A 40 authorized maximum permissible rates	10/
Avis, Harold	157
Avison D T	137
Avison, R. T. awards for bravery	200
Ave Nos 60 72 52º 122º N E	230
Axe Nos. 69-72, 53° 122° N.E., geophysi-	110
cal report	116

B 4, 50° 120° S.W.	- 45
"B" South mine, Michel Colliery, 49°	
	270
dangerous occurrence	261
B.C. Clay Products Limited	143
B.C. Copper Company	66

В

45	B.C. Placer Mining & Refining Ltd.,	
	placer	134
70	electrical installations	282
61	B. & G. Sand and Gravel Ltd.	154
43	B.R., 50° 122° N.W.	25
66	B.R., 50° 122° N.W.	56

	PAGE
Badgley, P. C.	46
Badgley, P.C. Baker Brick & Tile Company Limited Baldy Mountain Strip mine, Michel Col-	143
 Balmer (No. 10) mine, Michel Colliery, 49° 114° N.W. Balmer (No. 10) mine, Michel Colliery, 49° 114° N.W. Bamberton, 48° 123° N.W., cement Barclay, E. (Mrs.) Bare 1-4, 50° 120° N.W., geophysical report 	271
49° 114° N.W.	271
Bamberton, 48° 123° N.W., cement	142
Barclay, E. (Mrs.)	80
Bare 1-4, 50° 120° N.W., geophysical re-	115
port Bare, 50° 120° S.W	115 43
barite, Brisco	140
Parson	140
Spillimacheen	141
Windermere A 17, A 18, J	1 27
Barker, H. G	n 32 97
Barker, H. G. Barkerville-Dakota Placer Explorations	
Ltd. Barkley Sound, 48° 125° N.E.	100
Barnet 49° 122° SW clay and shale	111 143
Barnet, 49° 122° S.W., clay and shale Baroid of Canada Ltd.	141
electrical installations	
Barr, D. A	7
Barr, W. D. Barriere, 51° 119° S.W. Barry, J. G.	42
Barry I G	48 138
Barry, J. G	130
Bater, R. L.	130
Bavnes, E. G.	143
Beale, W. S Beale Quarries Division, limestone	149
Beard Henry G	149 262
Beard, Henry G	63
electrical installations	278
electrical installations Bedwell River, 49° 125° S.W. Beggs, Harold K.	102
Beggs, Harold K.	141
Beggs Gulch, 53° 121° S.E., placer Belfast, 51° 119° S.W.	130 49
Bell J.	76
Bell, R. D.	41
Bell Asbestos Mines Ltd.	139
Bell, J. Bell, R. D. Bell Asbestos Mines Ltd. Bell Claim Group, 54° 125° S.E., geo- physical report	116
Belliveall, K. M.	101
Belliveau Enterprises Ltd.	104
Benjamin, H.	100
Bennett, Ivan	3, 56
Bennett, Robert I A 44 Benson Lake, 50° 127° S.E., electrical in-	5, 91
Benson River, 50° 127° S.E. bentonite, production	- 95
bentonite, productionA 17, .	A 32
Berton Gold Mines Limited	101
beryl, Hellroaring Creek Bess, 49° 117° N.E.	141 A 49
Beta, 48° 124° N.E.	111
Beta, 48° 124° N.E Bethlehem Copper Corporation Ltd	30
electrical installations	278
Bethsaida Copper Mines Ltd., Royal Ca-	29
nadian Betty Lou, 50° 120° S.W.	- 4 1
geophysical report	115
Bick, R Big Valley Creek, 53° 121° S.W., placer Biggs, J. S	93
Big Valley Creek, 53° 121° S.W., placer.	130
Billingslev I R	58
Billingsley, J. R. Billwiller, P. W. Birch Creek, 59° 133° N.E., placer bismuth, production A 17, A 18, . Black Creek, 52° 121° S.E., placer	- 95
Birch Creek, 59° 133° N.E., placer	127
bismuth, production	A 28
ыаск стеек, 52° 121° S.E., placer	134

	PAGE
Black Fox, 49° 117° N.E. A 49 Black, J. C. 76 Blackham's Construction Limited, sand). 74
Black, J. C	5. 77
Blackham's Construction Limited, sand	
	154
Blakey, K. B., Chief Gold Commissioner	
and Chief Commissioner, Petroleum	* 2
and Natural Gas	150
report by	242
Bloomer, T. O. Blubber Bay, 49° 124° N.W., limestone. Blue Flame Colliery, 49° 120° S.W. Blue, G. E., district engineer	135
Blubber Bay, 49° 124° N.W., limestone	149
Blue Flame Colliery, 49° 120° S.W.	266
Blue, G. E., district engineer	162
report by Bluebell, 49° 116° N.W A 49	163
Bluebell, 49° 116° N.W.	2, 12
dangerous occurrence	241
electrical installations Board of Examiners, Coal-mine Officials	4 58
Shiftbosses	A 58.
Boe, Barney Bon, 50° 120° S.W., geological and geo-	133
Bon, 50° 120° S.W., geological and geo-	
physical report	115
Bonar, R. B., Deputy Chief Inspector of	
Mines A 58, 245,	261
reports by	231
Bonar, R. B., Deputy Chief Inspector of Mines A 58, 245, reports by 142, 143, 150, Bond, F. Border Sand and Gravel Company Lim-	213
ited	155
Boreas Mines Limited, placer	136
Boreas Mines Limited, placer Boss Mountain, 52° 120° S.W.	21
Boss Mountain, 32° 120° S.W. Bounty Fraction, 49° 119° S.E. Boyles Bros. Drilling Company Ltd., placer	A 47
Boyles Bros. Drilling Company Ltd.,	
placer	132
Brabant, B, M.	120
Bradshaw, B. A.	10
Bradshaw, Carol Bralorne, 50° 122° N.W	249
Bralorne Mines Limited fatal accident	238
Bralorne Pioneer Mines Limited, Ace	25
Brolonno Dioncon A ()	6 76
Consolidated Standard Ruby Mac electrical installations	40
Ruby Mac	_65
electrical installations	277
fatal accidentsBrandon, P. L.	237 75
bravery awards for	250
bravery, awards for Brenda Fraction, 51° 119° S. W brick (common), production A 18, A Bridge River, 50° 122° N.W placer	² 30
brick (common), production A 18, A	A 34
Bridge River, 50° 122° N.W.	25
placer	134
electrical installations	282
Bridge River United Mines Ltd. Bridge River Valley Mines Safety Associ-	27
Bridge River Valley Mines Salety Associ-	248
ation	240
briquette plant, Michel Colliery, 49°	272
114° N.W. Brisco, 50° 116° N.E., barite	140
Britannia, 49° 123° N.E	7 80
dangerous occurrence	241
electrical installations	2 81
British Columbia Cement Company Lim-	
ited	142
ited	250
British Columbia Mining Association,	
safety division	250
British Columbia Lightweight Aggregates	
Ltd., clay and shale	143
British Columbia Oil Transmission Co.	162
Ltd. British Columbia Research Council	103
Dimon Commona Research Council	ررے

C

PAG	B
British Columbia Slate Co. Ltd., building-	
stone 142	2
Britmont Mines Limited 4	
Brossard, R. A	1
Broswick, Nick	0 I
Brown, C	8
Bruhaug, Carl 13:	5
fatal accident	6
Brunette, George 15	1
Brunswick, 49° 121° S.W 8'	7
Bryant, A. E.	9
Bryant, J. W	9
Bryden, T	6
Buccaneer, 49° 125° S.W 102	2
Buckland, F. C.	0 .
building-stone, Cheam View 142	2
Granite Falls 142	2
Nelson Island	2
Pitt River	2

Sirdar	141
productionA 17, A 18, A Bulkley Valley Collieries Limited	A 34
Bulkley Valley Collieries Limited	273
Bur No. 5, 49° 115° N.W.	82
Burnett, W. B	
Burns, D.	- 93
Burquitlam Sand and Gravel Co. Ltd	153
Burton, A. D. K.	22
Bute Inlet, 50° 125° N.E.	90
Butler Brothers Supplies (Duncan) Ltd.,	
sand and gravel	156
Butler Brothers Supplies Ltd., sand and	
gravel	156
Buttle Lake, 49° 125° N.W.	103
Buy, 57° 131° S.E.	105
geological report	116
geophysical report	117
by-product plant, Michel Colliery, 49°	117
114° N.W.	272
dangerous occurrence	Z0 1

C.J.S., 50° 120° S.W. C.N. Group, 50° 121° N.W., geophysical 39 C.N. Group, 50° 121° N.W., geophysical report 115 cadmium, deposits (see table) 285 production A17, A 18, A 28 Cadwallader Creek, 50° 122° N.W., placer 134 Calder, K. 48, 53 Calder Molybdenum Company Limited, Sands Creek 51 Tinthohtan Lake 49 Caledonia, 49° 117° N.E. 76 Caledonia, 50° 117° S.E. A 49, 75 California Gulch, 53° 121° S.E., placer 130 Call, 50° 120° S.W., geological and geophysical report 115 Calan, D. M., geologist A 61 Cambrian Chieftain, 49° 123° N.W. A 47, 89 115 Cambrian Chieftain, 49° 123° N.W. A 47, 89 63 Campbell, D. M., geologist 63 Campbell, C. M., Jr. 26 Campbell, D. S. 72 Campbell, R. B. 72 Canadian Collieries (Dunsmuir) Limited 264 Canadian Collieries Resources Limited 265 Canadian Forest Products Limited 49, 69 electrical installations 279 Canadian Johns-Manville Company Lim 139 Canadian Johns-Manville Company Lim 139 Canadian Pozzolan Industries Ltd., mica 157 Canal Flats, 50° 115° S.W., gypsum 144 Canam Copper Company Ltd. 85 dangerous occurrence 240 clastical installations 280 cangerous occurrence 240 electrical installations 280 Canex Aerial Exploration Ltd. 41 placer 130, 132 Canford Explorations Limited 42 Cap, 50° 120° S.W. 41 Capilano Crushing Co. Ltd., sand and gravel ______ 152 Caplette, R., sand and gravel ______ 154 Cariboo, 49° 119° S.E. ______ 63 Cariboo area ______ 19

placer 129

Cariboo-Amelia, 49° 119° S.E A 47	, 63
Cariboo Gold Quartz Mining Company	
Limited, The, Aurum A 46 Cariboo Gold Quartz A 46	5.19
Cariboo Gold Quartz A 46	5.19
Cariboo Mining Division	Á 64
Carnation, 49° 117° N.E. 76	5.77
Carnegie Mining Cornoration Limited	76
Carnegie Mining Corporation Limited Carr, J. M., geologist	4 <u>59</u>
field work	4 59
field work reports by7, 8, 9, 24, 25, 28-48 Carruthers, R. B. Carruthers and Wakelem No. 3 mine, 49°	56
Carruthers R B	264
Carruthers and Wakelem No. 3 mine, 49°	-0.
	764
Cosburn, S. S., geologist Cassiar, 59° 129° S.W.	1 61
Cassiar 59° 129° S.W.	6
Cassiar Asbestos Corporation Limited	v
138	282
138, dangerous occurrence	241
Cassiar Copperfields Limited	28
Cassidy, 49° 123° S.W., electrical instal-	-0
lations	283
Cassidy Gravel Pit 49° 123° SW elec-	205
lations Cassidy Gravel Pit, 49° 123° S.W., elec- trical installations	283
Cassidy Sand and Gravel Ltd.	156
Castlegar-McGauley Pit, sand and gravel	152
Costles G D	136
Castles, G. R. Catface, 49° 125° S.W.	101
Cayzor Athabaska Mines Limited	67
Cedar Creek, 52° 121° N.W., placer	
cement Bamberton	142
cement, Bamberton Lulu Island	142
production A 17, A 18, A	A 2/
Cementation Company (Canada) Limited	73
Centennial Mines Ltd., placer130,	
Central British Columbia Mine Safety	154
Association	248
central records offices (Victoria and Van-	240
couver)	\$ 52
Central Sand and Gravel Ltd	152
Central Sand and Gravel Ltd. certificates, first-, second-, and third-class	152
and mine surveyors	262
certificates of achievement	250
Chalmers H I	230
Chamberlain V D	29
Chambers No 5 mine 40º 172º CW	263
Chalmers, H. J. Chamberlain, V. R. Chambers No. 5 mine, 49° 123° S.W. Chapman, E. P., Jr.	263
Chapman, Wood and Griswold Ltd.	41
Chapman, wood and Griswold Ltd.	41

291 PAGE

	PAGE
Charleston, 49° 117° S.W. Charmer, 50° 120° S.W. Chase, E. Cheam Marl Products Ltd., marl	66
Charmer 50° 120° S.W.	45
Chase F	104
Cheam Marl Products I td marl	150
Cheam View, 49° 121° S.W., building- stone Chester, Daniel Childress, W. H., instructor, Nelson Sta-	150
Cheani view, 49 121 S.W., building	142
stone	142
Chester, Daniel	268
Childress, W. H., instructor, Nelson Sta-	
tion	A 58
tionChilliwack, Corporation of the Township	
of, sand and gravel	154
Oh Sand and graver	154
Chilliwhack Municipality, sand and graver	
China Creek, 53° 121° S.E., placer	130
Chilliwhack Municipality, sand and gravel China Creek, 53° 121° S.E., placer Christensen, A. D.	- 90
Christensen, Harold	130
Christian I D	138
chromite, production A 17,	A 28
chronite, production	285
chromium, deposits (see table)	200
Churchill, M. A., engineering assistant	
clay and shale, Abbotsford	162
clay and shale. Abbotsford	142
Barnet	143
Haney	
Kilgard	142
Kilgard	
Saturna Island	143
Vancouver	143
Victoria clay products, productionA 17, A 18,	143
clay products production A 17, A 18,	A 34
Clayburn-Harbison Ltd., clay and shale_	142
Clayburn-Harbison Liu., clay and shale_	101
Clayton, B. L. Clearwater, 51° 120° N.E. Cleeve, J. F.	101
Clearwater, 51° 120° N.E.	51
Cleeve, J. F.	267
Clement H	- (\)
	0.1
Climax Molybdenum Company	- 21
Climax Molybdenum Company	21
Climax Molybdenum Company	- 23
Climax Molybdenum Company Clinton area Clinton Mining Division	23 A 64
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer	23 A 64 132
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer	23 A 64 132
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer	23 A 64 132
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences	23 A 64 132 255 261
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends	23 A 64 132 255 261 A 42
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences	23 A 64 132 255 261 A 42 A 55
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment	23 A 64 132 255 261 A 42 A 55 255
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price	23 A 64 132 255 261 A 42 A 55 255 A 16
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price	23 A 64 132 255 261 A 42 A 55 255 A 16
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price	23 A 64 132 255 261 A 42 A 55 255 A 16
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price A 17, A 18, A 25, A 36, A 37,	23 A 64 132 255 261 A 42 A 55 255 A 16 251
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust	23 A 64 132 255 261 A 42 A 55 255 A 16 251 260
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust	23 A 64 132 255 261 A 42 A 55 255 A 16 251 260
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust	23 A 64 132 255 261 A 42 A 55 255 A 16 251 260
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited	23 A 64 132 255 261 A 42 A 55 255 A 16 251 260 255 97 281
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited	23 A 64 132 255 261 A 42 A 55 255 A 16 251 260 255 97 281
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited	23 A 64 132 255 261 A 42 A 55 255 A 16 251 260 255 97 281
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited	23 A 64 132 255 261 A 42 A 55 255 A 16 251 260 255 97 281
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited	23 A 64 132 255 261 A 42 A 55 255 A 16 251 260 255 97 281
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (see table) production Cochrane, James Coffee Creek, 53° 121° S.E., placer	23 A 64 132 255 261 A 42 255 255 A 16 255 255 255 255 255 255 255 255 260 255 281 285 A 29 265 130
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (see table) production Cochrane, James Coffee Creek, 53° 121° S.E., placer	23 A 64 132 255 261 A 42 255 255 A 16 255 255 255 255 255 255 255 255 260 255 281 285 A 29 265 130
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants coast Copper Company, Limited electrical installations cobalt, deposits (see table) production Coffree Creek, 53° 121° S.E., placer Coffee, R. J.	23 A 64 132 255 261 A 42 255 A 455 255 A 16 255 260 255 97 281 285 A 29 265 130 A 49
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (see table) production Coffee Creek, 53° 121° S.E., placer Coffey, R. J. Cohen, H. H.	23 A 64 132 255 261 A 42 255 255 A 16 255 255 A 16 255 97 281 285 97 281 285 A 29 265 130 A 49 43
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (see table) production Coffee Creek, 53° 121° S.E., placer Coffey, R. J. Cohen, H. H. coke and by-products, production	23 A 64 132 255 261 A 42 255 255 A 16 255 255 A 16 255 97 281 285 A 29 265 130 A 49 43 A 38
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (see table) production Coffee Creek, 53° 121° S.E., placer Coffey, R. J. Cohen, H. H. coke and by-products, production. coke-making	23 A 64 132 255 261 A 42 255 A 16 255 97 281 285 97 281 285 97 281 285 130 A 49 43 A 38 255
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (see table) production Coffee Creek, 53° 121° S.E., placer Coffey, R. J. Cohen, H. H. coke and by-products, production. coke-making	23 A 64 132 255 261 A 42 255 A 16 255 97 281 285 97 281 285 97 281 285 130 A 49 43 A 38 255
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (see table) production Coffee Creek, 53° 121° S.E., placer Coffey, R. J. Cohen, H. H. coke and by-products, production coke-making Coldwater mine, 50° 120° S.W.	23 A 64 132 255 261 A 42 255 A 16 255 97 281 285 97 281 285 97 281 285 130 A 49 43 A 38 255
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (see table) production Coffee Creek, 53° 121° S.E., placer Coffey, R. J. Cohen, H. H. coke and by-products, production coke-making Coldwater mine, 50° 120° S.W. Colebrook Sand and Gravel Company	23 A 64 132 255 261 A 42 255 255 A 16 255 255 A 16 255 255 97 281 285 37 285 130 A 49 3 A 38 255 266
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (<i>see</i> table) production Coffee Creek, 53° 121° S.E., placer Coffey, R. J. Cohen, H. H. coke and by-products, production coke-making Colebrook Sand and Gravel Company Limited	233 A 64 132 2555 261 A 42 255 255 A 16 255 97 281 285 97 285 130 A 49 43 A 38 255 266 155
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (<i>see</i> table) production Coffee Creek, 53° 121° S.E., placer Coffey, R. J. Cohen, H. H. coke and by-products, production coke-making Colebrook Sand and Gravel Company Limited	233 A 64 132 2555 261 A 42 255 255 A 16 255 97 281 285 97 285 130 A 49 43 A 38 255 266 155
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (<i>see</i> table) production Coffee Creek, 53° 121° S.E., placer Coffey, R. J. Cohen, H. H. coke and by-products, production coke-making Coldwater mine, 50° 120° S.W. Colebrook Sand and Gravel Company Limited Coleman Collieries Limited	23 A 64 132 255 261 A 42 255 255 A 16 255 27 281 285 260 255 97 281 285 260 255 97 281 285 260 43 A 49 43 A 38 255 273
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (see table) production Coffee Creek, 53° 121° S.E., placer Coffee, R. J. Cohen, H. H. coke and by-products, production coke-making Coldwater mine, 50° 120° S.W. Colebrook Sand and Gravel Company Limited Colleman Collieries Limited collieries, production and distribution	23 A 64 132 2555 261 A 42 2555 A 16 255 255 A 16 255 273 281 2855 260 A 49 265 130 A 38 255 266 155 273 253
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (see table) production Coffee Creek, 53° 121° S.E., placer Coffey, R. J. Cohen, H. H. coke and by-products, production. coke-making Coldwater mine, 50° 120° S.W. Colebrook Sand and Gravel Company Limited collieries Limited collieries, production and distribution. men employed	23 A 64 132 255 261 A 42 255 A 16 255 255 A 16 255 255 255 255 255 255 255 130 A 49 265 266 130 A 49 43 A 38 255 266 155 273 253 253 254
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (see table) production Coffee Creek, 53° 121° S.E., placer Coffey, R. J. Cohen, H. H. coke and by-products, production coke-making Coldwater mine, 50° 120° S.W. Colebrook Sand and Gravel Company Limited collieries, production and distribution men employed Collishaw, R.	234 132255 2611 A 422 2555 255 A 16 255 255 285 130 A 49 265 130 A 49 265 130 A 49 255 273 255 273 255 273 255 273 255 273 255 255 273 255 255 275 255 275 261 285 261 285 261 285 275 285 275 285 285 297 285 275 297 285 275 275 275 275 275 275 275 275 275 27
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (see table) production Coffee Creek, 53° 121° S.E., placer Coffey, R. J. Cohen, H. H. coke and by-products, production coke-making Coldwater mine, 50° 120° S.W. Colebrook Sand and Gravel Company Limited collieries, production and distribution men employed Collishaw, R.	234 132255 2611 A 422 2555 255 A 16 255 255 285 130 A 49 265 130 A 49 265 130 A 49 255 273 255 273 255 273 255 273 255 273 255 255 273 255 255 275 255 275 261 285 261 285 261 285 275 285 275 285 285 297 285 275 297 285 275 275 275 275 275 275 275 275 275 27
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (see table) production Coffee Creek, 53° 121° S.E., placer Coffey, R. J. Cohen, H. H. coke and by-products, production. coke-making Coldwater mine, 50° 120° S.W. Colebrook Sand and Gravel Company Limited Coleman Collieries Limited collishaw, R. Colonial Mines A 4'	234 132255 2611 A 422 2555 255 A 16 2551 2855 A 297 2857 2857 2857 2857 2857 2857 2857 285
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (see table) production Cochrane, James Coffee Creek, 53° 121° S.E., placer Coffey, R. J. Cohen, H. H. coke and by-products, production coke-making Colebrook Sand and Gravel Company Limited Collisnaw, R. Colonial Mines Colosial S. So 25° N.E.	234 132255 2611 A 422 2555 255 A 16 255 255 285 130 A 49 265 130 A 49 265 130 A 49 255 273 255 273 255 273 255 273 255 273 255 255 273 255 255 275 255 275 261 285 261 285 261 285 275 285 275 285 285 297 285 275 297 285 275 275 275 275 275 275 275 275 275 27
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (see table) production Coffee Creek, 53° 121° S.E., placer Coffey, R. J. Cohen, H. H. coke and by-products, production coke-making Coldwater mine, 50° 120° S.W. Colebrook Sand and Gravel Company Limited collieries, production and distribution men employed Collishaw, R. Colonial Mines A 44 Colossus, 50° 125° N.E. Columbia Bitulithic Limited, sand and	23 A 64 132 255 261 A 42 255 A 16 255 260 255 277 281 285 260 255 277 281 285 260 255 273 255 260 43 A 38 255 273 255 273 254 56 7, 89 90
Climax Molybdenum Company Clinton area Clinton Mining Division Clough Engineering Ltd., placer coal, accidents dangerous occurrences dividends fees and licences labour and employment price production A 17, A 18, A 25, A 36, A 37, coal dust coal-preparation plants Coast Copper Company, Limited electrical installations cobalt, deposits (see table) production Cochrane, James Coffee Creek, 53° 121° S.E., placer Coffey, R. J. Cohen, H. H. coke and by-products, production coke-making Colebrook Sand and Gravel Company Limited Collisnaw, R. Colonial Mines Colosial S. So 25° N.E.	23 A 64 132 255 261 A 42 255 A 16 255 260 255 277 281 285 260 255 277 281 285 260 255 273 255 260 43 A 38 255 273 255 273 254 56 7, 89 90

	Page
Comox, 49° 124° N.W., coal	265
Comox, 49° 124° N.W., coal electrical installations Comox Mining Company Limited, coal	264 265
awards 249, competition, coal produced outside of	265
British Columbia	255
Constock of B.C. Congress, 50° 122° N.W.	45 25
Congress, 50° 122° N.W.	138
Connell, F. M	
pany of Canada, Limited, The, Ajax and Monte Carlo	48
Anvox	10
Bass Nos 1-10	7
Bluebell	279
Empire Development A 48	
Fairview	3, 62
HABA 49, 68,	279
Lark	7
Norkay, limestone	148
Olalla Manganese Old Sport	59 97
Red Bird	72
Rossland Mines	66
Sal Stemwinder	80 62
SullivanA 49, 80,	279
Sunloch and Gabbro	113
Wigwamawards	84 249
electrical installations	279
magnesite, Perry Creek	150
silica Consolidated Standard Mines Limited	127
Consolidated Standard Milles Limited	40
Consolidated Woodgreen Mines Limited	
Consolidated Woodgreen Mines Limited	. 64
Consolidated Woodgreen Mines Limited A 47 fatal accidents 233	, 64 235
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7,64 235 89 156
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7,64 235 89 156
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7, 64 235 89 156 A 5 62 48
Consolidated Woodgreen Mines Limited A 47 fatal accidents 233, Construction Aggregates Ltd. sand and gravel contents Continental Consolidated Mines Limited Cooke, Frank Coolbaugh, F.	7,64 235 89 156 A 5 62 48 19
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7,64 235 89 156 A 5 62 48 19 265
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7,64 235 89 156 A 5 62 48 19 265 132
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7,64 235 89 156 A 5 62 48 19 265 132
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7,64 235 89 156 A 5 62 48 19 265 132
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7,64 235 89 156 A 5 62 48 19 265 132
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7,64 235 89 156 A 5 62 48 19 265 132
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7,64 235 89 156 A 5 62 48 19 265 132
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7,64 235 89 156 A 5 62 48 19 265 132
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7,64 235 89 156 A 5 62 48 19 265 132
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7,64 235 89 156 A 5 62 48 19 265 132
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7,64 235 89 156 A 5 265 285 285 285 285 46 237 72 290 56 18 5,91 43
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7,64 235 89 156 A 5 265 265 285 48 265 265 285 46 23 7 7 2 59 90 566 18 5,91 43 43 102
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7,64 235 89 156 A 5 265 285 285 285 285 46 237 72 290 56 18 5,91 43
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7,64 235 89 156 A 5 265 265 285 48 265 265 285 46 23 7 7 2 59 90 566 18 5,91 43 43 102
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7, 64 2355 89 156 48 19 2655 132 2855 132 2855 285 7 42 90 56 6 8 90 56 8 19 265 132 285 59 90 56 61 8 102 43 43 102 45 283
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7, 64 235 89 156 48 19 265 132 285 132 285 235 48 232 7 42 90 56 18 102 43 102 45 283 153
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7, 64 235 89 156 62 132 285 132 285 132 285 4 6 23 7 42 59 90 56 18 43 102 45 283 153
Consolidated Woodgreen Mines Limited A 47 fatal accidents	7, 64 235 89 156 48 19 265 132 285 132 285 235 48 232 7 42 90 56 18 102 43 102 45 283 153

INE	DEX

D

	PAGE
Coreau, James	133
Coreau, James Cornucopia, 59° 129° S.W.	6
Corrigan Harry	268
Cosburn, S. S., geologist	162
report by	166
report by Cottonwood River, 53° 122° S.E., placer.	133
Coutts, R. C	40
Coveney, C. J.	- 30
Cowichan Copper Co. Ltd.	113
Tatal accident	233
Cowichan Lake, 48° 124° N.E.	
Craig, D. B.	A 71
Craig, J.	155
Craig, S.	102
Craigmont	
dangerous occurrence	240
Craigmont Mines Limited A 48	8.31
electrical installations	278
Cramond, P.	30
electrical installations Cramond, P. Cranbrook, 49° 116° S.W., placer	135
Cranwall, L. R.	- 74
Creery, L. C	19

Creston, 49° 116° S.E.	80
Creston, sand and gravel	152
Cronin, 54° 126° N.W.	- 19
Cronin Babine, 54° 126° N.WA 46	5, 19
Crow, 49° 118° S.E., geophysical report	114
Crown Silver Development Company Ltd.	40
Crown Zellerbach Canada Limited	150
Crow's Nest Pass Coal Company Limi-	
ted, The	272
Michel Colliery, electrical installations.	284
crude oil, disposition (monthly)	
pipe-lines	229
production (monthly)	216
production (yearly)	200
refineries	231
reserves	195
value to producer	227
crushed stone, production A 17, A 18, A	A 34
Cullen, A.	-265
Cunningham Creek, 52° 121° N.E., placer	131
Cytko, William	
Czbiorr, W.	141

DRD Group, 52° 122° S.E., asbestos 139 dangerous occurrences, coal mines 261 lode mines 239 Datlasaka Mines Ltd., placer 127 Davey, Andrew 268 Davey, William 270, 271 Davidson, R. S. 150 Davis, Gerald 124 Dawson Wade & Co. Ltd., sand and gravel 154 de Ganahl pit, placer 129 de Kock, L. C. A 49 De Rosa, E. A 50, 76, 77 Deeg & Yarrow Diamond Drilling Co. Ltd. 104 Deeks-McBride Ltd., electrical installa-tions 283 sand and gravel 153, 154, 155 56 Deleen, John 25 56 Delorme, Arthur 130 135 Delta Municipality, sand and gravel 155 Department of Highways, sand and gravel 155 Department of Mines and Technical Sur veys A 71 Geological Survey of Canada A 71 Mineral Resources Division A 73 Mineral Resources Division Mineral Resources Division A 73 Mines Branch A 72 departmental work A 52 development, petroleum and natural gas.... 168 development, petroleum and natural gas... 168 Devils Lake Creek, 53° 121° S.W., placer 130 Dewdney, sand and gravel 154 diatomite, Quesnel 143 production A 17, A 18, A 32 Dief, 49° 119° S.W. 59 diesel locomotives _____ 261

Dietrich, George _____A 47, 88

disposition, crude oil (monthly)	221
natural gas (monthly)	223
natural gas (monthly) natural-gas liquids (monthly)	225
sulphur (monthly)	225
Ditto, A. G.	63
Ditto, A. G dividends, coal mines	A 42
copper mines	A 42
lode-gold mines	
paid, 1960 and 1961	A 39
paid yearly, 1917 to 1961	A 39
silver-lead-zinc mines	A 41
Dockrill, F. M.	273
Dodson, E. D.	
Doelle, H. E.	82
Dolly Varden Mines Ltd.	100
Domineer, 49° 125° N.WA 47 Dominion Bureau of Statistics, co-opera-	, 102
Dominion Bureau of Statistics, co-opera-	A 15
tion with	A 15 249
Dominion Ryan Trophy	249
Dominion Tar and Chemical Company	150
Limited	
Domino, 50° 120° S.W.	41
Dom 56° 120° N E	- 41
Donald I P	72
Donegal 51 ° 119 ° S W	49
Donelly F	66
Don, 56° 130° N.E. Donald, J. B. Donegal, 51° 119° S.W. Donelly, F. Dora Kay, 50° 121° S.E.	29
Doratty, Robert	270
Dorel, 55° 125° N.E., geological and geo-	
chemical reports	116
Dorothy Group, 55° 124° N.W., geologi-	
cal and geochemical reports	116
Dotten, F.	153
Doyle, N.	68
drain-tile, production	
Dresser, V. J.	
Drew, E	
drilling statistics, summary	
Drybrough, J.	8
Duckling Group, 55° 124° N.W., geologi-	
cal and geochemical reports	110

	Page
Dumont Explorations Ltd., 52° 121° N.E.,	
placer	131
Duncan, 50° 116° S.W	79
Duncan, Captain	120
Dunham, Clair	133

	PAGE
Dunn, A	264
Dupont Bros., sand and gravel	155
dust control	243
Dutfield, G.	265
Duthie, R. G.	

Е

E. R. Taylor Construction Co. Ltd., sand	
and gravel	152
and gravel Earlcrest Resources Ltd East Kootenay, 49° 119° S.W., electrical	86
East Kootenay, 49° 119° S.W., electrical	
installations	284
installations East Kootenay Inspection District	266
East Kootenay Mine Safety Association	248
competition	267
competition Eastwood, G. E. P., geologist	A 59
field work reports by93-100, 104-	A 59
reports by93-100, 104-	-110
Eberts, Henry 262.	268
El Alamein, placer	135
El Alamein, placer Eldor Group, 55° 124° N.W., geological	
and geochemical reports	116
electric power, coal mines	277
lode-metal mines	275
lode-metal mines structural-material and industrial-min-	
eral mines and quarries	276
electrical installations, coal mines	28 <u>3</u>
lode mines	277
placer mines	282
structural-material and industrial-min-	
eral mines and quarries	282
electricity, coal mines	260
Elise, 51° 119° S.W.	49
Elk Nos. 1-12, 54° 125° S.E., geophysical	
report	116
Elkhorn Mining Co. Ltd., barite	141
Emil Anderson Construction Company,	141
coal	272
•••••	155
sand and gravel	
Emma, 49° 119° S.E.	63
Empire, 49° 117° N.E.	75
Empire, 50° 121° S.E.	29
Empire Development Company Limited	
A 46	, 95
electrical installations, Benson Lake	281
Sarita River	111

Empire Development Company Limited	
—Continued	111
Tzartus Island	A A A
employment, coal mines	A 44
lode-metal mines lode-metal mines employing ten or more	n. 44
persons	A 51
mining industry	A 44
Endako, 54° 125° S.E.	19
Endersby A $A = A = A$	3 68
Endersby, A. A 49° I16° N.W.	82
Eon, 50° 120° S.W., geological and geo-	04
physical reports	115
physical reports Erie Creek, 49° 117° S.E.	68
Essex. F.	A 72
Essex, F Eva, 50° 120° N.W	29
Evans, Coleman and Evans Limited,	
building-stone	142
Cassidy gravel pit	283
Cassidy gravel pit clay and shale Metchosin gravel pit	14 3
Metchosin gravel pit	283
Royal Bay certificate of achievement	156
certificate of achievement	250
sand and gravel	155
Evans, W. Fred Evening Star, 50° 120° S.E.	46
Evening Star, 50° 120° S.E.	46
Ewart, T. G. examination for assayers	267
examination for assayers	A 58
examiners, coal-mine officials	A 58
shiftbosses	A 58
Expander Mines & Petroleums Ltd., placer	136
exploration, seismic	180
surface geological	181
petroleum and natural gas	166
explosives, coal mines	259
explosives used in mines	242
Extension group, 59° 130° N.E., geo-	
physical report Ezz, 50° 120° S.W., geological and geo-	117
Ezz, 50° 120° S.W., geological and geo-	
physical reports	115

F

F.L., 50° 126° S.W.	101	
electrical installations	281	
F. W. Monssen Construction Ltd., sand		
and gravel	153	
Fairey, L. T.	143	
Fairey & Company Limited	143	
Fairley, J.		
Fairley Prospect, 49° 120° S.W.	266	
Fairview, 49° 119° S.W	8, 62	
Fairview Camp, 49° 119° S.W.	62	
Falconbridge Nickel Mines Limited	11	
Falconer, Duncan	127	
Falkins, R. E.	39	
fatal accidents (lode mines, placer mines,		
and quarries)	232	
coal mines	255	

Faulkner, Earl	124
field office, petroleum and natural gas	163
field work, petroleum and natural gas	163
Ferguson, 50° 117° N.E.	79
Fifteen Mile Creek, 49° 117° S.E., placer	135
Findlay, D. C.	A 71
Finley Company	66
first aid	246
Fish Lake, 51° 123° S.W.	24
Fisher, Nolen	130
Fisher, William	
Fleming, J. G.	151
Fletcher, D. M.	23
floor-tile, production A 18, A	4 34
fluorspar, production	A 32
fluxes, production A 17, A 18, /	A 32

G

PAGE

Fore, 1-24, 55° 125° N.W., geological
report 116
Fort McLeod, sand and gravel
Fort Reliance Minerals Limited
Fort St. John, sand and gravel
Fort St. John Petroleum Limited 101
Fort Steele, 49° 115° N.W., limestone 148
placer 136 Fort Steele Mining Division A 64
Fort Steele Mining Division
Forty Thieves, 50° 122° N.W
Foster, W. F
Four Mile Creek, 52° 121° N.E., placer 133
Fournier, Lee 133
Fourth of July, 50° 117° S.E
Fox, George F
Fox, G. D
Fox, P. E
Fox Group, 56° 130° S.E., geological,
geophysical, and geochemical reports 116
Fraser, H. V
Fraser River, 49° 121° S.E., placer

PAGE
Fraser Valley Lime Supplies 149
Freda, 50° 120° S.W. 41
Freeman, W. 134
Freda, 50° 120° S.W. 41 Freeman, W. 134 French, 49° 120° S.E. A 48, 58
French Mines Limited
French Snowshoe Creek, 52° 121° N.E.,
placer 134
placer 134 Friday Creek Development Co. Ltd
Friday Mines Limited 38, 59
Fried, L A 50, 76, 77
Frobisher, M. 265
Frith, O. D
Frith, O. D
fuel, production A 17, A 18, A 20, A 25
fuel and electricity used in mines
Fuller, C
Fulton, H. B., field geologist A 61, 162
Fulton, R. J
Fyles, J. T., geologist
field work
reports by

G.C. Group, 57° 131° S.E., geochemical
and geophysical report 117
and geophysical report 117 G. and H. Sand and Gravel Company Ltd. 156
Gabbro, 48° 124° S.E. 113
electrical installations 282
Gabrielse, H. A 71 Galaxy Minerals Ltd. 46 Galena Farm, 49° 117° N.E. A 49, 78 Galore Creek, 57° 131° S.E. 7 Conders H. W. 90
Galaxy Minerals Ltd. 46
Galena Farm, 49° 117° N.F. A 49, 78
Galore Creek, 57° 131° S.E.
Gardner, H. W. 90
Garland, L. N. 76
Garnett, S
Garnett, W. E
gas fields
gas-gathering system 172
gas-processing plants 230
gas wells producing and producible (by
gas-processing plants 230 gas wells, producing and producible (by months) 209 Gatenby, L. B. 40
Gatenby, L. B. 40
Gauthier, Philias J. 262
Geigerich, J. R. 80
general review, lode metals
mineral industry
petroleum and natural gas
General Resources Ltd. 41
Geojimal Mining Development Co. Ltd 134
geological, geophysical, and geochemical
reports 114 117
reports114-117 Geological Survey of CanadaA 71
field work
publications A 72
Coorea P E 152
George, R. E. 153 George Creek, 53° 121° S.W., placer 130 George medal 250
George model 250
George medal 250 Georgia Leaseholds Ltd 42
Georgian Mineral Industries Ltd., mica 151
Gerlib, Robert Kenneth 237
Germansen Mines Ltd., placer 129
Germansen Mines Ltd., placer 129 Germansen River, 55° 124° N.W., placer 129
Gerrard, S
Gerrard, S 266 Gething, L 273
Gething, Q. F. (King)
Giant Mascot Mines Limited
electrical installations 280
electrical instantations

1	Giant Nickel Mines Limited	
117	dangerous occurrence Giant Western, 49° 117° N.E.	241
156	Giant Western, 49° 117° N.E.	A 50
113	Giant Western Mines Limited	A 50
282	Gibson, Clarke W.	86
71	Gibson, G. M.	
46	Gibson, G. M. Gifford, R. G.	7
, 78	Gilbart, K. C., petroleum engineer	A 61
7	Gilman, Guy	49
90	Gilmour, H.	151
76	Gilmour, H.	
76	Gilroy, Ó, C,	86
39	Gilroy, Ó. C. Glacier Gulch, 54° 127° N.E.	
193	Gleed, Thomas F	267
172	Glover, Carl	18
230	Glover, Carl Glover, M. H. A., economist	A 62
	Goetting, B.	
209	Goetting, B Golconda, 49° 119° S.W.	
40	gold, deposits (see table)	
262	dividends	A 40
80	price	
3	production A 17–A	27, A 46
A 10	Gold Acres Development Ltd.	
162	Gold Belt. 50° 122° N.W.	
41	Gold Belt, 49° 117° S.E.	A 49
134	Gold Coin, 49° 121° S.E.	
	Gold Commissioners, list of	A 53
-117	office statistics	A 54
A 71	Gold King, 50° 122° N.W.	
A 71	Golden Contact, 50° 122° N.E.	
4 72	Golden Gate, 50° 125° N.W.	
153	Golden Mining Division	A 65
130	Golden Star, 50° 120° N.E.	
250	Goodheart, F	133
42	Golden Star, 50° 120° N.E. Goodheart, F. Good Hope, 49° 120° S.E.	
151	Gott, 51° 119° S.W.	49
237	Gould, R. W.	
129	Gouthro, Pat	
129	Gower, J. A	
266	Gra-Dorphan Mines Ltd., placer	135
273	Graham, Philip Granby Mining Company Limited,	142
274	Granby Mining Company Limited,	The,
5, 87	Jedway Granduc, 56° 130° S.E.	13
280	Granduc, 56° 130° S.E	8

Granduc Mines Limited
Granite Creek, 49° 120° N.W., placer 134
Granite Falls, 49° 122° S.W., building-
stone 142
granules, productionA 17, A 18, A 32
Granville Island, sand and gravel 152
gravel, production
Great Central Lake, 49° 125° S.E. 103
Great West Mining Corporation Ltd. 90
Greenhorn, 49° 117° S.E. 67
Greenwood, 49° 118° S.W 64
Griffin, D. L., geologist
Greenwood Mining Division
Gregory, William 267

Ň	PAGE
Groves, G. F.	
grub-stake statistics	
grub-staking prospectors	_A 62
Grundy, P. F.	. 265
Guaranty Trust Co. of Canada, placer	
Guichon Mines Limited, Copperado	. 45
Quilchena	. 46
Guiget, Marcel	
Gunn, Jack	
gypsum and gypsite, Canal Flats	. 144
Windermere	_ 144
productionA 17, A 18,	
Gypsum Lime & Alabastine Limited	- 149

H

H.B., 49° 117° S.E. John T. Ryan Trophy	A 49, 68
John T. Ryan Trophy	249
H. Hill & L. Starck & Associates Ltd.	
Cariboo-Amelia	63
Copper Soo	43
Cronin	
Iron Mask	47
Pride of Emory	
Privateer	100
Silbak Premier	
Trojan Consolidated	
Viking	
fatal accident	237
fatal accident H.J. Group, 50° 120° S.W.	42
HN 1–18, 49° 120° N.W.	
HN 1–18, 49° 120° N.W Hab, 57° 131° S.E.	
geological report	116
geophysical report	117
Hadgkiss, J.	143
Hadler S	68
Hall, E. H.	26
Hall, W. A.	6 7
Hallesey, C. J.	120
Halley, J. Kenneth	
Halstead E C	A 71
Halstead, E. C. Hamelin, D. F.	
Hamersley, M B engineering assistar	t A 61
Hamersley, M. B., engineering assistant Haney, 49° 122° S.W., clay and shale	143
Haney Brick and Tile Ltd., clay and sh	nale 143
sand and gravel	153
sand and gravel Hank, 50° 120° S.W.	41
Hanna, I. A.	6
Hanna Gold Mines Ltd	6
Hannandor Gold I td placer	132
Hansen, Lorne Har, 50° 120° S.W. Har Groups, 56° 130° S.E., geolog and geophysical report	101.104
Har. 50° 120° S.W.	41
Har Groups, 56° 130° S.E. geolog	ical
and geophysical report	116
Harder, Allan H.	111
Harder, Allan H. Hargood, H. W.	129
Harquail, J. A. Harriet Harbour, 52° 131° S.E. Harrison Lake, 49° 121° S.W. Haskins, R. E.	6
Harriet Harbour, 52° 131° S.E.	13
Harrison Lake, 49° 121° S.W.	88
Haskins. R. E.	142.150
Hatch, H. B.	
Hayes, J. K.	272
Hecla Mining Company	
Heddle, D. W.	
Heddle, D. W. Hedley, 49° 120° S.E.	56
Hedley, M. S., geologist	A 59
report by	
report by Hedley Mascot Gold Mines Limited	56

9, 68	Hedley Monarch Gold Mines Ltd Hedley Syndicate	59
249	Hedley Syndicate	A 48
	Hegan, W.	43
63	Heichert, J. Heilroaring Creek, 49° 116° N.E., beryl Hemsworth, F. J	A 50
43	Hellroaring Creek, 49° 116° N.E., beryl	141
19	Hemsworth, F. J 30, 4	1, 62
47	Herbert Inlet, 49° 125° S.W.	101
86	Herr, R. L.	A 71
100	Hesquiat, 49° 126° S.E.	101
9	Hesquiat Harbour, 49° 126° S.E.	101
30	Herr, R. L. Hesquiat, 49° 126° S.E. Hesquiat Harbour, 49° 126° S.E. Hewitt, 49° 117° N.E. Hewitt, Lloyd Hichert, J.	0,78
31	Hewitt, Lloya	23
237	Hichert, J.	78
42	High, W., instructor (part time), Cum- berland Station A 58, 248, 263, Highland-Bell, 49° 119° S.E. A 4	265
46	1 Dertand Station	, 200
7	alootrigal installations	1,03
116	electrical installations Highland Sand and Gravel Company Limited	270
$117 \\ 143$	Limited	155
68	Highland Valley area	20
26	Highland Valley areaelectrical installations	278
67	Highlander, 49° 116° N.W.	0 74
120	Highvale Copper Mines Limited	0, 74 40
¹²⁰ 90	Hill, A.	104
A 71 -	Hilland D W	77
56	Hilland, D. W. Hills Bar, 49° 121° S.E., placer Hixon Creek, 53° 122° S.W., placer	134
A 61	Hixon Creek, 53° 122° S.W. placer	129
143	Hixon Placers Inc.	129
143	Hladinec W	135
153	Hladinec Placer, 50° 117° N.E.	135
41	Hladinec Placer, 50° 117° N.E. Hobbs, A. W., solicitor, Board of Arbi-	
6	tration	A 61
6	Holland, S. S., geologist	A 59
132	field work	A 60
104	jade report by119- reports by17-19, 127-129, Holland, T. Holm, Arvid	-126
41	reports by17-19, 127-129,	, 134
	Holland, T.	86
116	Holm, Arvid	130
111	Holmes, Locke Hood, C., Jr. Hope, 49° 121° S.W.	155
129	Hood, C., Jr.	6
6	Hope, 49° 121° S.W.	86
13	electrical installations Hornby General Machinery Co., sand and gravel	280
88	Hornby General Machinery Co., sand and	
150	gravel	155
30	Horne, A. E Horsefly River, 52° 121° S.E., placer Houlihan, J	130
272	Horseny Kiver, 52° 121° S.E., placer	154
72	Howard Ernest	A 12
66 56	Howard, Ernest2:	2, 20
56 1 59	Howe, A. C. A. Howe Sound, 49° 123° N.E.	00
1 39	electrical installations	281
56	Howe Sound, sand and gravel	156
	. mono bound, sand and graver	120

PAGE	
Howe Sound Company (Britannia Divi-	H
sion) A 47.89	ŀ
electrical installations	E
Hudson Bay Exploration and Develop-	Е
ment Company Limited 7	Ŧ
Huestis, H. H. 30	Ĩ
Huestis and Associates 23	Ŧ
Huestis Mining Corporation Ltd. 48	-
Rainbow 48	ŀ
Skwaam Bay 53	E
Hughes, E. R., Senior Inspector of Mines_A 58	F
Hughes, J. E., geologist A 59	h
field work	Đ

	PAGE
Hughes, Sidney	270
Hughes, T. C.	- 78
Hungerford, R. M.	142
Hunt, H. W.	29
Hunter, I. A.	157
Hunting Survey Corporation Ltd3.	1,46
Hurley River Mines, Ltd., placer	
Hurry, P.	
Hutchinson, W. A	4,90
Huus, P. K., engineering assistant	A 61
hydromagnesite, production	Å 32
Hyndman, D. W.	A 71

I

IN, 51° 118° N.W.	84
IT, 51° 118° N.W.	84
Ideal Cement Company Ltd., certificate of	
achievement	250
electrical installations	283
limestone	149
illustrations, photographs and drawings	Ā 7
Imperial Limestone Company Limited	149
Independent Ventures Ltd., sand and gra-	
vel	153
Indian Arm, sand and gravel	152
Indian Arm Sand & Gravel Co. Ltd.	152
Indian River Quarries Limited, building-	
stone	142
industrial minerals, production	1 1 200
A 17, A 18, A 24, A	4 37
Ingram, W. LA 61,	162
renart by	162
report by	100
Inspection Branch	760
inspection commutees	200
inspection of, electrical equipment and	375
installations lode mines, placer mines, and quarries	4/3
iode mines, placer mines, and quarries	232
Inspectors International Beryllium Corporation Ltd.	A 38
international Beryllium Corporation Ltd.	141
International Bulk Carriers Incorporated	101

Intermountain Construction Ltd.	85
International Marble & Stone Company	
Ltd.	141
International Union of Mine, Mill and	
Smelter Workers	
introduction	A 9
Inverarity, W.	74
Irish, E. J. W.	A 71
Iron Colt. 49° 117° S.W.	66
iron concentrates, deposits (see table)	285
productionA 17, A 18,	A 28
production A 17, A 18, Iron Dan, 50° 125° S.W.	- 91
Iron Dick, 50° 125° S.W.	- 91
Iron Duke, 52° 131° N.W.	17
Iron John, 50° 125° S.W.	91
Iron Ken, 50° 125° S.W.	91
Iron Mask, 50° 120° N.E.	
electrical installations	278
fatal accident	237
Iron Mike, 50° 125° S.W.	
Iron Mountain, 49° 117° S.E.	69
electrical installations	
iron oxide, production	A 32
Iskut River, 56° 130° N.E.	8
Islander, 50° 120° S.W.	45

J

J.J.M., 50° 121° S.E., geophysical report 115
Jack, Gene 129 Jack, John 149
Jack, John 149
Jack Cewe Blacktop Ltd., sand and gravel 153
Jack of Clubs Lake, 53° 121° S.W., placer 130
Jackson, J. C. 101
Jade in British Columbia 119
James, A. R. C., Inspector and Resident
Engineer
reports by
reports by19-28, 86-88, 129-134, 138, 139, 151
Jarolim, Joseph
Jedway Iron Ore Limited 13
electrical installations
Jeffery, W. G., geologist A 59
field work A 60
Jensen, Pete
Jericho Mines Limited 30
Jersey, 49° 117° S.E. A 49, 69
dangerous occurrence 240
electrical installations 279

Jessiman, K. 14	7
Jewess, 50° 122° N.W. 2	
Jim, Gung Loy 4	9
Jim, Gung Loy 4 Jo Group, 51° 123° S.W., geophysical report 11	£
	-
John Laing and Son 10	4
John T. Ryan Trophy	9
Johnson, A. W. 7	8
Johnson, D. L., field engineer A 61, 16	2
Johnson, J. K. 14	9
Johnson, John 25	
Joinson, John	
Johnson, Nels Raymond 23	3
joint offices, B.C. Department of Mines	
and Petroleum Resources and Depart-	
ment of Mines and Technical Surveys A 6	9
Jones, A. W. 14	9
	3
Jones, W. C., mineral engineer A 5	9
field work	
	ğ
	÷.
Jordan, R 7	9

P	AGE		PAGE
Jordan River, 48° 124° S.E.	113	Judy Group, 50° 120° S.W.	43
electrical installations	282	July Silver Mines Ltd.	76
Jorgensen, Dan			
Joubin, F. R.	26	Jury, R. G.	139
Joy, R.			

K

K.B. Group, 50° 121° N.W., geophysical	
R. Belle Enterprise Company Limited A 4	115
K. Belle Enterprise Company Limited A 4	9,68
K.C., 50° 120° S.W K.L. Group, 50° 120° S.W	- 31
K.L. Group, 50° 120° S.W.	40
Kabat Stanley	257
Katue Dredge Co., placer.	131
Kamloops, 50° 120° N.E.	46
electrical installations	278
Kamloops Copper Company Ltd	1, 47
electrical installations	278
fatal accident	237
fatal accident Kamloops Mining Division	A 65
Kaslo, 49° 117° N.E.	74
Kaslo, 49° 117° N.E. Kathleen mine, 50° 121° S.E.	29
Kenward, H. F. Keithley Creek, 52° 121° N.E., placer	74
Keithley Creek, 52° 121° N.E., placer	133
Keller Placer-mining Lease, 49° 116° S.W.	135
fatal accident	236
prosecutions	242
Kelly, John	130
Kelly, S. F	2.46
Kelly, S. W. L Kelowna Exploration Limited	62
Kelowna Exploration Limited	76
Kempt, J. W	A 72
Kempt, J. W	8
Kennco Explorations (Western) Limited,	
Alice	10
Galore Creek	7,8
Matt	63
Torwest Resources	39
Kennedy, R. W	1, 47
Kennedy Lake, 49° 125° S.E.	104
Kent No. 5, 49° 115° N.W.	82
Kent, Corporation of the District of, sand	
and gravel	154
Kent Municipality, sand and gravel	154
Kent, Kenneth A	134
Kenville Gold Mines Limited	9,67
Keremeos Mines Ltd.	59

Keystone Concrete Ltd., sand and gravel 156
Kid 1-12, 58° 131° S.E., geological and
geochemical report 117
geochemical report 117 Kiernan, the Hon. W. K., Minister of
Mines and Petroleum Resources A 2
Kilgard, 49° 122° S.E., clay and shale
142 143
Kimberley, 49° 115° N.W
electrical installations 279
placer 136
Kindrat, P. A 46, 19 Kingfisher, 50° 127° S.E. A 46, 95 King Gething mines, 56° 122° S.E., coal 274
Kinglisher, 50° 127° S.E
King Getning mines, 56° 122° S.E., coal 274
Kinney, L. M
Kirk, Thomas 112
Kirkpatrick Sand & Gravel Co. Ltd. 153
Kirwan, R
Kirwan, R. 101 Kitimat, 54° 128° S.W. 17
sand and gravel 152
Kitimat Concrete Products (1961) Ltd.,
sand and gravel 152 Kitimat Concrete Products (1961) Ltd., sand and gravel 152
Kitsul Bros., sand and gravel 155 Klaanch, 50° 126° S.W. A 47, 93
Klaanch, 50° 126° S.W. A 47, 93
Kleman, S. JA 47
Kludash, W. 136
Kniert, Kenneth 270
Knight Gravel Ltd., sand and gravel 155
Kynguot, 50° 127° S.E. 100
Kyuquot, 50° 127° S.E
Koeye Kiver, 51 127 N.w., innestone 150
Kootenay Belle, 49° 117° S.E A 49, 68
Kootenay Granite Products Limited, build-
ing-stone 141
ing-stone 141 Kopan Developments Limited 78
Korpack Cement Products Ltd., sand and
gravel 152
Kotush, P 135
Krall, John 270
Krall, Thomas 268
Kusnir, Paul

L

LT, 51° 119° S.W.	48
laboratory, geological	164
Lac la Hache, 52° 120° S.W.	21
Laco Mines Ltd	29
Lafarge Cement of North America Ltd.,	
Britannia	89
cement	142
limestone	149
Laforme, G.	136
Lahay, James	130
Lajo Mines Limited	75
Lake, 56° 130° N.E.	8
Lamb, J.	95
Lamb Mountain, 59° 129° S.W.	6
Lancaster, George	272

- -- -

Lang, Ernest	133
Lang Creek, 59° 129° S.W	7
Langley, Corporation of the Township of,	
sand and gravel 154.	155
Langley Municipality, sand and gravel 154,	155
Lardeau, 50° 117° N.E., placer	135
Lardeau area, North	- 79
South	- 79
Lark, 59° 129° S.W.	- 7
Laron Group, 50° 120° S.W.	39
Larsen, Eric	130
Lasser Trucking & Contracting Co. Ltd.,	
sand and gravel	153
Latham, L.	136
Laughton, T. G.	1 50

	PAGE
Lawrence, S. J lead, deposits (see table)	265
lead, deposits (see table)	285
dividends	A 41
price	A 16
priceA 17-A 27,	A 46
Learning, S.	A 71
Learmonth, A. J.	26
Leathwood, Charles Edward	233
Lee, J.	A 72
Leech, G. B.	A 72
Lefevre, H. W.	65
Lefevre, R.	65
Lehn, D. G.	75
Lehto I B	15
Lehto, J. R. Leonard, G. E.	40
Leonard, G. E.	39
Lewis, Glyn Lewis mine, 49° 123° S.W.	203
Lewis mine, 49° 123° S.W.	263
Liard Mining Division Lightning Creek, 53° 121° S.W., electri- cal installations	A 65
Lightning Creek, 53° 121° S.W., electri-	
cal installations	282
placer 131	, 132
placer 131 Lightning Creek Gold Gravels & Drain-	_
age Co., placer Lillooet, 50° 122° N.W.	131
Lillooet, 50° 122° N.W.	25
electrical installations	277
Lillooet Mining Division Lillooet River, 50° 123° N.E.	A 65
Lillooet River, 50° 123° N.E.	28
lime and limestone, production	
A 17. A 18.	A 34
limestone, Blubber Bay	149
Cobble Hill	150
Fort Steele	148
Koeye River	150
Popkum	149
Vananda	149
Vernon area	
Lind, C. E.	
Lindamon E	104
Lindeman, E. Lineham, J. D., Chief, Petroleum and	104
Natural Gas Conservation Branch	
Natural Gas Conservation Branch	A 61
A 2,	A 01
Report by Linton's Construction Co. Ltd., sand and	102
Linton's Construction Co. Ltd., sand and	155
gravel	155
Lippmann, J. D. Lis Group, 50° 120° S.W.	67
Lis Group, 50° 120° S.W.	41

	PAGE
Lisbon Creek, 49° 115° N.W., placer	136
Little, H. W.	A 72
Little, J. D. Little Fort, 51° 119° S.W. Little Hixon Creek, 53° 122° S.W., placer	49
Little Hixon Creek, 53° 122° S.W., placer	129
Little Lake Group, 50° 127° S.E.	100
geological and geophysical report	115
Littler. Albert	268
Littler, Albert	152
Liz B, 49° 116° S.E.	80
lode-metal deposits referred to in report	285
lode metals production	
lode metals, production A 17, A 18, A 20, A 21, A 22, A 24, Lodge groups, 50° 121° N.W., geophysi-	A 26
Lodge groups 50° 121° NW geophysi-	
cal report	115
Loma Minerals Limited A50	
cal report Loma Minerals Limited	76
Lone Bachelor 49° 117° N.F. A 50 76	\$ 77
Lone Bachelor, 49 117 10.2	77
Lorimar M K	42
Lorimer, M. K. Lorraine, 55° 125° N.E., geological and	72
coochemical report	116
geochemical report Lorrex, 55° 125° N.E., geological and	110
geochemical report	116
Lou, 50° 120° S.W.	41
geophysical report	115
Loudon William	264
Loudon No. 6 mine, 49° 124° S.E., coal Loughborough Gold, 50° 125° N.W.	264
Loughborough Gold 50° 125° NW	204
Loughborough Inlet, 50° 125° N.W.	90
Loughbolough filler, 50 125 N.W.	152
Louis Salvador & Son, sand and gravel	17
Louise Island, 52° 131° N.W.	49
Loveway, Thomas	47
Lucie-Smith, A. N., Senior Petroleum	1/2
Engineer A 61 Chairman of Conservation Committee	, 102
	A 02
report by	
Lucky Jim, 49° 121° S.W.	88
Lucky Jim, 50° 116° N.E.	A 49
Lucky Strike, 49° 117° S.E.	A 49
Lulu Island, 49° 123° S.E., cement	142
Lungley, A. F.	43
Luttin, John	102
Lynass, J.	127
Lynx 49° 125° N.W.	103

Mc and Mac

McArthur, W. E 103	McD
McCammon, J. W., mineral engineer A 59	
field work A 60	rep
reports by	Macl
21–24, 48–56, 139, 140, 143–148, 151, 157	McD
	Macl
McClay, S. J. O 102	McG
McConnell Creek, 56° 126° N.E., placer 128	an
McConnell Creek Placer 128	McG
McCready, Mrs. G. E. 75	McG
McCulloch Creek, 51° 118° S.E., placer 136	Mac
McCulloch Gold Placer Mining Co. Ltd. 136	McIn
McCutcheon, A. D. 89	McIr
McDame, 59° 129° S.W., electrical in-	McIı
stallations 282	gra
McDearmid, J. M 71	McIı
	sa
McDiarmid, N. H	McJa
McDonald, D. J 29	McK
MacDonald, Francis J 142	McK

McDonald, J. D., Inspector and Resident
Engineer A 58
reports by 65-80, 135, 136, 141
MacDonald, Oswood G 113
McDougall, A. J. 89
MacDougall, R. E. 129
McGauley Ready-Mix Concrete Co., sand
and gravel 152
McGowan, H 130
McGowan, John 131
Mac-M. & H. Mining Co. Ltd. 88
McInnes, John
McIntosh, Dan 136
McIntosh Sand and Gravel, sand and
mentosi Sanu and Oraver, sanu and
gravel 153
McIntyre & Harding Gravel Co. Ltd.,
sand and gravel 156
McJana Placer, 53° 121° S.W 129
McKay, Don 149
McKay, Walter 267

INDEZ	¢
INDEZ	Ś

D
PAGE
McKee Creek, 59° 133° S.W., placer 127
Mackenzie, T. A A 61, 162
reports by
McKechnie, N. D., mineral engineer
A 59, A 62
field workA 60
reports by29, 43-46, 56-62, 64, 91-93, 112
McKelvie, John A 28
McKinney Gold Mines Limited
McLanders, Peter 130
MacLean, J. C
McLellan Gulch, 53° 121° S.W., placer 130
McLeod, J. N 88

PAGE
McLeod, M. H
McLeod, R. R., Senior Petroleum Engi-
neer and member of the Board of
Arbitration A 61, 162
report by 174
McLeod Nos. 5 and 6, 50° 120° S.W 31
MacMillan, Bloedel and Powell River
Limited 104
MacPherson, William140, 157
McPhie, R. G 127
McRae Bros. Ltd., sand and gravel 156
McShane, Oscar T. 132
McVeigh, Frank 268
McWilliams, D. C. A 48

М

machine-mined coal	260
Magee, J. B.	- 82
Magee, J. B. magnesite, Perry Creek	150
magnesium, production A 17, A	A 31
magnesium sulphate, production A 17, A	A 32
Magnum Consolidated Mining Co. Ltd.	
Mainland Clay Products Ltd.	143
Mairs, Thomas	149
Major, C.	86
Major, C. Makaoo Development Company Limited	46
Malcolm, D. C	1.90
Malcolm, D. C	, 77
manganese, deposits (see table)	285
production A 17. A	A 29
Mannix Co. Ltd. Manson Creek, 55° 124° N.W., placer	95
Manson Creek, 55° 124° N.W., placer	129
Manson Creek Gold Mining Co. I td	129
Maple Leaf, 49° 119° S.E.	63
Maple Leaf, 49° 119° S.E	49
Maple Ridge, Corporation of the District	
of, sand and gravel. Maple Ridge Municipality, sand and	153
Maple Ridge Municipality, sand and	
gravel	153
gravel maps, showing mineral claims, placer	
claims, and placer-mining leases	A 69
Marasek, B.	78
Marasek, B. Mark Creek Group, 49° 115° S.W., geo-	
chemical report	114
marl, Popkum	150
marl, Popkum Marshall Creek, 50° 122° N.W., placer	134
Martin George	133
Martino, J. A	141
Mary Creek, 53° 122° S.E., placer	133
Mascot, 49° 117° N.E.	77
Massichuk. P.	156
Martino, J. A Mary Creek, 53° 122° S.E., placer Mascot, 49° 117° N.E Massichuk, P. Mastodon-Highland Bell Mines Limited	
	. 63
electrical installations	278
Matson Bros., placer	127
Matsqui, Corporation of the District of,	
sand and gravel	154
Matsqui Municipality, sand and gravel	154
Matt, 49° 119° S.E.	63
geological report	114
Matteen D M	97
Mans Crack 408 1159 NW mlass	
Mattson, R. M. Maus Creek, 49° 115° N.W., placer Mawer, A. B.	136
Mawer, A. B.	80
Max, 56° 130° S.E	9
geological, geophysical, and geochemi-	
cal report	116

Member of the Order of the British	
Empire 25	
Menduk, Stanley 26	58
mercury, deposits (see table) 28	35
productionA 17, A 18, A 2	9
Merrell, H. D. 4	
	13
Merrell Nos. 7 and 8, 50° 120° S.W 3	1
Merrett, J. E., Inspector and Resident	
Engineer A 58, 24	15
reports by	
Merrett, J. E., Inspector and Resident EngineerA 58, 24 reports by 85, 88-91, 93-113, 141-143, 149, 15	0
Merriam, F	Σ
Merritt area, coal 26	6
electrical installations 27	8
lode metals 3	1
Merry Widow, 50° 127° S.EA 46, 9	5
lode metals 3 Merry Widow, 50° 127° S.E A 46, 9 dangerous occurrence 24	10
motol mines mechanism (72	
Metcalfe, S. W., Chief Analyst and As-	
sayer A 2, A 5	6
Metcalfe, S. W., Chief Analyst and As- sayer A 2, A 5 Metchosin, 48° 123° S.W., electrical in-	
stallations 28	3
Metchosin Gravel Pit, 48° 123° S.W.,	_
electrical installations 28	3
stallations 28 Metchosin Gravel Pit, 48° 123° S.W., 28 electrical installations 28 Metropolitan Ambulance Services 24	9
mica, Cedarside, 52° 119° N.E 15	1
mica, Cedarside, 52° 119° N.E. 15 production A 17, A 18, A 3 Michel Colliery, 49° 114° N.W., coal 26	3
Michel Colliery, 49° 114° N.W., coal 26	Л
electrical installations 28	\$4
Mid, 50° 120° S.W. 4	
Midan, A. 26 Midan mine, 49° 123° S.W., coal 26 Middlesboro No. 5 mine, 50° 120° S.W.,	3
Midan mine, 49° 123° S.W., coal 26	5
Middlesboro No. 5 mine, 50° 120° S.W.,	
coal 26	
coal 26 Midland Pit, sand and gravel 15	0
Mid-west Copper & Uranium Mines Ltd.	_
A 50, 41, 6	2
Mihalynuk, Michael 26	2
Milavsky, D	2
Miller, Albert 12	7
millisecond delay detonators 26	1
Mills, F	8
Mills, J. C 15	1
mine rescue 24	6
mine-rescue stations, instructors A 5	
Mines Branch, Department of Mines and	0
Technical Surveys A 7	2
Mineral King, 50° 116° S.E	$\overline{\tilde{2}}$
electrical installations 28	ñ
20 VIVUIVAI IIISIAIIAUVIIS	v

	PAGE
Mineral Lease No. 12, 56° 130° S.E., geo-	
logical report Mineral Resources Division, Department	116
Mineral Resources Division, Department	
of Mines and Technical Surveys	173
Mineralogical Branch, field work	1.59
professional staff A	59
mining records, list ofA	1.53
office statisticsA Minniehaha, 49° 117° N.E	1 34
Minnienana, 49° 117° N.E.	11
Mint Group, 50° 120° S.W., geophysical	40
report geophysical report	42 115
	25
Minto, 50° 122° N.W. miscellaneous metals, production	23
	28
Mission, Corporation of the District of,	1 20
sand and gravel	153
Mission Municipality, sand and gravel.	153
	248
Moir, Rosalyn J.	59
molybdenite, production A 17, A	
	103
	135
Monte Carlo, 50° 120° N.E.	48
Moore, J. S.	- 8
Moore, J. C. S.	131
Moresby Island, 52° 132° N.E.	11
NICICSUY ISIANU, 54 154 IN.E.	277
	38
Morgan, D. R.	30

PAGE	
Morgan, D. R., Inspector and Resident	
Engineer	
reports by80-83, 135,	
136, 140, 141, 144, 148, 150, 157, 266	•
Morgan, Irving 267	
Morgan, Spencer, Jr. 262	
Morning 49° 125° S.E. 103	
Morris I E 267, 271, 272	
Morning, 49° 125° S.E. 103 Morris, J. E. 267, 271, 272 Mosquito Creek, 53° 121° S.W., placer 130	
Mostique (Mosquito) Creek, 53° 122°	
SE placer 132	
S.E., placer 132 Mother Lode, 49° 118° S.WA 47, 64	
fatal accidents 233 235	
fatal accidents 233, 235 Mount McDame, 59° 129° S.W., asbestos 138	
Mountain Minerals Limited 140, 157	r
Mounting F W A 77	,
Mountjoy, E. W. A 72 Mox Group, 50° 121° N.W., geophysical	
Mt. Washington Copper Co. Ltd., Domi-	
neerA 47, 102	
Highvale Copper	
Mulcahy, P. J., Deputy Minister A 2	
Muller, E 75	
Muller, J. E A 72	
Murphy, H 79	
Muraro, T. W	}
museumsA 68	,
Musketeer, 49° 125° S.W	
My Emer, 49° 117° S.E. 67	

Ν

	79
Nadeco, 50° 117° N.W.	79
Nakusp, 50° 117° N.W.	19
Naltesby Lake, 53° 123° N.E., asbestos	120
138, Nan Group, 58° 132° S.E., geophysical	, 139
Nan Group, 58° 152° S.E., geophysical	117
report Nanaimo, 49° 123° S.W., coal	262
Nanaimo, 49° 123° S.W., coal	203
Nanaimo Mining Division	A 05
Nasenius, J. E National Explorations Limited	129
National Explorations Limited	100
natural gas, disposition (monthly)	A 33
natural gas, disposition (monthly)	223
production (monthly)	217
production (yearly) A 17, A 18, A 25,	, 202
rentals and fees	
reserves	195
revenues	161
royalties	A 56
sale of Crown reserves	A 56
	(1 D U
transmission, gathering, and distribu-	
tion pipe-lines	228
tion pipe-linesvalue to producer	228 227
transmission, gathering, and distribu- tion pipe-lines value to producer natural-gas liquids, disposition (monthly)	228 227 225
transmission, gathering, and distribu- tion pipe-lines value to producer natural-gas liquids, disposition (monthly)	228 227 225
tion pipe-linesvalue to producer	228 227 225 220
transmission, gathering, and distribu- tion pipe-lines	228 227 225 220 227
transmission, gathering, and distribu- tion pipe-lines value to producer natural-gas liquids, disposition (monthly) production (monthly) value to producer natural-gas products, reserves	228 227 225 220 227 195
transmission, gathering, and distribu- tion pipe-lines value to producer natural-gas liquids, disposition (monthly) production (monthly) value to producer natural-gas products, reserves	228 227 225 220 227 195
transmission, gathering, and distribu- tion pipe-lines	228 227 225 220 227 195 133
transmission, gathering, and distribu- tion pipe-lines	228 227 225 220 227 195 133 114
transmission, gathering, and distribu- tion pipe-lines	228 227 225 220 227 195 133 114 46
transmission, gathering, and distribu- tion pipe-lines	228 227 225 220 227 195 133 114 46 66
transmission, gathering, and distribu- tion pipe-lines	228 227 225 220 227 195 133 114 46 66 135
transmission, gathering, and distribu- tion pipe-lines	228 227 225 220 227 195 133 114 46 66
transmission, gathering, and distribu- tion pipe-lines	228 227 225 220 227 195 133 114 46 66 135 152
transmission, gathering, and distribu- tion pipe-lines	228 227 225 220 227 195 133 114 46 66 135

Nelson Mining Division
Nelway, 49° 117° S.E
electrical installations 279
Nesbitt, B. I. 78 Nettie L, 50° 117° N.E. 79
Nettie L, 50° 117° N.E
New Ainsworth Base Metals Ltd. A 49, 74
New Arlington, 49° 117° S.EA 49, 68
New Cronin Babine Mines LimitedA 46. 19
New Dickenson Mines Ltd. 77 New Handy Andy, 50° 127° N.W., geo-
New Handy Andy, 50° 127° N.W., geo-
logical report
logical report 115 New Privateer Mine Limited 100 New Springfield, 49° 117° N.E. 77 Arrow Springfield, 49° 117° N.E. 77
New Springfield, 49° 117° N.E
New Westminster Mining Division A 65
New Zone Copper Limited 79
Manuali & D 20
Newmont Mining Corporation of Canada
Limited8, 82, 87
Limited8, 82, 87 Nichols, O. W102
nickel, deposits (see table) 285
production A 17, A 30
production A 17, A 30 Nickel Plate, 49° 120° S.E A 48
Nicola, 50° 120° S.W. 45
Nicola Mining Division
Nicola-Princeton Inspection District 265
Nigger Creek, 52° 121° N.W., placer 133
Nighthawk, 49° 120° S.E. 56 Nighthawk Gold Mines Limited 56
Nighthawk Gold Mines Limited 56
Nimpkish, 50° 126° S.W. A 47, 93
Nimpkish Iron Mines Ltd. A 47, 93
Nimpkish Lake, 50° 126° S.W 93
Nixon, Art 267
Nixon, Art 267 Nora, 50°_121° S.E., geophysical report 115
Noranda Exploration Company, Limited,
Boss Mountain
Domineer 102

301 PAGE

Pag	E
Noranda Exploration Company, Limited— Continued	
Gold Coin 8	6
Kennedy Lake 10-	4
Mid-West Copper & Uranium 4	
Wen Group 4 Noranda Mines, Limited (Kennedy Lake	6
Division) 10	4
Norco Resources Ltd. 99	- 1
Norcross, D A 49, 6	7
Norex, 49° 119° S.WA 44 Norex Mines LtdA 44	
Norford, B. S	1

PAGE	
Norkay, 50° 115° N.W., limestone 148	
Norman, G. W. H. 8	
North Dunn, 51° 119° S.W 49	
North Kootenay Lake, 49° 116° N.W 72	
electrical installations 279	
North Thompson area, 51° 119° S.W 48	
North Wellington, 49° 124° S.E., coal 264	
Northern Inspection District, coal 273	
Northlands Navigation 15	
Northwest Mining Partnership	
Northwestern Explorations, Limited 39	
Nowotny, Gerhard	
Nugget, 49° 117° S.E	

_

0

O.K. mine, 50° 121° S.E 29	01
Oates, E. C. 95 Observatory Inlet, 55° 129° S.W. 10	l oi
ochre, production A 17, A 33	0
Ogden, Percy 133	Ō
Ogden, Percy 133 Ogilvie, G. S. 62	Ō'
oil fields 193	Ór
oil-gathering system	i Oi
Oil Participations Inc. 76	i Os
oil transmission-line 172	Os Os
oil wells, producing and producible (by	Os Os
months) 208	Ot
Okanagan, 49° 119° S.E 63	O
Okerlund, M. D 272	O O
Olalla, 49° 119° S.W. 59	Ō
Olalla Manganese, 49° 119° S.W. 59	-
Olch, H. W 66	02
Olcott, R. H. 74	[``

Old Sport, 50° 127° S.E. 97
electrical installations
Olds, E. B
Olds, E. B. 75 Oliver Silica Quarry, 49° 119° S.W., silica 157
Olts, E. M41, 86
O'Malenick, S 155
Omineca area, 56° 126° N.E., placer 128
Ominica area, 50 120 N.E., placer
Omineca Mining Division
Oscarson, D. J 135
Oscarson, D. J 135 Osoyoos Mining Division A 66
Ostgard, A 95
Ottawa, 49° 117° N.E A50, 78
Ottawa Silver Mines Limited A 50, 78
Owens, K. H A 72
Owl Creek Gold Mines Nos. 1-4, 50°
122° N.W., geological report 115
Ox Group, 56° 130° S.E., geological, geo-
physical, and geochemical report 116

Р

P62, P64, P65, 50° 120° S.W.	45
P.C.M., 50° 120° S.W.	41
P.L. Group, 50° 120° S.W.	42
Pacific Chrome Alloys Ltd.	62
Pacific Nickel Mines Limited	87
Pacific Nos. 1-12, 49° 119° S.E.	62
Pacific Piledriving Co. Ltd.	105
Pacific Silica Ltd.	
Paco Resources Ltd.	101
Pal, 50° 120° S.W., geological and geo-	101
physical report	115
physical report A 17, palladium, production A 17,	A 20
Paramount, 49° 125° N.W.	103
Parliament I H	65
Parliament, J. H. Parson, 51° 116° S.W., barite	140
Parson, 51° 116° S.W., Darite	140
Parsons, Herbert Parsons Tractor Services Ltd., sand and	268
Parsons Tractor Services Ltd., sand and	
gravel	156
Pasiaud, Roger Pat and Pat No. 1, 58° 125° N.W., geo-	268
Pat and Pat No. 1, 58° 125° N.W., geo-	
logical report	117
Patton, F. É.	104
Paxton, 49° 124° N.W. (see also Texada	
Mines Ltd., p. 90)	A 47
Peace River, 56° 122° S.E., coal	274
Peacock, Percy	124
Pearson, Herbert, obituary	A 4
Pearson, J. K.	A 50
Pearson, S.	

I	Peck	T	w	Chief	Inspector	of	Mines	
4	CUA.		**	Ciller	monorioi	UL	TATHICS.	

reck, J. W., Chief inspector of Milles
A 2, A 58
report by 232
report by 232 Peel Groups A, B, and C, 50° 120° S.W.,
Peel Groups A, B, and C, 50 ^{-120⁻} S.W.,
geophysical and geochemical report 115
Peel Resources Limited
Pegasus Explorations Limited6
Pegg. Alfred
Pelletier, B. R. A 72
Pentland, W. S 37
Perepolkin, E A 50, 76, 77 perlite, production A 17, A 18, A 33
perlite production A 17 A 18 A 33
pointe, production
permissible rates, authorized maximum 196
Perry, O. S
Perry R. D. 80
Perry, S. A 41
Perry Creek, 49° 115° N.W., magnesite 150
Peter Kiewit Sons Company of Canada
Ltd 104
Peters Creek, 53° 122° S.E., placer 132
Petersen, E. H
Peterson, A. E. 79
Peterson, G. H. 142
Petroleum and Natural Gas Branch A 60, 162
administration A 61
Board of ArbitrationA 61
Conservation CommitteeA 62
staff
staff changes A 61
outil onungoo101

	PAGE
petroleum, crude, permits, rentals, and fees	A 55
feesA 17, A 18,	A 25
revenues	161
Petrosky, M.	135
Petrosky, M Phelps Dodge Corporation of Canada,	
Limited, B.R.	25
Colossus	90
Fish Lake	24
Phelps Dodge	
Salaí	
Phillips, R. C.	78
Pho, F	0.78
Phoenix, 49° 118° S.WA 4	7.65
Pho, F	7.65
trophy	250
trophyA 17, phosphate rock, productionA 17,	A 33
Piccolo, Joe	127
Piccolo, Louis	127
Pietz, Ben	249
Pine Creek, 59° 133° N.W., placer	127
Pinus Creek, 53° 121° S.E., placer	130
Pioneer, 50° 122° N.W.	A 48
pipe-lines	172
crude-oil	229
natural-gas, transmission, gathering and	
distribution	-228
Pipe Line Road gravel pit, electrical in-	
stallations	283
Piskulski, S.	A 46
Pitkethly Brothers Limited	143
Pitt, Arthur	149

Pitt Meadows Municipality, sand and gravel_________153 Pitt River, 49° 122° S.W., building-stone 142 Placer Development Limited______69

 Placer Engineers
 133

 Placer-mining Lease No. 456
 135

 Placer-mining Lease No. 751
 134

 Placer-mining Lease No. 752
 134

 Placer-mining Lease No. 1333
 134

 Placer-mining Lease No. 1412
 127

 Placer-mining Lease No. 2298
 120

 Placer-mining Lease No. 1412
 127

 Placer-mining Lease No. 2288
 129

 Placer-mining Lease No. 3454
 133

 Placer-mining Lease No. 4429
 131

 Placer-mining Lease No. 5778
 133

 Placer-mining Lease No. 6065
 130

 Placer-mining Lease No. 6072
 130

 Placer-mining Lease No. 6103
 133

 Placer-mining Lease No. 6103
 133

 Placer-mining Lease No. 6129
 132

 Placer-mining Lease No. 6129
 132

 plants, gas-processing
 230

 sulphur
 230

 platinum, production
 A 17, A 30

 Plonka, Chester
 269

 Poison Mountain, 51° 122° S.W.
 23

 Polischuk, Paul
 134

 Polk
 114

 Polk, G. K.
 11

 Pollock, W.
 71

 Popkum, 49° 121° S.W., limestone
 149

 marl
 150

Port Coquillam, sand and gravel	133
Port Coquitlam, sand and gravel Port Moody, City of, sand and gravel	152
Porter, R. M.	<u>80</u>
Dortland Canal area	õ
Portland Canal area Portman, A. E.	
Portman, A. E.	144
Portinan, A. E Postie, L. T	65
nottery production A18	à 34
Barriell Three KOS 1435 CXV to Ja market	00
rowell Kiver, 30" 124' 5.W., loue metals	07
sand and gravel	156
nozzolan. Quesnel and Fraser Rivers	151
Dramiar SIº 110° SW	AQ
	***,**
Premier Sand and Gravel Company Limi-	
ted	152
Prentice, W. R.	267
Bernandt 100 1010 NIXI Loss also Tavada	
riescon, 45 124 IN.W. (see also rehaud	
Mines Ltd., p. 90)	A 47
Prentice, W. R. Prescott, 49° 124° N.W. (see also Texada Mines Ltd., p. 90) Preston, S. G., agrologist, Board of Arbi- tration Price, B. W	
tration	A 61
Dia D W	2.2
Price, B. W.	03
Price, F. L. C	7,38
Price R. A.	A 72
Drice 409 1959 NJ W	103
FILCE, 497 12.3 14.47	105
Price, F. L. C. 3 Price, R. A. Price, 49° 125° N.W. prices, average used in valuing Provincial	
production of gold, silver, copper, lead,	zinc.
and coal	A 16
	7 02
Pride of Emory, 49" 121" 5. W.	, 00
production of gold, silver, copper, lead, and coal Pride of Emory, 49° 121° S.W. A 42 electrical installations	280
electrical installations Priessler, George J. Prince George, sand and gravel Princeton, 49° 120° S.W., coal. Pringle, D. W. Pritchard, M. J. Privateer, 50° 126° S.W. producing and producible, gas wells (by months)	250
Brings George cond and grovel	152
Fince Ocorge, sand and graver	104
Princeton, 49° 120° S.W., coal	200
Pringle, D. W.	- 30
Pritchard, M. J.	135
$D_{\rm relation} = SO_{\rm r} + 1069 + 6.07$	100
Filvaleei, 50 120 3.W.	100
producing and producible, gas wells (by	
months)	209
	208
	A 14
oil weils (by months)	w 14
production, method of computing	
production, method of computing	216
oil wells (by months) production, method of computing production, crude oil (monthly) crude oil (yearly)	216 200
months) oil wells (by months) production, method of computing production, crude oil (monthly) crude oil (yearly)	216 200 217
oil wells (by months) production, method of computing production, crude oil (monthly) crude oil (yearly) natural gas (monthly)	216 200 217
natural gas (monthly)	202
natural gas (monthly)	202
natural gas (monthly)	202
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) subhur (monthly)	217 202 220 220
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) subhur (monthly)	217 202 220 220
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary	217 202 220 220 185 262
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary	217 202 220 220 185 262
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary	217 202 220 220 185 262
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary	217 202 220 220 185 262
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary prosecutions, coal mines lode-metal mines Provincial first-aid competitions, ladies'	217 202 220 220 185 262 242 A 47
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary prosecutions, coal mines lode-metal mines Providence, 49° 118° S.W. Provincial first-aid competitions, ladies' third	217 202 220 220 185 262 242 A 47 249
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary prosecutions, coal mines lode-metal mines Providence, 49° 118° S.W. Provincial first-aid competitions, ladies' third men's fifth	217 202 220 220 185 262 242 A 47 249 249
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary prosecutions, coal mines lode-metal mines Providence, 49° 118° S.W. Provincial first-aid competitions, ladies' third men's fifth	217 202 220 220 185 262 242 A 47 249 249
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary prosecutions, coal mines lode-metal mines Providence, 49° 118° S.W. Provincial first-aid competitions, ladies' third men's fifth	217 202 220 220 185 262 242 A 47 249 249
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary prosecutions, coal mines lode-metal mines Providence, 49° 118° S.W. Provincial first-aid competitions, ladies' third men's fifth	217 202 220 220 185 262 242 A 47 249 249
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary prosecutions, coal mines lode-metal mines Providence, 49° 118° S.W. Provincial first-aid competitions, ladies' third men's fifth Prudential Petroleums Ltd. publications, Department of Mines and Petroleum Resources	217 202 220 185 262 242 A 47 249 249 74 A 68
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary prosecutions, coal mines lode-metal mines Providence, 49° 118° S.W. Provincial first-aid competitions, ladies' third men's fifth Prudential Petroleums Ltd. publications, Department of Mines and Petroleum Resources	217 202 220 185 262 242 A 47 249 249 74 A 68
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary prosecutions, coal mines lode-metal mines Providence, 49° 118° S.W. Provincial first-aid competitions, ladies' third men's fifth Prudential Petroleums Ltd. publications, Department of Mines and Petroleum Resources	217 202 220 185 262 242 A 47 249 249 74 A 68
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary prosecutions, coal mines lode-metal mines Providence, 49° 118° S.W. Provincial first-aid competitions, ladies' third men's fifth Prudential Petroleums Ltd. publications, Department of Mines and Petroleum Resources Geological Survey of Canada Mineral Resources Division	217 202 220 220 185 262 242 A 47 249 249 74 A 68 A 72 A 73
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary prosecutions, coal mines lode-metal mines Providence, 49° 118° S.W. Provincial first-aid competitions, ladies' third men's fifth Prudential Petroleums Ltd. publications, Department of Mines and Petroleum Resources Geological Survey of Canada Mineral Resources Division	217 202 220 220 185 262 242 A 47 249 249 74 A 68 A 72 A 73
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary prosecutions, coal mines lode-metal mines Providence, 49° 118° S.W. Provincial first-aid competitions, ladies' third men's fifth Prudential Petroleums Ltd. publications, Department of Mines and Petroleum Resources Geological Survey of Canada Mineral Resources Division	217 202 220 220 185 262 242 A 47 249 249 74 A 68 A 72 A 73
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary prosecutions, coal mines lode-metal mines Providence, 49° 118° S.W. Provincial first-aid competitions, ladies' third men's fifth Prudential Petroleums Ltd. publications, Department of Mines and Petroleum Resources Geological Survey of Canada Mineral Resources Division	217 202 220 220 185 262 242 A 47 249 249 74 A 68 A 72 A 73
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary prosecutions, coal mines lode-metal mines lode-metal mines Providence, 49° 118° S.W. Provincial first-aid competitions, ladies' third men's fifth Prudential Petroleums Ltd. publications, Department of Mines and Petroleum Resources Geological Survey of Canada Mineral Resources Division Mines Branch petroleum and natural gas Pundata Creek, 53° 121° S.W., placer	217 202 220 185 262 242 A 47 249 249 74 A 68 A 72 A 73 A 72 130
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary prosecutions, coal mines lode-metal mines Providence, 49° 118° S.W. Provincial first-aid competitions, ladies' third men's fifth Prudential Petroleums Ltd. publications, Department of Mines and Petroleum Resources Geological Survey of Canada Mineral Resources Division Mines Branch petroleum and natural gas Pundata Creek, 53° 121° S.W., placer Puttock, N. W.	217 202 220 220 220 262 242 242 249 249 249 74 A 68 A 72 249 249 74 A 68 A 72 130 144
natural gas (monthly) natural gas (yearly) natural-gas liquids (monthly) sulphur (monthly) production statistics, summary prosecutions, coal mines lode-metal mines lode-metal mines Providence, 49° 118° S.W. Provincial first-aid competitions, ladies' third men's fifth Prudential Petroleums Ltd. publications, Department of Mines and Petroleum Resources Geological Survey of Canada Mineral Resources Division Mines Branch petroleum and natural gas Pundata Creek, 53° 121° S.W., placer	217 202 220 220 220 262 242 242 249 249 249 74 A 68 A 72 249 249 74 A 68 A 72 130 144

303 Dame

PAGE Quadling, H. 154 Quadra Island 91 Qualicum Mines Limited 102 Quarin, Nillo 262 Quatsino Copper-Gold Mines Limited 95 Queen, Metallurgical Industries Ltd. 17 Queen, 49° 117° S.E. A 49, 68 Queen Charlotte Islands, Louise Island 17	PAGE Queen Group, 56° 130° S.E., geophysical report
	Quilchena Mining & Development Co. Ltd. 46

h		

R.A.F. Nos. 1-3, 55° 129° N.W., geological and geophysical report 116 R. F. Fry and Associates (Western) Limited 116 R. F. Fry and Associates (Western) Limited 15, 71 RS Nos. 1-8, 49° 119° S.E. 62 Rae, D. H. A 64 Rainbow, 50° 120° N.E. 48 Ralph 1-14, 50° 120° N.W., geophysical report 115 Ramage, B. 73, 248 Rankin, 51° 119° S.W. 54 Rapp, A. 274 Rastocnik, John 257 Raven, 49° 118° S.E., geophysical report 114 Red Bird, 49° 117° S.E. 72 Red Group, 56° 130° S.E., geological and geophysical report 116 Reesor, J. E. A 72
R. F. Fry and Associates (Western) Limited 15, 71 ited 15, 71 RS Nos. 1-8, 49° 119° S.E. 62 Rae, D. H. 48 Ralph 1-14, 50° 120° N.E. 48 Ralph 1-14, 50° 120° N.W., geophysical 115 report 115 Ramage, B. 73, 248 Rankin, 51° 119° S.W. 54 Rapp, A. 274 Rastocnik, John 257 Raven, 49° 118° S.E., geophysical report 114 72 Red Bird, 49° 117° S.E. 72
ited 15, 71 RS Nos. 1-8, 49° 119° S.E. 62 Rae, D. H. A64 Rainbow, 50° 120° N.E. 48 Ralph 1–14, 50° 120° N.W., geophysical 115 report 115 Ramage, B. 73, 248 Rapp, A. 274 Rastocnik, John 257 Raven, 49° 118° S.E., geophysical report 114 Red Bird, 49° 117° S.E. 72 Red Bird, 49° 117° S.E. 72
Raiph 1-14, 50° 120° N.W., geophysical 115 report 115 Ramage, B. 73, 248 Rankin, 51° 119° S.W. 54 Rapp, A. 274 Rastocnik, John 257 Raven, 49° 118° S.E., geophysical report 114 Red Bird, 49° 117° S.E. 72 Red Bird, 49° 6° 130° S.E. 72
Raiph 1-14, 50° 120° N.W., geophysical 115 report 115 Ramage, B. 73, 248 Rankin, 51° 119° S.W. 54 Rapp, A. 274 Rastocnik, John 257 Raven, 49° 118° S.E., geophysical report 114 Red Bird, 49° 117° S.E. 72 Red Bird, 49° 6° 130° S.E. 72
Raiph 1-14, 50° 120° N.W., geophysical 115 report 115 Ramage, B. 73, 248 Rankin, 51° 119° S.W. 54 Rapp, A. 274 Rastocnik, John 257 Raven, 49° 118° S.E., geophysical report 114 Red Bird, 49° 117° S.E. 72 Red Bird, 49° 6° 130° S.E. 72
Raiph 1-14, 50° 120° N.W., geophysical 115 report 115 Ramage, B. 73, 248 Rankin, 51° 119° S.W. 54 Rapp, A. 274 Rastocnik, John 257 Raven, 49° 118° S.E., geophysical report 114 Red Bird, 49° 117° S.E. 72 Red Bird, 49° 6° 130° S.E. 72
Raiph 1–14, 50° 120° N.W., geophysical 115 report 115 Ramage, B. 73, 248 Rankin, 51° 119° S.W. 54 Rapp, A. 274 Rastocnik, John 257 Raven, 49° 118° S.E., geophysical report 114 Red Bird, 49° 117° S.E. 72 Red Group, 56° 130° S.E. geological and 72
report 115 Ramage, B. 73, 248 Rankin, 51° 119° S.W. 54 Rapp, A. 274 Rastocnik, John 257 Raven, 49° 118° S.E., geophysical report 114 Red Bird, 49° 117° S.E. 72 Red Group, 56° 130° S.E. geological and 72
Ramage, B. 73, 248 Rankin, 51° 119° S.W. 54 Rapp, A. 274 Rastocnik, John 257 Raven, 49° 118° S.E., geophysical report 114 Red Bird, 49° 117° S.E. 72 Red Group, 56° 130° S.E. 72
Rankin, 51° 119° S.W. 54 Rapp, A. 274 Rastocnik, John 257 Raven, 49° 118° S.E., geophysical report 114 Red Bird, 49° 117° S.E. 72 Red Group, 56° 130° S.E., geological and geophysical report 116
Rankin, 51 115 54 Rapp, A. 274 Rastocnik, John 257 Raven, 49° 118° S.E., geophysical report 114 257 Red Bird, 49° 117° S.E. 72 Red Group, 56° 130° S.E., geological and geophysical report 116
Rapp, A. 214 Rastocnik, John 257 Raven, 49° 118° S.E., geophysical report 114 Red Bird, 49° 117° S.E. 72 Red Group, 56° 130° S.E., geological and geophysical report 116
Rastocrink, John 257 Raven, 49° 118° S.E., geophysical report 114 Red Bird, 49° 117° S.E. 72 Red Group, 56° 130° S.E., geological and geophysical report 116
Red Bird, 49° 117° S.E., geophysical report 114 Red Bird, 49° 117° S.E. 72 Red Group, 56° 130° S.E., geological and geophysical report 116
Red Bird, 49° 117° S.E. 72 Red Group, 56° 130° S.E., geological and geophysical report 116
Red Group, 56° 130° S.E., geological and geophysical report 116
geophysical report 116
Reesor, J. E
Reeves MacDonald Mines Limited
A 49, 71, 72, 82
dangerous occurrence 241
electrical installations 279 refineries, crude oil 231
refineries crude oil 231
Rehwold E V petroleum engineer A 61
Renving No. 1 519 1109 SW
Remning No. 1, 51, 119, 5.W
Rehwald, E. V., petroleum engineer A 61 Renning No. 1, 51° 119° S.W. 48 Renshaw, R. E. 39 reports, drilling and land 178
reports, drilling and land 1/8
monthly 178
weekly
reserves, recoverable crude oil, natural
gas, and natural-gas products 195
reservoir data
reservoir data statistics, gas fields
oil fields 182
Resident Engineers A 58 Retallack-Three Forks, 50° 117° S.E. 75 Revelstoke, 51° 118° S.E., lode metals 84
Retallack-Three Forks, 50° 117° S.E. 75
Revelstoke, 51° 118° S.E., lode metals 84
placer 136
placer
revenue, petroleum and natural gas 161
review, lode metals 3
mineral industry A 10
Reynolds, H. 23 Beynolds, P. M. 102
Reynolds, P. M. 103
Richmix Clays Limited 143 Richmond, G. W. 143 Richmond-Eureka, 49° 117° N.E. A 50, 76
Kichinond, G. W 143
Richmond-Eureka, 49° 117° N.E A 50, 76
Richmond Sand and Gravel Ltd, 155
Riesterer, H. A 48
Riley, C 19

R

	Rio Tinto Canadian Exploration Limited,	
	Highvale Copper	40
	Little Lake Group Riondel, 49° 116° N.W.	100
	Riondel, 49° 116° N.W.	12
	electrical installations	279
	riprap, production A 17, A 18,	A 34
	Ritchie, A. E.	76
	Kitchie Transportation Company	- 7
	roads, mining	A 67
	Robb, J. A	134
	Robb, Jim	133
	Robertson, A.	39
	Robertson, Andrew	90 17
	Robertson, Campbell M.	
	Robertson, I. H., instructor, Kamioops	
	Station	A 58
	Robinson, I. W.	69
	Kobinson, W. C., Inspector and Resident	
	Engineer	A 58
	reports by	
	6, 7, 9, 10, 13–17, 19, 127, 129, Rock, 50° 120° S.W. Romaniuk, Mike A 4	138
	Rock, 50° 120° S.W.	31
	Romaniuk, Mike A 4	7,88
	Romanink Steve A 4	7.88
1	Ron Group, 50° 120° S.W.	- 38
	geophysical and geochemical report	115
	Rookes, W. R.	141
	Rookes, W. R. Rose Group, 51° 119° S.W. Rose Gulch, 52° 121° N.W., placer Ross, J. A. C. Rossland, 49° 117° S.W.	- 56
	Rose Gulch, 52° 121° N.W., placer	133
1	Ross, J. A. C.	103
	Rossland, 49° 117° S.W.	65
	Kossiand mines, 49° 11/° S.W.	- 66
	Rottacker, D	, 139
1	Rottacker, M.	129
	Rotter, F. R.	68
	Routledge Sand & Gravel Co. Ltd. 152	. 153
	Rover 1 and 2, 50° 120° N.W., geophysi-	,
	cal report	115
	cal report Royal, 50° 120° S.W., geological and geo-	
	physical report	115
1	Royal Canadian Ventures Ltd.	29
	rubble, production A 17, A 18.	$\overline{A34}$
	rubble, production A 17, A 18, Ruby Mac, 49° 118° S.W.	65
1	Rubymac Mines Ltd.	65
	Rubymac Mines Ltd. Ruddock Creek, 51° 118° N.W.	84
Į	Russell, D. M.	- 75
	Russell J	68
ļ	Rutherford C. 4	3.46
ĺ	Russell, J. Rutherford, C	76
	Ryan Tronhy John T	249
	i region reophy, some re-	~~/

....

	PAGE
S.B. Group, 50° 121° N.W., geophysical	115
S. H. Marriott Sand and Gravel	115
S. & S. Sand & Gravel Ltd.	152
S.U.B. Quarries, sand and gravel	155
Saad, Ronald	257
Sadler, J.	104
safety	246
safety competition, open-pit mines and	
ouarries	- 249
safety lamps Sal, 50° 116° S.W.	260
Salal, 50° 123° N.E.	28
salaries and waces	A 43
salaries and wages Salmo, 49° 117° S.E. Salmon River, 56° 130° S.E.	68
Salmon River, 56° 130° S.E.	Ĩ
samples, coal	A 37
examination	-165
horary	165
miscellaneous	A 57
petroleum and natural gas rock	A 30 A 56
washing	n Du 164
wells	164
wells A 17, A 18, sand, production A 17, A 18, sand and gravel (see table) 152	A 34
sand and gravel (see table)152	-156
Nondhorn Albart	- 1 7 A
Sanders, Harry	268
Sandon, 49° 117° N.E.	76
Sandy Creek, 51" 120" N.E.	A 77
Sanders, Harry Sandon, 49° 117° N.E. Sands Creek, 51° 120° N.E. Sangster, D. F. Sargent, Hartley, Chief of the Mineralogi-	n /4
report by	A 10
report by Sargis, S. G. Sarita River, 48° 125° N.E. Saturna Island, 48° 123° N.E., clay and	272
Sarita River, 48° 125° N.E.	111
Saturna Island, 48° 123° N.E., clay and	1.13
shaleSaur, V.	
Saur, V. Savare W D	128
Savage, W. D. Saw Groups, 49° 120° S.W., geophysical	1.41
report	114
report Sawtooth, 49° 119° S.E. Sayward, 50° 125° S.W. Scarborough, J. M. B. schedule of wells Scott, D. L.	63
Sayward, 50° 125° S.W.	91
Scarborough, J. M. B.	68
Schedule of Wells	1//
Scott Bros. Gravel Co. Ltd.	153
Scranton, 49° 117° N.E.	74
Scranton, 49° 117° N.E. Scranton Mines Limited Seabee Group, 56° 130° S.E., geophysical	74
Seabee Group, 56° 130° S.E., geophysical	
report Sechelt Peninsula, 49° 123° N.W.	116
Secheit Peninsula, 49° 123° N.W.	89
seismic exploration	180
selenium. production A 17, Seneca, 50° 122° N.W.	n 31
Seneca, JU [*] 122° N.W.	27
Serek, Joseph Serksnas, Juczas	205 244
sewer-pipe, production A 18,	23C
Seymour Gravel Co. Ltd.	23. 24 199
Shamrock, 50° 127° S.E.	95
Sharn H A anginaaring accidant A KI	73 141
Sharp, H. A., engineering assistant A 61 Sharp, W. M4	, 102 1 04
Shaw, G. S.	≠, D. ₫1
Shawnigan Lake, 49° 123° N.W	111
Shawnigan Lake, 49° 123° N.W. Shearer, John C. Sheep Creek, 49° 117° S.E.	27
Sheep Creek, 49° 117° S.E.	65
	19 L

<u>ب</u>	PAGE
Sheep Creek Mines Limited, electrical	in-
stallations	
Liz B Mineral King	
Mineral King	A 49, 82
QueenShepherd, A. F., librarian	
Sheritt Lee Mines Ltd.	A 47
shiftboss certificates	245
Short, G. C. Shot Group, 50° 120° S.W. geophysical report Shrieves, A.	151
Shot Group, 50° 120° S.W.	40
geophysical report	115
Shrieves, A.	156
Signe 51º 110º C W	
Silbak Premier, 56° 130° S.E.	A 47 9
Sieger, Karl Signe, 51° 119° S.W. Silbak Premier, 56° 130° S.E. Silbak Premier Mines Limited	A 47.9
Sileurian Chieftain Mining Comp	any
Sileurian Chieftain Mining Comp Limited silica deposits, (see table) Golden, 51° 116° S.W.	103
silica deposits, (see table)	
Golden, 51° 116° S.W.	157
Uliver, 49° 119° S.W.	157
Oliver, 49° 119° S.W. Winlaw, 49° 117° N.E. silver, deposits (see table)	127
dividends	
nrice	
production	17-A 27
dividends price production A Silver Bell, 50° 122° N.W.	
Silver Buckle Mining Company Silver Chief, 50° 117° N.E., geological	
Silver Chief, 50° 117° N.E., geological	re-
port Silver King Mines Limited	114
Silver Standard Mines Limited, Carnat	78
Harriet Harbour	tion 76
Silver Tip Group 59° 130° N E	13
Harriet Harbour Silver Tip Group, 59° 130° N.E. geophysical report Silversmith, 49° 117° N.E.	
Silversmith, 49° 117° N.E.	76
Similkameen Mining Division Similkameen River, 49° 120° S.W., 1	A 66
Similkameen River, 49° 120° S.W., 1	ode
metals	56
placer	134
Simpson, J. D. Singer, F. Sirdar, 49° 116° S.W., building-stone Sisson, R. C. Skagit River, 49° 121° S.E.	51, 41
Sindar, 49° 116° S.W., building-stone	06 141
Sisson, R. C.	127
Skagit River, 49° 121° S.E.	
eleculcal instanations	
Skeena Mining Division	A 66
Skeena Silver Mines Ltd.	
Skerl, A. C. Skookum, 49° 123° N.W.	
Skookum Hranium Placer 49° 117°	S.E. 135
Skookum Uranium Placer, 49° 117° 5 Skwaam (Agate) Bay, 51° 119° S.W. Skylane Mines Limited	53
Skylane Mines Limited	
Slavens, M.	267
Slee, Thomas	
Slocan Base Metals, 49° 117° N.E.	77
Slocan King, 49° 117° N.E.	
Slocan Lake, 49° 117° N.E.	
Slocan Prince, 49° 117° N.E.	A 50
Slocan Star, 49° 117* N.E.	
Smilie, L. D.	
Smith, Alex.	
Smith, D. C. Smith, D., Inspector and Resident E	ngi-
	A 58
neer reports by 30-37, 39-41, 46, 48, 49, 58, 59, 62, 63, 65, 134, 135, 157,	56,
28, 39, 62, 63, 63, 134, 133, 137, 1	200, Z73.

	D
	PAGE
Smith Placers Ltd., 52° 121° N.W.	133
Smith Placers Ltd., 52° 121° N.W Smithers, 54° 127° N.E sodium carbonate, production A 17, 4	18
sodium carbonate, productionA 17, A	A 33
Somerville, A	265
Soo, 50° 120° S.W.	43
geophysical report	115
Sorum, Erik	133
Souther, J. G.	A 72
Souther, J. G Southwest Potash Corporation, Boss	
Mountain	21
Copper Canyon property	7
Glacier Gulch Spanish Creek, 52° 121° N.W., placer	19
Spanish Creek, 52° 121° N.W., placer	133
Special Placer-mining Lease 906 491 1111	
N.W., geological and geophysical report	114
Special Placer-mining Lease No. 1447	127
specimens, rock and mineral	
Specificity, fock and inneral	29
Spences Bridge, 50° 121° S.E Spillimacheen, 50° 116° N.W., barite	141
electrical installations	283
lode metals	83
Spooner, R. H.	133
Springer, K. J Springer Creek, 49° 117° N.E	63
Springer Creek, 49° 117° N.E.	78
Spruce Creek, 59° 133° N.W., placer	127
Spruce Creek Placers Ltd. Squaw Creek, 59° 136° N.W., placer	127
Squaw Creek, 59° 136° N.W., placer	127
Squaw Creek Placer, 59° 136° N.W.	127
ST ADDREW MIDING LO I TO	- 83
St. John Ambulance	249
St. Mary River, 49° 116° N.W.	. 82
St. John Ambulance St. Mary River, 49° 116° N.W. Standard, 49° 119° S.W. Standard Berylium Corporation of New	62
Standard Berylium Corporation of New	
York A 50 statistical tables, mineral industry A 17-), 75
statistical tables, mineral industryA 17-	Á51
petroleum and natural gas180-	-231
statistics, mineral industry	A 31.
steare, H. ASteeves and Mann Equipment Ltd	175
Steane, H. A.	69
Steeves and Mann Equipment Ltd.	155
Steeman F H	135
Stella 54° 125° S F	19
Stemwinder 49° 119° SW	62
Stegman, F. H. Stella, 54° 125° S.E. Stemwinder, 49° 119° S.W. Stevenson, J. S. Stikine, 57° 131° S.E.	51
Stikine 57º 131º SE	7
Stikine, 57 151 S.E.	95
Stitt I M	13
Stitt, J. M. Stock, 54° 127° N.E.	18
Stokes, R. B	
Slokes, K. D	, 00

PAGE
Stone, J. J 19 stone, production A 17, A 18, A 34
store ore 165
storage, core 165 Storie, W. J. 124 Stott, D. F. A 72
Statt D E $\qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad \qquad $
Stonach Charles 265
Stronach, Charles 265 Stronach No. 2 mine, 49° 124° S.E., coal 265 structural materials and industrial miner-
structural materials and industrial miner.
als
structural materials production
Studer, T. A. A 17, A 18, A 24, A 34 Studer, T. A. 141 Stump Lake, 50° 120° S.E. A 48 Sullivan, 49° 115° N.W. A 49, 80 dangerous occurrences 240, 242
Studer, T. A
Stump Lake, 50° 120° S.E A 48
Sullivan, 49° 115° N.W. A 49, 80
dangerous occurrences 240, 242
electrical installations 7/9
Sullivan, C. J
Sullivan, C. J
disposition (monthly) 225
plants 230
plants 230 production A 17, A 18, A 33
production (monthly)
value to producer
value to producer
sand and gravel
Sumas Municipality, sand and gravel
Sumitomo Metal Mining Company Ltd 88
Sumitomo Metal Mining Company Ltd. 88 Sumitomo Shoji Kaisha Ltd. 13
Sun Oil Company A 62 Sunloch, 48° 124° S.E. 113
Sunloch, 48° 124° S.E. 113
electrical installations
Sunrise, 49° 119° S.W 59
Sunro Mines Limited 113
electrical installations
fatal accident 233 Sun-West Minerals, Limited
Sun-West Minerals, Limited 101, 104
supervision of coal mines
surface geological exploration 181
Surrey, Corporation of the District of, sand and gravel
sand and gravel 155
Surrey Municipality, sand and gravel 155
Sutherland Brown, A., geologist A 59
field work A 59
reports by
reports by
Sweet Home, 51° 119° S.W. 49
Swift Copper Mines Limited A 49, 66 Swift River, 52° 122° N.E., placer 133
Swift River 52° 122° N.E. placer 133
Shire arrow of the thirty provening 155

Т

Takomkane Mountain, 52° 120° S.W. 21
Talbott, R. C. 272 talc, production A 17, A 33
Tam O'Shanter, 49° 116° N.W
Tarnowski, M
Taseko Lake, 51° 123° S.W 24
Tassoo, 52° 132° N.E. 11
Tay Group, 56° 130° S.E., geological and
geophysical report 116
Taylor, G. C
Taylor, Raymond R. 27, 28
Taylor, Reginald
Taylor, Robert
Taylor, Thomas 271
Ted Group, 56° 130° S.E., geological and
geophysical report 116
Ted Ray, 56° 130° S.E. 9

Telkwa, 54° 127° N.E., co.l	273
Tenquille Group, 50° 122° N.W., geologi-	
cal report	115
Tex, 50° 120° S.W.	41
Texada Island, 49° 124° N.W.	- 90
electrical installations281,	, 283
Texada Mines Ltd	7,90
dangerous occurrence240,	
electrical installations	
Texas, 50° 117° S.E.	76
Thickett, C.	78
Thompson, F. R	
Thompson, Les	133
Thomson, J.	265
Thomson, J. S.	
Thorsen, E.	142
Thrall, R. A 140,	157

PAGE
Three Sisters Nos. 1-8, 49° 119° S.E. 62
tin, deposits (see table)
production A 17, A 18, A 31
Tintlhohtan Lake, 51° 120° N.E. 49
Tipper, H. WA 72
Tipper, H. WA 72 Titan Queen (Paystin), 50° 120° S.W 39
Toby Creek, 50° 116° S.E. 82
electrical installations 280
Tofino Inlet, 49° 125° S.W 104
Tofino Mines Limited 103
Toluma Mining and Development Co.
Ltd. 45
Tombac Explorations Limited, Dora Kay 29
Rose Group 56
placer 130, 132
Tootsie River, 59° 130° N.E 6
topographic mappingA 70
Tormont Mines Limited 39
Torwest Resources (1962) Ltd. 39
Towgood, C
Trail, 49° 117° S.W 66
sand and gravel 152
trails, mining

i	Tranquil Inlet, 49° 125° S.W.	103
	Trans Mountain Oil Pipe Line Company	172
	Trans-Prairie Pipelines (B.C.) Ltd.	
	Travis, Harvey	
ĺ	Treichel. A.	A 71
	Treichel, A. Tremaine, C. W. S64,	131
	Trojan Consolidated Mines Ltd.	1110
	Trommel Mining Ltd.	
	trophy John T Duon	240
	trophy, John T. Ryan West Kootenay Mine Safety Associa-	242
	west Koolenay Mine Salety Associa-	a 40
	tion	249
1	Try Me, 51° 119° S.W.	_54
	Tsable River mine, 49° 124° N.W., coal_	
	electrical installations	283
	Tsolum River, 49° 125° N.W.	
ł	Tulameen River, 49° 120° N.W.	135
I	tungsten, deposits (see table)	
	production	A 31
	Turlight, 50° 120° S.W.	45
	Turner, H. M.	74
	Tyler, W. W.	75
ļ	Tymchuk, Michael	
	Tzartus Island, 48° 125° N.E.	111
ļ	1201103 131010, 70 120 14.D.	TTT

U

Undun No. 3 mine, 49° 123° S.W., coal. 2 United Gypsum Corporation Ltd. 1 United States Steel Corporation 22	264 144 272 264	Upper "A" South mine, Michel Colliery, 49° 114° N.W., coal 269 uranium, deposits (see table) 285 Urquhart, J. C 65 Utica, 49° 117° N.E A 50, 75
--	--------------------------	--

V

V.L. 14-21, 50° 121° S.E., geophysical re-

7.13, 14 -21, 50 ILI 5.23, geophysical ic		
port	115	
Valley Granite Products Limited	142	
Valley Group, 55° 125° N.E., geochemi-		
cal report	116	
Valley Ready-Mix, sand and gravel	153	
Valley Rite-Mix Ltd., sand and gravel	154	
Valley View, 49° 121° S.W A 47	88	
value to producer, crude oil	227	
natural gas	227	
natural-gas liquids	227	
sulphur	227	
Van Boeyen, Henry, sand and gravel	153	
Vananda, 49° 124° N.W., limestone	149	
Vancouver, 49° 123° S.E., clay and shale	143	
Vancouver, North and West, sand and		
gravel	152	
Vancouver Granite Co. Limited	142	
Vancouver Island, electrical installation	281	
lode metals	91	
sand and gravel	156	
Vancouver Island Inspection District, coal		
mines	263	

Vancouver Island Mine Safety Associa-	
tion	248
Vancouver Mining Division	A 67
Vancouver Wharves Ltd.	- 88
Velvet, 49° 117° S.W A 50), 65
Velvet Mine LeasersA 50), 65
ventilation	
Ventures Limited, Catface	101
It and In	84
Tassoo	11
Verkirk, William	
Vernon area, limestone	144
Vernon Mining Division	
Victor, 49° 117° S.E	5, 77
Victoria, 48° 123° N.E., clay and shale	143
Victoria, 50° 120° S.W.	45
Viking, 50° 120° S.W.	31
Vimy Explorations Limited	
Violomac Mines Limited	5, 77
trophy	
Volpatti, Benjamin	
Vulgar, 50° 121° S.E., geophysical report	

W.O., 49° 117° S.W.66Wakefield, 49° 117°W.D. Mining Company Ltd.66Wakelem No. 3 minW. Storie and Associates7Waddell, Melville Carrington237Wade, Harry130Wade, 50° 120° S.W.41

W

 66	Wakefield, 49° 117° N.E. Wakelem No. 3 mine, 49° 124° S.E., coal Walker, J. F.	77
 66	Wakelem No. 3 mine, 49° 124° S.E.,	
 7	coal	264
 237	Walker, J. F.	51
 130	Walsh, J. K. 248, 249,	267
 41	Walsh, J. K	268

-- -

_

307 PAGB

	PAGE
Walton, T. F. Wardman, L., Senior Electrical Inspector	72
Wardman, L., Senior Electrical Inspector	
of Mines Waterbed, 49° 117° S.E. Waterloo, 49° 119° S.E.	4 58
Waterbed, 49° 117° S.E.	1 49
Waterloo, 49° 119° S.E.	63
Wayside, 50° 122° N.W.	25
Weaver, William M., Jr Webber, G. W.	89
Webber, G. W.	150
Weber, R. G.	69
Webster, Arnold	268
Webster, Arnold Webster, W. D	149
Wedeene Iron, 54° 128° S.W.	17
Weeks, J. P25, 40), 65
Weiss, S.	19
Weeks, J. P. 25, 40 Weiss, S.	82
well samples Wells-Barkerville, 53° 121° S.W	164
Wells-Barkerville, 53° 121° S.W.	19
wells drilled and drilling	186
well records Wen Group, 49° 120° N.W	175
Wen Group, 49° 120° N.W.	46
Wesfrob Mines Limited	11
West Kootenay Mine Safety Association	248
West Kootenay Mine Safety Association	
trophy Western Exploration, 49° 115° N.W	249
Western Exploration, 49° 115° N.W.	82
Western Exploration Company Limited	į
75	7,82
Western Ferric Ores Ltd. Western Gypsum Products Limited electrical installations	104
Western Gypsum Products Limited	144
electrical installations	283
Western Mines Limited	103
Western Nickel Mines Limited	87
Western Pacific Products and Crude Oil	
Pipeline Ltd	172
Wheaton, Jack	124
Wheaton, Jack Wheeler, J. O	4 72
Wheeler, W. R. Whip Group, 49° 120° S.W., geophysical	56
Whip Group, 49° 120° S.W., geophysical	
report	114
Whiskey Flat, 53° 120° S.E.	130
White, A. W. 76 White, 49° 117° S.E. 49	5, 77
White, 49° 117° S.E A 49	9,67
Whittaker, John	270

	PAGE
Why Not, 50° 122° N.W	27
Wiarton, 49° 119° S.E.	63
Wickham, Mr. and Mrs.	134
Wickstrom, Karl	65
Widsten, A. O.	150
Widsten, A. O Widsten Marine Services Limited	150
Wiegand, E. R.	132
Wiegand, E. R Wigwam, 51° 118° S.E	84
Wigwam Mining Company Wildcat Nos. 1-6, 49° 125° N.W.	85
Wildcat Nos. 1-6, 49° 125° N.W.	114
Williams, Arthur, instructor	A 58
Williams, R. E. Williams Creek, 53° 121° S.W., placer Williams Lake, 52° 122° S.E., asbestos	136
Williams Creek, 53° 121° S.W., placer	130
Williams Lake, 52° 122° S.E., asbestos	139
Willoron, 49° 123° N.W.	112
Willow River, 53° 121° S.W., placer	129
Willy Group, 50° 120° S.W.	37
Willoron, 49° 123° N.W. Willow River, 53° 121° S.W., placer Willy Group, 50° 120° S.W. Wilmot, A. D.	5.49
Wilson R. W.	Ć 76
Wilson, T. G.	43
Wilson Construction Co. Ltd., sand and	
gravel	152
gravel Windermere, 50° 116° S.E., barite	141
electrical installations 280,	283
gypsum	144
lode metals	82
lode metals Windlaw, 49° 117° N.E., silica Windpass, 51° 119° S.W.	157
Windpass, 51° 119° S.W.	- 49
Wines, S. V. Wingdam, 53° 121° S.W., electrical in-	- 93
Wingdam, 53° 121° S.W., electrical in-	
stallations	282
stallations Wingdam & Lightning Creek Mining Co.	
Ltd., placer	131
electrical installation	282
Wolfin, L.	- 90
Wood, L. G.	46
Woodbury Creek, 49° 117° N.E.	74
Woodrooffee, G. T.	
Workmen's Compensation Board	249
Wright Bros. & Associates Ltd.	
Wrixon, I.	51
Wynndel, sand and gravel	152

Х

X-ray powder diffraction analyses _____A 58

Yale, 49° 116° N.W	
Yale Lead & Zinc Mines Limited A 50, 74	
Yankee Dundee, 49° 117° S.E	
Yankee Dundee Mines Limited	
Yates, B 127	
Yellow Jacket, 49° 124° N.W. (see also	
Texada Mines Ltd., p. 90)A 47	

Yellow Kid, 49° 124° N.W. (see also	
Texada Mines Ltd., p. 90)	
Ymir, 49° 117° S.E.	67
York, A.	73
Yorke-Hardy, W.	19
Yorston, David	10
Young, D. B	273
Yuill, J	90

Z

Zavity, H. B.	136	zinc. dei
Zeballos, 50° 126° S.W.	100	divide
electrical installations		price
Zeballos Iron Mines Limited	101	produ
electrical installations	281	Zofka, (
Zilmer, A.	63	

zinc, deposits (see table).	
dividends	A 41
price	
production	A 17–A 27
Zofka, Carl	

Y

Printed by A. SUTTON, Printer to the Queen's Most Excellent Majesty in right of the Province of British Columbia. 1962

__<u>_</u>___

3,010-462-9000

· _____
